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The Generalized Linear Complementarity Problem

Applied to the Complete Analysis of Resistive
Piecewise-Linear Circuits

LIEVEN VANDENBERGHE, mMeMBER, 1EEE, BART L. DE MOOR, MEMBER, [EEE,
AND JOOS VANDEWALLE, SENIOR MEMBER, 1EEE

Absiract —An important application of complementarity theory consists
in solving seis of piecewise-linear equations and hence in the analysis of
piecewise-linear resistive circuils. In this paper we show how a generalized
version of the linear complementarity problem (LCP} can be used to
analyze a broad class of piecewise-linear circuits. One can allow nonlinear
resistors that are neither voltage nor current controlled, and no restrictions

- the linear part of the circuit have to be made. As a second contribution,
we describe an algorithm for the selution of the generalized complementar-
ity problem and show how it can be applicd to yield a complete deseription
of the de solulion set as well as of driving-point and transfer characteris-
fics,

I, INTRODUCTION

T IS WELL KNOWN that the geometry of the solution

set of a piecewise-linear resistive circuit can be very
complicated. The circuit can have multiple solutions, the
solution set can be continuous or unbounded. The simple
cireuit in Fig. 1, for instance, possesses an infinite number
of solutions. All points on the lower hall of the square
resistor characteristic are acceptable operating points (Fig.
2). The solution set is even unbounded, for when the diode
is blocking, the voltage across the diode can take any
nonpositive value.

During the past two decades, the description and analy-
sis of plecewise-linear resistive circuits has been a prolific
pic in nonlinear circuits literature. Several researchers
have demonstrated how a piecewise-linear approximation
to nonlinear device characteristics can be exploited in very
efficient solution schemes. None of these methods, how-
ever, succeeds in determining the complete solution set for
problems as in Fig. 1.

Chua’s canonical piecewise-linear analysis is based on
the formulation of the circuit eguations in a canonical
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Fig. 1.
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Piecewise-linear resistive cireuit and the current-voltage charac-
teristic of the nonlinesr resistor,

form, consisting of linear terms and absolute values and on
Katzenelson’s algorithm for the solution of sets of piece-
wise lincar equations [1], [2].

Another approach makes use of the possibility of formu-
lating the network equations of a piecewise-linear circuil as
a linear complementarity problem (LCP) [6]-[8]. This can
be most easily understood by first synthesizing the piece-
wise-linear resistors with linear elements, constant sources
and ideal diodes. The diode equations constitute the “com-
plementarity” conditions in the LCP. Another way of
deriving the LCP associated with the circuit, is to refer to
the general equivalence between LCP and sets of piece-
wise-linear equations, as exposed by Eaves [9], [10]. Fol-
lowing an analogous reasoning as Eaves in [10], Chua's
canonical equation, for instance, can easily be written as
an LCP,

The most papular algarithms for the solution of an LCP
{e.g., Lemke's pivoting algarithm) as well as Katzenelson's
algorithm, are homotopy methods that generate a path in
the solution space, leading from an initial point to a
solution of the problem. In consequence, they can only
find one solution at the same time, which 15 a severe
disadvantage. Determining the complete solution set would
require trying all possible initial points.

This drawback is particularly striking in the determina-
tion of driving-peint and transfer characteristics, where a
so-called  hreairpoint hopping is performed, to trace the
curve from one initial breakpoint onwards. Unconnected
parts of the characteristic cannot be determined in this
way, unless a point 15 given on each part. A famous
example of a driving-point plot with unconnected parts is
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Fig. 2. The allowed parts of the i—p characteristics of the resistors in Fig. 1. The solutions form a continuous and
unbounded set.
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the f-V characteristic of the series connection of two
tunnel diodes, Fig. 3 shows an example where the diode
characteristics are approximated by a piecewise linear
urve. A more exotic example is borrowed from [5] and
depicted in Fig, 4. The driving-point plot consists of the
full square plus two unbounded branches,

An alternative to the above-mentioned methods would
therefore consist in an exhaustive trial of all possikilities
[12]. A refined version [13] of this method is based on a
circuit representation in a special structured form and
allows to reduce the number of linear systems to be solved.

In this paper, we present a new method for finding aill
solutions (o the LCP, and hence of a PWL resistive circuit,
without exhaustive searching. Moreover, we admit a gener-
alized form of the LCP, which allows us to include a
broader class of circuits and to analyze circuits as those
presented in the examples of this introduction. In Section
I, the circuit elements allowed in the analysis are de-
scribed, and a global closed-form expression for one-di-
mensional piecewise-linear curves is given. This description
has the advantage of being applicable to resistors that are
neither current nor voltage controlled, a case generally
excluded in piecewise-linear analysis. In the subsequent

two sections, it is shown how the circuit equations of a
piecewise linear circuit, can be formulated in 4 common
form called the generalized linear complementarity prob-
lem (GLCP), the definition of which is given in Section V.
The versatility and generality of this approach is demon-
strated in Section 6 by a pumber of examples. An algo-
rithm for the solution of the GLCP has recently been
proposed and is summarized in the Appendix.

II.  DESCRIPTION OF PIECEWISE-LINEAR CIRCULT

ELEMENTS

The circuits under study may contain the following
elements.

1) all possible linear resistive elements,

2) piecewise-linear two terminal resistors {the resistors
are not required to be either voltage or current controlled),

3) piecewise-linear controlled sources (all four types)
with one controlling variable (the characteristics mity be
multi-valued).

An extension to multiterminal nonlinear resistors and con-
trolled sources with more than one controlling variable is
possible [17], [18], but will be omitted here for the sake of
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Fig. 5. One-dimensional PWL eurve in an ambient space of dimension
m, and parametrization with a parameter 3,

clarity. The basic technique for the formulation of the
GLCP associated to a circuit, is the parametrization given
below,

We first introduce the following notation for a real
number x;

x* =max(x,0); X7 =max( - x,0).

The same notation can be used for an n-vector x when all
operations are assumed to be performed componentwise,
An equivalent definition is

x=xt— ¢~

20, x7 20

(x*)x—=0.
Given a one-dimensisonal PWL curve im R™ (Fig. 5),
characterized by a set of n+1 breakpoints gy Xy, X,

and two directions x__ and x ¢+ the parametrization can
proceed as follows,

® Assign a parameter A running from — oo to +es
(11].

® The part between A=—20 and A=1 can be ex-
pressed as

X=xgt X AT H{x - x, 00

® The direction of the curve between Xy and x,, is
%y =% From A=1 onwards the direction of the
curve has to be corrected. This can be done by

M 11, MOVEMBER TUED
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Fig. 4. PWL resistive circuit, the individval resistor characteristics, and the compasite driving-poing plot,

adding a term (x, —Ix+x ) (A-D)*
X=X+ X AT (wp— x0) AT
+x,= 20+ x,) (A =1)".

This formula is now valid between — ogand A =2
® This can be continued to describe the complete curve:

X=Xg+x AT+ (x,—xg)- A"

+ 2 (X =2 tw ) (A=k +1)"

k=2
(X %, + %) (A=) (1)
® We define auxiliary variables
A=X—i
AF =A7=AT=A"— (2)
for i=1,-- n. Substituting the variables Ao Xy

in (1) and adding the compatibility conditions (2)
delivers the complete PWL description:

E=xgtx_ AT H{x —xg ) At

M
+ E (-rk —2x,_, +Ik-zj'}'~;- 1

o=
+|':x+w—x" e I B B (3)
A =Ar =dt—d-—j  j=l.uup (3.a)
ANATALAT 20, j=loen (3b)

ATAT =0, AT:AT =0, S=lwwnm,  (3e)

In the sequel a more compact matrix equation will be
used:
X=X+ XA+ XA
E-(At= A =g
AT=0; AV =D
(A7) A*=0D (4)
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Fig. 6. Step-function of Example 1. The function is multi-valued in the
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Fig. 7. PWL-curve in Example 3.
where
PR [ TR
A=A A e A
and
= [-'C_m 0 D'IERmxt_n:-l- 1)
Xt = lx]_xu -’:+w—xn+xn~1] ER"TX':”"'”'
g ews
_E= 'U "']. U E.R;|x{r1+'|'?
1 0 0 -1
E-—“['l 2 J'i]r

Example 1: The Step-Function (Fig. 6)
The application of the formula above (3) yields

PREE I
4{}—11_3;{—{]1)

or
10 01 =1 e [0Tasa] Mon
M‘[—ah[ u] . +[z] A *[—2] A
A AT ASAD 30
AF —Ar =A*—A"—1
AMAT AL AT =0,

Example 2: The Edges of the Square (Fig. T)
This is an example of a curve which is not controlled by

.I',I\i"
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Fig. & All nonlinear resistors are extracted from the cirenit. The re-
maining N-port is linear.

ome of the variables. It can be parametrized by assigning a
coordinate A as in Fig, 3:

G- i3

o[ 23]

A =Af =AY =k"—1
P G Ly (R o)
AP A5 =At =X =3
N Bt L
AT AT=A-AT =A3 A7 =ATAT =Ai-Ag =0

AV AT =0, A0, A7 =0, f=1, 4.

DETERMINATION OF THE OPERATING POINTS OF
PWL CIrcuirs

The parametrization just derived can be used to cast the
circuit equations of a PWL resistive circuit in the standard
form of a generalized lincar complementarity problem
(GLCP), as will now be shown. In the next section we will
demonstrate that the extension to driving-point analysis
and transfer characteristics only requires minor modifica-
tions.

We follow the classical procedure of extracting all non-
linear elements out of the circuit as shown in Fig. 8. The
nonlinear elements will be assumed to be uncoupled resis-
tars, the changes to include coupling being obvious. Let N
be the number of nonlinear resistors. The resulting N-port
contains only lnear resistive elements and independent
sources, and can always be described by its constraint
matnx description:

I11.

(5)

where € is a matrix with 2 columns and an arbitrary
number of rows. Contrary to most existing methods we are
not going to split the ports of the circuit in so-called
voltage- and current-ports and to require that a particular
hybrid representation of the N-port exists. Nor do we
assume the resistors to be either voltage- or current-con-
trolled. The GLCP to be solved can easily be derived by

C wy iy vy -0 iy uN]'=b
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taking the PWL description of each resistor (k =1, -, N'); nonlinear resistors, we extract the input branch. The con-
; ; straint matrix description of the remaining (N + 1)-port is
Lot | = [l ]+ x5 + 3z
& k0
C-[i 2 P - M O iv vyl'=b (8
EyAL = Ephf =, ™R G e el S )
Ar AL =0 In order to formulate this as a GLCP we write {ng and vy,
(A)"-A7 =0 (6)
and substituting in (5):
[ |
K 0 g A . f O | Aot rfm
¢ x5 i ol o Xt 0 d 1 T
2 A . ) - |+ . ) : =0 — | Y
r £ AT ; At .
0 0 X A 0 0 X Ay E
Then
Uy J
£ 0 0 . E 0 ] e e
0 E, 0| 0 E, 0 3 €a
[] D I ” a'ﬂ-L ho ﬂ' D _.E:;", .ﬂ‘l N fll.l
AT =0, A7 =0, fori=1,--. N
(AFYAT =0,  fori=1..:, N, (7)

Solving this GLCP will yield the complete solution set.

as the sum of two complementa variables:
IV. DrIviNG-POINT AND TRANSFER P il

T

CHARACTERISTICS I =t — iy
& i

By = — iy

g BRD R oo
e P b Oy = 0

The analysis given in the previous section can easily be
extended to the determination of the driving-point (DP)
lot (i versus op-plot) of a one port. To ether with all R ~
plot (iny POy P 8 Ie i T o =10,

Together with the PWL description of the nonlinear resistors (6) this yields

I 1] 1
F 7 0
-1 0 0 O i1 1 0 0 0 4, ;
% 0 0 = 0 1 0 0 + uw
: A v o 00 AT ] P _m
Lo oo o ||M [*Clo o o o |[|AT |=6-c i
. I I = : : : in
-l m— Iy ’ "Jxlﬁ
| Bwo
£ 0 0 A= £ 0 0 i .
0 E 0 ,l [V I ) 0 L e
| : 5 : : 1'1!.-_ -
0 ] Eﬁ J"L,-.- 0 0 EN - i
AF =0, A =0, fori=1, +, N
uf_N"iifi‘?rUrstﬁ{ .;?-ﬂ
{"&:)r'!Ji,T:D, fori=1,--- N

L N £ S
UIN’UIN } Lim ;IN_U‘
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It is important to note that this GLCP will in peneral be
rectangular (cf. the remark in Section V),

The extension to the computation of transfer character-
istics is straightforward, For instance, in order to trace the
Yoyt —Upe-Characteristic of a circuit the input and the
output branch are extracted together with all nonlinear
resistors and apply the same reasoning to the resulting
(& +2) port.

V. THE GENERALIZED LINEAR COMPLEMENTARITY
PropLeMm

The term GLCP for the problems encountered above is
justified by a number of differences with the classical
formulation,

The Linear Complementarity Problem: Given N e Rno
and g € R”, find all solutions w € R” and z € R" to

Wt Nz=g
walzz=0
whz=0

(10)
where the shorthand notation x = 0 for vector inequalities
holds componentwise, This problem is well known in
mathematical programming as a unifying description of a
large class of problems, including linear and quadratic
programming [14], fixed-point problems and sets of piece-
wise-linear equations [9], [10], bimatrix equilibrium points
[15] and variational inequalities [16]. A generalization to
this formulation has been given in [17]. For vur present
purposes, the following form will be sufficient.

The Generalized Linear Complementarity  Problem
fGLCP)

Given M Rm¥" N = R g R", find all we R"
zE R" and € R such that

Mw+Nz=g-w
w,z =0, az{
whir=10, (11)

There are three distinct differences between this formula-
tion and (107:

* GLCP (11) allows rectangular LCPs (m <) In the
previous section it is shown how these oceur in the deter-
mination of driving-point and transfer characteristics.

* Even if m=pn, we do not cxclude cascs: where no
reordering of the variables w and z provides an invertible
matrix M,

® The nonnegative scalar a has been added to allow
for solutions at infinity, i.e., directions where the solution
set is unbounded. The normalized solution set is the inter-
section of the solution set of (11) and the hyperplane a=1,

VL. THE SoLuTION SET OF LINEAR SYSTEMS OF
CONSTRAINED EQUALITIES AND OF THE GLCP

The algorithm we propose for the solution of (11} is
discussed in Appendix A. In this section the geometric and
algebraic properties of the solution set are described. These
properties are important for the interpretation of the ob-
tained solution set,

L3a7

Consider first the set of linear equations with nonnega-
tivity constraints:

A-x =1, with given A& gmxn

x =1, (12)

Defimition I: The solution set % w={xz04x=0)isa
polyhedral cone (the intersection of the first orthant in R
and the subspace ker A).

£y can be defined completely by all positive lnear eombi-
nations of the extreme rays {v!, %, -+, 67} of the polyhe-
dral come.

Definition 2: A vector o' € R™ is an extreme ray of 2,
il there exists a hyperplane V= {xER"A"x =01 such
that ¥ M, = (xjx=Av!, A= 0.

Theorem 1: A necessary and sufficient condition for a
solution v €.%, to be an extreme ray is that no other
solutions possess zeros at the same positions as ¢, In other
words: call ., = (k|v, =0}, the set of indexes & where
v, =0, then v is an extreme ray iff there does not exist o
solution w with £ C &

Corollary 1: If the rows of A are independent, then a
necessary condition for extremity is that the number of
Zeros in o is greater than or equal to n —m — 1 HE =n—
m =1,

Definition 3: Two extreme rays v and w are adjacent if
there exists a supporting hyperplane ¥ = {x|lhx=10, h":
=0, Vz € 7, such that V' ., = [ x= A+ dow, AL A,
=0}. The set of all convex combinations of two adjacent
rays is called a two-dimensional face of the cone.

Theorem 2: A necessary and sufficient condition for two
extreme solutions v and w to be adjacent is that there exist
no other extreme solutions with zeros at the same positions
as the common zeros of ¢ and w. Call £ oo=lklp,=0
and wy =0}, the set of indexes of the common zeros of w
and v, then v and w are adjacent iff there exist no other
extreme solutions z with £, C £,

[

Corollary 2: 1f the rows of A4 are linearly independent,
then a necessary condition for extreme solutions to be
adjacent is that the number of common zeros in v and w is
greater than or equal to 5 —m —2; #HE zn—m—2

We are now ready to return to the GLCP (11), which
will be treated as a set of linear equations
W
ZJEU, w2l z20;a20 (13)

i 4

[M N - f;][

with extra constraints (w'z=0) The solution set of
(13} is then normalized by taking the intersection
with the hyperplane a=1. This intersection is a Zener-
alized polytope determined by the set of vertices o =
[(w)' (') «af], with &'=1 for a finite vertex or with
a' =0 for a vertex at infinity, where the polytope becomes
unbounded,
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Theorem 3: The solution set of the GLCP (11) consists
of all nonnegative combinations of vertices determined by
(13} with the following restrictions;

® all vertices that are not complementary ({w')"-z' #
0y should be discarded,

= only convex combinations of cross-complementary
vertices are allowed (vertices o' and o* with (w)"
2t = (whyh 7l =),

VII.

The first two examples deal with the determination of
operaling points, and in Examples 5 and 6 driving-point
plots are traced.

Example 3: We compute the solutions to the circuit in
Fig. 9. The constraint matrix description is simply:

[1 1”;]=ﬂ

and the resistor description:

AR ) S o O
Af —AT mAtRm =]

ExamMPLES

(14)

Substituting this in (14) vields the GLCP:

R Y ] [ BT

o
-
A
1 P T QI & | i
[—1 ? 1 -1 —1j[A7 =0 (16)
Af
i

."f,.-‘-‘kf,l‘,;'ul_,q';.ﬂ
ATATHA A =0,

This GLCP is solved in Appendix A as an example. The
normalized solution set and the corresponding points on
the i-v characteristic of %, are given in Table 1.

Example 4: The i-¢ charactenstic for the resistor 2 in
Fig. 1 has already been given in Section IV:

e =[] 2w+ [ 22

+[‘§]-A;+[§J-h;—-[g]-hi

Af=A7 =kt=3-=1

R R Gl

PG s s

A =A=' —A -4
ATRT=NAT =M A7 = AT A7 =AT-AD =0

LEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VoL, 36, Mo, 11, NOVEMBEL 1950

Fig, 9. Circuit studied in Example 3,

TABLE I
SoLuTion SET oF Examee 3 (858 Fig, )

[

z

A=
i
-ki
Al
a

E
.-.i-.. p_-i|= =g

=== Ol e

[
-

L =

The description of the diode is trivial:

"u. — Ap
Uy —Ap

AL, Az=20
AL AG =0,
Substituting these descriptions in the network equétiun:
ir
&
1 o1 o] ®l=0
In
U
leads to the GLCP:
S
R e S TR v
s | 0 0 0 0| As
I G - T [] 'U ﬂ :’L |
I 0 ¢ -1 0 o™
1L 0 0 0 =1 0l]rs
L AD
- 2" ]
0 0 0 0 0 o]lA 1
=1 1 0 0 0 0ffx; 1
+ -1 0 1 0 0 ¢ v- =2
-1 0 0 1 0 0 E 3
-1 0 0 0 1 o0]}|l?rs 4
B
AVRTE0,  F=leid

AVAT AL AR 20
ATAT=ADAT =ATAT = AL =AL-A
= A5 Ap =10,
The solution of this GLCP is piven in Table II. The
mterpretation of this solution set is more complex than in
the previous example because of the appearance of cross-

complementary solutions (cf. Section VI). The significance
of the finite vertices 1-5 is most easily understood. These

i
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Fig. 10, The complete solution set for the cireuit in Fig. 1.

solutions are represented in the solution space in Fig, 10.
Solution 1 corresponds to the point A ={ of #,, solution 2
to the point A =0.5. Moreover these two solutions are
cross-complementary and all convex combinations of these
are valid solutions (the piece from 1 to 2 on the f—u
characteristics). The next solution is 3 (A =2.5), followed
¥4 (A=3)and 5(A=4). Checking cross-complementar-
ity reveals that all combinations of 3 and 4, and of 4 and 5
belong to the solution set. Vertex 6 lies at infinity (pointing
in the direction [i;, v,]=[0 - 1], ef. Fig. 10) and is
cross-complementary with solutions 2 and 3. The physical
meéaning is that, when the diode is blocking, the voltage
over it is an arbitrary negative number (a point of the form
ip vu]l=[0 0]+g[0 =1}, with #=0). The meaning
of vertices 7 and 8 is less essential: 7, combined with the
cross-complementary solution 1 yields any point with A e
(~20,0] and 8, together with 5, any point with A e
[0, +wo). Physically, these solutions coincide with I,
resp. 5.

Example 5: Seriex Connection of Two Tunnel Diodes: We
trace the i—v characteristic of the one-port made up by a
series connection of the two (PWL) tunneldiodes in Fig, 3.
The PWL description of the resistors reads

[ =Bl (o[22 w25
@, Al —Ar =A*—A-—1
ANAT AL AT 20
ATATHN AT =0

e W

P =pt - 1
BT i e S0
P s =0,

9,
Substituting in the constraint matrix description

0 1 ¢ =1 | f
1 0 =1 0 ] 0 i

10 0 0o -1 ¢

1389
TABLE 11
SOLUTION SET 0F ExaMprr 4 (SEE Fii. 1)
[ [z 3 456 7.9
WIo s 25 3 ¢ 00 1
Ao 15 2 o3 p Dot
Alr o ws 1oz o0 op 1
Moo o v o1 onog g
Ao o 00 o o0 g
M5 0 o 1 1 0 b @
S N R I R T
Al s 0 00 B o1 op
Al LE R o0 o0 o0 o1 g
Jy |3 25 05 0 oo g 1 o
Ay |4 45 15 1 omop o1 p
Ap |0 0 B o001 p 0|
e ll v 1 T 01 0w g
TABLE 111
SOLUTION SET OF EXAMPLE § (SEE Fic, 3)
I_ [1 Ed 4 & 8 .F W LT
L T R TR R S
o [t o ow L Y R | Y T
ik 1 op N LU T L
Al oz i R 04 1 a3z
L L O R S 1 S TR N oo n n
L S b O O L 05
it o I 05 4 7 0@ 3 3 % 3
ot | LS LIE 1210 L4E RE T dev 4
AMoa 4 0 | 45 245 029 04 0 4 ¥
Al fu [ L i LE nar o0 o9 o0 g
TR [ 1] O 1 wwoq o 0.5
Lo [ a n 1] [ T 1 4 ]
o |0 i1 ] 1 L 8 1 1 1 1
i [0a7 0 3 bat 4 @ an 3 3z 3
bl 0 EE 385 12 148 5E g 467 4
yields the GLCP
——
I
=3 0 3 0 0 0],
0 -1 1 0 2 0||la-
L0 00 4 0y
¢ -1 1 0 0 =
0 0 0 0 -1 1J|"
LH1
I'E._|. 8
1 0 25 =35 U] L T 3
0 1 -2 0 -2 0ffar 3
+11 0 0 0 2 -3 [=|4
o 0 1 = ] 0 ¥ 1
0 0 0 R R B 1
L

EL AT AT AL W a2 0
H...J II.-|1 -P'|+,Jlj_|-rf-’|-+:#f ;ﬂ
OO AT AT AT A Tt b =0,

The GLCP algorithm produces 11 solutions {see Tabie 111,
Verilying cross-complementarity conditions allows to trace
the complete DP-plot which consists of two pieces: 1—-2—
3-4-5-6-7 and 8- 9— 10— 118 (Fig, 3),

Example 6: ‘The resistors in Fig, 4 are described as

ol el Lob+ 2 2]
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TABLE TV
SOLUTION SET OF EXAMPLE 6 (SEE Fic, 4)
I la th % 3 4 5a 5 6 F H § I 11 12 13|
N I s O T T " il
wt 1 i [ a o Ll o0 L ] 1 i} 0 [H]
O T S N S T S SN S S S
E i T R R R R TR
T I R R S R T S S T Y S
T T T T N O vt o o |
e I T R e e B e m 1
I R | o Lo L 14 1 o L I
E R I I R S A R - EE S T S
Al | (LS | ] o a5 0 1 § L WLs 4 i} 1 1
P S - S S R S S [ T |
g 1 U WD B oeamel eElt & o
adl 1 L1 1 1 7 i & | & ¢ 0
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with p* — ™ — uwi + pT =1. The network equations are

[1 0 -1 0 1 GJ i
0 1 0 0 0 1|5 :
{.1
rJ2
We combine these equations into the GLCP-
[ ]
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Lt |
s
-1 0 0 0 -1 0]|¥ -1
0 =1 00 o offA|_| 1
0 0 -1 1 g g||A 1
0 0 00 -1 1)|p 1
By

together with the appropriate nonnegativity and comple-
mentarity conditions (see Table IV). These solutions are
represented in a i-v plane in Fig, 4. Solutions 1a and 1Ib
are coinciding, as are solutions Sa and 5h. The cross-com-
plementarity rule indicates that the fuil square belongs to
the solution set. Solutions 10 and 11 are directions, solu-
tions 12 and 13 are of mere mathematical significance.

VIIL

The method presented in this paper gives a complete
description of a PWL resistive circuit: the result is a list of
extreme points of the solution set along with a rule to
decide whether two or more extreme points should be
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connected. The most prominent advantages of this method
are as follows:

A complete description of the solution set
even when a continuum of solutions OQUCULE, or
solution set is unbounded in some direction,

® No restrictions are imposed on the linear part of the
circuit, or on the existence of any hybrid representation.

® We allow nonlinear resistors which are neither volt-
age nor current controfled.

1% piven,
when the

As far as is known to the authors, no algorithm has been
presented with the same versatility and generality. A pro-
totype program for this algorithm has heen implemented.
A more practical software implementation js currently
being investigated along with its use in circuit simulation
for finding all dc operating points. The results should also
be useful in studying geometric properties of nonlinear
resistive networks [5], dynamics, chaos, and neural net-
works.
APPENDIX A
THE GLCP AvGoriTim

In 1953 Motzkin et af. [19] proposed an
the solution of sets of linear mequalities that can easily be
adapted for the solution of linear equalities and hence for
the GLCP [20], [17]. We first describe the inductive algo-
rithm for the solution of (12},

Call af=the ith row of A, then we denote with St
R™% the matrix formed by the g, extreme rays of the
solution set of &

algorithm for

aix=10, i=1,--

xz0 (17,

§%=1, the initial sct of extreme rays generates the
first orthant in R”,
= 'The iteration describes how §* is

when a new equality

updated into §%*1,

#y, x=1 (18)

is added. Put (s**')' = af _,-5* a1 g, matrix. For each
element in (s**1) three possibilities exist-

Case 1: s}"'=0, indicating that St (jth eolumn in
5%) lies in the hyperplane af, x = 0.
Cases 2 and 3: s§*1> 0 or s*1 < (), indieating that St
lies in either of the lwo half-spaces defined by af.,x=0.
The construction of the extreme rays S**1 can then
proceed as follows:

Case I if an extreme ray in $* lies in
(18}, it is also an extreme ray of §%+1,

the hyperplane
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Cases 2 and 3: any two adjacent extreme rays, lying
on either side of hyperplane (18), define an extreme face,
intersecting the hyperplane. This intersection is an extreme
ray of 4L A 52 U< 0 and o' > 0 and §* and S are
adjacent, then |sf*1).5% 4 | "U-8f € 8% The adja-
cency lests are described in Theorem 7 and Corollary 2.

The GLCP algorithm is now obvious from a combination
of the inductive algorithm for the solution of (12}, and
Theorem 3 which allows to eliminate at each stage those
vertices of §* that do not satisly the complementarity
conditions. The matrix S* then contains at each stage the
solution of the rectangular k x GLCP, formed by the
first k rows of (13).

Example:

We apply the GLCP-algorithm to the GLCP in Exam-

ple 3:
=7 ]
=]

* S%=1, (Table V(a)).

* 8! is constituted by eolumn 2 of 5" and by the
combinations of columns 1 with 4, 1 with 5,3 with 4 and 3
with 5 {Table V(b)).

® The following combinations of columns in §' are
forbidden: 1 with 2, 4 with 2. and 4 with 3 (not cross-com-
plementary). Combination of 1 with 3, 1 with 5 and 4 with
5 yields §% (Table V{c)).

I O -
A"[—J - s T |
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