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Abstract— Given a two-point finite valued process, we con-
sider the problem of finding an underlying two-point state
process such that the output at a certain time instant is a
probabilistic function of the state at the same time instant. This
problem is related to the hidden Markov realization problem
for finite valued processes. It is shown that the problem is
equivalent to the algebraic problem of decomposing a square
nonnegative matrix P as V AV

� with A and V nonnegative.
Both multiplicative update formulas and a heuristic approach,
are proposed for the solution of this decomposition problem.
A simulation example shows the effectiveness of the proposed
methods.

I. INTRODUCTION

Consider a finite valued stochastic process y defined on the
time axis N that admits a hidden Markov representation. This
means that there exists an underlying Markov chain x such
that the output y(t) is a probabilistic function of the state
x(t). The realization problem for hidden Markov models [6]
has not been completely solved yet. Even if y is known to be
representable by a hidden Markov model, no algorithm has
yet been devised to produce the underlying Markov chain x

and the probabilistic function of the chain that produces the
process y.

In this paper we consider a problem which is related to
the hidden Markov realization problem. Given two random
variables y− and y+ which both take values from the finite
set Y with probability measure P (y−, y+), find two random
variables x− and x+ both with values from a finite set X,
with |X| as small as possible, such that

P (y−, y+|x−, x+) = P (y−|x−)P (y+|x+),

and P (y+|x+) = P (y−|x−).
This problem is related to the realization problem for finite

valued processes of length 2. Indeed, let y = y(1), y(2) be
a two-point process which is the output of a hidden Markov
model, and take y− = y(1) and y+ = y(2) then the random
variables x− and x+ can be interpreted as underlying state
variables x(1) and x(2) respectively. The random variables
x−, x+, y− and y+ are completely described by the measures
P (x−), P (x+|x−) and P (y−|x−) = P (y+|x+), which
correspond precisely to the state distribution at time instant
1, the probability of going from a given state to another state,
and the probability of observing a certain output in a given
state. This problem is only a first step of a general problem
of finding a state process for general processes instead of
just two-point processes.
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This problem is not to be confused with the problem where
we have two random variables y− and y+ with probability
measure P (y−, y+), which take values from Y

− and Y
+

respectively and where we want to find a random variable x

with values from a finite set X such that y− is conditionally
independent of y+ given x, i.e.

P (y−, y+|x) = P (y−|x)P (y+|x).

This problem, its solution based on the Nonnegative Matrix
Factorization and its link with the hidden Markov realization
problem is discussed in [2].

The rest of the paper is organized as follows. In Section
II, we introduce the notations for hidden Markov models, in
Section III, we formulate the problem of finding underlying
state variables x(1) and x(2) for the process y(1), y(2) and
translate the problem into the algebraic problem of finding
matrices V and A such that a given square matrix P equals
P = V AV �. In Section IV, we give iterative formulas and in
Section V a heuristic method for the solution of the algebraic
problem. In Section VI, we perform an experiment showing
the quality of the approach.

The following notation is used throughout the paper. If
X is a matrix, then Xi:k,j:l denotes the submatrix of X

formed by the i-th to the k-th row and by the j-th to the
l-th column of X . With Xij we mean the i, j-th element of
X , and with X:,j and Xi,:, we mean the j-th column and
i-th row respectively.

II. HIDDEN MARKOV MODELS

Consider a stochastic process y defined on the time axis N

taking values from a finite set Y, called the output alphabet,
with |Y| the cardinality of Y. Denote by Y

∗ the set of all
finite strings with symbols from the set Y (including the
empty string) and by y = y1y2 . . . y|y| a sequence from Y

∗,
where |y| denotes the length of y. Let P : Y

∗ �→ [0, 1] be
string probabilities, defined as P(y) := P (y(1) = y1, y(2) =
y2, . . . , y(|y|) = y|y|). Of course, the string probabilities
satisfy P(φ) = 1 and

∑
y∈Y

P(yy) = P(y)1.
A Mealy hidden Markov model (HMM) is defined as

(X, Y, Π, π(1)), where
• X with |X| < ∞ is the state alphabet, and Y is the

output alphabet;
• π(1) is a row vector in R

|X|
+ with π(1)e = 1, where

e :=
[

1 1 . . . 1
]�

;

• Π is a mapping from Y to R
|X|×|X|
+ with the matrix

ΠX :=
∑

y∈Y
Π(y) such that ΠXe = e.

1With yy, we mean the concatenation of the string y with the symbol y.
Concatenation of two strings is defined analogously.
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One can think of an underlying state process x which
generates the output process y. The process x takes values
from the finite set X with cardinality |X|. Without loss of
generality, we take X = {1, 2, . . . , |X|}. The element Π(y)ij

is then equal to P (x(t + 1) = j, y(t) = y|x(t) = i), the
probability of going from state i to state j while producing
the output symbol y. The element π(1)i is equal to P (x(1) =
i), the initial distribution of the underlying state process.

In this paper, we consider the Moore hidden Markov
model, which is a more structured case of the Mealy hidden
Markov model. In a Moore HMM, the generation of the next
state and the generation of the output are independent. For
a Moore HMM it holds that there exists a matrix ΠX and a
mapping β from Y to R

|X|
+ such that for each y ∈ Y it holds

that
Π(y) = diag(β(y))ΠX,

where diag(·) is the diagonal matrix with the elements of
the vector · on its diagonal. The element (ΠX)ij is then
equal to P (x(t + 1) = j|x(t) = i), the probability of
going from state i to state j. The element β(y)i is equal
to P (y(t) = y|x(t) = i), the probability of observing the
symbol y given that the present state is equal to i. Suppose
we have an ordering (yk, k = 1, 2, . . . , |Y|) of the output
symbols of the set Y, then the matrix B is defined as
B =

[
β(y1) . . . β(y|Y|)

]
. A Moore HMM is described

by (X, Y, ΠX, β, π(1)) or (X, Y, ΠX, B, π(1)).
In the (Moore) realization problem, we are given the

output string probabilities P and the problem is to find
a Moore HMM that realizes P, which means that for
all y = y1y2 . . . y|y| ∈ Y

∗, it holds that P(y) =
π(1) diag(β(y1))ΠX diag(β(y2))ΠX . . . diag(β(y|y|))ΠXe.

A Moore realization (X, Y, ΠX, β, π(1)) of P is
called minimal if for any other Moore realization
(X′, Y, Π′

X
, β′, π′(1)) of P, it holds that |X| ≤ |X′|.

If it holds for all y ∈ Y
∗ that

∑
y∈Y

P(yy) = P(y) then
the process is called stationary2. Because of the fact that∑

y∈Y
P(yy) = P(y) is due to consistency, we have for

stationary processes that
∑
y∈Y

P(yy) =
∑
y∈Y

P(yy).

A hidden Markov model which realizes a stationary pro-
cess, has the property that the state distribution is equal at
every time instant π(1) = π(2) = . . . = π(t) = π where π

equals the equilibrium state distribution, i.e.

πΠX = π.

In the next section, we consider a problem which is
analogous to the minimal Moore realization problem for two-
point processes (i.e. the realization problem where the data
are the string probabilities of strings up to length 2): given
the output probabilities of all strings of length 2, find an
underlying state process of length 2, such that the output at

2Indeed,
P

y∈Y
P(yy) is equal to P (y(2) = y1, y(3) = y2, . . . , y(|y|+

1) = y|y|), and by imposing this to be equal to P (y(1) = y1, y(2) =
y2, . . . , y(|y|) = y|y|) for all y ∈ Y

∗, stationarity is imposed.

a certain time instant is a probabilistic function of the state
at the same time instant.

III. STATE REPRESENTATION OF TWO-POINT
PROCESSES

In this section, we introduce a matrix P which contains
probabilities of length-2-strings. In case the string proba-
bilities come from an underlying hidden Markov model,
there exist a relation between the matrix P and the system
parameters of the underlying model. This relation allows us
to translate the problem of finding a two-point state process
for a two-point output process, into a matrix problem.

Suppose we have an ordering (yk, k = 1, 2, . . . , |Y|) of
the output symbols of the set Y. Let P be the |Y| × |Y|
matrix with k, l-th element P(ykyl), where ykyl denotes the
concatenation of the symbols yk and yl. If the underlying
process is stationary, it holds that the row sum of P is equal
to its column sum, i.e. Pe = P�e.

We now derive the relation between the system matrices
and the matrix P for the case where P contains the string
probabilities of an underlying Moore hidden Markov model
(X, Y, ΠX, B, π(1)). One can easily see that

P(y(1) = yk, y(2) = yl)

=
X

i,j

P (y(1) = yk, y(2) = yl|x(1) = i, x(2) = j)P (x(1) = i, x(2) = j)

=
X

i,j

P (y(1) = yk|x(1) = i)P (y(2) = yl|x(1) = i)P (x(1) = i, x(2) = j)

= (B
�

diag(π(1))ΠXB)k,l,

from which we conclude that

P = B� diag(π(1))ΠXB.

The problem of finding an underlying state process for a
two point output process, is now equivalent to the problem
of finding for a given nonnegative P ∈ R

|Y|×|Y| with =
e�Pe = 1, nonnegative matrices B ∈ R

|X|×|Y| and ΠX ∈
R

|X|×|X| and a nonnegative vector π(1) ∈ R
|X|, with |X| as

small as possible, such that

P = B� diag(π(1))ΠXB,

Be = e,

ΠXe = e,

π(1)e = 1.

In fact it suffices to solve the problem of finding nonneg-
ative matrices V ∈ R

|Y|×|X| and A ∈ R
|X|×|X|, with |X| as

small as possible, such that

P = V AV �.

The matrices B and ΠX and the vector π(1) can then be
calculated as

B = (diag(V �e))−1V �,

A′ = diag(V �e)Adiag(V �e),

ΠX = (diag(A′e))−1A′,

π(1) = (A′e)�.

The formulas imply that if y = y(1), y(2) is stationary,
i.e. P (y(1)) = P (y(2)) or Pe = P�e, then x = x(1), x(2)
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is also stationary, i.e. π(1) = π(2) = π, with πΠX = π.
Indeed, from Pe = P�e or B�A′Be = B�(A′)�Be, we
find that A′e = (A′)�e if B has full row rank, i.e. if the
decomposition is minimal. Now we can calculate

π(1)ΠX = (A′e)�(diag(A′e))−1A′

= e�A′ = (A′e)�

= π(1).

IV. NONNEGATIVE MATRIX FACTORIZATION

In the previous section, we reduced the problem of finding
an underlying state process for two-point processes to the
problem of finding a minimal factorization P = V AV �,
where minimal means that the size of A is as small as pos-
sible. In this section, we give multiplicative update formulas
to solve this problem approximately.

This problem is analogous to the standard Nonnegative
Matrix Factorization problem which was introduced in [1]
and which has a lot of applications in data mining. In the
standard nonnegative matrix factorization problem, one is
interested in decomposing a given matrix M ∈ R

m1×m2

into a product M = V H . The smallest inner dimension
for which such a factorization exists is called the positive
rank (pos−rank) of the matrix M . One can show that
0 ≤ rank(M) ≤ pos−rank(M) ≤ min(m1, m2). There
exist matrices M for which only trivial decompositions exist,
M = IM and M = MI . In [5] such matrices are called
prime.

We call the minimal dimension of A for which an exact
decomposition P = V AV � exists, the Markov rank of the
matrix P . It is intuitively clear that

0 ≤ rank(P ) ≤ pos−rank(P )

≤ markov−rank(P ) ≤ min(m1, m2).

The exact nonnegative matrix factorization problem is very
hard in general. There is not even a method to determine
the minimal inner dimension (i.e. the positive rank of M )
for which a positive factorization exists. Therefore, Lee and
Sueng proposed to chose an inner dimension and then solve
the problem approximately M ≈ V H by an optimization
based approach [4]. As cost function to quantify the quality
of approximations, they take either the squared Euclidean
distance

||A − B||2 =
∑
ij

(Aij − Bij)
2

or the Kullback-Leibler divergence (which is a measure of
the extent to which B approximates A)

D(A||B) =
∑
ij

(Aij log
Aij

Bij

− Aij + Bij).

For both cost functions, they derive multiplicative update
rules which monotonically improve the quality of the ap-
proximation. In [3], these update rules are interpreted as
alternating minimization procedures and stability properties
are investigated.

In the rest of this section, we will analogously derive
multiplicative update formulas for the factorization problem
P ≈ V AV �. As in [4], the dimension of the matrix A

is chosen by the user. We derive only formulas with the
Kullback-Leibler divergence as cost function, as this distance
is most appropriate for the approximation of probability
measures. However, it is also possible to derive multiplicative
update formulas for the factorization problem in the Eu-
clidian distance. We will publish these formulas elsewhere.
Checking whether there exists an interpretation of the update
rules as an alternating minimization procedure, analogous to
[3], belongs to our future research plans.

Now we consider the problem
Problem 1: Minimize g(A, V ) = D(P ||V AV �) for a

given size of A with respect to A and V , subject to the
constraints A, V ≥ 0.

The derivatives of the cost function with respect to the
elements Vk,i and Ai,j of the matrices A and V can be
calculated as

∂g

∂Aij

(A, V ) = −
∑

µ

∑
ν

VµiVνj

Pµν

(V AV �)µν

+
∑

µ

∑
ν

VµiVνj ,

∂g

∂Vki

(A, V ) =
∑

λ

∑
ν

VνλAiλ + VνλAλi

−
∑

λ

∑
ν

VνλAiλ

Pkν

(V AV �)kν

+ VνλAλi

Pνk

(V AV �)νk

.

A simple rule for updating A and V which reduces the
Kullback-Leibler distance can be written as

Aij ← Aij − µij

∂g

∂Aij

(A, V )

Vki ← Vki − νki

∂g

∂Vki

(A, V )

If all µij and νki are equal to the same small positive
number, this is equivalent to conventional gradient descent.
As long as this number is sufficiently small, the update re-
duces D(P ||V AV �). The problem with the gradient descent
method is that the choice of the step size is difficult. If the
step size is too small, we have slow convergence. On the
other hand, if the step size is too large, the matrices can
become negative or it is possible that the squared distance
does not decrease.

Analogous to the method proposed in [4], we propose to
take the steps sizes equal to

µij =
Aij∑

µ

∑
ν VµiVνj

,

νki =
Vki∑

λ

∑
ν VνλAiλ + VνλAλi

,
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which gives

Aij ← Aij

∑
µ

∑
ν VµiVνj

Pµν

(V AV �)µν∑
µ

∑
ν VµiVνj

,

Vki ← Vki

∑
λ

∑
ν VνλAiλ

Pkν

(V AV �)kν
+ VνλAλi

Pνk

(V AV �)νk∑
λ

∑
ν VνλAiλ + VνλAλi

.

By this choice of step size which is dependent of the
optimization variables, we do not have a gradient descent
algorithm anymore, but instead we have update formulas
where each step consists of multiplication with a factor. In
particular, it is straightforward to notice that this factor is
equal to unity if P = V AV �, so perfect reconstruction is
a fixed point of the algorithm. Notice also that this factor
is always nonnegative, so if one takes nonnegative initial
values for A and V , then the updated values will always be
nonnegative. In addition, it can be proven that these iterative
update formulas converge to a local minimum of the cost
function. The proof will be presented elsewhere.

It is interesting to further investigate the factorization
problem in the Kullback-Leibler divergence with Markov
rank equal to 1. In that case, we look for a vector v and
a scalar a such that P ≈ vav�. This is equivalent with
solving mina,v D(P ||vav�) or

min
a,v

−
∑
µν

Pµν log([vav�]µν) +
∑
µν

[vav�]µν .

The solution can be found by setting the derivatives equal to
0:

∂D(P ||vav�)

∂vk

= −
∑

ν

Pkν + Pνk

vk

+ 2
∑

ν

avν = 0

∂D(P ||vav�)

∂a
= −

∑
µν

Pµν

a
+

∑
µν

vµvν = 0.

Because
∑

µν Pµν = 1, we find that

a = (
∑

ν

vν)2,

vk =

∑
ν(Pkν + Pνk)

2a
∑

ν vν

.

We can always normalize the solution such that a = 1. We
then find

vk =

∑
ν(Pkν + Pνk)

2
.

This result is interesting. It says that a matrix P can be
approximated by P ≈ vv� in an optimal way (w.r.t the
Kullback-Leibler divergence) by taking v equal to the mean
of the row and column sum of P , i.e. v = 1

2 (Pe+P�e). This
means that the probability of observing yk at time instant 1
and yl at time instant 2 is approximated as the product of the
mean probability of observing yk times the mean probability
of observing yl, i.e.

P(ykyl) ≈
P (y(1) = yk) + P (y(2) = yk)

2

P (y(1) = yl) + P (y(2) = yl)

2
.

In case y = y(1), y(2) is stationary, then P (y(1) =
yk, y(2) = yl) is approximated as P (y(1) = yk)P (y(2) =
yl), which is equal to the product of the marginal distribu-
tions.

V. A HEURISTIC APPROACH TO NONNEGATIVE
MATRIX FACTORIZATION

In this section we propose a heuristic approach for the
calculation of the decomposition P = B� diag(π(1))ΠXB

without making use of the iterative update formulas. In this
approach we start with a full Markov rank decomposition i.e.
a decomposition where the size of ΠX is maximal and then
merge rows and columns of ΠX and B in an appropriate way
until the decomposition has the required inner dimension.

The method starts with the trivial full Markov rank de-
composition of the matrix P i.e.

P = (B|Y|)� diag(π(1)|Y|)Π
|Y|
X

B|Y|,

where

B|Y| = I,

π(1)|Y| = Pe,

Π
|Y|
X

= (diag(Pe))−1P,

where I denotes the unit matrix.
We now propose a heuristic procedure to find an ap-

proximate decomposition of Markov rank n − 1, given an
(approximate) decomposition of Markov rank equal to n (at
the beginning of the algorithm, the approximation is exact
and n = |Y|),

• Suppose π(1)n
i is the smallest and π(1)n

j is the sec-
ond smallest element of the vector π(1)n. The vector
π(1)n−1 is then calculated by replacing the i-th element
of π(1)n by π(1)n

i + π(1)n
j and omitting the j-th

element.
• The matrix Πn−1

X
can be calculated from the matrix Πn

X

by

1) replacing the i-th column of Πn
X

by the sum of the
i-th and the j-th column, and omitting the j-th
column. Call the resulting matrix M .

2) replacing the i-th row of M by π(1)n
i

π(1)n
i
+π(1)n

j

Mi,:+
π(1)n

j

π(1)n
i
+π(1)n

j
Mj,:, and omitting the j-th row of M .

• The matrix Bn−1 can be found by replacing the i-th
row of Bn by π(1)n

i

π(1)n
i
+(π(1)n

j

Bn
i,: +

π(1)n
j

π(1)n
i
+π(1)n

j

Bn
j,:, and

omitting the j-th row of Bn.

One can choose to stop the algorithm when a pre-decribed
order is reached or when the smallest element of the vector
π(1)n is larger than a certain threshold.

We now give some intuition into this heuristic approach.
One step of the heuristic algorithm goes from a hidden
Markov model with n states to a hidden Markov model
with n − 1 states by merging the two states i and j with
the smallest initial probabilities. The output probabilities
of the new state are equal to the weighted mean output
probabilities of the states i and j where the weighting factors
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are the relative initial probabilities of the merged states. The
probability to go from an arbitrary state h to the merged state
is equal to the probability to go from state h to state i plus
the probability to go from state h to state j. The probability
to go from the merged state to another state g is equal to the
weighted sum of the probability to go from state i to state g

and the probability to go from state j to state g, where the
weighting factors are the relative initial probabilities of the
merged states. Finally, the probability to go from the merged
state to itself is equal to the weighted sum of the probability
to go from state i to state i or state j, and the probability
to go from state j to state i or state j, where the weighting
factors are again equal to the relative initial probabilities of
the merged states.

If the process is stationary, the initial state distribution is
equal to the equilibrium distribution. In that case the heuristic
method is expected to perform best, as it merges states with
the smallest equilibrium distribution instead of the smallest
initial distribution.

We now prove that, if we start with a probability matrix
P and continue the proposed heuristic approach until there
is only one state anymore, we find that P is approximated
by the vector containing the row sum of P (i.e. the measure
P (y(1))) multiplied with the transpose of the same vector.
This means that we find P = (B1)� diag(π1

t−1)Π
1
X
B1, with

B1 = (Pe)�,

π1
t−1 = 1,

Π1
X

= 1.

We prove this fact for the case where P ∈ R
3×3. The general

proof is analogous. In the 3 × 3 case, we start form

P =

2
4 1

1
1

3
5

2
4 π1

π2

π3

3
5 Π3

X

2
4 1

1
1

3
5 ,

where we used πi as a shorthand notation for π(1)i. We
suppose that π1 ≥ π2 ≥ π3, such that we find after one step

P ≈

2
4 1

π1
π2+π3

π2
π2+π3

3
5

»
π1

π2 + π3

–
Π2

X

»
1

π2
π2+π3

π3
π2+π3

–
,

and after two steps, we find

P ≈

2
4 π1

π2

π3

3
5 [π1 + π2 + π3] Π

1
X

ˆ
π1 π2 π3

˜
,

where one can easily see that Π1
X

= 1, which proves the
statement for P ∈ R

3×3.
If the underlying hidden Markov model is stationary, then

the row sums of the matrix P are equal to the column sums,
i.e. Pe = P�e, which means that the heuristic algorithm
applied on the probability matrix P converges to the product
of the marginal distributions.

VI. SIMULATION EXAMPLE

In this simulation example we consider an output process
with Y = {a, b, . . . , j}, and suppose that the string probabil-
ities of all strings of length 2 are given and the problem is to

find an underlying two-point state process and a probabilistic
mapping from the state process to the output process.

We suppose there is an ordering (y1 = a,y2 =
b, . . . ,y10 = j) on the output set Y. Now the string
probabilities can be stacked in the matrix P as described
in Section III, i.e. Pkl = P(ykyl).

In this example P is given by

P =

2
66666666666664

396 193 149 116 113 94 98 161 128 454
182 128 87 85 77 67 70 120 84 191
150 87 69 60 58 52 53 77 63 150
111 84 60 61 55 51 52 80 57 112
112 75 58 55 51 47 48 70 54 105
92 67 50 51 46 45 45 63 47 93
97 69 52 52 47 46 46 65 49 96
149 118 78 80 72 63 65 114 78 148
126 81 64 58 55 49 51 75 60 113
488 189 152 105 100 86 90 141 111 415

3
77777777777775

10
−4

.

This matrix P was generated as P = B� diag(π)ΠXB

where B =
[

β(a) β(b) β(c) . . . β(j)
]
, ΠX and π

come from a stationary Moore HMM (X, Y, ΠX, β, π) with
X = {1, 2, . . . , 5} and

ΠX =

⎡
⎢⎢⎢⎢⎣

0.80 0.00 0.10 0.10 0.00
0.20 0.20 0.20 0.20 0.20
0.40 0.10 0.30 0.20 0.00
0.15 0.05 0.10 0.35 0.35
0.05 0.05 0.05 0.55 0.30

⎤
⎥⎥⎥⎥⎦

,

π =
[

0.4850 0.0375 0.1218 0.2300 0.1257
]
,

B� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.10 0.15 0.30 0.05 0.70
0.10 0.00 0.30 0.05 0.10
0.10 0.25 0.00 0.05 0.10
0.10 0.00 0.10 0.05 0.00
0.10 0.20 0.00 0.05 0.00
0.10 0.00 0.00 0.05 0.00
0.10 0.05 0.00 0.05 0.00
0.10 0.00 0.30 0.05 0.00
0.10 0.35 0.00 0.05 0.00
0.10 0.00 0.00 0.55 0.10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In fact this model is unknown, but we give it here to check
the performance of the algorithms.

We use the iterative update algorithm of Section IV
to compute optimal approximations with respect to the
Kullback-Leibler divergence with Markov rank equal to
1, 2, . . . , 10. As initial values for the iterative algorithm we
use random nonnegative matrices. As stopping rule, we use
the Kullback-Leibler divergence between the approximation
at iteration step i and the approximation at step i + 1. The
algorithm stops if this distance is smaller than 10−8. In Table
I we show the number of steps until convergence for the
different Markov ranks. Finally, we compute approximations
with the heuristic approach of Section V, also of Markov
rank equal to 1, 2, . . . , 10.

On Figure 1, we plot the Kullback-Leibler divergence
between the original matrix P and its optimal approximation
with respect to the Kullback-Leibler divergence as a function
of the Markov rank. At the same figure we plot the Kullback-
Leibler divergence between the original matrix and the
heuristic approximation also for all possible Markov ranks.
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TABLE I

NUMBER OF ITERATIONS FOR THE MULTIPLICATIVE UPDATE METHOD

MINIMIZING THE KULLBACK-LEIBLER DIVERGENCE.

Order 1 Order 2 Order 3 Order 4 Order 5
Number of iterations 1687 1055 3004 2694 1804

Order 6 Order 7 Order 8 Order 9 Order 10
Number of iterations 1817 962 151 191 3
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Fig. 1. Kullback-Leibler divergence between the true matrix P and its
optimal (w.r.t the Kullback-Leibler divergence) approximation of Markov
rank 1, 2, . . . , 10 computed with the iterative algorithm of Section IV (-.-
.) and between the true matrix P and its approximation of Markov rank
1, 2, . . . , 10 computed with the heuristic algorithm of Section V (- - -).

Notice that the iterative method performs much better than
the heuristic approach. The distance is almost equal to 0 for
Markov ranks 5 to 10. This makes sense as the matrix P was
generated using an underlying hidden Markov model of order
5. Notice also that the Kullback-Leibler divergence between
P and its optimal rank 1 approximation (w.r.t the Kullback-
Leibler divergence) is equal to the Kullback-Leibler diver-
gence between P and the heuristic approximation of rank
1. This is no coincidence, as we have have proven that
the rank 1 approximation of P found with the Kullback-
Leibler minimization method is equal to the product of the
marginals of P in case the underlying hidden Markov model
is stationary and the same holds for the heuristic approach.

To show further the quality of the approximations, we
give in Table II the true output probabilities of a selection
(due to space limitations) of length-2 strings and compare
them with the probabilities found with the Kullback-Leibler
minimalisation method of order 5, 4, . . .1. We conclude that
the approximation of the matrix P as V AV � works well
which allows to conclude that the modeling of two-point

string probabilities with a hidden Markov model works
well.

TABLE II

STRING PROBABILITIES FOR STRINGS OF LENGTH 2.

Sequence Exact Order 5 Order 4 Order 3 Order 2 Order 1
aa 0.0396 0.0396 0.0397 0.0430 0.0430 0.0362
ab 0.0193 0.0193 0.0190 0.0191 0.0191 0.0207
ac 0.0149 0.0149 0.0150 0.0152 0.0152 0.0156
ad 0.0116 0.0116 0.0116 0.0114 0.0114 0.0137
ae 0.0113 0.0113 0.0114 0.0110 0.0110 0.0128
af 0.0094 0.0094 0.0095 0.0094 0.0094 0.0114
ag 0.0098 0.0099 0.0100 0.0098 0.0098 0.0118
ah 0.0161 0.0161 0.0158 0.0153 0.0153 0.0184
ai 0.0128 0.0127 0.0128 0.0122 0.0122 0.0139
aj 0.0454 0.0454 0.0453 0.0437 0.0437 0.0357

VII. CONCLUSION

In this paper we considered the problem of finding an
underlying two-point Markov state process for a given two-
point finite valued process, such that the output at a certain
time instant is a probabilistic function of the state at that time
instant. It was shown that the problem is equivalent to the
algebraic problem of decomposing a nonnegative matrix P

as the product V AV � with A nonnegative and of minimal
dimension and V nonnegative. Both multiplicative update
formulas and a heuristic approach, were proposed for the
solution of this decomposition problem. This article is only
a first step in the problem of finding a realization of a hidden
Markov model from given string probabilities. The extension
of the proposed methods to a time axis (1, 2, . . . , T ) or N is
part of our future research.
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