Machine Learning on Belgian Health Expenditure **Data**

Data-Driven Screening for Type 2 Diabetes

Marc Claesen

STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics Department of Electrical Engineering (ESAT) KILLeuven

iMinds Medical IT Department

Medical Information Technologies Department

Mission statement

Demonstrate potential applications of health expenditure data

- with clinical relevance to improve healthcare
- enabled by advanced machine learning techniques

We focused on (type 2) diabetes mellitus

- large-scale survival analysis
- **o** development of a screening tool

Machine learning contributions

- **•** semi-supervised learning
- **•** automated hyperparameter optimization
- open-source software ecosystem

[Introduction](#page-3-0) [Machine learning](#page-17-0) [Case-finding](#page-61-0) **[Conclusion](#page-74-0)** [Appendix](#page-84-0)

2 [Machine learning](#page-17-0)

3 [Case-finding](#page-61-0)

[Introduction](#page-3-0) [Machine learning](#page-17-0) [Case-finding](#page-61-0) **[Conclusion](#page-74-0)** [Appendix](#page-84-0)

[Machine learning](#page-17-0)

3 [Case-finding](#page-61-0)

[Conclusion](#page-74-0)

$\frac{1}{2}$ people with **DIABETES**

1 in 2 people with diabetes **DO NOT KNOW** they have it

6

In 2014 diabetes expenditure reached US\$612 billion

<https://www.idf.org/diabetesatlas>

Case-finding for type 2 diabetes

The problem:

- long, asymptomatic period (in contrast to T1D)
- **•** many patients remain undiagnosed for years
- many patients present signs of complications at diagnosis

Early detection:

- complications can be delayed or avoided
- **•** universal screening is infeasible

Recommendations by WHO, ADA, IDF, Diabetes Liga, . . . :

- \bullet focus on case-finding (= identify persons at high risk)
- **•** forward high risk patients to diagnostic test

Early detection \rightarrow early treatment \rightarrow long-term health benefits.

Case-finding guidelines for type 2 diabetes

Persons of 18–45 years of age and one of these conditions:

- **•** prior history of gestational diabetes
- **•** prior history of stress-induced hyperglycemia

or two of the following conditions:

- **•** prior history of giving birth to a baby of over 4.5 kg
- diabetes in first-line relatives
- high BMI \geq 25 kg/m²
- large waist circumference
- **•** treated for high blood pressure or with corticoids

Persons of 45–64 years of age with ≥ 1 of above conditions. Persons above 64 years old.

 $\left(11\right)$

Survival analysis based on health expenditure data

Marc Claesen[†], Pieter Gillard[†], Frank De Smet, Michael Callens, Bart De Moor & Chantal Mathieu (2015). Mortality in individuals treated with glucose lowering agents: a large, controlled cohort study. Provisionally accepted with minor revisions at Journal of Clinical Endocrinology & Metabolism (JCEM).

B. insulin monotherapy

13

5-year survival by age via health expenditure data

Marc Claesen[†], Pieter Gillard[†], Frank De Smet, Michael Callens, Bart De Moor & Chantal Mathieu (2015). Mortality in individuals treated with glucose lowering agents: a large, controlled cohort study. Provisionally accepted with minor revisions at Journal of Clinical Endocrinology & Metabolism (JCEM).

14

$-CHEAP$ **CHEAP CHEAP**

Advantages:

- **•** long-term longitudinal overview of patients' medical history
- diabetics identifiable via routine use of glucose-lowering agents
- screening would be essentially free, as data is already available

Disadvantages:

- lack of info related to several important known risk factors
- some false positives are induced by labeling via GLAs

Key challenge: impossible to identify non-diabetics \rightarrow requires special learning methods (no known negatives)

[Introduction](#page-3-0) [Machine learning](#page-17-0) [Case-finding](#page-61-0) **[Conclusion](#page-74-0)** [Appendix](#page-84-0)

3 [Case-finding](#page-61-0)

4 [Conclusion](#page-74-0)

Marc Claesen [Machine Learning on Belgian Health Expenditure Data](#page-0-0)

33

Ensemble learning with SVM base models

- aggregate many SVM models trained on small resamples
- **•** facilitates nonlinear learning on large-scale data sets
- **•** resulting models are robust to label noise

Marc Claesen, Frank De Smet, Johan Suykens & Bart De Moor (2014). EnsembleSVM: A library for ensemble learning using support vector machines. Journal of Machine Learning Research, 15(1), 141-145. Publication available at <http://www.jmlr.org/papers/volume15/claesen14a/claesen14a.pdf>.

Marc Claesen, Frank De Smet, Johan Suykens & Bart De Moor (2015). A robust ensemble approach to learn from positive and unlabeled data using SVM base models. Neurocomputing, 160, 73-84. Publication available at <http://dx.doi.org/10.1016/j.neucom.2014.10.081>.

Machine learning pipeline

Performance evaluation without known negatives

Task: compute classifier performance without known negatives.

Commonly used (bad) approximation: treat unlabeled as negatives.

Performance evaluation without known negatives

Task: compute classifier performance without known negatives.

Commonly used (bad) approximation: treat unlabeled as negatives.

We developed a novel method:

- computes bounds on contingency tables $(+)$ related metrics)
- assuming known positives are sampled at random
- given the fraction of latent positives in unlabeled set

Performance evaluation without negatives was uncharted territory.

Marc Claesen, Jesse Davis, Frank De Smet & Bart De Moor (2015). Assessing binary classifiers using only positive and unlabeled data. Will be submitted to ACM SIGKDD in 2016. Preprint available at <http://arxiv.org/abs/1504.06837>.

Example of performance bounds on ROC curve

Our approach accurately bounds the true performance.

Machine learning pipeline

Many learning algorithms are hyperparameterized.

 \bullet regularization, learning rate, kernel bandwidth, ...

Suitable values must be found, but this is difficult.

- non-convex, expensive, black-box objective function
- commonly done manually or via grid or random search

Marc Claesen & Bart De Moor (2015). Hyperparameter Search in Machine Learning. In Proceedings of the 11th Metaheuristics International Conference (MIC), Agadir, Morocco. Paper available at <http://arxiv.org/abs/1502.02127>.

Hyperparameter response surface of SVM with RBF kernel

Contours for tuning an SVM with RBF kernel

Python library for automated hyperparameter optimization

- o offers a wide variety of metaheuristic approaches
- **•** design focus on easy deployment & intuitive API
- **•** direct support for R, Julia, MATLAB & Octave
- \bullet > 1,000 downloads/month via Python package index

Marc Claesen, Jaak Simm, Dusan Popovic, Yves Moreau & Bart De Moor (2014). Easy hyperparameter search using Optunity. Under review at Journal of Machine Learning Research (4th revision ...). Preprint available at <http://arxiv.org/abs/1412.1114>.

[Introduction](#page-3-0) [Machine learning](#page-17-0) [Case-finding](#page-61-0) [Conclusion](#page-74-0) [Appendix](#page-84-0)

[Machine learning](#page-17-0)

3 [Case-finding](#page-61-0)

[Conclusion](#page-74-0)

Goal

Identify persons likely to start T2D therapy

- **•** based exclusively on health expenditure data
- \bullet = patients with similar medical histories to known diabetics

Labeling:

- positives: patients that start routine use of GLAs
- negatives: not directly available
- discard medical history once diabetes therapy is started

Note: not all diabetics use GLAs (even when diagnosed!).

o our labeling approach identifies more progressed patients

Marc Claesen, Frank De Smet, Pieter Gillard, Chantal Mathieu & Bart De Moor (2015). Building Classifiers to Predict the Start of Glucose-Lowering Pharmacotherapy Using Belgian Health Expenditure Data. Under review at Journal of Machine Learning Research (revision). Preprint available at <http://arxiv.org/abs/1504.07389>.

We used records from the period 2008 up to 2012:

- of patients without prior use of GLAs before 2012
- patients of 40 years or older in 2012
- frequency counts per provision and drug

Labeling based on 2012 up to and including 2014:

- 31,066 known positives, 79,243 unlabeled (random)
- known positives have minimum 30 days of GLA use

Drug purchases:

- encoded per package, with info about substances and doses
- \bullet each record can be mapped onto ATC system w/ DDDs

Provisions:

- each provision has a unique code
- each medical consultation \rightarrow list of nomenclature codes

Example: ATC codes related to metformin

The Anatomical Therapeutic Chemical classification system:

- **•** tree structure which classifies medication into 5 levels
- 14 main groups (1st level)
- \approx 1400 active substances (5th level)

Receiver Operating Characteristic curves

Receiver Operating Characteristic curves

Receiver Operating Characteristic curves

Our approach beats Belgian guidelines under all configurations.

Performance in AUROC (%)

Our approaches based only on health expenditure data:

International state-of-the-art based on surveys/primary care:

International state-of-the-art with clinical data: $FINDRISC$ $85\% - 87\%$ German diabetes risk score 75% – 83%

Key risk factors: BMI, waist circumference, family history, diet, ...

Precision-recall curves

Precision-recall curves

Precision-recall curves

Our approach has suitable characteristics for case-finding.

[Introduction](#page-3-0) [Machine learning](#page-17-0) [Case-finding](#page-61-0) [Conclusion](#page-74-0) [Appendix](#page-84-0)

[Machine learning](#page-17-0)

3 [Case-finding](#page-61-0)

Marc Claesen [Machine Learning on Belgian Health Expenditure Data](#page-0-0)

Machine learning:

- **•** learning method for positive and unlabeled data
- evaluating classifiers without known negatives

Open-source software:

- **•** ensemble learning with SVM base models
- automated hyperparameter optimization

Medical:

- **•** survival analysis of patients taking GLAs in Belgium
- approach to identify patients that require GLA therapy

Main result & future research

We developed a good case-finding approach for T2D.

- competitive with state-of-the-art screening approaches which typically use surveys or GP data (expensive)
- without direct info about important known risk factors BMI, lifestyle, diet, genetic predisposition, . . .
- which can predict start of medication years in advance

Main result & future research

We developed a good case-finding approach for T2D.

- competitive with state-of-the-art screening approaches which typically use surveys or GP data (expensive)
- without direct info about important known risk factors BMI, lifestyle, diet, genetic predisposition, . . .
- which can predict start of medication years in advance

Operational cost of our approach $=$ hosting a simple website

• because the data is already digitally available

Main result & future research

We developed a good case-finding approach for T2D.

- competitive with state-of-the-art screening approaches which typically use surveys or GP data (expensive)
- without direct info about important known risk factors BMI, lifestyle, diet, genetic predisposition, . . .
- which can predict start of medication years in advance

Operational cost of our approach $=$ hosting a simple website

• because the data is already digitally available

Future research

- **e** enrich the data with known risk factors
- **•** clinical validation via other data sources

- \circ 5.000 EUR/year excess cost per patient vs. non-diabetic
- \bullet mainly pharma $+$ complications

Many new patients every year:

- 10.000 new known drug-treated patients/year in CM
- \bullet we can reliably identify 5 to 10% of these patients years earlier

- \circ 5.000 EUR/year excess cost per patient vs. non-diabetic
- \bullet mainly pharma $+$ complications

Many new patients every year:

- 10.000 new known drug-treated patients/year in CM
- \bullet we can reliably identify 5 to 10% of these patients years earlier

early detection of 500 patients/year

- 5.000 EUR/year excess cost per patient vs. non-diabetic
- \bullet mainly pharma $+$ complications

Many new patients every year:

- 10.000 new known drug-treated patients/year in CM
- \bullet we can reliably identify 5 to 10% of these patients years earlier

early detection of 500 patients/year save \times 10.000 EUR/patient (in lifetime)

- \circ 5.000 EUR/year excess cost per patient vs. non-diabetic
- \bullet mainly pharma $+$ complications

Many new patients every year:

- 10.000 new known drug-treated patients/year in CM
- \bullet we can reliably identify 5 to 10% of these patients years earlier

Published:

- EnsembleSVM (Journal of Machine Learning Research)
- PU learning method (Neurocomputing)

Under review:

- Optunity (Journal of Machine Learning Research)
- Survival analysis (*J. of Clinical Endocrinology & Metabolism*)
- Diabetes screening (Journal of Machine Learning Research)

To be submitted/in preparation:

- Evaluating models without negatives (ACM SIGKDD 2016)
- Diabetes screening, medical interpretation (tier 1 medical)

