

Back to the Roots

Polynomial System Solving Using Linear Algebra

Philippe Dreesen

KU Leuven Department of Electrical Engineering ESAT-STADIUS Stadius Center for Dynamical Systems, Signal Processing and Data Analytics

Outline

- [Univariate Polynomials](#page-11-0)
- [Multivariate Polynomials](#page-15-0)
- [Algebraic Optimization](#page-31-0)

[Conclusions](#page-38-0)

Why Study Polynomial Equations?

- fundamental mathematical objects
- powerful modelling tools
- ubiquitous in Science and Engineering (often hidden)

Systems and Control Signal Processing Computational Biology Kinematics/Robotics

[A long and rich history. . .](#page-4-0)

[. . . leading to "Algebraic Geometry"](#page-5-0)

Etienne Bézout (1730-1783)

Carl Friedrich Gauss (1777-1755)

Jean-Victor Poncelet (1788-1867)

Evariste Galois (1811-1832)

Arthur Cayley (1821-1895)

Leopold Kronecker (1823-1891)

Edmond Laguerre (1834-1886)

James J. Sylvester (1814-1897)

Francis S. Macaulay (1862-1937)

David Hilbert (1862-1943)

[. . . leading to "Algebraic Geometry"](#page-6-0)

Algebraic Geometry and Computer Algebra

- large body of literature
- emphasis not (anymore) on solving equations
- computer algebra: symbolic manipulations (e.g., Gröbner Bases)
- numerical issues!

Wolfgang Gröbner (1899-1980)

Bruno Buchberger

...and (Numerical) Linear Algebra

(1736-1813)

Joseph-Louis Lagrange Augustin-Louis Cauchy (1789-1857)

Hermann Grassmann (1809-1877)

Charles Babbage (1791-1871)

Ada Lovelace (1815-1852)

Alan Turing (1912-1954)

John von Neumann (1903-1957)

Gene Golub (1932-2007)

Daniel Lazard Hans J. Stetter

Why Linear Algebra?

- comprehensible and accessible language
- intuitive geometric interpretation
- computationally powerful framework
- well-established methods and stable numerics

Eigenvalue Problems

Eigenvalue equation

$$
Av = \lambda v
$$

and eigenvalue decomposition

 $A = V \Lambda V^{-1}$

Enormous importance in (numerical) linear algebra and apps

- $-$ 'understand' the action of matrix \ddot{A}
- at the heart of a multitude of applications: oscillations, vibrations, quantum mechanics, data analytics, graph theory, and **many** more

Outline

1 [Motivation and History](#page-1-0)

- 2 [Univariate Polynomials](#page-11-0)
- 3 [Multivariate Polynomials](#page-15-0)
- 4 [Algebraic Optimization](#page-31-0)
-

Univariate Polynomials and Linear Algebra: Known Facts

Characteristic Polynomial The eigenvalues of A are the roots of

 $p(\lambda) = |A - \lambda I|$

Companion Matrix

Solving

$$
q(x) = 7x^3 - 2x^2 - 5x + 1 = 0
$$

leads to

$$
\begin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ -1/7 & 5/7 & 2/7 \end{bmatrix} \begin{bmatrix} 1 \ x \ x^2 \end{bmatrix} = x \begin{bmatrix} 1 \ x \ x^2 \end{bmatrix}
$$

Sylvester Matrix

Consider two polynomial equations

$$
f(x) = x3 - 6x2 + 11x - 6 = (x - 1)(x - 2)(x - 3)
$$

\n
$$
g(x) = -x2 + 5x - 6 = -(x - 2)(x - 3)
$$

Common roots if $|S(f,g)| = 0$

$$
S(f,g) = \begin{bmatrix} -6 & 11 & -6 & 1 & 0 \\ 0 & -6 & 11 & -6 & 1 \\ -6 & 5 & -1 & 0 & 0 \\ 0 & -6 & 5 & -1 & 0 \\ 0 & 0 & -6 & 5 & -1 \end{bmatrix}
$$

James Joseph Sylvester

Sylvester's construction can be understood from

where $x_1 = 2$ and $x_2 = 3$ are the common roots of f and g

Outline

1 [Motivation and History](#page-1-0)

- 2 [Univariate Polynomials](#page-11-0)
- 3 [Multivariate Polynomials](#page-15-0)
- 4 [Algebraic Optimization](#page-31-0)

$$
p(x, y) = x2 + 3y2 - 15 = 0
$$

\n
$$
q(x, y) = y - 3x3 - 2x2 + 13x - 2 = 0
$$

Continue to enlarge the Macaulay matrix M :

– Macaulay coefficient matrix M :

– solutions generate vectors in null space

 $MK = 0$

– number of solutions $m =$ nullity

Multivariate Vandermonde basis for the null space:

Select the 'top' m linear independent rows of K

"shift with $x'' \rightarrow$

[Null space based Root-finding](#page-20-0)

Shifting the selected rows gives (shown for 3 columns)

simplified:

 x_1

– finding the x-roots: let $D_x = diag(x_1, x_2, \ldots, x_s)$, then

$$
S_1 K D_x = S_x K,
$$

where S_1 and S_x select rows from K wrt. shift property

– reminiscent of Realization Theory

We have

$$
S_1 \big| KD_x = \big| S_x \big| K
$$

However, K is not known, instead a basis Z is computed that satisfies

 $ZV = K$

Which leads to

$$
(S_x Z)V = (S_1 Z)VD_x
$$

It is possible to shift with y as well...

We find

$$
S_1 K D_y = S_y K
$$

with D_y diagonal matrix of y-components of roots, leading to

$$
(S_y Z)V = (S_1 Z) V D_y
$$

Some interesting results:

- $-$ same eigenvectors $V!$
- $(S_3 Z)^{-1}(S_1 Z)$ and $(S_2 Z)^{-1}(S_1 Z)$ commute

[Motivation and History](#page-1-0) [Univariate Polynomials](#page-11-0) [Multivariate Polynomials](#page-15-0) [Algebraic Optimization](#page-31-0) [Conclusions](#page-38-0) [Modeling the null space with](#page-24-0) nD Realization Theory

The null space of the Macaulay matrix is the interface between polynomial system and nD state space description

– Attasi model (for $n = 2$)

$$
v(k+1,l) = A_x v(k,l)
$$

$$
v(k,l+1) = A_y v(k,l)
$$

– null space of Macaulay matrix: nD state sequence

$$
\begin{pmatrix}\n| & | & | & | & | & |\n\frac{v_{00}}{v_{10}} & v_{01} & v_{20} & v_{11} & v_{02} \\
| & | & | & | & | & |\n\end{pmatrix}\n\begin{pmatrix}\n| & | & | & | & |\n\frac{v_{30}}{v_{30}} & v_{21} & v_{12} & v_{03} \\
| & | & | & | & |\n\end{pmatrix}^T =\n\begin{pmatrix}\n| & | & | & | & |\n\frac{v_{00}}{v_{10}} & A_y v_{00} & A_x A_y v_{00} & A_x A_y^2 v_{00} & A_y^3 v_{00} \\
| & | & | & | & |\n\end{pmatrix}^T
$$

- shift-invariance property, e.g., for y :

$$
\begin{pmatrix}\n-v_{00}- \\
-v_{10}- \\
-v_{01}- \\
-v_{20}- \\
-v_{11}- \\
-v_{02}-\n\end{pmatrix} A_y^T = \begin{pmatrix}\n-v_{01}- \\
-v_{11}- \\
-v_{02}- \\
-v_{12}- \\
-v_{12}- \\
-v_{03}-\n\end{pmatrix},
$$

– corresponding nD system realization

$$
v(k+1,l) = A_x v(k,l)v(k,l+1) = A_y v(k,l)v(0,0) = v_{00}
$$

- choice of basis null space leads to different system realizations
- eigenvalues of A_x and A_y invariant: x and y components of roots

Mind the Gap!

- dynamics in the null space of $M(d)$ for increasing degree d
- nilpotency gives rise to a 'gap'
- mechanism to count and separate affine from infinity

[Motivation and History](#page-1-0) [Univariate Polynomials](#page-11-0) [Multivariate Polynomials](#page-15-0) [Algebraic Optimization](#page-31-0) [Conclusions](#page-38-0) [Complications: Roots at Infinity](#page-27-0)

Roots at Infinity: nD Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity

$$
\begin{bmatrix} v(k+1) \ \hline w(k-1) \end{bmatrix} = \begin{bmatrix} A & 0 \ \hline 0 & E \end{bmatrix} \begin{bmatrix} v(k) \ \hline w(k) \end{bmatrix}
$$

Singular nD Attasi model (for $n = 2$)

$$
v(k + 1, l) = A_x v(k, l)
$$

\n
$$
v(k, l + 1) = A_y v(k, l)
$$

\n
$$
w(k - 1, l) = E_x w(k, l)
$$

\n
$$
w(k, l - 1) = E_y w(k, l)
$$

with E_x and E_y nilpotent matrices.

Two extensions of the root-finding method:

Column-space based root-finding method

- dual method operating on column space instead of null space
- leads again to eigenvalue problems
- employs (Q)R-decomposition

Finding approximate solutions of over-constrained systems

- generalization to over-constrained (noisy) systems
- approximate solutions detectable by computing SVD of M
- – example from computer vision: camera pose determination

Summary

- solving multivariate polynomials
	- question in linear algebra
	- realization theory in null space of Macaulay matrix
	- nD autonomous (descriptor) Attasi model
- decisions made based upon (numerical) rank
	- $-$ # roots (nullity)
	- $-$ # affine roots (column reduction)
- mind the gap phenomenon: affine vs. infinity roots
- – not discussed
	- multiplicity of roots
	- column-space based method
	- over-constrained systems

"I think you should be more explicit here in step two."

Outline

1 [Motivation and History](#page-1-0)

- 2 [Univariate Polynomials](#page-11-0)
- 3 [Multivariate Polynomials](#page-15-0)
- 4 [Algebraic Optimization](#page-31-0)

Polynomial Optimization Problems

$$
\min_{x,y} \qquad x^2 + y^2
$$
\n
$$
\text{s.t.} \qquad y - x^2 + 2x - 1 = 0
$$

Lagrange multipliers give conditions for optimality:

$$
L(x, y, z) = x2 + y2 + z(y - x2 + 2x - 1)
$$

we find

$$
\begin{aligned}\n\partial L/\partial x &= 0 &\to 2x - 2xz + 2z = 0\\
\partial L/\partial y &= 0 &\to 2y + z = 0\\
\partial L/\partial z &= 0 &\to y - x^2 + 2x - 1 = 0\n\end{aligned}
$$

Observations:

- everything remains polynomial
- system of polynomial equations
- shift with objective function to find minimum/maximum

Let

$$
A_x V = xV
$$

and

$$
A_yV=yV
$$

then find min/max eigenvalue of

$$
(A_x^2 + A_y^2)V = (x^2 + y^2)V
$$

[System Identification: Prediction Error Methods](#page-34-0)

Polynomial Optimization Problems: Applications

- $-$ PEM System identification $=$ EVP !!
- $-$ Measured data $\left\{ u_k, y_k \right\}_{k=1}^N$
- Model structure

$$
y_k = G(q)u_k + H(q)e_k
$$

– Output prediction

$$
\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k
$$

– Model classes: ARX, ARMAX, OE, BJ

 $A(q)y_k = B(q)/F(q)u_k + C(q)/D(q)e_k$

– Minimize the prediction errors $y - \hat{y}$, where

$$
\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k,
$$

subject to the model equations

ARMAX identification: $G(q) = B(q)/A(q)$ and $H(q) = C(q)/A(q)$, where $A(q) = 1 + aq^{-1}, B(q) = bq^{-1}, C(q) = 1 + cq^{-1}, N = 5$

$$
\min_{\hat{y},a,b,c} \qquad (y_1 - \hat{y}_1)^2 + \ldots + (y_5 - \hat{y}_5)^2
$$
\n
$$
\text{s.t.} \qquad \hat{y}_5 - c\hat{y}_4 - bu_4 - (c - a)y_4 = 0,
$$
\n
$$
\hat{y}_4 - c\hat{y}_3 - bu_3 - (c - a)y_3 = 0,
$$
\n
$$
\hat{y}_3 - c\hat{y}_2 - bu_2 - (c - a)y_2 = 0,
$$
\n
$$
\hat{y}_2 - c\hat{y}_1 - bu_1 - (c - a)y_1 = 0,
$$

[Structured Total Least Squares](#page-36-0)

Dynamical Linear Modeling

- Rank deficiency
- minimization problem:

min $\left\vert \left\vert \left[\Delta a-\Delta b\right] \right\vert \right\vert _{F}^{2},$ s. t. $(A + \Delta A)v = B + \Delta B$, $\Delta A = f(\Delta a)$ structured $\Delta B = g(\Delta b)$ structured

- Riemannian SVD:
\nfind
$$
(u, \tau, v)
$$
 which minimizes τ^2
\n
$$
\begin{cases}\nMv = D_v u \tau \\
M^T u = D_u v \tau \\
v^T v = 1 \\
u^T D_v u = 1 (= v^T D_u v)\n\end{cases}
$$

$$
\begin{vmatrix}\n\min_{v} & \tau^2 = v^T M^T D_v^{-1} M v \\
\text{s.t.} & v^T v = 1.\n\end{vmatrix}
$$

Outline

- [Motivation and History](#page-1-0)
- [Univariate Polynomials](#page-11-0)
- [Multivariate Polynomials](#page-15-0)
- [Algebraic Optimization](#page-31-0)

Conclusions

- bridging the gap between algebraic geometry and engineering
- finding roots: linear algebra and realization theory!
- extension to over-constrained systems
- – polynomial optimization: extremal eigenvalue problems

Open Problems

Many challenges remain

- exploiting sparsity and structure of M
- efficient (more direct) construction of the eigenvalue problem
- algorithms to find the minimizing solution efficiently (inverse power method?)
- $-$ nD version of Cayley-Hamilton theorem
- – analyzing the conditioning of the root-finding problem

Thank you for listening!

