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Introduction

How do multivariate polynomials look like?

Remember from your high school days

9x2 − 5x+ 2

x3 + x2 − x

Now with more than 1 ‘x’

x1 x
2
2 + x1 x

2
3 − 1.1x1 + 1

−x1 x33 + 4x2 x
2
3 x4 + 4x1 x3 x

2
4 + 2x2 x

3
4 + 4x1 x3 + 4x23 −

10x2 x4 − 10x24 + 2

5.22x1x
4
2 + 3.98x31 − x42 − 3x22

9.124x21x2 − 2.22x21
2x1x

4
2 − x31 − 2x42 + x21
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In which engineering domains do this kind of polynomials appear?
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Signal Processing Nonlinear Dynamical
Systems
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Introduction

Symbolic Methods

Engineers do not usually work with exact data

Uncertainties in the measurements ⇒ uncertainties in the
coefficients of the multivariate polynomials
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Basis Operations in the Framework

Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

1, x1, x2, x3, x
2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3, . . .

ordering

deg(x21) = deg(x2x3) = 2

Example

f1 =

2.76x21 − 5.51x1 x3 − 1.12x1 + 1.99

degree of f1 = deg(f1) = 2
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Basis Operations in the Framework

Polynomials as Vectors

Vector Representation

Each monomial corresponds with a vector, each orthogonal with
respect to all the others:

1

x1

x2

. . .

Cn
d : vector space of all polynomials in n variables with complex

coefficients up to a degree d
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Basis Operations in the Framework

Polynomials as Vectors

A blast from the past

Y

X
(1,0)

(0,1)
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∼ 2.76
(
0 0 0 0 1 0 0 0 0 0

)
−5.51

(
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)
−1.12

(
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)
+1.99

(
1 0 0 0 0 0 0 0 0 0

)
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1.99 −1.12 0 0 2.76 0 −5.51 0 0 0
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Basis Operations in the Framework

Operations on Polynomials

Addition of Polynomials

Addition of vectors:

f1

f2
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Basis Operations in the Framework

Operations on Polynomials

Addition of Polynomials

Addition of vectors:

f1

f2

f1 + f2
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Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication of 2 multivariate polynomials h, f ∈ Cn
d

f × h

= f × (h0 + h1 x1 + h2 x2 + . . . + hq x
dh
n )

= h0 f + h1 x1 f + h2 x2 f + . . .+ hq x
dh
n f

∼
(
h0 h1 h2 . . . hq

)


f
x1 f
x2 f

...
xdhn f


∼ h Mf
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Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication Example

f = x1x2 − x2 and h = x21 + 2x2 − 9.

h Mf =
(
−9 0 2 1 0 0

)


f

x1f

x2f

x21f

x1x2f

x22f


.
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Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication Example

Mf =



1 x1 x2 x21 x1x2 x22 x31 x21x2 x1x
2
2 x32 x41 x31x2 x21x

2
2 x1x

3
1 x42

f 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0
x1f 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0
x2f 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0
x21f 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
x1x2f 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0
x22f 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0



hMf =

(1 x1 x2 x21 x1x2 x22 x31 x21x2 x1x
2
2 x32 x41 x31x2 x21x

2
2 x1x

3
1 x42

0 0 9 0 −9 −2 0 −1 2 0 0 1 0 0 0
)

∼ 9x2 − 9x1x2 − 2x22 − x21x2 + 2x1x
2
2 + x31x2
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Basis Operations in the Framework

Multiplication of multivariate polynomials

Multiplication of Polynomials

Every possible multiplication of f lies in a vector space Mf

spanned by f, x1f, x2f, . . .

f

x1f ....

xdhn f

Mf
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Basis Operations in the Framework

Division of Multivariate Polynomials

Definition multivariate polynomials

Fix any monomial order > on Cn
d and let F = (f1, . . . , fs) be a

s-tuple of polynomials in Cn
d . Then every p ∈ Cn

d can be written as

p = h1f1 + . . .+ hsfs + r

where hi, r ∈ Cn
d . For each i, hifi = 0 or LM(p) ≥ LM(hifi), and

either r = 0, or r is a linear combination of monomials, none of
which is divisible by any of LM(f1), . . . ,LM(fs).

Differences with division of numbers

Remainder r depends on the way we order monomials

Dividends h1, . . . , hs and remainder r depend on order of
divisors f1, . . . , fs
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Basis Operations in the Framework

Division of Multivariate Polynomials

Describing the quotient

p = h1f1 + . . .+ hsfs + r

(
h10 h11 h12 . . . h1q

)


f1
x1 f1
x2 f1

...
xd1n f1
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Basis Operations in the Framework

Division of Multivariate Polynomials

Describing the quotient

p = h1f1 + . . .+ hsfs + r

(
hk0 hk1 hk2 . . . hkw

)


fk
x1 fk
x2 fk

...
xdkn fk
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Basis Operations in the Framework

Division of Multivariate Polynomials

Describing the quotient

p = h1f1 + . . .+ hsfs + r

(
hs0 hs1 hs2 . . . hsv

)


fs
x1 fs
x2 fs

...
xdsn fs
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Basis Operations in the Framework

Division of Multivariate Polynomials

Describing the quotient

p = h1f1 + . . .+ hsfs + r

(
h10 h11 h12 . . . h1q h20 h21 . . . hsv

)



f1
x1 f1
x2 f1

...
xd1n f1
f2
x1 f2

...
xdsn fs
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Basis Operations in the Framework

Division of Multivariate Polynomials

Divisor Matrix D

Given a set of polynomials f1, . . . , fs ∈ Cnd , each of degree di (i = 1 . . . s) and
a polynomial p ∈ Cnd of degree d then the divisor matrix D is given by

D =



f1

x1f1

x2f1
...

xd1n f1

f2

x1f2
...

xdsn fs


where each polynomial fi is multiplied with all monomials xαi from degree 0
up to degree ki = deg(p)− deg(fi) such that xαi LM(fi) ≤ LM(p).
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Basis Operations in the Framework

Division of Multivariate Polynomials

Example Divisor Matrix

To divide p = 4+ 5x1 − 3x2 − 9x21 + 7x1x2 by f1 = −2 + x1 + x2,
f2 = 3− x1:

D =



1 x1 x2 x21 x1x2

f1 −2 1 1 0 0
x1f1 0 −2 0 1 1
f2 3 −1 0 0 0
x1 f2 0 3 0 −1 0
x2 f2 0 0 3 0 −1



31 / 57



A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

Basis Operations in the Framework

Division of Multivariate Polynomials

D
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Basis Operations in the Framework

Division of Multivariate Polynomials

D

R
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Division of Multivariate Polynomials

D

R

p
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Basis Operations in the Framework

Division of Multivariate Polynomials

D

R

p

h1f1 + . . .+ hsfs

r

35 / 57



A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

”Advanced” Operations in the Framework

Outline

1 Introduction

2 Basis Operations in the Framework

3 ”Advanced” Operations in the Framework

4 Conclusions and Future Work
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”Advanced” Operations in the Framework

Macaulay Matrix

”Advanced” operations on polynomials

Eliminate variables

Compute a least common multiple of 2 multivariate
polynomials

Compute a greatest common divisor of 2 multivariate
polynomials

One More Key Player:

Macaulay matrix
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”Advanced” Operations in the Framework

Macaulay Matrix

Macaulay Matrix

Given a set of multivariate polynomials f1, . . . , fs, each of degree
di(i = 1 . . . s) then the Macaulay matrix of degree d is given by

M(d) =



f1

x1f1
...

xd−d1
n f1

f2

x1f2
...

xd−ds
n fs


where each polynomial fi is multiplied with all monomials up to
degree d− di for all i = 1 . . . s.
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”Advanced” Operations in the Framework

Macaulay Matrix

Row space of the Macaulay matrix

Md = {h1f1 + h2f2 + . . .+ hsfs | for all possible h1, h2, . . . , hs
with degrees d− d1, d− d2, . . . , d− ds respectively}

f1

x1f1 f2

xd−ds
n fs

. . .

. . .

Md
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”Advanced” Operations in the Framework

Macaulay Matrix

For the following polynomial system:{
f1 : x1x2 − 2x2 = 0
f2 : x2 − 3 = 0

the Macaulay matrix of degree 3 is

M(3) =



1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2

f1 0 0 −2 0 1 0 0 0 0 0
x1f1 0 0 0 0 −2 0 0 1 0 0
x2f1 0 0 0 0 0 −2 0 0 1 0
f2 −3 0 1 0 0 0 0 0 0 0
x1 f2 0 −3 0 0 1 0 0 0 0 0
x2 f2 0 0 −3 0 0 1 0 0 0 0
x2
1 f2 0 0 0 −3 0 0 0 1 0 0

x1x2 f2 0 0 0 0 −3 0 0 0 1 0
x2
2 f2 0 0 0 0 0 −3 0 0 0 1



40 / 57



A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

”Advanced” Operations in the Framework

Macaulay Matrix

Sparsity pattern M(10)
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”Advanced” Operations in the Framework

Elimination

Elimination Problem

Given a set of multivariate polynomials f1, . . . , fs and
xe ( {x1, . . . , xn}. Find a polynomial g = h1f1 + . . .+ hsfs that
does not contain any of the xe variables.

Example

From the following polynomial system in 3 variables x1, x2, x3:
f1 = x21 + x2 + x3 − 1,
f2 = x1 + x22 + x3 − 1,
f3 = x1 + x2 + x23 − 1,

we want to find a g = h1f1 + h2f2 + h3f3 only in x3.
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”Advanced” Operations in the Framework

Elimination

Example

Since g = h1f1 + h2f2 + h3f3, it lies in

f1

x1f1 f2

xd−ds
n fs

. . .

. . .

Md

for a certain degree d.
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”Advanced” Operations in the Framework

Elimination

Example

Also, since g only contains the variables x3, it is built up from the
monomial basis

1

x3

x23

. . .

up to a certain degree d.

Example

We will call this vector space that is spanned by the variables x3
Ed:

Ed
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”Advanced” Operations in the Framework

Elimination

Example

g ∈Md and g ∈ Ed; hence g lies in the intersection Md ∩ Ed:

Ed

Md

g

for some particular degree d.
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”Advanced” Operations in the Framework

Elimination

Finding the intersection

θ2

v2

u2

Ed

Md

o

u1 = v1θ1 = 0
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”Advanced” Operations in the Framework

Elimination

Example

We revisit 
x21 + x2 + x3 = 1,
x1 + x22 + x3 = 1,
x1 + x2 + x23 = 1.

we eliminate both x1 and x2
d = 6,
g(x3) = x23 − 4x33 + 4x43 − x63.

we eliminate x2:

d = 2,
g(x1, x3) = x1 − x3 − x21 + x23.
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”Advanced” Operations in the Framework

Least Common Multiple

Least Common Multiple

A multivariate polynomial l is called a least common multiple
(LCM) of 2 multivariate polynomials f1, f2 if

1 f1 divides l and f2 divides l.

2 l divides any polynomial which both f1 and f2 divide.

f1 f2

l =LCM(f1, f2)
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”Advanced” Operations in the Framework

Least Common Multiple

Finding the LCM

The LCM l of f1 and f2 satisfies:

LCM(f1, f2) , l = f1 h1 = f2 h2

Mf1

Mf2

LCM(f1, f2)

o
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”Advanced” Operations in the Framework

Greatest Common Divisor

Greatest Common Divisor

A multivariate polynomial g is called a greatest common divisor of
2 multivariate polynomials f1 and f2 if

1 g divides f1 and f2.

2 If p is any polynomial which divides both f1 and f2, then p
divides g.

f1 f2

g =GCD(f1, f2)
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”Advanced” Operations in the Framework

Greatest Common Divisor

Finding the GCD

Remember that

LCM(f1, f2) , l = f1 h1 = f2 h2.

We also have that
f1 f2 = l g,

with g , GCD(f1, f2).

Answer:

g =
f1 f2
l

=
f1
h2

=
f2
h1
.
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”Advanced” Operations in the Framework

Greatest Common Divisor

Blind Image Deconvolution

F1(z1, z2) = I(z1, z2)D1(z1, z2) +N1(z1, z2)

F2(z1, z2) = I(z1, z2)D2(z1, z2) +N2(z1, z2)

I(z1, z2) = τ -GCD(F1, F2)

F1(z1, z2) F2(z1, z2)

τ -GCD(F1, F2)
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”Advanced” Operations in the Framework

Greatest Common Divisor

Other Operations worked out in the thesis

Computing a Gröbner basis of multivariate polynomials
f1, . . . , fs

Describing all syzygies of multivariate polynomials f1, . . . , fs

Removing multiplicities of solutions of f1, . . . , fs

Counting total number of affine solutions of f1, . . . , fs

Solving the ideal membership problem
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Conclusions

Conclusions

Numerical Linear Algebra Framework

Addition, Multiplication

Polynomial Division and oblique projections

Elimination and intersection of vector spaces

LCM and GCD’s

syzygy analysis, counting affine solutions, removing
multiplicities of solutions, . . .
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Conclusions

Future Research/Work

Exploit sparsity + structure matrices

Numerical Analysis:

Polynomial division
Intersection of vector spaces
Numerical rank

Open problems:

Modelling higher dimensional solution sets
Full understanding of roots at infinity
. . .
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