Back to the Roots

Polynomial System Solving Using Linear Algebra

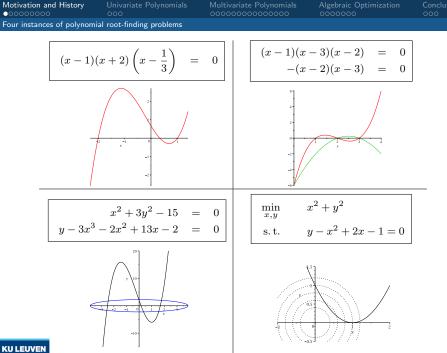
Philippe Dreesen

KU Leuven Department of Electrical Engineering ESAT-STADIUS Stadius Center for Dynamical Systems, Signal Processing and Data Analytics

Outline

- 2 Univariate Polynomials
- 3 Multivariate Polynomials
- 4 Algebraic Optimization

5 Conclusions



3/42

Why Study Polynomial Equations?

- fundamental mathematical objects
- powerful modelling tools
- ubiquitous in Science and Engineering (often *hidden*)

Systems and Control

Signal Processing

Computational Biology

Kinematics/Robotics

Motivation and History

Univariate Polynomials

Multivariate Polynomials

Algebraic Optimization

Conclusions

A long and rich history...

Motivation and History

Univariate Polynomials

Multivariate Polynomials

Algebraic Optimization

Conclusions

... leading to "Algebraic Geometry"

Etienne Bézout (1730-1783)

Carl Friedrich Gauss (1777-1755)

Jean-Victor Poncelet (1788-1867)

Evariste Galois (1811-1832)

Arthur Cayley (1821-1895)

Leopold Kronecker (1823-1891)

Edmond Laguerre (1834-1886)

James J. Sylvester (1814-1897)

Francis S. Macaulay (1862-1937)

David Hilbert (1862-1943)

Motivation and History Univaria

Univariate Polynomials

Conclusions 000

... leading to "Algebraic Geometry"

Algebraic Geometry and Computer Algebra

- large body of literature
- emphasis not (anymore) on solving equations
- computer algebra: symbolic manipulations (e.g., Gröbner Bases)
- numerical issues!

Wolfgang Gröbner (1899-1980)

Bruno Buchberger

Motivation and History 000000000

... and (Numerical) Linear Algebra

(1736-1813)

Joseph-Louis Lagrange Augustin-Louis Cauchy (1789 - 1857)

Hermann Grassmann (1809 - 1877)

Charles Babbage (1791-1871)

Ada Lovelace (1815 - 1852)

Alan Turing (1912 - 1954)

John von Neumann (1903 - 1957)

Gene Golub (1932 - 2007)

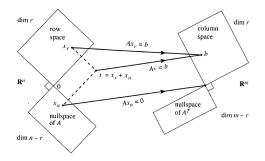
Daniel Lazard

Hans J. Stetter

Motivation and History Univariate Polynomials OOOOO⊙⊙⊙⊙ ...and (Numerical) Linear Algebra

Why Linear Algebra?

- comprehensible and accessible language
- intuitive geometric interpretation
- computationally powerful framework
- well-established methods and stable numerics



Eigenvalue Problems

Eigenvalue equation

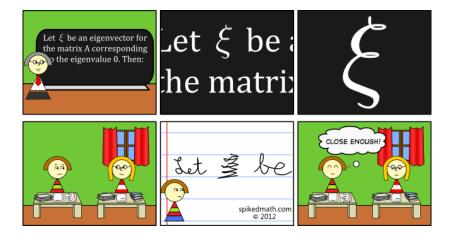
$$Av = \lambda v$$

and eigenvalue decomposition

$$A = V \Lambda V^{-1}$$

Enormous importance in (numerical) linear algebra and apps

- 'understand' the action of matrix \boldsymbol{A}
- at the heart of a multitude of applications: oscillations, vibrations, quantum mechanics, data analytics, graph theory, and **many** more



Outline

Motivation and History

- 2 Univariate Polynomials
- 3 Multivariate Polynomials
- Algebraic Optimization
- 5 Conclusions

Well-known facts

Univariate Polynomials and Linear Algebra: Known Facts

Characteristic Polynomial

The eigenvalues of \boldsymbol{A} are the roots of

 $p(\lambda) = |A - \lambda I|$

Companion Matrix

Solving

$$q(x) = 7x^3 - 2x^2 - 5x + 1 = 0$$

leads to

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1/7 & 5/7 & 2/7 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} = x \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}$$

Sylvester Matrix

Consider two polynomial equations

$$\begin{array}{rcl} f(x) &=& x^3 - 6x^2 + 11x - 6 &=& (x-1)(x-2)(x-3) \\ g(x) &=& -x^2 + 5x - 6 &=& -(x-2)(x-3) \end{array}$$

Common roots if |S(f,g)|=0

$$S(f,g) = \begin{bmatrix} -6 & 11 & -6 & 1 & 0 \\ 0 & -6 & 11 & -6 & 1 \\ \hline -6 & 5 & -1 & 0 & 0 \\ 0 & -6 & 5 & -1 & 0 \\ 0 & 0 & -6 & 5 & -1 \end{bmatrix}$$

James Joseph Sylvester

Motivation and History	Univariate Polynomials ○0●	Multivariate Polynomials	Algebraic Optimization	Conclusions 000
A less well-known method				

Sylvester's construction can be understood from

	1	x	x^2	x^3	x^4			
f(x)=0	$\left[-6\right]$	11	-6	1	0]	[1]	1	
$x \cdot f(x) = 0$		-6	11	-6	1	x_1	x_2	
g(x) = 0	-6	5	-1			x_1^2	x_{2}^{2}	= 0
$x {\cdot} g(x) {=} 0$		-6	5	-1		x_1^3	x_{2}^{3}	
$x^2 \cdot g(x) = 0$	L		-6	5	-1	x_1^4	x_2^4	

where $x_1 = 2$ and $x_2 = 3$ are the common roots of f and g

Outline

Motivation and History

- 2 Univariate Polynomials
- 3 Multivariate Polynomials
 - 4 Algebraic Optimization

Conclusions

Motivation and History			variate Polynomia	ls Algebraic	Optimization	Conclusions 000
Null space based Root-fi	inding					
Consider th $p(x,y)$ = $q(x,y)$ =	2	$x^2 - 15 - 2x^2 + 13$	x - 2 =	0 0		
Matrix rei	presentation	of the syste	-m· Maca	ulav matrix	د M	
	Sicscifiation	for the syste		ulay matrix		
	1 x	$y = x^2$	$xy y^2$	x^3 x^2y	xy^2 y^3	
p(x,y)	-15	1	3		-	
$x \cdot p(x,y)$	-15			1	3	
$y \cdot p(x,y)$	-15 -15 -2 13	-15		1	3	
a(x,y)	-2 13	1 - 2		-3		

$$\begin{array}{c|c} y \cdot p(x,y) \\ q(x,y) \\ \end{array} \begin{array}{c|c} -15 \\ -2 \\ 13 \\ 1 \\ -2 \\ -3 \end{array} \begin{array}{c|c} -15 \\ -3 \\ -3 \\ \end{array}$$

Motivation a	History
00000000	

Univariate Polynomials

Multivariate Polynomials

Algebraic Optimizatior

Conclusions 000

Null space based Root-finding

$$\begin{array}{rclrcrcrcrc} p(x,y) &=& x^2 + 3y^2 - 15 &=& 0 \\ q(x,y) &=& y - 3x^3 - 2x^2 + 13x - 2 &=& 0 \end{array}$$

Continue to enlarge the Macaulay matrix M:

1 x	$y x^2 xy y^2$	$x^{3} x^{2} y$	$xy^2 y^3$	$x^{4}x^{3}yx^{2}y$	$y^{2}xy^{3}y^{4}$	$x^5 x^4 y x^4$	$x^{3}y^{2}x^{2}$	$2y^3xy^4y^5$	\rightarrow
p - 15 d = 2 xp - 15	1 3	1	3						
a = 5	5	1	3						
q - 2 - 13	1 - 2	- 3							
$x^2 p$	- 15			1	3				
$d = 4 \begin{array}{c} x y p \\ y^2 p \end{array}$	- 15			1	3				
	- 15				1 3				
$\begin{array}{c c} xq & -2 \\ yq & -1 \end{array}$	$ \begin{array}{cccc} 13 & 1 \\ 2 & 13 & 1 \end{array} $	- 2 - 2		- 3 - 3					
$x^3 p$		- 15				1	3		
$x^{3}p$ $x^{2}yp$		- 15				1		3	
may ² m		-	- 15				1	3	
$d = 5 \frac{x^2 y}{y^3 p}$			- 15					1 3	
x^2q	- 2	13 1	1	- 2		- 3			
$\frac{xyq}{u^2a}$	- 2	13	13 1	_	2 - 2	- 3	- 3		
9 4	- 2		10 1		2		5		
		1. T.	1. T.		1. T. T.	1.1	÷.,	1. 1. 1.	÷.
						• •			•

Notivation and History	

Univariate Polynomials

Multivariate Polynomials

Algebraic Optimization

Conclusions

Null space based Root-finding

– Macaulay coefficient matrix M:

]	×	×	\times	×	0	0	0
11-	0	\times	×	×	×	0	0
M =	0	0	×	×	\times	×	0
M =	0	0	0	×	×	\times	×

- solutions generate vectors in null space

MK = 0

- number of solutions m = nullity

Multivariate Vandermonde basis for the null space:

1	1		1
x_1	x_2		x_m
y_1	y_2		y_m
x_{1}^{2}	x_{2}^{2}		x_m^2
x_1y_1	x_2y_2		$x_m y_m$
y_{1}^{2}	y_2^2		y_m^2
x_1^3	x_{2}^{3}		x_m^3
$x_1^2 y_1$	$x_{2}^{2}y_{2}$		$x_m^2 y_m$
$x_1y_1^2$	$x_2 y_2^2$		$x_m y_m^2$
y_1^3	y_{2}^{3}		y_m^3
x_{1}^{4}	x_2^4		x_4^4
$x_1^3 y_1$	$x_{2}^{3}y_{2}$		$x_m^3 y_m$
$x_1^2 y_1^2$	$x_{2}^{2}y_{2}^{2}$		$x_m^2 y_m^2$
$x_1y_1^3$	$x_2 y_2^3$		$x_m y_m^3$
y_{1}^{4}	y_2^4		y_m^4
:	:	:	:
L ·	•	•	•

Motivation and History		Multivariate Polynomials	Algebraic Optimization	Con 000
Null space based Root-find	ing			

Select the 'top' \boldsymbol{m} linear independent rows of K

1	1		1
x_1	x_2		x_m
y_1	y_2		y_m
x_{1}^{2}	x_{2}^{2}		x_m^2
x_1y_1	x_2y_2		$x_m y_m$
y_{1}^{2}	y_2^2		y_m^2
x_1^3	x_2^3		x_m^3
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$		$x_m^2 y_m$
$x_1 y_1^2$	$x_2y_2^2$		$x_m y_m^2$
y_{1}^{3}	y_2^3		y_m^3
x_1^4	x_{2}^{4}		x_4^4
$x_{1}^{3}y_{1}$	$x_{2}^{3}y_{2}$		$x_m^3 y_m$
$x_{1}^{2}y_{1}^{2}$	$x_2^2 y_2^2$		$x_m^2 y_m^2$
$x_1 y_1^3$	$x_2y_2^3$		$x_m y_m^3$
y_{1}^{4}	y_{2}^{4}		y_m^4
	-	:	:
	•	· ·	· .

Motivation and History

Univariate Polynomial

Multivariate Polynomials

 \rightarrow "shift with x" \rightarrow

Algebraic Optimization

Conclusions 000

Null space based Root-finding

Shifting the selected rows gives (shown for 3 columns)

 x_1

x2 x3

1	1	1
x_1	x_2	x_3
y_1	y_2	y_3
$\frac{y_1}{x_1^2}$	$\frac{y_2}{x_2^2}$	x_{3}^{2}
$x_{1}y_{1}$	x_2y_2	x_3y_3
$\begin{array}{c} x_1 y_1 \\ y_1^2 \\ x_1^3 \\ x_1^2 y_1 \\ x_1^2 y_1 \end{array}$	$rac{x_2y_2}{y_2^2}$	$\begin{array}{c} x_3y_3\\ y_3^2\\ y_3^2 \end{array}$
x_1^3	x_2^3	x_{3}^{3}
$x_1^2 y_1$	x_2^3 $x_2^2y_2$	$x_3^3 \\ x_3^2 y_3 \\ x_3^2 y_3$
$x_1 y_1^2$	$x_2y_2^2$	$x_3 y_5^4$
$x_1 y_1^2 \\ x_1 y_1^3 \\ y_1^3$	$x_{2}y_{2}^{2}$ y_{2}^{3} $x_{2}y_{2}^{4}$ $x_{2}^{3}y_{2}$ $x_{2}y_{2}^{2}y_{2}^{3}$ $x_{2}y_{2}^{2}y_{2}^{3}$ $x_{2}y_{2}^{2}$ y_{2}^{4}	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$
x_{1}^{4}	x_{2}^{4}	x_4^4
$x_{1}^{3}y_{1}$	$x_{2}^{3}y_{2}$	$x_{3}^{3}y_{3}$
$x_1^2 y_1^2$	$x_{2}^{2}y_{2}^{2}$	$x_{3}^{2}y_{3}^{2}$
$x_{1}^{2}y_{1}^{3}$	$x_2y_2^3$	$x_{3}y_{3}^{3}$
$\frac{y_1}{x_1^4}\\ x_1^3 y_1 \\ x_1^2 y_1^2 \\ x_1^2 y_1^3 \\ x_1 y_1^3 \\ y_1^4 \\ y_1^4$	y_{2}^{4}	$x_3 y_3^3 \\ y_3^4 \\ y_3^4$
:	: :	:

Г 1	1	1 -
x_1	x_2	x_3
$\frac{y_1}{x_1^2}$	y_2	$\frac{y_3}{x_3^2}$
x_{1}^{2}	$\frac{y_2}{x_2^2}$	x_{3}^{2}
$x_1 y_1$	x_2y_2	x_3y_3
y_{1}^{2}	y_2^2	y_{3}^{2}
x_{1}^{3}	x_{2}^{3}	x_3^3 $x_3^2y_3$
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$	$x_{3}^{2}y_{3}$
$x_1 y_1^2$	$x_2 y_2^2$	$x_{3}y_{3}^{2}$ y_{3}^{3}
y_{1}^{3}	y_{2}^{3}	y_{3}^{3}
x_1^4	x_2^4	x_A^4
$x_{1}^{3}y_{1}$	$x_{2}^{3}y_{2}$	$x_{3}^{3}y_{3}$
$\begin{bmatrix} x_1^3 \\ x_1^2 y_1 \\ x_1 y_1^2 \\ y_1^3 \\ y_1^4 \\ x_1^4 \\ x_1^3 y_1 \\ x_1^2 y_1^2 \end{bmatrix}$	$\begin{array}{c} x_{2}^{3} \\ x_{2}^{2} y_{2}^{2} \\ x_{2}^{2} y_{2}^{3} \\ y_{2}^{3} \\ x_{2}^{2} y_{2}^{3} \\ x_{2}^{2} y_{2}^{2} \\ x_{2}^{2} y_{2}^{2} \\ x_{2}^{2} y_{2}^{3} \\ x_{2}^{2} y_{2}^{4} \\ y_{2}^{4} \end{array}$	$x_3^3 y_3 \\ x_3^2 y_3^2 \\ x_3^2 y_3^2$
$\begin{array}{c} x_{1}y_{1}^{3} \\ y_{1}^{4} \end{array}$	$x_2 y_2^3$	$x_{3}y_{3}^{3}$
y_{1}^{4}	y_{2}^{4}	$x_{3}y_{3}^{3}$ y_{3}^{4}
L :	:	: <u>-</u>

simplified:

r 1	1	1 -	
x_1	x_2	x_3	г
y_1	y_2	y_3	
x_1y_1	x_2y_2	x_3y_3	
x_1^3	x_2^3	x_3^3	L
$x_1^2 y_1$	$x_{2}^{2}y_{2}$	$x_3^2 y_3$ -	

$x_{\frac{1}{2}}$	x_2	x_3
x_1^2	x_2^2	x_3^2
$x_1 y_1$	x_2y_2	x_3y_3
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$	$\begin{array}{c} x_3^2y_3 \\ x_4^4 \end{array}$
$x_{1}^{3} y_{1}$	$x_{2}^{3}y_{2}$	$x_{2}^{3}y_{3}$

Motivation and History		Multivariate Polynomials	Algebraic Optimization	Conclusions 000
Null space based Root-finding				

- finding the x-roots: let $D_x = \operatorname{diag}(x_1, x_2, \ldots, x_s)$, then

$$S_1 KD_x = S_x K,$$

where S_1 and S_x select rows from K wrt. shift property

- reminiscent of Realization Theory

Motivation and History		Multivariate Polynomials	Algebraic Optimization	Conclusions 000
Null space based Root-finding				

We have

$$S_1 KD_x = S_x K$$

However, K is not known, instead a basis Z is computed that satisfies

ZV = K

Which leads to

 $(S_x Z)V = (S_1 Z)VD_x$

Motivation and History		Multivariate Polynomials	Algebraic Optimization	Conclusions 000
Null space based Root-find	ng			

It is possible to shift with y as well...

We find

$$S_1 K D_y = S_y K$$

with D_y diagonal matrix of y-components of roots, leading to

$$(S_y Z)V = (S_1 Z)VD_y$$

Some interesting results:

- same eigenvectors V!
- $(S_3 Z)^{-1} (S_1 Z)$ and $(S_2 Z)^{-1} (S_1 Z)$ commute

tivation and History Univariate Polynomia

Modeling the null space with $n\mathsf{D}$ Realization Theory

The null space of the Macaulay matrix is the interface between polynomial system and nD state space description

- Attasi model (for n = 2)

$$\begin{array}{rcl} v(k+1,l) &=& A_x v(k,l) \\ v(k,l+1) &=& A_y v(k,l) \end{array}$$

- null space of Macaulay matrix: nD state sequence

Motivation and History		Multivariate Polynomials ○○○○○○○○●○○○○○	Algebraic Optimization	Conclusions
Modeling the null space wit	h <i>n</i> D Realization Theory			

- shift-invariance property, e.g., for y:

$$\begin{pmatrix} -v_{00} - \\ -v_{10} - \\ -v_{01} - \\ -v_{20} - \\ -v_{11} - \\ -v_{02} - \end{pmatrix} A_y^T = \begin{pmatrix} -v_{01} - \\ -v_{01} - \\ -v_{02} - \\ -v_{21} - \\ -v_{12} - \\ -v_{03} - \end{pmatrix},$$

– corresponding $n\mathsf{D}$ system realization

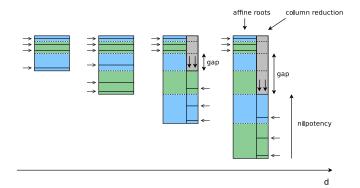
$$\begin{array}{rcl} v(k+1,l) &=& A_x v(k,l) \\ v(k,l+1) &=& A_y v(k,l) \\ v(0,0) &=& v_{00} \end{array}$$

- choice of basis null space leads to different system realizations
- eigenvalues of A_x and A_y invariant: x and y components of roots

Motivation and History		Multivariate Polynomials	Algebraic Optimization	Conclusions 000
Complications: Roots at Infinity				

Mind the Gap!

- dynamics in the null space of M(d) for increasing degree d
- nilpotency gives rise to a 'gap'
- mechanism to count and separate affine from infinity



otivation and History Univariate Polynomia 00000000 000 Multivariate Polynomials

Algebraic Optimization

Conclusions 000

Complications: Roots at Infinity

Roots at Infinity: nD Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity

$$\begin{bmatrix} v(k+1) \\ w(k-1) \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & E \end{bmatrix} \begin{bmatrix} v(k) \\ w(k) \end{bmatrix}$$

Singular nD Attasi model (for n = 2)

with E_x and E_y nilpotent matrices.

Motivation and History	Multivariate Polynomials	Algebraic Optimization	Conclusions 000
Additional results			

Two extensions of the root-finding method:

Column-space based root-finding method

- dual method operating on column space instead of null space
- leads again to eigenvalue problems
- employs (Q)R-decomposition

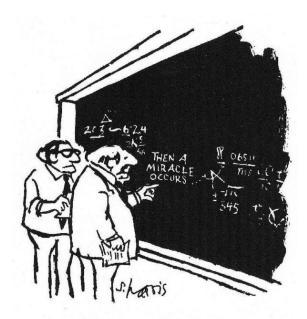
Finding approximate solutions of over-constrained systems

- generalization to over-constrained (noisy) systems
- approximate solutions detectable by computing SVD of ${\cal M}$
- example from computer vision: camera pose determination

Motivation and History	Multivariate Polynomials ○○○○○○○○○○○○	Algebraic O 0000000
Additional results		

Summary

- solving multivariate polynomials
 - question in linear algebra
 - realization theory in null space of Macaulay matrix
 - nD autonomous (descriptor) Attasi model
- decisions made based upon (numerical) rank
 - # roots (nullity)
 - # affine roots (column reduction)
- mind the gap phenomenon: affine vs. infinity roots
- not discussed
 - multiplicity of roots
 - column-space based method
 - over-constrained systems



"I think you should be more explicit here in step two."

Motivation and History	Multivariate Polynomials	Algebraic Optimization ●000000	Conclusions 000
Introduction			

Outline

Motivation and History

- 2 Univariate Polynomials
- 3 Multivariate Polynomials
- 4 Algebraic Optimization

Conclusions

Introduction

Univariate Polynomial

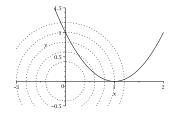
Multivariate Polynomials

Algebraic Optimization

Conclusions

Polynomial Optimization Problems

$$\begin{array}{ll}
\min_{x,y} & x^2 + y^2 \\
\text{s. t.} & y - x^2 + 2x - 1 = 0
\end{array}$$



Lagrange multipliers give conditions for optimality:

$$L(x, y, z) = x^{2} + y^{2} + z(y - x^{2} + 2x - 1)$$

we find

$$\begin{array}{rcl} \partial L/\partial x=0 & \rightarrow & 2x-2xz+2z=0\\ \partial L/\partial y=0 & \rightarrow & 2y+z=0\\ \partial L/\partial z=0 & \rightarrow & y-x^2+2x-1=0 \end{array}$$

Motivation and History	Multivariate Polynomials	Algebraic Optimization	Conclusions 000
Introduction			

Observations:

- everything remains polynomial
- system of polynomial equations
- shift with objective function to find minimum/maximum

Let

$$A_x V = x V$$

and

$$A_yV = yV$$

then find min/max eigenvalue of

$$(A_x^2 + A_y^2)V = (x^2 + y^2)V$$

Notivation and History Univariate Polynon

Multivariate Polynomial

Algebraic Optimization

Conclusions

System Identification: Prediction Error Methods

Polynomial Optimization Problems: Applications

- PEM System identification = EVP !!
- Measured data $\{u_k, y_k\}_{k=1}^N$
- Model structure

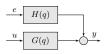
$$y_k = G(q)u_k + H(q)e_k$$

Output prediction

$$\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k$$

- Model classes: ARX, ARMAX, OE, BJ

 $A(q)y_k = B(q)/F(q)u_k + C(q)/D(q)e_k$



Class	Polynomials
ARX	A(q), B(q)
ARMAX	A(q), B(q),
	C(q)
OE	B(q), F(q)
BJ	B(q), C(q),
	D(q), F(q)

Motivation and History		Multivariate Polynomials	Algebraic Optimization	Conclusions 000	
System Identification: Prediction Error Methods					

– Minimize the prediction errors $y - \hat{y}$, where

$$\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k,$$

subject to the model equations

ARMAX identification: G(q) = B(q)/A(q) and H(q) = C(q)/A(q), where $A(q) = 1 + aq^{-1}$, $B(q) = bq^{-1}$, $C(q) = 1 + cq^{-1}$, N = 5

$$\min_{\hat{y},a,b,c} \qquad (y_1 - \hat{y}_1)^2 + \ldots + (y_5 - \hat{y}_5)^2 \\
\text{s.t.} \qquad \hat{y}_5 - c\hat{y}_4 - bu_4 - (c - a)y_4 = 0, \\
\hat{y}_4 - c\hat{y}_3 - bu_3 - (c - a)y_3 = 0, \\
\hat{y}_3 - c\hat{y}_2 - bu_2 - (c - a)y_2 = 0, \\
\hat{y}_2 - c\hat{y}_1 - bu_1 - (c - a)y_1 = 0,
\end{cases}$$

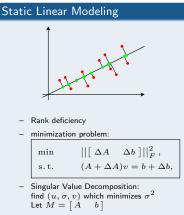
Motivation and History 000000000 Univariate Polynomials

Multivariate Polynomials

Algebraic Optimization

Conclusions

Structured Total Least Squares



$$\begin{cases} Mv &= u\sigma \\ M^T u &= v\sigma \\ v^T v &= 1 \\ u^T u &= 1 \end{cases}$$

Dynamical Linear Modeling

- Rank deficiency
- minimization problem:

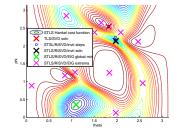
 $\begin{array}{ll} \min & \quad \left| \left| \left[\Delta a & \Delta b \right] \right| \right|_F^2, \\ \text{s. t.} & \quad (A + \Delta A)v = B + \Delta B, \\ \Delta A = f(\Delta a) \text{ structured} \\ \Delta B = g(\Delta b) \text{ structured} \end{array}$

- Riemannian SVD:
find
$$(u, \tau, v)$$
 which minimizes τ^2

$$\begin{cases}
Mv = D_v u\tau \\
M^T u = D_u v\tau \\
v^T v = 1 \\
u^T D_v u = 1 (= v^T D_u v)
\end{cases}$$

Motivation and History		Multivariate Polynomials	Algebraic Optimization	Conclusions 000		
Structured Total Least Squares						

$$\begin{split} \min_{v} & \tau^2 = v^T M^T D_v^{-1} M v \\ \text{s. t.} & v^T v = 1. \end{split}$$



method	TLS/SVD	STLS inv. it.	STLS eig
v1	.8003	.4922	.8372
v2	5479	7757	.3053
v_3	.2434	.3948	.4535
τ^2	4.8438	3.0518	2.3822
global solution?	no	no	yes

Outline

Motivation and History

- 2 Univariate Polynomials
- 3 Multivariate Polynomials
- Algebraic Optimization

Conclusions

Conclusions

- bridging the gap between algebraic geometry and engineering
- finding roots: linear algebra and realization theory!
- extension to over-constrained systems
- polynomial optimization: extremal eigenvalue problems

Open Problems

Many challenges remain

- exploiting sparsity and structure of \boldsymbol{M}
- efficient (more direct) construction of the eigenvalue problem
- algorithms to find the minimizing solution efficiently (inverse power method?)
- nD version of Cayley-Hamilton theorem
- analyzing the conditioning of the root-finding problem

Motivation and History	Multivariate Polynomials	Algebraic Optimization	Conclusions

Thank you for listening!