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Abstract— Given a two-point finite valued process, we con-  This problem is not to be confused with the problem where
sider the problem of finding an underlying two-point state we have two random variables™ andy* with probability
proces;_sgch tha_1t the output at a certain time instant is a measureP(y~,y*), which take values frony~ and Y+
probabilistic function of the state at the same time instant This . ) .
problem is related to the hidden Markov realization problem rgspectlvely and Wh.er.e we want to find a.random.varlable
for finite valued processes. It is shown that the problem is With values from a finite seX such thaty~ is conditionally

equivalent to the algebraic problem of decomposing a square independent ofj™ givenz, i.e.
nonnegative matrix P as VAV with A and V nonnegative. N B N
Both multiplicative update formulas and a heuristic approach, Py ,y"|z) = Py~ |z)P(y" |x).

are proposed for the solution of this decomposition problem . . . . .
A simulation example shows the effectiveness of the propase This problem, its solution based on the Nonnegative Matrix
methods. Factorization and its link with the hidden Markov realipati

problem is discussed in [2].
. INTRODUCTION The rest of the paper is organized as follows. In Section
Consider a finite valued stochastic procgstefined on the |1, we introduce the notations for hidden Markov models, in
time axisN that admits a hidden Markov representation. Thisection 1, we formulate the problem of finding underlying
means that there exists an underlying Markov chaisuch state variables:(1) andz(2) for the procesg/(1),y(2) and
that the outputy(t) is a probabilistic function of the state translate the problem into the algebraic problem of finding
x(t). Therealization problem for hidden Markov models [6] matricesV” and A such that a given square mattiX equals
has not been completely solved yet. Evep i§ knownto be P =V AV ". In Section IV, we give iterative formulas and in
representable by a hidden Markov model, no algorithm h&Section V a heuristic method for the solution of the algebrai
yet been devised to produce the underlying Markov chain problem. In Section VI, we perform an experiment showing
and the probabilistic function of the chain that producess ththe quality of the approach.
processy. The following notation is used throughout the paper. If
In this paper we consider a problem which is related to is a matrix, thenX;. ;; denotes the submatrix ok
the hidden Markov realization problem. Given two randonformed by thei-th to the k-th row and by thej-th to the
variablesy~ andy™ which both take values from the finite /-th column of X. With X;; we mean the, j-th element of
setY with probability measure’(y—, y*), find two random X, and with X. ; and X; ., we mean thej-th column and
variablesz~ and 2™ both with values from a finite seX,  4-th row respectively.

with |X] as small as possible, such that
1. HIDDEN MARKOV MODELS

Py~ y"la™,2") = P(y~ |l=7)P(y*|a"), Consider a stochastic procegslefined on the time axi§
and P(y*|zt) = P(y~|a7). taking values from a_ﬁnite séf, called the output alphabet,
This problem is related to the realization problem for finite¥ith [Y| the cardinality ofY. Denote byY* the set of all
valued processes of length 2. Indeed, et y(1),y(2) be finite strings with symbols from the séf (including the
a two-point process which is the output of a hidden Marko®MPty string) and by = y1ys ...y @ sequence frori™,
model, and takg~ = y(1) andy™ = y(2) then the random Where|y| denotes the length of. Let 7 : Y* — [0, 1] be
variablesz~ andz* can be interpreted as underlying stateString probabilities, defined a&(y) := P(y(1) = y1,y(2) =

variablesz(1) andz(2) respectively. The random variablesy2: - - -, ¥([y]) = y}y)). Of course, the string probabilities
2=, z+,y~ andy* are completely described by the measure8atisty P(¢) = 1 and 3>, oy P(yy) = P(y)*. _

P(z7), P(z*|z~) and P(y~|z~) = P(y*|z*), which A Mealy hidden Markov model (HMM) is defined as
correspond precisely to the state distribution at timeainst (X, Y, I, 7(1)), where

1, the probability of going from a given state to another state « X with [X| < oo is the state alphabet, arid is the
and the probability of observing a certain output in a given  output alphabet;

state. This problem is only a first step of a general problem « 7(1) is a row vector inR‘f“ with 7(1)e = 1, where
of finding a state process for general processes instead of ¢ .= [ 11 ... 1 }T;

just two-point processes. . 11 is a mapping fromY to R with the matrix
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One can think of an underlying state processwvhich a certain time instant is a probabilistic function of theteta
generates the output procegsThe process: takes values at the same time instant.

from the finite setX with cardinality |X|. Without loss of
generality, we tak& — {1.2......|X|}. The elementI(y):, Ill. STATE REPRESENTATION OF TWO-POINT

is then equal toP(z(t + 1) = j,y(t) = y|z(t) = 7), the . . EROCESSES . | |
probability of going from staté to state;j while producing In th'_S_ section, we lntrod_uce a matrix which contains
the output symbay. The elementr(1); is equal toP(z(1) = probabilities of length-2-strings. In case the string farob

i), the initial distribution of the underlying state process. bilities come from an underlying hidden Markov model,
In this paper, we consider thiloore hidden Markov there exist a relation between the matfxand the system
model, which is a more structured case of the Mealy hiddeRarameters of the underlying model. This relation allows us
Markov model. In a Moore HMM, the generation of the next© translate the problem of finding a two-point state process
state and the generation of the output are independent. HBF @ two-point output process, into a matrix problem.
a Moore HMM it holds that there exists a matiik; and a ~ SUPpose we have an orderifig,, k = 1,2,...,[Y[) of

mappings from Y to R'* such that for eacly € Y it holds ~the output symbols of the séf. Let P be the |Y| x |Y|
that matrix with k, [-th elementP(y .y, ), wherey .y, denotes the

TI(y) = diag(53(y))Ix, concatenation of the symbols, andy;,. If the underlying
process is stationary, it holds that the row sunPois equal

where diag(-) is the diagonal matrix with the elements oftg its column sum, i.ePe = PTe.
the vector- on its diagonal. The elemeriily);; is then We now derive the relation between the system matrices
equal to P(z(t + 1) = jlz(t) = i), the probability of and the matrixP for the case wheré contains the string
going from statei to statej. The element3(y); is equal probabilities of an underlying Moore hidden Markov model
to P(y(t) = yl=(t) = i), the probability of observing the (X Y,IIx, B, n(1)). One can easily see that
symboly given that the present state is equal t®Guppose

we have an orderindy;,k = 1,2,...,|Y]|) of the output PO =y 9@ =y

. . " = P = N = x =1, x = j)P(x =i, T =3
symbols of the sefY, then the matrixB is defined as 2 POW =y v@ =yile() =2 = DPEO) =5 2(2) =)
B=1]pByi) ... BlYw) |- AMoore HVM is described = PG =yile() = DPWE) =yle() = DP@) =i, 0(2) = J)

(2%

by (X,Y,IIx, 3,7(1)) or (X,Y,IIx, B, w(1)).
In the (Moore) realization problem, we are given the _
output string probabilitiesP and the problem is to find from which we conclude that

= (B' diag(w(1)Tx B) g 1»

a Moore HMM that realizes{P,_Which means that for p_pT diag(r(1))TTx B.
al y = yiy2...yy € Y*, it holds that P(y) = - _
m(1) diag(8(y1))Ix diag(B(y2))x . . . diag(5(yyy)) Hxe. The problem of finding an underlying state process for a

A Moore realization (X,Y,IIyx,3,7(1)) of P is two point output process, is now equivalent to the problem
called minimal if for any other Moore realization of finding for a given nonnegativé® € RIYI*I¥ with =
(X', Y, IIy, 3,7 (1)) of P, it holds that|X| < |X/|. e Pe = 1, nonnegative matrice® € RIXI*IYl andIIx e

If it holds for all y € Y* that Y, ., P(yy) = P(y) then R*I* and a nonnegative vectar(1) € RI*, with [X| as
the process is calledtationary?. Because of the fact that small as possible, such that

Zy_eY P(yy) = P(y) is due to consistency, we have for P = BT diag(n(1)xB,
stationary processes that

Be = e,
Z Plyy) = Z Pyy). IIxe = e,
yeyY yeyY W(l)e _

A hidden Markov model which realizes a stationary pro- ) i o
cess, has the property that the state distribution is equal a_In fact It suffices t(‘)YfXO‘QTe the probleprg‘]X(‘)Bz‘fmd_mg nonneg-
every time instantr(1) = 7(2) = ... = (t) = = wherey ~atve matricesi” € R andA € R » with [X] as
equals the equilibrium state distribution, i.e. small as possible, such that

_ T
Ay = 7. P=VAV".

In the next section, we consider a problem which is The matrices3 andlIlx and the vectorr(1) can then be

e o calculated as
analogous to the minimal Moore realization problem for two-

point processes (i.e. the realization problem where tha dat B = (diag(V'e) VT,

are the string propa}pilities of stripgs up to length 2): give A" = diag(VTe)Adiag(V e),
the output probabilities of all strings of length 2, find an My — (diag(A'e))' A’
underlying state process of length 2, such that the output at £ 1agia e ’

(1) = (Ae)’.
ZIndeed 3=, v P(yy) is equal toP(y(2) = y1,y(3) = y2,..., y(|ly|+ ; ; ; ;
1) = vy, ayned‘fby imposing this to be equal B(y(1) = y1,4(2) = The formulas imply that ify = y(1),y(2) is stationary,
y2,-- - ylly]) = yjy|) for all y € Y*, stationarity is imposed. i.e. P(y(1)) = P(y(2)) or Pe = PTe, thenz = x(1), 2(2)



is also stationary, i.exr(1) = 7(2) = m, with #llx = 7. In the rest of this section, we will analogously derive
Indeed, fromPe = PTe or BT A'Be = BT(A")T Be, we multiplicative update formulas for the factorization plein
find that A’e = (A")"e if B has full row rank, i.e. if the P ~ VAVT. As in [4], the dimension of the matrixi
decomposition is minimal. Now we can calculate is chosen by the user. We derive only formulas with the
Kullback-Leibler divergence as cost function, as thisatise

_ T/ -1
(Dl = (A'e) (diag(A'e)) " A" is most appropriate for the approximation of probability

= e A =(Ae’ measures. However, it is also possible to derive multipiliea

= 7(1). update formulas for the factorization problem in the Eu-

clidian distance. We will publish these formulas elsewhere
IV. NONNEGATIVE MATRIX FACTORIZATION Checking whether there exists an interpretation of the tgpda

In the previous section, we reduced the problem of finding!es as an alternating minimization procedure, analogous
an underlying state process for two-point processes to thél, belongs to our future research plans.
problem of finding aminimal factorizatonP = VAVT, Now we consider the problem
where minimal means that the size 4fis as small as pos-  Problem 1. Minimize g(A,V) = D(P||VAVT) for a
sible. In this section, we give multiplicative update folami given size of A with respect toA and V, subject to the
to solve this problem approximately. constraintsA, V' > 0.

This problem is analogous to the standard Nonnegative The derivatives of the cost function with respect to the
Matrix Factorization problem which was introduced in [1]elementsV;; and 4;; of the matricesA and V' can be
and which has a lot of applications in data mining. In thealculated as
standard nonnegative matrix factorization problem, one is
interested in decomposing a given matrfix € R *™=2

into a productM = VH. The smallest inner dimension 0Jg P,

for which such a factorization exists is called thesitive  9A;; Av) = - ZXV:VWV’” (VAVT)
rank (pos—rank) of the matrix M. One can show that "
0 < rank(M) < pos—rank(M) < min(mq,ms). There +ZZVMVU%
exist matricesV/ for which only trivial decompositions exist, 5 weov
M = IM and M = MI. In [5] such matrices are called 5 9 (A, V) = ZZVVAAM + Voa Ay
prime. Vii 5
We call the minimal dimension ofi for which an exact P P
decompositionP? = VAV T exists, theMarkov rank of the - z/\: ; VV/\AMm + VV/\A/\im'

matrix P. It is intuitively clear that

A simple rule for updatingA and V' which reduces the

0< k(P) < pos—rank(P . . .
< rank(P) < pos—rank(P) Kullback-Leibler distance can be written as

< markov—rank(P) < min(my, ma).

The exact nonnegative matrix factorization problem is very Ay = Ay — g %(A, V)
hard in general. There is not even a method to determine I
the minimal inner dimension (i.e. the positive rank /of) Viie — Vii— ykiﬁ(A, V)
for which a positive factorization exists. Therefore, Lewl a Wi

Sueng proposed to chose an inner dimension and then solve .
the problem approximately/ ~ V H by an optimization If all i; andvy; are equal to the same small positive
based approach [4]. As cost function to quantify the qualit{?umber’ this is equivalent to conventional gradient deiscen

I - . long as this number is sufficiently small, the update re-
of approximations, they take either the squared Euclide ; .
distaFI)'lpce Y g ucesD(P||V AV T). The problem with the gradient descent

method is that the choice of the step size is difficult. If the
step size is too small, we have slow convergence. On the
other hand, if the step size is too large, the matrices can
or the Kullback-Leibler divergence (which is a measure obecome negative or it is possible that the squared distance
the extent to whichB approximatesd) does not decrease.

A Analogous to the method proposed in [4], we propose to
D(A||B) = (Ai; log B—J — Aij + Bij). take the steps sizes equal to

i
ij K

|A=B|> = (Ai; — By)?

ij

For both cost functions, they derive multiplicative update

rules which monotonically improve the quality of the ap- T L’
proximation. In [3], these update rules are interpreted as ' ZN >0 ViiVui
alternating minimization procedures and stability projesr P Vii

are investigated. e Yo, ViaAin + ViaAxi’




which gives In casey = y(1),y(2) is stationary, thenP(y(1) =

S S VLV P, Y y(2) =y,) is approximated as’(y(1) = y;)P(y(2) =
i Ay B VAV D y:), which is equal to the product of the marginal distribu-
N N Do 2o ViV, ’ tions.
Py . P,
vy a2 VAo H VoA v AHEURISTIC APPROACH TO NONNEGATIVE
. " 2on 22y Viadin + Via Ay ' MATRIX FACTORIZATION

By this choice of step size which is dependent of the In this section we propose a heuristic approach for the
optimization variables, we do not have a gradient descenalculation of the decompositioR = BT diag(w(1))Ilx B
algorithm anymore, but instead we have update formulagithout making use of the iterative update formulas. In this
where each step consists of multiplication with a factor. l@pproach we start with a full Markov rank decomposition i.e.
particular, it is straightforward to notice that this facis a decomposition where the size f is maximal and then
equal to unity if P = VAV T, so perfect reconstruction is merge rows and columns ofx andB in an appropriate way
a fixed point of the algorithm. Notice also that this factomuntil the decomposition has the required inner dimension.
is always nonnegative, so if one takes nonnegative initial The method starts with the trivial full Markov rank de-
values forA andV, then the updated values will always becomposition of the matrix” i.e.
nonnegative. In addition, it can be proven that these iterat

- — (BIYNT & YT Yl
update formulas converge to a local minimum of the cost P=(B") diag(n(1)")IL B,

function. The proof will be presented elsewhere. where

It is interesting to further investigate the factorization
problem in the Kullback-Leibler divergence with Markov B = 1,
rank equal to 1. In that case, we look for a vectoand ﬁ(l)\Y\ = Pe,

a scalara such thatP ~ wvav'. This is equivalent with ) . 1
solvingmin, , D(P|jvav’) or ' = (diag(Pe))™ P,
, T T whereI denotes the unit matrix.
i _ZPN” log([vav ]H”)+Z[“a” Ly We now propose a heuristic procedure to find an ap-
m m proximate decomposition of Markov rank — 1, given an
The solution can be found by setting the derivatives equal {@pproximate) decomposition of Markov rank equahtdgat

0: the beginning of the algorithm, the approximation is exact
OD(P|lvav ™) B P, + P ) Ly andn = |Y]),
ur - _Z - + Z‘”’V = « Supposer(1)? is the smallest and-(1)? is the sec-
T v Y ond smallest element of the vecte(1)™. The vector
D(Pl|lvav’) _ Z P + Z 0,0, = 0. 7(1)"~! is then calculated by replacing theh element
da w ¢ o of 7(1)" by =(1)} + m(1)} and omitting the j-th
. element.
Because) ,, Puy =1, we find that « The matrixIT} ! can be calculated from the matfik;
a = QCw) >y .
> 1) replacing the-th column ofII§ by the sum of the
>, (Pew + Pui) i-th and thej-th column, and omitting theg-th
k= 20> v, column. Call the resulting matri/.
_ v 2) replacing the-th row of M by 71’2(1)1' 7 M, +
We can always normalize the solution such that 1. We (1) m(1)i+m(1)j
then find s Mj.. and omitting thej-th row of A7.
Py, + P, . ! . .
v = W o The matrix B»~! can be found by Ee)elacmg thieth
. . . row of B” b L ) "0, __Bn . and
This result is interesting. It says that a matd can be Y st ey P T Rty i

i - n
approximated byP =~ wvv' in an optimal way (w.r.t the omitting the j-th row of 5. ) .
Kullback-Leibler divergence) by taking equal to the mean ~ One can choose to stop the algorithm when a pre-decribed
of the row and column sum @?, i.e.v = 4 (Pe+PTe). This order is reached or when the smallest element of the vector
,l.e. 5 . i |
means that the probability of observigg at time instant 1 7(1)" is larger than a certain threshold.
andy, at time instant 2 is approximated as the product of the We now give some intuition into this heuristic approach.

mean probability of observing, times the mean probability One step of the heuristic algorithm goes from a hidden
of observingy,, i.e. Markov model withn states to a hidden Markov model

with n — 1 states by merging the two statésand j with
P(y(1) =y,) + P(y(2) =yi) P(w(1) =y,) + P(y(2) =y,)  the smallest initial probabilities. The output probaekt
2 2 "~ of the new state are equal to the weighted mean output
probabilities of the statesand; where the weighting factors

Plyry:) =



are the relative initial probabilities of the merged staféise  find an underlying two-point state process and a probaibilist
probability to go from an arbitrary stateto the merged state mapping from the state process to the output process.

is equal to the probability to go from stateto state: plus We suppose there is an orderiny, = a,y, =
the probability to go from staté to statej. The probability b,...,y;, = j) on the output setY. Now the string
to go from the merged state to another siate equal to the probabilities can be stacked in the matiik as described
weighted sum of the probability to go from statéo stateg  in Section Ill, i.e. Py, = P(yLY;)-

and the probability to go from statgto stateg, where the In this exampleP is given by
weighting factors are the relative initial probabilitiekthe
merged states. Finally, the probability to go from the mdrge I SR v S D < S S
state to itself is equal to the weighted sum of the probabilit E S A O A S
to go from statei to statei or statej, and the probability »=| 45 & 25 50 36 s 45 63 ar  es |107%
to go from statej to statei or statej, where the weighting S YA S S R G
factors are again equal to the relative initial probaleititof 1es 185 1s2  1os 100 86 50 141 1u a1s
the merged states.

If the process is stationary, the initial state distribotie This matrix P was generated a® = B diag(n)llxB
equal to the equilibrium distribution. In that case the igtiec  where B = [ (a) £(b) A(c) ... B(j) |, Ix andx

method is expected to perform best, as it merges states withme from a stationary Moore HMNIX, Y, ITx, 3, 7) with
the smallest equilibrium distribution instead of the smstl X = {1,2,...,5} and
initial distribution.

We now prove that, if we start with a probability matrix 0.80 0.00 0.10 0.10 0.00
P and continue the proposed heuristic approach until there 0.20 0.20 0.20 0.20 0.20
is only one state anymore, we find thBtis approximated lx = | 0.40 0.10 0.30 020 0.00 |,
by the vector containing the row sum &f (i.e. the measure 0.15 0.05 0.10 0.35 0.35
P(y(1))) multiplied with the transpose of the same vector. 0.05 0.05 0.05 0.55 0.30

This means that we finé = (B') " diag(n;_,)II; B!, with
7= [ 04850 0.0375 0.1218 0.2300 0.1257 |,

B' = (Pe)T, _ -
1 _ 0.10 0.15 0.30 0.05 0.70
Wt*11 - 0.10 0.00 0.30 0.05 0.10
Iy = L 0.10 0.25 0.00 0.05 0.10
We prove this fact for the case whelfec R3*3. The general 0.10 0.00 0.10 0.05 0.00

0.10 0.20 0.00 0.05 0.00
. 0.10 0.00 0.00 0.05 0.00
1 } 7 0.10 0.05 0.00 0.05 0.00

1 0.10 0.00 0.30 0.05 0.00

0.10 0.35 0.00 0.05 0.00
| 0.10 0.00 0.00 0.55 0.10

proof is analogous. In thg x 3 case, we start form

1 T )
P= 1 T2 3
1 T3

where we usedr; as a shorthand notation far(1);. We
suppose that; > ms > w3, such that we find after one step

1 . In fact this model is unknown, but we give it here to check
P [ Tads { e ot } 2 { L - , the performance of the algorithms.
oty 2 retms Mt We use the iterative update algorithm of Section IV

to compute optimal approximations with respect to the
i Kullback-Leibler divergence with Markov rank equal to
b [ 1 1,2,...,10. As initial values for the iterative algorithm we

and after two steps, we find

Zi rtme bl M [ m w2 ms ], use random nonnegative matrices. As stopping rule, we use
the Kullback-Leibler divergence between the approxinmatio
where one can easily see thag = 1, which proves the at iteration step and the approximation at step+ 1. The
statement forP € R3*3. algorithm stops if this distance is smaller thgdT®. In Table
If the underlying hidden Markov model is stationary, then we show the number of steps until convergence for the
the row sums of the matri¥ are equal to the column sums, different Markov ranks. Finally, we compute approximason
i.e. Pe = PTe, which means that the heuristic algorithmwith the heuristic approach of Section V, also of Markov
applied on the probability matri¥* converges to the product rank equal tol, 2, .. ., 10.
of the marginal distributions. On Figure 1, we plot the Kullback-Leibler divergence
between the original matri® and its optimal approximation
VI. SIMULATION EXAMPLE with respect to the Kullback-Leibler divergence as a futti
In this simulation example we consider an output process the Markov rank. At the same figure we plot the Kullback-
with Y = {a, b, ..., j}, and suppose that the string probabil-Leibler divergence between the original matrix and the
ities of all strings of length 2 are given and the problem is theuristic approximation also for all possible Markov ranks




TABLE |

string probabilities with a hidden Markov model works
NUMBER OF ITERATIONS FOR THE MULTIPLICATIVE UPDATE METHOD

well.
MINIMIZING THE KULLBACK-LEIBLER DIVERGENCE
Order 1  Order 2  Order 3  Order 4 Order 5 TABLE 1l
Number of iterations 1687 1055 3004 2694 1804 STRING PROBABILITIES FOR STRINGS OF LENGTH
Order 6 Order7 Order8 Order9  Order 10 Sequence Exact Order5 Order4 Order3 Order2 Orderl
Number of iterations 1817 962 151 191 3 aa 0.0396  0.0396  0.0397  0.0430  0.0430  0.0362
ab 0.0193  0.0193  0.0190 00191  0.0191  0.0207
ac 0.0149 0.0149 0.0150 0.0152 0.0152 0.0156
ad 0.0116 0.0116 0.0116 0.0114 0.0114 0.0137
ae 0.0113  0.0113 00114 00110 0.0110  0.0128
0.012p= = = “« — af 0.0094  0.0094  0.0095  0.0094  0.0094  0.0114
h . T Buipicatve update me‘“"ﬂ ag 0.0098  0.0099 ~ 0.0100  0.0098  0.0098  0.0118
“ S, ah 0.0161 0.0161 0.0158 0.0153 0.0153 0.0184
0.01F, \" at 0.0128 0.0127 0.0128 0.0122 0.0122 0.0139
\ " aj 0.0454  0.0454  0.0453  0.0437  0.0437  0.0357
8 |\ .
$ 0.008F v
= \ \
E \ \
° . A VII. CONCLUSION
S 0.006F 1 1 . . -
g \ i In this paper we considered the problem of finding an
E \ Y underlying two-point Markov state process for a given two-
3 oooer \ point finite valued process, such that the output at a certain
| Y time instant is a probabilistic function of the state at tiirae
0.002 ! \ instant. It was shown that the problem is equivalent to the
‘. ‘o - algebraic problem of decomposing a nonnegative ma#ix
0 . I ‘ L T -
1 2 3 4 5

— as the product’ AV " with A nonnegative and of minimal
Varoviank | ° ® ' dimension andV nonnegative. Both multiplicative update

formulas and a heuristic approach, were proposed for the
Kullback-Leibler divergence between the true mxaffl and its sol_utlon of .thIS decomposmqn p.roblem. Thls_amde 'S.)Onl
optimal (w.r.t the Kullback-Leibler divergence) approsition of Markov & first step in the problem of finding a realization of a hidden
r;mké%’;n}v' ; 10;10mtputed V\;itil;? thedit_firative a'gorit?_m Offsl\iCtiI?n IV-(k Markov model from given string probabilities. The extemsio

.) and between the true matri® and its approximation of Markov ran . :
1,2,...,10 computed with the heuristic algorithm of Section V-(-). of the proposed methods to a time afd$2, T T) orNis

part of our future research.

Fig. 1.
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