The Riemannian Singular Value Decomposition

Philippe Dreesen Bart De Moor

Katholieke Universiteit Leuven Department of Electrical Engineering – ESAT Research Division SCD

23 June 2008

< 同 > < 三 > < 三 >

Outline

- 2 Applications in Systems Theory
 - PEM System Identification
 - EIV System Identification
 - Misfit vs. Latency System Identification
 - Realization Theory
- From the Riemannian SVD to Eigenproblems
 - Introductory Example
 - Solving the RiSVD as an Eigenproblem

4 Conclusions and Research Challenges

- B- - M-

Least Squares

- Measurement:
 - $Av \approx b$
- Correction:

$$Av = b + \Delta b$$

• C.F. Gauss (±1794): Predict future location of asteroid Ceres

$$\begin{array}{ll} \min & ||\Delta b||_2^2 \,, \\ \text{s.t.} & Av = b + \Delta b, \\ & v^T v = 1 \end{array}$$

- ∢ ⊒ →

Philippe Dreesen, Bart De Moor The Riemannian Singular Value Decomposition

Introduction

Applications in Systems Theory From the Riemannian SVD to Eigenproblems Conclusions and Research Challenges

Total Least Squares

 $Av \approx b$

• Correction:

$$(A + \Delta A)v = (b + \Delta b)$$

Structured Total Least Squares

Introduction

Applications in Systems Theory From the Riemannian SVD to Eigenproblems Conclusions and Research Challenges

TLS vs. STLS

Static Linear Modeling

- Rank Deficiency
- minimization problem:

 $\begin{array}{ll} \min & \quad ||[\Delta A \quad \Delta b]||_F^2 \,, \\ \text{s.t.} & \quad (A + \Delta A)v = b + \Delta b, \\ & \quad v^T v = 1 \end{array}$

• Singular Value Decomposition: find (u, σ, v) which minimizes σ^2

$$\begin{array}{rcl} A^T u &=& v\sigma\\ Av &=& u\sigma\\ v^T v &=& 1\\ u^T u &=& 1 \end{array}$$

Dynamic Linear Modeling

- Rank deficiency
- minimization problem:

min	$\left \left \left[\Delta A \Delta b\right]\right \right _{F}^{2}$,
s.t.	$(A + \Delta A)v = b + \Delta b,$
	$v^T v = 1$
	$\begin{bmatrix} \Delta A & \Delta b \end{bmatrix}$ structured

• Riemannian SVD: find (u, τ, v) which minimizes τ^2

Introduction

Applications in Systems Theory From the Riemannian SVD to Eigenproblems Conclusions and Research Challenges

Outline

- 2 Applications in Systems Theory
 - PEM System Identification
 - EIV System Identification
 - Misfit vs. Latency System Identification
 - Realization Theory
- From the Riemannian SVD to Eigenproblems
 - Introductory Example
 - Solving the RiSVD as an Eigenproblem

4 Conclusions and Research Challenges

- B- - M-

Introduction PEM System Identification Applications in Systems Theory From the Riemannian SVD to Eigenproblems Conclusions and Research Challenges Realization Theory

Applications

- System identification
- Realization theory
- Model reduction
- Pole placement low-order controllers
- Harmonic retrieval
- Information retrieval

(日) (同) (三) (三)

PEM System Identification EIV System Identification Misfit vs. Latency System Identification Realization Theory

Prediction Error Methods

- Measurement error at the output
- Minimize error on model prediction
- Widely used (e.g. MATLAB System Identification Toolbox)

PEM System Identification EIV System Identification Misfit vs. Latency System Identification Realization Theory

EIV System Identification

- Both input and output are subject to measurement error
- Considered a more difficult problem

PEM System Identification EIV System Identification Misfit vs. Latency System Identification Realization Theory

Misfit vs. Latency

- Misfit: distance between observed trajectory and model
- Latency: unobserved error signal e
- Unification of System Identification methods?

PEM System Identification EIV System Identification Misfit vs. Latency System Identification Realization Theory

Misfit vs. Latency

Models in this framework are of the form

$$A(q)z(t) = B(q)w(t) + C(q)e(t)$$

with $z(t)=y_0(t)+\tilde{y}(t), w(t)=u_0(t)+\tilde{u}(t)$ $A(q),\ B(q)$ and C(q) polynomials of appropriate degree

Minimize the following cost function:

$$\min J = \alpha J_{\text{output}} + \beta J_{\text{input}} + \gamma J_{\text{latency}}$$

with $J_{\text{output}} = \sum (\tilde{y}(t))^2$, $J_{\text{input}} = \sum (\tilde{u}(t))^2$ and $J_{\text{latency}} = \sum (e(t))^2$

PEM System Identification EIV System Identification **Misfit vs. Latency System Identification** Realization Theory

Misfit vs. Latency

In matrix format, the model selection procedure can be rephrased as:

min
$$\alpha J_{\text{output}} + \beta J_{\text{input}} + \gamma J_{\text{latency}}$$

s.t. $Za - Wb - Ec = 0$

with $a,\,b$ and c containing the model parameters, and $Z,\,W$ and E Hankel matrices constructed from data

(日) (同) (三) (三)

Introduction PEM System Identification Applications in Systems Theory From the Riemannian SVD to Eigenproblems Conclusions and Research Challenges

Misfit vs. Latency

 $\begin{array}{ll} \min & \alpha J_{\rm output} + \beta J_{\rm input} + \gamma J_{\rm latency} \\ {\rm s.t.} & Za - Wb - Ec = 0 \end{array}$

• Choice of the specific values of (α, β, γ) results in different LTI dynamic systems

$(lpha,eta,\gamma)$	Case	Data misfit	Model	M/L
(*, 1, 1)	ARMA with noisy inputs	$U \rightarrow W$	Wb = 0	M+L
(1, *, *)	Noisy output realization	$Y \rightarrow Z$	Za = 0	М
(1, 1, *)	Dynamic EIV	$Y \to Z, U \to W$	Za + Wb = 0	М
(1, 1, 1)	ARMAX with noisy in/outputs	$Y \to Z, U \to W$	Za + Wb + Ec = 0	M+L
$(1,\infty,*)$	Output error	$Y \rightarrow Z$	Za + Ub = 0	М
$(1, \infty, 1)$	ARMAX with noisy output	$Y \rightarrow Z$	Za + Ub + Ec = 0	M+L
$(\infty, *, *)$	Output is impulse response		Ya = 0	E
$(\infty, *, 1)$	ARMA		Ya + Ec = 0	L
$(\infty, \infty, 1)$	ARMAX		Ya + Ub + Ec = 0	L

- Optimization problem only depends on the model parameters a, b and c
- Can be solved as a Riemannian SVD

(日) (同) (三) (三)

3

PEM System Identification EIV System Identification Misfit vs. Latency System Identification Realization Theory

Linear Realization Theory

- Impulse response experiment: measure output data h(k)
- Construct Hankel matrix from data:

$$H = \begin{bmatrix} h(1) & h(2) & h(3) & h(4) & \dots \\ h(2) & h(3) & h(4) & & \\ h(3) & h(4) & & & \\ h(4) & & & & \\ \vdots & & & & & \end{bmatrix}$$

- rank(H) = system order
- Direction-of-arrival estimation, chemometrics,...

(日) (同) (三) (三)

PEM System Identification EIV System Identification Misfit vs. Latency System Identification Realization Theory

Bilinear Realization Theory (1)

• State Space formulation:

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + Nx_k \otimes u_k \\ y_k &= Cx_k + Du_k \end{aligned}$$

• Volterra kernels (SISO):

$$\begin{array}{cccc} CB \\ CAB & CNB \\ CA^2B & CANB & CNAB & CN^2B \\ CA^3B & CA^2NB & CNA^2B & CNANB & CN^2AB & CN^3B \end{array}$$

PEM System Identification EIV System Identification Misfit vs. Latency System Identification Realization Theory

Bilinear Realization Theory (2)

• How can we find these kernels experimentally?

- experiment 1: *D*, *CB*, *CAB*, *CA*²*B*,...
- experiment 2: D,CB + D, CAB + CNB + CB, $CA^2B + CANB + CAB,...$
- experiment 3: *D*, *CB*, *CAB*, *CA*²*B*, *CA*³*B* + *CNA*²*B* + *CB*,...
- experiment 4: D, CB + D, CAB + CNB + CB + D, $CA^2B + CANB + CAB +$ $CNAB + CN^2B + CNB + CB,...$

PEM System Identification EIV System Identification Misfit vs. Latency System Identification Realization Theory

Bilinear Realization Theory (3)

• Generalized block Hankel matrix H:

Г	CB	CAB	CNB	CA^2B	CANB	CNAB	CN^2B
L	CAB	CA^2B	CANB	$CA^{3}B$	CA^2NB	CANAB	CAN^2B
L	CNB	CNAB	CN^2B	CNA^2B	CNANB	CN^2AB	CN^3B
l	CA^2B	$CA^{3}B$	CA^2NB	CA^4B	CA^3NB	CA^2NAB	CA^2N^2B
l	CNAB	CNA^2B	CNANB	$CNA^{3}B$	CNA^2NB	CNANAB	$CNAN^2B$
L	CANB	CANAB	CAN^2B	$CANA^2B$	CANANB	CAN^2AB	CAN^3B
L	CN^2B	CN^2AB	CN^3B	CN^2A^2B	CN^2ANB	CN^3AB	CN^4B

(日) (同) (三) (三)

PEM System Identification EIV System Identification Misfit vs. Latency System Identification Realization Theory

Bilinear Realization Theory (4)

• Factorize:

$$H = \begin{bmatrix} C \\ CA \\ CN \\ CA^{2} \\ CNA \\ CAN \\ CN^{2} \\ \vdots \end{bmatrix} \begin{bmatrix} B & AB & NB & A^{2}B & ANB & NAB & N^{2}B & \dots \end{bmatrix}$$

(日) (同) (三) (三)

PEM System Identification EIV System Identification Misfit vs. Latency System Identification Realization Theory

Outline

- 2 Applications in Systems Theory
 - PEM System Identification
 - EIV System Identification
 - Misfit vs. Latency System Identification
 - Realization Theory
- From the Riemannian SVD to Eigenproblems
 - Introductory Example
 - Solving the RiSVD as an Eigenproblem

4 Conclusions and Research Challenges

Introductory Example Solving the RiSVD as an Eigenproblem

From Polynomials to Eigenproblems

Solve the following set of equations:

$$\begin{cases} f(x,y) &= y^2 - 2y + x = 0 \quad (\text{red}) \\ g(x,y) &= 3y^2 - x^2 + 2x - 4 \quad (\text{blue}) \end{cases}$$

A >

Introductory Example Solving the RiSVD as an Eigenproblem

Example

Solve the following set of equations:

$$\begin{cases} f(x,y) &= y^2 - 2y + x = 0 \quad (\text{red}) \\ g(x,y) &= 3y^2 - x^2 + 2x - 4 \quad (\text{blue}) \end{cases}$$

Let

$$b = \begin{bmatrix} 1 & x & y & xy \end{bmatrix}^T$$

Find corresponding A_x and A_y such that:

$$A_x b = x b$$
 and $A_y b = y b$

Solving a polynomial system reduces to solving an Eigenvalue Problem!

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$

(日) (同) (三) (三)

Introductory Example Solving the RiSVD as an Eigenproblem

Example

Find A_r :					
w	٢O	1	0	0]	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$
	×	\times	×	×	$\begin{vmatrix} x \\ -x \end{vmatrix} x \end{vmatrix}$
	0	0	0	1	$\begin{vmatrix} y \end{vmatrix} \overset{-x}{=} \begin{vmatrix} y \end{vmatrix}$
	Γ×	\times	×	×	$\lfloor xy \rfloor \qquad \lfloor xy \rfloor$
and A_y :					
	[0	0	1	0]	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$
	0	0	0	1	$\begin{vmatrix} x \end{vmatrix} = y \begin{vmatrix} x \end{vmatrix}$
	×	×	×	×	$\begin{vmatrix} y \end{vmatrix} = \begin{vmatrix} -y \\ y \end{vmatrix}$
	Γ×	×	×	×	$\lfloor xy \rfloor \qquad \lfloor xy \rfloor$

Find expressions for x^2 , x^2y , y^2 and xy^2 in terms of b...

(日) (同) (三) (三)

Introductory Example Solving the RiSVD as an Eigenproblem

Constructing A_x and A_y

$$f(x,y) = y^2 - 2y + x = 0$$
 (1)

$$g(x,y) = 3y^2 - x^2 + 2x - 4$$
 (2)

From (1) and (2):

$$x^{2} = 3y^{2} + 2x - 4$$

= 3(2y - x) + 2x - 4
= 6y - x - 4 (3)

.

From y times (3) and (1):

$$x^{2}y = 6y^{2} - xy - 4y$$

= 6(2y - x) - xy - 4y
= 8y - 6 - xy (4)

From (1):

$$y^2 = 2y - x \tag{5}$$

From x times (1) and (3):

$$xy^{2} = 2xy - x^{2}$$

= 2xy - 6y + x + 4 (6)

(日) (同) (三) (三)

3

Philippe Dreesen, Bart De Moor The Riemannian Singular Value Decomposition

Introductory Example Solving the RiSVD as an Eigenproblem

Constructing A_x and A_y

Solving

$$\left\{ \begin{array}{rrr} f(x,y) &=& y^2-2y+x=0\\ g(x,y) &=& 3y^2-x^2+2x-4 \end{array} \right.$$

reduces to solving Eigenproblems

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ -4 & -1 & 6 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -6 & 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \\ xy \end{bmatrix} = x \begin{bmatrix} 1 \\ x \\ y \\ xy \end{bmatrix}$$

and

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 2 & 0 \\ 4 & 1 & -6 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \\ xy \end{bmatrix} = y \begin{bmatrix} 1 \\ x \\ y \\ xy \end{bmatrix}$$

(日) (同) (三) (三)

Introductory Example Solving the RiSVD as an Eigenprobler

Results (1)

Eigenvalue Decomposition of A_x :

$$A_x = V_x \Sigma_x V_x^{-1}$$

with

$$V_x = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -4.55 & 0.77 + 2.54i & 0.77 - 2.54i & 1 \\ 3.36 & -0.18 + 1.08i & -0.18 - 1.08i & 1 \\ -15.26 & -2.87 + 0.38i & -2.87 - 0.38i & 1 \end{bmatrix}$$

$$\Sigma_x = \text{diag}(-4.55, 0.77 + 2.54i, 0.77 - 2.54i, 1)$$

(日) (同) (三) (三)

Introductory Example Solving the RiSVD as an Eigenproblem

Results (2)

Eigenvalue Decomposition of A_y :

$$A_y = V_y \Sigma_y V_y^{-1}$$

with

$$V_y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -4.55 & 0.77 + 2.54i & 0.77 - 2.54i & 1 \\ 3.36 & -0.18 + 1.08i & -0.18 - 1.08i & 1 \\ -15.26 & -2.87 + 0.38i & -2.87 - 0.38i & 1 \end{bmatrix}$$

$$\Sigma_y = \text{diag}(3.36, -0.18 + 1.08i, -0.18 - 1.08i, 1)$$

(日) (同) (三) (三)

Remarks

Introductory Example Solving the RiSVD as an Eigenproblem

- All roots are extracted from V_x and/or V_y
- A_x and A_y commute; common eigenspaces
- How to solve for one specific root (e.g. in optimization problems)
- Direct construction of the multiplicative structure A_x , b?

Introductory Example Solving the RiSVD as an Eigenproblem

From STLS to Eigenproblems

イロン 不得 とくほう イヨン しほう

Introductory Example Solving the RiSVD as an Eigenproblem

Preliminary Results

The Riemannian SVD is equivalent to solving the following minimization problem:

$$\begin{split} \min_{v} & \tau^2 = v^T A^T D_v^{-1} A v \\ \text{s.t.} & v^T v = 1. \end{split}$$

- 4 同 2 4 日 2 4 日 2

Introductory Example Solving the RiSVD as an Eigenproblem

3×2 Hankel STLS

Eigenvalue decomposition on 20×20 matrix

(日) (同) (三) (三)

Introductory Example Solving the RiSVD as an Eigenproblem

6×3 Hankel STLS

method	TLS/SVD	STLS/RiSVD inverse iteration	STLS/RiSVD eigenproblem
v_1	.8003	.4922	.8372
v_2	5479	7757	.3053
v_3	.2434	.3948	.4535
τ^2	4.8438	3.0518	2.3822
global solution?	no	no	yes

Eigenvalue decomposition on 437×437 matrix

Introductory Example Solving the RiSVD as an Eigenproblem

Outline

- 2 Applications in Systems Theory
 - PEM System Identification
 - EIV System Identification
 - Misfit vs. Latency System Identification
 - Realization Theory
- From the Riemannian SVD to Eigenproblems
 - Introductory Example
 - Solving the RiSVD as an Eigenproblem

4 Conclusions and Research Challenges

→ Ξ →

Conclusions

- Riemannian SVD as a tool for solving STLS problems
- Broad application field
- Riemannian SVD can be solved as an Eigenproblem
- Applicable to short data records

- < 同 > < 三 > < 三 >

Challenges

- Choice of appropriate multiplication structure
- Direct construction of (minimal) Eigenproblem from polynomial system
- Solving for specific roots
- Recursive formulation of Riemannian SVD solver

The End.

<ロ> <回> <回> <回> <回> < 回>

æ