

Katholieke Universiteit Leuven

Efficient Numerical Methods for Moving Horizon Estimation

Doctoral presentation – public defense

Niels Haverbeke

Promotor

Prof Dr. Ir. Bart De Moor

Co-promotor

Prof Dr. Moritz Diehl

Chairman

Prof. Dr. Ir. Yves Willems

Jury

Prof. Dr. Ir. Johan Suykens Prof. Dr. Ir. Jan Willems Prof. Dr. Ir. Wim Michiels Prof. Dr. Michel Kinnaert (U.L.B.) Prof. Dr. Michel Verhaegen (T.U.Delft) Prof. Dr. Ir. Lieven Vandenberghe (U.C.L.A.)

Overview

Niels Haverbeke – Public defense, 16th September 2011

Driven by applications

Recursive techniques, e.g. Kalman filter

Applied to **fast** systems **Advanced** dynamic optimization techniques, e.g. parameter estimation, MPC

Applied to **slow** systems

Dynamic optimization for fast real-time systems

Example

Example

Example

Filtering, smoothing and prediction

Recursive estimation Batch estimation

Window of one time step

- Typically online state estimation
- Kalman filter and extensions The Communication Parameter fitting

Large window

Typically offline optimization

MHE principle

The role of constraints

What can go wrong?

 \rightarrow nonlinear model may give rise to multiple optima

Contours of (rescaled) true conditional probability density $p(x_1|y_0, y_1)$

* Source: Haseltine and Rawlings, 2004

EKF tries to fit

MHE retains dominant characteristics: **multiple optima**

Waste water treatment process

Fifth order system

The closed loop control scheme

The closed loop control scheme

Free initial state

- Positive semidefinite Hessian
- Changing arrival cost
- Control dimension ≈ state dimension

Few active constraints

STRUCTURE EXPLOITING MHE ALGORITHMS

The MHE optimization problem

Linear MHE: a quadratic (sub)problem

$$
\min_{\Delta x, \Delta w} \|S_0^{-T}(\bar{x}_0 + \Delta x_0 - \hat{x}_0)\|_2^2 + \sum_{k=0}^{N-1} \|W_k^{-T}(\bar{w}_k + \Delta w_k)\|_2^2 + \sum_{k=0}^N \|V_k^{-T}(C_k(\bar{x}_k + \Delta x_k) - y_k)\|_2^2
$$

s.t.
$$
\Delta x_{k+1} = f_k + A_k \Delta x_k + G_k \Delta w_k \quad k = 0, ..., N-1
$$

$$
g_k + D_k \Delta x_k + E_k \Delta w_k \le 0
$$

$$
g_N + D_k \Delta x_N \le 0
$$

- \triangleright Writing down the optimality conditions (KKT system), and
- \triangleright Ordering the block rows,
- \triangleright ... yields a highly structured linear system of equations
- \triangleright which can be solved with Riccati and vector recursions

A highly structured KKT system

Every time step represents one block in the KKT matrix

- 1. A priori information
- 2. Model forwarding
	- 3. Measurement updating

Decomposing the KKT system

LU decomposition yields the **normal Riccati recursion**

Decomposing the KKT system

LDL^T decomposition yields the **square-root Riccati recursion**

Measurement update and time forwarding via *Q-less* QR factorizations

- \triangleright Fully exploits symmetry
- \triangleright Yields increased numerical stability

Riccati based MHE

Computation times for 5th order systems

Riccati based MHE

Accuracy

Structured QR factorization

Primal barrier method

Modified Riccati recursion

$$
\Sigma_{k+} = \left(\Sigma_{k}^{-1} + D_{k}^{T} R_{k}^{-1} D_{k}\right)^{-1} = \Sigma_{k} - \Sigma_{k} D_{k}^{T} \left(\begin{bmatrix} R_{k} & & \\ & I_{n i_{k}} \end{bmatrix} + D_{k} \Sigma_{k} D_{k}^{T}\right)^{-1} D_{k} \Sigma_{k}
$$
\nWith $\Sigma_{k} = \begin{bmatrix} P_{k} & & \\ & Q_{k} \end{bmatrix}$ and $D_{k} = \underbrace{\begin{bmatrix} C_{k} & H_{k} \\ \sqrt{\kappa} M_{k} & \sqrt{\kappa} L_{k} \end{bmatrix}}_{\text{Conditional update}}$ \n
$$
10^{3}
$$
\n
$$
10^{10}
$$
\n
$$
10^{11}
$$
\n
$$
10^{2}
$$
\n
$$
10^{3}
$$
\n
$$
10^{4}
$$
\n
$$
10^{3}
$$
\n
$$
10^{4}
$$
\n
$$
10^{5}
$$
\n
$$
10^{6}
$$
\n
$$
10^{7}
$$
\n
$$
10^{8}
$$
\n
$$
10^{9}
$$
\n
$$
2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14
$$
\n
$$
10^{11}
$$
\n
$$
10^{12}
$$
\n
$$
10^{13}
$$
\n
$$
10^{14}
$$
\n
$$
10^{15}
$$
\n
$$
10^{16}
$$
\n
$$
10^{17}
$$
\n
$$
10^{18}
$$
\n
$$
10^{18}
$$
\n
$$
10^{19}
$$
\n
$$
10^{10}
$$
\n
$$
10^{11}
$$
\n
$$
10^{12}
$$
\n
$$
10^{13}
$$
\n
$$
10^{14}
$$
\n
$$
10^{15}
$$
\n
$$
10^{16}
$$
\n
$$
10^{17}
$$
\n
$$
10^{18}
$$
\n
$$
10^{18}
$$
\n
$$
10^{19}
$$
\n<

Niels Haverbeke – Public defense, 16th September 2011

Computation times

Finite number of iterations with decreasing κ

Example - second order system

Hot starting

Hot starting

- A good initialization **is** necessary for fast convergence
- \triangleright Hot starting with the previous solution or the proposed strategy
- \triangleright Yields convergence improvement for first iterations

A Schur-complement active-set method

Method outline

STRUCTURE EXPLOITING MHE ALGORITHMS

A Schur-complement active-set method

Gradient projection method for non-negativity constrained QP

- 1. Cauchy calculation step
- 2. Projected Newton step

STRUCTURE EXPLOITING MHE ALGORITHMS

A Schur-complement active-set method

Gradient projection method for non-negativity constrained QP

 \triangleright Projected Newton step

$$
\min_{z} \frac{1}{2} x^{\top} M x + c^{\top} x
$$

s.t. $x_i = x_i^C, i \in \mathcal{A}(x^c)$
 $x_i \ge 0, i \notin \mathcal{A}(x^c)$

$$
\min_{z} \frac{1}{2} x^{\mathsf{T}} M x + c^{\mathsf{T}} x
$$

s.t. $x_i = 0, i \in \mathcal{W}$

- 1. Use semidefinite Cholesky factorization of M
- 2. Set $W = A(x^c)$
- 3. Keep adding non-positive constraints to working set
- 4. Delete rows and colums of (new) working set constraints
- 5. Continue until all components non-negative
- Between outer active-set iterations: Cholesky block downdating (constraints added)
- \triangleright Upon termination: Cholesky block updating (constraints removed)

A Schur-complement active-set method

Convergence

Computational burden

Partial

Red. QP

A Schur-complement active-set method

Huber penalty MHE

Huber penalty MHE

Univariate vs multivariate

Huber penalty MHE

Joint estimation with piecewise inputs

F16 example – linearized longitudinal model

4 states: velocity, angle-of-attack, pitch angle, pitch rate

2 outputs: pitch angle, flight path angle

1 input: elevator deflection

Joint estimation with piecewise inputs

Joint MHE: quality of input estimates

Nonlinear MHE

Nonlinear MHE

Estimation and control of glycemia in critically-ill patients

- Controlled variable: glycemia level (G)
- \triangleright Known input: carbohydrate calories flow (F_G)
- \triangleright Unkown input: medication (F_M)
- \triangleright Manipulated variable: exogenous insulin (F_I)

Nonlinear MHE

Estimation and control of glycemia in critically-ill patients

CONCLUSIONS

Niels Haverbeke – Public defense, 16th September 2011

CONCLUSIONS

Conclusions

KKT conditions reveal symmetry and structure

Decomposition yields Riccati methods

Proposed and demonstrated square-root Riccati method using QR factorizations

Block diagonal structure is preserved in interior-point methods

Proposed and demonstrated modified square-root Riccati method

Block diagonal structure is NOT preserved in active-set methods

Proposed and demonstrated a dedicated Schur-complement active-set method

Huber penalty increases robustness to outliers

Demonstrated Huber penalty MHE

Joint input estimation with piecewise inputs has finite number of break points

Proposed and demonstrated cardinality MHE yielding a sequence of L1-type MHE

Nonlinear MHE can be solved by SQP Gauss-Newton method

Demonstrated NMHE on a biomedical application

Future research

Algorithms

Ultra-fast nonlinear MHE: fast simulation

Distributed MHE

Adaptive control: interaction between MHE and MPC

Applications

Intensive Care Unit

Automotive

Power electronics

Future research

Battery parameter estimation and battery management

Niels Haverbeke – Preliminary defense, 1 July 2011

Acknowledgements

Promotor

Bart De Moor

Co-promotor

Moritz Diehl

Co-authors

Tom Van Herpe, Greet Van den Berghe, Toni Barjas-Blanco, Steven Gillijns, Bert Pluymers, Marcello Espinoza, Joachim Ferreau, Patrick Willems, Jean Berlamont, Po-Kuan Chiang

Financial support

IWT, FWO-Vlaanderen