

Katholieke Universiteit Leuven

Efficient Numerical Methods for Moving Horizon Estimation

Doctoral presentation – public defense

Niels Haverbeke

Promotor

Prof Dr. Ir. Bart De Moor

Co-promotor

Prof Dr. Moritz Diehl

Chairman

Prof. Dr. Ir. Yves Willems

Jury

Prof. Dr. Ir. Johan Suykens

Prof. Dr. Ir. Jan Willems

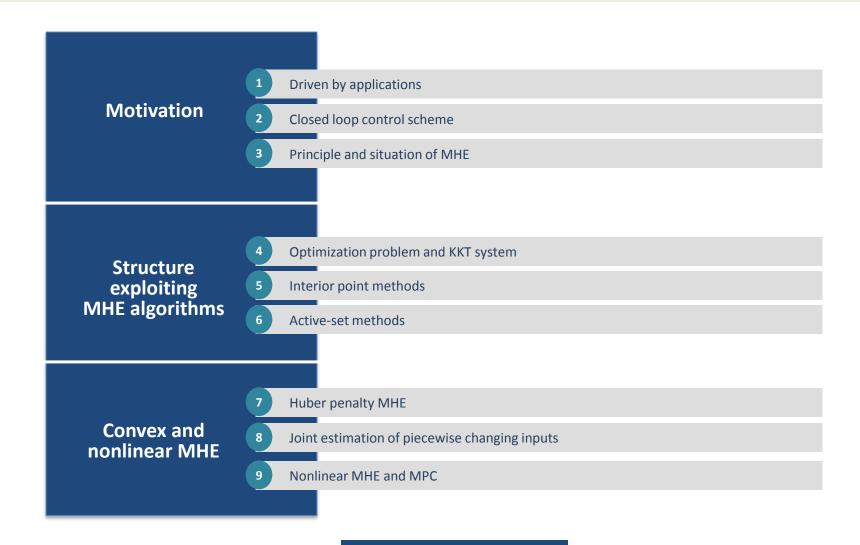
Prof. Dr. Ir. Wim Michiels

Prof. Dr. Michel Kinnaert (U.L.B.)

Prof. Dr. Michel Verhaegen (T.U.Delft)

Prof. Dr. Ir. Lieven Vandenberghe (U.C.L.A.)

Overview



CONCLUSIONS

MOTIVATION

Driven by applications

Recursive techniques, e.g. Kalman filter

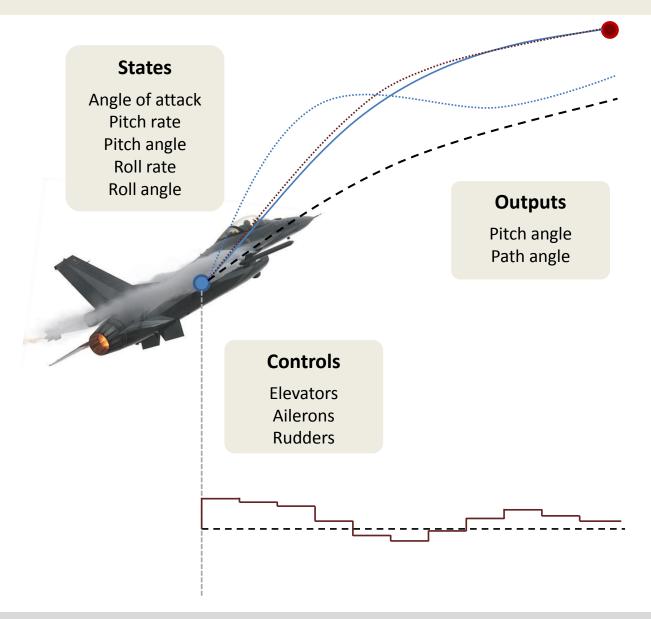
Applied to **fast** systems

Advanced dynamic optimization techniques, e.g. parameter estimation, MPC

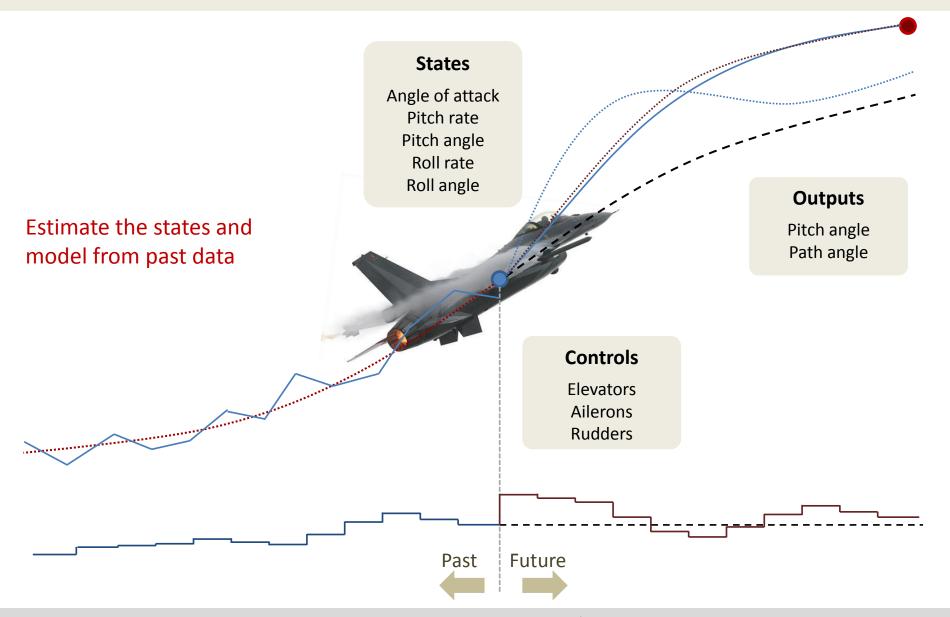
Applied to **slow** systems

Dynamic optimization for fast real-time systems

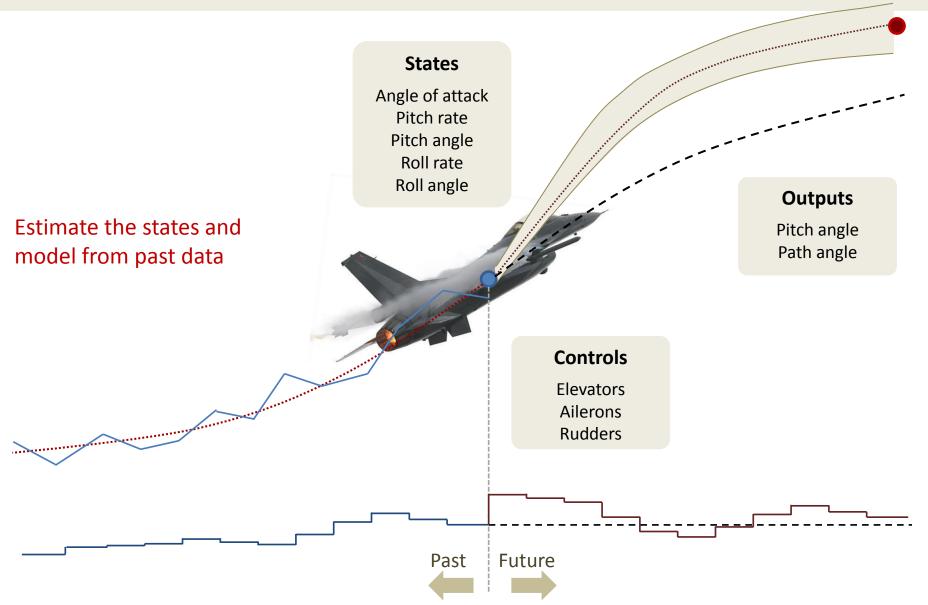
Example



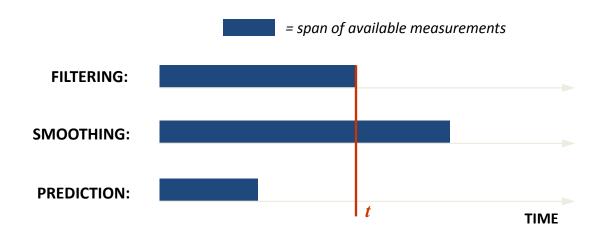
Example



Example



Filtering, smoothing and prediction



Recursive estimation

Window of one time step

Typically online state estimation

Kalman filter and extensions

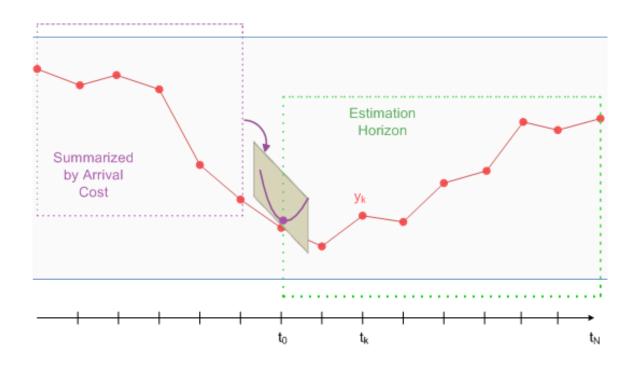
Batch estimation

Large window

Typically offline optimization

Parameter fitting

MHE principle

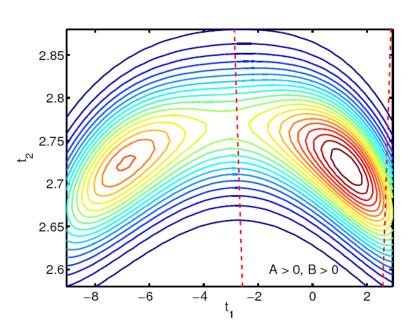


$$\min_{\mathbf{x},\mathbf{w}} \quad \mathcal{J}_{\mathsf{ic}}(x_0) + \mathcal{J}_{\mathsf{proc}}(N,\mathbf{w}) + \mathcal{J}_{\mathsf{sens}}(N,\mathbf{y},\mathbf{x})$$
Subject to Dynamic model
Constraints

The role of constraints

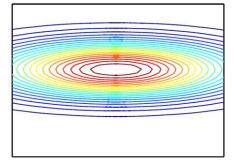
What can go wrong?

→ nonlinear model may give rise to multiple optima

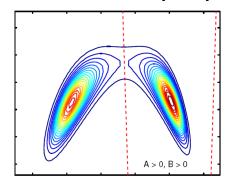


Contours of (rescaled) true conditional probability density $p(x_1|y_0,y_1)$

EKF tries to fit



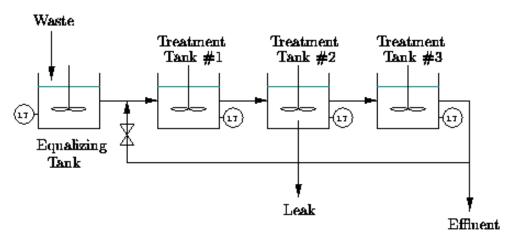
MHE retains dominant characteristics: multiple optima

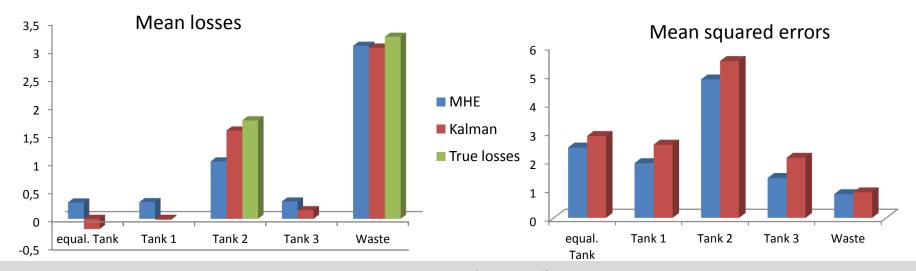


^{*} Source: Haseltine and Rawlings, 2004

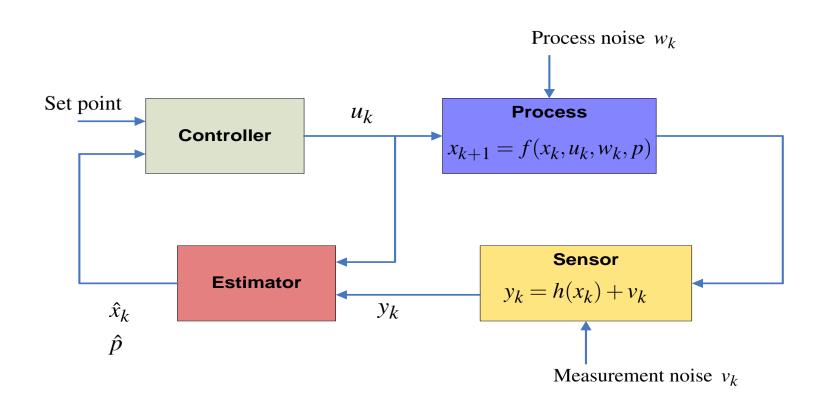
Waste water treatment process

Fifth order system

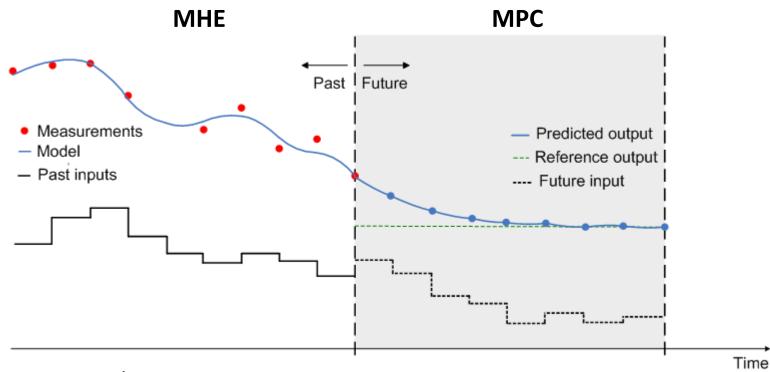




The closed loop control scheme



The closed loop control scheme



Free initial state

Positive semidefinite Hessian

Changing arrival cost

Control dimension ≈ state dimension

Few active constraints

STRUCTURE EXPLOITING MHE ALGORITHMS

The MHE optimization problem

Linear MHE: a quadratic (sub)problem

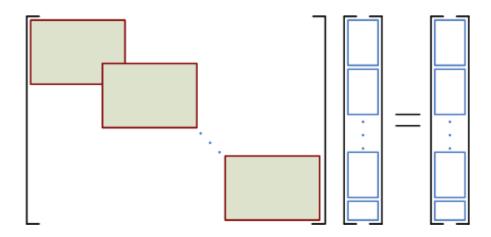
$$\min_{\Delta\mathbf{x},\Delta\mathbf{w}} \|S_0^{-T}(\bar{x}_0 + \Delta x_0 - \hat{x}_0)\|_2^2 + \sum_{k=0}^{N-1} \|W_k^{-T}(\bar{w}_k + \Delta w_k)\|_2^2 + \sum_{k=0}^{N} \|V_k^{-T}(C_k(\bar{x}_k + \Delta x_k) - y_k)\|_2^2$$

s.t.
$$\Delta x_{k+1} = f_k + A_k \Delta x_k + G_k \Delta w_k \quad k = 0, \dots, N-1$$
$$g_k + D_k \Delta x_k + E_k \Delta w_k \le 0$$
$$g_N + D_k \Delta x_N \le 0$$

- Writing down the optimality conditions (KKT system), and
- Ordering the block rows,
- ... yields a highly structured linear system of equations
- which can be solved with Riccati and vector recursions

A highly structured KKT system

Every time step represents one block in the KKT matrix

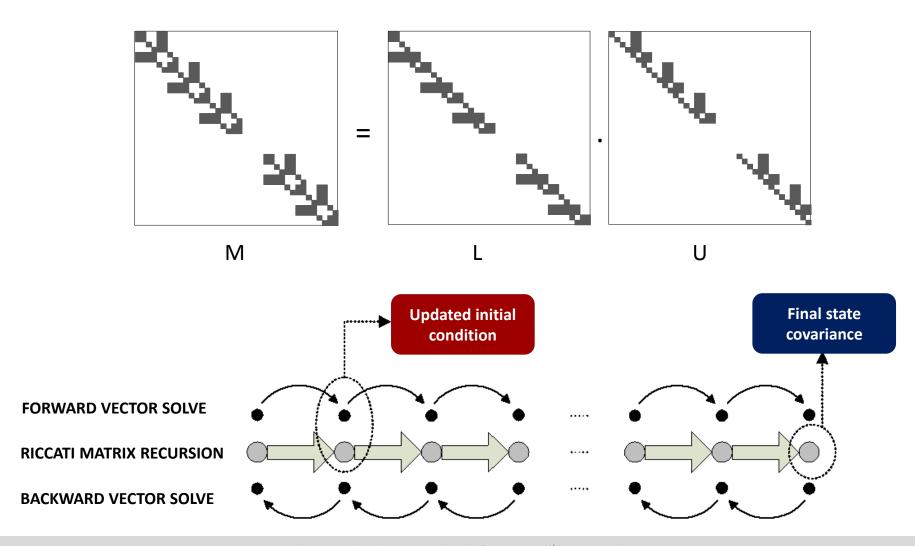


Information is translated in three steps

- 1. A priori information
- 2. Model forwarding
 - 3. Measurement updating

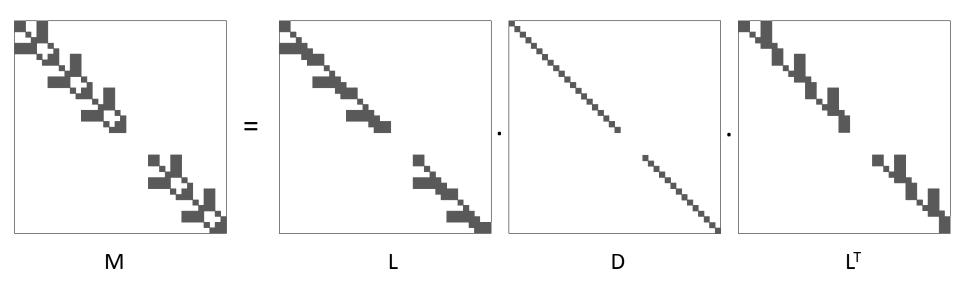
Decomposing the KKT system

LU decomposition yields the normal Riccati recursion



Decomposing the KKT system

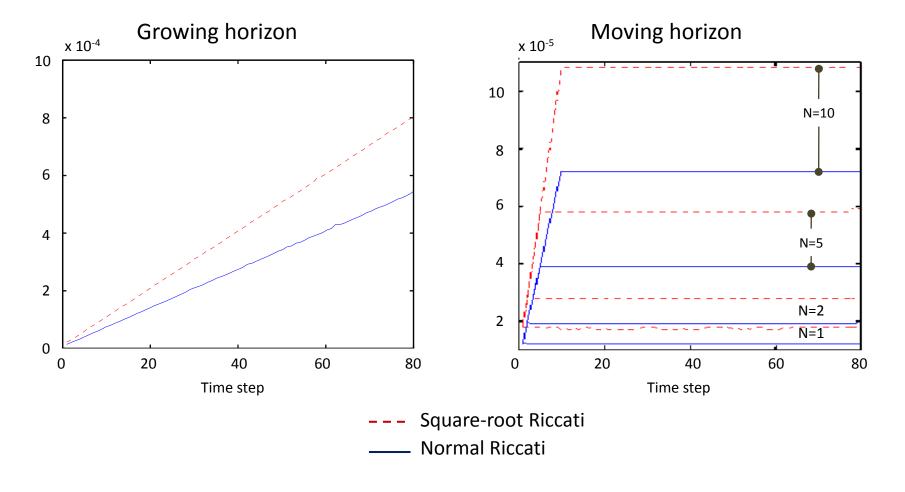
LDL^T decomposition yields the square-root Riccati recursion



- ➤ Measurement update and time forwarding via *Q-less* QR factorizations
- Fully exploits symmetry
- Yields increased numerical stability

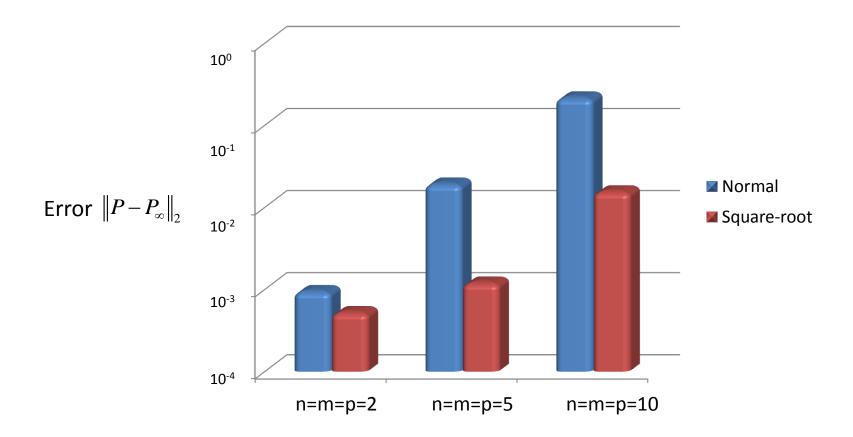
Riccati based MHE

Computation times for 5th order systems

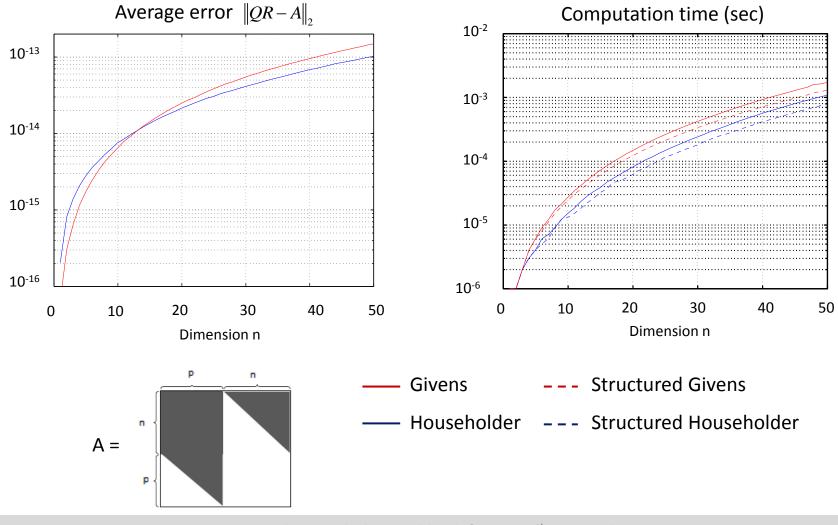


Riccati based MHE

Accuracy



Structured QR factorization

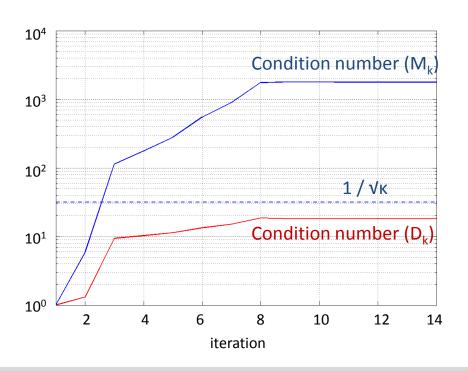


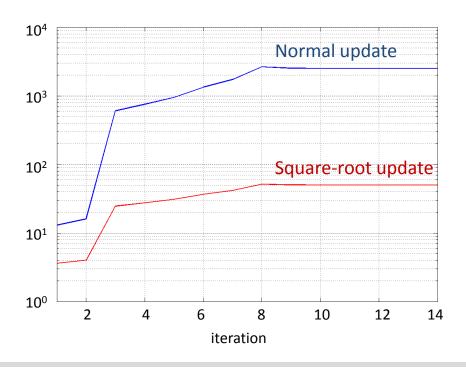
Primal barrier method

Modified Riccati recursion

$$\Sigma_{k+} = \left(\Sigma_k^{-1} + D_k^\mathsf{T} R_k^{-1} D_k\right)^{-1} = \Sigma_k - \Sigma_k D_k^\mathsf{T} \left(\begin{bmatrix} R_k & \\ & I_{ni_k} \end{bmatrix} + D_k \Sigma_k D_k^\mathsf{T}\right)^{-1} D_k \Sigma_k$$

With
$$\Sigma_k = \begin{bmatrix} P_k & \\ & Q_k \end{bmatrix}$$
 and $D_k = \begin{bmatrix} C_k & H_k \\ \sqrt{\kappa} M_k & \sqrt{\kappa} L_k \end{bmatrix}$

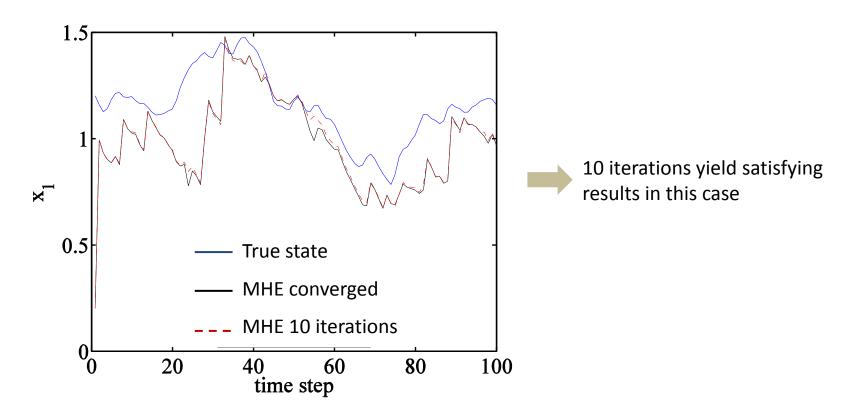




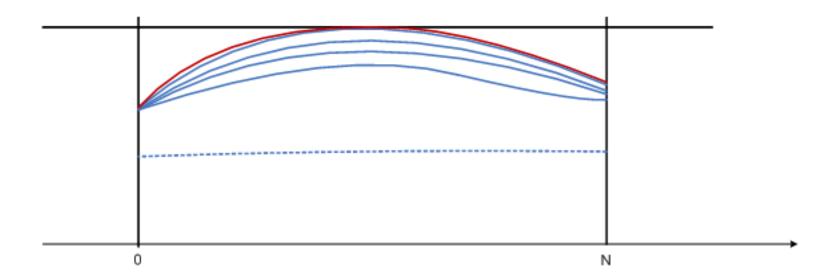
Computation times

Finite number of iterations with decreasing κ

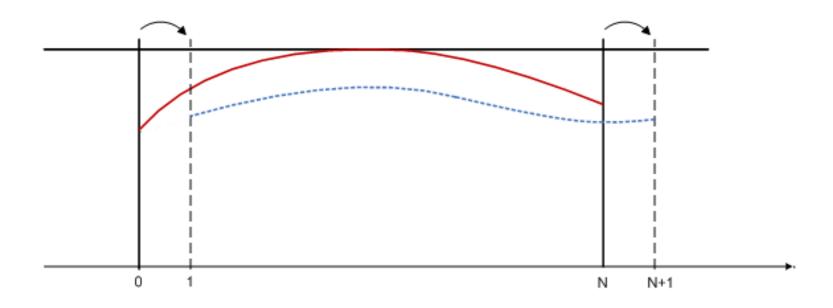
Example - second order system



Hot starting

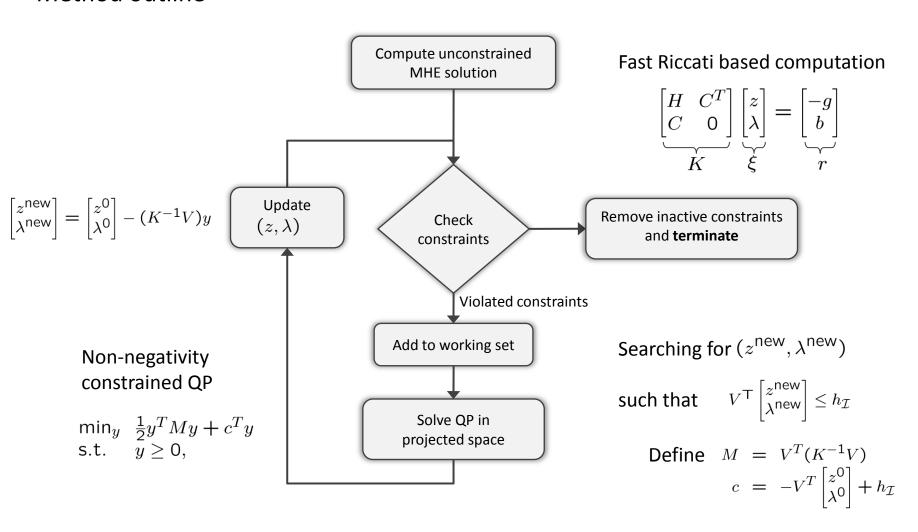


Hot starting



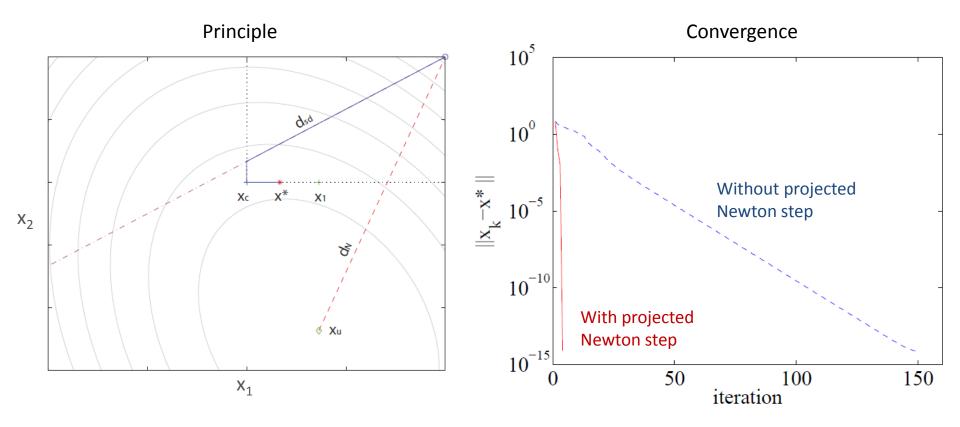
- > A good initialization is necessary for fast convergence
- ➤ Hot starting with the previous solution or the proposed strategy
- > Yields convergence improvement for first iterations

Method outline



Gradient projection method for non-negativity constrained QP

- 1. Cauchy calculation step
- 2. Projected Newton step

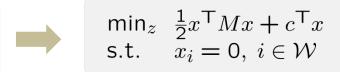


Gradient projection method for non-negativity constrained QP

Projected Newton step

$$\min_{z} \frac{1}{2} x^{\mathsf{T}} M x + c^{\mathsf{T}} x$$
s.t. $x_{i} = x_{i}^{\mathsf{C}}, i \in \mathcal{A}(x^{c})$

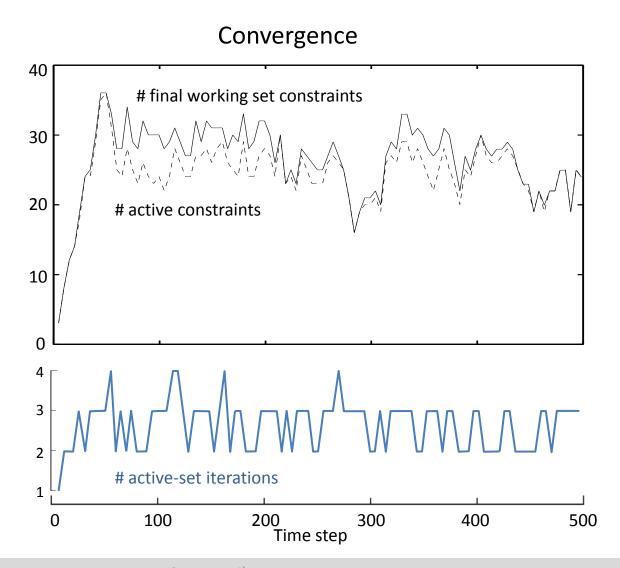
$$x_{i} \geq 0, i \notin \mathcal{A}(x^{c})$$

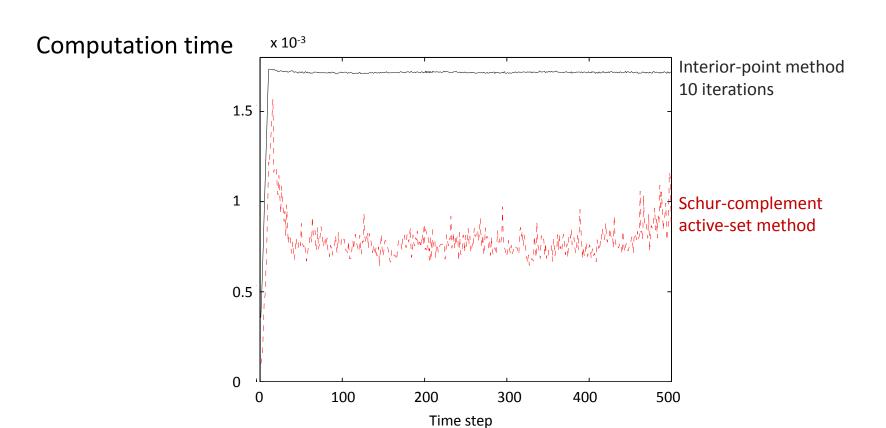


- 1. Use semidefinite Cholesky factorization of M
- 2. Set $W = A(x^c)$
- 3. Keep adding non-positive constraints to working set
- 4. Delete rows and colums of (new) working set constraints
- 5. Continue until all components non-negative
- Between outer active-set iterations: Cholesky block downdating (constraints added)
- Upon termination: Cholesky block updating (constraints removed)

Computational burden

	uMHE	asetMHE	Total
Riccati	1		1
Fsolve	1		1
Partial Fsolve		n _A	n _A
Bsolve	1	n _{it}	1+n _{it}
Red. QP		n _{it}	n _{it}

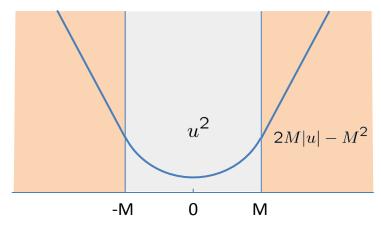




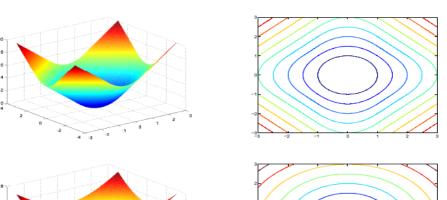
CONVEX AND NONLINEAR MHE

Huber penalty MHE

The Huber penalty



- Preserves LS performance
- Increases robustness to outliers



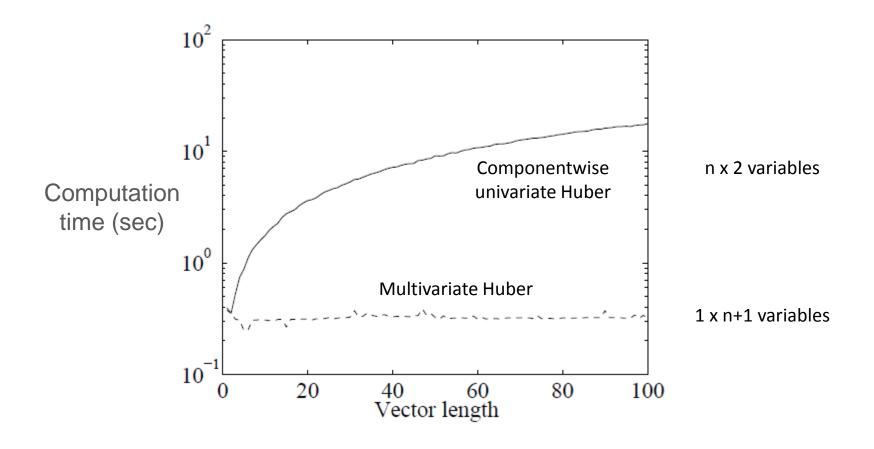
$$\begin{aligned} \min_{u,\alpha,\beta} & \alpha^2 + 2M\beta \\ \text{s.t.} & -(\alpha+\beta) \leq u \leq (\alpha+\beta) \\ & 0 \leq \alpha \leq M \\ & 0 \leq \beta \end{aligned}$$

Multivariate SOCP

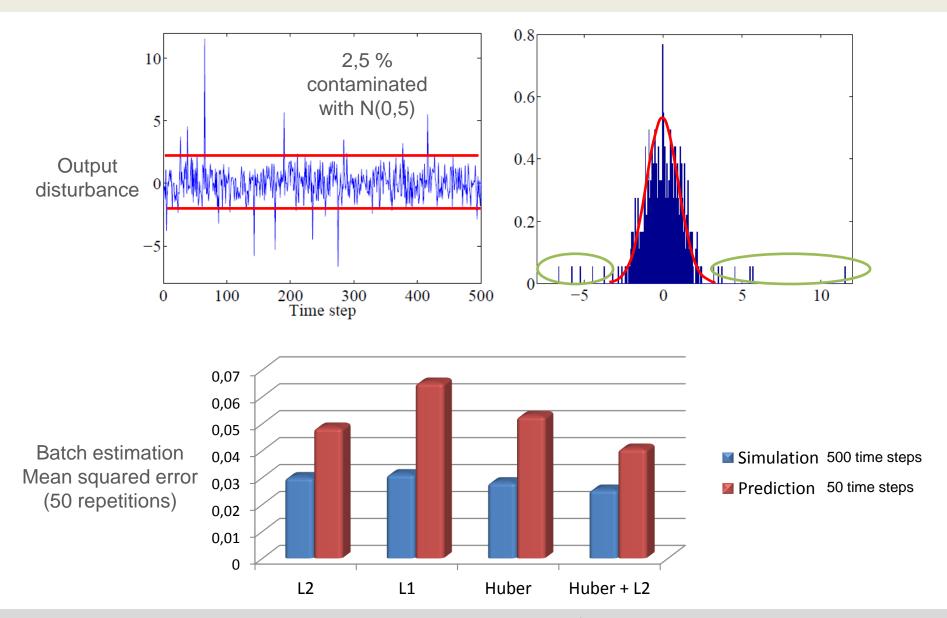
$$\begin{aligned} \min_{x,\alpha,\beta} & & \|\alpha\|_2^2 + 2M\beta \\ \text{s.t.} & & \|x - \alpha\|_2 \leq \beta \\ & & \|\alpha\|_2 \leq M \\ & & \alpha \geq 0, \ \beta \geq 0 \end{aligned}$$

Huber penalty MHE

Univariate vs multivariate



Huber penalty MHE



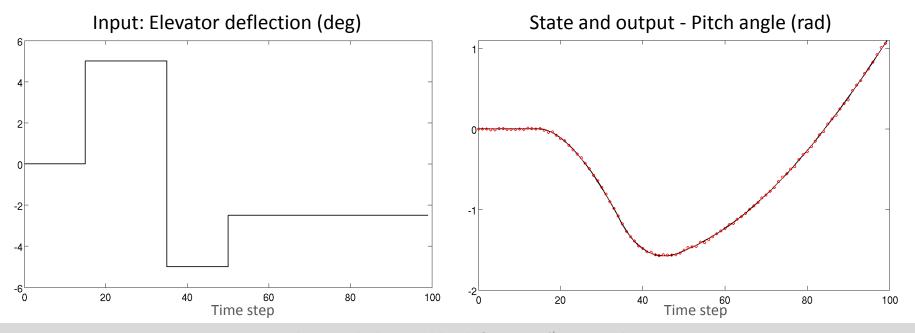
Joint estimation with piecewise inputs

F16 example – linearized longitudinal model

4 states: velocity, angle-of-attack, pitch angle, pitch rate

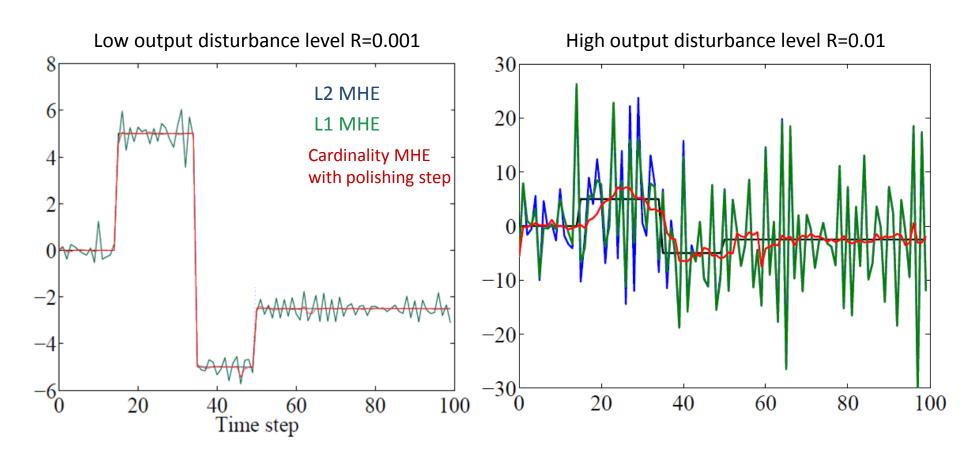
2 outputs: pitch angle, flight path angle

1 input: elevator deflection

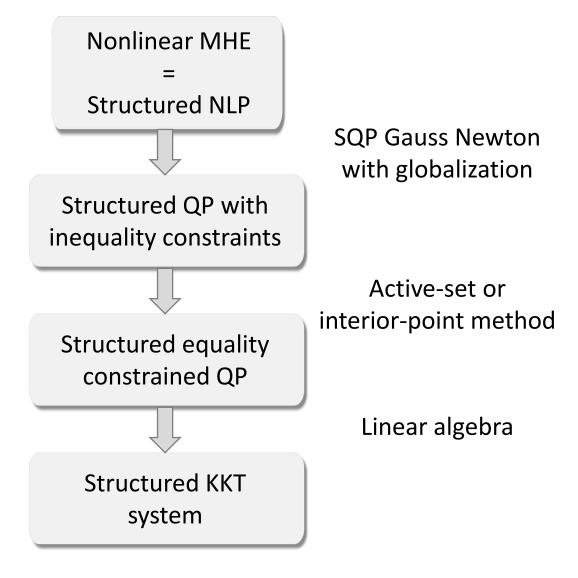


Joint estimation with piecewise inputs

Joint MHE: quality of input estimates

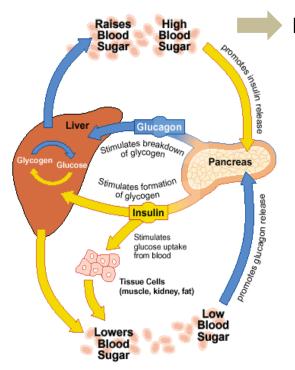


Nonlinear MHE

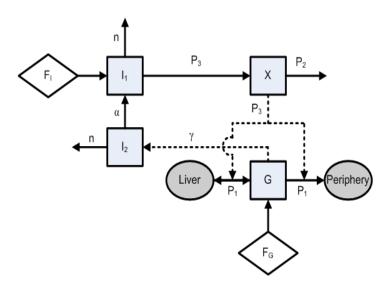


Nonlinear MHE

Estimation and control of glycemia in critically-ill patients



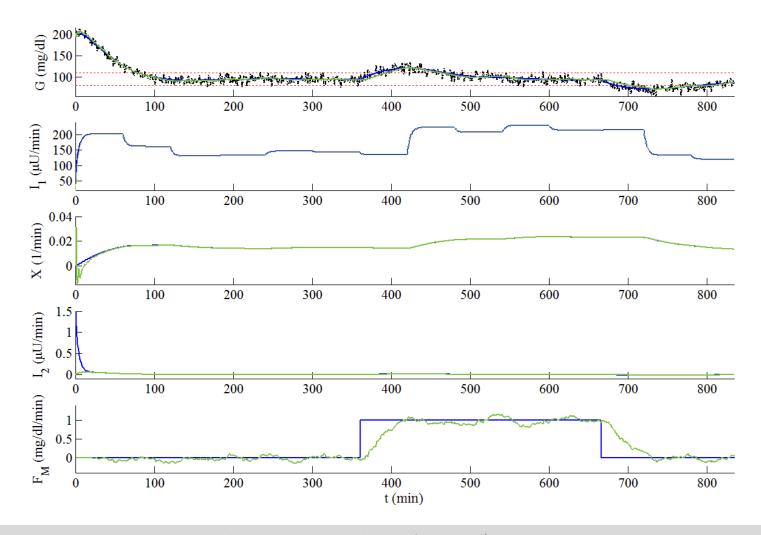
Regulate glycemia to normoglycemic range (80-110 mg/dl)



- ➤ Controlled variable: glycemia level (G)
- Known input: carbohydrate calories flow (F_G)
- ➤ Unkown input: medication (F_M)
- ➤ Manipulated variable: exogenous insulin (F_I)

Nonlinear MHE

Estimation and control of glycemia in critically-ill patients



CONCLUSIONS

Conclusions

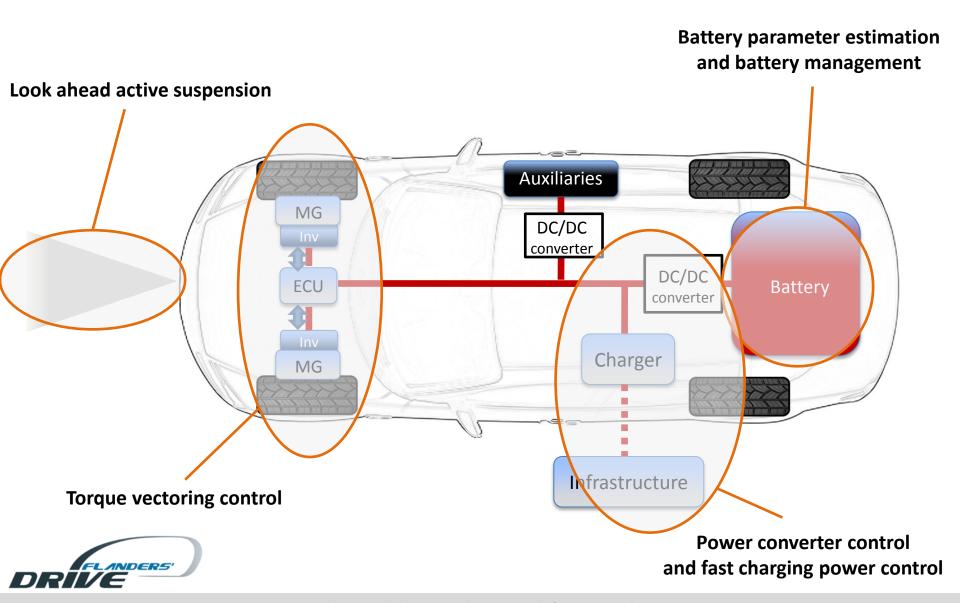
KKT conditions reveal symmetry and structure			
Decomposition yields Riccati methods			
Proposed and demonstrated square-root Riccati method using QR factorizations			
Block diagonal structure is preserved in interior-point methods			
Proposed and demonstrated modified square-root Riccati method			
Block diagonal structure is NOT preserved in active-set methods			
Proposed and demonstrated a dedicated Schur-complement active-set method			
Huber penalty increases robustness to outliers			
Demonstrated Huber penalty MHE			
Joint input estimation with piecewise inputs has finite number of break points			
Proposed and demonstrated cardinality MHE yielding a sequence of L1-type MHE			
Nonlinear MHE can be solved by SQP Gauss-Newton method			
Demonstrated NMHE on a biomedical application			

Power electronics

Future research

Algorithms Ultra-fast nonlinear MHE: fast simulation Distributed MHE Adaptive control: interaction between MHE and MPC Applications Intensive Care Unit Automotive

Future research



Acknowledgements

Promotor

Bart De Moor

Co-promotor

Moritz Diehl

Co-authors

Tom Van Herpe, Greet Van den Berghe, Toni Barjas-Blanco, Steven Gillijns, Bert Pluymers, Marcello Espinoza, Joachim Ferreau, Patrick Willems, Jean Berlamont, Po-Kuan Chiang

Financial support

IWT, FWO-Vlaanderen