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ABSTRACT

We present a survey of new dynamical system identification algorithms.
In this new framework, the concept of a stare is emphasized. Moreover, the
numerical implementation is based on robust algorithms from numerical linear
algebra. An extensive comparison with ‘classical’ identification approaches is
discussed.

I. Introduction

In this work, we will present a new set of algorithms for dynamical system
identification, which is the field of modeling dynamical systems from exper-
imental data. The novelty of our approach lies in the fact that the importance
of the state of the dynamical system is emphasized in the context of system
identification, whereas ‘classical’ approaches are based on an input-output
framework. This relatively recent introduction of the state into the identification
area may come as a surprise since in control theory and the analysis of
dynamical systems, the importance of the concept of state has been appreciated
for quite some time now. A second aspect we would like to emphasize is
the fact that our system identification approach makes full use of the by now
well developed body of concepts and algorithms from numerical linear algebra.
While classical methods are basically inspired by least squares, our methods
use ‘modern’ algorithms such as the QR-decomposition, the singular value
decomposition and its generalizations, and angles between subspaces. A third
contribution lies in the fact that our approach provides a geometric framework,
in which seemingly different models are treated in a unified manner. This will
be explained in detail below. We think that the conceptual and algorithmic
simplicity ol our algorithms should be confronted with and compared to the
sometimes extremely complicated and cumbersome arguments and approaches
that are often found in present day system identification literature.

The basic structure of a subspace algorithm for a linear time invariant
finite dimenstonal system can be summarized in the following table, which
in some sense also summarizes the present work on the linear system, geometric
and algorithmic level.

System Geomelry Algorithm

Determination Projection QR-decomposition

of the order {orthogonal or oblique)

and the state - ; - . .

4t Determine finite (Generalized) singular
dimensional subspace value decomposition

System matrices Linear relations Least squares
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This paper is organized as follows :

For readers not quite familiar with the field of system identification,
a brief introduction is provided in Section 2 in which we confront
the approach of mathematical modeling based on physical insight with
the system identification approach.

In Section 3, we describe the class of systems that will be considered
in this work.,

In Section 4, the subspace structure of these systems and associated
data is explored in some detail.

A first geometrical result is provided in Section 5, in which we show
how the projection of future outputs to the inputs and past outputs,
will allow us to determine the Kalman filter states of the model.

This idea is pursued in Section 6, in which we give a prototype iden-
tification algorithm (there are many variations possible, for which we
will refer o the hterature},

In Section 7, we briefly describe the numerical issues, which will lead
to an extremely elegant yet robust numerical implementation.

Some historical review (which is far from complete) and special cases
are treated in Section 8.

In Section 9, we give an argumentation why subspace algorithms could
be more robust and preferable over other identification algorithms,
The conclusions can be found in Section 10, which also contains some
suggestions for future work.

2. Why system identification ?

2.1. Models of systens

A dynamic system can conceptually be described as in Figure 1, which
covers almost all physical, economical, biological, industrial, etc ... systems.
One could distinguish between mental, intuitive or verbal models, or graphically
oriented approaches such as graphs and tables, but we will mainly be interested

U, Wi
D
L2
System e
——————p{
U

Fig. 1. -— A dynamic system with inputs g, outpuis y, and disturbances vy and wy (see below).
¥ ¥ I i3 puts ) & 3

All arrows represent vector signals and k& is the discrete time index. The user can
control 1, but not v, or wy. In some applications, either 1, v, or w; can be missing.
The output signals provide useful information about the system.
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in mathematical models. Such models are described as differential (continuous
time) or difference (discrete time) equations. They describe the dynamic
behavior of a system as a function of time. Models in general are used for
simulation, prediction, fault detection, operator training, state and parameter
estimation and system analysis and most typically in those situations in which
experimenting with the real system is too expensive, too dangerous, too difficult
or even impossible, Last but not least, mathematical models are used for control
and feedback, which, by the way, is one of the major engineering inventions.
Our every day actions are (or should be) based on a careful assessment of the
parameters of a given situation (which is constructing a model) followed by
a cerfain control action or decision, which will have its impact on the given
circumstances. The idea of model-based control system design is completely
similar. Based on a mathematical model of a the system, a certain mathematically
calculated control strategy is deduced, which is then applied to the real system.
This control strategy takes into account predefined engineering specifications,
such as robustness criteria {(e.g. conserving stability in the face of uncertainties)
and performance objectives (tracking, disturbance rejection, ...). Ever since the
path breaking work of Kalman in the beginning of the sixties (on least squares
estimation of the state and least squares control), the central paradigm in
control system design is that a controller that is more ambitious than the
traditional trial-and-error tuning, should be model-based (or at least contain
a certain model implicitly). While this is straightforward to see as far as feed-
forward control strategies are concerned (prediction based), it is far less obvious
that also for feedback strategies models are indispensable.

Basically, there are two ways of constructing a mathematical model. One
is the analytic approach, which employs the laws of physics to describe the
dynamic behavior of a phenomenon or process. Here one heavily relies on
a priori information !. The second approach is system identification. This is
the field of modeling dynamical systems from experimental data : Experiments
are performed on a system, a certain parameterized model class is predefined
by the user and suitable numerical values are assigned to the parameters so
as to fit as good as possible the recorded data. In this sense, system identification
is the dynamic extension of curve fitting.

A comparison can be made between the two basic approaches described
above. In many cases, the physical processes are so complex that it is not
possible to obtain a reasonable model from first principles only. As an example,
consider the modeling of an industrial process such as a glass furnace that

t  As an example, Halley conducted a prediction exercise in 1704, when, realizing that reports
of comets in 1531, 1607, and 1682 were related to one single object, he calculated the parameters
of its orbit and predicted its return for 1758 (Unfortunately, he did not live Lo see his prediction
fulfilled as he died in 1742). His a priori information consisted of his knowledge of Newtonian
dynamics and gravitational theory.
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produces glass tubes for light bulbs. While the physical laws governing this
process are perfectly well known (heat, convection-diffusion equations), a
complete mathematical description of the process is extremely complicaied
(non-linear time varying partial differential equations, with complicated boun-
dary condilions) so that only a numerical simulation may produce good
simulations (even then, there are many unknown parameters such as diffusion
and heal conduction coeflicierts which are hard to estimate). Even if sucha
model would provide geod simulations and predictions, the design of a control
strategy based on this model would be a mathematically and numerically
intractable problem.

System identification however provides a meaningful alternative. Models
are prespeciflied by the user, and then fitted to the recorded data by identification
methods. Compared to models obtained from physics, system identification
models have a limited validity and working range and in some cases have
no direct physical meaning. But, they are relatively easy to obtain and use
and even more importantly, these models are simple enough to make model-
based control system design mathematically (and also practically) tractable.
Of course, there are still problems such as the choice of an appropriate model
structure, the fact that many systems are time-varying and often underestimated
measurement problems. Let us return to our glass furnace. One can consider
the fuel consumption of the heaiers and the ventilation flow of a cooling
channel as inputs, and the temperature distribution in a cross-section of the
furnace as an output. This distribution is measured by putting a certain number
of temperature sensors (which are very expensive to withstand the high
temperatures of melting glass) in this cross-section, in this way effectively
discretizing the continuous distributed parameter medivm. A control speci-
fication here is to design a coniroller that regulates the inputs in such a way
that the temperature in the cross-section is as homogeneous as possible (the
homogeneity of the temperature will influence the quality of the glass). By
approximating the dynamic behavior between the inputs and the outpuis by
a lumped finite-dimensiondl, linear, time-invariant model, one can not only
obtain extremely reproducible simulations and predictions, but also design a
quite attractive, robust and implementable minimum variance controller, which
on the average, effectively minimizes the differences in temperature between
the several output sensors and in this way guarantees a uniform {emperature
pattern. Obviously, such a task is impossible when starting from the partial
differential equation model (which when discretized e.g. via finite elements can
lead to reliable simulations, at a prize of having to solve sets of cxtremely
large sets of linear equations).

Let us conclude this section by saying that system identification, being
a typical engineering discipline, borrows many of its concepts and techniques
from other mathematical and engineering fields, such as optimization, numerical



NUMERICAL ALGORITHMS FOR STATE SPACE 75

analysis, linear algebra, complex function theory, statistics, sensors and physical
devices, experimental design, software engineering, etc ... and therefore is in
many respects an interdisciplinary activity.

2.2, System identification experiments

The first issue in setting up a system identification experiment is the
determination of relevant inputs and outpuis. For some systems, such as
industrial plants, this causality issue is not a real problem. Here, it is more
of a problem to determine which signals are relevant, L.e. influential as possible
control or disturbance inputs or relevant from the output point of view, For
other systems, such as for instance ecological or economical ones, the problem
of causality is much more subtle and involved. Nevertheless, we will assume
from now on that this non-trivial causality problem has been solved for our
application at hand and we will no longer deal with it here.

In an industrial environment, a system identification experiment is typically
performed by exciting the system via its inpufs by actuators. The necessity
of excitation is quite intuitive : If we want to model the dynamics of a certain
phenomenon, they need to be excited and observable in the system’s outputs,
If for instance we want to model the springs of a car from measurements
on the velocity and acceleration, it does not suffice to drive straight on at
a constant speed on a very flai road. Instead, one has to make sharp turns
or well planned accelerations and decelerations in order to excite the dynamic
modes of the spring system, so that these will be picked up in the observations
from which they can be identified using an identification method. Hence we
will impose the requirement that the inputs applied to the system should be
persistently exciting, i.e. they need to excite all the dynamic modes that we
want to model and later on control. For this purpose, it suffices to apply
sufficiently ‘wild’ inputs at the system, Examples of such inputs are white noise,
pseudo-random binary noise, etc... However, in an industrial environment,
this idea is often found repulsive because it implies loss of production, unallow-
able deviations from quality tolerances or even additional safety requirements.
In some circumstances, it’s merely impossible to perform experiments (such
as with power plants for instance) so that one has to resort to data obtained
under normal operating conditions.

Let us summarize by saying that good models cannot be obtained from
had data !

Besides the sufficiently wild activation of a system at its inputs, a careful
recording of the outputs via sensor measurements is also required. The practical
difficulties associated with measuring signals ar¢ often understimated. In an
industrial environment, the measurement noise may be excessive. As a matter
of fact, there is a well known trade-off between costs and accuracy of sensors,
a relationship which is often exponential. Secondly, not all the signals that
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influence the system’s output are defined by the user or can be measured.
As an example, we think of a wind disturbance acting on a airplane, which
will reveal itself via a deviation of the planned trajectory. These disturbances
require the presence in the model and the identification methods of so-called
disturbance models, which are often stochastic.

In general, data acquisition is not an easy undertaking., One has to make
decisions (based on lots of experience} concerning choices of filters, data
storage, number and quality of the sensors required, etc ... As an example,
let us consider the choice of the sampling time, It is well known from the
Nyquist-Shannon theorem, that information in continnous time variables is
lost when they are sampled at too low a rate. We must sample at 2 1 if we
want to preserve a component at frequency /. However, due to the imperfections
of practical filters, a realistic sampling rate is often taken to be 10.f,,;, where
Jew 18 the cut-off frequency of the anti-aliasing low-pass filters. To rapid sampling
however may cause problems too, as continuous time minimum-phase systems
(all zeros in the left-half complex plane) may be turned into discrete time
non-minimum-phase systems (zeros outside the unit circle) which can then
impose lower bounds on certain performance criteria that are requested {rom
the controller. Another difficult issue is the preprocessing of the data, which
often contain outliers, peaks, drifts, ete ... Very often, industrial processes have
substantial dead times (or delays} which have to be known or estimated too.

When all of these difficult decisions have been made, one can finally try
to obtain a mathematical model of the measured data records using one’s
favorite identification technique. If such a model is obtained, one has to check
its validity in a phase of the modeling process, which is called model validation.
The quality of the model depends of course on what we intend to do with it,
For control system design, surprisingly often, it is not required to have a detailed
high-quality model. Especially since the advent of robust controller design
approaches, one can now permit a trade-off between the accuracy of the model,
and the robustness of the control strategy that takes into account deviations
of the model from the ‘real’ system.

Because of the complicated interaction between experiment set up, data
generation and acquisition, model selection, system identification, model
validation, most often, there is a need for an iterative global identification
scheme, in which all of these actions are repeatedly performed with other
settings and user choices.

A good survey of the state of the art of system identification up to 1971
is provided in [6]. By now, there are some books that treat the classical iden-
tification approaches in some detail. One of the earliest is the book [10], which
first appeared in 1970 and played a major emancipating and stimulating role
in the development of the field. Recent books include [33] [43] [55] [57]. The
main emphasis in these books is on prediction error methods. An impressive
reference work on stochastic systems is [13].
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3. Linear time invariant models

It goes without saying that there is an infinite collection of mathematical
models. They can be classified info classes characterized as systems with lumped
or distributed parameters, time invariant or time varying, continuous time or
discrete time, linear versus non-linear, parametric or non-parametric, etc ...

In this work, we will restrict ourselves to a certain model class : We will
identify for a given data set consisting of input-output pairs (1, y.), a so-
called discrete time, linear, {ime-invariant, state space model, which is described
by the following set of equations :

X1 — A,\‘k + Bh'k + W (l)
Y= Cxp + Duy + vy (2)
with
Wy I KA
k i: Vp (W(; V(; = S; Ry (Spq =0 (3)

and A, Q, € R, BE Rwim C& R, D e RiXm § € RnXland R, € R, The
vectors 4 € R#=! and y, € R™! are the measurements of respectively input
and output, v, € R®I and w, &€ R™! are unmeasurable vector signals. We
assume that they are normaily distributed, zero mean, white noise vector
sequences. The matrix pair {4, C} is assumed to be observable. The system
{4, (B ()} is assumed to be controllable. The controllable modes of the system
{4, )} are assumed to be stable 3.

Let us comment in some detail why it is often a good idea to try to
fit experimental (industrial) process data to the model just described. First
of all, for multiple-input, multiple output systems, the state space representation
is the only model that is convenient to work with in computer qided control
system design (CACSD). Most optimal controllers can be effectively computed
m terms of the state space model, while for other system representations
(such as e.g. matrix fractional forms) the calculations are not so elegant. The
matrix B represents the linear transformation by which the deterministic inputs
influence the next state. The matrix A describes the dynamics of the systems
(as completely characterized by its cigenvalues). The matrix C deseribes how
the internal state is transferred to the outside world in the measurements y,
while the term with the matrix D is called the direct feedthrough term. In

*  E denotes the expected value operator and 4, the Kronecker delta.

4 This implies the stationarity of the stochastic model (o be defined below. However, it can
be shown that subspace algorithms will also work for marginally stable stochastic processes
(that have poles on the unit circle).
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continuous time systems this term is most often 0, which is not the case in
discrete time systems due to the sampling. As we will see below, in our frame-
work the states x, don’t have a direct physical interpretation but they have
a conceptual relevance. Of course, if the system states would have some physical
meaning, one could always find a similarity transformation of the state space
model to convert the states to physically meaninglful ones. Observe that we
have collected a/f dynamis in one matrix A, that is to say that the eigenvalues
of the matrix A4 will describe ali the dynamical modes that have been measured,
whether they come from the real sysitem, from stochastic dynamic disturbances,
from measurement sensors or the dynamics of the input actuators. This is
quite unusual as compared to approaches that are described in the literature,
in which one always distinguishes carefully between ¢.g. deterministic models
(such as models for the ‘real’ system and sensor and actuator dynamics) and
noise models for stochastic disturbances (as is for instance the case in the
Box-Jenkins approach [10]). The point here is that more often than not, we
don’t care about the precise origin of the dynamic modes, since, if they are
important, they will certainly influence the controller action, independent of
their origin. There is a modern trend in CACSD to define what is called a
standard plant (see e.g. [11]), which contains the model of all disturbances,
all sensors and the system model in one general state space description, which
exactly correspond to the model we will use.

The assumption that the noise sequences v, and w; are Gaussian is quite
natural for many applications, due to the central limit theorem (which here
acts as an important engineering simplification). Of course, it can not always
be made uncriticaly. Nevertheless, the approximation is often very satisfactory.
Returning to our glass furnace, one can for instance model the dynamic impact
of the inhomogeneities in the melting glass, as white noise being sent through
a linear system. The corresponding output would then be a stochastic signal
which is colored (and therefore will influence the control action). Another
example are stochastic models of wind disturbances, which have a very specific
frequency spectrum, hence can be stochastically modeled by finite dimensional
linear systems driven by white noise. Measurement noise (which is ubiquitous
in industrial environments) is included in the stochastic white noise sequence
v, while it is assumed that the input is applied to the system without distortion
(in other words, we do not assume that the sequence w4y is corrupted by noise).

A crucial question is of course why linearity would apply to everyday
processes, since we all know that most phenomena are intrinsically non-linear,
One reason is the experience that many industrial processes are really well
approximated by linear finite dimensional systems and that sometimes, complex
behavior can be captured by choosing the order n high enough. In order to
cope with non-linearitics, two measures are possible : Either the non-lincarity
is dealt with by identifying a time-varying system using a recursive updating
of the model. This corresponds to a local linearization of the nonlinear system.
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A second possibility is provided by the observation that (mild) nonlinearities
do not matter as they can be incorporated in the control design (robustness for
dynamic uncertainties). Moreover, it is well known that a controller effectively
linearizes the behavior of a system around a working point, Finally, we recall
that the design of a controller is relatively easy for linear finite dimensional
systems. As a matter of fact, this is the only class of systems for which CACSD
is actually tractable in full generality and for which there is a complete rigorous
theory available,

We are now ready to state the main mathematical problem of this paper :
Given input and output measurements u,, ..., uy and y, ..., ¥y, (N — ), find
the matiices, A, B, C, D, O, R,, S..

4. Subspace structure of linear systems

Before we tackle the question of subspace system identification from the
given data wy, yp, we will first analyze in some detail the structure of the
problem. This will result in a careful enumeration of properties that are crucial
for our algorithms to be described below. We will decompose the states and
outputs of the system into a deterministic part and a stochastic part as x;, = .\'}f +
xp and y, = }?“'—I- bt

4.1. The deterministic subsystem

We define the deterministic subsystem as *#

\A—H = A,\A + By,
}’d = Cx¥+ Duy

This subsystem desenbes the mﬂuence of the deterministic input u; on the
deterministic output )f We call xj; ! the deterministic state. Associated with
the deterministic subsystem, we deﬁne the following matrices. The extended
observability matiix T'; (where the subscript 7 denotes the number of block
rows) and the reversed extended controllability matrix A‘f {where the subscript
i denotes the number of block columns) ;

C
CA
= [ CA? A =(AB AI2B..AB B)

i

1 Note (hat this is just a name, since we have repeatedly emphasized that A also may contain
dynamics of the stochastic disturbunces. This implies that all modes of A are not necessarily
controllable by B
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Fig. 2. — This picture is the sume as the one in Figure |, But here, we have restriced ourselves
to finite dimenstonal lincar time invariant systems to be identified. The vector signals
1, and y; are available (measured) while v, wy are unknown disturbances. The symbol
A represents a delay, Note the inherent feedback via the matrix A {which represents
the dynamics). Sensor or actuator dynamics are completely cotained in A loo. It
is assumed that ¢, is available without measurement noise.

The lower block triangular Toeplitz matrix H'r."is defined as :

D 0 0 0
CR D 0 0

Hi=| CAB CB D 0
CARB  CA=B CAMB L. D

4.2. The stochastic subsystem

Together with the covariance structure (3), the stochastic subsystem is
defined as :

N = Ax twy (4)

ye=Cxpt vy (5)

This subsystem describes the influence of the noise sequences wy and v, on
the stochastic output. We call x; the stochastic state. We also define P> =
Bl ()] G= EL ()], Ag= ELy ()] With equations (3), (4), (5)

and through stationarity of the controllable modes of the system {, Q’f},
we find easily that these matrices are related by

P=APA+ Q, (6)
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(which is a Lyapunov equation), G = APC' + S, and Ay = CPC'+ R,. This
is the set of positive real equations, which, in the context of stochastic systems,
was introduced in [25]. It is also easy to derive that :

der CA-t G i>0
AT EDL00T= 1Ay i=0 ©)
G (AYC i<0

We also define the matrix A= (A"1G AR2G ... AG G) and the block Toeplitz
covariance matrix L; and the block Toeplitz cross covariance matrix H:

An A7| A._2 +an A] i AJ' A,;_' Af,z s A;
§ A; An A [ an A2_< . A‘+[ A A] . A2 . &
L= B I IR LT A
At Ay Ay o A Ngiy Agia Agis o A
4.3. Block Hankel matrices and input-output equations
Input and output biock Hankel matrices are defined as :
My i Uy Yo i Y2 o P
_lu U ST . |y ¥ y W
UOI:’——] - ! 2 ! ! )0|i—] =" e !
My Wy Wiy e Uy Yioo Yoo Firr o Vit

where we assume that j— oo, This implies that we have a sufficiently large
amount of data. The reason to do so is that cqualities in this work only hold
asymptotically as j— @ when stochastic disturbances are involved. In order
to emphasize this, we could introduce a new symbol which indicates this
dependence (as we have done explicitly in e.g. [64}) 5. We will also assume
that / = n. The subscripts of / and ¥ denote the subscript of the first and last
element of the first column. For convencience and short hand notation, we will
use U, = Uy, Yo = Yo, Up= Uy and Y= Yy, where a subscript ‘p’
refers to past and ‘f* to future. We define the deterministic state matrix X‘fas :

Al o d o i
AT (VX N e X))

¥ We will not undertake here a detuiled explanation of crgodicity which allows us {o replace
sample averages by time averages and for which we also need that J=coo  If only (part of)
one realization of a process is ever obscrved, it is costless to assume (hat this process is ergodic,
for that merely says that we hold as fixed these aspects of the stochastic structure that are

fixed over the one reatization we shall ever see. In most practical applications, we only have one
data record anyway, bul we might make it as long as required by taking chough measurements.
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The past and future deterministic states are then defined as \""* x¢ and
X"— X “. The block Hankel matrices formed with the output }’ and state
Xp oi the stochastic subsystem are defined as respectively Yy, and X} in the
same way. Once again, we define for short ¥, = Yoii1s X;= Y1 Due to
stattonarity, the following limits are well defined :

I
hm = Y (Y,)) = (8)
I
M [ ey & J— 5
lim 17 (0 = 1 ©
| ‘
lim— Y7 (Y)) = H] (10)
e o]

Al of these matrices, can be related via the following

Theorem 1 Matrix input-output equations

(4 — /u' tf &
Y, =X+ HU,+7, (1n
Y, =X+ HIUA+Y, (12)
rd — gived o
Xd=aixd+ AU, (13)

This Theorem is easy to prove by recursive substitution into the state space
equations. Earlier references (where the deterministic part is derived as
vi= 1,X{+ H{U,) include [30] [12] [42] {I4] [15]. It can also be found
in [38]. This equation has played a ‘historical’ role in the (slow) develop-
ment of subspace algorithms for system identification. In the derivation and
proof of the resulis to be presented below, it plays a crucial role.

5. The main projection and its interpretation via the Kalman filter

We define the matrices Z; and Z;,, as:

. , Uopaiy , Uozi-1
7= Yiain! :i Zit1 = Yiapia/ I,Iv (14)
ali 1 O

where A/ B denotes the projection of the row space of 4 onto the row space
of B(If Bis not rank deficient, then 4/ B = AB (BB B), We will now derive
an expression for Z; and Z;; | in function of the system matrices and the input-
output block Hankel matrices. For this we need some extra definitions :
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R,y R S
rl s TRRAYY 1 ] U‘,, o .
= =lm~— [ U | (U, U | (X))
S| Py I d L £
S S 1Py X,

[ GU G Uy
=tm=| GU,  GU | Yxpy
R Tl ol g gt rd ¢ 3
XpUp XU X, (¢ '

under the assumption that the limits exist (which requires guasi-stationarity
for the deterministic signal ;). It is tedious though straightforward 1o prove
the following Theorem which delivers formulas for the linear combinations
to be made of the rows of the input-output block Hankel matrices to generate
the matrices Z; and Z,,,. A proof can be found in [65].

Theorem 2 Main projection

If the deterministic input u, and state x}f are uncorrelated with the
stochastic output y;. :

| N
lim— Y5, U/=0 lim =~ Y5, (X0 =0
oo P

. |
lim = ¥y, U'=0 lim— ¥, (XN =0
v > ]

where the subscripts . denotes past or fiture and if the input satisfies rank
(Upyoi 1) = 2mii and if the stochastic subsystem is not identically zero (the purely
detrerministic case will be treated in Section 8), then, for j— oo

Z;=TX+ Hi Uy, (15)
Lip) = Uiy Xy + Hf_1 Uf+[l2i 1 (16)
with
SR UD|21'—1
Xi= (A - QT A= QHTI Q) [ Uy, (17)
)r‘

-
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SR Uiy
Xy =AM — 0 Uiy | Af{'ﬂ - QH:H?H | Qirt) UOlr‘ (18)
Yoii
and Q= ,‘(,-y/," in which
= AP -SRIS)THH A8 (19)
p, =T (P -SR'S)T} +L} (20)

Let us give some comments on this Theorem :

— The rank condition on the deterministic input sequence is just the
algebraic translation of the fact that the input sequence should be sufficiently
wild, Le. persistently exciting. It might possibly be relaxed but in most appli-
cations represents no major difficulties. If for instance Uy, ; would be rank
deficient, this would imply that the input is generated by an automous linear
time invariant system (as directly follows from realization theory).

— Equations (15) and (16) should be compared to the deterministic input-
output equation we have been referring to after Theorem 1. Apart from the
fact that Z; nor Z., will be block Hankel, they look exactly as the input-
output matrix equations, i

— FEquations (17) and (18) write the matrices X; and X4 as linear
combinations of all inputs and the past outputs. The interpretation of the
sequences in these matrices is quite natural : They are the Kalman filter states,
i.e. the least squares estimates of the ‘real’ states, that would be provided by
a Kalman filter if the complete sysiem were known. Let us analyze in some
more detail the exact interpretation,

It may come as no surprise that there is a connection between the states
X, defined by the projection Z; and some optimal prediction of the ouputs
Y;51- To establish this connection, we nced one more Theorem that states
how the non steady state Kalman filter state estimate £, can be written as a
linear combination of uy, ..., 1y, Vg, ..., Yy and the initial state estimate .

Theorem 3 Kalman Filter
Givent %y, Py, tgy vy i1y Yos ooy Vi and all the system matrices (A, B,
C, D, ¢ S, R) then the non steady state Kalman filter state %y defined

by the following recursive formulas

'{‘k — A.KA'A._I + Bllk 1 + Kk—l (yk—l — C'(-k- 1~ DH,{-,]) (21)
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Kk,,; = (A PA‘*E C + G) (AO + CPk,] C)r (22)
Py = (AP A"~ (AP C' 1 G) (hy+ CP CY (AP, C+ G (23)

can be written as

Ap

Hy
X = (AR - QT | A - QuHY | Oy) | it (24)

Yo

Yr

where :

O =1, (24)
= AP T+ A8 (26)

The proof of this Theorem and some details concerning the special form of
the Kalman filter equations (21)-(23) can be found in [65]. Let us just indicate
that the error covariance matrix P, “E [(xp =% ) (3 =%, )]s given by P+ Py,
with P’ the state covariance matrix (6).

Note that the limiting solution (k — ©0) of (23) is —Peo, where Poo is the
state covariance matrix of the forward innovation model (Faure, 1976). Hence
the limiting error covariance is Poo = P° — Peo, which is the smallest state error
covariance matrix we can obtain (in the sense of nonnegative definiteness).
Also note that the expressions for ;. and y; (26)-(27) are equal to the ex-
pressions of y; and y; (19)-(20) with P — SR-'S' substituted by Py

If we now combine the results of Theorem 2 and 3, we find an inter-
pretation of the sequences X, and Xy in terms of states of a bank of non-
steady state Kalman filters, applied in parallel to the data. More specifically,
compare formulas (17), (18) and (24) : It can be seen that the j columns of
)f’f are equal to the outputs of a bank of j non-steady state Kalman filters
in parallel, The (p + 1) column of X, for instance, is equal to the non-steady
state Kalman filter state £, of the Kalman filter (21), (22), (23), with initial
crror covariance matrix at starting time p

t,
Hp-i—l’i—[ ) )

P,=P,+ PP=P-SRIS'+ Pand £, = SR
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Xo [ SR"IUum—x ]
Yo Up Uj-1
Usji-1 “i'-l Uitp—1 Uipju?
Yol;-l Yo Yr Yyi-1
¥i-1 Yitp-1 Yitj-2

L ¥ ]

Fig. 3. -~ Interpretation of the sequence X; as a sequence of non-steady state Kalman filter
state estimates based upon 7 measurements of 1y, and p.

Nolice that P is independent of the column index, so it is denoted with o,
In this way, all the columns can be interpreted as Kalman filter states. The initial
states of the j filters together can be written as X" SR Upp 1. All this is
clarified in Figure 3. The expressions for P? and XY can be interpreted (some-
what loosely) as follows : If we had no information at all about the initial
state, then the initial state estimate would be X9 =10 and the initial cum co-
variance would be equal to the expected variance of the state P=E[x x/ 1=
P+ P, Now, since the inputs are possibly correlated, we can derive informa-
tion about X® out of the inputs Upypzi 1. This is done by projecting the (unknown)
exact initial state sequence Xy o | X, onto the row space of the inputs Upp;
as X0 = (X{f—l— X)) Uopir = SR ‘UM,A_,. This extra information on the initial
state of the Kalman filter also implies that the error covariance matrix reduces
from P+ P o =P P -lime.. XV (XU)’"" P+ P~ SRS These
are exactly the same expressions {or X0 and P as we found above.

It can also be seen that when the inputs are uncorrelated (white noise),
the projection of Xd+ X, onto the inputs Uy, ¢ is zero, which implies that
there is no II}fOII'lldtl()n about the initial state X? contained in the inputs Upy;.,.

The state sequence X4y has a similar interpretation. The p" column of
X,y is equal to the non-steady state Kalman filter state estimate of the same
(in a sense of the same initial conditions) non-steady state Kalman filter bank
as discussed above, but now the filter has iterated one step beyond the estimate
of the p' column of X, This is valid for alt columns p = 1, ..., j.

We define the residuals R; of the projection as :

Ri= Yyya - Zi= Yy - 1iX - Hy Unai s (28)

1
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Since Z; is the result of the projection of ¥y, on the row space of Uy,
and Yy, the residuals of this projection (R;) will always satisfy R; U(;|2: =40,
R, Yo;, , =0and R,Z! = 0. Also, since X can be written as a linear combmatlon
of Upppy and Yo (see formula (17)), we find : R.X! = 0.

Since the corresponding columns of X, and X,H are state estimates of
the same (in a sense of the same initial conditions) non-steady state Kalman
filter at two consecutive time instants, we can write (see formula (21)) :

Xery = AX,+ BU, + K (Y - CX+ DUy) (29)
Tt is also trivial that ;
Y= CX;+ DUy + (Y- CX; + DUy (30)

If we inspect the formula for R; a little bit closer (28), we see that its
first row is equal to Y7, - CX DUy;. And since we know that the row space
of R; (and thus also the first / rows of R is perpendicular to Dopits Yojin
and X,, we find (together with {29) and (30)) :

U0|2.'-;
Xy = AXi+ BU+ | Yo (31
X;

Uit
Y= CX;+ DUy + | Yo (32)
X
where ()1 indicates a matrix whose row space is perpendicular to the row
space of (). These formulas will prove to be extremely useful in the next
section where we determine the system matrices from Z; and Z,, .

6. ldentification Scheme

First, the projections Z; and Z,, (14) have to be calculated. In Section 7
we will describe a numerically stable way to do this. Let us now assume for
the moment that we have computed these matrices Z; and Z;,. For con-
venience, we rewrite these projections as linear combinations of the matrices
on which row space we have been projecting on :

AT S Rl S
7= ( ——| A w.'.,) Ui (33)
I<mi | I0<mi | i
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L 1’ . Yo
i = (f(f—-l)x:(iﬂ) 1(1---|)><:(f+r) !(f‘~l)>:!(li+1)) Mt:)s—‘ 34)
with, from (15)-(18) :
Li=Ti([A"~ QT S (R + & - QHY) (35)
-in =H ‘r'!+ LA~ Qr1s (R i 12 (36)
Li=T ¢ 37)

where {R)),; denotes the submatrix from column I to column mi. The
expressions for L. S 12 "y, and o i1 are similar, but with shifted indices.

6.1, How to deterinine I'; and n,

An import observation is that the column space of the matrices LE and
l coincides with the column space of I';. The implies that T'; and the 01de1
()f the system # can be determined from the column space of one of these
matrices. The basis for this column space actually determines the basis for
the states of the final (identified) state space description 67, We could now
determine I';, T, and the order # by just applying Kung’s (approximate)
realization idea [39] to the matrices L',. or L3,.. Let us for the moment just
assume that we have I'; (and hence also I'; ;) and therefore also its Moore-
Penrose pseudo-inverse T,

6.2, Determination of the systemn matrices
From (15)-(16) it follows that
X =T (Zi~ H{Upi1) (38)
Xerr = T (Zoy - HY Ui ) (39)

& Let us mention two other possible matrices that have the same column space as '), namely

Dilr

L -+ L L and (L' | L} ) . 1t should be mentioned that, for i — o the first one will lead

Yopi

to a deterministic sybsystem that is balanced (see [49]) while the second one leads to a deter-
ministic syslem that is frequency weighted (with the inpul spectrum) balanced [23] together
with a stochastic subsystem of which the forward imnovation model is balanced in a deterministic
sense. We will not expand any more on this, but keep this for future work.
T Actually, since T, is the {extended) obscrvability matrix, one could deduce the structure
for a canonical model (such as the Klonecl\er md;ccs) from it by investigating the kLinear
111dependenuz of the rows of the matrices L and/or L In Section 9, we will however argue
that this is a bad idea to apply and that it pays lo use mstead the robust SVD based approach
to be explained helow.
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In these formulas, the only unknowns on the right hand side are the matrices
Hf and Hf,. If we now substitute the expressions for X; and X, (38)-(39)
in the formulas (31}-(32), we find :

r z A K Ui\
( K ) - (—_) Ir'iz;+ (""“I“z“) Upis | % (49)
Yyi ¢ Kn X ;
term 1 term 2 term 3
where we define :
K12 ) def + ( ) i 0
—= = | B— Ar? ! He _ArT.( ) 41
( K22 i r'r__].B i-144 1 i H;i—l ( )

D-crt b ~crt 0
f B i H?—'-l

Observe that the matrices B and D appear linearly in the matrices K, and

itz
K. Let II be a matrix whose row space coincides with that of ( - ) then
(from (40)) : il2i-1

(Filzﬁ.)m:( A Klz) (r‘t-z,- )m
Y cl k! \Upy

Obviously, this is a set of linear equations in the unknowns A, C, Ky, K.
Another interpretation is that one could solve the least squares problem :

| A Al K rz,
min I ( 1T ) - ( | Kz ) (I—r) It (42)
A, C, K[g, K, Y, C | JKZIE Ui|25—l

ili

This is easy to sec from (40), in which the third term would represent the
least squares residuals.
Either way, from (40) we find (term by term) :

Term 1: A and C exactly.

Term 2: K and Kj, from which B and D can be unraveled by solving
a set of linear equations, analogous to the one described in [14] [15, p. 289].
Note that in (41}, B and D appear linearly. Hence if A, C, I', T, |, K,, and




90 B. DIt MOOR

K, are known, solving for B and D is equivalent with solving a set of linear
equations,
Terms 3 : The residuals of the least squares solution (40) can be written as ;

4

Ui 1
j',. Vii

where W, and V¥, are block Hankel matrices (each of which has only one
block row) with as entries the process noise wy and the measurement noise
v;. The covariance matrices R, S, and @, are deter mined approximately from
p as follows :

S,
—(ppf>~( ?, - ) @3)

The approximation is due to the fact that the bank of Kalman filters {or finite
i is not in steady state (a phenomenon which is analyzed in detail in [64]).
As i grows larger, the approximation error grows smaller. For infinite 7 the
stochastic subsystem is determined exactly (unbiased).

6.3. Algorithin

In this section, we summatrize the algorithm step by step, not yel paying
attention to the fine numerical details, which will be treated in Section 7. The
reader should now also return to the table we have presented in Section 1,
in which the basic steps of our subspace approach are summarized.

Step 1 : Determine the projections :

Ui o, P Upji.1
i i i
Zf = )Ir|2rl/ U,:!Q,',] = ( —— |~ m) U,' 21
T a— , . . >
oiit I<mi | I<ani | 10Xl }0“_]
and
UD]I'
Zi1 = Yieyu! | Yitipin
v
Yyi

Step 2 : Calculate the Singular Value Decomposition

) o)

Olr |
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The order is equal to the number of non-zero singular values. Set I, = U,E'f and
'o,=Up E',/’. (1 means omitting the last block row).

Step 3 : Determine the least squares solution (p, and p, are residuals) :

J noompi J J
1" ( FT;'_]ZI'JrE ) _ it (K“ K]z ) i ( FEZ, ) + 4 (B.}..)
! i I\NKy Ky i\ Uyy Mg,

The system matrices are determined as follows :

e 4 K“ and C « Kg;.
— The matrices B and D follow from A4, C, and K,,, K, via a set of
linear equations.

ﬁ(Qs S_‘-)Hl_(pnp{ pspz’)
SR j\pnl | papy

Observe that the deterministic subsystem will be identified exactly (as j— oo,
independent of 7). The approximation of the stochastic subsystem is still
dependent on i and converges as { — < (see [64] for a detailed explanation).

7. A Numerically Stable and Efficient Implementation

Let’s know translate the algorithm step by step in a numerically robust
procedure.

Step 1 : Projection step :
Construct the block Hankel matrix

Ugpaie
H= ,Oerl /\/}
012i-1

2+ Hixi

Calculate the R factor of its RQ factorization

H= R . o (44)

e — .

20 N2+ i 20m+hik;
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with ¢/ QO = Tand R lower triangular. Partition this factorization as :

N pi om om{i-0 i1 I(-1) j
mi Upji 1 mi Ry 0 0 0 0 O o
m Uy m Ry Rp 0 06 0 0 o
m(i-1) Ui | =m@-1) [ Ry Ry Ry 0 0 0 A
ii Yo Ii Ry Ry Ry Ry 00 O
/ Yii / Ry Rsy Rsy Ry Rss 0 O
i(i-1) Yivrait fi-1) \Rg Rey Rey Res Res Res [0

We use the shorthand notation Ry .3 for the submatrix of R consisting of block
rows 4 to 6 and block columns 1 to 3. The projections are now given by

U Upji-
— . 0]2i-t k i
Zi= Rogyu Ry ¥ Tl=a) 2Ly | Yen
0l YGI il
U U{)Ii
. 0i2i-1
Ziv1 = Resas Rils 5 )jr =( Ly | Dy | By | Yrrain
Ol You
Step 2 : Determination of I'; and ¢
Determine I'; and 1 through the SVD :
z 0
(L 0 L) R Qe = (U V) 0 22) (Qua VY

Note that this SVD can be calculated via the SVD of (L’J.O L"}) Ry 14, since
Q. is an orthonormal matrix. The rank is determined from the dominant
singular values of this decomposition (Z,), and I'; can be chosen as

;= U 21/25 I =L
where the underbar means deleting the last / rows (7 is the number of outputs).
Step 3 : Least squares for the system matrices :

We find for the left hand side and right hand side of equation (40), written
as a function of the original @ matrix .
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t B
( I\Z,; )_ 27U Ry 14
Ui s

ML Ze [ U) Reas |
Y, - R Qs
ili 55,1:5

Qlt:4

Ry30.

The least squares problem (42) can be rewritten as

min ” Z;I/Z (@T R(r.ﬁ,l:S Z‘II/Z U;R5:6,1:4 2
K - K IlF
RS:S,E:S R2:3,l:4

and solved in a least squares sense for K, which contains A, € and K, and
K, as shown before.

Remarks :

— It can be verified that we do not need the factor @ explicity. We have
included it in the description of the algorithm for clarity, but it can
be verified that it is not required in the SVD nor in the least squares
problem. This implies a substantial reduction in memory requirements
and computational complexity. Morecover, it opens the door for re-
cursive updating since we only need to update the R-factor.

— Efficient and robust algorithims for the QR-decomposition and the
SVD are described in detail in [29] and are readily available in many
software packages for numerical linear algebra such as LAPACK and
MATLAB.

8. Special cases, historical review and relation with other approaches

In this section, we discuss several special cases of the above framework,
without going too much into mathematical detail {for which we refer to the
bibliography). Basically, the subspace approach we have been describing,
originates in 4 historical traces : Deterministic realization theory, deterministic
identification and stochastic realization. The 4-th path comes from numerical
linear algebra, which has delivered us tools such as (generalized) singular value
decompositions, the QR-decomposition and angles between subspaces.

While there 1s an almost infinite number of publications on system iden-
tification, we only discuss here the work that has been directly relevant for
our subspace approach,
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8.1, Deterministic realization : u, = 0, v, =0, w;, = 0

H all the inputs (deterministic as well as stochastic) to the system are zero,
the state space equations reduce to x4 = Ax; and y, =Cx, which can be
solved as y, =CA*'x,. The problem of identifying the matrices 4 and C and
the initial state x, is closcly related to the so-called (deterministic) realization
problem, which is the problem of finding the state space matrices from a given
multivariable impulse response Hy = D, H, =CA*'B, k= 1. It can now be
seen that the identification of A, C and x; corresponds to a realization problem
in which we consider the outputs y; to be the impulse response of a system
with / outputs and 1 input, with state space matrices 4, x, and C. Realization
theory was initiated in the sixties by the investigations in [34] [58][21] (among
others) and has certainly been one of the driving forces to put more emphasis
on slate space models. The SVD as a numerical tool to solve the realization
problem is introduced in [39] and [73]. These papers have generated a whole
industry on model reduction techniques. Among all these techniques however,
the balanced realization [53] occupies a privileged position. Not only does it
provide a useful model reduction technique based on singular values, but it
is also essential in optimally Hankel norm based model reduction [28)] and
in obtaining realizations of digital filters that are least sensitive to round off
errors {54} As we have observed elsewhere in this paper, our subspace
algorithms deliver state space models that are balanced.

8.2. Deterministic identification : v, = 0, w;, = 0

For the identification of deterministic systems, an early reference is the
work by Gopinath [30] in which he describes a direct deterministic identification
method that starts from input-output block Hankel matrices and also exploits
the input-output matrix equation from Theorem 1. Although it provided some
inspiration for the present work, the approach described there does not use
numerically reliable techniques, but instead applies the concept of a selecior
matrix which is very much reminiscent of determining the structure of canoni-
cally parameterized models (and hence ill-conditioned). Related results are
reported in [12]. This paper also mentions the fact that the rank of the block
Hankel matrix with inputs and outputs is equal to the sum of the rank of the
block Hankel with inputs and the order of the system to be identified :

}rd

[ | = rank (UY+n (45)

rank

The input-output matrix equation is also the starting point in [42]. This work
then proceeds by finding a minimal dimension state space realization from
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input-output block Hankel matrices and it is observed that one can identify
systems that are observable but not necessarily controllable (contrary to transfer
matrix based approaches and impulse response realization), Again (sequential)
selector matrices are used.

An important step forward came with the realization in [15] that the rank
deficiency result (45) can be used to show, via Grassman’s famous dimension
theorem, that there must exist a non-trivial intersection between the row spaces
of the past and the future. Indeed, one has (‘dim’ stands for ‘dimension of
the row space of”, 1 means ‘intersection between row spaces’) :

Yri

}n‘f }ﬂi‘ }/ﬂ‘ Uf,

dim[| % 1N| /4 1]1=rank 7] +rank| % 1-rank P
vif v v vl v

o

Uf

=ity (mi+n)-Qmi+n=n

in which we have assumed for simplicity that the input sequence is persistent
excitant. Not only is the intersection n-dimensional, but the intersection itself
provides a valid state sequence, which can be obtained by choosing any basis
for the intersection. From the states, the inputs and the outputs it is straight-
forward to calculate the system matrices. A similar result was obtained in [72],
where the dimension of the intersection is called the relative row rank.

Situating this result in our general framework described above, we can
state that the orthogonal projection of the first step and the order decision
of the second step becomes here the calculation of the basis of an intersection
of the row spaces. Algorithms are described in [15] [46].

Linear System

UL Y&

Fig. 4. — Errors-in-variables configuration : The vector signals &, and §, are the exact but un-
known inputs and outputs. The measurements are t and g, which are corrupted
version of the exact signals, The measurement noises fiy and 7 are assumed (o be
additive with known covariance matrices.
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8.3. Measurement noise : wi, = 0 and/or noisy inputs

Suppose we have an identification problem as in Figure 4. A nice result
is that the intersection algorithms mentioned in the previous subsection will
deliver consistent estimates of the system matrices if not only the outputs,
but also the inputs are corrupted by white measurement noise. In this case,
there is no exact intersection between past and future, but one can calculate
approximate intersections, as explained in [15] [46]. These approximate inter-
sections could be considered as minimum variance estimates of the state (for
an explanation see [ 18]). The cases of colored noise are treated in [15] [47] [59].

8.4, Stochastic realization : 1, =10

When there are no deterministic inputs, the problem of identifying the
matrices A and C and the covariance matrices R, @, and S, is called the
stochastic realization or identification problem. The corresponding model is
called ARMA (auto-regressive moving average) and is often used to model
stochastic disturbances. Of all the ‘subspace’ problems, this one has been
analyzed most frequently in the literature, starting with the work [25]8. An
impressive survey is provided in [13]. Another reference in which ARMA
models are treated is [4]. Here we will point out some references that were
influential for our work, for which the specific results on ARMA processes
are sumimarized in [64].

Early algorithms for stochastic realization reduce the problem to one of
deterministic realization. How this can be done is casy to see from the formulas
of the covariances matrices (7). Obviously, they can be interpreted as the
Markov parameters ol a linear deterministic system with system matrices (A,
G, C) and hence, the sequence can be realized via deterministic realization
theory. Such an approach is mainly followed in (4] to which we also refer
for further references.

Faure [25] pointed out that the non-uniqueness issues involved in the
state space model for a stochastic process are much more involved than in
the deterministic case, Indeed, there is a whole set of stochastic realizations
of a given stochastic covariance sequence. This set is described by all solutions
to the so-called positive real lenimna.

An important contribution is the work of Akaike [1] [2]. Akaike really
showed that for a stochastic process the projection of the future on the past
could be obtained from the technique of canonical correlations. These canonical

% There are many earhier references that treat ARMA models. However, the paper {25] has
been quite influential because it brought things as Riceati equations and the positive real lemma
in the realm of system identification.
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correlations are the cosines of the principal angles between subspaces as they
are called in the numerical analysis literature [29]. These were discovered
already in 1875 by Jordan [36] and embedded in a statistical framework by
Hotelling [35]. These angles between subspaces are the multi-dimensional
generalization of the angle between two vectors. If one considers the row spaces
of past and future block Hankel matrices with the outputs, there will be exactly
n principal angles unequal to 90°, all other ones being orthogonal 9. Due to
stationarity, one can equally well project the past onto the future, a projection
which is also provided via the principal angle technique. If both j — ¢ and
f — o, the projection of the future on the past will deliver a ‘forward innovation
model” while the projection of the past on the future gives the ‘backward
innovation model’. Both can be interpreted in terms of Kalman filters, which
provided us with the main inspiration to look for Kalman filters states obtained
as an orthogonal projection in the general case. For each of the Kalman filters,
the forward and the backward one, there is an algebraic Riccati equation.
Desai and Pal [19] showed that one can choose a contragredient transformation
on the state space model, which is such that the solutions to the two Riccati
equations are diagonal and equal, containing on {heir diagonal precisely the
aforementioned canonical correlations. This delivers models that are balanced
it a stochastic sense.

Our recent contribution to the ARMA identification problem (the structure
of which is by now very well understood) is reported in [64]. There, we present
‘square root’ algorithms which work with the measured data instead of having
to estimate first the covariance matrices from time averages. We also discuss
what happens if only the number of columns j — % while the number of rows
i is kept constant. In this case, the orthogonal projection of the future on
the past and the other way around still deliver Kalman filter states, but of
filters that are not yet in steady state (which they would reach if j — o), The
two equations that describe this behavior are now backward and forward
Riccati difference equations, Because the noise covariance matrices as estimated
via (43) are guaranteed to be positive definite, we have avoided the problem
of positive realness, at least heuristically. Finally, it is shown that one of the
recently introduced generalizations of the singular value decomposition (the
QSVD, sce [ 17] for references) allows for a numerically robust implementation.
This technique allows us also to deal with ARMA models that are singular,
i.e. have poles on the unit circle which happens a lot in practical applications,
when there are for instance periodic disturbances (so there is no special need
to consider things like ARIMA processes as e.g. in [10]),

¥ For seme processes there will be angles equal to zero (which gives an exact intersection
between past and future). Their nwmber is equal to the number of zeros on (he unit circle
of the determinant of the (ransfer matrix, see [33, p. 84],
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8.5. Related works

There are at least two other related approaches that seem worth mentioning
here. First we have the work of Larimore [40] [41]. The basic tool there is
the idea of trying to find principal angles and directions between subspaces
that are obtained by orthogonalizing the row space of future outputs and the
row space of past outpuis and inputs onto the future inputs. While his Iepous
indicate that on practical examples, good tesuits are obtained, there is a
consistent lack of theoretical evidence in his work showing why exactly these
principal directions as described, would be a good idea to rely upon. Never-
theless, Larimore’s framework can be tackled with our approach (see e.g. [65])
and there are good indications that one could demonstrate rigorously that
it delivers the approximate identification scheme which is derived in [65].

A second approach is the one described in [67], which is basically an
instrumental variable method, which consists of projecting away the stochastic
part. The idea is then to first identify the deter ministic subsystem and then
perform stochastic realization on the residuals. There are many objections one
could formulate to this approach : In one version of it, it is required to estimate
the Markov parameters from inputs-outputs, which is well known to be an
ill-conditioned problem [8]. Moreover, one needs to find suitable ‘instruments’,
which are uncorrelated with the stochastic part and then show that these are
effective in removing the stochastic contributions. Because this is a multi-stage
approach, the analysis is very involved and propagation of errors from one
stage to another is unavoidable.

8.6. An approximate identification schene

1t is possible to introduce simplicifations in the previously presented
algorithm in the sense that one can trade-off accuracy of the model for (still
a further) reduction in the computational complexity.

Let’s have a look again at the Kalman filter interpretation, more spe-
cifically at formulas (31) -(32). Unfortunately, it is not possabie to separate the
effect of the input U|2, , from the effect of the state I'.X; in formula (13),
by just dropping the term with the linear combinations of Ui\ (L) in the
expression for Z, We would automatically drop a part of the initial state if
we did this (see for instance (36)). So, it is not possible to obtain an exphmt
expression for I'; X and T, | Xy, without knowledge of Hd which would require
knowledge of the system matrices 19,

0 TFhis is by the way the major difficulty that the earlier versions of subspace mcthods were
struggling with. Instrumental variables methods to circumvent the problem were suggested in
[62] [67] {68], but they tend 1o be complicated. The complete analysis of the difficulty and
the correct complete solution was presented in {65], where also the approximate solution scheme
we discuss here, is treated in more detail.
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It is however casy to find a good approximation of the state sequences,
directly from the data. If we use this approximation in (31)-(32), we obtain
a second very elegant and simple algorithm that calculates approximations
of the system matrices,

The approximate state sequences are calculated by dropping the linear
combinations of U, out of Z;, and the linear combinations ol U, | out of
Z:1y. In this way, we obtain Kalman filter states of a different Kalman filter
as the one that producesﬁf\a’ i (in a sense of different initial conditions). We call
the resulting matrices 1,.X; and 1", X0y

X, =7~ LUy, (46)
T Xeot = Ziy - Ly Uit )i @7
From (33) and (34) we derive :
i 1 o o Uﬂli 13
- ( {A er } S (-R )liml + A Qr+EH | Qr) Y, (48)
fiTys

XH—I - ( [AH_I - QiJrIFhL] ] S(R_I)Etm{iﬂ} + At:jﬂ - Qi—H [ [ Qr+l)

Ye;;

The matrices 1“,-)? ;and F,-,E)Z;;Jr, can be obtained directly from the data without
any knowledge of the system matrices, and can be interpreted as oblique
projections as described in [65].

The state sequence X; is generated by a bank of non-steady state Kalman
filters with : P=p_ SRS+ P and X;= S(R! i Ungio The state se-
quence X,H on the other hand, is generated by a bank of non-steady Kalman
filters, with: P = P! SRIS'+ P and Xy = S (R Vo So clearly,
both sequences do not belong to the same bank of Kalman filters, and the
useful formulas (31)-(32) are not valid for these 2 sequences.

Still, we will see below, that X, and Xy, are very close to X; and Xy,
and that X = A,, X = ,\,+, if at least one of the following conditions is
satisfied : 7 — <2, the deterministic input i, of the combined deterministic-
stochastic system is white noise or the system is purely detelmmlsllc For these
three special cases, we can analyze the difference between X; (17) and X (48),
defined as 6 X, :

, det o > .
OXN; = f\ - Xi = A= O 1 S (R Yisrjome Uipici (49)

Casel:i—¢;

Define the term between square brackets in (49) as P, = o 4 - O, Now,

it is easy to prove [65] that :
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it
P, =11- K0 (50)
k=t

Since the non-steady state Kalman filter converges to a stable closed loop
system (Anderson & Moore, 1979}, we find that P; grows smaller when 7 grows
larger. It is also clear that: lim_.. P;= 0. In the limit, equation (49) thus
becomes (with S {R1),,141 20 Ui 1 finite) :

Hln (SX, :ILIE P,S (R"')mﬂ“l|2miUii2Pl — 0

I

The same holds for d X;y;. So, we can conclude that, for i — %0, there is no
difference between the state sequence X; and X, Actually, when 7 — ¢, the
non-steady state Kalman filter bank converges to a steady state Kalman filter
bank. In practice, it turns out that 7/ does not have to be that large. The iden-
tification results are already very good for reasonably small 7 (== 10),

Case 2 : 14, white noise

With the deterministic input i, white noise, we find : S=0 and R=1,,;
with  1,,; the 2p2 X 2mi ideniity matrix. So, for a white noise input, we find
for any 7 (see (49)) : X; = X,

Case 3 : Pure deterministic system (v, = 0, w, = 0).

From Moonen ef 4/, (1989), we know that generically for deterministic
systems we have (if there is no ‘rank-cancellation’, see De Moor (1988)) :

U()lr' i Ur'IZ'r' I

=mi+n and rank =mi+n (51)

rank
i-t Yiiioy

which implies that

Ui
rank ' =2mi+n

r

012i-1

This rank deficieny implies that for purely deterministic systems, the proof
of Theorem 2 of [65] breaks down, The following Theorem is an alternative
for Theorem 2 for purely deterministic systems :
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Theorem 4 Purely deterministic systems

If the input is persistently exciting and the stochastic subsystem is zero
we have .

Ug)i-1

[X; = (T [AY - AT HY | T,ATT) =IX=T.X,

OFi-t

A proof can be found in [65]. This implies that for deterministic systems,
4 X is also equal o zero.

The advantage of working with the approximate state sequence instead
of the ‘exact’ one, lies in the fact that we can simplify the least squares step (42),
in which the matrices Ky, and K,; (linear matrix functions of B and D) can
now directly be replaced by B and D themselves.

We know from (31) and (32) that the least squares solution L of :

: X X.
N gy i 2
R ALY
is equal to :
= A B
(¢ »)

We also know that from the residuals of this least squares problem, we can
approximately calculate the stochastic subsystem (exactly if i — o0). Unfor-
tunately, it is impossible to calcuiate the states )E and /\A',H directly from the
data, without any knowledge of the system matrices. We have seen that for
some special cases X = X In the general case, we have X Xr, if 7 is reason-
ably large. This is because

i1

*’Y 1_-[ (A KA C) S (R )nn+]|2mr Ur|2r

Consequently, for the least squares solution /. of :

i /{;r"H S| A
l]%n ” ,'_ i - L U.I li?‘

i\i ili
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‘(c D)

Contrary to X, X; can be calculated directly from the data, without any
knowledge of the system matrices.
The solution is exact in the special cases described above. It is in general

possible to determine an estimate of the bias L - I, (sce [65]).
The numerical implementation stays basically the same. For details, we

refer again to [65].

we have :

9. Why would subspace methods be any better
than other identification algorithms ?

In this section, we compare the ‘classical’ system identification approaches,
as described in [33] [43] [55] [57] with the subspace approach. A first note-
worthy difference is illustrated in Figure 5: Subspace methods basically first
look for a state sequence and after that, determine the system matrices from
a least squares problem. Classical identification methods first determine the
model, after which one could set up a Kalman filter to find the state estimates.
One of our contributions is to show that the Kalman filter state can be obtained
explicitly and directly from the input-output data, A second important dif-

Input-Cuiput

data uy, y)
Orthogonal Classical
prejections Identification
Kalman states System matrices
Least Kalman
Squares filter
System matrices Kalman states

Fig. 5. — The left hand side shows the subspace approach : first the (Kalman) states, then the
system matrices. The right hand side is the classical approach : first the system, and
then an estimate of the states,
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ference is the fact that in our approach, there is no need for parameterizations.
Statisticians would argue that the number of parameters to be ¢stimated in our
‘full’ state space models is extremely high (for instance, for 3 inputs, 4 out-
puts and 10 states, there are 338 numbers in the matrices 4, B, C, D, Q,,
R, S). This ‘curse of dimensionality’ (as statisticians call it) is to be avoided.
Therefore, the last 20 years or so quite some effort has been spent to find
so-called canonical models, which have a minimal number of parameters. The
analysis of parameterizations of multivariable state space models is a notorious-
ly difficult problem in system identification. The first canonical realizations
for multi-output systems were proposed in [45]. Further ¢laborations can be
found in [22} [27] [31] [32] (see also [33] [38] [43] for more references). The
root of the problem is that there is no single, smooth canonical parameterization
of a multi-output system. Instead one has to work with a large number of
different possible parameterizations, corresponding to different values of
observability indices (which are of course unknown), There are two major
difficulties here: First of all, since all data are noisy, it is very difficult to
decide which rows of the observability matrix are linearly independent
(generically, with noisy data, the first rows are all linearly independent, said
in other words, the determination of the structure indices from noisy data
is an ill-conditioned problem). Another cause of major difficulty in classical
identification algorithms, is the necessity to monitor the conditioning of a
certain parameterization and decide to take another one if that conditioning
becomes too bad. Therefore, overlapping parameterizations have been conceived
[27] [6]] (see [33] for a complete survey). Subspace algorithms are in this
respect much more elegant since the ‘best’ subspace is automatically determined
by the SVD, without the need for estimating the structure indices first, It
should also be observed that statistical comsistency is independent of the
parameterization, a fact that can clearly be analyzed for the subspace approach
too since the variance on the results decreases proportionally to 1/ as j — oe,
As to the statistical efficiency of the subspace method, much work remains
to be done. A major source of inspiration might be recent statistical work
on subspace methods for the direction of arrival problem (e.g. [56] [70]).

A third strong point of subspace methods versus classical identification
techniques lies in the use of numerically robust techniques, such as the QR-
decomposition, angles between subspaces and the singular value decomposition,
These techniques have already a long history (the SVD was discovered by
Beltrami [9], Jordan [36] and Sylvester [60], generalizations are described in
[17] and references in there), angles between subspaces by Jordan [37], but
it is only since the advent of numerically reliable algorithms to calcuiate these
decompositions (see [29] for a complete survey and many references) that they
have been increasingly used in scientific compuling. Nevertheless, their advan-
tages have been largely ignored in the system identification community, a
mistake we hope to have corrected. Contrary to popular belief, our methods
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are on the average cheaper 1o use (in terms of floating point operations) than
e.g. the prediction error methods described in [43] for the same level of accuracy
(as e.g. measured by the prediction error) (sec [65] for details and numerical
comparisons). In addition, since we managed to show that the Q-factor in
the QR decomposition of the block Hankel matrix (44) is redundant, we only
need to operate on matrices that are relatively smail. Therefore, we could easily
find recursive updating techniques, with potential implementation on parallel
processors, as described in e.p. [48]. Moreover, studies are being undertaken
to exploit the special (block) Hankel structure via the concept of displacement
rank [71].

Let us also point out that some of the ideas in this work have been
extended to descriptor (singular) systems {sec [52]) and also direct identification
of continuous time systems (see [50]).

10. Conclusions

The {act that we have surveyed in some detail the achievements of sub-
space methods, does not imply that there is no need for further research. In-
deed, much work remains to be done to put these algorithms on a rigorous
statistical footing, to analyze the properties when the data are not generated
by a system that belongs to the defined model class (in which case there are
two types of error, a ‘deterministic’ one, which is called the bias, and a
‘stochastic’ one, which is called the variance), to provide ‘hard” bounds that
could be applied in robust control system design, to analyze the behavior in
closed-loop circumstances, etc ...

Nevertheless, we are convinced of the power and elegance of subspace
algorithms, a conviction which is confirmed by the recent development of a
System Identification Toolbox, using the CACSD software tool Xmath, which
contains most of the ideas described in this work (see [3]).

Using this tool, practical applications of subspace algorithms are being
tested out on a number of industrial processes (see e.g. [66]).

Let us conclude with two quotations from some recent surveys. In the
recently held Workshop on Future Directions in Circuits and Systems [26],
it is emphasized that .., these matrix-based signal processing algorithms are
becoming increasingly important ... and need 1o be blended with traditional
algorithms in a compatible and complementary way.

Ljung, one of the international experts in system tdentification, in his
recent survey on Issues in System Identification [44], points out that it remains
to be established what these signal subspace methods have to offer and how
they compare 1o conventional approaches ... We hope that with this work we
have bridged a little bit of this gap.
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