Machine Learning on Belgian Health Expenditure Data

Data-Driven Screening for Type 2 Diabetes

Marc Claesen

STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics Department of Electrical Engineering (ESAT) KU Leuven

iMinds Medical IT Department

Medical Information Technologies Department

Mission statement

Demonstrate potential applications of health expenditure data

- with clinical relevance to improve healthcare
- enabled by advanced machine learning techniques

We focused on (type 2) diabetes mellitus

- large-scale survival analysis
- development of a screening tool

Machine learning contributions

- semi-supervised learning
- automated hyperparameter optimization
- open-source software ecosystem

Introduction Machine learning Case-finding Conclusion Appendix

2 Machine learning

3 Case-finding

Introduction Machine learning Case-finding Conclusion Appendix

2 Machine learning

3 Case-finding

4 Conclusion

Marc Claesen Machine Learning on Belgian Health Expenditure Data

i/12 people with DIABETES

1 in 2 people with diabetes **DO NOT KNOW** they have it

In 2014 diabetes expenditure reached US\$612 billion

https://www.idf.org/diabetesatlas

Case-finding for type 2 diabetes

The problem:

- long, asymptomatic period (in contrast to T1D)
- many patients remain undiagnosed for years
- many patients present signs of complications at diagnosis

Early detection:

- complications can be delayed or avoided
- universal screening is infeasible

Recommendations by WHO, ADA, IDF, Diabetes Liga, ...:

- focus on case-finding (= identify persons at high risk)
- forward high risk patients to diagnostic test

Early detection \rightarrow early treatment \rightarrow long-term health benefits.

Case-finding guidelines for type 2 diabetes

Persons of 18-45 years of age and one of these conditions:

- prior history of gestational diabetes
- prior history of stress-induced hyperglycemia

or two of the following conditions:

- prior history of giving birth to a baby of over 4.5 kg
- diabetes in first-line relatives
- high BMI $\geq 25~\text{kg}/\text{m}^2$
- large waist circumference
- treated for high blood pressure or with corticoids

Persons of 45–64 years of age with ≥ 1 of above conditions. Persons above 64 years old.

HIERNA IN	VULLEN OF K	LEEFBRIEF	JE V.I. AANBE	RENGEN	
Naam en vo	ornaam van de	gerechtigde	/patiënt :		
Vorzekoring	installing .				
Incohriivinge					
mschrijvings	nummer:				
Adres van de	e gerechtigde :				
GETU	IGSCHRI	FT VOO	R VERST	REKTE H	ULP
IN TE V	ULLEN DOO	R DE VERS	TREKKER	1	-
Naam en voo	ornaam van d	e patiënt :			<u> </u>
Gerechtigde	- Echtgenote	- Kind - Asc	cendent (1)		
Raadpleging	- Bezoek (2	2)		1	~
Raadpleging	- Bezoek (2)	All	2104	
Raadpleging Datum : 0.4.1	- Bezoek (2 MI	2) Nomenclati	uur nr.k	2104	,
Raadpleging Datum : (– Bezoek (2 MINT strekkingen (2	2) Nomenclati 2)	uur nr.\	21046	,
Raadpleging Datum (), / Reiskosten : Andere vers Datum van de	- Bezoek (2 MI. MT. strekkingen (2	2) Nomenclati 2) Voorbehou-	Datum van de	Nummer v. d.	Voorbehou- den aan VI.
Raadpleging Datum :	- Bezoek (2 M	2) Nomenclati 2) Voorbehou- den aan V.I.	Datum van de verstrekking	Nummer v. d. nomenclatuur	Voorbehou- den aan V.I.
Raadpleging Datum :, / Reiskosten : Andere vers Datum van de verstrekking	- Bezoek (; MA strekkingen (; Nummer v. d. nomenclatuur	2) Nomenclati 2) Voorbehou- den aan V.I.	Datum van de verstrekking	Nummer v. d. nomenclatuur	Voorbehou- den aan V.I.
Raatpleging Datum :	- Bezoek (; M	2) Nomenclatu 2) Voorbehou- den aan V.I.	Datum van de verstrekking	Nummer v. d. nomenclatuur	Voorbehou- den aan V.I.
Raatpleging Datum :	– Bezoek (; M.I	2) Nomenclati 2) Voorbehou- den aan VI.	Datum van de verstrekking	Nummer v. d. nomenclatuur	Voorbehou- den aan V.I.
Raatpleging Datum :	- Bezoek (? M.IA.Y strekkingen (? Nummer v. d. nomenciatuur	2) Nomenclatu 2) Voorbehou- den aan V.I.	Datum van de verstrekking	Nummer v. d. nomenclatuur	Voorbehou- den aan V.I.
Raatpleging Datum :	- Bezoek (? M.IA.Y strekkingen (? Nummer v. d. nomenclaituur	2) Nomenclati 2) Voorbehou- den aan V.I.	Datum van de verstrekking	Nummer v. d. nomenclatuur	Voorbehou- den aan V.I.
Raatpleging Datum : Reiskosten : Andere vers Datum van de verstrekking	- Bezoek (2 MiMi strekkingen (2 Nummer v. d. nomenclatuur	2) Nomenclatu 2) Voorbehou- den aan VI.	Datum van de verstrekking	Nummer v. d. nomenclatuur	Voorbehou- den aan V.I.
Raatpleging Datum : Reiskosten : Andere ver Datum van de verstrekking	- Bezoek (2 Mi. AL. strekkingen (2 Nummer v. d. nomenclatuur	2) Nomenclati 2) Voorbehou- den aan V.I.	Datum van de versitekking	Nummer v. d. Nomenclatuur	Voorbehou- den aan V.I.
Raatpleging Datum : Reiskosten : Andere ver Datum van de verstekking	- Bezoek (? Mi. Ai. strekkingen (? Numer v. d. nomenclatur	2) Nomenciali 2) Voorbehou: den aan V.i.	Datum van de verstrekking	Nummer s. d. nomenclatuur	Voorthehour- den aan VI.

(11)

Survival analysis based on health expenditure data

Marc Claesen[†], Pieter Gillard[†], Frank De Smet, Michael Callens, Bart De Moor & Chantal Mathieu (2015). Mortality in individuals treated with glucose lowering agents: a large, controlled cohort study. Provisionally accepted with minor revisions at Journal of Clinical Endocrinology & Metabolism (JCEM). C

13

5-year survival by age via health expenditure data

Marc Claesen[†], Pieter Gillard[†], Frank De Smet, Michael Callens, Bart De Moor & Chantal Mathieu (2015). Mortality in individuals treated with glucose lowering agents: a large, controlled cohort study. Provisionally accepted with minor revisions at *Journal of Clinical Endocrinology & Metabolism (JCEM)*.

[14]

CHEAP CHEAP **CHEAP**

Advantages:

- long-term longitudinal overview of patients' medical history
- diabetics identifiable via routine use of glucose-lowering agents
- screening would be essentially free, as data is already available

Disadvantages:

- lack of info related to several important known risk factors
- some false positives are induced by labeling via GLAs

Key challenge: impossible to identify non-diabetics \rightarrow requires special learning methods (no known negatives)

Introduction Machine learning Case-finding Conclusion Appendix

3 Case-finding

4 Conclusion

Marc Claesen Machine Learning on Belgian Health Expenditure Data

26

(33)

Ensemble learning with SVM base models

- aggregate many SVM models trained on small resamples
- facilitates nonlinear learning on large-scale data sets
- resulting models are robust to label noise

Marc Claesen, Frank De Smet, Johan Suykens & Bart De Moor (2014). EnsembleSVM: A library for ensemble learning using support vector machines. Journal of Machine Learning Research, 15(1), 141-145. Publication available at http://www.jmlr.org/papers/volume15/claesen14a/claesen14a/f.

Marc Claesen, Frank De Smet, Johan Suykens & Bart De Moor (2015). A robust ensemble approach to learn from positive and unlabeled data using SVM base models. Neurocomputing, 160, 73-84. Publication available at http://dx.doi.org/10.1016/j.neucom.2014.10.081.

(43)

(44)

Machine learning pipeline

	example's	example's
	true label	true label
	is positive	is negative
model predicts positive	true positive	false positive
model predicts negative	false negative	true negative

	example's	example's
	true label	true label
	is positive	is negative
model predicts positive	true positive	false positive
model predicts negative	false negative	true negative

	example's	example's
	true label	true label
	is positive	is negative
model predicts positive	true positive	false positive
model predicts negative	false negative	true negative

	example's	example's
	true label	true label
	is positive	is negative
model predicts positive	true positive	false positive
model predicts negative	false negative	true negative

	example's	example's
	true label	true label
	is positive	is negative
model predicts positive	true positive	false positive
model predicts negative	false negative	true negative

Performance evaluation without known negatives

Task: compute classifier performance without known negatives.

Commonly used (bad) approximation: treat unlabeled as negatives.

Performance evaluation without known negatives

Task: compute classifier performance without known negatives.

Commonly used (bad) approximation: treat unlabeled as negatives.

We developed a novel method:

- computes bounds on contingency tables (+ related metrics)
- assuming known positives are sampled at random
- given the fraction of latent positives in unlabeled set

Performance evaluation without negatives was uncharted territory.

Marc Claesen, Jesse Davis, Frank De Smet & Bart De Moor (2015). Assessing binary classifiers using only positive and unlabeled data. Will be submitted to ACM SIGKDD in 2016. Preprint available at http://arxiv.org/abs/1504.06837.

Example of performance bounds on ROC curve

Our approach accurately bounds the true performance.

Machine learning pipeline

Hyperparameter optimization aka "tuning"

Many learning algorithms are hyperparameterized.

• regularization, learning rate, kernel bandwidth,

Suitable values must be found, but this is difficult.

- non-convex, expensive, black-box objective function
- commonly done manually or via grid or random search

Marc Claesen & Bart De Moor (2015). Hyperparameter Search in Machine Learning. In Proceedings of the 11th Metaheuristics International Conference (MIC), Agadir, Morocco. Paper available at http://arxiv.org/abs/1502.02127.

Hyperparameter response surface of SVM with RBF kernel

59

Contours for tuning an SVM with RBF kernel

Python library for automated hyperparameter optimization

- offers a wide variety of metaheuristic approaches
- design focus on easy deployment & intuitive API
- direct support for R, Julia, MATLAB & Octave
- $\bullet > 1,000$ downloads/month via Python package index

Marc Claesen, Jaak Simm, Dusan Popovic, Yves Moreau & Bart De Moor (2014). *Easy hyperparameter search using Optunity*. Under review at Journal of Machine Learning Research (4th revision ...). Preprint available at http://arxiv.org/abs/1412.1114.

Introduction Machine learning Case-finding Conclusion Appendix

3 Case-finding

4 Conclusion

Marc Claesen Machine Learning on Belgian Health Expenditure Data

Goal

Identify persons likely to start T2D therapy

- based exclusively on health expenditure data
- ullet = patients with similar medical histories to known diabetics

Labeling:

- positives: patients that start routine use of GLAs
- negatives: not directly available
- discard medical history once diabetes therapy is started

Note: not all diabetics use GLAs (even when diagnosed!).

• our labeling approach identifies more progressed patients

Marc Claesen, Frank De Smet, Pieter Gillard, Chantal Mathieu & Bart De Moor (2015). Building Classifiers to Predict the Start of Glucose-Lowering Pharmacotherapy Using Belgian Health Expenditure Data. Under review at Journal of Machine Learning Research (revision). Preprint available at http://arxiv.org/abs/1504.07389. We used records from the period 2008 up to 2012:

- of patients without prior use of GLAs before 2012
- patients of 40 years or older in 2012
- frequency counts per provision and drug

Labeling based on 2012 up to and including 2014:

- 31,066 known positives, 79,243 unlabeled (random)
- known positives have minimum 30 days of GLA use

Drug purchases:

- encoded per package, with info about substances and doses
- $\bullet\,$ each record can be mapped onto ATC system w/ DDDs

Provisions:

- each provision has a unique code
- $\bullet\,$ each medical consultation $\rightarrow\,$ list of nomenclature codes

Example: ATC codes related to metformin

The Anatomical Therapeutic Chemical classification system:

- tree structure which classifies medication into 5 levels
- 14 main groups (1st level)
- pprox 1400 active substances (5th level)

level	$ATC \ code$	description
1	А	alimentary tract and metabolism
2	A10	drugs used in diabetes
3	A10B	blood glucose lowering drugs, excluding insulins
4	A10BA	biguanides
5	A10BA02	metformin

Receiver Operating Characteristic curves

Receiver Operating Characteristic curves

Receiver Operating Characteristic curves

Our approach beats Belgian guidelines under all configurations.

Performance in AUROC (%)

Our approaches based only on health expenditure data:

age & gender	61% - 62%
+ medication	74%-76%
+ provisions	75%-77%

International state-of-the-art based on surveys/primary care:

Cambridge Risk Score	67% – 80%
Danish diabetes risk score	76% – 80%
Diabetes Risk Calculator	75% – 85%

International state-of-the-art with clinical data:FINDRISC85% - 87%German diabetes risk score75% - 83%

Key risk factors: BMI, waist circumference, family history, diet, ...

Precision-recall curves

(71

Precision-recall curves

Precision-recall curves

Our approach has suitable characteristics for case-finding.

feature	normalized weight		description
C09B			ACE inhibitors (combo)
C09D			angiotensin II antagonists
C10A			statins
NO5A			antipsychotics
CO3E			diuretics & potassium-sparing
C03C			high-ceiling diuretics
N06A			antidepressants
MO4A			antigout preparations
A02B			peptic ulcer & GORD
C09A			ACE inhibitors (plain)

Introduction Machine learning Case-finding **Conclusion** Appendix

2 Machine learning

3 Case-finding

Machine learning:

- learning method for positive and unlabeled data
- evaluating classifiers without known negatives

Open-source software:

- ensemble learning with SVM base models
- automated hyperparameter optimization

Medical:

- survival analysis of patients taking GLAs in Belgium
- approach to identify patients that require GLA therapy

Main result & future research

We developed a good case-finding approach for T2D.

- competitive with state-of-the-art screening approaches which typically use surveys or GP data (expensive)
- without direct info about important known risk factors BMI, lifestyle, diet, genetic predisposition, ...
- which can predict start of medication years in advance

Main result & future research

We developed a good case-finding approach for T2D.

- competitive with state-of-the-art screening approaches which typically use surveys or GP data (expensive)
- without direct info about important known risk factors BMI, lifestyle, diet, genetic predisposition, ...
- which can predict start of medication years in advance

Operational cost of our approach = hosting a simple website

• because the data is already digitally available

Main result & future research

We developed a good case-finding approach for T2D.

- competitive with state-of-the-art screening approaches which typically use surveys or GP data (expensive)
- without direct info about important known risk factors BMI, lifestyle, diet, genetic predisposition, ...
- which can predict start of medication years in advance

Operational cost of our approach = hosting a simple website

• because the data is already digitally available

Future research

- enrich the data with known risk factors
- clinical validation via other data sources

Type 2 diabetes is expensive

- 5.000 EUR/year excess cost per patient vs. non-diabetic
- mainly pharma + complications

Many new patients every year:

- 10.000 new known drug-treated patients/year in CM
- we can reliably identify 5 to 10% of these patients years earlier

Type 2 diabetes is expensive

- 5.000 EUR/year excess cost per patient vs. non-diabetic
- mainly pharma + complications

Many new patients every year:

- 10.000 new known drug-treated patients/year in CM
- we can reliably identify 5 to 10% of these patients years earlier

early detection of 500 patients/year

Type 2 diabetes is expensive

- 5.000 EUR/year excess cost per patient vs. non-diabetic
- mainly pharma + complications

Many new patients every year:

- 10.000 new known drug-treated patients/year in CM
- we can reliably identify 5 to 10% of these patients years earlier

Type 2 diabetes is expensive

- 5.000 EUR/year excess cost per patient vs. non-diabetic
- mainly pharma + complications

Many new patients every year:

- 10.000 new known drug-treated patients/year in CM
- we can reliably identify 5 to 10% of these patients years earlier

early detection of	500	patients/year
save	\times 10.000	EUR/patient (in lifetime)
healthcare cost reduction	5.000.000	EUR/year

Published:

- EnsembleSVM (Journal of Machine Learning Research)
- PU learning method (*Neurocomputing*)

Under review:

- Optunity (Journal of Machine Learning Research)
- Survival analysis (J. of Clinical Endocrinology & Metabolism)
- Diabetes screening (Journal of Machine Learning Research)

To be submitted/in preparation:

- Evaluating models without negatives (ACM SIGKDD 2016)
- Diabetes screening, medical interpretation (tier 1 medical)