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L introduction

How do multivariate polynomials look like?

Remember from your high school days

@ 922 —5r+2

) :c3+x2793

Now with more than 1 ‘z’

° $1$%+x1m§— 1.1x; +1
° —x1x§+4$2x§$4+4x1x3xi+2x2x§+4$1x3+4x§ -
10mo 24 — 1027 + 2
e 5.22z173 + 3.9823 — 25 — 3x2
o 9.124x2z9 — 2.2222
2

® 2z175 — 23 — 225 + 22
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LMultivariate Polynomials in Engineering

What needs to e with these multivariate polynomials?

@ Find the solutions,
@ Multiply and divide,
@ Eliminate variables,

Compute least common multiples and greatest common
divisors,
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L introduction

LMultivariate Polynomials in Engineering

What needs to e with these multivariate polynomials?

@ Find the solutions,
@ Multiply and divide,
@ Eliminate variables,

@ Compute least common multiples and greatest common
divisors,

How are these problems mostly solved these days?
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‘—Introduction
L Symbolic Methods

Algebraic Geometry

Branch of mathematics

Symbolic operations

°

@ Computer algebra software

@ Huge body of literature in Algebraic Geometry
°

Produces exact results for exact data!!
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Engineers d usually work with exact data

Uncertainties in the measurements = uncertainties in the
coefficients of the multivariate polynomials
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L introduction

L symbolic Methods

Engineers do not need exact solutions
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L introduction

L Changing the Point of View

Richard Feynman

Seeing things from a Numerical Linear Algebra perspective

@ Is it possible to use Numerical Linear Algebra instead?
o New insights/interpretations?

@ New methods?
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L Introduction

L Changing the Point of View

Richard Feynman
@ Is it possible to use Numerical Linear Algebra instead?
o New insights/interpretations?
o New methods?

The development of a Numerical Linear Algebra framework to
solve problems with multivariate polynomials.
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L Basis Operations in the Framework

L Polynomials as Vectors

Building blocks of multivariate polynomials?
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L Basis Operations in the Framework

L Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

2 2 2
17 XL1,X2,T3,T1,L1X2,L1XL3, Ty, L2L3, T3, . - -
@ ordering

o deg(z?) = deg(waz3) = 2

fi =276z — 551z 23 —1.123
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L Basis Operations in the Framework

L Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

2 2 2
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@ ordering
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L Basis Operations in the Framework

L Polynomials as Vectors

Building blocks of multivariate polynomials?

Monomials!

2 2 2
17 XL1,X2,T3,T1,L1X2,L1XL3, Ty, L2L3, T3, . - -
@ ordering

o deg(z?) = deg(waz3) = 2

fi =276z —5.51x x5 — 1.122; + 1.99
degree of f; = deg(f1) =2
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L Basis Operations in the Framework

L Polynomials as Vectors

Vector Representation

Each monomial corresponds with a vector, each orthogonal with
respect to all the others:

T2

x1

C: vector space of all polynomials in n variables with complex
coefficients up to a degree d
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L Basis Operations in the Framework

L Polynomials as Vectors

blast from the

(0.1)

(1.0)
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L Basis Operations in the Framework

L Polynomials as Vectors

Each monomial is described by a coefficient vector:
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L Basis Operations in the Framework

L Polynomials as Vectors

Each monomial is described by a coefficient vector:

1 ~ (10000 ...)
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L Basis Operations in the Framework

L Polynomials as Vectors

Each monomial is described by a coefficient vector:

1 ~ (10000 ..)
1000 ..

1
ZleV(O
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L Basis Operations in the Framework

L Polynomials as Vectors

Each monomial is described by a coefficient vector:

1 ~ (10000 ...)
21 ~ (01000 ...)
29 ~ (00 100 ...)
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L Basis Operations in the Framework

L Polynomials as Vectors

Coefficient ve of multivariate polynomial

fi = 27623 —551lxy 23— 1.1221 +1.99
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L Basis Operations in the Framework

L Polynomials as Vectors

Coefficient vector of multivariate polynomial

fi = 2762} — 551z 23— 1.1221 + 1.99
~ 276(0 0 0010000 0)
—~551(0 0 0 000100 0)
-112(0 1.0 0 0 0 0 0 0 0)

+1.99(1 0 0 0 0 0 0 0 0 0)

| kuveuven Y ;
ESAT 17 /57



A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

L Basis Operations in the Framework

L Polynomials as Vectors

Coefficient vector of multivariate polynomial

fi = 27623 —551lxy 23— 1.1221 +1.99

~ 276(0 0 0010000 0)

—551(0 0 0
-112(0 1 0

+1.99(1 0 0

fi ~ (199 -1.12 0 0

| kuveuven Y
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L Basis Operations in the Framework

LOperations on Polynomials

Addition of Polynomials

Addition of vectors:

f2
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L Basis Operations in the Framework

LOperations on Polynomials

Addition of Polynomials

Addition of vectors:
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L Basis Operations in the Framework

L Multiplication of multivariate polynomials

ultiplication of 2 multivariate polynomials h, f €
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L Basis Operations in the Framework

L Multiplication of multivariate polynomials

Multiplication of 2 multivariate polynomials h, f €

f xh

= f x (hg—i—hll‘l +hoxoy + ... —I—hq:c‘,ilh)
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L Basis Operations in the Framework

L Multiplication of multivariate polynomials

Multiplication of 2 multivariate polynomials 4, f € C7

f xh

= f x (hg—i—hll‘l +hoxoy + ... —I—hq:c‘,ilh)

= hof+ hixrf+hozaf —l—...—}—hqa:ghf
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L Basis Operations in the Framework

L Multiplication of multivariate polynomials

= f x (hg—i—hll‘l +hoxoy + ... —I—hq:c‘,ilh)

= hof+ hixrf+hozaf —l—...—}—hqa:ghf

~ (ho h1 ha ... hy) | 22f
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L Basis Operations in the Framework

L Multiplication of multivariate polynomials

= fx (h0+h1$1+h2$2 —f—...—f-hq:cgh)
= h0f+h1x1f+h2x2f+...+hqa:ﬁhf

f
z1 f
~ (ho h1 ha ... hy) | 22f

i f
~ h M
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L Basis Operations in the Framework

LMultiplication of multivariate polynomials

Multiplication Example

f=xzix9 — 19 andh:x%—|—2x2—9.

1 f

zaf
hMp=(-9 0 2 1 0 0) 22
z122f

2
L
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L Basis Operations in the Framework

L Multiplication of multivariate polynomials

Multiplication Example

My =

1 1 2 :t% 1T x% x‘i’ m%a:g zlx% :z:% x‘f oc‘;':cg :t%x% T ac‘;' x%
f 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
zy f 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0
zo f 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0
z1f 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0
a@zgf 0 0 0 0 0 0 0 0 =1 0 0 0 1 0 0
5 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0
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L Basis Operations in the Framework

L Multiplication of multivariate polynomials

Multiplication Example

My =

1 1 2 x% 1T x% x‘;’ m%a:g zlac% :z:g x% x‘;’:cg x%x% mlx‘;' w%
f 0O 0 -1 0 1 0 0 0 0 0 0 0 0 0 0
zy f 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0
zo f 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0
z1f 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0
Z§12f 0 0 0 0 0 0 0 0 =1 0 0 0 1 0 0
5 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0
hM; =
1 = x2 z% T1To z% z? zfzz zlzg zg z‘f z‘;’zz zfz% zlz‘;’ z%
(0 0 9 0 -9 -2 0 =il 2 0 0 1 0 0 0 )
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L Basis Operations in the Framework

L Multiplication of multivariate polynomials

Multiplication Example

My =

1 1 2 x% 1T x% x‘;’ m%a:g zlac% :z:g x% x‘;’:cg x%x% mlx‘;' w%
f 0O 0 -1 0 1 0 0 0 0 0 0 0 0 0 0
zy f 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0
zo f 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0
z1f 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0
Z§12f 0 0 0 0 0 0 0 0 =1 0 0 0 1 0 0
5 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0
hM; =
1 = x2 z% T1To z% z? zfzz zlzg zg z‘f z‘;’zz zfz% zlz‘;’ z%
(0 0 9 0 -9 -2 0 =il 2 0 0 1 0 0 0 )

~ 9x9 — 9129 — 23:% — .T%l'g + 2:6196% + x:{’xg
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L Basis Operations in the Framework

LMultiplication of multivariate polynomials

Multiplication of Pol ials

Every possible multiplication of f lies in a vector space M
spanned by f,x1f, xof, . ..
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L Basis Operations in the Framework

L Division of Multivariate Polynomials

Definition multivariate polynomials

Fix any monomial order > on C} and let ' = (fi,..., f,) bea
s-tuple of polynomials in C7;. Then every p € CJ} can be written as

p=hfit...+hsfs+r

where h;,r € CJ. For each i, h;f; = 0 or LM(p) > LM(h; f;), and
either r = 0, or r is a linear combination of monomials, none of
which is divisible by any of LM(f1), ..., LM(fs).
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A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials
L Basis Operations in the Framework

L Division of Multivariate Polynomials

Definition multivariate polynomials

Fix any monomial order > on C} and let ' = (fi,..., f,) bea
s-tuple of polynomials in C7;. Then every p € CJ} can be written as

p=hfit...+hsfs+r

where h;,r € CJ. For each i, h;f; = 0 or LM(p) > LM(h; f;), and
either r = 0, or r is a linear combination of monomials, none of
which is divisible by any of LM(f1), ..., LM(fs).

Differences with division of numbers

@ Remainder r depends on the way we order monomials

@ Dividends A1, ..., hs and remainder r depend on order of
divisors fi,..., fs
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L Basis Operations in the Framework

L Division of Multivariate Polynomials

p=hhfit+t...+hsfs+r
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L Basis Operations in the Framework

L Division of Multivariate Polynomials

p=hfit+...+hsfs+r
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L Basis Operations in the Framework

L Division of Multivariate Polynomials

escribing the quotient

p=hfit+...+hsfs+r
fi

r1 f1
(hio h11 hiz ... hig) T2 f1

zd fy
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L Basis Operations in the Framework

L Division of Multivariate Polynomials

Describing the quotient

W = AL =5 oo S s S
fr

1 fr
(h'k[) hpr his ... h/kw> T2 fi
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L Basis Operations in the Framework

L Division of Multivariate Polynomials

Describing the ient

p=hfit+t...+hsfs+r
fs

1 f@
(h/s() hs1 hso ... hs,u> z3 fs

e fs
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L Basis Operations in the Framework

L Division of Multivariate Polynomials

Describing the quotient

p=hfi+t...+hfs+r

S
71 f1
z2 f1

(h/l() hn }7/12 hlq }7/20 }),21 hsv) Tﬁl f1
f2

x1 fo

i fs
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L Basis Operations in the Framework

L Division of Multivariate Polynomials

Given a set of polynomials fi,..., fs € Cy, each of degree d; (i =1...s) and
a polynomial p € C7} of degree d then the divisor matrix D is given by

fi
z1f1

2 f1

D = |z fi
f2

x1 fo

xfﬁfs

where each polynomial f; is multiplied with all monomials z** from degree 0
up to degree k; = deg(p) — deg(fi) such that % LM(f;) < LM(p).
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ESAT 30/57



A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

L Basis Operations in the Framework

L Division of Multivariate Polynomials

Example Divisor Matrix

To divide p =4 + 5x1 — 329 — 93:% + Tx120 by f1 = =2+ 21 + 29,

fo=3—x1:
1 Ty X2 x% 129
fi -2 1 1 0
xlfl 0 —2 0 1 1
D = f 3 -1 0 0 0
T1 f2 0 3 0 —1 0
zo fo \ 0O 0 3 0 —1
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A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

‘—" Advanced” Operations in the Framework
L Macaulay Matrix

" Advanced” operations on polynomials

@ Eliminate variables

@ Compute a least common multiple of 2 multivariate
polynomials

@ Compute a greatest common divisor of 2 multivariate
polynomials

One More Key Player:

Macaulay matrix
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L Advanced” Operations in the Framework
L Macaulay Matrix

Macaulay Matrix

Given a set of multivariate polynomials f1, ..., fs, each of degree
d;(i =1...s) then the Macaulay matrix of degree d is given by

Jil

z1fi

zd=d fy
fo

x1 f2

d—ds
Ty fs
where each polynomial f; is multiplied with all monomials up to

md_egreed—di foralli=1...s.
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L Advanced” Operations in the Framework

L Macaulay Matrix

Row space of the Macaulay matrix

Mg = {hifi +hafo+ ...+ hsfs | for all possible hi, ha, ..., hs
with degrees d — di,d — da, . ..,d — ds respectively}
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A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

L Advanced” Operations in the Framework

L Macaulay Matrix

For the following polynomial system:

fir w2 —229 = 0
f23 x2—3 = 0

the Macaulay matrix of degree 3 is

1 xr1 T2 x% T1TY TH :cil" x%wz :clx% x%

f1 0 0 -2 0 1 0 0 0 0 0

z1f1 0 0 0O 0 -2 0 0 1 0 0

z2f1 0 0 0 O 0 -2 0 0 1 0

fo -3 0 1 0 0 0 0 0 0 0

M@3) = z1 f2 0 -3 0 0 1 0 0 0 0 0
T2 fo 0 0 -3 0 0 1 0 0 0 0

22 fo 0 0 0 -3 0 0 0 1 0 0

zizafeo | O 0O 0O O -3 0 0 0 1 0

z3 fa 0 0 0 O 0 -3 0 0 0 1
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L Advanced” Operations in the Framework

L Macaulay Matrix

Sparsity pattern M (1

xﬁi*
*
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L Advanced” Operations in the Framework

L Elimination

Elimination Problem

Given a set of multivariate polynomials f1,..., fs and
e € {x1,...,2,}. Find a polynomial g = hy f1 + ...+ hsfs that
does not contain any of the . variables.
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L Elimination

Elimination Problem

Given a set of multivariate polynomials f1,..., fs and
e € {x1,...,2,}. Find a polynomial g = hy f1 + ...+ hsfs that
does not contain any of the . variables.

Example

From the following polynomial system in 3 variables x1, xs, x3:

fi = i+ m+as—1,
fo = $1+I%+9§3*17
fz = $1+$2+$§—1,

we want to find a g = hy f1 + hafa + h3fs only in z3.
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L Advanced” Operations in the Framework

L Elimination

Since g = hyf1 + hofo + hsfs, it lies in

for a certain degree d.
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A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

L Advanced” Operations in the Framework

L Elimination

Also, since g only contains the variables x3, it is built up from the
monomial basis

2
T3

T3

up to a certain degree d.
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‘—" Advanced” Operations in the Framework

L Elimination

We will call this vector space that is spanned by the variables z3
gdi
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A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

L Advanced” Operations in the Framework

L Elimination

g € My and g € &z; hence g lies in the intersection Mg N &y:

for some particular degree d.

| kuveuven Y
ESAT 45 /57



A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials

‘—" Advanced” Operations in the Framework

L Elimination

91:0 Uy = U1
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L Advanced” Operations in the Framework

L Elimination

We revisit
?+xotx3 = 1,
T +$% +z3 = 1,
T+ 29 + :v% = 1.

@ we eliminate both z1 and x9

e d=0,

o g(z3) = 7% — 423 + 4z — 25.
@ we eliminate zo:

o d=2,

o g(x1,73) = 71 — ¥3 — 23 + 23,
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‘—" Advanced” Operations in the Framework

L Least Common Multiple

Least Common Multiple

A multivariate polynomial [ is called a least common multiple
(LCM) of 2 multivariate polynomials f1, fo if

@ f; divides [ and f5 divides [.
@ [ divides any polynomial which both f; and fs5 divide.
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L Least Common Multiple

Least Common Multiple

A multivariate polynomial [ is called a least common multiple
(LCM) of 2 multivariate polynomials f1, fo if

@ f; divides [ and f5 divides [.
@ [ divides any polynomial which both f; and fs5 divide.

PV @

L =LCM(f1, f2)
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‘—" Advanced” Operations in the Framework

L Least Common Multiple

Finding the LCM

The LCM [ of f; and f5 satisfies:

LCM(f1, f2) &1 = fih1 = faho
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Finding the LCM
The LCM [ of f; and f5 satisfies:

LCM(f1, f2) &1 = fih1 = faho
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‘—" Advanced” Operations in the Framework

L Greatest Common Divisor

Greatest Common Divisor

A multivariate polynomial g is called a greatest common divisor of
2 multivariate polynomials f1 and fs if
@ g divides f; and fs.
@ If p is any polynomial which divides both f; and f5, then p
divides g.
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L

‘—" Advanced” Operations in the Framework

L Greatest Common Divisor

Greatest Common Divisor

A multivariate polynomial g is called a greatest common divisor of
2 multivariate polynomials f1 and fs if

@ g divides f; and fs.

@ If p is any polynomial which divides both f; and f5, then p
divides g.

YV v

fi fo g GCD f1,f2
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A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials
L Advanced” Operations in the Framework

L Greatest Common Divisor

Finding the GCD
Remember that

LCM(f1,f2) 21 = fih1 = fa ho.

We also have that

fifo =1y,
with g 2 GCD(f1, fo).
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L Greatest Common Divisor

Finding the GCD
Remember that

LCM(f1,f2) 21 = fih1 = fa ho.

We also have that

fifo =1y,
with g 2 GCD(f1, fo).

Answer:

_hf _ A _F
I="1 T m
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‘—" Advanced” Operations in the Framework

L Greatest Common Divisor

Blind Image Deconvolution

o Fi(z1,22) = I(z1,22) D1(21,22) + N1(z1, 22)
) Fg(zl, ZQ) = I(Zl, 2’2) DQ(Zl, 2’2) + NQ(Zl,Zg>
o 1(21,22) = T—GCD(Fl,FQ)
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L Greatest Common Divisor

Other Operations worked out in the thesis

@ Computing a Grobner basis of multivariate polynomials

flu"'?fs
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@ Describing all syzygies of multivariate polynomials fi,..., fs
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L Greatest Common Divisor

Other Operations worked out in the thesis

@ Computing a Grobner basis of multivariate polynomials
fisooos fs

@ Describing all syzygies of multivariate polynomials fi,..., fs

@ Removing multiplicities of solutions of fi,..., fs

@ Counting total number of affine solutions of fi,..., fs
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L Advanced” Operations in the Framework

L Greatest Common Divisor

Other Operations worked out in the thesis

@ Computing a Grobner basis of multivariate polynomials
f17 AR fs

Describing all syzygies of multivariate polynomials f1,..., fs

Removing multiplicities of solutions of fi,..., fs

Counting total number of affine solutions of fi,..., fs

Solving the ideal membership problem
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Outline

@ Conclusions and Future Work
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L Conclusions

Conclusions

Numerical Linear Algebra Framework
Addition, Multiplication

Polynomial Division and oblique projections
Elimination and intersection of vector spaces
LCM and GCD's

syzygy analysis, counting affine solutions, removing
multiplicities of solutions, ...
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L Conclusions

Future Research /Work

@ Exploit sparsity + structure matrices
@ Numerical Analysis:

e Polynomial division

e Intersection of vector spaces

o Numerical rank
@ Open problems:

e Modelling higher dimensional solution sets
o Full understanding of roots at infinity
O soo0
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