KU LEUVEN

PROC

Model Predictive Control in the Chemical Process Industry hosted by Industrial Controllers

Modelgebaseerde regeling van industriële chemische processen op industriële regelaars

> Bart Huyck Public defense September 13, 2013

Outline

- Introduction aim of this PhD
 - What Why How
- Background
 - Model identification
 - Model predictive control
 - Employed devices
- Results:
 - Case I: Air heating set-up
 - Case II: Pilot-scale distillation column
- Discussion & Conclusions

3

...completes the loop ...

... for MPC on 2 experimental set-ups ...

Increasing complexity of the system

5

Air heating set-up

Pilot-scale distillation column

... using three different devices.

Decreasing computational power

Programmable Logic Controller (PLC)

Why?

- In the past: MPC custom build
 - Large installations
 - Slow processes
- Evolution to (very) fast MPC (applications)
- Idea:
 - Use existing industrial controller hardware
 - Employ 'fast' algorithms on 'slow' devices

This to introduce MPC in a typical industrial environment on 'known devices'

How?

- Collect necessary information:
 - Model for control
 - Choose desired temperature profiles
 - Choose MPC controller objective
- Simulation on PC
- Implementation on an experimental set-up following a decreasing computational power: PC → PAC → PLC

Overview of this PhD

		Air heating set-up	Dist colu	illation Imn
Model identification		v	V	
MPC design		V	V	
Computer hardware (PC) - Simulation - Experiment on the set-up		0 0	v v	
Programmable automation controller (PAC) - Simulation - Hardware-In-the-Loop experiments - Experiments on the set-up		v v v	0 V V	
 Programmable logic controller (PLC) Hardware-In-the-Loop experiment Experiments on the set-up 		0 V	v v	
	 • = not performed • = completed • = completed and will be presented 	ed now		KU LEU

Outline

- Introduction aim of this PhD
 - What Why How
- Background
 - Model identification
 - Model predictive control
 - Employed devices
- Results:
 - Case I: Air heating set-up
 - Case II: Pilot-scale distillation column
- Discussion & Conclusions

Obtaining a model

- A model describes the relation between the inputs and a outputs of a system.
- Many model types exist:
 - White box modeling
 - Gray box modeling
 - Black-box modeling
- Different properties
 - Linear versus non–linear
 - Parametric versus non parametric
 - 0 ...

Finally, a simple but accurate model is required

Model identification in this work

- Black-box model based on transfer functions, subspace state-space modeling and polynomial models according to the Box-Jenkins model structure.
- Model selection based on
 - Akaike Information Criterion
 - Operator knowledge
- Resulting model has been converted to state-space.
- Model reduction is applied if necessary.

Model predictive control: the idea

Model predictive control in this work Prediction horizon H_p Output r(k)Determine current 1 status system 2. Select desired $\hat{y}(k|k)$ trajectory 3. Calculate optimal input sequence 4. Apply first input [wait and go back to 1] 5. k $k+1 \ k+2$ k+411 Input H_c **Prediction horizon** In- and outputs can be bounded 14 **KU LEUVEN**

MPC design

Cost function

Stay close to output reference

$$J = \sum_{i=1}^{H_p} \|\hat{\mathbf{y}}(k+i|k) - \mathbf{y}_{ref}(k+i|k)\|_{W_y}^2$$
Stay close to output reference
input reference

$$+ \sum_{j=0}^{H_c-1} \|\Delta \mathbf{u}(k+j|k) - \Delta \mathbf{u}_{ref}(k+j|k)\|_{W_u}^2.$$

Stav alogge to autout reference

- Linear state-space model
- Bounds on the inputs
 - \rightarrow results in a Quadratic Problem
 - \rightarrow to be solved each time step

Implementation

PAC

Devices characteristics

Programmable Automation Controller

- Less powerfull PC
- In- and outputs
- Typical 64 1 Gb of memory
- 10⁷ 10⁹ FLOPS

Programmable logic controller

Robust industrial controller

KU LEUV

- Lots of in/outputs
- Typical max 8 Mb of memory
- 10⁶ 10⁷ FLOPS

Outline

- Introduction aim of this PhD
 - What Why How
- Background
 - Model identification
 - Model predictive control
 - Employed devices
- Results:
 - Case I: Air heating set-up
 - Case II: Pilot-scale distillation column
- Discussion & Conclusions

Case I: Air heating set-up

- Identification results:
 - 2 input 1 output model based on transfer functions

$$T_{\rm n} = \left[\frac{-0.98(\pm 0.03)}{1+5.17(\pm 0.39)s}e^{-1.34(\pm 0.22)s}\frac{0.83(\pm 0.03)}{1+7.16(\pm 0.51)s}e^{-1.53(\pm 0.25)s}\right] \begin{bmatrix} u_{\rm Fan,n} \\ u_{\rm Power,n} \end{bmatrix}$$

- Converted to a state-space model (4 states)
- MPC settings:
 - Control horizon: 7
 - Prediction Horizon: 22
 - Cost function weight matrices:
 - Diagonal elements: 1
 - Off-diagonal elements: 0

Case I: MPC on PLC: output

Case I: MPC on PLC: inputs

No constraints violated

⁶⁰⁰ The different experiments are close to each other.

Differences caused by slightly different environmental conditions.

Case I: calculation time/iterations

Maximum number of iterations lower than allowed for qpOASES, but reached for Hildreth.

Calculation time for Hildreth lower compared to qpOASES.

Outline

- Introduction aim of this PhD
 - What Why How
- Background
 - Model identification
 - Model predictive control
 - Employed devices
- Results:
 - Case I: Air heating set-up
 - Case II: Pilot-scale distillation column
- Discussion & Conclusions

Case II: pilot-scale distillation column

- Model identification:
 - 4 input 2 output model

- Converted to a (reduced) state-space model (13 states)
- MPC settings:
 - Control horizon: 10
 - Prediction Horizon: 50
 - Diagonal elements in cost function weight matrices:
 - Punish temperature deviations more at top than bottom
 - Encourage the use of flow rates

Case II: MPC on PAC

First 2 hours:

- Small deviations from HIL experiment
- Only temperature
 increases

2h to 4h

Large deviations from HIL experiment Top temperature does not decrease enough. Reboiler temperature decreases too much.

4h to 6h

Repeated sequence of first 4 hours, but faster & smaller steps HIL experiment followed more closely

KU LEUV

Case II: MPC on PAC

Input bounds hit for experiments on the set-up. This causes the temperatures to deviate from the reference.

Case II: calculation time/iterations

Calculation time lower for Hildreth, except for large number of iterations

Outline

- Introduction aim of this PhD
 - What Why How
- Background
 - Model identification
 - Model predictive control
 - Employed devices
- Results:
 - Case I: Air heating set-up
 - Case II: Pilot-scale distillation column
- Discussion & Conclusions

Discussion

- Implementation of model predictive controllers on commonly used industrial devices has been investigated.
 - PAC: successful and promising for practical industrial use in industry.
 - Easy-to-use software
 - Fast, flexible hardware
 - PLC: possible, however only suitable for niche market
 - Reason: state-of-the-art QP solvers not programmed in a typical PLC language.
 - Too slow devices for this type of controllers

Conclusions

- Online MPC has been implemented on a PLC for two case studies:
 - Air heating set-up
 - Pilot-scale distillation column
- Successful completing of the loop to set up a controller including problem definition, model identification, MPC design and implementation on industrial hardware.
- Evaluation of performance for several industrial control devices with decreasing computational power
 (PC →) PAC → PLC

Thank you for listening

