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N4SID*: Subspace Algorithms for the
Identification of Combined Deterministic—
Stochastic Systems+

PETER VAN OVERSCHEE} and BART DE MOORS$

The asymptotic consistency is analyzed of two new subspace algorithms that
identify combined deterministic—stochastic state space models from given

input—output data.
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Abstract—Recently a great deal of attention has been given
to numerical algorithms for subspace state space system
identification (N4SID). In this paper, we derive two new
N4SID algorithms to identify mixed deterministic—stochastic
systems. Both algorithms defermine state sequences through
the projection of input and output data. These state
sequences are shown fo be outputs of non-steady state
Kalman filter banks. From these it is easy to determine the
state space system matrices. The N4SID algorithms are
always convergent (non-iterative) and numerically stable
since they only make use of QR and Singular Value
Decompositions. Both N4SID algorithms are similar, but the
second one trades off accuracy for simplicity. These new
algorithms are compared with existing subspace algorithms in
theory and in practice.

1. INTRODUCTION

THE GREATER PART OF the systems identification
literature is concerned with computing polyno-
mial models, which are however known to
typically give rise to numerically ill-conditioned
mathematical problems, especially for Multi-
Input Multi-Output systems. Numerical algo-
rithms for subspace state space system identifica-
tion (N4SID*) are then viewed as the better
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alternatives. This is especially true for high-order
multivariable systems, for which it is not trivial
to find a wuseful parameterization among all
possible parametrizations. This parametrization
is needed to start up the classical identification
algorithms (see e.g. Ljung, 1987), which means
that a priori knowledge of the order and of the
observability (or controllability) indices is
required.

With N4SID algorithms, most of this a priori
parametrization can be avoided. Only the order
of the system is needed and it can be determined
through inspection of the dominant singular
values of a matrix that is calculated during the
identification. The state space matrices are not
calculated in their canonical forms (with a
minimal number of parameters), but as full state
space matrices in a certain, almost optimally
conditioned basis (this basis is uniquely deter-
mined, so that there is no problem of
identifiability). This implies that the observ-
ability (or controllability) indices do not have to
be known in advance.

Another major advantage is that N4SID
algorithms are non-iterative, with no non-linear
optimization part involved. This is why they do
not suffer from the typical disadvantages of
iterative algorithms, e.g. no guaranteed conver-
gence, local minima of the objective criterion
and sensitivity to initial estimates.

For classical identification, an extra para-
metrization of the initial state is needed when
estimating a state space system from data
measured on a plant with a non-zero initial
condition. A final advantage of the N4SID
algorithms, is that there is no difference between
zero and non-zero initial states.

Most commonly known subspace methods are
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realization algorithms of e.g. Kung (1978),
where a discrete-time state space model is
computed from a block Hankel matrix with
Markov parameters. It is unfortunate that the
theory here relies on Markov parameters as a
starting point, something rather difficult to
measure or compute in practice (e.g. think of
unstable systems).

An alternative direct identification scheme for
purely deterministic systems is described by, e.g.
Moonen et al. (1989), Moonen and Ramos
(1991), where a state space model is computed
directly from a block Hankel matrix constructed
from the input—output data. In a first step, a
state vector sequence is computed as an interface
between a ‘past’ and a ‘future’. Once the state
vector sequence is known, the system matrices
are computed from a set of linear equations.

Similar data-driven identification schemes for
purely stochastic identification are well known,
(see e.g. Arun and Kung (1990) and the
references therein). Less well known is that
these algorithms can compute extremely biased
results. This problem was studied and solved by
Van Overschee and De Moor (1991a, b).

The problem addressed in this paper is that of
identifying a general state space model for com-
bined deterministic—stochastic systems directly
from the input—output data. Some papers in
the past have already treated this problem but
from a different viewpoint. In Larimore (1990)
for instance, the problem is treated from a pure
statistical point of view. There is no proof of
correctness (in a sense of the algorithms being
asymptotically unbiased) whatsoever. In De
Moor et al. (1991) and Verhaegen (1991) the
problem is split up into two subproblems:
deterministic identification followed by a stoch-
astic realization of the residuals. In Moonen et
al. (1992) the problem is solved for double
infinite block Hankel matrices, which implies
practical computational problems.

In this paper, we will derive two N4SID
algorithms that determine the deterministic and
stochastic system at the same time. The
connection with classical system theory (Kalman
filter) will be used to prove the exactness
(unbiasedness for an infinite number of measu-
rements) of Algorithm 1, or the degree of
approximation (calculation of the bias for an
infinite number of measurements) of Algorithm
2.

The approach adopted here is similar to the
identification schemes of Moonen et al. (1989)
for the purely deterministic case and Van
Overschee and De Moor (1991a,b) for the
stochastic case. First a state sequence is
determined from the projection of input—output

Input-Output
data uy,yx

Classical
Identification

g

System matrices

N4SID

—

Kalman states

Least Kalman
Squares filter

System matrices Kalman states

Fi1G. 1. The left-hand side shows the N4SID approach: first

the (Kalman) states, then the system matrices. The

right-hand side is the classical approach: first the system, and
then an estimate of the states.

data. This projection retains all the information
(deterministic and stochstic) in the past that is
useful to predict the future. Then, the state
space matrices are determined from this state
sequence. Figure 1 shows how these N4SID
algorithms differ from the classical identification
schemes.

The connection of the two new N4SID
algorithms with the existing algorithms described
above will also be indicated.

This paper is organized as follows: the
problem description and the mathematical tools
can be found in Section 2. In Section 3 the main
projection is defined. Section 4 introduces a
closed form formula for the non-steady state
Kalman filter estimation problem. This result is
related to the results of Section 3 to find the
interpretation of the main projection as a
sequence of outputs of a non-steady state
Kalman filter bank. Section 5 introduces a first
N4SID algorithm that identifies the system
matrices exactly. In Section 6 accuracy is traded
off for simplicity in a second approximate N4SID
algorithm. Section 7 shows how these N4SID
algorithms can be implemented in a numerically
reliable way, using the QR and the Singular
Value Decomposition (SVD). Section 8 investi-
gates the connection with other existing algo-
rithms. Finally Section 9 will treat some
comparative examples. The conclusions can be
found in Section 10. '

2. PRELIMINARIES

In this section, we describe the linear time
invariant system we want to identify. We also
introduce the input and output block Hankel
matrices, the past and future horizon as well as
the input—output equations.
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2.1. System description
Consider the following combined
deterministic—stochastic model to be identified

X1 = Axy + Buy +wy, 1)
yk = ka + Duk + Vi (2)
with

*E[C)v:)(W; v;)]=<(g:)l 15;> 6u=0> (3)

and A, Q*eR"™", BeR™™, CeR”™, De
R, $* e R" and R* € R"". The input vectors
u, € R™' and output vectors y,eR™' are
measured. v, € R”™' and w, e R"*! on the other
hand are unmeasurable, Gaussian distributed,
zero mean, white noise vector sequences.
{A, C} is assumed to be observable, while
{A, (B (Q°)"?)} is assumed to be controllable.

This system (1)-(2) is split up in a
deterministic and stochastic subsystem, by
splitting up the state (x,) and output (y,) in a
deterministic (.“) and stochastic (.*) component:
Xe=x{+xi, ye=yf+yi The deterministic
state (x{) and output (y{) follow from the
deterministic subsystem, which describes the
influence of the deterministic input (u#;) on the
deterministic output

XZ'H =Ax‘l£+ Buy, (4)
and
yi=Cx{+ Du,. 5)

The controllable modes of {A, B} can be either
stable or unstable. The stochastic state (x;) and
output (y;) follow from the stochastic sub-
system, which describes the influence of the
noise sequences (w, and v,) on the stochastic
output

le;'+|=Ax-;.(+wkr (6)
and
Yie=Cxi + v (7)

The controllable modes of {A, (Q*)"?} are
assumed to be stable.

The deterministic inputs (i) and states (x§
and the stochastic states (x}) and outputs (y}%)
are assumed to be quasi-stationary (as defined in
Ljung, 1987). Note that even though the
deterministic subsystem can have unstable
modes, the excitation (u,) has to be chosen in
such a way that the deterministic states and
output are finite for all time. Also note that since
the systems {A, B} and {A, (Q*)"?} are not
assumed to be controllable, the deterministic
and stochastic subsystem may have common as

*E denotes the expected value operator and §,, the
Kronecker index.

well as completely decoupled input—output
dynamics.

The main problem of this paper can now be
stated: given input and output measurements
Uy, ...,uyandy,, ..., yy (N— ), and the fact
that these two sequences are generated by an
unknown combined deterministic—stochastic
model of the form described above, find A, B,
C, D, O°, R°, S (up to within a similarity
transformation).

In the next two sections, we will define some
more useful properties and notations for the
deterministic and the stochastic subsystem.

2.1.1. The deterministic subsystem. Associated
with the deterministic subsystem (4)—(5), we
define the following matrices:

¢ The extended (i > n) observability matrix T

(where the subscript i denotes the number
of block rows)

C
CA
CA?

def

F,’=

CAi—l

e The reversed extended controllability matrix
A¢ (where the subscript i denotes the

number of block columns)
AIE (A A%B AB B).

e The lower block triangular Toeplitz matrix
H¢

g
D 0 0 e 0
CB D 0 Fenn ()
CAB CB D e 0
CAB ICATER CATIE D

2.1.2. The stochastic subsystem. For the

stochastic subsystem (6)—(7) we define

P* < E[xi(xi)]

GEE[()]

A= E[yi(yi))
With equations (3), (6) and (7) and through
stability of the controllable modes of the system
{A, (0*)"?}, we find easily that the following
equations are satisfied:

PX — AP;\'AI + Q.\'
G=APC' +§’ (8)
Ay=CP*C' +R".
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This set of equations describes the set of all
possible stochastic realizations that have the
same second order statistics as a given stochastic
sequence yj. We call them the positive real
equations. More details can be found in Faure
(1976).

It is also easy to derive that

CAT'G i>0
AEEL D= Mo i=0.
G'(A)™'C" i<0

Associated with the stochastic subsystem, we

define the following matrices:
e The matrix Aj

NE@AT'G ATG

e The block Toeplitz covariance matrix L]

AG @)

Ay By B 2= By
L.?déf A Ay R R TR
iy Novy Py * s Ay

e The block Toeplitz cross covariance matrix
H;

A1 Ai—l Ai—2 ] A1
H‘\jd__nif Ai+l Ai Ai—l S Az
AZi—l A2i—2 Aéi—3 it Ai

2.2. Block Hankel matrices and input—output
equations

Input and output block Hankel matrices are
defined as

Uy Uy Uy Uiy
def| Uy tola g D il
U()|i—l = ! >
Ui—p Ui Uipy ttt Uigj—2
Yo M o Ye vt e
Y, def| Y W sl e Yi
oli-1 = B Ry ’
o | Yi+j-2

where we presume that j— oo throughout the
paper. The subscripts of U and Y denote the
subscript of the first and last element of the first
column. The block Hankel matrices formed with
the output y; of the stochastic subsystem are
defined as Y§);—, in the same way.

Somewhat loosely we denote the ‘past’ inputs
with Upj;—; or Uy; and the ‘future’ inputs with
Uijpi—1 OF U, 1)2i-1- A similar notation applies for
the past and future outputs. This notational
convention is useful when explaining concepts.

The deterministic and stochastic state matrices
are defined as

ddef o d  _d d d
X{= (i xiy1 xip2 Xivj-1))
s def
Xi=(xi Xie Xie2 x?+j——l)-
For the deterministic subsystem we define
U()|i—l
llm = U,' 27—
SEle i ' t N
=] x4 (U()|i—l Uiji-1 | (X))
0

- (517

where we use the assumption that the limit exists
(quasi-stationarity of u, and xg).

For the stochastic subsystem we find that, due
to stationarity of y3, the following equalities
hold true:

: 1/Y5 i—= s t s t
tim = (0 (Y (Vo)
g2 ] i|2i—1

(L (Hf)’)
_<H;‘-' L ©)

The Matrix input-output equations are defined in
the following Theorem (De Moor, 1988):

Theorem 1.
Yojpoa= X6+ HidU0|i—1 + Yoi-1,  (10)

Yipioy =T X{ + H{Ujpiy + Yo, (11)
and
X?= A'X3+ AlUpr. (12)

The theorem is easy to prove by recursive
substitution into the state space equations.

3. THE MAIN PROJECTION

In this section, we introduce the projection of
the future outputs onto the past and future
inputs and the past outputs. The results can be
described as a function of the system matrices
and the input—output block Hankel matrices.

We define the matrices Z; and Z;,, as

¥ U()|2i—1
2= Yi|2i—1/< Y()|i—l ): (13)

U()|2i—1
S~ Bl
+1 +1[2i—1 Yo|f ( )

where A/B=AB'(BB')"'B. The row space of
A/B is equal to the projection of the row space
of A onto the row space of B.

Formula (13) corresponds to the optimal
prediction of Yy given Uypi- and Yy;— in a
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sense that
”Yi]zi—l = Zi”i‘

is minimized constrained to

(Uolzi—1>

row space Z; C Tow space A

Y0|i—1

So, intuitively, the kth row of Z; would
correspond to a k step ahead prediction of the
output. This intuition will become clearer in
Section 4.

These projections (Z; and Z;,,) are useful in
determining the combined system, since (as we
will show in Theorem 2) the linear combinations
to be made of the input—output block Hankel
matrices to generate the matrices Z; and Z,,, are
functions of the system matrices (A, B, C, D,
Q’, §°, R’). Moreover, the system matrices can
be retrieved from these linear combinations, as
will be explained in Section 5.

It is tedious though straightforward to prove
the following theorem which delivers formulas
for the linear combinations to be made of the
rows of the input—output block Hankel matrices
to generate the matrices Z; and Z;,.

Theorem 2. Main projection.
e If the deterministic input u, and state x§ are
uncorrelated with the stochastic output y;:

R T e
hm]_' Yo U'=0 lim j Yij-1(X) =0
j—

jo<

| ! e
lim = Yijp Ui =0 lim= Yo (X9 =0,
=] =]
where the subscript . denotes past or future,
* if the input is ‘persistently exciting of order
2i (Ljung, 1987)’: rank Uj|p;—, = 2mi, and
« if the stochastic subsystem is not identically
zero (the purely deterministic case will be
treated in Section 6.1.3).
Then (for j— «)

Z;=T.X; + H{Ujpi, (15)
Zip1 =T Ko + HE, i+12i— 1 (16)
with
Xi=(A"- QT | Af - Q:H!| Q)
L
X Unji—1 a7

Y()|i—1
Xiﬂ A (Ai+l =il iy | A;1+| - Qi+1Hfl+1 l Qi+1)
SR—lUu 2i—1

x U() i (18)
Y¢)|i

and
= A Al
0, xw y o (19)
xi=A(P—SR™ SO+ A}
Y, = 1",-(P" — SR™'SH+ L. (20)

A proof can be found in Appendix A. In the
next section, we give an interpretation of these
projections.

4. A BANK OF KALMAN FILTERS

In this section, we show how the sequences X,
and X;,, can be interpreted in terms of states of
a bank of j non-steady state Kalman filters,
applied in parallel to the data. This inter-
pretation will lead to a formula that will prove to
be extremely useful when determining the
system matrices from the data.

As stated before, it may come as no surprise
that there is a connection between the states X;
defined by the projection Z; and some optimal
prediction of the outputs Y5 ;.

To establish this connection, we need one
more theorem that states how the nonsteady
state Kalman filter state estimate X, can be
written as a linear combination of u, ..., ux_,,
Yo, - - - » Yk—1 and the initial state estimate £,.

Theorem 3. Kalman filter. Given £, P,
Hos s o5 5 Bpeps Yas« 5 Ye—y and -all.thessystem
matrices (A, B, C, D, Q°, §°, R*), then the non-
steady state Kalman filter state £, defined by the
following recursive formulas:

X =A%+ Bu,_+ K;_,

X (Yot = Chicy — Day—i)s  21)
Ki.=(AB,_C'+GHA;+ CP_CY Y (22)
P.=AP,_,A'"— (AP,_,C'+G)

X (Ag+ CP_,C) Y(AP,_,C'+ G) (23)

can be written as
Uy

fk=(Ak_riklAz"‘QkH‘A{|Qk) Up—1 |

Yo
Yk—1
(24)
where
Qk zka;l: (25)
xx = A*P)T + Aj, (26)
and

Y =PIy + L. (27)
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The proof of this theorem and some details
concerning the special form of the Kalman filter
equations (21)-(23) can be found in Van
Overschee and De Moor (1992). Let us just
indicate that the error covariance matrix
P E[(xe — £)(xx — £)'] is given by P°+ P,
with P° the state covariance matrix from
Lyapunov equation (8).

Note that the limiting solution (k— ) of (23)
is —P., where P. is the state covariance matrix
of the forward innovation model (Faure, 1976).
Hence the limiting error covariance matrix is
P.=P°— P_, which is the smallest state error
covariance matrix we can obtain (in the sense of
nonnegative definiteness).

Also note that the expressions for vy, and y,
(26)—(27) are equal to the expressions of v; and
% (19)—(20) with PY — SR™'S’ substituted by P,.

If we now combine the results of Theorem 2
and 3, we find an interpretation of the sequences
X, and X,,, in terms of states of a bank of
non-steady state Kalman filters, applied in
parallel to the data. More specifically, compare
formulas (17), (18) and (24):

(1) The j columns of X, are equal to the
outputs of a bank of j non-steady state
Kalman filters in parallel. The (p + 1)th
column of X; for instance, is equal to the
non-steady state Kalman filter state £, , of
the Kalman filter (21)—(23) with initial
error covariance matrix at starting time p

P,=P,+P°=P'—SR™'S'+ P*
u,
£,=SR™!
Upioi—1
Notice that P, is independent of the
column index, so it is denoted with P".

In this way, all the columns can be
interpreted as Kalman filter states. The
initial states of the j filters together can be

P0=Pd_SR—15t+P: XO

Uoji—1
Yoji-1

X;

Ug

Ui-1

Yo

y;'_x

[ &

written as
XO = SR—onlzi—l-

All this is clarified in Fig. 2.

The expressions for P° and X" can be
interpreted (somewhat loosely) as follows:
if we had no information at all about the
initial state, then the initial state estimate
would be X°=0 and the initial error
covariance would be equal to the expected
variance of the state: P’ = E[x.x{] =P’ +
P*. Now, since the inputs are possibly
correlated, we can derive information
about X out of the inputs Ujzi-1- This is
done by projecting the (unknown) exact
initial state sequence X{+ X§ onto the
row space of the inputs Uyjpi—,

X=(X§+ X3/ Uppai—1 = SR~ Upjai-1-

This extra information on the initial state
of the Kalman filter also implies that the
error covariance matrix reduces from
P? + P° to:

= | DY
P() - P(I + P —lim 'TX“(X”)[

==l
=P!+ P - SR™'S".

These are exactly the same expressions for
X and P° as we found above.

It can also be seen that when the inputs
are uncorrelated (white noise), the pro-
jection of X{ + X} onto the inputs Upjpi—;
is zero, which implies that there is no
information about the initial state X°
contained in the inputs y(,|2,_1.

The state sequence X;,, has a similar
interpretation. The pth column of X, is
equal to the non-steady state Kalman filter
state estimate of the same (in a sense of
the same initial conditions) non-steady
state Kalman filter bank as discussed

-1
SR Uopi-a ]
U, Ui W
Uitp-1 Uiti—2
Yp Yi-1
Yit+p—1 Yitj-2
Titp Hioeg=i _J

FiG. 2. Interpretation of the sequence X as a sequence of non-steady state Kalman filter state estimates
based upon i measurements of u, and y,.
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above, but now the filter has iterated one
step beyond the estimate of the pth
column of X;. This is valid for all columns
P=1,5 5

(2) We define the
projection as

R;= Yi|2i—1 g = Yi]Zi-—l Mp riXi == H?Ui]Zi—l-
(28)

Since Z; is the result of the projection of
Yi2i-1 on the row space of Uppi-: and
Yoji—1, the residuals of this projection (%)
will  always  satisfy:  R;Ujppioy = 0,
P:Yoi-1=0 and R,Z;=0. Also, since X;
can be written as a linear combination of
Uopai-1 and Y- (see formula (17)), we
find: #,X;=0.

(3) Since the corresponding columns of X; and
X, are state estimates of the same (in a
sense of the same initial conditions)
non-steady state Kalman filter at two
consecutive time instants, we can write
(see formula (21))

X1 =AX, + BU; + Ki(Yyi— CX, - DUy,).
(29)

residuals %; of the

It is also trivial that
Y= CX;+ DUy + (Yi;— CX, — DUy).
(30)

If we inspect the formula for %; a little bit
closer (28), we see that its first row is
equal to Yj, — CX, — DU;;. And since we
know that the row space of %; (and thus
also the first / rows of %;) is perpendicular
to Upjzi—1, Yoji-1 and X, we find (together
with (29) and (30))

U()[zi—l
Xin=AX; + BUi[i i Y()|,—1 , (31
U()|2i—1
Yi]i =X, + DUi[i =t Y()]i—l , (32)
X;

where (.)* indicates a matrix whose row
space is perpendicular to the row space of
(.). These formulas will prove to be
extremely useful in the next section where
we determine the system matrices from Z;
and Z;. .

This summarizes the whole interpretation as a

bank of non-steady state Kalman filters.

5. IDENTIFICATION SCHEME

In this section, we derive an N4SID algorithm
to identify exactly (unbiased for j— ) the

deterministic subsystem, directly from the given
inputs u, and outputs y,. The stochastic
subsystem can be determined in an approximate
sense.

5.1. The projections

First, the projections Z; and Z;,, (13)-(14)
have to be calculated. In Section 7 we will
describe a numerically stable way to do this.

For convenience, we rewrite these projections
as follows:

L,‘ le L? U()i——l
z<=(~ il ~.~> T 33
! lixmi | lixmi | lixli __112;__1 : ( )
0li—1
Zisi
1 2 3
_( Liy, Liy, L;., )
=1y xm@E+1) | 1i=1)yxm@—1) | [(i—1)xI{G+1)
Uoji
X | Uisrjpio (34)
Y()]i

with, from (15)-(18)
Lil = ri([Ai i Qiri]S(R_l)llmi + A? i Qin'I),

(35)
le = H:I + ri[Ai = Qiri]S(R_l)mi+|]2mi7 (36)
L}=T,Q, (37)

with (R7")y,; denoting the submatrix from
column 1 to column mi.

The expressions for L/,,, L*, and L}, are
similar, but with shifted indices.

5.2. Determination of T'; and n

An important observation is that the column
space of the matrices L} and L; coincides with
the column space of I';. This implies that I'; and
the order of the system n can be determined
from the column space of one of these matrices.
The basis for this column space actually
determines the basis for the states of the final
(identified) state space description.

Let us mention two other possible matrices
that have the same column space as I;

Tl (38)
and
U() i—1
Ay L?)(—’——>. (39)
. ’ Yu|i—|

It should be mentioned that, for i— = the first
one (38) will lead to a deterministic subsystem
that is balanced (see also Moonen and Ramos,
1991) while the second one (39) leads to a
deterministic system that is frequency weighted
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(with the input spectrum) balanced (Enns, 1984)
together with a stochastic subsystem of which the
forward innovation model is balanced in a
deterministic sense. We will not expand any
more on this, but keep this for future work.

We can now determine I';, I',_; and the order
n as follows: let T be any rank deficient matrix of
which the column space coincides with that of T';.

* Calculate the Singular Value Decomposition

0 t
v

r=w w7,

 Since T is of rank n, the number of singular
values different from zero will be equal to
the order of the system.

e The column spaces of I; and U,Z|?
coincide.* So, T; can be put equal to U=}~

e With I'; defined as I'; without the last / rows
(! is the number of outputs), we get:

r,~_1 = L

In the following, we will take T equal to the
expression in formula (39), but one can replace
this with any other matrix of which the column
space coincides with T;.

5.3. Determination of the system matrices

We now assume that I;, I';,_; and n are
determined as described in the previous section,
and are thus known. From (15) and (16) it
follows that:¥

Xi = r:T(Zi ' H?UIIZI—I)- (40)
Xi+1 = F}L—I(Zi—i-l = H;!—l Ui+l]2i—l)- (41)

In these formulas, the only unknowns on the
right-hand side are the matrices H¢ and HY,
From (31) and (32) we also know that

U()|2i—1

Ae)— (4)5,+ (2)

X+ U, + Z.

<Y,|, C s .
A

(42)

If we now substitute the expressions for X, and
Xiy1 (40)—(41) in this formula, we get

FT_IZ'+]> (A) -7[12
- : =yt F,TZ, = < ) P13
< Yi]i & 7[22 Ullm .

| SeP— N —
Term 1 Term 2

U0|2i—1 -
+ Z; . (43)

X

{

Ao etk
Term 3

* Thc factor =} is introduced for symmetry reasons.
t A" denotes the Moore—Penrose pseudo-inverse.

where we define

=
'7[22
D 0
poary( 2 Yt -ar(,0)
def Ii.,B H{,
D 0
oar,2) -el,g)
T, .B Ti\ae,
(44)

Observe that the matrices B and D appear
linearly in the matrices %, and J%,.
Let JI be a matrix whose row space coincides

with that of
Fomt
Ui|2i—1 ;
then (from (43))

(522)/n-(Ehe) )/

Obviously, this is a set of linear equations in the
unknowns A, C, H#,, Hss.

Another point of view is that one could solve
the least squares problem

” F,* ,Z,H (A |-7[12>< iz ) ¥
Y[z Clyfzz Ui|2i—1

min
Ao

(45)
Either way, from (43) we find (term by term).

Term 1. A and C exactly.

Term 2. 3, and J,, from which B and D can be
unraveled by solving a set of linear equations,
analogous to the one described in De Moor
(1988). Note that in (44), B and D appear
linearly. Hence if A, C, I';, I';_,, %}, and J,, are
known, solving for B and D is equivalent with
solving a set of linear equations.

Term 3. The residuals of the least squares
solution (43) can be written as

U()|2i—1

S :M)
P Z <V,-1,-’

where W and V| are block Hankel matricess
with as entries w, and v,: the process and
measurement noise. This is clearly indicated by
equation (42).

The system matrices R°, S$° and QO°

1 The block Hankel matrices of the residual p have only
one block row. The notation is introduced to be consistent
with previous notations.
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determined approximately from p as follows:

Lomr=(8 o)
j(pp)— (S.y)l R :

The approximation is due to the fact that the
bank of Kalman filters for finite i is not in steady
state (see for instance the Riccati difference
equation (23)). As i grows larger, the ap-
proximation error grows smaller. For infinite i
the stochastic subsystem is determined exactly
(unbiased). More details on this purely stochas-
tic aspect can be found in Van Overschee and
De Moor (1991a, b).

5.4. N4SID Algorithm 1

In this section, we summarize the first N4SID
algorithm step by step, not yet paying attention
to the fine numerical details, which will be
treated in Section 7.

(1) Determine the projections

4= Yilz,—l Uijai—1
Yu|i—1
Ll | 12| Ly et
=<\—v—d ; -> Uipai-1
lixmi W lixmi Vi XIi Yv()li_l
U(Ji
Ly = Yi+|]2i—1 Uitipi-
Yn]f
(2) Determine the Singular Value Decom-
position
1 a Uy o Z, 0 '
a(F)=w u(y o)V

The order is equal to the number of
non-zero singular values.

I,=UZ"” and T, ,=UZ”

(3) Determine the least squares solution (p,
and p, are residuals)

J n mi
”(F;r—lziH) _”(-7{11 7{12>
) ¥ Ny Ho
J J

n ( [ ) n(p,)
X e A—1
nu Ui|2i—l I\p,

(4) The system matrices are determined as
follows:

A<,

i
® C 3.

AUTO 30:1-G

(ii) B, D follow from A, C and %, 9,
through a set of linear equations.

o (2| S\ 1/pipi| piPd
(111) s\ s ST t c

(Y| R/ i \papt | papt
The deterministic subsystem will be
identified exactly (as j— o, independent
of i). The approximation of the stochastic

subsystem is still dependent on i and
converges as [ — .

6. A SIMPLE APPROXIMATE SOLUTION

In this section, we introduce an N4SID
algorithm that is very similar to the ‘exact’ (as
j— ) algorithm of the previous section
(Algorithm 1). The algorithm we present now
finds a good approximation to the state X;, and
to the system matrices, without having to go
through the complicated Step 4 for the
determination of B and D. This results in a
simple and elegant algorithm with a slightly
lower computational complexity as compared to
Algorithm 1. Another advantage of this
simplified N4SID algorithm is that it is very
closely related to existing algorithms (Larimore,
1990). This means that the analysis of this
simplified algorithm can also be applied to the
other algorithms, and can thus contribute to a
better understanding of the mechanism of these
algorithms. A disadvantage is that the results are
not exact (unbiased) for finite i (except for
special cases), but an estimate for the bias on the
solutions can be calculated.

If we could determine the state sequences X;
and X, directly from the data, the matrices A,
B, C and D could be found as the least squares
solution of (31)—(32).

Unfortunately, it is not possible to separate
the effect of the input H,f’U,|2i_1 from the effect
of the state IX; in formula (15), by just
dropping the term with the linear combinations
of Ujjzi—1(L?) in the expression for Z;. We would
automatically drop a part of the initial state if we
did this (see for instance (36)). So, it is not
possible to obtain an explicit expression for I';.X;
and T',_, X,,,, without knowledge of H¢, which
would require knowledge of the system matrices.

It is however easy to find a good approxima-
tion of the state sequences, directly from the
data. If we use this approximation in (31) and
(32), we obtain a second very elegant and simple
N4SID algorithm that calculates approximations
of the system matrices.

6.1. The approximate states
In this section, we derive an approximate
expression for the states X; and X,.,. This
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approximation can be calculated directly from
input—output data.

The approximate state sequences are calcu-
lated by dropping the linear combinations of
Uijai—1 out of Z;, and the linear combinations of
Uisizi-y out of Z;,. In this way, we obtain
Kalman filter states of a different Kalman filter
compared to the one that produces X; (in a sense
of different initial conditions). We call the
resulting matrices I'X; and I';_, X,

riXi =2~ L:?Uilzi—l (46)
and
ri-lXi+l = L L?+1Ui+l|2i—l' (47)
From (33) and (34) we derive
A" = QTIS(R™ il

at-onflo)(y=) @)

Qi+lri+l]S(R )l[m(i+1)

ol
A= Qo | 0ee)(3E)

()Il

X:+l = ([A1+l

The matrices I';.X; and I',_, X,,, can be obtained
directly from the data without any knowledge of
the sytem matrices, and can be interpreted as
oblique projections as described in Van Over-
schee and De Moor (1992).

The state sequence X; is generated by a bank
of non-steady state Kalman filters, with:
P°=P?—SR7'S'+ P’ and X* = S(R™ ")y milo}i-1-
The state sequence X,., on the other hand, is
generated by a bank of non-steady state Kalman
filters, with: P°=P?—SR™'S'+ P* and X°=
S(R™! im@i+1 Ui~ So clearly, both sequences do
not belong to the same bank of Kalman filters,
and the useful formulas (31)-(32) are not valid
for these two sequences.

Still, we will see below, that X; and X,,, are
very close to X;, and that X;=X,, X,,, = X,,, if
at least one of the following conditions is satisfied:

® | — 00,

e The deterministic input u, of the combined
deterministic—stochastic system is white
noise.

e The system is purely deterministic.

For these three special cases, we will analyze the
difference between X; (17) and X, (48), defined
as 0X;:

= [Ai o Qiri]S(R_l)mi+l|2miUi|21—l-
(49)
6.1.1. i—> . Define the term between square

brackets in (49) as ?L'A'— Q.T,. Now, it is
easy to prove (Van Overschee and De Moor,

1992) that
i—1
2 =[] (A-k:C). (50)
k=0

Since the non-steady state Kalman filter
converges to a stable closed-loop system
(Anderson and Moore, 1979), we find that 2,
grows smaller when i grows larger. It is also clear

that: lim %, =0. In the limit, equation (49) thus

i—x

becomes (With S(R™") i+ 1j2miUij2i—1 finite)

lim 6X; =lim #S(R™ ),,,,+,|2,,,,U|2, ;1 =0.

o oo
The same holds for 6.X;.,. So, we can conclude
that, for i— o, there is no difference between
the state sequences X; and X;. Actually, when
i—> =, the non-steady state Kalman filter bank
converges to a steady state Kalman filter bank,
i.e. the Kalman filters converge (the Riccati
difference equation (23) converges to an
algebraic Riccati equation). To obtain the effect
of i— % on a computer, in theory we would need
a test like.

”CSX:'HF_: ”g)iS(R_l)mi-i—l!?_miUipi—l||F< Z
\,/n—Xj \/,_17] mach>»

where €., is the machine precision. This is a
condition that can only be checked, after the
identification is done. Appendix B indicates how
this quantity can be calculated.

In practice, it turns out that i does not have to
be that large. The identification results are
already very good for reasonably small i (=10).
This will become apparent in the examples of
Section 9.

6.1.2. u, white noise. With the deterministic
input u, white noise, we find: $ =0 and R =1,
with L,,; the 2mi X 2mi identity matrix. So, for a
white noise input, we find for any i (see (49)):
=X

6.1.3. Purely deterministic system. From Mo-
onen et al. (1989), we know that generically for
deterministic systems we have (if there is no
‘rank-cancellation’, see De Moor (1988))

Uy)i- :
rank( ) l)=mz+n
Toli-1

and (51)

Uipi— :
rank( e l)=mz+n,
ij2i—1

which implies that

Upizi—
rank ( g ]) =2mi + n.

0li—1

This rank deficiency implies that for purely
deterministic systems, the proof of Theorem 2
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breaks down (see Appendix A: %B~' cannot be
calculated). The following theorem is an
alternative for Theorem 2 for purely determinis-
tic systems:

Theorem 4. Purely deterministic systems. If the
input is persistently exciting and the stochastic
subsystem is zero we have
I.X = (T[A — ATIHY | T,A' rf)(U"' )
Y()[l 1
= r,-X,- = FI'X,'.

A proof can be found in Van Overschee and De
Moor (1992). This implies that for deterministic
systems, O.X; is also equal to zero.

6.2. The algorithm
We know from (31) and (32) that the least
squares solution £ of

i+1 Xi 4
mm— 55’( )
” YI:) Ui/ g
i | to:
is equal to: $_<A B)
“\c D/

We also know that from the residuals of this
least squares problem, we can approximately
calculate the stochastic subsystem (exactly if
i— ). Unfortunately, it is impossible to
calculate the states X, and X, , directly from the
data, without any knowledge of the system
matrices. In the previous section, we have seen
that for some special cases X;=X, In the
general case, we have X;=X, if i is reasonably
large. This is because (Section 6.1.1)

i—1
0X; = H (A - KkC)S(R_l)mi+l|2miUi|2i—l'
k=0

Consequently, for the least squares solution £ of

2

XM) <X>
A
( Y; (_]i'i F

- (A B

=(c p)
Contrary to X;, X; can be calculated directly
from the data, without any knowledge of the
system matrices. The solution is exact (£ = %)
for the cases of Section 6.1.1( i— =), Section
6.1.2 (input is white noise) and Section 6.1.3
(purely deterministic), since then X;=X,. In
Appendix B, an approximate expression for
(Y- %) is derived. This is the bias on the
solution.

(52)

min

we have

6.3. N4SID algorithm 2
In this section, we summarize the second
N4SID algorithm step by step, not yet paying

attention to the fine numerical details, which will
be treated in Section 7.
(1) Determine the projections

Uo]i—l
2= Yi[Zi—l Uipai—1
Y()|i—1
Usli-
g i ] et
= e e — Ui|2i—1 ’
lixmi | lixmi | lixli P
Yoli—s
and
Uyl
L= i+1)2i—1 _L_]H-l 2i—1
Yoli
1
_ ( Lis, L%,
= N——
i—=1)xm@+1) | Ii—1)xXm@(i—1)
13 Ui
+1
X I ot ) Uit 1l2i-1
Wi-DxIE+1) \ —  —
oli
(2) Determine the Singular Value

Decomposition
0
L L} ( = ‘)— U U ( )v'.
( | ) Yoli- W 2) 0 0

The order is equal to the number of
non-zero singular values.

F U]Z”z and ri_l =ﬂz:/2.
(3) Determine the states X; and X,
U
X, =TH(L! L‘( =t )
( | ) Yv()ll 1
and

5 Uyl
Xi+l l I(Ll+l ‘ L1+l <Y_O>

oli

(4) Determine the least squares solution
j nom J i
n(X.-H)_n(fz’” $'2>x”(X>+ (p.)
A NG, % Uil; I\p,
(5) The system matrices are (approximately)
determined as follows:

. A B £ %
® (¢ p)le 2
c . D L L
o O |8 1/pipi| PiP2
(“) s\ X t t )’
()R P2P1 | P2P2
where in the general case the approxima-
tion of the deterministic and stochastic

subsystem depends on i (even when j— )
and converges as i, j— .
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7. A NUMERICALLY STABLE AND EFFICIENT
IMPLEMENTATION

In this section, we describe how N4SID
Algorithms 1 and 2 can be implemented in a
numerically stable and efficient way. We make
extensive use of the QR decomposition and
SVD.

In Sections 5.4 and 6.3 we described step by
step, two N4SID algorithms that determine the
system matrices from given input—output data.
In this section, we will show how these two
algorithms can be implemented in a numerically
stable and efficient way.

Steps 1 through 4 are common to both
algorithms.

(1) Construct the block Hankel matrix #*

<U(,|2, 1)/\/—
Yo]z. 1
2(m+I)IXJ

(2) Calculate the R factor of the RQ
factorization of 3¢

= R ¥ -0
N/ (Lot
2(m+1)ix2(m+1)i 2(m+1)ixj

with Q'0Q =1 and R lower triangular. It is
important to note that in the final
calculations, only the R factor is needed,
which lowers the computational com-
plexity significantly.

Partition this factorization in the follow-

ing way:
]
mi Uli-1
m Ui

m(i—1) U+||2,| =

li (l|i—|

! Y
Ii=1) \Yiiiio
mi m m(@—-1) 6 | I(i—-1) J
mi Ry 0 0 0 0 0 0
m Ry Rz 0 0 0 0 (0}
m@i—1)1 Rs;; Ry, Riyz 0 0 0 04
li Ry Ry Ry Ry 0 0 05
l Rs, R, Rs; Rsy Rys 0O 05

I(i_l) Rm Rc: R(»J RM R65 Reg Qé’

_*The scalar \/j_is used to be conform with the definition of
E.

where we use the shorthand notation
Ry.6.1.3 for the submatrix of R consisting of
block rows 4—6 and block columns 1-3.

(3) Calculate the projections (see also the
note at the end of this section).

L Uplzi—
Zi=R5:6.I:4Rl:}1.1:4( ‘g l)

Yoji-s
U()i—l
Uipyi—
= || 2= ),
Yn|i—1
and
Uopi—
Zl+l —R66 1: SRI 21351 s 5( ;ljz’l l)
U()i
"—‘(L,!+1 IL+1|L1+I (-]i+12i—1
Y()|i
(4) Determine I; and n through the SVD of
I:X;
& 0. LR ol
=(U U ( ) g
@ o 5 )@y

Note that this SVD can be calculated
through the SVD of (L} 0 L})Ry4 .4
since Q.4 is an orthonormal matrix. The
rank is determined from the dominant
singular values of this decomposition (Z,),
and T'; can be chosen as

r U]Z”Z r,'_l =E,

where the underbar means deleting the
last [ rows (! is the number of outputs).
The two algorithms described in Sections 5
and 6 now differ in Steps 5 and 6.

NA4SID Algorithm 1.
(5) We find for the left-hand side and
right-hand side of equation (43), written
as a function of the original Q matrix

( riz ) (E. 2U4 R5m>
1:4»

Uiai-1 R334
and
(Fj_lzi“) 2 (Z,_m(ﬂ)TRszs.lzs> :
Yv"l" R5:5.1:5 o

(6) Now the least squares problem (45) can be
rewritten as

L ‘(zn—llz(ﬂ)mszs‘l:‘t)

K

R5:5,1:4
» 9{<Zr"2UaR5;6,1;4) *

R2:3,l:4 F
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and solved in a least squares sense for J.
Note that the Q matrix has completely
disappeared from these final formulas.
The first n columns of # are A and C
stacked on top of each other. The next
columns determine B and D as described
in Section 5. The residuals of this solution
determine the stochastic system as de-
scribed in Section 5.

N4SID Algorithm 2.
(5) We have

o

_ (zr"zua(u

R2:2. 1:4
(X,-+.>
Yl

<2|—l/2(ﬂ)T(Ll!+l 0 L?+1)R|:5.l:5) ¢
1:5-
R5:5,l:5
(6) Now the least squares problem (52) can be
rewritten as
l(zi—llz(_%)T(Lt!+l 0 L?+1)Rl:5.l:4>
R5:5.l:4
_ 3;(21—-”2(],1([‘1] O L?)Rl:4,lz4>
R2:2.l:4

0 L)Ry4,;.
) 1.4,1.4) t . and

min

&£

2

F
Once again, the O matrix has completely
disappeared from these final formulas.
From £ and the residuals we can find the
system matrices as described in Section 6.

Note.

e The projection of Step 3 is written as a
function of U and Y, and not as a function
of O, because we need to be able to drop
the linear combinations (L?) of the rows of
Uipi- in Z; to find the sequence I';X; and
the linear combination (L7, ) of the rows of
Uivipi-1y in Z;,; to find the sequence
I'io1 Xy (see formulas (46)—(47)).

* The possible rank deficiency of the row
space we are projecting on (in Step 3) has to
be taken into account (see Section 6.1.3).
This occurs when R,.4 . and R,;s,.s are
rank deficient. It can be checked by
inspection of the singular values of R .4 .4
If one of them turns out to be zero (purely
deterministic case), a basis [] for the space
we are projecting on has to be selected. This
basis should contain the row vectors of
Uiai-1 explicitly. This makes it easy to drop
the linear combinations of Uj5—, (L7) in Z,
to obtain the sequence I';,X.

With the singular value decomposition
<U0]i—l> _ (Rm,m)Q,M
Y'()]i—] R4:4,1:4

S, O\/V:
=4 UZ)(Ol 0)(1/9 1

we find as an appropriate basis

Vi
n-(,7 o
R2:3,l:4 e

The rest of the algorithm is very similar to the
general case.

We should note that in the generic real life
case, the problem of rank deficiency is a pure
academic one.

8. CONNECTION WITH EXISTING ALGORITHMS

8.1. Instrumental variable method

This method was described by De Moor et al.
(1991), Verhaegen (1991). The basic idea will be
shortly repeated here. We start from the
input-output equation (11): Yo, =T X{ +
H{U,pi—1 + Yij2i-1. Projection of this equation
on the row space perpendicular to that of Uy,
gives

Yi|2i—1/Uil|2i—1 = riX:!/UI'J[Zi—l 1 Y-;|2i—l- (53)

Note  that  Yjj—1/Ujjpi—1 = Yijsic1,  since
Yij2i—1/ Uijpi—1 =0 as j— . Projection of (53) on
U()|i—l gives: [Y;'IZi——]/UiJ]_Zi—-l]/U()Ii—I =
ri[X:'I/UiJ[Zi—l]/U()Ii——I: since Yf|2i~1/U0|i—1 =0. It
can be seen from this equation that the column
space Of [Y;jpi—1/Uipi—1]/Uji-1 is equal to that of
I'Y (only the deterministic controllable modes are
observed). So, from the column space of I'{, A
and C can be derived. B and D are then found
from the fact that: (IY)*[Yijai=1/ Uipi—1]Uljaic1 =
(T¥)*H¢ which leads to a set of linear equations
in B and D. Finally, the stochastic subsystem is
identified from the difference between the
measured output and a simulation of the
identified deterministic subsystem with the given
input u,. This difference is almost equal to the
output of the stochastic subsystem (y%). The
stochastic subsystem can then be identified with
for instance one of the algorithms described by
Arun and Kung (1990) and Van Overschee and
De Moor (1991a, b).

A clear disadvantage of this algorithm is the
fact that the deterministic and stochastic
subsystem are identified separately. This in-
volves more calculations. Two different A
matrices will also be identified (one for the
deterministic and one for the stochastic system),
even though a lot of the dynamics could be
shared between the two subsystems.
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8.2. Intersection algorithms

In the literature, a couple of algorithms, which
we call ‘intersection algorithms’ have been
published by Moonen et al. (1989, 1992). It is
interesting to note the analogy between these
algorithms and Algorithm 2 described in Section
6. We show that the row space of X; can also be
found as the intersection between the row spaces
of two Hankel matrices 7, and 3. Define
J = row space ¥, Nrow space #, with

%l = <Y()|i—|)

Uo]i—l
and
Uo|2i-—1
v/ ()
7, = et Y()li—l
Ui]2i~l
Facts.

e The subspace $ is n dimensional.

Proof. We have: rank 3, =k, with x,=(m +
l)i in the generic combined deterministic—
stochastic case. From equation (15), we find
that: rank 9, = mi + n. Finally, if the input is
persistently exciting: rank (¥} 5) =k, + mi.
With Grassmann’s Theorem, we find: dim [, N
9] = rank ¥, + rank 3, —rank (3 3) = (x,)+
(mi +n)— (k, + mi)=n.

» The intersection subspace J is equal to the

row space of X;.

Proof.

— X, lies in the row space of %, since it is
written as a linear combination of Uy,
and Yy, (see Formula (48)).

— X; lies also in the row space of J, since we
know from (46) that

- U, 2i— 5
2=l Yias / (327) - L0 |
Y()]i—l

So, X; lies in the intersection of the row
spaces of #, and . Since both the
intersection subspace # and the row space
of X; are n dimensional, they must coincide.
This derivation indicates strong similarities
between N4SID Algorithm 2 and the existing
intersection algorithm mentioned above. When
j—, both algorithms will calculate the same
solution (if the same state space basis is used). In
practice however (finite j), they calculate slightly
different models. In the references given above,
only purely deterministic systems and the
asymptotic case i—> are treated. The inter-
pretation of Kalman filter states is totally absent,
as is the effect of finite 7.
The similarities indicate an alternative way to

calculate the states X; and X,,, as intersections
(see Moonen et al., 1992 for example).

8.3. Interpretation of general projection methods

Larimore (1990) shows that viewed from a
statistical point of view, the state (memory) M, is
the solution to

U()|2i—l>]= [ : ‘(UiIZi—l>:|
<Yo|i—1 P| Yipi M, ,
where p[A | B] is the probability distribution of
A given B.

For Gaussian processes, these distributions are
characterized by the first two moments, and we
can replace p[A | B] by the expectation opera-
tion E[A | B]. This expectation operator can in
its turn be replaced by the projection operator
(Papoulis, 1984). We then get

Uo]z:’q) /(UiIZi—l>
Yij2i- ( = Yijai- g 4
2 l/ Y()[i-—l Sig M; (5 )

By substitution it is easy to verify that all of the
following three alternatives: M;=X,, M;=X,
and M, =X,-/U,+Iz,-_, satisfy equation (54).
Actually, every matrix M, satisfying: row space
M; =row space [Z; — QU,j,;—, and rank M;=n
(with Q e R"*™) will also satisfy equation (54)
and give rise to an n dimensional memory. This
ambiguity is due to the fact that the exact
influence of the input variable U, on the
output is not known. In the frame work of linear
theory, the most natural choice for M, is of the
one for which

Upjzi—
Yi|2i—1/< 0|[2’ ]) =TM, + H;IUi|2i—l
0li—1

is satisfied (Q = H{). This is because this choice
corresponds to the linear state space equations

M =AM, + BU1|i»
Usizi—
K;i/( o ‘) = CM, + DUy,
Y()[i—l
This leads to the choice M; = X,.

p[YiIZi—l

and

9. EXAMPLES

9.1. A simple example

This simple simulation example illustrates the
concepts explained in this paper. We consider
the single input single output single state system
in forward innovation form (Faure, 1976)

Xee1 = 0.9490x, + 1.8805u, — 0.1502¢,,

and

Vi = 0.8725x; —2.0895u, + 2.589%4e,.
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with e, a unit energy (o0=1), zero mean,
Gaussian distributed stochastic sequence.
Effect of i.

We first investigate the effect of the number of
block rows (i) of the block Hankel matrices. The
input u, to the system is the same for all
experiments and is equal to a filtered unit energy
(o0 =1), zero mean, Gaussian distributed stoch-
astic sequence added to a Gaussian white noise
sequence (o0 =0.1). The filter is a second order
Butterworth filter, with cut-off frequency equal
to 0.025 (sampling time 1). The number of data
used for identification is fixed at 1000. One
hundred different disturbance sequences e, were
generated. For each of these sequences and for
each / in the interval [2,15], two models were
identified using N4SID Algorithm 1 (Section 5)
and 2 (Section 6). Also for each of these models
the bias was calculated using the expression in
Appendix B. Then the mean of all these
quantities over the 100 different disturbance
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0.949 |-
0.949
QA8 |-scesseinss SRR AN SRR AT W=
0.948 L
3 10 15
i
0 Bias on deterministic zero
'1'_,,.fb,~..‘,..AAj
-0.005 P 5 >
Gl
-0.01
0.015 -
.02 o .
0.025 i
5 10 15

081

0.7 POAIRRT= S A 1

sequences  was  calculated
experiment).

Figure 3 shows the results as a function of i for
both N4SID algorithms. The results for Algo-
rithm 1 are represented with a dotted line (:) and
circles (O). The results for Algorithm 2 are
represented with a dotted—dashed (--) line and
the stars (*). The exact values are indicated with
a dashed line.

Figure 3a shows the eigenvalue of the system
as a function of i. Clearly the estimates are
accurate, and there is hardly any difference
between the two algorithms. Figure 3b shows the
deterministic zero of the system (A — BD~'C) as
a function of i. The difference between the two
N4SID algorithms is clearly visible. Algorithm 1
estimates a zero that is close to the exact
deterministic  zero, independently of i
Algorithm 2 on the other hand is clearly biased
for small i Figure 3c shows this bias
(dashed—dotted line) and the estimated bias

(Monte-Carlo
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FiG. 3. (a) Eigenvalue of A as a function of i (N4SID Algorithm 1 (*) and 2 (O)). (b) Deterministic zeros

as a function of i (N4SID Algorithm 1 (*) and 2 (O)). (c¢) Calculated (*) and estimated (O) bias on the

deterministic zero as a function of i (N4SID Algorithm 2). (d) Calculated (*) and estimated (O) bias on D as

a function of i (N4SID Algorithm 2). (e) Stochastic zero as a function of i (N4SID Algorithm 1 (x) and 2
(O)). (f) Standard deviation of A as a function of j (N4SID Algorithm 1).
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(dotted line) using the expressions of Appendix
B as a function of i. As expected, the bias grows
smaller as i grows larger. Figure 3d shows the
calculated and estimated bias on the identified D
matrix. This matrix seems to be a lot more
sensitive to i than A.

Finally Fig. 3e shows the estimated stochastic
zero as a function of i (the eigenvalues of
A — KC, with K the steady state Kalman gain).
The convergence is very slow (the exact zero is
0.9996). More details can be found in Van
Overschee and De Moor (1991a,b). For this
example, we can conclude that both algorithms
do a good job of estimating A and C. B and D
are estimated accurately with N4SID Algorithm
1, but not with Algorithm 2 (for small i). The
bias can be calculated through. The accuracy of
the stochastic subsystem is strongly dependent
on / for both algorithms.

Effect of j.

Throughout the paper, we assumed that j— oo,
The effect of finite j is shown in Fig. 3f. This
figure shows the standard deviation (stars) of the
estimate of A as a function of j (i =5). For each
J, 100 Monte-Carlo experiments were done. The
standard deviation is proportional to 1/Vj
(dashed line). So, the accuracy of the results
depend on j as 1/V/].

9.2. A glass oven
The glass oven has three inputs (two burners
and one ventilator) and six outputs (tempera-
ture). The data have been pre-processed:
detrending, peak shaving, delay estimates,
normalization (Backx, 1987).
Using 700 data points, five different models
are identified (the 300 following points are used
as validation data):
(1) A state space model with N4SID Algo-
rithm 1 of Section 5.

(2) A state space model with N4SID Algo-
rithm 2 of Section 6.

(3) A state space model with the algorithm of
Section 8.1.

(4) An ARX model (Ljung, 1991) followed by
a balanced truncation.

(5) A prediction error model (Ljung, 1991).

Singular Values

102

10t

100

10!

Order

FiG. 4. Order decision based on the dominant singular
values.

The first row indicates the chosen order.
Figure 4 shows the singular values that led to the
system order five for N4SID Algorithms 1 and 2.
The gap in the singular values is clearly visible.
For the ARX model, the parameters ‘na/nb’
indicate that ‘na’ was a 6 X6 matrix with as
entries 4, and ‘nb’ a 6 X 3 matrix with as entries
4 (see also Ljung, 1991). In this way, the
resulting state space model was of order 33. It
was reduced to a fourth order model using
balanced truncation of the deterministic sub-
system. This is basically the same philosophy as
for the N4SID algorithms, but the last ones do
not calculate the intermediate model explicitly.
For the prediction error model, we used the
identified model of Algorithm 1 in the
controllability canonical form (controllability
indices: 2, 2, 1. Number of parameters: 93) as an
initial value (the initial values obtained from
‘canform’ or ‘canstart’ of Ljung (1991) did not
converge). We restricted the number of itera-
tions to three (no improvement with more
iterations).

The third row shows the number of floating
point operations. Algorithm 2 needs about 5%

The results are summarized in Table 1. less computation _(simpler algorithm). The
TABLE 1. COMPARISON OF FIVE IDENTIFICATION ALGORITHMS
Algorithm 1 2 3 4 5
Order 5 5 3/3 4/4 S
i 5 5 S — —
Flops 14,355,148 13,590,364 24,056,676 41,744,504 330,529,255
Pred. determ. 47.41 47.95 48.56 45.72 47.34
Pred. Kalman 10.76 10.76 14.17 28.98 10.87
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calculation of the ARX model takes three times
as much computation. The calculation of the
prediction error model (only three iterations)
takes about 25 times as much computation! It
should be mentioned that none of the algorithms
was optimized in the number of operations (nor
ours, nor the ones in the Matlab toolbox), but
these figures still give an idea of the order of
magnitude of the number of computations. The
fourth row is the error (in per cent) between the
measured validation output and the simulated
output using only the deterministic subsystem.
The fifth row shows the error between measured
and Kalman filter one step ahead prediction.

With [y}]; the ith validation output channel
and [y3]; the ith simulated output channel, the
error is defined as (&, = 300)

2 (- iy
e=100| = > i %.
2 (ay

The best deterministic prediction is obtained
with the ARX model, which is logical since it
came about by balanced truncation of the
deterministic subsystem. The other models
perform a little worse (but all four about the
same).

The Kalman filter error is the smallest though
for the first two N4SID algorithms. The
projection retains the deterministic and
stochastic information in the past useful to
predict the future. This implies that the resulting
models will perform best when used with a
Kalman filter. The prediction error model does
not improve this Kalman filter prediction error
at all. There is even a slight decline which is
probably due to numerical errors since during
the iteration procedure a warning for a badly
conditioned matrix was given. This means that,
even though there is no optimization involved,
the results obtained with the N4SID algorithms,
for this industrial MIMO process are close to
optimal.

For this example, the N4SID algorithms thus
calculate a state space model without any a
priori fixed parametrization, and this in a fast
and numerically reliable way.

Finally, we should mention that, as we found
out in discussion with Lennart Ljung, the
prediction error method can be made to work
better with some extra manipulations. The main
problem with the prediction error method is that
the outputs are pairwise collinear. This results in
a very hard, ill conditioned optimization
problem, for every possible parametrization.
This problem can be solved as follows: first

estimate an initial model. Now, in the
optimization step, only the parameters of the C
and D matrix corresponding to three -outputs
can vary (output 1, 4 and 6 for this example).
The optimization is better conditioned now and
the resulting model has a similar performance as
the subspace models for this example. The
number of floating point operations stays
extremely high though and this method is rather
complicated and requires quite some insight
from the identifiers.

10. CONCLUSIONS

In this paper two new N4SID algorithms to
identify combined deterministic—stochastic linear
systems have been derived. The first one
calculates unbiased results, the second one is a
simpler biased approximation. The connection
between these N4SID algorithms and the
classical Kalman filter estimation theory has
been indicated. This allows interpretations and
proofs of correctness of the algorithms.

In future work, we will discuss other
connections with linear system theory: model
reduction properties, frequency interpretations
and connections with robust control.

The open problems that remain to be solved
are the connection with maximum likelihood
algorithms (Ljung, 1987) and the problem of
finding good asymptotic statistical error
estimates.
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APPENDIX A. PROOF OF THE PROJECTION
THEOREM

Proof of formula (33).

Note. Due to the complexity of the formulas, we use the
subscripts p (past) and f (future) throughout this appendix as
follows: For U, Y“ and Y*, these subscripts denote
respectively the subscript 0 | i—1 and iI 2i — 1. For X“ and
X" they denote the subscript 0 and i. We also make use of
(9)-(12) without explicitly mentioning it.
Define
del

ook P
= lim = (VU | U Y})) = (t | o | o).
We have

L]
s, =lim-Y,U,

= j
- 1 i o d « a3
= }1,'2 j—_(F,A X4+ AU, + HIU + Y)U,
=T[,AS, + T, AR, + HIR,,

o b
o, =lim YUy
jax]
J= g

1 : .
= lim ]A_(F,A‘X;f + AU, + H{U + YU,

=T,A'S, + AR, + HIR,,,

and

sud AL
&y =lim =YY,

j—»m]
I (= ;
= lim f(riAlX’l:+ LA{U, + H{U, + Y))
j

X ((X)Ti+ UG(HDY +(Y2))
=T,A'PIT + [A'S,(HY)

+ LA{S| T+ [A{R, (HY)

+ H{SyTi+ H{R,(HY) + H;
=L,A'PT+ AR, (HY

+ CA'S (H) + T,A{ST}

+ H{R'\,(HY) + HISLT: + AL

Ay
N’
lix li

_ [F,-A"S + DAY (R R,)
+ H{(R'\:R,,)
[APTL+ DA%+ T,AYR  (HY) + A'S, (HY)
l +A{S| T} + H{R',(HY)' + H{S,T

Thus, we find

i

lixXmi li xmi

]. (A.1)

The second part we need to express in terms of the system
matrices is

U
def,. 1 £ B, | B,
B=lim~| U (U, U;|Y! =( L 2'),
e ?[ ( 2 ll p) Bay'| Bz
with g
1
By = lim ~Y, U, U
s
=lim ;—,(I‘,—X: + H;lUp + Y‘;,)[U;, U}]
ol
=I,S+H{R, Ry,
1

By, =lim=Y,Y!

=3
=lim }(r,.x;f + H{U, +Y3)
Jats
X (Xg2)'Ti+ Up(HY + (Y3)")
=T,P/T;+ I;S,(HY) + H{S\T}
+H{R (H) + L},
and 8,, =R.

Note that & is guaranteed to be of full rank ((2m + [)i)
due to the persistently exciting input and the non-zero
stochastic subsystem. To compute %~ ', we use the formula
for the inverse of a block matrix (Kailath, 1980)

(@u %'m)_l
By | Baa
N (%l—ll + BBy Y B B | B By
_w_l%l%al ‘ w_l
with ¥ = By, — By, By, By

So, in our case, this becomes
B =
(o) (G -

Xy \(H{(I_0)+T,SR™")
—y; "(H!1 0)+T,SR™) | y; !

), (A2)

(A3)
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with
y, =,PTi+ L3+ TS, (HY) + HIS'\TL+ HIR | (HY)
—([,S + HY[R,, R,Z])R—‘(S'r;+ [2,:;](11;’)')
=T,(P*—SR™'S)[+ L;.

From formulas (13) and (33) and the definitions of & and %,
we find (with j— )

1
(L Lz Li“)=]_-Yi|2ifl(U:)|2i—l Y:)Ii—l)

-1
X []l (l)jﬁ"’"f:')(Ub|z.~—l Y:l]i—l):l
1
Using (A.1) and (A.3), we thus find
(L] L} =T,A'SR™'+ A% 0)+H!0 I)
+[[LA'S,(HY) + T;A'SR™'S'T}
— AR, (H{) + T,A{S\T;
+ HYR'\»(HY) + HISLT — T A'PT
=TAi= riA;IRl I(H:'l)’
— LA'S\(H) — [,A{S\Ti — H{R\(H})'
= H{S Ty '(H{(1 0)+I,SR™)
=([;AY HY) +ASR™' +T(AY(SR™'S'
= PO = A)y'(H{(I 0)+TSR™")
= (FiA;I_ riXiwith:‘l H:l)
+ A'SR™' — Ty, 'ILSR™
=(T[AY - Q:H{] H{)+T[A'- QI ]SR™!
which is exactly the same as the first part of (33).
Once again, using (A.1) and (A.3), we find for L}
L? = [_riAiSl(Hfl)’ - riA;IRII(H:'I)’
— H!R'\2(HY) — T,A'SR™'S'T,
=AY 0)S'Ti— HY0 DS'T:
+ LAPT + TA;
+DAR (HY) + DA'S (H)
+DAIS\ T+ HR(H) + H{S5T) ;!
=T,(AY(P' = SR™'SHI+ Ay
=Ty
=T;0;

which is exactly the same as the second part of (33).
The proof of formula (34) is completely analogous.

0o

APPENDIX B. CALCULATION OF THE BIAS

For the calculation of the bias ¥~ the error on the
states X; and X, ,, has to be calculated. From (49) and (50),

we have:
i i—1
oX, = H (A- KkC)S(R*I)mi+IIZmiUiIZJ'—l'
k=0

This quantity can only be calculated after the system is
identified. In the following it is thus assumed that the system
matrices A, B, C, D, Q°, §°, R* are known. (R and Q are
the submatrices of the RQ decomposition as defined in
Section 7).

« SR can be calculated as
SR™'= XgU:)[Zi-I(Ll(ﬂzi— 1 U:l|2i~l)_l
i I‘lT[Yﬁ]i—l 2% H:"Ul)lf— I]U:)[Zi—l(U()lzi—IU:)lzi—l)_l
= F:'T[Y()[i—IUIIIZi—I T H;lUn|i~|Uﬁ]zi—|](U(l|z.'—|U:)]z.'—|YI
= r;r[an, 18T H;’RI:I.I:IC]RI_:II&.I:J'

e For the calculation of the Kalman filter gains K, we
also need the initial covariance estimate:

Py=P*+ P —SR™'S".
— We have approximately
lim j—,,\"i)?; =p!+ P
jrames

and from the description of the algorithm (see Section 7)

we have ot
X!
Xl. ‘:2|~
J
Thus we have
Pi+P=3,

— SR™'S' can be easily found as
SR™'S'= SR—I(Rl:lI:SRII:J.I:J)(SR—l)I
= FHR4:4.|:3 i H;[RI:I.I:B]
X [Ria 13— Ria(H) 1D

Care should be taken when subtracting both quantities
to obtain F,. It is possible that due to the
approximations, F, becomes negative definite. If this is
the case, it should be put equal to zero.

Now the Kalman gains K, can be calculated using
formulas (22)-(23).

The errors 6X; and X, ,, can be easily calculated as

i—1

8X;= [ (A= KiO)S(R™") s 1jomiR2:3.1:3Q1:2

k=0

and
6)?:4: = kIj“ (A= KkC)S(Rq)m(H 1)+ I|2miR3:3.l13QI:3'
The least squares solution of
P (X # 6)?,-“) i 52,()?.- + 6)’@)
) Yi; Uy

will thus be a better approximation for ¥ as % is. The bias
can then be calculated as

-%=-%-2
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