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Least Squares

Measurement:

Av ≈ b

Correction:

Av = b + ∆b

C.F. Gauss (±1794): Predict future location
of asteroid Ceres a

b

min ||∆b||22 ,

s.t. Av = b + ∆b,

vT v = 1
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Total Least Squares

Measurement:

Av ≈ b

Correction:

(A + ∆A)v = (b + ∆b)

b

a

min
∣

∣

∣

∣

[

∆A ∆b
]
∣

∣

∣

∣

2

F
,

s.t. (A + ∆A)v = b + ∆b,

vT v = 1
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Structured Total Least Squares

Measurement:

Av ≈ b

Correction:

(A + ∆A)v = (b + ∆b)

[

∆A ∆b
]

structured

b
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min
∣

∣
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∣

[

∆A ∆b
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2

F
,

s.t. (A + ∆A)v = b + ∆b,

vT v = 1
[

∆A ∆b
]

structured
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TLS vs. STLS

Static Linear Modeling

Rank Deficiency

minimization problem:

min
˛

˛

˛

˛

ˆ

∆A ∆b
˜

˛

˛

˛

˛

2

F
,

s.t. (A + ∆A)v = b + ∆b,

v
T

v = 1

Singular Value Decomposition:
find (u, σ, v) which minimizes σ2

8

>

>

<

>

>

:

AT u = vσ

Av = uσ

vT v = 1

uT u = 1

Dynamic Linear Modeling

Rank deficiency

minimization problem:

min
˛

˛

˛

˛

ˆ

∆A ∆b
˜

˛

˛

˛

˛

2

F
,

s.t. (A + ∆A)v = b + ∆b,

v
T

v = 1
ˆ

∆A ∆b
˜

structured

Riemannian SVD:
find (u, τ, v) which minimizes τ2

8

>

>

<

>

>

:

AT u = Duvτ

Av = Dvuτ

vT v = 1

uT Dvu = 1 (= vT Duv)
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PEM System Identification
EIV System Identification
Misfit vs. Latency System Identification
Realization Theory

Applications

Riemannian
Singular Value Decomposition

Realization
Theory

EIV
System Identif ication

Misfit vs. Latency
System Identif ication

PEM
System Identif ication

System identification

Realization theory

Model reduction

Pole placement low-order controllers

Harmonic retrieval

Information retrieval
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PEM System Identification
EIV System Identification
Misfit vs. Latency System Identification
Realization Theory

Prediction Error Methods

dynamic LTI system

u =   u0

u0 y0

y~

y =    +y0 y~

Measurement error at the output

Minimize error on model prediction

Widely used (e.g. MATLAB System Identification Toolbox)
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PEM System Identification
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EIV System Identification

dynamic LTI system

u =   +u0 u
~

u~

u0 y0

y~

y =    +y0 y~

Both input and output are subject to measurement error

Considered a more difficult problem
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Misfit vs. Latency

dynamic LTI system

u =   +u0 u
~

u~

u0

y0

y~

y =    +y0 y~

e

Misfit: distance between observed trajectory and model

Latency: unobserved error signal e

Unification of System Identification methods?
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Misfit vs. Latency

dynamic LTI system

u =   +u0 u
~

u~

u0

y0

y~

y =    +y0 y~

e

Models in this framework are of the form

A(q)z(t) = B(q)w(t) + C(q)e(t)

with z(t) = y0(t) + ỹ(t), w(t) = u0(t) + ũ(t)
A(q), B(q) and C(q) polynomials of appropriate degree

Minimize the following cost function:

minJ = αJoutput + βJinput + γJlatency

with Joutput =
P

(ỹ(t))2, Jinput =
P

(ũ(t))2 and Jlatency =
P

(e(t))2
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Misfit vs. Latency

dynamic LTI system

u =   +u0 u
~

u~

u0

y0

y~

y =    +y0 y~

e

In matrix format, the model selection procedure can be rephrased as:

min αJoutput + βJinput + γJlatency

s.t. Za − Wb − Ec = 0

with a, b and c containing the model parameters, and Z, W and E Hankel
matrices constructed from data

Philippe Dreesen, Bart De Moor The Riemannian Singular Value Decomposition



Introduction
Applications in Systems Theory

From the Riemannian SVD to Eigenproblems
Conclusions and Research Challenges

PEM System Identification
EIV System Identification
Misfit vs. Latency System Identification
Realization Theory

Misfit vs. Latency

min αJoutput + βJinput + γJlatency

s.t. Za − Wb − Ec = 0

Choice of the specific values of (α, β, γ) results in different LTI dynamic systems

(α, β, γ) Case Data misfit Model M/L
(∗, 1, 1) ARMA with noisy inputs U → W Wb = 0 M+L
(1, ∗, ∗) Noisy output realization Y → Z Za = 0 M
(1, 1, ∗) Dynamic EIV Y → Z, U → W Za + Wb = 0 M
(1, 1, 1) ARMAX with noisy in/outputs Y → Z, U → W Za + Wb + Ec = 0 M+L
(1, ∞, ∗) Output error Y → Z Za + Ub = 0 M
(1, ∞, 1) ARMAX with noisy output Y → Z Za + Ub + Ec = 0 M+L
(∞, ∗, ∗) Output is impulse response Y a = 0 E
(∞, ∗, 1) ARMA Y a + Ec = 0 L
(∞,∞, 1) ARMAX Y a + Ub + Ec = 0 L

Optimization problem only depends on the model parameters a, b and c

Can be solved as a Riemannian SVD
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Linear Realization Theory

t0 1 2 t3

Impulse response experiment: measure output data h(k)

Construct Hankel matrix from data:

H =

2

6

6

6

6

6

4

h(1) h(2) h(3) h(4) . . .

h(2) h(3) h(4)
h(3) h(4)
h(4)

...

3

7

7

7

7

7

5

rank(H) = system order

Direction-of-arrival estimation, chemometrics,. . .
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Bilinear Realization Theory (1)

State Space formulation:

xk+1 = Axk + Buk + Nxk ⊗ uk

yk = Cxk + Duk

Volterra kernels (SISO):

CB

CAB CNB

CA2B CANB CNAB CN2B

CA3B CA2NB CNA2B CNANB CN2AB CN3B
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Bilinear Realization Theory (2)

How can we find these
kernels experimentally?

bil inear system

t0 1 2

t

t0 1 2

t0 1 2

bil inear system

bil inear system

bil inear system

t

t

t

t

exper iment 1

exper iment 2

exper iment 4

exper iment 3

0 1 2

experiment 1:

D, CB, CAB, CA2B,. . .

experiment 2:

D,CB + D, CAB + CNB + CB,
CA2B + CANB + CAB,. . .

experiment 3:

D, CB, CAB, CA2B,
CA3B + CNA2B + CB,. . .

experiment 4:

D, CB + D,
CAB + CNB + CB + D,
CA2B + CANB + CAB +
CNAB + CN2B + CNB + CB,. . .
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Bilinear Realization Theory (3)

Generalized block Hankel matrix H:








CB CAB CNB CA2B CANB CNAB CN2B

CAB CA2B CANB CA3B CA2NB CANAB CAN2B

CNB CNAB CN2B CNA2B CNANB CN2AB CN3B

CA2B CA3B CA2NB CA4B CA3NB CA2NAB CA2N2B

CNAB CNA2B CNANB CNA3B CNA2NB CNANAB CNAN2B

CANB CANAB CAN2B CANA2B CANANB CAN2AB CAN3B

CN2B CN2AB CN3B CN2A2B CN2ANB CN3AB CN4B
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Bilinear Realization Theory (4)

Factorize:

H =



























C

CA

CN

CA2

CNA

CAN

CN2

...



























[

B AB NB A2B ANB NAB N2B . . .
]
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Introductory Example
Solving the RiSVD as an Eigenproblem

From Polynomials to Eigenproblems

Solve the following set of equations:
{

f(x, y) = y2 − 2y + x = 0 (red)
g(x, y) = 3y2 − x2 + 2x − 4 (blue)

x
K4 K2 0 2 4

y

K3

K2

K1

1

2

3
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Example

Solve the following set of equations:

{

f(x, y) = y2 − 2y + x = 0 (red)
g(x, y) = 3y2 − x2 + 2x − 4 (blue)

Let
b =

[

1 x y xy
]T

Find corresponding Ax and Ay such that:

Axb = xb and Ayb = yb

Solving a polynomial system reduces to solving an Eigenvalue Problem!

Av = λv
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Introductory Example
Solving the RiSVD as an Eigenproblem

Example

Find Ax:








0 1 0 0
× × × ×
0 0 0 1
× × × ×

















1
x

y

xy









= x









1
x

y

xy









and Ay:








0 0 1 0
0 0 0 1
× × × ×
× × × ×

















1
x

y

xy









= y









1
x

y

xy









Find expressions for x2, x2y, y2 and xy2 in terms of b. . .
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Constructing Ax and Ay

f(x, y) = y2 − 2y + x = 0 (1)

g(x, y) = 3y2 − x2 + 2x − 4 (2)

From (1) and (2):

x2 = 3y2 + 2x − 4

= 3(2y − x) + 2x − 4

= 6y − x − 4 (3)

From y times (3) and (1):

x2y = 6y2
− xy − 4y

= 6(2y − x) − xy − 4y

= 8y − 6 − xy (4)

From (1):

y2 = 2y − x (5)

From x times (1) and (3):

xy2 = 2xy − x2

= 2xy − 6y + x + 4 (6)
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Introductory Example
Solving the RiSVD as an Eigenproblem

Constructing Ax and Ay

Solving
{

f(x, y) = y2 − 2y + x = 0
g(x, y) = 3y2 − x2 + 2x − 4

reduces to solving Eigenproblems









0 1 0 0
−4 −1 6 0
0 0 0 1
0 −6 8 −1

















1
x

y

xy









= x









1
x

y

xy









and








0 0 1 0
0 0 0 1
0 −1 2 0
4 1 −6 2

















1
x

y

xy









= y









1
x

y

xy
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Introductory Example
Solving the RiSVD as an Eigenproblem

Results (1)

Eigenvalue Decomposition of Ax:

Ax = VxΣxV −1
x

with

Vx =









1 1 1 1
−4.55 0.77 + 2.54i 0.77 − 2.54i 1
3.36 −0.18 + 1.08i −0.18 − 1.08i 1

−15.26 −2.87 + 0.38i −2.87 − 0.38i 1









Σx = diag(−4.55, 0.77 + 2.54i, 0.77 − 2.54i, 1)
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Introductory Example
Solving the RiSVD as an Eigenproblem

Results (2)

Eigenvalue Decomposition of Ay:

Ay = VyΣyV
−1
y

with

Vy =









1 1 1 1
−4.55 0.77 + 2.54i 0.77 − 2.54i 1
3.36 −0.18 + 1.08i −0.18 − 1.08i 1

−15.26 −2.87 + 0.38i −2.87 − 0.38i 1









Σy = diag(3.36,−0.18 + 1.08i,−0.18 − 1.08i, 1)
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Introductory Example
Solving the RiSVD as an Eigenproblem

Remarks

All roots are extracted from Vx and/or Vy

Ax and Ay commute; common eigenspaces

How to solve for one specific root (e.g. in optimization
problems)

Direct construction of the multiplicative structure Ax, b?
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Introductory Example
Solving the RiSVD as an Eigenproblem

From STLS to Eigenproblems

System of Mult ivariate
Polynomial Equations

Eigenvalue Problem

Riemannian
Singular Value Decomposition

Realization
Theory

EIV
System Identif ication

Misfit vs. Latency
System Identif ication

PEM
System Identif ication

t0 1 2 t

8

>

>

<

>

>

:

AT u = Duvτ

Av = Dvuτ

vT v = 1

uT Dvu = 1 (= vT Duv)

x
K4 K2 0 2 4

y

K3

K2

K1

1

2

3

Av = λv
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Introductory Example
Solving the RiSVD as an Eigenproblem

Preliminary Results

The Riemannian SVD is equivalent to solving the following
minimization problem:

min
v

τ2 = vT AT D−1
v Av

s.t. vT v = 1.
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Introductory Example
Solving the RiSVD as an Eigenproblem

3 × 2 Hankel STLS

0 0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

theta

ta
u2

 

 

tau2(v)

SVD solution

RiSVD−InIt steps

RiSVD−InIt solution

underlying solution

RiSVD−EIG solution

1 2 3 4
v1 .8941 .7939 .5259 .0215
v2 -.4478 .6081 -.8505 .9998

τ2 3.1975 .9419 2.5074 2.7684
global solution? no yes no no

Eigenvalue decomposition on 20 × 20 matrix
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Introductory Example
Solving the RiSVD as an Eigenproblem

6 × 3 Hankel STLS

0 1 2 3 4 5 6
0

1

2

3

4

5

6

theta

ph
i

 

 
TLS cost function
TLS/SVD soln

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

theta

ph
i

 

 

STLS Hankel cost function

TLS/SVD soln

STSL/RiSVD/invit steps

STLS/RiSVD/invit soln

STLS/RiSVD/EIG global min

STLS/RiSVD/EIG extrema

method TLS/SVD STLS/RiSVD inverse iteration STLS/RiSVD eigenproblem
v1 .8003 .4922 .8372

v2 -.5479 -.7757 .3053

v3 .2434 .3948 .4535

τ2 4.8438 3.0518 2.3822

global solution? no no yes

Eigenvalue decomposition on 437 × 437 matrix
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Conclusions

Riemannian SVD as a tool for solving STLS problems

Broad application field

Riemannian SVD can be solved as an Eigenproblem

Applicable to short data records
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Challenges

Choice of appropriate multiplication structure

Direct construction of (minimal) Eigenproblem from
polynomial system

Solving for specific roots

Recursive formulation of Riemannian SVD solver
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The End.
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