Kim Batselier

KU Leuven Department of Electrical Engineering STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics

> September 12 2013

Outline

- 2 Basis Operations in the Framework
- 3 "Advanced" Operations in the Framework
- 4 Conclusions and Future Work

- Introduction

Outline

- 2 Basis Operations in the Framework
- ③ "Advanced" Operations in the Framework
- 4 Conclusions and Future Work

- Introduction

How do multivariate polynomials look like?

Remember from your high school days

•
$$9x^2 - 5x + 2$$

•
$$x^3 + x^2 - x$$

- Introduction

How do multivariate polynomials look like?

Remember from your high school days

•
$$9x^2 - 5x + 2$$

•
$$x^3 + x^2 - x$$

Now with more than 1 'x'

•
$$x_1 x_2^2 + x_1 x_3^2 - 1.1 x_1 + 1$$

• $-x_1 x_3^3 + 4 x_2 x_3^2 x_4 + 4 x_1 x_3 x_4^2 + 2 x_2 x_4^3 + 4 x_1 x_3 + 4 x_3^2 - 10 x_2 x_4 - 10 x_4^2 + 2$

•
$$5.22x_1x_2^4 + 3.98x_1^3 - x_2^4 - 3x_2^2$$

•
$$9.124x_1^2x_2 - 2.22x_1^2$$

 $\chi(\chi)$

EŠÁT

KU LEUVEN

• $2x_1x_2^4 - x_1^3 - 2x_2^4 + x_1^2$

- Introduction

Multivariate Polynomials in Engineering

In which engineering domains do this kind of polynomials appear?

Circuit Design

Signal Processing

Nonlinear Dynamical Systems

-Introduction

Multivariate Polynomials in Engineering

In which engineering domains do this kind of polynomials appear?

Circuit Design

Signal Processing

Nonlinear Dynamical Systems

- Introduction

Multivariate Polynomials in Engineering

What needs to be done with these multivariate polynomials?

- Find the solutions,
- Multiply and divide,
- Eliminate variables,
- Compute least common multiples and greatest common divisors,

• ...

- Introduction

Multivariate Polynomials in Engineering

What needs to be done with these multivariate polynomials?

- Find the solutions,
- Multiply and divide,
- Eliminate variables,
- Compute least common multiples and greatest common divisors,
- ..

How are these problems mostly solved these days?

- Introduction

└─Symbolic Methods

Algebraic Geometry

• Branch of mathematics

Graduate Texts in Mathematics John Little Donal O'Shee Using Algebraic Geometry

Wolfgang Gröbner (1899-1980)

Bruno Buchberger

- Introduction

└─Symbolic Methods

Algebraic Geometry

- Branch of mathematics
- Symbolic operations

Graduate Texts in Mathematics Donal O'Shea Using Algebraic Geometry Second Idition

Springer

Wolfgang Gröbner (1899-1980)

Bruno Buchberger

- Introduction

Symbolic Methods

Algebraic Geometry

- Branch of mathematics
- Symbolic operations
- Computer algebra software

Graduate Texts in Mathematics David A. Cox John Little Donal O'Shea Using Algebraic Geometry Second Editor

Springer

Wolfgang Gröbner (1899-1980)

Bruno Buchberger

L Introduction

Symbolic Methods

Algebraic Geometry

- Branch of mathematics
- Symbolic operations
- Computer algebra software
- Huge body of literature in Algebraic Geometry

(1899 - 1980)

Bruno Buchberger

-Introduction

Symbolic Methods

Algebraic Geometry

- Branch of mathematics
- Symbolic operations
- Computer algebra software
- Huge body of literature in Algebraic Geometry
- Produces exact results for exact data!!

Bruno Buchberger

- Introduction

Symbolic Methods

Engineers do not usually work with exact data

Uncertainties in the measurements \Rightarrow uncertainties in the coefficients of the multivariate polynomials

A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

Introduction

└─Symbolic Methods

Eı	Engineers do not need exact solutions													
ļ	(-85 57	-55	-37 45	-35	97 93	50 92	79 43	56 62	49 77	63 \ 66		$\begin{pmatrix} -88 \\ -43 \end{pmatrix}$	١	
	54	-5	99 01	-61	-50	-12	-18	31	-26	-62		-73		
	1 94	-47 83	-91 86	-47 23	-61 -84	41 19	-58 -50	-90 88	-53 -53	-1 85	<i>z</i> =	25 4		
	49 66	78 29	17 91	72 53	99 19	85 47	86 68	30 -72	80 87	72 79		-59 62		
	43 -76	-66 -65	-53 25	61 28	-23 -61	37 60	31 9	-34 29	-42 -66	88 32		-55 25		
	78	39	94	68	-17	98	-36	40	22	5,	/	9)	/	

(from Numerical Polynomial Algebra - H.J. Stetter)

A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

Introduction

└─Symbolic Methods

En	ginee	rs do	not	need	exact	t solu	itions						
1	/85	-55	-37	-35	97	50	79	56	49	63		(-88)	1
	57	-59	45	8	-93	92	43	-62	77	66		-43	
	54	-5	99	-61	-50	-12	-18	31	-26	-62		-73	Ш
ł	1	-47	-91	-47	-61	41	-58	-90	53	-1		25	L
	94	83	-86	23	-84	19	-50	88	-53	85	~	4	
	49	78	17	72	-99	85	-86	30	80	72	~ =	-59	
	66	-29	-91	53	-19	-47	68	-72	-87	79		62	
	43	-66	-53	61	-23	-37	31	-34	-42	88		-55	
	-76	-65	25	28	-61	-60	9	29	-66	-32		25	
	78	39	94	68	-17	98	-36	40	22	5)		(9)	Į
	•												
2	x = 0	78283449	9124340	<u>8476131</u>	-2485	6797127	1325197	781 -	1141741	23958691	<u>6224104</u>	$()^{1}$	ŗ
	· (87145744	4631846	7875527	⁹ 87145	5744631	\$4678755	527 ' i	67145744	63184678	\$75527	,,	

(from Numerical Polynomial Algebra - H.J. Stetter)

A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

Introduction

└─Symbolic Methods

E	ngine	ers do	not	need	exac	t solu	itions						
-	$ \left(\begin{array}{c} -8:\\ 57\\ 54\\ 1\\ 94\\ 49\\ 66\\ 43\\ -76\\ 78\end{array}\right) $	5 -55 -59 -59 -5 -47 83 78 -29 -66 5 -65 39	37 45 99 91 86 17 91 53 25 94	35 8 61 47 23 72 53 61 28 68	97 93 50 61 84 99 19 23 61 17	50 92 -12 41 19 -85 -47 -37 -60 -98	79 43 18 58 50 86 68 31 9 36	56 -62 31 -90 88 30 -72 -34 29 40	49 77 -26 53 -53 80 -87 -42 -66 22	63 66 62 1 85 72 79 88 32 5	<i>z</i> =	$ \begin{pmatrix} -88 \\ -43 \\ -73 \\ 25 \\ 4 \\ -59 \\ 62 \\ -55 \\ 25 \\ 9 \end{pmatrix} $	
$z = \left(\frac{782834491243408476131}{871457446318467875527}, \frac{-248567971271325197781}{871457446318467875527}, \frac{-1141741239586916224104}{871457446318467875527}, \ldots\right)^T$													
	ĩ =	: (.89	8304	9, —.2	28523	825, -	-1.31	0151	5,	.,-1	.616	8161) ⁷	
				(from I	Numerica	l Polyno	mial Alge	ebra - H.	J. Stette	r)			

A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

- Introduction
 - Symbolic Methods

Language problem

- Algebraic Geometry not in the normal curriculum of most engineers
- Hence, engineers do not "speak" Algebraic Geometry

A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

- Introduction
 - Symbolic Methods

Language problem

- Algebraic Geometry not in the normal curriculum of most engineers
- Hence, engineers do not "speak" Algebraic Geometry

Example: First sentence of the online description of the GROEBNER package of Maple 7

"The GROEBNER package is a collection of routines for doing Groebner basis calculations in skew algebras like Weyl and Ore algebras and in corresponding modules like D-modules".

A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

- Introduction
 - └─Symbolic Methods

Language problem

- Algebraic Geometry not in the normal curriculum of most engineers
- Hence, engineers do not "speak" Algebraic Geometry

Example: First sentence of the online description of the GROEBNER package of Maple 7

"The GROEBNER package is a collection of routines for doing Groebner basis calculations in skew algebras like Weyl and Ore algebras and in corresponding modules like D-modules".

Engineers do speak (numerical) linear algebra!

- Introduction

Changing the Point of View

Richard Feynman

Seeing things from a Numerical Linear Algebra perspective

- Is it possible to use Numerical Linear Algebra instead?
- New insights/interpretations?
- New methods?

-Introduction

└─ Changing the Point of View

Richard Feynman

Seeing things from a Numerical Linear Algebra perspective

- Is it possible to use Numerical Linear Algebra instead?
- New insights/interpretations?
- New methods?

This thesis:

The development of a Numerical Linear Algebra framework to solve problems with multivariate polynomials.

Basis Operations in the Framework

Outline

2 Basis Operations in the Framework

3 "Advanced" Operations in the Framework

4 Conclusions and Future Work

Basis Operations in the Framework

Polynomials as Vectors

Building blocks of multivariate polynomials?

Basis Operations in the Framework

Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

$$1, x_1, x_2, x_3, x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2, \dots$$

Basis Operations in the Framework

Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

$$1, x_1, x_2, x_3, x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2, \dots$$

ordering

•
$$\deg(x_1^2) = \deg(x_2x_3) = 2$$

Basis Operations in the Framework

Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

$$1, x_1, x_2, x_3, x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2, \dots$$

ordering

•
$$\deg(x_1^2) = \deg(x_2x_3) = 2$$

$$f_1 =$$

Basis Operations in the Framework

Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

$$1, x_1, x_2, x_3, x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2, \dots$$

ordering

•
$$\deg(x_1^2) = \deg(x_2x_3) = 2$$

$$f_1 = 2.76 x_1^2$$

Basis Operations in the Framework

Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

$$1, x_1, x_2, x_3, x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2, \dots$$

ordering

•
$$\deg(x_1^2) = \deg(x_2x_3) = 2$$

$$f_1 = 2.76 \, x_1^2 - 5.51 \, x_1 \, x_3$$

Basis Operations in the Framework

Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

$$1, x_1, x_2, x_3, x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2, \dots$$

ordering

•
$$\deg(x_1^2) = \deg(x_2x_3) = 2$$

$$f_1 = 2.76 \, x_1^2 - 5.51 \, x_1 \, x_3 - 1.12 \, x_1$$

Basis Operations in the Framework

Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

$$1, x_1, x_2, x_3, x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2, \dots$$

ordering

•
$$\deg(x_1^2) = \deg(x_2x_3) = 2$$

$$f_1 = 2.76 x_1^2 - 5.51 x_1 x_3 - 1.12 x_1 + 1.99$$

Basis Operations in the Framework

Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

$$1, x_1, x_2, x_3, x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2, \dots$$

ordering

•
$$\deg(x_1^2) = \deg(x_2x_3) = 2$$

Example

$$f_1 = 2.76 \, x_1^2 - 5.51 \, x_1 \, x_3 - 1.12 \, x_1 + 1.99$$

degree of $f_1 = \deg(f_1) = 2$

Basis Operations in the Framework

Polynomials as Vectors

Vector Representation

Each monomial corresponds with a vector, each orthogonal with respect to all the others:

 $C^n_d\colon$ vector space of all polynomials in n variables with complex coefficients up to a degree d

Basis Operations in the Framework

Polynomials as Vectors

A blast from the past

Basis Operations in the Framework

Polynomials as Vectors

Each monomial is described by a coefficient vector:

Polynomials as Vectors

$$1 \sim (1 \ 0 \ 0 \ 0 \ \dots)$$

Polynomials as Vectors

Basis Operations in the Framework

Polynomials as Vectors

Coefficient vector of multivariate polynomial

$$f_1 = 2.76 x_1^2 - 5.51 x_1 x_3 - 1.12 x_1 + 1.99$$

Basis Operations in the Framework

Polynomials as Vectors

Coefficient vector of multivariate polynomial

$$f_1 = 2.76 x_1^2 - 5.51 x_1 x_3 - 1.12 x_1 + 1.99$$

$$\sim 2.76(0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0)$$

 $+1.99(1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \)$

Basis Operations in the Framework

Polynomials as Vectors

Coefficient vector of multivariate polynomial

$$f_1 = 2.76 x_1^2 - 5.51 x_1 x_3 - 1.12 x_1 + 1.99$$

$$\sim 2.76(0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0)$$

$$-1.12(0 1 0 0 0 0 0 0 0 0)$$

$$f_1 \sim (1.99 - 1.12 \ 0 \ 0 \ 2.76 \ 0 \ -5.51 \ 0 \ 0 \ 0)$$

Basis Operations in the Framework

Operations on Polynomials

Addition of Polynomials

Addition of vectors:

Basis Operations in the Framework

Operations on Polynomials

Addition of Polynomials

Addition of vectors:

Basis Operations in the Framework

Operations on Polynomials

Addition of Polynomials

Addition of vectors:

Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication of 2 multivariate polynomials $h, f \in C_d^n$

Basis Operations in the Framework

└─ Multiplication of multivariate polynomials

Multiplication of 2 multivariate polynomials $h, f \in C_d^n$

 $f \ \times \ h$

Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication of 2 multivariate polynomials $h, f \in C_d^n$

 $f \ \times \ h$

$$= f \times (h_0 + h_1 x_1 + h_2 x_2 + \ldots + h_q x_n^{d_h})$$

Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication of 2 multivariate polynomials $h, f \in C_d^n$

$f \ \times \ h$

$$= f \times (h_0 + h_1 x_1 + h_2 x_2 + \ldots + h_q x_n^{d_h})$$

$$= h_0 f + h_1 x_1 f + h_2 x_2 f + \ldots + h_q x_n^{d_h} f$$

Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication of 2 multivariate polynomials $h, f \in C_d^n$ $f \times h$ $= f \times (h_0 + h_1 x_1 + h_2 x_2 + \ldots + h_a x_n^{d_h})$ $= h_0 f + h_1 x_1 f + h_2 x_2 f + \ldots + h_a x_n^{d_h} f$ $(h_0 \quad h_1 \quad h_2 \quad \dots \quad h_q) \begin{pmatrix} f \\ x_1 f \\ x_2 f \\ \vdots \\ x_n^{d_h} f \end{pmatrix}$ \sim

Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication of 2 multivariate polynomials $h, f \in C_d^n$ $f \times h$ $= f \times (h_0 + h_1 x_1 + h_2 x_2 + \ldots + h_a x_n^{d_h})$ $= h_0 f + h_1 x_1 f + h_2 x_2 f + \ldots + h_a x_n^{d_h} f$ $\begin{pmatrix} h_0 & h_1 & h_2 & \dots & h_q \end{pmatrix} \begin{pmatrix} f \\ x_1 f \\ x_2 f \\ \vdots \\ x_n^{d_h} f \end{pmatrix}$ \sim $h M_f$ \sim

A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

- Basis Operations in the Framework
 - Multiplication of multivariate polynomials

Multiplication Example

$$f = x_1 x_2 - x_2 \text{ and } h = x_1^2 + 2x_2 - 9.$$

$$h M_f = \begin{pmatrix} -9 & 0 & 2 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} f \\ x_1 f \\ x_2 f \\ x_1^2 f \\ x_1^2 f \\ x_1 x_2 f \\ x_2^2 f \end{pmatrix}.$$

Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication Example

 $M_f =$

	1	x_1	x_2	x_{1}^{2}	$x_{1}x_{2}$	x_{2}^{2}	x_1^3	$x_1^2 x_2$	$x_1 x_2^2$	x_{2}^{3}	x_1^4	$x_1^3 x_2$	$x_1^2 x_2^2$	$x_1 x_1^3$	x_{2}^{4}
f	(0	0	-1	0	1	0	0	0	0	0	0	0	0	0	0 \
$x_1 f$	0	0	0	0	-1	0	0	1	0	0	0	0	0	0	0
$x_2 f$	0	0	0	0	0	-1	0	0	1	0	0	0	0	0	0
$x_{1}^{2}f$	0	0	0	0	0	0	0	-1	0	0	0	1	0	0	0
$x_{1}x_{2}f$	0	0	0	0	0	0	0	0	-1	0	0	0	1	0	0
$x_2^2 f$	10	0	0	0	0	0	0	0	0	-1	0	0	0	1	0/

Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication Example

 $M_f =$

$ \begin{array}{c} f \\ x_1 f \\ x_2 f \\ x_1^2 f \\ x_1 x_2 f \\ x_2^2 f \end{array} $	$\begin{pmatrix} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}$	$egin{array}{c} x_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} x_2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$x_1^2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$egin{array}{c} x_1 x_2 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} x_2^2 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} x_1^3\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}$	$x_1^2 x_2$ 0 1 0 -1 0 0		$egin{array}{c} x_2^3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}$	$egin{array}{c} x_1^4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	$x_1^3 x_2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$x_1^2 x_2^2$ 0 0 0 0 1 0	$x_1 x_1^3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1$	$\begin{pmatrix} x_2^4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
hM_f	=	x2	x_{1}^{2}	x_1	<i>x</i> ₂ <i>x</i>	$\frac{2}{2} x_1^3$	x_1^2	$x_2 x_2$	$x_{1}^{2} x_{2}^{2}$	$\frac{3}{2} x_1^4$	x_{1}^{3}	$x_2 x_1^2$	$x_2^2 x_1$	$x_1^3 x_2^4$)

Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication Example

 $M_f =$

$ \begin{array}{c} f \\ x_1 f \\ x_2 f \\ x_1^2 f \\ x_1 x_2 f \\ x_2^2 f \end{array} $		$egin{array}{c} x_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} x_2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$x_1^2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$x_1 x_2$ 1 -1 0 0 0 0 0	$egin{array}{c} x_2^2 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} x_1^3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$x_1^2 x_2$ 0 1 0 -1 0 0		$egin{array}{c} x_2^3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}$	$egin{array}{c} x_1^4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$x_1^3 x_2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$x_1^2 x_2^2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0$	$x_1 x_1^3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1$	
hM_f	- =														
($ \begin{array}{ccc} 1 & x_1 \\ 0 & 0 \end{array} $	x_{2} 9	$x_1^2 \\ 0$	x ₁	$x_2 x_2^2 \\ 9 -2$	$x_1^3 x_2^3 = 0$	x_1^2	$x_2 x_1 - 1$	$\begin{bmatrix} x_2^2 & x_2^3 \\ 2 & 0 \end{bmatrix}$	$\begin{array}{ccc} 3 & x_1^4 \\ & 0 \end{array}$	x ₁ ³	$x_2 x_1^2$	$x_2^2 x_1$	$ x_1^3 x_2^4 \\ 0 0 $)
		\sim	$9x^{\cdot}$, —	$9x_{1}x_{2}$	co -	- 23	$x_{2}^{2} - $	$x_{1}^{2}x_{2}$	+2	$2x_{12}$	$x_{2}^{2} +$	$x_{1}^{3}x_{2}$		

Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication of Polynomials

Every possible multiplication of f lies in a vector space \mathcal{M}_f spanned by $f, x_1 f, x_2 f, \ldots$

Basis Operations in the Framework

Division of Multivariate Polynomials

Definition multivariate polynomials

Fix any monomial order > on C_d^n and let $F = (f_1, \ldots, f_s)$ be a s-tuple of polynomials in C_d^n . Then every $p \in C_d^n$ can be written as

$$p = h_1 f_1 + \ldots + h_s f_s + r$$

where $h_i, r \in C_d^n$. For each $i, h_i f_i = 0$ or $LM(p) \ge LM(h_i f_i)$, and either r = 0, or r is a linear combination of monomials, none of which is divisible by any of $LM(f_1), \ldots, LM(f_s)$.

Division of Multivariate Polynomials

Definition multivariate polynomials

Fix any monomial order > on C_d^n and let $F = (f_1, \ldots, f_s)$ be a s-tuple of polynomials in C_d^n . Then every $p \in C_d^n$ can be written as

$$p = h_1 f_1 + \ldots + h_s f_s + r$$

where $h_i, r \in C_d^n$. For each $i, h_i f_i = 0$ or $LM(p) \ge LM(h_i f_i)$, and either r = 0, or r is a linear combination of monomials, none of which is divisible by any of $LM(f_1), \ldots, LM(f_s)$.

Differences with division of numbers

- Remainder r depends on the way we order monomials
- Dividends h_1, \ldots, h_s and remainder r depend on order of divisors f_1, \ldots, f_s

Basis Operations in the Framework

L Division of Multivariate Polynomials

$$p = h_1 f_1 + \ldots + h_s f_s + r$$

Basis Operations in the Framework

L Division of Multivariate Polynomials

$$p = h_1 f_1 + \ldots + h_s f_s + r$$

Basis Operations in the Framework

Division of Multivariate Polynomials

$$p = h_1 f_1 + \ldots + h_s f_s + r$$

$$(h_{10} \quad h_{11} \quad h_{12} \quad \ldots \quad h_{1q}) \begin{pmatrix} f_1 \\ x_1 f_1 \\ x_2 f_1 \\ \vdots \\ x_n^{d_1} f_1 \end{pmatrix}$$

Basis Operations in the Framework

L Division of Multivariate Polynomials

$$p = h_1 f_1 + \ldots + h_s f_s + r$$

$$(h_{k0} \quad h_{k1} \quad h_{k2} \quad \ldots \quad h_{kw}) \begin{pmatrix} f_k \\ x_1 & f_k \\ x_2 & f_k \\ \vdots \\ x_n^{d_k} & f_k \end{pmatrix}$$

Basis Operations in the Framework

L Division of Multivariate Polynomials

$$p = h_1 f_1 + \ldots + h_s f_s + r$$

$$(h_{s0} \quad h_{s1} \quad h_{s2} \quad \ldots \quad h_{sv}) \begin{pmatrix} f_s \\ x_1 f_s \\ x_2 f_s \\ \vdots \\ x_n^{d_s} f_s \end{pmatrix}$$

Basis Operations in the Framework

Division of Multivariate Polynomials

Division of Multivariate Polynomials

Divisor Matrix D

Given a set of polynomials $f_1, \ldots, f_s \in C_d^n$, each of degree d_i $(i = 1 \ldots s)$ and a polynomial $p \in C_d^n$ of degree d then the divisor matrix D is given by

$$D = \begin{pmatrix} f_1 \\ x_1 f_1 \\ x_2 f_1 \\ \vdots \\ x_n^{d_1} f_1 \\ f_2 \\ x_1 f_2 \\ \vdots \\ x_n^{d_s} f_s \end{pmatrix}$$

where each polynomial f_i is multiplied with all monomials x^{α_i} from degree 0 up to degree $k_i = \deg(p) - \deg(f_i)$ such that $x^{\alpha_i} \operatorname{LM}(f_i) \leq \operatorname{LM}(p)$.

Division of Multivariate Polynomials

Example Divisor Matrix

To divide $p = 4 + 5x_1 - 3x_2 - 9x_1^2 + 7x_1x_2$ by $f_1 = -2 + x_1 + x_2$, $f_2 = 3 - x_1$:

$$D = \begin{array}{cccccccccc} 1 & x_1 & x_2 & x_1^2 & x_1 x_2 \\ f_1 \\ x_1 f_1 \\ f_2 \\ x_1 f_2 \\ x_2 f_2 \end{array} \begin{pmatrix} -2 & 1 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \\ 3 & -1 & 0 & 0 & 0 \\ 0 & 3 & 0 & -1 & 0 \\ 0 & 0 & 3 & 0 & -1 \end{pmatrix}$$

Basis Operations in the Framework

Division of Multivariate Polynomials

Basis Operations in the Framework

Division of Multivariate Polynomials

Basis Operations in the Framework

Division of Multivariate Polynomials

Basis Operations in the Framework

Division of Multivariate Polynomials

- "Advanced" Operations in the Framework

Outline

- 2 Basis Operations in the Framework
- 3 "Advanced" Operations in the Framework
- 4 Conclusions and Future Work

- "Advanced" Operations in the Framework
 - └─ Macaulay Matrix

"Advanced" operations on polynomials

- Eliminate variables
- Compute a least common multiple of 2 multivariate polynomials
- Compute a greatest common divisor of 2 multivariate polynomials

One More Key Player:

Macaulay matrix

M

—"Advanced" Operations in the Framework

└─ Macaulay Matrix

Macaulay Matrix

Given a set of multivariate polynomials f_1, \ldots, f_s , each of degree $d_i (i = 1 \ldots s)$ then the Macaulay matrix of degree d is given by

$$(d) = \begin{pmatrix} f_1 \\ x_1 f_1 \\ \vdots \\ x_n^{d-d_1} f_1 \\ f_2 \\ x_1 f_2 \\ \vdots \\ x_n^{d-d_s} f_s \end{pmatrix}$$

where each polynomial f_i is multiplied with all monomials up to degree $d - d_i$ for all $i = 1 \dots s$.

- └─"Advanced" Operations in the Framework
 - └─ Macaulay Matrix

Row space of the Macaulay matrix

$$\mathcal{M}_d = \{h_1 f_1 + h_2 f_2 + \dots + h_s f_s \mid \text{for all possible } h_1, h_2, \dots, h_s \\ \text{with degrees } d - d_1, d - d_2, \dots, d - d_s \text{ respectively} \}$$

- "Advanced" Operations in the Framework
 - └─ Macaulay Matrix

Row space of the Macaulay matrix

$$\mathcal{M}_d = \{h_1 f_1 + h_2 f_2 + \dots + h_s f_s \mid \text{for all possible } h_1, h_2, \dots, h_s \\ \text{with degrees } d - d_1, d - d_2, \dots, d - d_s \text{ respectively} \}$$

—"Advanced" Operations in the Framework

└─ Macaulay Matrix

For the following polynomial system:

$$\begin{cases} f_1: x_1x_2 - 2x_2 = 0\\ f_2: x_2 - 3 = 0 \end{cases}$$

the Macaulay matrix of degree 3 is

- "Advanced" Operations in the Framework
 - Macaulay Matrix

Sparsity pattern M(10)

—"Advanced" Operations in the Framework

Elimination

Elimination Problem

Given a set of multivariate polynomials f_1, \ldots, f_s and $x_e \subsetneq \{x_1, \ldots, x_n\}$. Find a polynomial $g = h_1 f_1 + \ldots + h_s f_s$ that does not contain any of the x_e variables.

—"Advanced" Operations in the Framework

Elimination

Elimination Problem

Given a set of multivariate polynomials f_1, \ldots, f_s and $x_e \subsetneq \{x_1, \ldots, x_n\}$. Find a polynomial $g = h_1 f_1 + \ldots + h_s f_s$ that does not contain any of the x_e variables.

Example

From the following polynomial system in 3 variables x_1, x_2, x_3 :

$$\begin{cases} f_1 &= x_1^2 + x_2 + x_3 - 1, \\ f_2 &= x_1 + x_2^2 + x_3 - 1, \\ f_3 &= x_1 + x_2 + x_3^2 - 1, \end{cases}$$

we want to find a $g = h_1 f_1 + h_2 f_2 + h_3 f_3$ only in x_3 .

- "Advanced" Operations in the Framework
 - Elimination

Example

for a certain degree d.

- "Advanced" Operations in the Framework
 - Elimination

Example

Also, since g only contains the variables x_3 , it is built up from the monomial basis

up to a certain degree d.

- "Advanced" Operations in the Framework
 - Elimination

Example

We will call this vector space that is spanned by the variables $x_3 \in \mathcal{E}_d$:

- "Advanced" Operations in the Framework
 - Elimination

Example

 $g \in \mathcal{M}_d$ and $g \in \mathcal{E}_d$; hence g lies in the intersection $\mathcal{M}_d \cap \mathcal{E}_d$:

for some particular degree d.

- "Advanced" Operations in the Framework
 - Elimination

Finding the intersection

- —"Advanced" Operations in the Framework
 - Elimination

Example

We revisit

$$\begin{cases} x_1^2 + x_2 + x_3 &= 1, \\ x_1 + x_2^2 + x_3 &= 1, \\ x_1 + x_2 + x_3^2 &= 1. \end{cases}$$

• we eliminate both x_1 and x_2

•
$$d = 6$$
,
• $g(x_3) = x_3^2 - 4x_3^3 + 4x_3^4 - x_3^6$

• we eliminate x_2 :

•
$$d = 2$$
,
• $g(x_1, x_3) = x_1 - x_3 - x_1^2 + x_3^2$.

—"Advanced" Operations in the Framework

Least Common Multiple

Least Common Multiple

A multivariate polynomial l is called a least common multiple (LCM) of 2 multivariate polynomials f_1, f_2 if

- **1** f_1 divides l and f_2 divides l.
- 2 *l* divides any polynomial which both f_1 and f_2 divide.

"Advanced" Operations in the Framework

Least Common Multiple

Least Common Multiple

A multivariate polynomial l is called a least common multiple (LCM) of 2 multivariate polynomials f_1, f_2 if

1 f_1 divides l and f_2 divides l.

2 *l* divides any polynomial which both f_1 and f_2 divide.

"Advanced" Operations in the Framework

Least Common Multiple

Finding the LCM

The LCM l of f_1 and f_2 satisfies:

$$\operatorname{LCM}(f_1, f_2) \triangleq l = f_1 h_1 = f_2 h_2$$

- "Advanced" Operations in the Framework

Least Common Multiple

KU LEUVEN

Finding the LCM

The LCM l of f_1 and f_2 satisfies:

$$\operatorname{LCM}(f_1, f_2) \triangleq l = f_1 h_1 = f_2 h_2$$

49 / 57

"Advanced" Operations in the Framework

-Greatest Common Divisor

Greatest Common Divisor

A multivariate polynomial g is called a greatest common divisor of 2 multivariate polynomials f_1 and f_2 if

- $0 g divides f_1 and f_2.$
- **2** If p is any polynomial which divides both f_1 and f_2 , then p divides g.

"Advanced" Operations in the Framework

-Greatest Common Divisor

Greatest Common Divisor

A multivariate polynomial g is called a greatest common divisor of 2 multivariate polynomials f_1 and f_2 if

- $0 g divides f_1 and f_2.$
- If p is any polynomial which divides both f₁ and f₂, then p divides g.

—"Advanced" Operations in the Framework

Greatest Common Divisor

Finding the GCD

Remember that

$$LCM(f_1, f_2) \triangleq l = f_1 h_1 = f_2 h_2.$$

We also have that

$$f_1 f_2 = l g,$$

with $g \triangleq \operatorname{GCD}(f_1, f_2)$.

—"Advanced" Operations in the Framework

Greatest Common Divisor

Finding the GCD

Remember that

$$LCM(f_1, f_2) \triangleq l = f_1 h_1 = f_2 h_2.$$

We also have that

$$f_1 f_2 = l g,$$

with $g \triangleq \operatorname{GCD}(f_1, f_2)$.

Answer:

$$g = \frac{f_1 f_2}{l} = \frac{f_1}{h_2} = \frac{f_2}{h_1}.$$

- —"Advanced" Operations in the Framework
 - Greatest Common Divisor

Blind Image Deconvolution

- $F_1(z_1, z_2) = I(z_1, z_2) D_1(z_1, z_2) + N_1(z_1, z_2)$
- $F_2(z_1, z_2) = I(z_1, z_2) D_2(z_1, z_2) + N_2(z_1, z_2)$

•
$$I(z_1, z_2) = \tau - \mathsf{GCD}(F_1, F_2)$$

 $F_1(z_1, z_2)$

 $F_2(z_1, z_2)$

—"Advanced" Operations in the Framework

Greatest Common Divisor

Blind Image Deconvolution

- $F_1(z_1, z_2) = I(z_1, z_2) D_1(z_1, z_2) + N_1(z_1, z_2)$
- $F_2(z_1, z_2) = I(z_1, z_2) D_2(z_1, z_2) + N_2(z_1, z_2)$
- $I(z_1, z_2) = \tau$ -GCD (F_1, F_2)

 $F_1(z_1, z_2)$

 $F_2(z_1, z_2)$

 τ -GCD (F_1, F_2)

"Advanced" Operations in the Framework

Greatest Common Divisor

"Advanced" Operations in the Framework

Greatest Common Divisor

Other Operations worked out in the thesis

• Computing a Gröbner basis of multivariate polynomials f_1, \ldots, f_s

- —"Advanced" Operations in the Framework
 - Greatest Common Divisor

- Computing a Gröbner basis of multivariate polynomials f_1, \ldots, f_s
- Describing all syzygies of multivariate polynomials f_1,\ldots,f_s

- "Advanced" Operations in the Framework
 - Greatest Common Divisor

- Computing a Gröbner basis of multivariate polynomials f_1, \ldots, f_s
- Describing all syzygies of multivariate polynomials f_1,\ldots,f_s
- Removing multiplicities of solutions of f_1, \ldots, f_s

"Advanced" Operations in the Framework

Greatest Common Divisor

- Computing a Gröbner basis of multivariate polynomials f_1, \ldots, f_s
- Describing all syzygies of multivariate polynomials f_1,\ldots,f_s
- Removing multiplicities of solutions of f_1, \ldots, f_s
- Counting total number of affine solutions of f_1,\ldots,f_s

"Advanced" Operations in the Framework

Greatest Common Divisor

- Computing a Gröbner basis of multivariate polynomials f_1, \ldots, f_s
- Describing all syzygies of multivariate polynomials f_1, \ldots, f_s
- Removing multiplicities of solutions of f_1, \ldots, f_s
- Counting total number of affine solutions of f_1,\ldots,f_s
- Solving the ideal membership problem

Conclusions and Future Work

Outline

- 2 Basis Operations in the Framework
- 3 "Advanced" Operations in the Framework
- 4 Conclusions and Future Work

Conclusions and Future Work

└─ Conclusions

Conclusions

- Numerical Linear Algebra Framework
- Addition, Multiplication
- Polynomial Division and oblique projections
- Elimination and intersection of vector spaces
- LCM and GCD's
- syzygy analysis, counting affine solutions, removing multiplicities of solutions, ...

Conclusions and Future Work

- Conclusions

Future Research/Work

- Exploit sparsity + structure matrices
- Numerical Analysis:
 - Polynomial division
 - Intersection of vector spaces
 - Numerical rank
- Open problems:
 - Modelling higher dimensional solution sets
 - Full understanding of roots at infinity
 - ...

Conclusions and Future Work

Conclusions

