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Four instances of polynomial root-finding problems

(x− 1)(x+ 2)

(
x−

1

3

)
= 0

(x− 1)(x− 3)(x− 2) = 0

−(x− 2)(x− 3) = 0

x2 + 3y2 − 15 = 0

y − 3x3 − 2x2 + 13x− 2 = 0

min
x,y

x2 + y2

s. t. y − x2 + 2x− 1 = 0
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Why polynomials?

Why Study Polynomial Equations?

– fundamental mathematical objects

– powerful modelling tools

– ubiquitous in Science and Engineering (often hidden)

Systems and Control Signal Processing Computational Biology Kinematics/Robotics
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A long and rich history. . .

Egypt Babylon Euclid Diophantus Al-Khwarizmi
(3000BCE-300BCE) (3000BCE-539BCE) (fl. 300BCE) (c200-c284) (c780-c850)

Zhu Shijie Pierre de Fermat René Descartes Isaac Newton Gottfried Leibniz
(c1260-c1320) (c1601-1665) (1596-1650) (1643-1727) (1646-1716)
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. . . leading to “Algebraic Geometry”

Etienne Bézout
(1730-1783)

Carl Friedrich Gauss
(1777-1755)

Jean-Victor Poncelet
(1788-1867)

Evariste Galois
(1811-1832)

Arthur Cayley
(1821-1895)

Leopold Kronecker
(1823-1891)

Edmond Laguerre
(1834-1886)

James J. Sylvester
(1814-1897)

Francis S. Macaulay
(1862-1937)

David Hilbert
(1862-1943)
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. . . leading to “Algebraic Geometry”

Algebraic Geometry and Computer Algebra

– large body of literature

– emphasis not (anymore) on solving equations

– computer algebra: symbolic manipulations (e.g., Gröbner Bases)

– numerical issues!

Wolfgang Gröbner
(1899-1980)

Bruno Buchberger
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. . . and (Numerical) Linear Algebra

Joseph-Louis Lagrange
(1736-1813)

Augustin-Louis Cauchy
(1789-1857)

Hermann Grassmann
(1809-1877)

Charles Babbage
(1791-1871)

Ada Lovelace
(1815-1852)

Alan Turing
(1912-1954)

John von Neumann
(1903-1957)

Gene Golub
(1932-2007)

Daniel Lazard Hans J. Stetter
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. . . and (Numerical) Linear Algebra

Why Linear Algebra?

– comprehensible and accessible language

– intuitive geometric interpretation

– computationally powerful framework

– well-established methods and stable numerics
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. . . and (Numerical) Linear Algebra

Eigenvalue Problems

Eigenvalue equation
Av = λv

and eigenvalue decomposition

A = V ΛV −1

Enormous importance in (numerical) linear algebra and apps

– ‘understand’ the action of matrix A

– at the heart of a multitude of applications: oscillations,
vibrations, quantum mechanics, data analytics, graph theory,
and many more
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Well-known facts

Univariate Polynomials and Linear Algebra: Known Facts

Characteristic Polynomial
The eigenvalues of A are the roots of

p(λ) = |A− λI|

Companion Matrix
Solving

q(x) = 7x3 − 2x2 − 5x+ 1 = 0

leads to  0 1 0
0 0 1

−1/7 5/7 2/7

 1
x
x2

 = x

 1
x
x2


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A less well-known method

Sylvester Matrix

Consider two polynomial equations

f(x) = x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3)
g(x) = −x2 + 5x− 6 = −(x− 2)(x− 3)

Common roots if |S(f, g)| = 0

S(f, g) =


−6 11 −6 1 0

0 −6 11 −6 1

−6 5 −1 0 0
0 −6 5 −1 0
0 0 −6 5 −1

 James Joseph Sylvester
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A less well-known method

Sylvester’s construction can be understood from



1 x x2 x3 x4

f(x)=0 −6 11 −6 1 0
x·f(x)=0 −6 11 −6 1
g(x)=0 −6 5 −1
x·g(x)=0 −6 5 −1
x2·g(x)=0 −6 5 −1




1 1
x1 x2
x21 x22
x31 x32
x41 x42

 = 0

where x1 = 2 and x2 = 3 are the common roots of f and g
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Null space based Root-finding

Consider the system

p(x, y) = x2 + 3y2 − 15 = 0
q(x, y) = y − 3x3 − 2x2 + 13x− 2 = 0

Matrix representation of the system: Macaulay matrix M


1 x y x2 xy y2 x3 x2y xy2 y3

p(x,y) −15 1 3
x·p(x,y) −15 1 3
y·p(x,y) −15 1 3
q(x,y) −2 13 1 −2 −3


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Null space based Root-finding

p(x, y) = x2 + 3y2 − 15 = 0
q(x, y) = y − 3x3 − 2x2 + 13x− 2 = 0

Continue to enlarge the Macaulay matrix M :

1 x y x2 xy y2 x3 x2y xy2 y3 x4x3yx2y2xy3y4 x5x4yx3y2x2y3xy4y5→
d = 3

p − 15 1 3
xp − 15 1 3
yp − 15 1 3
q − 2 13 1 − 2 − 3

d = 4

x2p − 15 1 3
xyp − 15 1 3

y2p − 15 1 3
xq − 2 13 1 − 2 − 3
yq − 2 13 1 − 2 − 3

d = 5

x3p − 15 1 3

x2yp − 15 1 3

xy2p − 15 1 3

y3p − 15 1 3

x2q − 2 13 1 − 2 − 3
xyq − 2 13 1 − 2 − 3

y2q − 2 13 1 − 2 − 3

↓ .
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.
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Null space based Root-finding

– Macaulay coefficient matrix M :

M =

[ × × × × 0 0 0
0 × × × × 0 0
0 0 × × × × 0
0 0 0 × × × ×

]

– solutions generate vectors in null space

MK = 0

– number of solutions m = nullity

Multivariate Vandermonde
basis for the null space:

1 1 . . . 1

x1 x2 . . . xm

y1 y2 . . . ym

x2
1 x2

2 . . . x2
m

x1y1 x2y2 . . . xmym

y2
1 y2

2 . . . y2
m

x3
1 x3

2 . . . x3
m

x2
1y1 x2

2y2 . . . x2
mym

x1y2
1 x2y2

2 . . . xmy2
m

y3
1 y3

2 . . . y3
m

x4
1 x4

2 . . . x4
4

x3
1y1 x3

2y2 . . . x3
mym

x2
1y

2
1 x2

2y
2
2 . . . x2

my2
m

x1y3
1 x2y3

2 . . . xmy3
m

y4
1 y4

2 . . . y4
m

...
...

...
...


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Null space based Root-finding

Select the ‘top’ m linear independent
rows of K

S1 K



1 1 . . . 1

x1 x2 . . . xm

y1 y2 . . . ym

x2
1 x2

2 . . . x2
m

x1y1 x2y2 . . . xmym

y2
1 y2

2 . . . y2
m

x3
1 x3

2 . . . x3
m

x2
1y1 x2

2y2 . . . x2
mym

x1y2
1 x2y2

2 . . . xmy2
m

y3
1 y3

2 . . . y3
m

x4
1 x4

2 . . . x4
4

x3
1y1 x3

2y2 . . . x3
mym

x2
1y

2
1 x2

2y
2
2 . . . x2

my2
m

x1y3
1 x2y3

2 . . . xmy3
m

y4
1 y4

2 . . . y4
m

...
...

...
...


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Null space based Root-finding

Shifting the selected rows gives (shown for 3 columns)

1 1 1
x1 x2 x3
y1 y2 y3
x21 x22 x23
x1y1 x2y2 x3y3
y21 y22 y23
x31 x32 x33
x21y1 x22y2 x23y3
x1y

2
1 x2y

2
2 x3y

2
3

y31 y32 y33
x41 x42 x44
x31y1 x32y2 x33y3
x21y

2
1 x22y

2
2 x23y

2
3

x1y
3
1 x2y

3
2 x3y

3
3

y41 y42 y43
.
.
.

.

.

.

.

.

.


→ “shift with x”→



1 1 1
x1 x2 x3
y1 y2 y3
x21 x22 x23
x1y1 x2y2 x3y3
y21 y22 y23
x31 x32 x33
x21y1 x22y2 x23y3
x1y

2
1 x2y

2
2 x3y

2
3

y31 y32 y33
x41 x42 x44
x31y1 x32y2 x33y3
x21y

2
1 x22y

2
2 x23y

2
3

x1y
3
1 x2y

3
2 x3y

3
3

y41 y42 y43
.
.
.

.

.

.

.

.

.


simplified: 1 1 1

x1 x2 x3
y1 y2 y3
x1y1 x2y2 x3y3
x31 x32 x33
x21y1 x22y2 x23y3

[
x1

x2
x3

]
=


x1 x2 x3
x21 x22 x23
x1y1 x2y2 x3y3
x21y1 x22y2 x23y3
x41 x42 x44
x31y1 x32y2 x33y3


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Null space based Root-finding

– finding the x-roots: let Dx = diag(x1, x2, . . . , xs), then

S1 KDx = Sx K,

where S1 and Sx select rows from K wrt. shift property

– reminiscent of Realization Theory
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Null space based Root-finding

We have
S1 KDx = Sx K

However, K is not known, instead a basis Z is computed that satisfies

ZV = K

Which leads to

(SxZ)V = (S1Z)V Dx
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Null space based Root-finding

It is possible to shift with y as well. . .

We find
S1KDy = SyK

with Dy diagonal matrix of y-components of roots, leading to

(SyZ)V = (S1Z)V Dy

Some interesting results:

– same eigenvectors V !

– (S3Z)−1(S1Z) and (S2Z)−1(S1Z) commute
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Modeling the null space with nD Realization Theory

The null space of the Macaulay matrix is the interface between
polynomial system and nD state space description

– Attasi model (for n = 2)

v(k + 1, l) = Axv(k, l)
v(k, l + 1) = Ayv(k, l)

– null space of Macaulay matrix: nD state sequence | | | | | | | | | |
v00 v10 v01 v20 v11 v02 v30 v21 v12 v03

| | | | | | | | | |

T

=

 | | | | | | |
v00 Axv00 Ayv00 · · · A3

xv00 A2
xAyv00 AxA

2
yv00 A3

yv00

| | | | | | |

T
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Modeling the null space with nD Realization Theory

– shift-invariance property, e.g., for y:
−v00−
−v10−
−v01−
−v20−
−v11−
−v02−

AT
y =


−v01−
−v11−
−v02−
−v21−
−v12−
−v03−

 ,

– corresponding nD system realization

v(k + 1, l) = Axv(k, l)
v(k, l + 1) = Ayv(k, l)

v(0, 0) = v00

– choice of basis null space leads to different system realizations

– eigenvalues of Ax and Ay invariant: x and y components of roots
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Complications: Roots at Infinity

Mind the Gap!

– dynamics in the null space of M(d) for increasing degree d

– nilpotency gives rise to a ‘gap’

– mechanism to count and separate affine from infinity
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Complications: Roots at Infinity

Roots at Infinity: nD Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity[
v(k + 1)
w(k − 1)

]
=

[
A 0
0 E

] [
v(k)
w(k)

]

Singular nD Attasi model (for n = 2)

v(k + 1, l) = Axv(k, l)
v(k, l+ 1) = Ayv(k, l)

w(k − 1, l) = Exw(k, l)
w(k, l− 1) = Eyw(k, l)

with Ex and Ey nilpotent matrices.
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Additional results

Two extensions of the root-finding method:

Column-space based root-finding method

– dual method operating on column space instead of null space

– leads again to eigenvalue problems

– employs (Q)R-decomposition

Finding approximate solutions of over-constrained systems

– generalization to over-constrained (noisy) systems

– approximate solutions detectable by computing SVD of M

– example from computer vision: camera pose determination
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Additional results

Summary

– solving multivariate polynomials

– question in linear algebra
– realization theory in null space of Macaulay matrix
– nD autonomous (descriptor) Attasi model

– decisions made based upon (numerical) rank

– # roots (nullity)
– # affine roots (column reduction)

– mind the gap phenomenon: affine vs. infinity roots

– not discussed

– multiplicity of roots
– column-space based method
– over-constrained systems
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Introduction

Polynomial Optimization Problems are EVP

min
x,y

x2 + y2

s. t. y − x2 + 2x− 1 = 0

Lagrange multipliers give conditions for optimality:

L(x, y, z) = x2 + y2 + z(y − x2 + 2x− 1)

we find
∂L/∂x = 0 → 2x− 2xz + 2z = 0
∂L/∂y = 0 → 2y + z = 0
∂L/∂z = 0 → y − x2 + 2x− 1 = 0
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Introduction

Observations:

– everything remains polynomial

– system of polynomial equations

– shift with objective function to find minimum/maximum

Let
AxV = xV

and
AyV = yV

then find min/max eigenvalue of

(A2
x +A2

y)V = (x2 + y2)V
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System Identification: Prediction Error Methods

Polynomial Optimization Problems: Applications

– PEM System identification = EVP !!

– Measured data {uk, yk}Nk=1

– Model structure

yk = G(q)uk +H(q)ek

– Output prediction

ŷk = H−1(q)G(q)uk + (1−H−1)yk

– Model classes: ARX, ARMAX, OE, BJ

A(q)yk = B(q)/F (q)uk+C(q)/D(q)ek

H(q)

G(q)

e

u y

Class Polynomials

ARX A(q), B(q)

ARMAX A(q), B(q),
C(q)

OE B(q), F (q)

BJ B(q), C(q),
D(q), F (q)
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System Identification: Prediction Error Methods

– Minimize the prediction errors y − ŷ, where

ŷk = H−1(q)G(q)uk + (1−H−1)yk,

subject to the model equations

ARMAX identification: G(q) = B(q)/A(q) and H(q) = C(q)/A(q), where
A(q) = 1 + aq−1, B(q) = bq−1, C(q) = 1 + cq−1, N = 5

min
ŷ,a,b,c

(y1 − ŷ1)
2 + . . .+ (y5 − ŷ5)

2

s. t. ŷ5 − cŷ4 − bu4 − (c− a)y4 = 0,

ŷ4 − cŷ3 − bu3 − (c− a)y3 = 0,

ŷ3 − cŷ2 − bu2 − (c− a)y2 = 0,

ŷ2 − cŷ1 − bu1 − (c− a)y1 = 0,
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Structured Total Least Squares

Static Linear Modeling

– Rank deficiency

– minimization problem:

min
∣∣∣∣[ ∆A ∆b

]∣∣∣∣2
F
,

s. t. (A + ∆A)v = b + ∆b,

– Singular Value Decomposition:
find (u, σ, v) which minimizes σ2

Let M =
[
A b

]


Mv = uσ

MT u = vσ

vT v = 1

uT u = 1

Dynamical Linear Modeling

– Rank deficiency

– minimization problem:

min
∣∣∣∣[∆a ∆b

]∣∣∣∣2
F
,

s. t. (A + ∆A)v = B + ∆B,

∆A = f(∆a) structured

∆B = g(∆b) structured

– Riemannian SVD:
find (u, τ, v) which minimizes τ2

Mv = Dvuτ

MT u = Duvτ

vT v = 1

uTDvu = 1 (= vTDuv)
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Structured Total Least Squares

min
v

τ2 = vTMTD−1
v Mv

s. t. vT v = 1.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

theta

ph
i

 

 

STLS Hankel cost function

TLS/SVD soln

STSL/RiSVD/invit steps

STLS/RiSVD/invit soln

STLS/RiSVD/EIG global min

STLS/RiSVD/EIG extrema

method TLS/SVD STLS inv. it. STLS eig
v1 .8003 .4922 .8372
v2 -.5479 -.7757 .3053
v3 .2434 .3948 .4535

τ2 4.8438 3.0518 2.3822
global solution? no no yes
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Conclusions

Conclusions

– bridging the gap between algebraic geometry and engineering

– finding roots: linear algebra and realization theory!

– extension to over-constrained systems

– polynomial optimization: extremal eigenvalue problems
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Conclusions

Open Problems

Many challenges remain

– exploiting sparsity and structure of M

– efficient (more direct) construction of the eigenvalue problem

– algorithms to find the minimizing solution efficiently (inverse
power method?)

– nD version of Cayley-Hamilton theorem

– analyzing the conditioning of the root-finding problem
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Thank you for listening!
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