
ARENBERG DOCTORAL SCHOOL
FACULTY OF ENGINEERING SCIENCE

Back to the Roots
Polynomial System Solving Using Linear Algebra

Philippe DREESEN

Dissertation presented in partial
fulfillment of the requirements for

the degree of Doctor in Engineering

September 2013

Promotor:
Prof. dr. ir. B. De Moor





Back to the Roots

Polynomial System Solving Using Linear Algebra

Philippe DREESEN

September 2013

Supervisor:
Prof. dr. ir. Bart De Moor
(Department of Electrical Engineering)

Members of the Examination Committee:
Prof. dr. ir. Paula Moldenaers, chair
(Department of Chemical Engineering)

Prof. dr. ir. Karl Meerbergen, assessor
(Department of Computer Science)

Prof. dr. ir. Johan Suykens, assessor
(Department of Electrical Engineering)

Prof. dr. ir. Sabine Van Huffel, assessor
(Department of Electrical Engineering)

Prof. dr. ir. Joos Vandewalle, assessor
(Department of Electrical Engineering)

Prof. dr. ir. Johan Schoukens, assessor
(Vrije Universiteit Brussel, Belgium)

Prof. dr. Bernard Hanzon, assessor
(University College Cork, Ireland)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor in Engineering



© KU Leuven – Faculty of Engineering Science
Department of Electrical Engineering
STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics
Kasteelpark Arenberg 10,
B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm, elek-
tronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming
van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by
print, photoprint, microfilm or any other means without written permission from the
publisher.

D/2013/7515/88
ISBN 978-94-6018-702-5



Contents

Contents iii

Preface ix

Abstract xiii

Nederlandse Samenvatting xv

Symbols and Notation xvii

I Introduction and Foundations 1

1 Introduction 3
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Solving Polynomial Equations . . . . . . . . . . . . . . . . 3
1.1.2 Approach Taken in Thesis . . . . . . . . . . . . . . . . . . . 4

1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Univariate Root-finding . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Multivariate Root-finding: Numerical Methods . . . . . 6
1.2.3 Multivariate Root-finding: Algebraic Methods . . . . . . 7
1.2.4 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.5 Polynomial Optimization . . . . . . . . . . . . . . . . . . . 10

1.3 Research Objectives and Contributions . . . . . . . . . . . . . . . 11
1.3.1 Linear Algebra and Realization Theory for Polynomial

System Solving . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Two Algorithms for Solving Systems of Polynomial

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Solving Over-constrained Systems of Polynomial Equa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iii



iv CONTENTS

2 Motivational Examples 17
2.1 Finding the Roots of Two Quadrics . . . . . . . . . . . . . . . . . . 17

2.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Two-Step Procedure for Finding the Roots . . . . . . . . . 18
2.1.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.4 Using Other Shift Functions . . . . . . . . . . . . . . . . . . 28
2.1.5 About the Choice of Basis . . . . . . . . . . . . . . . . . . . 29
2.1.6 TwoWays to Use the Shift Structure . . . . . . . . . . . . . 29
2.1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Three Equations in Three Unknowns . . . . . . . . . . . . . . . . . 32
2.2.1 Root-finding . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Roots at Infinity: Mind the Gap! . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Root-finding . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Linear Algebra and Realization Theory 41
3.1 Solving Homogeneous Linear Equations . . . . . . . . . . . . . . 42

3.1.1 Geometrical Interpretation . . . . . . . . . . . . . . . . . . 42
3.1.2 Complementarity Columns of A versus Rows of X . . . 43

3.2 Motzkin Null Space Computation . . . . . . . . . . . . . . . . . . 45
3.2.1 Null Space of a Single Row . . . . . . . . . . . . . . . . . . 45
3.2.2 Motzkin Null Space of a Matrix . . . . . . . . . . . . . . . 46

3.3 Realization Theory Concepts . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Realization Theory for 1D Systems . . . . . . . . . . . . . 48
3.3.2 Realization Theory for nD Systems . . . . . . . . . . . . . 49

II Polynomial System Solving 51

4 Sylvester Matrix Formulation 53
4.1 Univariate Root-finding . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Companion Matrix . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 Finding the Common Roots of a System of Two Univari-

ate Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.3 Systems with More Than Two Equations . . . . . . . . . . 57
4.1.4 Multiple Roots and Differential Operators . . . . . . . . . 58

4.2 Sylvester and 1D Realization Theory . . . . . . . . . . . . . . . . . 60
4.2.1 Interpretation as System of Difference Equations . . . . . 61
4.2.2 Bases for the Null Space of the Sylvester Matrix . . . . . 61
4.2.3 Roots at Infinity and Descriptor Systems . . . . . . . . . . 64

5 MacaulayMatrix Formulation 67
5.1 Representation of System of Polynomials . . . . . . . . . . . . . . 67

5.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 67



CONTENTS v

5.1.2 Definition Macaulay Matrix . . . . . . . . . . . . . . . . . . 68
5.1.3 Homogeneous Macaulay Matrix . . . . . . . . . . . . . . . 69

5.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 Number of Rows and Columns . . . . . . . . . . . . . . . . 71
5.2.2 Structure and Sparsity . . . . . . . . . . . . . . . . . . . . . 71

5.3 Null Space of the Macaulay Matrix . . . . . . . . . . . . . . . . . . 74
5.3.1 Generic Case: Affine Roots Only . . . . . . . . . . . . . . . 75
5.3.2 Solutions at Infinity . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.3 Removing the Solutions at Infinity . . . . . . . . . . . . . . 83
5.3.4 Multiple Roots and the Dual Space . . . . . . . . . . . . . 83
5.3.5 Nullity of Macaulay Matrix and Dimension of Variety . 86

6 Polynomial System Solving Algorithms 89
6.1 From Multiplication Structure to Eigenvalues . . . . . . . . . . . 89
6.2 Null Space Based Root-finding . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Generic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 TwoWays To Use the Shift Property . . . . . . . . . . . . . 93
6.2.3 About the Choice of Basis . . . . . . . . . . . . . . . . . . . 95
6.2.4 Solutions at Infinity . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.5 Iterative Null Space Computations . . . . . . . . . . . . . 102

6.3 Column Space Based Root-finding . . . . . . . . . . . . . . . . . . 105
6.3.1 Generic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2 Solutions at Infinity . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Application: Polynomial Optimization Problems . . . . . . . . . 109
6.4.1 Motivation and Approach . . . . . . . . . . . . . . . . . . . 109
6.4.2 System Identification . . . . . . . . . . . . . . . . . . . . . . 110
6.4.3 Power Iterations to Find Minimizing Solution . . . . . . 113

7 Polynomial Systems and Realization Theory 115
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Generic Systems: Affine Roots Only . . . . . . . . . . . . . . . . . 116
7.3 Solutions at Infinity: Descriptor Systems . . . . . . . . . . . . . . 119

8 Solving Over-constrained Systems 125
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 126
8.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.2 Macaulay SVD Approach . . . . . . . . . . . . . . . . . . . . . . . . 128
8.2.1 Detecting the Number of Approximate Solutions . . . . 128
8.2.2 An SVD-based Approximate Solution Approach . . . . . 130

8.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.4 Application: A Computer Vision Problem . . . . . . . . . . . . . . 134
8.5 Conclusions and Open Problems . . . . . . . . . . . . . . . . . . . 136

8.5.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



vi CONTENTS

8.5.2 Solutions at Infinity . . . . . . . . . . . . . . . . . . . . . . . 137
8.5.3 Recovering Underlying System . . . . . . . . . . . . . . . . 138
8.5.4 Conditioning of the System . . . . . . . . . . . . . . . . . . 139

III Closing 141

9 Conclusions and Outlook 143
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.2.1 Solutions at Infinity and Multiplicities in Realization
Theory Framework . . . . . . . . . . . . . . . . . . . . . . . 145

9.2.2 Developing Understanding of Numerical Aspects . . . . 146
9.2.3 Over-constrained Systems . . . . . . . . . . . . . . . . . . . 146
9.2.4 Identifiability Analysis of Nonlinear Systems . . . . . . . 147
9.2.5 Numerical Basis Computation . . . . . . . . . . . . . . . . 147
9.2.6 Sparsity, Structure and Real Solutions . . . . . . . . . . . . 147

Bibliography 149

IV Appendices 159

A Linear Algebra and Systems Theory 161
A.1 Linear Algebra Basics . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.1.2 EigenvalueDecomposition: Diagonalizable versusNon-

diagonalizable Matrices . . . . . . . . . . . . . . . . . . . . 165
A.1.3 Two Important Decompositions: QR and SVD . . . . . . 168
A.1.4 Projections and Least Squares . . . . . . . . . . . . . . . . . 171

A.2 State-space Model for 1D Systems . . . . . . . . . . . . . . . . . . 175
A.3 Computing the Output to a Given Input Signal . . . . . . . . . . 176

A.3.1 SISO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.3.2 MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.4 Realization Theory for 1D Systems . . . . . . . . . . . . . . . . . . 177
A.4.1 Regular 1D Systems . . . . . . . . . . . . . . . . . . . . . . . 177
A.4.2 Realization Theory for 1D Descriptor Systems . . . . . . 179

B Algebraic Geometry 183
B.1 Monomials and Polynomials . . . . . . . . . . . . . . . . . . . . . . 183
B.2 Vector Representation of a Polynomial . . . . . . . . . . . . . . . . 185
B.3 Ideals and Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
B.4 Projective Ideals and Varieties . . . . . . . . . . . . . . . . . . . . . 187
B.5 Dimension of a Variety . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.5.1 Intuitive Definition . . . . . . . . . . . . . . . . . . . . . . . 188
B.5.2 Definition Using Hilbert Polynomial . . . . . . . . . . . . 189



CONTENTS vii

B.6 Gröbner Bases and Buchberger’s Algorithm . . . . . . . . . . . . 190
B.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.6.2 General Definitions and Multivariate Division . . . . . . 191
B.6.3 From S-Polynomials to Buchberger’s Algorithm . . . . . 192

B.7 Stetter’s Eigendecomposition Approach . . . . . . . . . . . . . . . 194

C Polynomial System Solving: Historical Notes 197
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
C.2 Pre-history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
C.3 Renaissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
C.4 19th Century . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.5 20th Century . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Curriculum Vitae 205

List of Publications 207





Preface

The last years have been a challenging and life-changing trip. The support and
company of supervisors, students and colleagues, friends, family and loved
ones have made the journey unforgettable. This thesis would have never
existed without the help and support of them.

First of all, I want to express my gratitude to my supervisor, prof. Bart
De Moor, for giving me the opportunity to pursue a PhD in his group. I
consider myself lucky having worked on a topic that is in the center of his
attention. It wasn’t always easy to tackle some hard algebraic questions
with his street-fighting approach to mathematics, but the results in this text
stem from the many inspiring and unforgettable meetings and brainstorming
sessions.

Because my work ultimately didn’t focus on the Structured Total Least
Squares problem, prof. Sabine Van Huffel acts in the examination jury as
assessor instead of co-supervisor. I am very grateful for her interest in my
work and the many corrections and suggestions for the thesis.

Prof. Joos Vandewalle helped to organize and shape the education of math-
ematical knowledge of generations of KU Leuven engineers. I considered it
an honor to be his teaching assistant for the course on System Identification.
I will also never forget his close commitment to students and education as I
often had the privilege to observe during WIT POC meetings. Finally I am
very thankful for his interesting comments and remarks on the text.

I want to thank Prof. Johan Schoukens for letting me be the responsible
teaching assistant for the exercises for his part of the System Identification
course at KU Leuven. During our meetings on many events he was
always very interested in my work and often brought me into contact
with people at VUB working on related problems. I am looking forward
to work on challenges involving system identification and polynomials in
Brussels!

ix



x PREFACE

Prof. Johan Suykens deserves a special thank you. Not only for serving
in the reading committee, but also for providing me with useful feedback
on paper drafts, and involving me in the work of Kris De Brabanter and
Tillmann Falck on the application of LS-SVM’s in System Identification. Most
of all, I will never forget the many lunches with Johan and the ALMA
gang, where conversation topics were ranging from science, sport, travel,
research, teaching, society and philosophy to quantum-mechanics. They were
a pleasure every time.

I want to thank prof. KarlMeerbergen for the suggestions throughout my PhD
and for taking part in the jury. I am very grateful to prof. Bernard Hanzon for
the pleasant scientific conversation about polynomials and systems theory on
the day before the preliminary defense. Finally, I want to thank prof. Paula
Moldenaers for chairing the jury.

By working on the same topic with Kim Batselier, discovering new things
about polynomials was always a shared joy. At the same time there was
always someone to share the frustrations with when something didn’t work.
Along theway Kim became a great friend. Without his friendship and support
this PhD would not have been here.

Academia turn out to be places where you meet a lot of interesting people.
I would like to thank the many students, colleagues and ex-colleagues for
the many interesting talks, discussions, coffee breaks, SISTA weekends, the
drinks in Leuven, cinema nights, dinners, conferences and the many other
occasions. Trying to name all is impossible, but I have always enjoyed
the times spent with Tillmann, Marco, Dries, Kris, Pieter, Maarten, Toni,
Raf, Niels, Tom, Fabian, Carlos, Marcelo, Mauricio, Siamak, Rocco, Vilen,
Raghvendra, Marko, Xinhai, Nico, Mariya, Diana, Anca, Laurent, Mathias,
Anna, Maarten, Laurent, Anne, and many more — this list can go on for a
while. A big thank you goes out to Ilse, Ida, Lut, Anne, John, Elsy andWim, as
well as Maarten and Liesbeth for the excellent support with all administration
and IT questions. Financially, part of this PhD research was supported by a
PhD scholarship granted by IWT-Vlaanderen (1/2009-12/2012).

Be it by sharing houses, having ALMA lunches, going on Iceland trips or
having poker nights, the following friends have made the last years an
unforgettable time: Anca and Arthur, Anna and Maarten, David and Els,
Jochen, Liesbeth and Thomas, Liesje and Jeroen, Mariya and Nikola, Pieter,
Steven, Stijn and Griet, Tristan and Nathalie, Ward and Caroline, the ‘501’
guys and girls, and many many more.

I want to thank my mother for all her support in everything. Thank you very
much for being there for me. I also thank my father and step-mother for
their continuous interest in my work. My sisters deserve a special thanks
for reminding me from time to time how boring mathematics really is. I
want to thank my grandmother and my other grandparents who are not here



xi

anymore, but have in profound ways contributed to this result. My interest in
engineering was sparked by spending most of my childhood in the middle of
the wires, cables, industrial engines and the tools of my grandfather’s work
shop. I want to thank the rest of my family and family-in-law for the support
and interest in my work.

Finally, I want to thank my wife Gülin. We went through exciting but hectic
times in the last months. But when I was writing this text, you always
managed to give me time and space. I want to express my sincerest gratitude
for your encouragement, patience, support and love. Without you this text
would have never been written. My daughter Maren deserves a big thanks
for giving me another reason for not having to sleep during the nights I was
writing this text, but most of all for cheering me up with her sweet smiles. It
is a miracle to see you discover the world. I am happy to be a part of it.

Leuven, August, 2013.

Philippe Dreesen





Abstract

Polynomial system solving is a classical mathematical problem occurring in
science and engineering. We return to the original algebraic roots of the
problem of finding the solutions of a set of polynomial equations. Rather than
approaching the problem from symbolic algebra, we review this task from the
linear algebra perspective and show that interesting links with systems theory
and realization theory emerge.

The system of polynomial equations is represented by a structured Macaulay
coefficient matrix multiplied by a vector containing monomials. Two proper-
ties are of key importance in the null spaces of Macaulay coefficient matrices,
namely the correspondence between linear (in)dependent monomials in
the polynomials and the linear (in)dependent rows in the null space, and
secondly, the occurrence of a monomial multiplication shift structure. Both
properties are invariant and hence occur regardless of the specific numerical
basis of the null space of the Macaulay matrix.

Based on these insights, two algorithms for finding the solutions of a system
of multivariate polynomials are developed. The first algorithm proceeds by
computing a basis for the null space of the Macaulaymatrix. By exploiting the
multiplication structure in the monomials, a generalized eigenvalue problem
is derived in terms of matrices built up from certain rows of a numerically
computed basis for the null space of the Macaulay matrix. The second
procedure does not require the computation of a basis for the null space of
the Macaulay matrix. Rather, it operates on certain columns of the Macaulay
matrix and again employs the property that a set of monomials in the
problem are linearly dependent on another set of monomials. By using a
proper partitioning of the columns according to this separation into linearly
independent monomials and linearly dependent monomials, the problem
of finding the solutions is again formulated as an eigenvalue problem, in
this case phrased using a certain partitioning of the Macaulay matrix. It is
shown that this can be implemented in a numerically reliable manner using
a (Q-less) QR decomposition. Furthermore, the generalization of the null
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space-based root-finding algorithm to the case of overconstrained systems is
discussed. Several applications in system identification and computer vision
are highlighted.

The developed solution methods bear a resemblance to the application of
realization theory as encountered in systems theory and identification. We
show that the null space of the Macaulay matrix can be interpreted as a
state sequence matrix of an nD system realization. It turns out that the
notions of the regular and singular parts of an nD descriptor system naturally
correspond to the affine solutions and the solutions at infinity.



Nederlandse Samenvatting

Het oplossen van stelsels multivariate veeltermvergelijkingen is een klassiek
wiskundig probleem dat opduikt in een brede waaier van wetenschappelijke
disciplines en ingenieurswetenschappen. In plaats van het probleem aan
te pakken met symbolische algebra, bekijken we het probleem vanuit het
perspectief van lineaire algebra en tonen aan dat er interessante verbanden
met systeemtheorie en realizatietheorie opduiken.

Het stelsel van veeltermvergelijkingen wordt voorgesteld door een gestruc-
tureerde Macaulay coëfficiëntenmatrix die vermenigvuldigd wordt met een
vector die de monomen bevat. Twee kenmerken zijn van essentieel be-
lang in de nulruimte van de Macaulay-matrix, namelijk de overeenkomst
tussen lineaire (on)afhankelijke monomen in de veeltermen en de lineaire
(on)afhankelijke rijen van de nulruimte, en ten tweede, de aanwezigheid van
een multiplicatieve schuifstructuur in de monomen. Beide kenmerken zijn
invariant en treden dus op onafhankelijk van de specifieke numerieke basis
van de nulruimte van de Macaulay-matrix.

Op basis van deze inzichten worden twee algoritmes ontwikkeld om stelsels
veeltermvergelijkingen op te lossen. Het eerste algoritme start met het
berekenen van een basis voor de nulruimte van de Macaulay-matrix. Door
de multiplicatieve schuifstructuur in de monomen uit te buiten, wordt een
veralgemeend eigenwaardenprobleem afgeleid dat geschreven is in termen
van matrices die zijn samengesteld uit zekere rijen van de numerieke basis
voor de nulruimte van de Macaulay-matrix. De tweede procedure vereist
geen berekening van een numerieke basis voor de nulruimte. In plaats
hiervan wordt er geopereerd op bepaalde kolommen van deMacaulay-matrix
om opnieuw de eigenschap dat sommige monomen lineair afhankelijk zijn
van andere monomen. Wanneer de juiste partitionering van de kolommen,
gebaseerd op de indeling tussen lineair onafhankelijke en lineair afhankelijke
monomen, plaatsvindt, kan de taak van het zoeken van de oplossingen
opnieuw geformuleerd worden als een eigenwaardenprobleem. Vervolgens
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xvi NEDERLANDSE SAMENVATTING

wordt aangetoond dat bepaalde operaties hierin efficiënt geïmplementeerd
kunnen worden door middel van een QR ontbinding van de Macaulay-
matrix. Voorts wordt het nulruimte-gebaseerde algoritme veralgemeend naar
het zoeken van oplossingen van over-gedetermineerde (ruizige) stelsels veel-
termvergelijkingen. Toepassingen in systeemidentificatie en beeldverwerking
worden besproken.

De ontwikkelde oplossingsmethodes zijn verwant met het toepassen van
realizatietheorie, een discipline in systeemidentificatie en systeemtheorie. We
tonen dat de nulruimte van de Macaulay-matrix kan geïnterpreteerd worden
als een toestandssequentie van een multidimensionale systeemrealizatie.
Het blijkt tenslotte dat de noties van reguliere en singuliere delen in de
multidimensionale toestandsbeschrijving overeenstemmen met de affiene
nulpunten en de oplossingen op oneindig, respectievelijk.



Symbols and Notation

∶= ‘is defined as’, e.g., x ∶= y means ‘x is defined as y’
=∶ ‘is defined as’, e.g., y =∶ x means ‘x is defined as y’

N ∶= {0, 1, 2, . . .} set of natural numbers (including 0)
C set of complex numbers

n number of unknowns xi
x1, x2, . . . , xn unknowns (or variables)
x0 homogenization variable
α = (α1, . . . , αn) ∈Nn exponent vector of the monomial xα ∶= xα1

1 . . . xαn
n

∣α∣ degree of exponent vector α

s number of polynomials in system
f1, f2, . . . , fs polynomials (non-homogeneous)
f h1 , f

h
2 , . . . , f

h
s homogenized polynomials

ρ1 ≈ 0, . . . , ρs ≈ 0 over-constrained (noisy) polynomials

di, for i = 1, . . . , s degrees of the polynomials fi, i.e., di ∶= deg(di)
d○ =max(d1, . . . , ds) maximal degree occurring in the polynomials fi

(x(j)1 , x(j)2 , . . . , x(j)n ) j-th (affine) solution of a system
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xviii SYMBOLS AND NOTATION

M(d) Macaulaymatrix of polynomial system for degree
d (Sylvester block structured)

p(d) number of rows of M(d)
q(d) number of columns of matrix M(d)
N(d) Macaulay matrix for degree d having nested

quasi-Toeplitz structure

k(d) multivariate Vandermonde monomial vector con-
taining monomials of degrees 0 up to d

k∣x(j) evaluation of j-th solution (x(j)1 , . . . , x(j)n ) in the
monomial basis vector k

K(d) multivariate Vandermonde structured basis for
the null space of M(d)

H(d) canonical basis for the null space of M(d)
Z(d) numerical basis for the null space of M(d)
W(d) column compressed null space

S1 row-selection matrix that selects low-degree
blocks in Z (either standard monomials or entire
degree-blocks)

g(x1, . . . , xn) polynomial shift function used in eigenvalue
problem

Sg row-selection matrix that selects the rows of
g(x1, . . . , xn)S1K

Dg diagonal matrix of eigenvalues which are the
evaluation of the roots at g(x1, . . . , xn)

T matrix of eigenvectors

I identity matrix
J Jacobian matrix
AT transpose of matrix A

A−1 inverse of matrix A
A+ Moore-Penrose pseudo-inverse of matrix A

diag (a, b, c) diagonal matrix having the elements a, b and c on
the diagonal (and size 3× 3)

rank (M(d)) rank of matrix M(d)
nullity (M(d)) nullity of matrix M(d)
size(A) size of matrix A

dim(⋅) dimension (of a space or set)
deg( f ) (total) degree of a polynomial f
∥ ⋅ ∥ norm of vector or matrix (operator norm)
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m number of solutions of a polynomial system
mB Bézout number (number of roots of a generic polyno-

mial system)
ma number of affine roots of a polynomial system
m∞ number of roots at infinity

∂j∣x⋆ differential functional evaluated in x⋆

Ka matrix containing the columns of K corresponding to
the affine roots

K∞ matrix containing the columns of K corresponding to
the roots at infinity

K1 matrix containing the rows of K that correspond to
standard monomials

d degree of the Macaulay matrix M(d)
dc degree at which nullity of M(d) stabilizes
d⋆ Macaulay degree d⋆ ∶= ∑ di − n+ 1
dG degree at which gap between affine roots and roots at

infinity can be detected in M(d)

B(d) standard monomials of Macaulay matrix of degree d
B∗(dG) affine standard monomials

v(k),v(k, l) regular part of state of (nD) Attasi state space model
w(k),w(k, l) singular part of state of (nD) Attasi state space model
A1,A2, . . . ,An action matrices (regular) of nD Attasi state space model
E0,E1, . . . ,En actionmatrices (singular) of nDAttasi state spacemodel
Γ annihilator of Sylvester matrix or Macaulay matrix

C[x1, . . . , xn] ring of polynomials with coefficients in C

C[x1, . . . , xn]≤d ring of polynomials with coefficients in C and total
degree ≤ d

C[x0, . . . , xn] ring of polynomials (projective space)
C[x0, . . . , xn]d ring of total degree d polynomials
I ∶= ⟨ f1, . . . , fs⟩ ideal generated by the polynomials f1, . . . , fs
I≤d subset of I containing the elements of total degree ≤ d
Ih homogenization of ideal I, i.e., Ih ∶= ⟨ f h1 , . . . , f hs ⟩
Ihd subset of Ih containing the elements of total degree d
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1Introduction

1.1 Problem Statement

1.1.1 Solving Polynomial Equations

In this thesis, we develop (numerical) linear algebra algorithms for solving
zero-dimensional systems polynomial equations, or, equivalently, ‘finding the
roots of systems of polynomial equations’. Polynomial system solving is an
old and central problem in mathematics. It underlies many applications in
applied mathematics, science and engineering (Buchberger, 2001; Cox et al.,
2005, 2007; Dickenstein and Emiris, 2005; Mora, 2003, 2005; Sturmfels, 2002).
The related question of solving a polynomial optimization problem arises in
many engineering applications where one is often interested in finding the
‘best’ (optimal) solution for a certain problem.

The area of mathematics concerned with polynomial algebra is called ‘alge-
braic geometry’. The body of literature in algebraic geometry is vast, and
much of it is of a highly theoretical and abstract nature. The branch concerned
with computational algorithms for solving questions in algebraic geometry
is called ‘computational algebraic geometry’ or ‘computer algebra’, and has
become an important research field for the last 50 years. This thesis develops
methods for solving systems of polynomial equations that are inspired on
linear algebra and realization theory concepts.

One of the obstacles in (computational) algebraic geometry is that most of the
literature is only accessible after intensive study of the subject and, therefore,
often beyond the grasp of appliedmathematicians and engineers. We strongly
believe that bridging the gaps between applied mathematics and algebraic
geometry is of paramount importance. An important aim is therefore
presenting the results in a didactical and accessible framework.

Although the topic is currently mainly studied from a very theoretical point
of view, the range of applications of polynomial algebra is virtually endless,
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stretching from polynomial optimization (Bleylevens et al., 2007; Hanzon and
Jibetean, 2003; Lasserre, 2001; Parrilo, 2000), over the analysis of statistical
aspects (Pistone et al., 2001), the analysis of kinematic problems (Emiris,
1994), digital signal processing and systems theory (Buchberger, 2001) to
bioinformatics (Emiris and Mourrain, 1999a; Emiris et al., 2006; Pachter and
Sturmfels, 2005).

1.1.2 Approach Taken in Thesis

The problem of solving a system of multivariate polynomial equations is
approached from the linear algebra point of view, with some inspiration from
realization theory. We will develop two algorithms for finding the solutions
of a given zero-dimensional system, solely by making use of straightforward
numerical linear algebra techniques, such as eigenvalue computations, singu-
lar value decompositions and QR decompositions, and, importantly, without
requiring the dominating notion of Gröbner bases (Becker and Weispfenning,
1993; Buchberger, 1965), see also Appendix B.6.

Apart from avoiding the formulation of a Gröbner basis, there are several
advantages of phrasing the problem as a linear algebra question.

- First, in computers numbers can only be represented andmanipulated in
finite precision, which demands a careful consideration of the numerical
aspects involved. Gröbner basis computations are based upon infinite
precision arithmetic and therefore employ rational numbers, often
resulting in outputs having huge coefficients (i.e., hundreds of digits).
The numerical linear algebra approach allows for a careful consideration
of the numerical aspects while using finite-precision arithmetic. The
numerical aspects are well-known and can be controlled.

- Furthermore, a system of polynomial equations may be obtained from
a noisy experimental setting, which requires taking into account the
limited accuracy of the experiment. The numerical linear algebra frame-
work provides us with well-established numerical tools for handling
with such issues. For instance, our framework will allow for certain
related generalizations which would become rather cumbersome in
the symbolic case. An instance is the case of (noisy) overdetermined
systems of multivariate polynomials, which do likely not have any exact
solutions, but which may have approximate solutions.

- Finally, we believe that the framework of linear algebra is very powerful
from the didactical point of view. An engineer or appliedmathematician
with a working knowledge of linear algebra will easily understand and
is able to implement our methods.
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The methods presented here do not always (or necessarily) outperform
existing methods in computational algebraic geometry. Similar approaches to
some of our algorithms have been described earlier, see Section 1.2. However,
it is to the authors’ knowledge the first time that the presented results have
been collected and written down in this simple form, with the intention
of remaining as close as possible to the familiar language and (numerical)
implementations of linear algebra.

The current manuscript is an ideal starting point to get introduced to more
technical computational algebraic geometry literature. We also believe that
our work will open a whole new avenue of research challenges that may be
tackled by applied mathematicians and engineers. To give an example, one of
the aspects that is rather lacking in the current computer algebra literature
is the notion of numerical robustness and conditioning. The framework
presented here allows for the use of thewell-known andwell-studiedmethods
of numerical algebra to answer such questions.

1.2 State of the Art

The current section gives an overview of the currently existing methods for
solving systems of polynomial equations. We aim to give a concise overview
and will focus on the solution methods rooted in linear algebra.

1.2.1 Univariate Root-finding

In this manuscript we study the problem of finding the solution to a system of
multivariate polynomial equations. The most simple instance of this problem
is to find the roots of a single polynomial equation in a single variable.
Although sounding harmless, the problem of solving a univariate polynomial
equation is a research field of its own, still studied today. As we will learn in
the forthcoming chapters, some of the results of univariate polynomial algebra
can easily be generalized to the multivariate case, whereas it becomes a lot
more involved for other aspects.

Numerical Univariate Root-findingMethods

Pan (1997) gives an excellent overview of methods for solving a univariate
polynomial equation. Although a host of different univariate root-finding
methods exists, most of them are not of direct relevance for the remainder
of this manuscript. There is however an important method we will briefly
highlight, translating the univariate root-finding problem into an eigenvalue
problem.
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It is well-known that the eigenvalues of a matrix A correspond to the roots
of its characteristic polynomial p(λ) ∶= det (A −λI). The converse holds as
well: The roots of an univariate polynomial f (x) can be computed as the
eigenvalues of its Frobenius companion matrix.

Theorem 1.1 (Frobenius companion matrix (Pan, 1997)). Consider an univari-
ate polynomial f (x) = xn + an−1xn−1 + . . . + a0. Consider the matrix equation

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 1 0
−a0 −a1 −a2 . . . −an−2 −an−1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1
x
⋮

xn−2
xn−1

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

1
x
⋮

xn−2
xn−1

⎞⎟⎟⎟⎟⎟⎟⎠
x, (1.1)

in which the matrix occurring in the left-hand-side of the equation is called the
Frobenius companion matrix. The roots of f (x) correspond to the eigenvalues
of the Frobenius companion matrix.

Interestingly, it turns out that many univariate root-finding methods can in
some way be interpreted as variations of the power iterations method (Golub
and Van Loan, 1996) operating on the Frobenius companion matrix (Pan,
1997).

1.2.2 Multivariate Root-finding: Numerical Methods

A system of multivariate equations may be solved using a variation of
Newton’s method. This method is a good way to find a solution in the vicinity
of a given initial guess. It is however generally not easy to guarantee that all
solutions are found by executing Newton’s method repeatedly.

Let f ∶= ( f1, . . . , fn)T contain n polynomials in n variables, such that f maps
from Rn to Rn. In this case, the Newton iteration can be written as

x(k+1) = x(k) − J−1f (x(k)) f (x(k)) ,
where x ∶= (x1, x2, . . . , xn)T and J f (x(k)) denotes the Jacobian matrix evalu-

ated at x(k), where

J f =
⎛⎜⎜⎝

∂ f1
∂x1

⋯ ∂ f1
∂xn

⋮ ⋮
∂ fn
∂x1

⋯ ∂ fn
∂xn

⎞⎟⎟⎠ . (1.2)
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1.2.3 Multivariate Root-finding: Algebraic Methods

Resultants: Sylvester and Macaulay

In this thesis, we will study techniques that can be seen as a mix of resultant
theory (Gelfand et al., 1994) and numerical linear algebra (Golub and Van
Loan, 1996) — with a dash of systems theory (Kailath, 1998).

The notion of resultants can be traced back to an important paper by Sylvester
(1853), who showed that checking whether two univariate polynomials have
common roots is equivalent to checking whether a certain matrix built from
the coefficients is singular (see Chapter 4).

Macaulay (1902, 1916) generalized Sylvester’s results to the case of mul-
tivariate homogeneous polynomials. Sylvester and Macaulay discovered
compelling results in polynomial algebra that are still of interest today (and
especially to us) because of their intimate link to linear algebra interpreta-
tions.

Due to their inherent limiting computational complexity, many of the insights
of Sylvester and Macaulay have been neglected during most of the 20th
century, when the focus in algebraic geometry shifted away from polynomial
system solving to abstract algebra.

Buchberger’s Gröbner Bases

Only in the 1960’s the computational aspects of algebraic geometry entered the
scene again with the development of Buchberger’s algorithm. This procedure
computes a so-called Gröbner basis of a system of polynomial equations
(Becker and Weispfenning, 1993; Buchberger, 1965).1 The Gröbner basis
approach has dominated computer algebra for the coming decades after its
conception.

Although Gröbner bases were among the first efficient and useful algorithmic
tools in algebraic geometry, it also has its shortcomings. Amajor disadvantage
of Buchberger’s algorithm is that operates by performing symbolic manip-
ulations on the coefficients of the input equations. Its extension to floating
point arithmetic is known to be rather cumbersome (Sasaki and Kako, 2010;
Shirayanagi, 1993) with limited alternatives available (Jónsson and Vavasis,
2004; Stetter, 1997, 2004).

It must be noted that Gröbner bases have more applications than solving
polynomials alone. Nevertheless, Gröbner bases are one of the major tools
in solving polynomial systems. To some extent, it is therefore surprising that

1Buchberger named the result of his algorithm in honor of his PhD thesis advisor, Wolfgang
Gröbner.
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in much of the algebraic geometry literature, computing a Gröbner basis is
perceived as the result, whereas we consider it as a mere tool for solving a
system of polynomial equations. An interesting question is therefore whether
the tools employed by Faugère (1999, 2002) may be used in the question of
solving a system of polynomial equations, rather than computing a Gröbner
basis of the system. To the best of the author’s knowledge, this question has
never been adequately addressed.

The methods of Faugère (1999, 2002) are currently the most efficient for
computing a Gröbner basis. They formulate the problem as a linear algebra
problem by finding a reduction of a large coefficient matrix. Although
this approach allows for a great improvement of computing times for
computing a Gröbner basis, many challenges remain. Most notably, the
reductions/eliminations performed may be dramatically ill-posed.

Back to Linear Algebra: Lazard and Stetter

By the 1980’s, the relevance of the work of Sylvester and Macaulay was
rediscovered by Lazard and Stetter (and coworkers) who utilize Macaulay-
like matrices for solving polynomial systems. The revival of these results from
mathematical antiquity resulted in the seminal papers Auzinger and Stetter
(1988, 1989); Lazard (1981, 1983).

The earliest of these works seems to stem from Lazard (1981). The simple
observation that Buchberger’s algorithm bears a lot of resemblance to the
Gaussian elimination led to the work of Lazard (1981, 1983) who described
the computation of a Gröbner basis as triangularizing a large Macaulay-like
matrix built from the coefficients of the system. The work of Lazard re-
sparked the interest in matrix-based methods for solving polynomial algebra
problems. Not only was the link to matrix algebra recapitulated, but also a
(premature) link to eigendecompositions was established.

Only a few years later, another important milestone in this regard was
reached. Supposedly independent of Lazard’s work, the link between
polynomial system solving and eigenvalue decompositions was thoroughly
established in two papers by Auzinger and Stetter (1988, 1989). Although the
work of Stetter in later years (Möller and Stetter, 1995; Stetter, 2004) would
focus more on the numerical and algebraic aspects of the computations in the
quotient space, rather than the construction of the eigenvalue problem, the
early work had strong ties to Macaulay-like coefficient matrices.

In his book (Stetter, 2004), the emphasis is on numerical aspects, mainly
of empirical polynomials (i.e., having noisy coefficients) and the numerical
repercussions, whereas the subproblem of finding a suitable monomial basis
seems to be not of particular interest. Indeed, only in one of the very
last chapters, Stetter (2004, Chapter 10) addresses the problem of finding a
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suitable monomial basis, reaching the conclusion that a lot of work is to be
expected in this field, mainly centering on border bases and empirical Gröbner
bases.

Furthermore, Stetter (2004, Chapter 10, p. 411) observes that currently, the
only way to obtain the basis for the quotient space using commonly available
software is via Gröbner basis methods. Approaches where the symbolic steps
to find a basis for the quotient space are executed by means of (numerical)
linear algebra seem to have been abandoned in much of the literature, as
well as the ways to avoid the need for explicitly computing the Gröbner
basis.

Stetter claims that the fact that presently only the Gröbner bases approach
is the only available approach is the main reason why polynomial algebra has
not been widely recognized in scientific computing so far. In Stetter (1996) he
states that

[. . . ] matrix eigenproblems are not just some tool in the solution
of polynomial systems of equations, but [. . . ] they represent the
weakly nonlinear nucleus to which the original, strongly nonlinear
task may be reduced.

The ‘Stetter approach’ generally breaks down to two problems:

1. Finding a basis for the polynomial ring modulo the ideal generated by
the input equations.

2. Expressing multiplication in the quotient space by means of multiplica-
tion matrices.

It can be shown that the eigenvalue decomposition of the multiplication
matrix provides the (affine) solutions of the system. The solutions can
then be obtained either from the eigenvalues, or from the eigenvectors. In
Appendix B.6 we illustrate this procedure by making use of Gröbner basis
computations.

The research efforts initiated by Lazard and Stetter were further explored
by Corless et al. (1995); Emiris and Mourrain (1999b); Faugère (1999, 2002);
Hanzon and Jibetean (2003); Jónsson and Vavasis (2004); Manocha (1994);
Mourrain and Pan (2000), among others.

Most of these matrix computation variations for solving polynomial systems
are stemming from resultant theory, in particular the u-resultant of van der
Waerden (1931). The method by Jónsson and Vavasis (2004) uses the u-
resultant and immediately phrases the root-finding problem as an eigenvalue
problem from the Macaulay-like matrix, after dismissing certain rows in
order to obtain a square eigenvalue problem. The method by Corless et al.
(1995) employs the u-resultant and uses an SVD procedure to find the
solutions.
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1.2.4 Hybrid Approaches

Homotopy continuation methods (Li, 1997; Verschelde, 1996) employ a
mixture of algebraic and numerical tools to solve a system of polynomial
equations. By means of algebraic techniques, a root-count is obtained
(e.g., using the BKK or multi-homogeneous Bézout bound (Cox et al., 2005;
Sturmfels, 2002)). Then, a so-called start system is constructed that has the
same number of roots as the system that needs to be solved, but of which the
solutions are known in advance.

The homotopy method proceeds by tracking the solutions of the start
system while a continuous deformation transforms the start system to the
original system. During the deformation of the coefficients, the trajectories
of the solutions are tracked via Newton’s method. A potential risk is
that continuation methods run into problems if a solution trajectory passes
through a region of ill-conditioning.

For an introduction to the subject of numerical homotopy continuation
methods, see Li (1997); Verschelde (1996). The software implementation
of Verschelde (1999) is currently among the most competitive methods for
solving polynomial systems.

1.2.5 Polynomial Optimization

The recent years have witnessed an increased research interest in polynomial
system solving and optimization (Dickenstein and Emiris, 2005; Sturmfels,
2002), with a myriad of applications in applied mathematics, science and
engineering, such as systems and control (Buchberger, 2001), bioinformatics
(Emiris and Mourrain, 1999a; Pachter and Sturmfels, 2005), robotics (Emiris,
1994), and many more.

This ongoing research interest has yielded interesting recent developments in
real algebraic geometry and polynomial optimization (Hanzon and Jibetean,
2003; Lasserre, 2001; Lasserre et al., 2012; Laurent and Rostalski, 2012; Parrilo,
2000; Shor, 1987; Shor and Stetsyuk, 1997) that outperform many of the
classical methods.

The so-called sums-of-squares polynomial optimization methods are based on
convex relaxations: in the case that the method successfully finishes, a lower
bound for the objective is found, which very often agrees with the optimum
of the objective criterion.

In recent years the topic has received a lot of research attention, both for its
theoretical beauty and its practical applications. Semidefinite programming
problems can be solved in polynomial time, and the available implementa-
tions perform well in practice.
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1.3 Research Objectives and Contributions

In the current section we give an overview of the research objectives and
contributions of the thesis.

1.3.1 Linear Algebra and Realization Theory for Polynomial
System Solving

Although from the state of the art overview it is clear that polynomial
equations and linear algebra have common historical grounds, their intimate
link has been neglected in most of the algebraic geometry literature since the
end of the 19th century until well into the 20th century (also see Appendix C).
The first objective of this thesis is therefore to phrase the problem of finding
the solutions of a system of multivariate polynomial equations as a linear
algebra problem.

Themain contributions of this thesis are establishing conceptual links between
polynomial system solving, linear algebra and realization theory. Chapter 3
contains some non-standard results from linear algebra and realization
theory that will be used extensively throughout the text, such as solving
homogeneous linear equations, computing a so-called canonical basis for
the null space and the shift property that is prevalent in realization theory.
These concepts will turn out to take up central roles in the interpretation of
polynomial system solving as a linear algebra question. Appendix A provides
the reader with the more basic results and more extensive background
information about linear algebra and systems theory.

A link between univariate polynomials and linear dynamical systems arises
naturally when considering difference equations and their characteristic
polynomials. From linear system theory we know that the roots of the
characteristic polynomial play a crucial role in describing and understanding
the sequences that satisfy the corresponding difference equation. This is
usually described by means of the Z-transform, see e.g., Kailath (1998).
Chapter 4 will work out these links for the univariate case with the main tool
being the Sylvester matrix.

For multivariate polynomial systems this natural link arises as well, although
only a limited amount of literature can be found on the subject. In the
multivariate case the major tool in this interpretation is the Macaulay matrix,
which is elaborately discussed in Chapter 5. The case of multivariate
polynomials is described using multidimensional systems (so-called nD
systems) as described by Attasi (1976); Bleylevens et al. (2007); Hanzon and
Hazewinkel (2006).
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Realization theory has been studied by Ho and Kalman (1966); Kung (1978);
Willems (1986a,b, 1987) and has become a well-known tool in system identifi-
cation, allowing to compute a state space model from a given set of input-
output measurements of a system. In its simplest form the input-output
measurements are stored in block Hankel matrices, fromwhich a simple linear
input-output relation can be written involving the observability matrix of the
system and a state sequence matrix. A state space model description can then
be retrieved using linear algebra techniques, e.g., by SVD operations. For the
case of multidimensional systems (so-called nD systems) similar techniques
are available, see e.g., Attasi (1976) and Gałkowski (2001).

Chapter 7 aims at exploring the links betweenmultivariate polynomial system
solving and nD realization theory. Using simplified nD models, we will show
that polynomial system solving can be phrased as an nD realization problem
involving descriptor systems, which can be decoupled into a regular and a
singular part. In the context of polynomial equation solving the regular part
can be associated to the affine solutions, whereas the singular part can be
associated to the solutions at infinity.

The relevant publications for this part are Dreesen et al. (2012b, 2013b)

1.3.2 Two Algorithms for Solving Systems of Polynomial
Equations

The observation that the task at hand has a strong link to linear algebra and
dynamical systems theory naturally leads to two numerical linear algebra
methods for solving systems of polynomial equations. Two algorithms for
solving systems of polynomial equations are discussed in Chapter 6.

The first method starts with constructing a sufficiently large Macaulay
coefficient matrix of which a numerical basis for the null space is computed.
A shift-invariance property in the null space that is due to its interpretation
as monomials and their inherent multiplication-invariance properties leads
to the formulation of an eigenvalue problem from which all solutions of the
system can be retrieved.

The second method does not require the computation of a numerical basis of
the null space of the Macaulay matrix. Rather, it operates on certain columns
of the Macaulay matrix and exploits the property that a set of monomials
in the problem are linearly dependent on another set of monomials. By
using a proper partitioning of the columns according to this separation
into linearly independent monomials (i.e., the standard monomials) and
linearly dependent monomials, the problem of finding the solutions can
again be formulated as an eigenvalue problem, in this case phrased using
a certain partitioning of the Macaulay matrix. It will be shown that this
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can be implemented in a numerically reliable manner using a (Q-less) QR
decomposition.

As an application of the methods developed in this chapter wewill highlight a
central problem occurring in system identification, namely the structured total
least squares problem, which can be solved by finding the roots of a system of
polynomial equations.

The relevant publications for this part are Dreesen and DeMoor (2009); Dreesen et al.
(2012a,b,c).

1.3.3 Solving Over-constrained Systems of Polynomial
Equations

In many engineering and applied mathematics applications, the result of an
experiment might be interpreted as a noisy realization of a set of coefficients
of an underlying exact system of polynomial equations. Often it is possible to
performmany of such experiments, which naturally leads to over-constrained
systems of polynomial equations. Over-constrained systems of polynomial
equations consist of more equations than unknowns, and have generically
no solutions. However, finding the approximate solutions of such systems
is often of great interest.

The null space based polynomial system solving method developed in this
thesis provides a natural way to deal with such problems. We will confine
our focus to a specific subset of over-constrained systems, namely the ones
arising from noisy realizations of an underlying well-constrained system of
equations. In this case, the existence of approximate solutions is ensured
and also several other algebraic properties can be transferred from the well-
constrained case. We will investigate how the proposed method deals with
over-constrained problems, and point out how further research can tackle the
broad case of over-constrained systems.

The relevant publication for this part is Dreesen et al. (2013a).

1.4 Thesis Overview

The text is organized as follows.

In Chapter 2 we give a collection of examples showing the problems we will
study in the thesis and the typical solution methods. They will serve as
amuse-bouches for the reader and provide the general approach taken in this
thesis.

Chapter 3 provides the readerwith some background notions of linear algebra
and realization theory. In particular, we will discuss the aspects involving
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the solution of systems of homogeneous linear equations and point out a
duality property that will be important in the remainder of the thesis. Also
a rudimentary algorithm for computing the canonical null space of a matrix
will be presented. The canonical null space reveals the linear independence
of the rows in the null space, and as such it gives important insight in some
algebraic aspects that will be used thoroughly in the manuscript. Finally we
will discuss an important property that is present in a basis of monomials, but
has also close links to realization theory. This shift property will ultimately
lead to the formulation of an eigenvalue problem from which the solutions of
a system of polynomial equations can be obtained.

In Chapter 4 we will discuss the case of solving a system of univariate
polynomial equations. First of all the so-called Sylvester matrix is built, the
null space of which will be used to find the common solutions of the system
of equations. The univariate case is a trivial specialization of the methodology
we will develop in the remainder of the thesis, but it is the ideal way to get
acquainted with our approach and see the tools at work on some small and
easy to grasp problems.

Chapter 5 discusses the Macaulay matrix, which is the multivariate gener-
alization of the Sylvester matrix, and some of its relevant properties. Of
particular interest to us is its null space, which we will describe using the
observation that each of the common solutions of a system of equations
describes a vector in the null space. The case of solutions with multiplicity
and solutions at infinity will also be discussed, providing us with the main
ingredients to develop root-finding methods.

In Chapter 6 we will then formulate two root-finding algorithms and apply
them to several examples and highlight a few applications. Both algorithms
will result in eigendecompositions from which the solutions can be retrieved.
The first algorithm will phrase an eigenvalue problem using a numerically
computed basis for the null space of the Macaulay matrix. The second
algorithm operates on a repartitioned Macaulay matrix of which the QR-
decomposition is taken; the eigenvalue problem is then phrased in terms of
a selection of the R-part.

The fact that polynomial system solving has close links with realization
theory will be used in several chapters. In Chapter 7 we will highlight
this observation. In particular, we will show that the root-finding problem
implicitly defines amultivariate state-spacemodel of which the state sequence
corresponds to the rows of the null space of the Macaulay matrix. As
such, we will identify the Macaulay matrix as the interface between the
system of polynomial equations and the interpretation of the solutions via
eigenproblems.

Chapter 8 applies the methods developed in the thesis to the task of
(approximately) solving a system of overdetermined polynomial equations.
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Such problems arise often in practice, but are not straightforward to solve
using the classical computational algebraic geometry methods. Our methods
provide a natural framework for solving such problems. We will discuss our
observations and describe an application in computer vision.

Finally, in Chapter 9we will summarize the thesis and point out several open
problems and possibilities for future research.

Background and non-essential material has been collected in the appendices.
Appendix A provides the reader with an in-depth introduction and overview
of the methods of linear algebra and realization theory. Appendix B is an
overview of algebraic geometry definitions and results that are relevant for
the thesis. We have deliberately chosen to try to formulate our results without
requiring most of the classical notions of algebraic geometry; an aim of the
thesis is to develop a numerical algebra framework for tackling the task
at hand. A collection of historical notes regarding the problem of solving
polynomial equations is given in Appendix C.

In Figure 1.1 we give a schematic overview of the thesis. The text is
organized in three parts: Foundations, Polynomial System Solving and
Closing. Chapters 1 (Introduction), 2 (Motivational Examples), 6 (Macaulay
Formulation), 7 (Two Algorithms for System Solving) and 10 (Conclusions
and Outlook) constitute the essential work of the thesis. The remaining
chapters provide secondary results. Background information is contained in
the appendices.
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1. Introduction

2. Motivational Examples

5. Macaulay Matrix

6. Root-finding Algorithms

4. Sylvester Matrix

8. Over-constrained Systems7. Polynomials and Realiz. Th.

9. Conclusions

Foundations

Polynomial System Solving

Closing

A. Lin. Alg. and Syst. Th.

C. Historical Notes

3. Lin. Alg. and Realiz. Th.

B. Algebraic Geometry

Figure 1.1: Flow chart representing the organization of the thesis chapters. The solid bold lines
depict the connection between the essential chapters. The solid lines represent the links between
remaining chapters. The connection between the appendices and the material in the chapters is
visualized by the dotted line.



2Motivational Examples

The current chapter is providing the reader with a bird’s-eye view on the
methodology that we will develop in the remainder of the thesis. By means of
a small collection of didactical examples we will illustrate our procedures to
solve systems of multivariate polynomial equations. We have aimed to make
this chapter self-contained so as little as possible background knowledge is
required to get an understanding of the methodology.

The underlying theory will be formalized in the forthcoming chapters, where
emphasis will be placed on a more detailed study and general description as
well as the treatment of numerical issues and implementation aspects.

2.1 Finding the Roots of Two Quadrics

2.1.1 Problem Formulation

Let us start with the following problem. We are given two polynomial
equations in two variables x1 and x2 and we wish to compute the points
of intersection, i.e., the values of x1 and x2 that simultaneously fulfill the
equations.

Consider the system

f1(x1, x2) = −x21 + 2x1x2 + x
2
2 + 5x1 − 3x2 − 4 = 0,

f2(x1, x2) = x21 + 2x1x2 + x
2
2 − 1 = 0,

(2.1)

as visualized in Figure 2.1. The system has four real solutions (x1, x2): (0,−1),(1, 0), (3,−2) and (4,−5), which we will try to determine using linear algebra
tools.

In the next paragraphs we will develop a two-step approach to find the roots
of the system (2.1). This approachwill be the blueprint of the remainder of the
procedures developed in manuscript.

17
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Figure 2.1: Graphical representation of the system given by the equations (2.1). There are four
points for which both equations hold, namely the points (0,−1), (1, 0), (3,−2) and (4,−5).

Step 1: The system of equations is considered as a set of linear homoge-
neous equations in the unknowns 1, x1, x2, x21, x1x2, x22. From this
interpretation, we write the dependent monomials as a linear combination
of the independent monomials. This step involves the construction of a
coefficient matrix.

Step 2: By exploiting the multiplicative structure in the monomials we
derive an eigenvalue problem fromwhich the roots can be calculated. In
this step we will make use of a basis for the null space of the coefficient
matrix constructed in Step 1.

2.1.2 Two-Step Procedure for Finding the Roots

Step 1, iteration d = 2: Building the MacaulayMatrix

Since the input equations are of degree two, we let the iteration count start
at d = 2. In iteration d = 2, we consider the two equations as a set of two
homogeneous linear equations in the unknown monomials 1, x1, x2, x21, x1x2,
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x2 as

( −4 5 −3 −1 2 1
−1 0 0 1 2 1

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x2
x21
x1x2
x22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.

or,
M(2)k(2) = 0.

In doing so, we have used the convention of ordering the monomials in the so-
called degree negative lexicographic ordering (Definition 5.1), which for two
variables is given as

1 < x1 < x2 < x21 < x1x2 < x22 < x31 < x21x2 < x1x22 < x32 < x41 < . . .

Using the coefficient matrix M(2), where ‘M’ stands for Macaulay and ‘2’
represents the maximal degree of the monomials taken into account, the two
equations are written in matrix-vector form. The rank of the coefficient matrix
is two, hence its nullity (i.e., the dimension of the null space: the number of
columns of M minus the rank of M) is four.

Since there are six unknowns, we can take four unknowns as independent
variables, and two as dependent. The idea is that we try to take as dependent
variables, the monomials that are as high in the ranking as possible.

Let us now inspect the columns of the coefficient matrix, starting from the
right-most column. Clearly, the fifth column is linearly dependent on the
sixth column. Column four is linearly independent of column six, so that the
sub-matrix consisting of columns four and six is of rank two, hence allowing
us to write the two dependent variables uniquely as a linear function of the
remaining four variables.

The sub-matrix consisting of columns four and six of the coefficient matrix
M(2) (i.e., the columns corresponding to x21 and x22) is of rank two, we find x21
and x22 from the relation

( −1 1
1 1

)( x21
x22
) = −( −4 −3 5 2

−1 0 0 2
)
⎛⎜⎜⎜⎝

1
x1
x2
x1x2

⎞⎟⎟⎟⎠ .

We can now write the four solutions in the canonical matrix H(2), the
columns of which form a basis for the null space of M(2). The rows of
H(2) corresponding to 1, x1, x2 and x1x2 form the identity matrix (bold-faced
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elements in the matrix) as

M(2)H(2) = ( −4 5 −3 −1 2 1
−1 0 0 1 2 1

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−1.5 2.5 −1.5 0
0 0 0 1

2.5 −2.5 1.5 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

This terminates iteration d = 2 of step 1.

It can indeed be verified that H(2) is a basis for the null space of the Macaulay
matrix M(2), however, it is not clear how it can be computed. Before we
continue with the next steps of the root-finding procedure, we will show how
to compute the canonical null space of the Macaulay matrix.

Intermezzo: Computing the Canonical Null Space

Wewill now briefly show how the canonical null space of theMacaulaymatrix
can be obtained. This method is inspired on Motzkin’s double description
method (Motzkin et al., 1953), seeking the non-negative solutions of linear
systems. In Chapter 3 we will discuss the method elaborately.

The Motzkin procedure works on single rows as follows. The first row of the
Macaulay matrix M(2) is

bT1 = ( −4 5 −3 −1 2 1 ) ,
of which a basis for the null space can easily be obtained by considering
pair-wise combinations resulting in zero. We will call the right-most nonzero
element (1) the pivot element. By forming all possible pair-wise eliminations
between the pivot element and the remaining elements of bT1 , we obtain as a
basis for the null space of bT1 the matrix H1:

H1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
4 −5 3 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where every column prescribes one of the pair-wise eliminations. We have
that rank(H) = 6 − 1 and each column of H is orthogonal to bT , or bTH = 0.1

1Special cases, such as the case that the right-most element is zero, or a whole row consists of
zero elements are discussed in Chapter 3.
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Due to the specific construction, the rows of the identity matrix sit at the top
of H1.

By repeatedly applying this trick a complete basis for the null space of a given
matrix is obtained. We proceed as follows. When the second row of M(2),
denoted bT2 is processed, it is first multiplied by H1 as to obtain aT

2 = bT2 H1.
We find

aT
2 = bT2 H1

= ( 3 −5 3 2 0 ) .
Now the above described procedure is performed on aT

2 , giving us H2. We
take as the pivot element the right-most nonzero element, i.e., 2 and we
find

H2 =
⎛⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−1.5 2.5 −1.5 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
.

Notice that a scaling is performed in order to ensure that the top part of H2
contains rows of the identity matrix in some of its rows.

Finally, the matrix H = H1H2 is a basis for the null space of M having the
desired structure.2 We have now

MH = 0

( −4 5 −3 −1 2 1
−1 0 0 1 2 1

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−1.5 2.5 −1.5 0
0 0 0 1

2.5 −2.5 1.5 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.

Step 1, iteration d = 3: Extending the MacaulayMatrix

We return to the solution of the system (2.1). The next iteration (d = 3) starts
by multiplying each of the original two equations with the two first order
monomials x1 and x2. This generates four more equations, each of degree
three, reaching the additional monomials x31, x

2
1x2, x1x

2
2 and x32. Taking the

two original equations together with these four shifted ones generates a set

2Indeed, by multiplying the consecutive rows with the previously obtained H i, it is
guaranteed that∏H i is orthogonal to all previous rows of M.
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of six homogeneous linear equations in the ten unknown monomials up to
degree d = 3, represented by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 5 −3 −1 2 1 0 0 0 0
−1 0 0 1 2 1 0 0 0 0
0 −4 0 5 −3 0 −1 2 1 0
0 0 −4 0 5 −3 0 −1 2 1
0 −1 0 0 0 0 1 2 1 0
0 0 −1 0 0 0 0 1 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x2
x21
x1x2
x22
x31
x21x2
x1x

2
2

x32

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

We denote the Macaulay coefficient matrix in this iteration as M(3). It is a
6× 10 matrix, that contains as its rows the coefficients of the six equations f1 =
0, f2 = 0, x1 f1 = 0, x2 f1 = 0, x1 f2 = 0, x2 f2 = 0, and as its columns the coefficients
of 1, x1, x2, x21, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2 and x32 in these equations.

It can be verified that rank(M(3)) = 6, hence its nullity is 10− 6 = 4. Checking
linear independence of the columns of M(3) starting from the right, we find
that the columns x21, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2 are linear independent. The reason

why we check the linear (in)dependency of the columns of M(3) from right
to left is because we are using the complementarity property of Chapter 3:
we wish to have in H(3) the top-most rows as the linearly independent
rows.

The fact that the unknowns 1, x1, x2, x1x2 are the independent ones and the
unknowns x21, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2 are dependent should come as no surprise:

in iteration d = 2 we found that x21 and x22 are dependent variables, implying
that also all monomials of higher degree that contain x21 or x

2
2 as a factor, will

be dependent.

The canonical basis for the null space of M(3), denoted by H(3), is given
by

H(3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−1.5 2.5 −1.5 0
0 0 0 1

2.5 −2.5 1.5 −2
−3.75 4.75 −3.75 −1.5
−3.75 3.75 −3.75 5.5
11.25 −11.25 11.25 −9.5
−18.75 18.75 −17.75 13.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= H(2)
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in which the identity matrix sits at the position of the independent variables 1,
x1, x2, x1x2, indicated by the bold-face numbers. Observe that the first 6 rows
of H(3) are identical to those of H(2). Let us do one more iteration, which is
iteration d = 4.

Step 1, iteration d = 4

We multiply the two original equations with the monomials x21, x1x2, x22,
which generates another six shifted equations, this time fifteen monomials
1, x1, x2, . . ., x41, . . ., x

4
2 are reached, resulting in the corresponding Macaulay

matrix M(4):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 5 −3 −1 2 1 0 0 0 0 0 0 0 0 0
−1 0 0 1 2 1 0 0 0 0 0 0 0 0 0
0 −4 0 5 −3 0 −1 2 1 0 0 0 0 0 0
0 0 −4 0 5 −3 0 −1 2 1 0 0 0 0 0
0 −1 0 0 0 0 1 2 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 1 2 1 0 0 0 0 0
0 0 0 −4 0 0 5 −3 0 0 −1 2 1 0 0
0 0 0 0 −4 0 0 5 −3 0 0 −1 2 1 0
0 0 0 0 0 −4 0 0 5 −3 0 0 −1 2 1
0 0 0 −1 0 0 0 0 0 0 1 2 1 0 0
0 0 0 0 −1 0 0 0 0 0 0 1 2 1 0
0 0 0 0 0 −1 0 0 0 0 0 0 1 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that M(2) and M(3) are ‘nested’ in the structure of M(4). Hence,
one can obtain the subsequent matrices ‘recursively’ as the iteration number d
increases.

The matrix M(4) is a 12 × 15 matrix, with rank(M(4)) = 11, so its nullity
is four, as before. One can verify by monitoring linear independence of
the columns starting from the right, that the columns corresponding to the
monomials x21, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2, x

4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2 and x42 are linearly

independent. This verifies that the variables 1, x1, x2 and x1x2 are still the
independent variables, the other ones being dependent, which can also be
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seen from the canonical null space:

H(4) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−1.5 2.5 −1.5 0
0 0 0 1

2.5 −2.5 1.5 −2
−3.75 4.75 −3.75 −1.5
−3.75 3.75 −3.75 5.5
11.25 −11.25 11.25 −9.5
−18.75 18.75 −17.75 13.5
−1.5 2.5 −1.5 −12
−26.25 26.25 −26.25 26.5

52.5 −52.5 52.5 −41
−78.75 78.75 −78.75 56.5
107.5 −107.5 106.5 −74

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the subsequent iterations, where d > 4, thematrices M(d) and H(d) are too
large to print, so we summarize the properties in the ‘stabilization diagram’
given in Table 2.1.

Table 2.1: Stabilization diagram for the system (2.1), showing the properties of the Macaulay
matrix M(d) as a function of the degree d. The rank keeps increasing as d grows, however the
nullity stabilizes at four. Also there are four linearly independentmonomials that stabilize, in this
example, right away from d = 2 onwards.

d size M(d) rankM(d) nullityM(d) linearly independent monomials

2 2× 6 2 4 1, x1, x2, x1x2
3 6× 10 6 4 1, x1, x2, x1x2
4 12× 15 11 4 1, x1, x2, x1x2
5 20× 21 17 4 1, x1, x2, x1x2
6 30× 28 24 4 1, x1, x2, x1x2

Notice that the number of rows of M(d) grows faster than the number of
columns. Indeed, for degree d we have that the number of rows p(d) and
the number of columns q(d) of M(d) is given by

p(d) = 2( d

d − 2
) = d2 − d = d!(d − 2)! ,

and

q(d) = (d + 2
d
) = 1

2d
2 + 3

2d + 1 = (d+ 2)!
2 ⋅ d!

.

We also observe that the rank of M(d) keeps increasing as d grows, however,
the nullity of M(d) stabilizes at the value four, which is the number of
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solutions. There are four linearly independent monomials that stabilize as
well, being 1, x1, x2 and x1x2. The general expression for the rank of M(d) in
this example is given by rank(M(d)) = 1

2d
2 + 3

2d − 3.

Step 2: Finding the Roots

Let us now show how we can find the roots of the system of equations from
the null space of the Macaulay matrix. In order to develop the root-finding
technique, assume for the time being that we know the four true solutions(0,−1), (1, 0), (3,−2) and (4,−5), which we denote as

x(1) ∶= (x(1)1 , x(1)2 ) = (0,−1),
x(2) ∶= (x(2)1 , x(2)2 ) = (1, 0),
x(3) ∶= (x(3)1 , x(3)2 ) = (3,−2),
x(4) ∶= (x(4)1 , x(4)2 ) = (4,−5).

Observe that each of the four solutions generates a vector in the basis of the
null space of M(d). Indeed, evaluating the monomial basis vector

k(d) = ( 1 x1 x2 x21 x1x2 x22 . . . )T
at each of the solutions essentially corresponds to evaluating the polynomials
f1 and f2 at the solutions. By collecting these vectors in a matrix K(d)we find
the multivariate Vandermonde basis of the null space of M(d) as (shown here
for d = 3)

K(3) = ⎛⎜⎝
∣ ∣ ∣ ∣

k(3)∣x(1) k(3)∣x(2) k(3)∣x(3) k(3)∣x(4)∣ ∣ ∣ ∣
⎞⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
0 1 3 4
−1 0 −2 −5
0 1 9 16
0 0 −6 −20
1 0 4 25
0 1 27 64
0 0 −18 −80
0 0 12 100
−1 0 −8 −125

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Let us now, starting from H(3) and the fact that 1, x1, x2 and x1x2 are the
linear independent monomials of lowest degree, develop a method to find the
roots x(i), for i = 1, . . . , 4. We will employ the multiplicative shift invariance
property in the monomials of the multivariate Vandermonde vectors k(d). Let
us consider a shift with the monomial x1. We can write

S1kx1 = Sx1k,

where S1 selects the rows 1, x1, x2, x1x2 from k, and Sx1 selects the rows 1 ⋅ x1,
x1 ⋅ x1, x2 ⋅ x1, and x1x2 ⋅ x1 of k. We have thus

S1 =
⎛⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎠
and

Sx1 =
⎛⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎠
Applying this trick to the whole matrix K leads to the formulation of the
generalized eigenvalue problem

S1KDx1 = Sx1K,

where Dx1 ∶= diag(x(1)1 , x(2)1 , x(3)1 , x(4)1 ).
The multivariate Vandermonde matrix K reveals the four roots and their
mutual matching, but it is not known on beforehand. Instead, we have
computed the canonical basis as H(3). Let us now investigate how the two
are related. We can easily verify that

K = H

⎛⎜⎜⎜⎜⎜⎝

1 1 1 1

x
(1)
1 x

(2)
1 x

(3)
1 x

(4)
1

x
(1)
2 x

(2)
2 x

(3)
2 x

(4)
2

x
(1)
1 x

(1)
2 x

(2)
1 x

(2)
2 x

(3)
1 x

(3)
2 x

(4)
1 x

(4)
2

⎞⎟⎟⎟⎟⎟⎠
= HT ,

with T nonsingular.

Combining K = HT with S1KDx1 = Sx1K results in the generalized eigenvalue
problem in the canonical null space

(S1H)TDx1 = (Sx1H)T ,
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where the matrix Dx contains the eigenvectors and the matrix T contains the
eigenvectors.

Finally, by computing HT and scaling the result column-wise so that the first
entries correspond to ones, we can reconstruct the multivariate Vandermonde
structured basis. From this we can read off the x1 and the corresponding x2
components of the four roots.

2.1.3 Observations

This small example has taught us a lot about the interpretation of a polynomial
system solving task as a question in linear algebra. Let us make the following
important observations.

1. When using H as a basis for the null space of M, the eigenvectors obey
the multivariate Vandermonde structure. Moreover, S1H selects exactly
the rows of H that contain the identity matrix rows: S1H = I.

2. When using the multivariate Vandermonde basis K to formulate the
eigenvalue problem, the matrix T is the identity matrix: we have
S1KIDx1 = Sx1KI.

3. We see that the choice of the basis only has an influence on the
eigenvectors, but not on the eigenvalues: the matrix Dx1 is not changed
by the choice of basis, only the eigenvectors change.

4. In principle, the matrix S1 may select more rows than only the linearly
independent rows 1, x1, x2 and x1x2; in which case a rectangular matrix
pencil will be obtained that is exactly solvable since the Vandermonde
shift structure holds for all rows inK. From the rectangularmatrix pencil
a square ordinary eigenvalue problem is found as

(S1H)+Sx1H = TDxT
−1,

where (⋅)+ denotes the Moore-Penrose pseudo-inverse (see Chapter A).
We will discuss the selection of more than only the linearly independent
monomials rows in the forthcoming paragraphs.

5. We did not elaborate on the choice of d for which the eigenvalue problem
was constructed. In this example, we have chosen d = 3 since the highest
degree of the linearly independent monomials is two. Hence, shifting
the linearly independent monomials with x1 will require rows of degree
at most three.
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2.1.4 Using Other Shift Functions

Shift with x2

The procedure can also be performed for a shift with the variable x2. Again we
let S1 select the rows of K corresponding to the rows 1, x1, x2, and x1x2. Now

we define Dx2 ∶= diag(x(1)2 , x(2)2 , x(3)2 , x(4)2 ) and Sx2 selects from H the rows
corresponding to the multiplication of 1, x1, x2, x1x2 with the shift function
x2. We have

S1 =
⎛⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎠
,

and

Sx2 =
⎛⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎠
.

The generalized eigenvalue problem revealing the roots x2 is therefore

(S1H)TDx2 = (Sx2H)T ,
in which we observe that S1K is the same as for the shift with x1. Moreover,
the eigenvectors are also the same as in the case of using the shift x1. An
important consequence is that (S1H)−1(Sx1H) and (S1H)−1(Sx2H) commute.
The commutation property should come as no surprise, as the multiplication
of x1 and x2 is also commutative.

Shift with g(x1, x2)
The commutation property allows for using any polynomial function g(x1, x2)
as a shift function. Consider for example the polynomial

g(x1, x2) = 3x1x2 + 2x22.
We now have

g((S1H)−1(Sx1H), (S1H)−1(Sx2H)) = 3TDx1T
−1TDx2T

−1
+2TDx2T

−1TDx2T
−1,

= T (3Dx1Dx2 + 2Dx2Dx2)T−1,
= TDg(x1,x2)T−1.
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As a result, we can write the generalized eigenvalue problem as

S1HTDg = SgHT , (2.2)

where

Dg ∶= diag(g (x(1)1 , x(1)2 ) , g (x(2)1 , x(2)2 ) , g (x(3)1 , x(3)2 ) , g (x(4)1 , x(4)2 )) .
Naturally, when a shift polynomial g(x1, x2) is considered, one needs to
ensure that by shifting the linearly independent monomials with g, all
monomials that are ‘reached’ are included in the (columns of) the Macaulay
matrix. For instance, if the linearly independent monomials are 1, x1, x2, and
x1x2, and we wish to write the shift relation for g(x1, x2) = 3x1x2 + 2x22, then
the Macaulay matrix M(d) (and a basis for its null space) of degree d ≥ 2 + 2
is required. On the other hand, the commutativity property prescribes that
Dg(x1,...,xn) = g(Dx1 , . . . ,Dxn), hence any shift g(x1, . . . , xn) can be composed
by means of the monomial shifts.

2.1.5 About the Choice of Basis

It is important to realize that the ‘multiplicative shift structure’ is a property
of the null space as a vector space, and not of the specific choice of basis. We
will show that the derivation of the generalized eigenvalue problem holds for
any arbitrary basis for the null space Z, such as for instance a basis for the null
space obtained using SVD. Let Z = HU−1 with U a nonsingular matrix denote
a basis for the null space of M. We now have H = ZU and hence

S1HUDx = SxHU,
S1HUDy = SyHU,

so we have (S1Z)(TU)Dx = (SxZ)(TU),(S1Z)(TU)Dy = (SyZ)(TU).
Let us point out two important observations here.

1. The eigenvalues Dx and Dy are not affected by the use of another basis
for the null space.

2. The eigenvectors change, and they become TU.

2.1.6 Two Ways to Use the Shift Structure

Once we have computed a numerical basis for the null space of M(d), which
we denote by Z, the shift structure can be exploited in two ways, each of them
giving rise to a generalized eigenvalue problem from which the solutions can
be obtained.
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1. The selection matrix S1 selects the linearly independent rows of Z
only, leading to a square generalized eigenvalue problem in which it
is ensured that the matrix S1Z is invertible. For our example we let S1
select the rows of H(3) corresponding to the monomials 1, x1, x2, x1x2.
Let us now consider, for example, the shift function g(x1, x2) = x1 + 2x2
that maps these monomials to x + 2y, x2 + 2xy, xy + 2y2 and x2y + 2xy2,
which is expressed by row selection and row combination matrices S1
and Sg

S1 =
⎛⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎠ ,
and

Sg =
⎛⎜⎜⎜⎝

0 1 2 0 0 0 0 0 0 0
0 0 0 1 2 0 0 0 0 0
0 0 0 0 1 2 0 0 0 0
0 0 0 0 0 0 0 1 2 0

⎞⎟⎟⎟⎠
.

We find the 4× 4 matrices S1H and SgH from the eigenvalue problem as

S1H =
⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
,

and

SgH =
⎛⎜⎜⎜⎝

0 2 3 0
−3 5 −3 3
7.5 −7.5 4.5 −4

26.25 −26.25 26.25 −17.5

⎞⎟⎟⎟⎠
,

and can solve the eigenvalue problem (2.2) from which we correctly
retrieve the roots.

2. Alternatively, by letting S1 select possible all monomials of degree 2,
such that the shifted monomials have the maximal degree occurring, i.e.,
d = 3, we find the rectangular generalized eigenvalue problem

S1H(3)TDg = SgH(3)T.
Since we know that H(3) (and hence S1H(3)) has full column rank, we
can rewrite the eigenvalue problem as the square ordinary eigenvalue
problem (S1H(3))+SgH(3)T = TDg.

In our example we let S1 select all the rows of H that correspond
to monomials of degrees zero up to three and then construct Sg in
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correspondence to S1 and g(x1, x2) = x1 + 2x2. We have

S1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

Sg =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 3 0 0 0 0 0 0 0
0 0 0 2 3 0 0 0 0 0
0 0 0 0 2 3 0 0 0 0
0 0 0 0 0 0 2 3 0 0
0 0 0 0 0 0 0 2 3 0
0 0 0 0 0 0 0 0 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrices SgH(3) and S1H(3) are in this case clearly of dimensions
10 × 4, and since S1H(3) has full column rank, we can perform the
eigenvalue decomposition on the square matrix

(S1H(3))+SgH(3) =
⎛⎜⎜⎜⎝

0 2 3 0
−3 5 −3 3
7.5 −7.5 4.5 −4

26.25 −26.25 26.25 −17.5

⎞⎟⎟⎟⎠ .
We see that we find exactly the same matrix as by selecting only the
linearly independent rows.

As the eigenvalues we obtain the evaluation of the four roots in g(x1, x2).
The eigenvectors are used to recover the multivariate Vandermonde structure
by computing H(3)T, where T contains the eigenvectors, and normalizing
the columns such that the first row corresponds to ( 1 1 1 1 ). From
the reconstructed Vandermonde structured basis we correctly find the four
solutions

2.1.7 Conclusions

In this example we have developed the root-finding method based on
eigendecompositions. Summarizing, to find the roots we first compute a basis
for the null space of a Macaulay matrix M as Z. The selection of rows of Z
corresponding to the linearly independent monomials results in S1Z. A shift
function g(x1, x2) is then chosen (e.g., g(x1, x2) = x1 or g(x1, x2) = x2, or any
polynomial function g(x, y)), which defines the selection matrix Sg and gives
SgZ. The generalized eigenvalue problem S1ZTDg = SgZT is solved and as
the eigenvalues are returned the shift function g(x1, x2) evaluated at the roots.
We have observed the following properties:
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- The row and column dimensions of the Macaulay matrix grow as a
polynomial function as the iteration d for creating additional equations
proceeds. Additional equations composing the Macaulay matrix are
obtained by multiplying the original equations with all monomials of
increasing degree.

- The rank of the Macaulay matrix increases, but the nullity stabilizes
(in this example, the nullity was four right away, but typically, the
nullity grows until it eventually stabilizes or keeps growing in a certain
pattern). In this example, the set of linearly independent monomials
stabilizes.

- The root-finding problem can be written as an eigenvalue problem. The
most obvious way to do so is to consider the multivariate Vandermonde
matrix, but it also holds for the canonical basis (the structure of which
reveals the set of linearly independent monomials).

- The null space as a vector space exhibits three important invariants:

1. the row-indices of the linear independentmonomials do not change
when another basis is considered,

2. the multiplicative shift structure of the null space holds for all
bases, and,

3. the eigenvalues of the generalized eigenvalue problem do not
depend on the specific choice of the basis for the null space.

- Any basis can be used to formulate the eigenvalue problem as the
properties of the null space are universal. The specific choice of the basis
for the null space of M(d) does not alter the eigenvalues, but only the
eigenvectors.

- The matrices (S1Z)−1Sx1Z and (S1Z)−1Sx2Z commute and have com-
mon eigenspaces, which is the reason that any polynomial function
g(x1, x2) can be used as a shift function.

2.2 Three Equations in Three Unknowns

In the previous example, the equations were both of the same degree and the
nullity of M(d) stabilized right away. The current example serves to illustrate
two new points.

1. The first is that when not all equations are of the same degree, the initial
Macaulay matrix should include also the so-called internal shifts of the
equations of degrees lower than the maximal degree occurring in the
system.
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2. Secondly it is shown that that the nullity sometimes stabilizes only after
a few degree-iterations.

2.2.1 Root-finding

Consider the equations

f1(x1, x2, x3) = x21 − x1x2 + x3 = 0,
f2(x1, x2, x3) = 2x32 − 2x1x

2
2 − 3x1x2 = 0,

f3(x1, x2, x3) = x33 − x1x2x3 − 2 = 0,
(2.3)

where d1 = 2 and d2 = d3 = 3.
We initiate the Macaulay matrix construction at degree d = 3. As in
the previous section we consider the Macaulay matrix M(3) with columns
indexed by all monomials up to degree three. Since equation f1 is of degree
two, we can also adjoin the shifted versions x1 f1, x2 f1 and x3 f1 to the matrix
M(3) so that we generate a maximum number of polynomials of degree three.
This gives rise to the matrix M(3) as
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 −6 0 0 0 0 0 0 0 −4 0 0 2 0 0 0−6 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

of which the rows correspond to the polynomials (and their shifts) f1, x1 f1,
x2 f1, x3 f1, f2 and f3 and the columns correspond to the monomials 1, x1, x2,
x3, x21, x1x2, x1x3, x

2
2, x2x3, x

2
3, x

3
1, x

2
1x2 x21x3, x1x

2
2, x1x2x3, x1x

2
3, x

3
2, x

2
2x3, x2x

2
3

and x33, which are again ordered by the degree negative lexicographic order
(Definition 5.1).

Thematrix size, nullity and the indices of the linearly independentmonomials
of M(d) for the consecutive degrees d are summarized in Table 2.2.

For degree d we have that the number of rows p(d) and the number of
columns q(d) of M(d) are given by the expressions

p(d) = (d + 1
d − 2
)+ 2( d

d − 3
) = (d + 1)!

2! ⋅ (d− 1)! + 2 d!
3! ⋅ (d − 3)! = 1

3
d3 − d2 +

1
2
d,

and

q(d) = (d + 3
d
) = (d + 3)!

3! ⋅ d!
= 1
6
d3 + d2 +

11
6
d + 1.

In this example eighteenmonomials ‘stabilize’, which is also the product of the
degrees of the input equations. This is indeed no coincidence, and it will turn
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Table 2.2: Stabilization diagram for the system (2.3) showing the properties of the Macaulay
matrix M(d) as a function of degree d. The rank keeps increasing as d grows, however the nullity
stabilizes at the value eighteen. Again, also the linear independent monomials stabilize.

d size M(d) nullityM(d) linearly independent monomials

3 6× 20 14 1, x1, x2, x3, x
2
1, x1x3, x

2
2, x2x3, x

2
3, x

3
1 , x

2
1x3,

x1x
2
3, x

2
2x3, x2x

2
3

4 18× 35 17 1, x1, x2, x3, x
2
1, x1x3, x

2
2, x2x3, x

2
3, x

3
1 , x

2
1x3,

x1x
2
3, x

2
2x3, x2x

2
3 , x

3
1x3, x

2
1x

2
3 , x

2
2x

2
3

5 40× 56 18 1, x1, x2, x3, x
2
1, x1x3, x

2
2, x2x3, x

2
3, x

3
1 , x

2
1x3,

x1x
2
3, x

2
2x3, x2x

2
3 , x

3
1x3, x

2
1x

2
3 , x

2
2x

2
3 , x

3
1x

2
3

6 75× 84 18 1, x1, x2, x3, x
2
1, x1x3, x

2
2, x2x3, x

2
3, x

3
1 , x

2
1x3,

x1x
2
3, x

2
2x3, x2x

2
3 , x

3
1x3, x

2
1x

2
3 , x

2
2x

2
3 , x

3
1x

2
3

7 126× 120 18 1, x1, x2, x3, x
2
1, x1x3, x

2
2, x2x3, x

2
3, x

3
1 , x

2
1x3,

x1x
2
3, x

2
2x3, x2x

2
3 , x

3
1x3, x

2
1x

2
3 , x

2
2x

2
3 , x

3
1x

2
3

8 196× 165 18 1, x1, x2, x3, x
2
1, x1x3, x

2
2, x2x3, x

2
3, x

3
1 , x

2
1x3,

x1x
2
3, x

2
2x3, x2x

2
3 , x

3
1x3, x

2
1x

2
3 , x

2
2x

2
3 , x

3
1x

2
3

out (see Chapter 5) that the dimension of the null space of theMacaulaymatrix
corresponds to the so-called Bézout numbermB =∏n

i=1 di when the system has
n equations in n unknowns and describes a zero-dimensional solution space
(Cox et al., 2007). Wewill show in Chapter 5 that, for a sufficiently large degree
d, we have

nullity(M(d)) = n

∏
i=1

di,

where di denotes the degree of polynomial fi.

The maximal degree occurring in the linearly independent monomials is five,
so we set d = 6 and construct the Macaulay matrix — this will ensure that a
linear shift will only requiremonomials that are included as columns of M(d).
We compute a basis for the null space of M(6) as H(6) as in the previous
example. We set up the generalized eigenvalue problem using a linear shift
function g(x1, x2, x3) as in (2.2) and from the eigenvalues and eigenvectors we
correctly retrieve the eighteen solutions (x1, x2, x3) as
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x1 x2 x3

1.0000 3.0000 2.0000
−3.0019 −2.9256 −0.2291
−3.2091 −2.3900 −2.6284
−3.4075 −4.5860 4.0156

−0.9721± 0.5612i 0.0000 −0.6300± 1.0911i
±1.1225i 0.0000 1.2599

0.9721∓ 0.5612i 0.0000 −0.6300± 1.0911i
0.5407± 0.4992i −0.9250∓ 0.1958i −0.4456∓ 1.1074i
−0.7163∓ 0.2148i −0.5872∓ 1.5181i −0.3725± 0.9059i
−0.7163± 0.2148i −0.5872± 1.5181i −0.3725∓ 0.9059i
−0.3041∓ 0.8696i −1.0230± 0.5771i 1.4767± 0.1852i
0.2891± 0.6249i 1.4860± 1.5589i −0.2377± 1.0179i

2.2.2 Conclusions

The current example illustrates the following points.

1. When constructing the Macaulay matrix for the initial degree, it is
sometimes necessary to bring the initial equations to the same degree
as the maximal degree occurring in the original equations. This is done
by multiplying the equations of lower degree with monomials up to
max(di).

2. The nullity stabilizes only after a few iterations, together with all
independent variables. The value corresponds to the Bézout number,
which is defined as the product of the degrees of the equations.

3. The solutions of polynomials with real coefficients can be complex
numbers occurring in complex conjugated pairs.

2.3 Roots at Infinity: Mind the Gap!

Let us now look at an example where the nullity stabilizes, but only some of
the indices of the independent variables stabilize, and others do not. It turns
out that the indices that do not stabilize can be explained by the so-called roots
at infinity.
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Figure 2.2: Graphical representation of (2.4). There are two solutions (−1,−1) and (1, 1).

2.3.1 Root-finding

Consider the system of two equations

f1(x1, x2) = x21 + x1x2 − 2 = 0,
f2(x1, x2) = x22 + x1x2 − 2 = 0,

(2.4)

which is shown in Figure 2.2. There are two solutions (−1,−1) and (1, 1).
We construct for several iterations the Macaulay matrix and monitor its rank,
nullity and the indices of the linearly independent monomials. The results are
summarized in Table 2.3.

We observe that there are four linear independent monomials in all iterations,
but only 1 and x1 stabilize, while the other two monomials are replaced
by higher degree monomials as d increases. There is a pattern in the two
remaining monomials: they are always xd1 and xd−11 .

The strange behavior of the linearly independent monomials can be explained
by the fact that there are two roots at infinity. The two affine roots correspond
to the monomials 1 and x1, and two roots at infinity correspond to the
monomials xd1 and xd−11 . This can be understood from homogenizing the two
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Table 2.3: Stabilization diagram for the system (2.4), showing the properties of the Macaulay
matrix M(d) as a function of the degree d. The rank keeps increasing as d grows, however the
nullity stabilizes at the value four. Observe that only two of the linear independent monomials
stabilize, namely 1 and x1 (indicated in bold-face), whereas the remaining two shift towards
higher degrees as the overall degree of the Macaulay matrix increases.

d size M(d) rankM(d) nullityM(d) linearly independent monomials

2 2× 6 2 4 1, x1, x2, x
2
1

3 6× 10 6 4 1, x1, x
2
1, x

3
1

4 12× 15 11 4 1, x1, x
3
1, x

4
1

5 20× 21 17 4 1, x1, x
4
1, x

5
1

6 30× 28 24 4 1, x1, x
5
1, x

6
1

equations as

f h1 (x0, x1, x2) = x21 + x1x2 − 2x
2
0 = 0,

f h2 (x0, x1, x2) = x22 + x1x2 − 2x
2
0 = 0.

By setting x0 = 0, we can analyze the roots at infinity. We identify x1 + x2 as
a common factor in both equations, which confirms that there exists a root
at infinity (x0, x1, x2) = (0, 1,−1). As it turns out, this root has a double
multiplicity, which explains the fact that we find two linearly independent
monomials corresponding to it.

The existence of roots at infinity is also expressed in the Macaulay matrix.
Indeed, if there can be found linear independent monomials of degree d
in M(d), for any sufficiently large degree d, there are roots at infinity.
It can be verified that setting the homogenization variable x0 to zero in
the homogenized system is equivalent to retaining only the highest degree
columns of the Macaulay matrix. If there is linear dependence among these
columns, there are roots at infinity.

The dynamical behavior of the structure of the null space when there are roots
at infinity is also expressed in the canonical basis H(d), as d increases. At
degree d = 4 we clearly see the separation emerging between the affine roots
and the roots at infinity. At degree d = 5 the separation between the affine roots
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and the roots at infinity is increased by one degree block, as shown in

affine
³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ

infinity
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
00000000

H(4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0
0 2 −1 0
0 0 1 0
0 2 −1 0
0 0 0 1
2 0 0 −1
0 0 0 1
2 0 0 −1
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↑
gap
↓

and

affine³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
infinity
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
00000000

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
2 0 −1 0
0 0 1 0
2 0 −1 0
0 0 1 0
0 0 0 1
0 2 0 −1
0 0 0 1
0 2 0 −1
0 0 0 1
0 2 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↑

gap

↓
= H(5).

In the canonical basis we see the appearance of zeros in the top part
corresponding to the degrees 0, 1, 2, etc. of the columns 3 and 4, as a function
of the degree d. The observation that the linear independent monomials
are shifted to the high degrees as d increases, is also expressed here. As d
increases, a gap between the linear independent monomials corresponding to
the affine roots and the linear independent monomials corresponding to the
roots at infinity emerges.

We will employ this mind-the-gap phenomenon to separate the affine roots and
the roots at infinity. In Figure 2.3 we visualize this observation. Although we
illustrate it here for the canonical basis of the null space only, the same rank
properties hold for the other bases.

We call dG the degree at which the gap between the two sets of linearly
independent monomials occurs. In the example we have dG = 4. The two
affine roots can now be computed by using only the first two columns of H(4)
to phrase the eigenvalue problem as in the previous examples. In order to
ensure that the root-finding problem has no interference from the roots at
infinity, the shift relation may not map onto monomials of a degree that is
higher than dG + 1. Alternatively, if one wants to use a shift polynomial gwith
deg(g) > 1, the root-finding procedure should be executed on M(d) and H(d)
with d ≥ dG +deg(g).
For instance, let us consider g(x1, x2) = 2x1 − 4x2. The linearly independent
monomials are 1 and x1. Since the highest degree occurring in the linearly
independent monomials is one and the shift polynomial g is of degree two,
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d = dG + 1d = dGd = d○ + 1d = d○

GAP

GAP

Figure 2.3: Visual representation of the separation of normal set elements of affine roots and
solutions at infinity as observed in the canonical basis for the null space H(d). As the degree d
increases, the linear independentmonomials corresponding to the affine roots stabilize (indicated
by the horizontal lines and the arrows on the left-hand-side of the matrix), whereas the linear
independent monomials that are caused by the solutions at infinity move along to high degrees
(indicated by the horizontal lines in the matrix and the arrows on the right-hand-side of the
matrix). Since we are considering the canonical basis for the null space, in the right-most columns
the entries on the top are all zero (indicated by the gray block which grows in vertical dimension
as d increases), and only entries in the bottom blocks are nonzero. Hence, at a certain degree d a
‘gap’ emerges which allows us to separate the affine roots and the roots at infinity.

we will need to ensure that the gap in H(d) spans until the degree d = 1 + 2.
This means that we need to construct M(5) and H(5). After constructing
H(5), we retain the top-left block in which we will exploit the shift relation to
construct an eigenvalue problem. We have then

S1Ha = ( 1 0
0 1

) ,
and

SgH a = ( 2 −4
−4 2

) ,
where Ha denotes the matrix H(5) of which only the first two columns are
retained. The eigenvalue decomposition gives

SgHa = TDT−1

= ( −0.707 −0.707
−0.707 0.707

)( −2 0
0 6

)( −0.707 −0.707
−0.707 0.707

)−1 .
We reconstruct the multivariate Vandermonde structured null space by
computing HaT and rescaling the columns of the result such that the first row
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equals ones. We find

Ka =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 −1
1 −1
1 1
1 1
1 1
1 −1
1 −1
1 −1
1 −1
⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from which we correctly retrieve the affine roots as (1, 1) and (−1,−1).
2.3.2 Conclusions

The current example provides us with the final ingredients to understand
and solve the root-finding problem, namely how to detect and deal with
so-called roots at infinity. Below we have summarized the important
observations.

1. Algebraic relations between the coefficients and/or zero coefficients
may cause so-called roots at infinity. It may happen that we observe
variables that are independent to become dependent; however, variables
that are dependent, always stay dependent.

2. The so-called ‘mind-the-gap phenomenon’ emerges in the null space of
M(d) as d increases. This allows us to separate affine roots and roots at
infinity: the linear independent monomials corresponding to the roots
at infinity shift towards higher degrees as the overall degree of the
Macaulay matrix increases.



3Linear Algebra and

Realization Theory

In the current chapter, we will briefly highlight a few important notions from
linear algebra and realization theory that will constitute the heart of our
matrix-based polynomial system solving approach.

First of all, we will discuss how systems of homogeneous linear equations
can be solved, and give the geometrical interpretation of this problem
using concepts such as rank, column and row space, null space and linear
(in)dependence. An important notion here is the complementarity between
the indices of the linearly independent/dependent columns of the matrix and
the linearly dependent/independent rows of its null space, which will turn
out to have great importance in the remainder of this manuscript.

Secondly, we will describe a rudimentary algorithm for computing a canonical
basis for the null space of a given (sparse) matrix. This algorithm is important
mainly for its didactical purposes, but will be used in Chapter 6 to iteratively
compute a basis for the null space of the Macaulay matrix.

Thirdly, we will review the shift invariance property that is prevalent in
realization theory and that will also show up in the monomial bases of systems
of multivariate polynomial equations. This property is a key property in
phrasing the root-finding problem as an eigenvalue problem.

For a more elaborate (basic) introduction to linear algebra and systems theory,
we refer the reader to Appendix A.
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3.1 Solving Homogeneous Linear Equations

3.1.1 Geometrical Interpretation

Let A ∈ Rm×n be a given matrix, and consider the problem of finding (all)
vectors x ∈ Rn×1 that satisfy Ax = 0.
Let us now interpret this problem ‘geometrically’ in the column and row space
of thematrix A. First we discuss the the column space interpretation. Wewrite
Ax = 0 as

⎛⎜⎝
∣ ∣ ∣
a1 a2 ⋯ an∣ ∣ ∣

⎞⎟⎠
⎛⎜⎜⎜⎝

x1
x2
⋮
xn

⎞⎟⎟⎟⎠
=
⎛⎜⎝
∣
0∣
⎞⎟⎠ ,

with x = ( x1 x2 . . . xn )T , so that we can now write

n

∑
i=1

aixi = 0.

Provided that x ≠ 0, this means that some columns of A can be written
as a linear combination of other columns. The fact that there exist a linear
dependency between the columns of A implies that A is not of full column
rank.

Next we interpret this problem in the row space of A. We write the equation
Ax = 0 as ⎛⎜⎜⎜⎜⎝

Ð bT1 ÐÐ bT2 Ð
⋮Ð bTm Ð

⎞⎟⎟⎟⎟⎠
⎛⎜⎝
∣
x∣
⎞⎟⎠ =
⎛⎜⎜⎜⎝

0
0
⋮
0

⎞⎟⎟⎟⎠
.

Now we have
bTj x = 0, with j = 1, . . . , p.

This can be interpreted as follows. We are looking for a vector x that is
orthogonal to all rows of the matrix A, i.e., the row space of A. From the rank-
nullity theorem we know that the dimension of the orthogonal complement
of the row space is n− r-dimensional.

Notice that, in the particular case that r = n (i.e., the matrix A is of full column
rank), the only solution to AX = 0 is X = 0. Equivalently, the equation AX = 0
can only have non-trivial solutions, provided that r < n. It is important to
note that this statement is independent from the number of equations p — in
particular, it does not matter whether p < q or p > q or p = q; only the column
rank of A matters.
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3.1.2 Complementarity Columns of A versus Rows of X

The following theorem expresses an interesting complementarity between
the rank of the column space of A and the rank of the null space X. Later
on, this property will be of paramount importance in the interpretation
of linearly dependent and linearly independent monomials and how to
determine them.

Theorem 3.1. Let us again consider A ∈ Rm×n with rank(A) = r and X ∈
Rn×n−r such that

AX = 0 with rank(X) = n − r.
Now reorder the columns of A and then partition them as ( A1 A2 ) , where
A1 ∈ Rm×n−r and A2 ∈ Rm×r , i.e., the block A2 contains r linearly independent
columns. This reordering and partitioning is generally not unique, but it can
always be done. We partition the rows of X accordingly. Formally this is
written as

AX = 0

A ( P1 P2 )( PT
1

PT
2
)X = 0,

( A1 A2 )( X1
X2
) = 0,

A1X1 + A2X2 = 0,

where P = ( P1 P2 ), with PPT = I, denotes the column permutation matrix
that performs the reordering and partitioning of A and X. We now have that

rank(X1) = n − r ⇔ rank(A2) = r.
Proof. The ⇐ part follows from the following. If rank(A2) = r, then AT

2 A2 is

invertible, and hence X2 = − (AT
2 A2)−1 A2A1X, from which follows that

rank(X) = n − r = rank( X1
X2
) = rank(( In−r

− (AT
2 A2)−1 A2A1

)X1) .
We also have that

rank(X) = rank(X1) = n− r.
The ⇒ part can be proved as follows. Since X1 is square invertible, we have
A1 = −A2X2X

−1
1 , so that ( A1 A2 ) = A2 ( −X2X

−1
1 Ir ) , which shows that

rank(A) = rank(A2) = r.
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Let us briefly contemplate this important result as it is paramount for the
remainder of this manuscript. Said in words, it states that the set of unknowns
in a system of homogeneous linear equations can always be partitioned into
‘dependent’ variables (i.e., X2) and ‘independent’ variables (i.e., X1), meaning
that X2 can be written as a linear combination of X1.

Alternatively, the matrix A can be partitioned into columns that are linearly
independent (i.e., the columns of A2) and columns that can be written as linear
combinations of the independent ones (i.e., the columns of A1).

A consequence of this result is that, in the null space of a given matrix A of
rank r, which is n − r-dimensional, one can always find a basis in which each
of the basis vectors (columns) has at least n − r − 1 zeros:

( A1 A2 )( In−r
X2X

−1
1
) = 0.

We call such a basis for the null space a canonical basis.

Notice that such a canonical basis is not unique. In general there are (nr)
combinations to choose r columns out of n columns. Not all of these choices
lead to am× r sub-matrix of A that is of full column rank r. However, for every
valid set of independent variables (i.e., corresponding to a sub-matrix of A that
is of rank r), there is a different canonical basis for the null space.

It is important to emphasize the duality property in the above results. The sets
of indices of linear independent columns of A and linear independent rows of
X , are complementary.

Corollary 3.2. For every selection of columns of A, collected in a sub-matrix
A2 of full column rank r, the sub-matrix of X formed by the ‘complementary’
selection of rows in X will be of full rank n− r.

This also implies that for a selection of r columns of A in a sub-matrix A2 that
is not of full column rank, the corresponding sub-matrix of X formed from the
complementary selection of rows, will not be of full rank.

Remark 3.3. In this manuscript, we typically use an ordering on the variables,

i.e., the unknowns x ∶= ( x1 x2 . . . xn )T in the problem, in which x1
precedes x2, x3, etc. Often, we would like to have the set of linear independent
variables to have indices that are as small as possible in the particular ordering
we are using. This will imply that we are interested in finding the first n − r
rows of X that are linear independent. The indices of the columns in A that
are linearly independent follow from the complement of indices, i.e., they
correspond to the r linear independent columns of A that one can find, when
starting from the right to the left of A.
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3.2 Motzkin Null Space Computation

In the current section we will develop a method for computing a canonical
basis for the null space of a matrix. Due to possible numerical issues, the
method is not suitable to tackle big matrices, but for didactical purposes,
we have chosen to include the procedure here. Especially in the case that
we are dealing with a sparse matrix, the method is conceptually interesting.
Furthermore, the sparse null space computations wewill develop in Chapter 6
are inspired on this algorithm.

The Motzkin approach proceeds by constructing null space vectors of a single
row by forming pair-wise eliminations on the non-zero entries. By considering
one row at a time, and pre-multiplying the row under consideration with the
product of all computed bases for the null spaces of the previous rows, a
canonical null space of a full matrix is constructed. This canonical null space has
the interesting property that an identity matrix sits in the linearly independent
rows, which can hence be read off from the canonical null space.

3.2.1 Null Space of a Single Row

The core of the Motzkin algorithm can best be described by looking at the
action on a single row. Given a row vector bT, the Motzkin procedure
generates a matrix W ∈ Rn×n−1 with rank(W) = n − 1 and each column of
W is orthogonal to bT, or bTW = 0.
The Motzkin (canonical) null space construction algorithm for one row is
described below (Algorithm 1). Note that a pre-condition for this algorithm is
that bT ≠ 0. In the case that bT = 0, the null space can be trivially determined
asW = In.
Algorithm 1. Motzkin Null Space Construction Row (MotzkinRow)

input: bT ∈ R1×n where bT ≠ 0
output: W ∈ Rn×n−1, such that bTW = 0 and rank(W) = n − 1

1. Determine (right-most) nonzero pivot p = bT(ip), with bT(i) = 0 for i > ip
2. Rescale b as bT = bT/p
3. for i = ip + 1, . . . ,n, do

a) W(∶, i − 1) = ei, where ei denotes the i-th standard basis vector

done

4. for i = ip − 1, . . . , 1, do
a) W(i, i) = 1
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b) W(ip, i) = −bT(i)
done

3.2.2 Motzkin Null Space of a Matrix

One can now repeatedly apply the procedure described in the previous
paragraph to construct the canonical basis for the null space of any given
matrix A.

The idea behind the MotzkinMatrix procedure is as follows. Given a full
matrix A, the Motzkin procedure takes the consecutive rows of A, i.e., aT

i ,
into account.

Let us start with row aT1 . Algorithm 1 constructs a matrix W1 which forms
a basis for the null space of aT

1 . In the next step, we consider aT2 . First, this
row vector is converted into bT2 = aT

2W1, and the MotzkinRow procedure is
performed for bT2 , resulting inW2. When the third row of A is considered, we
first convert this to bT3 = aT

3W1W2 and then findW3.

As the row count is increased to k, this procedure guarantees that the product
of the matricesW i for i = 1, . . . , k−1 is composed of vectors that are orthogonal
to all previous rows of A, i.e., aT1 , a

T
2 , . . . , a

T
k−1. Ultimately, as the last row

of A is processed, the complete null space matrix H is computed as H =
W1W2 . . .Wn.

The canonical (Motzkin) null space construction algorithm for a complete
matrix is described in Algorithm 2. This procedure leads to a very sparse
representation of the null space and would use a rather limited amount of
memory since the coefficients of bk occur very predictably inW k and the mul-
tiplication W1W2⋯W k involving very sparse matrices can be implemented
efficiently.

However, the Motzkin procedure is numerically flawed: during the consec-
utive multiplication of the matrices W k, some elements of bkW1W2⋯W k−1
may become very small — choosing one of them as a non-zero pivot elements
would lead to an incorrect result.

Algorithm 2. Motzkin Null Space Construction Matrix (MotzkinMatrix)

input: A ∈ Rm×n, with rank(A) = r
output: H ∈ Rn×n−r , such that AH = 0 and rank(H) = n− r

1. for i = 1, . . . ,m, do

a) if i = 1, do
i. aT1 = A(1, ∶)
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ii. bT1 = aT
1

iii. W1 = MotzkinRow(bT1 )
b) else, do

i. aTi = A(i, ∶)
ii. bTi = aT

i W1W2 . . .W i−1
iii. W i = MotzkinRow(bTi )
done

done

2. H =W1W2W3 . . .Wm

Let us consider a small example in which we compute a basis for the null
space of a 3× 5 matrix A.

Example 3.4. Consider the matrix A given as

A =
⎛⎜⎝

0 2 1 0 2 0
1 0 3 2 0 1
4 0 3 2 1 0

⎞⎟⎠ . (3.1)

First we compute the Motzkin null space for the first row

aT1 = ( 0 2 1 0 2 0 ) ,
which gives

W1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 −1 −0.5 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.2)

The second row aT2 is first multiplied withW1 to obtain

bT2 = aT
2W1 = ( 1 0 3 2 1 ) .

The Motzkin null spaceW2 is found as

W2 =
⎛⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 −3 −2

⎞⎟⎟⎟⎟⎟⎠
. (3.3)
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The third row is converted to

bT3 = aT3W1W2 = ( 4 −1 2.5 2 ) ,
and the Motzkin null space is found as

W3 =
⎛⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
−2 0.5 −1.25

⎞⎟⎟⎟⎠ . (3.4)

Finally, we find a canonical basis for the null space of A as

H =W1W2W3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
−2 0.5 −1.25
0 −1 −0.5
3 −1 −0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.5)

3.3 Realization Theory Concepts

3.3.1 Realization Theory for 1D Systems

Autonomous Descriptor System

Consider the state equation in the Kronecker canonical form (Appendix A)
as

( v(k + 1)
w(k − 1) ) = ( A 0

0 E
)( v(k)

w(k) ) ,
with v ∈ RθR , w ∈ RθS , A ∈ RθR×θR , and E ∈ RθS×θS . The initial states are given
by v0 ∶= v(0) and wd ∶= w(d).
By iterating the state equations we find the so-called state sequence matri-
ces

V0∣d ∶=
⎛⎜⎝
∣ ∣ ∣ ∣

v(0) v(1) v(2) ⋯ v(d)∣ ∣ ∣ ∣
⎞⎟⎠ ,

=
⎛⎜⎝
∣ ∣ ∣ ∣

v(0) Av(0) A2v(0) ⋯ Adv(0)∣ ∣ ∣ ∣
⎞⎟⎠ ,
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and

W0∣d ∶=
⎛⎜⎝
∣ ∣ ∣ ∣

w(0) w(1) w(2) ⋯ w(d)∣ ∣ ∣ ∣
⎞⎟⎠ ,

=
⎛⎜⎝

∣ ∣ ∣ ∣
Edw(d) Ed−1w(d) Ed−2w(d) ⋯ w(d)∣ ∣ ∣ ∣

⎞⎟⎠ .

Shift Invariance

The state sequence matrices V0∣d and W0∣d exhibit a Vandermonde-like shift
structure. We have the following:

VT
0∣d−1AT = VT

1∣d,
and

WT
1∣dET =WT

0∣d−1,
from which A and E can be determined.

Exploiting this shift invariance is a central tool in realization theory (see
Appendix A) and will turn out to be essential in the linear algebra framework
for solving systems of polynomial equations.

Example 3.5. Suppose that the matrix V0∣4 is given as

V0∣4 = ( 1 0 −6 30 −114
0 1 5 19 65

) .
We have now

AT = (VT
0∣3)+VT

1∣4 = ( 0 1
−6 5

) ,
which could be read off from V0∣4 because the first two columns are the
identity matrix.

3.3.2 Realization Theory for nD Systems

Several nD state space descriptions have been developed, see e.g., Attasi
(1976); Gałkowski (2001). For the problem of solving a system of polynomial
equations, the model by Attasi (1976) is a natural starting point as illustrated
in Hanzon and Hazewinkel (2006).

We employ a simplified version of Attasi (1976), defined as follows:

v(k1, . . . , ki−1, ki + 1, ki+1, . . . , kn) = Aiv(k1, . . . , kn),
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for all i = 1, . . . ,n. We have v ∈ Rθ . The action matrices Ai ∈ Rθ×θ form
a commuting family of matrices: we have that AiAj = AjAi, for all i, j ∈{1, . . . ,n}.
Iterating the state equations leads to a multivariate generalization of the Van-
dermonde structure observed in the 1D case. The multivariate Vandermonde
structure can again be used to determine the action matrices Ai.

Let us illustrate these concepts by means of a simple example where we take
n = 2 and d = 3.
Example 3.6. Let n = 2 and d = 3. The state sequence matrix V0∣d is found as1

V0∣3 = ⎛⎜⎝
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
v00 v10 v01 v20 v11 v02 v30 v21 v12 v03∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

⎞⎟⎠ ,

= ⎛⎜⎝
∣ ∣ ∣ ∣ ∣ ∣ ∣
v00 A1v00 A2v00 ⋯ A3

1v00 A2
1A2v00 A1A

2
2v00 A3

2v00∣ ∣ ∣ ∣ ∣ ∣ ∣
⎞⎟⎠ .

Note that the order inwhich the states are iterated is not uniquely determined.
Here we have used an ordering that is compatible to the degree negative
lexicographic ordering (Definition 5.1), but other orderings can be used as
well.

The multivariate Vandermonde shift structure leads to expressions of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v00
v10
v01
v20
v11
v02

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
AT
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v10
v20
v11
v30
v21
v12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v00
v10
v01
v20
v11
v02

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
AT
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v01
v11
v02
v21
v12
v03

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

1We have employed a simplified notation vkl ∶= v(k, l) to avoid an overloaded notation.
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4Sylvester Matrix

Formulation

In this chapter, we will study in detail the problem of finding the common
roots of a system of univariate polynomial equations. The univariate approach
provides us with the main ingredients to tackle the multivariate case.

Apart from the well-known fact that univariate root-finding is intimately
linked to matrix eigenvalue problems, we will review a result due to Sylvester
that asserts whether two univariate polynomials have a root in common.
A natural consequence is then that the common root(s) themselves can be
computed as well. This will lead to the formulation of an eigenvalue problem
from which all the common roots can be computed. Finally we will highlight
a natural link between the Sylvester root-finding approach and realization
theory that is largely unknown in the literature.

4.1 Univariate Root-finding

4.1.1 Companion Matrix

One of the first facts in studying linear algebra and eigenvalue problems is that
the eigenvalues of a n × n matrix A are given by the roots of its characteristic
polynomial p(λ), which is defined as

p(λ) = det(A −λIn). (4.1)

The converse step can be taken as well: with every univariate polynomial
p(x), a matrix can be associated of which the eigenvalues correspond to
the roots of p. Such a matrix is called a companion matrix, and the best
known formulation is the Frobenius companion matrix, which we will review
here.
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Proposition 4.1. Consider a polynomial

p(x) = anxn + an−1xn−1 + . . . + a1x + a0. (4.2)

The following expression shows that the roots of p(x), i.e., the values x for
which p(x) = 0, correspond to the eigenvalues of the so-called Frobenius
companion matrix as in (1.1):

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 1 0
−a0 −a1 −a2 . . . −an−2 −an−1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1
x
⋮

xn−2
xn−1

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

1
x
⋮

xn−2
xn−1

⎞⎟⎟⎟⎟⎟⎟⎠
x.

This matrix is the basis for many numerical root-finding methods. For
example, the roots command in MATLAB computes the roots of a poly-
nomial equation by finding the eigenvalues of the Frobenius companion
matrix.

4.1.2 Finding the Common Roots of a System of Two Univariate
Polynomials

In Chapter 1 we have reviewed the fact that the eigenvalues of the Frobenius
companion matrix correspond to the roots of a univariate polynomial. We
will now discuss a related concept which employs linear algebra to finding
the common roots of univariate polynomials.

The well-known construction by Sylvester (1853) tests whether two polynomi-
als f1(x) and f2(x) have common roots by investigating the determinant of a
structured square matrix built from the coefficients of the equations. Consider
the system

{ f1(x) = arx
r + ar−1xr−1 + . . . + a0 = 0,

f2(x) = bsx
s + bs−1xs−1 + . . . + b0 = 0,

having m single common roots (i.e., no common roots with multiplic-
ity).

Definition 4.2 (Sylvester Matrix for Two Equations). Multiplying f1(x) and
f2(x)with powers of x gives rise to a square system of linear equations Mk =
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0, or

s rows

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
r rows

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 . . . ar
a0 a1 . . . ar

⋱ ⋱ ⋱
a0 a1 . . . ar

b0 b1 . . . bs
b0 b1 . . . bs

⋱ ⋱ ⋱
b0 b1 . . . bs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

⋮

xr+s−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
⋮
0
0
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The coefficient matrix M is called the Sylvester matrix, and has size (r + s) ×(r + s). The f1-block of the Sylvester matrix has s rows, and the f2-block has r
rows. The monomial basis vector k contains as its elements the monomials xd

for d = 0, . . . , r + s− 1 and has a Vandermonde structure.

Proposition 4.3 (Cox et al. (2005, 2007)). The Sylvester matrix M has a zero
determinant if its composing polynomials f1(x) and f2(x) have a common
root.

Indeed, evaluating k = ( 1 x x2 . . . xr+s−1 )T at a common root x(i) of
f1(x) and f2(x) gives rise to a non-zero vector in the null space of the Sylvester
matrix M.

Interestingly, Sylvester’s construction can be employed to determine the
common roots. An important tool in understanding how this can be achieved
is the Vandermonde basis of the Sylvester matrix composed of the (for the
moment unknown) evaluations of the common roots in the Vandermonde
monomial basis vector k.

Definition 4.4 (Univariate Vandermonde Null Space). Assume that the
polynomials f1(x) and f2(x) have m single common roots x(i), for i = 1, . . . ,m,
with x(i) ≠ x(j), for j ≠ i. Let K be the matrix that contains as its columns
the Vandermonde monomial basis vectors k evaluated at the m common roots
x(i),

K ∶=
⎛⎜⎝
∣ ∣ ∣
⋯ k∣x(i) ⋯∣ ∣ ∣

⎞⎟⎠ ,
which is called the Vandermonde null space of M.

The next ingredient is the observation that a multiplication property holds in
the Vandermonde monomial vector k, e.g., one has

( 1 x x2 . . . xr+s−2 )T x = ( x x2 x3 . . . xr+s−1 )T
which can be represented as S1k x = Sxk, where S1 is a row selection matrix
selecting the rows 1 up to r + s − 1, and Sx is a row selection matrix selecting
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the rows 2 up to r + s. This relation also holds for the monomial basis vectors
evaluated at each of the m roots, when multiplying with the i-th root x(i), for
i = 1, . . . ,m, i.e., S1 k∣x(i) x(i) = S1 k∣x(i). Applying the multiplication property
to all m roots gives

S1KDx = SxK, (4.3)

where K represents the multivariate Vandermonde null space of M, and Dx is
a diagonal matrix containing the m roots, i.e., Dx = diag (x(1), x(2), . . . , x(m)).
Unfortunately the null space of M with the canonical structure K is not
directly available. Instead a basis for the null space of M can be computed
as Z, which is related to the multivariate Vandermonde basis for the null
space by K = ZT , with T non-singular. Combining the previous observations
easily leads to an eigenvalue problem from which the common roots can be
obtained.

Theorem 4.5 (Sylvester matrix univariate root-finding). Together with (4.3)
the problem of finding the common roots of f1 and f2 is reduced to the
eigendecomposition TDxT

−1 = (S1Z)+ SxZ, with (⋅)+ denoting the Moore-
Penrose pseudo-inverse. The eigenvalues of (S1Z)+ SxZ are the m common
roots of f1(x) and f2(x).
From the computation of ZT and consequently normalizing the result
column-wise such that the first row consists of ones, a reconstruction of the
Vandermonde null space exhibiting the Vandermonde structure is obtained.
All solutions (and their powers) can now be read off directly.

Example 4.6. Consider the polynomials

f1(x) = (x − 1)(x − 2) = x2 − 3x + 2,
f2(x) = (x − 1)(x − 2)(x + 1) = x3 − 2x2 − x + 2,

having two common roots x(1) = 1 and x(2) = 2. The Sylvester matrix M is
constructed as

M =
⎛⎜⎜⎜⎜⎜⎝

1 x x2 x3 x4

f1 2 −3 1 0 0
x f1 0 2 −3 1 0
x2 f1 0 0 2 −3 1
f2 2 −1 −2 1 0
x f2 0 2 −1 −2 1

⎞⎟⎟⎟⎟⎟⎠
.

The null space of M has a dimension of two (the singular values are 5.4434,
4.8990, 2.8931, 0.0000 and 0.0000), and a numerical basis Z for the null
space is computed using a singular value decomposition. The eigenvalue
decomposition of (S1Z)+ SxZ reveals the common roots of f1(x) and f2(x)
as x(1) = 1 and x(2) = 2 (exact up to machine precision).
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4.1.3 Systems with More Than Two Equations

Although it is classically defined for two equations, the Sylvester construc-
tion can be performed for any number s of polynomials fi(x), with i =
1, . . . , s.

Definition 4.7 (Sylvester Matrix). For a set of s equations f1, f2, . . . , fs the
Sylvester matrix M(d) for degree d is constructed as above: There are s
blocks, each of which contains the coefficients of a single equation fi = 0,
with i = 1, . . . , s. The columns of M(d) are indexed by the monomials
1, x, x2, . . . , xd. The Vandermonde monomial basis k(d) contains the mono-
mials 1, x, x2, . . . , xd.

To determine the number of common roots, one inspects the nullity of the
Sylvester matrix M(d) as d increases: we have seen that every common root
defines a vector in the null space of M. After the nullity of the Sylvester matrix
has stabilized to a constant, Theorem 4.5 can be used on Z(d) to retrieve the m
common roots (Serpedin and Giannakis, 1999). We call d⋆ the degree at which
the nullity stabilizes.

Let us now have a look at an example, where the Sylvester matrix of three
equations is constructed.

Example 4.8. Consider the equations

f1(x) = x2(x − 1)(x − 2) = x5 − 7x3 + 6x2 = 0,
f2(x) = x3(x − 1)(x − 2) = x5 − 3x4 + 2x3 = 0,
f3(x) = (x + 1)3(x − 1)(x − 2) = x5 − 4x3 − 2x2 + 3x + 2 = 0,

exhibiting the common roots x = 1 and x = 2.

Because the dimensions of the Sylvester matrix rapidly become too large to
print, we have summarized the most important properties in Table 4.1.

Table 4.1: Diagram showing the properties of the Sylvester matrix M(d) as a function of the
degree d. The nullity of the Sylvester matrix stabilizes at the value m = 2 at degree d = 7.

d size M(d) nullityM(d) roots (eigenvalues) correct?

5 3× 6 3 1, 2,−0.4658 ×
6 6× 7 2 1, 2 ✓
7 9× 8 2 1, 2 ✓
8 12× 9 2 1, 2 ✓
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4.1.4 Multiple Roots and Differential Operators

A single univariate polynomial f (x) may have multiple roots, consider for
instance the equation

f (x) = (x − 3)2(x − 1)3(x + 2) = 0,
which has a double root at x = 3, a triple root at x = 1 and a single root at

x = −2. Formally, we say that f (x) has an µ-fold root x⋆ iff dk f

dxk
(x⋆) = 0, for

k = 0, 1, . . . ,µ− 1 and dµ f
dxµ (x⋆) ≠ 0.

A system of univariate polynomials may also have common roots with
multiplicity. In terms of the Sylvester matrix and the Vandermonde basis
vector, this translates into the fact that for the root in consideration only a
single Vandermonde structured basis vector, evaluated at the common root,
can be constructed that lies in the null space of the Sylvester matrix. As
in the single equation case, we also need to take into account differentials:
the differentials of the Vandermonde vector, evaluated at the common root,
are also elements of the null space. This leads to the so-called generalized
Vandermonde matrix (Serpedin and Giannakis, 1999).

Definition 4.9 (Generalized Vandermonde vectors). Let the Sylvester matrix
of a given system be denoted by M. For every common root x(i), i =
1, . . . , l with multiplicity µi, where ∑l

i µi = m =∶ nullityM, the Vandermonde
structured basis for the null space has as its elements vectors of the form

1(αi)!
∂αik

∂xαi
∣
x(i)

,

where αi = 0, 1, . . . ,µi − 1.

Example 4.10. Consider the system

f1(x) = (x − 2)3(x + 3) = x4 − 3x3 − 6x2 + 28x − 24 = 0,
f2(x) = (x − 2)3(x + 3)(x + 1) = x5 − 2x4 − 9x3 + 22x2 + 4x − 24 = 0,

having a triple root x(1) = 2 and a single root x(2) = −3. Denote by M ∶= M(8)
the Sylvester matrix built from the polynomials (we have that r + s− 1 = 4+ 5−
1 = 8). The generalized Vandermonde matrix for degree d = 8 and the given
roots with their multiplicities is constructed as

K =
⎛⎜⎜⎝

∣ ∣ ∣ ∣
k∣x(1) ∂k

∂x
∣
x(1)

1
2

∂2k
∂x2
∣
x(1)

k∣x(2)∣ ∣ ∣ ∣
⎞⎟⎟⎠ ,
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or

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
2 1 0 −3
4 4 1 9
8 12 6 −27

16 32 24 81
32 80 80 −243
64 192 240 729
128 448 672 −2187
256 1024 1792 6561

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the bar (∣) denotes the separation between the root x(1) and the root
x(2). It can easily be verified that K is of full column rank and lies in the null
space of the Sylvester matrix M, hence it is a basis for the null space of M.

Notice that the Jordan canonical form (Appendix A) naturally arises in the
Sylvester formulation with common roots with multiplicity. Let us write
the multiplication property S1KDx = SxK, where we let S1 select the rows
corresponding to the monomials 0 up to xd

⋆−1. We have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 1
2 1 0 −3
4 4 1 9
8 12 6 −27
16 32 24 81
32 80 80 −243
64 192 240 729
128 448 672 −2187

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 −3

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1 0 −3
4 4 1 9
8 12 6 −27

16 32 24 81
32 80 80 −243
64 192 240 729
128 448 672 −2187
256 1024 1792 6561

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

In the matrix Dx we recognize two Jordan blocks (indicated by the horizontal
and vertical bars), each of which corresponds to one of the common roots.

Finally, it must be noted that the differentiation operator exhibits an interest-
ing duality property: instead of having the differentiation operators acting on
the Vandermonde vectors k, they can alternatively be moved to the equations,
such that the system of input equations is adjoined with equations obtained
by differentiating the input equations. This will lead to removal of the
multiplicities of the roots. Although this approach is conceptually elegant,
its practical relevance is limited:

- First of all, it is important to note that this procedure only works for a
single root for which the multiplicity structure is considered. Indeed, in
general, the equations that are obtained by differentiation do not hold
for other common roots.

- Second, it is only possible to adjoin the necessary differentiations when
the multiplicity structure (of a certain root) is already known, which
is in practice not the case when one is given a system of polynomial
equations.
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Example 4.11. Let us revisit the equations of Example 4.10. The root x(1) had
multiplicity 3, so we now adjoin to the equations also the first and second
derivatives of the equations, so that we obtain

f1(x) = x4 − 3x3 − 6x2 + 28x − 24 = 0,(∂ f1/∂x)(x) = 4x3 − 9x2 − 12x + 28 = 0,(∂2 f1/∂x2)(x) = 12x2 − 18x − 12 = 0,
f2(x) = x5 − 2x4 − 9x3 + 22x2 + 4x − 24 = 0,(∂ f2/∂x)(x) = 5x4 − 8x3 − 27x2 + 44x + 4 = 0,(∂2 f2/∂x2)(x) = 20x3 − 24x2 − 54x + 44 = 0.

For this system, we find d⋆ = 6 and we see that the Sylvester matrix M(6) has
only one vector in its null space:

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
4
8
16
32
64

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

4.2 Sylvester and 1D Realization Theory

From linear system theory we know that the roots of the characteristic
polynomial play a crucial role in describing and understanding the sequences
which satisfy the corresponding difference equation. This is usually de-
scribed by means of the Z-transform (Kailath, 1998). The link between
univariate polynomials and linear dynamical systems hence arises naturally
when considering the associated difference equations and their characteristic
polynomials. For example, with a difference equation v(k + 2) − 3v(k + 1) +
2v(k) = 0, we can naturally associate the polynomial equation x2 − 3x + 2 =
0.

In this vein, we will show in the current section how the univariate root-
finding problem can be interpreted as the application of realization theory
to the null space of the Sylvester matrix. Also the case of roots at infinity will
be touched, requiring tools from realization theory for 1D descriptor systems.
Although in the context of difference equations roots at infinity may seem
irrelevant, this exploration will provide us with the necessary ingredients
for the extension to the multivariate case, where roots at infinity do often
occur.
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4.2.1 Interpretation as System of Difference Equations

The interpretation of a polynomial as a time-shift operator acting on a time
series is well known, see e.g., Kailath (1998). For the current exposition, we
will limit ourselves to the simplest instance of this principle. We have the
following definition.

Definition 4.12 (Polynomials as time-shifts). With the monomial xα the shift
operator σα is associated, which acts on a time signal v(k) as

σα ∶ v(k) ↦ v(k + α).
Any polynomial equation p(x) = a0 + a1x + . . . + anx

n = 0 can hence be
associated to the difference equation

a0v(k)+ a1v(k + 1)+ . . . + anv(k + n) = 0.
Proposition 4.13 (Annihilator of SylvesterMatrix). The Sylvester matrix M(d)
of the equations f1 and f2 describing only affine roots is annihilated by a
Vandermonde structured basis defined as

Γ(d) ∶=
⎛⎜⎜⎜⎜⎝
Ð vT0 A

0 ÐÐ vT0 A
1 Ð
⋮Ð vT0 A

d Ð
⎞⎟⎟⎟⎟⎠
.

This result may come as no surprise. Indeed, from the Cayley-Hamilton
theorem it is known that a matrix satisfies its own characteristic equation.
The Sylvester matrix defines the characteristic equation of the LTI system as
defined by the polynomials f1 and f2.

Proposition 4.14. From the Vandermonde structured basis Γ(d)we can extract
A by using the shift-invariance. Let Γ(d) denote the matrix Γ(d)with the first
row removed, and let Γ(d) denote the matrix Γ(d)with the last row removed.
Then we have that

Γ(d)A = Γ(d),
or, when the (⋅) and (⋅) operators are expressed by means of row-selection
matrices S1 and Sx,

S1ΓA = SxΓ.

4.2.2 Bases for the Null Space of the Sylvester Matrix

We can consider several matrices that annihilate the Sylvester matrix. Let us
define the following matrices that have an interesting interpretation as a basis
for the null space of the Sylvester matrix.
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Definition 4.15 (Univariate Vandermonde Null Space). Assume that f1(x)
and f2(x) have m single common roots x(i), for i = 1, . . . ,m, with x(i) ≠ x(j),
for j ≠ i. Let K be the r+ s×mmatrix which contains as its columns the vectors
k evaluated at the m common roots x(i),

K ∶=
⎛⎜⎝
∣ ∣ ∣
⋯ k∣x(i) ⋯∣ ∣ ∣

⎞⎟⎠ ,
which is called the Vandermonde null space of M.

Definition 4.16 (Numerical Null Space). From the SVD of M, we have

M = ( U1 U2 )( Σ

0 )( WT
1

WT
2
) ,

where Σ = diag(σ1, . . . ,σr) with σ1 ≥ . . . ≥ σr > 0, and hence rank(M) = r. Then
Z ∶=W2 is a numerical basis for the null space of M.

Definition 4.17 (Canonical Null Space). The canonical basis for the null space
of M is obtained as the result of the Motzkin algorithm of Chapter 3.

The canonical basis H can also be obtained by multiplying Z on the right by
the inverse of the matrix composed of the first two linearly independent rows
of Z. A trivial but interesting property of H is that the first nonzero entry of
each column is the element ‘1’. The corresponding row is a linear independent
row.

Let us illustrate the above definitions by a simple example.

Example 4.18. Consider the simple set of two univariate equations

(x − 2)(x − 3) = x2 − 5x + 6 = 0,(x − 2)(x − 3)(x − 1) = x3 − 6x2 + 11x − 6 = 0.

The Sylvester matrix for degree d = 4 is the 5× 5 matrix M

M =

⎛⎜⎜⎜⎜⎜⎝

6 −5 1
6 −5 1

6 −5 1
−6 11 −6 1

−6 11 −6 1

⎞⎟⎟⎟⎟⎟⎠
,

where the empty spaces represent zero elements. A basis for the null space of
M is computed as Z using a singular value decomposition as follows,

Z =
⎛⎜⎜⎜⎜⎜⎝

−0.2129 −0.0361
−0.3673 −0.0772
−0.5591 −0.1695
−0.5917 −0.3841
0.3963 −0.9036

⎞⎟⎟⎟⎟⎟⎠
.
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Next Z is multiplied on the right with the inverse of the matrix composed of
the first two linear independent rows, as to obtain the canonical null space H

H =

⎛⎜⎜⎜⎜⎜⎝

1 0
0 1
−6 5
−30 19
−114 65

⎞⎟⎟⎟⎟⎟⎠
.

We identify rows 1 and 2 as the linearly independent rows.

Let us now turn to the root-finding question. We expect the null space to have
the following structure

Γ =

⎛⎜⎜⎜⎜⎜⎜⎝

Ð vT0 A
0 ÐÐ vT0 A
1 ÐÐ vT0 A
2 ÐÐ vT0 A
3 ÐÐ vT0 A
4 Ð

⎞⎟⎟⎟⎟⎟⎟⎠
.

The following shift relation determines the matrix A (up to a state similarity
transformation)

S1ΓA = SxΓ

or ⎛⎜⎜⎜⎜⎝
Ð vT

0 A
0 ÐÐ vT

0 A
1 ÐÐ vT

0 A
2 ÐÐ vT

0 A
3 Ð

⎞⎟⎟⎟⎟⎠
A =
⎛⎜⎜⎜⎜⎝
Ð vT

0 A
1 ÐÐ vT

0 A
2 ÐÐ vT

0 A
3 ÐÐ vT

0 A
4 Ð

⎞⎟⎟⎟⎟⎠
Hence, when using the canonical basis H for the null space of the Sylvester
matrix, we have

A = (S1H)+ SxH.

An eigenvalue decomposition of A reveals the two common solutions x = 2
and x = 3

A = ( 0 1
−6 5

) = VDV−1,

with

V = ( −0.4472 −0.3162
−0.8944 −0.9487 ) , D = ( 2

3
)

Observe now that this problem has a natural interpretation as an 1D system
realization as follows.

v(k + 1) = ( 0 1
−6 5

)T v(k),



64 SYLVESTERMATRIX FORMULATION

and the initial state can be found from considering the matrix H. Indeed, we
have that the first row of H corresponds to vT

0 A
0 = vT0 , or

v(0) = ( 1 0 )T .
The Vandermonde null space of M revealing the roots evaluated at the
monomial vectors k can be reconstructed from the basis of the null space we
employed together with the eigenvectors of A as

K ≈ HV

and rescaling the columns such that the first row equals ones, leading to

K =
⎛⎜⎜⎜⎝

1 1
2 3
4 9
8 27

⎞⎟⎟⎟⎠ ,
from which the two solutions can be read off from the second row, and are
again correctly retrieved as x = 2 and x = 3.
It must be noted that any basis for the null space of M can be used to phrase
the eigenvalue problem and retrieve the roots. We have that (S1Z)+ SxZ ≠(S1H)+ SxH , but it can easily be verified that the eigenvalues of (S1Z)+ SxZ
and (S1H)+ SxH will coincide, as they represent the common roots of the
equations fi.

4.2.3 Roots at Infinity and Descriptor Systems

When one considers univariate polynomials, roots at infinity can only occur
when the coefficient of the highest-degree term is zero, and are for some
reason considered explicitly. In normal circumstances, one would not easily
consider a polynomial p(x) = 5x2 − 2x + 8 as p(x) = 0x3 + 5x2 − 2x + 8. In
the univariate case, this (somewhat artificial) case of the existence of roots at
infinity will require notions of realization theory for descriptor systems, which
turn out to have a natural interpretation in terms of the roots of univariate
polynomials.

First of all, we will modify the definition of the annihilator of the Sylvester
matrix, denoted by V(d).
Proposition 4.19 (Annihilator of SylvesterMatrix). The Sylvester matrix M(d)
is annihilated by a Vandermonde structured basis defined as

V(d) ∶=
⎛⎜⎜⎜⎜⎝
Ð vT

0 A
0 Ð Ð wT

d E
d ÐÐ vT

0 A
1 Ð ⋮
⋮ ÐwT

d E
1 ÐÐ vT0 A

d Ð ÐwT
d E

0 Ð

⎞⎟⎟⎟⎟⎠
.
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The left part represents the affine roots with the corresponding action matrix
A, and the right part represents the roots at infinity by means of the action
matrix E.

Recall from Chapter 3 that the matrix E is nilpotent and hence, for some µ

we have that Ek = 0, for k ≥ µ. In the case that there are roots at infinity, the
considerations regarding the shift-invariance of above still hold. It is possible
to retrieve the action matrices A and E from the (numerical basis for the) null
space of the Sylvester matrix. However, one needs amechanism for separating
the affine roots and the roots at infinity.

In Figure 4.1 an overview of the proposed method is provided.

Sylvester Matrix Null Space Dynamical System

⎛
⎜⎜⎜
⎝

xσ1 ⋅ f1
xσ2 ⋅ f2
⋮

xσn ⋅ fs

⎞
⎟⎟⎟
⎠

⇔
⎛
⎜⎜
⎝

vT
0 A

0 wT
d E

d

⋮ ⋮

vT0 A
d wT

d E
0

⎞
⎟⎟
⎠
⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v(k + 1) = Av(k)
w(k − 1) = Ew(k)

v(0) = v0
w(d) = wd

Figure 4.1: Overview of realization theory for univariate polynomial root-finding. In the first
step the Sylvester matrix M is built which contains the coefficients of the input equations fi,
for i = 1, . . . , s. In the (right) null space of M the matrix V exhibits an observability matrix-like
structure. From the structure of V the action matrices A and E can be obtained by solving systems
of linear equations. Finally the linear dynamical system representation is found. In the case there
are roots at infinity, this is a descriptor system.

Example 4.20. Let us revisit the system from Example 4.18 where we modify
the equations such that there are roots at infinity. This is achieved by
introducing leading zeros. Let us consider the equations

0x4 + 0x3 + x2 − 5x + 6 = 0,
0x5 + 0x4 + x3 − 6x2 + 11x − 6 = 0.

The Sylvester matrix for degree d = 5 has as its canonical null space H which
immediately allows separating the regular and singular parts as follows,

H = ( HR HS ) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
−6 5 0 0
−30 19 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Indeed, the leading zeros in the equations give rise to zero columns in M
which give rise to unit columns in H. From the regular part HR the common
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roots x = 2 and x = 3 can be obtained as illustrated in Example 4.18. From the
singular part HS we can determine the action matrix E from the relation

⎛⎜⎜⎜⎜⎜⎜⎝

E4

E3

E2

E1

E0

⎞⎟⎟⎟⎟⎟⎟⎠
E =

⎛⎜⎜⎜⎜⎜⎜⎝

E5

E4

E3

E2

E1

⎞⎟⎟⎟⎟⎟⎟⎠
,

or
E = HS

+
HS,

or
E = (SxHS)+ S1HS,

leading to

E = ( 0 0
1 0

) .
Notice that Ed = 0 for d ≥ 2.
The initial state for the regular part of the descriptor system is found as in
Example 4.18 as vT0 = ( 1 0 ). For the singular part, the initial state (note
that the singular part defines a backward running iteration) is found as

w(d) = ( 0 1 )T .
We can finally interpret the univariate root-finding problem as the descriptor
form state space model (with d ∶= 5)

v(k + 1) = ( 0 1
−6 5

)v(k), v(0) = ( 1 0 )T

w(k − 1) = ( 0 0
1 0

)w(k), w(d) = ( 0 1 )T .



5Macaulay Matrix

Formulation

The current chapter introduces the Macaulay matrix, which is based upon
the work of Francis Sowerby Macaulay (Macaulay, 1902, 1916). This work
was a generalization of Sylvester’s resultant method to the multivariate case
and it considered sub-resultants of the so-called Macaulay coefficient matrix.
Although the core of this approach dates back to the end of the 19th and the
beginning of the 20th century, due to historical reasons, these matrix-based
methods have been largely neglected until the end of the 20th century.

This chapter starts off with defining the Macaulay matrix. Next several
properties are studied, most of which have importance for the polynomial
system solving problem. In particular, the (right) null space of the Macaulay
matrix will turn out to be of paramount importance. We will discuss
how the Macaulay matrix and its null space allow for an interpretation of
monomials as being either linearly independent or linearly dependent on
other monomials. This concept will play an important role in the linear
algebra interpretation of the polynomial system solving problem. Further-
more, the shift-invariance property of the null space, which is prescribed by
the monomial structure by which the Macaulay matrix is defined, will be
discussed.

5.1 Representation of System of Polynomials

5.1.1 Problem Statement

We consider the problem of finding the solutions of a system of s multivariate
polynomial polynomials fi where i = 1, . . . ,n in n ≤ s unknowns x1, . . . , xn,
having total degrees d1, . . . , ds. The system of equations is represented

67
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formally as ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f1(x1, . . . , xn) = 0,
f2(x1, . . . , xn) = 0,

⋮
fs(x1, . . . , xn) = 0.

(5.1)

The maximal total degree is denoted as d○ = max(d1, . . . , ds). It is assumed
that (5.1) describes a zero-dimensional solution set in the projective space
with simple affine solutions. In most cases, we will consider the case s = n,
however the theory is valid for the case s > n, provided that the system (5.1)
has solutions. The case for which approximate solutions are useful to consider
is discussed in Chapter 8.

5.1.2 Definition Macaulay Matrix

It is well-known that the space of multivariate polynomials up to a given
degree d in n variables has the structure of a vector space. From the linear
algebra perspective it is indeed natural to think of a polynomial as a vector
containing its coefficients multiplied with a vector containing all possible
monomials.

By multiplying all the equations fi in (5.1) by monomials, polynomial
equations are found which compose the rows of a so-called Macaulay matrix.
This gives rise to a matrix equation of the form

M(d)k(d) = 0.
It will often turn out to be necessary to carefully order monomials, for which
we have chosen to use the degree negative lexicographic ordering.1

Definition 5.1 (Degree Negative Lexicographic Order). Let α, β ∈ Nn be
monomial exponent vectors. Then two monomials represented by α and β are
ordered by the degree negative lexicographic order as α <dnlex β (simplified as
α < β), if

- ∣α∣ < ∣β∣, or
- ∣α∣ = ∣β∣ and in the vector difference β − α ∈ Zn, the left-most non-zero
entry is negative.

Example 5.2. The monomials of maximal degree three in two variables x1 and
x2 are ordered by the degree negative lexicographic order as

1 < x1 < x2 < x21 < x1x2 < x22 < x31 < x21x2 < x1x22 < x32.

1Most of the results in this thesis immediately hold for any graded monomial ordering.
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Definition 5.3 (Macaulaymatrix andmonomial vector). TheMacaulaymatrix
M(d) contains as its rows the vector representations of xσi ⋅ fi, for all i, where
xσ i represents a monomials having deg(xσi) ≤ d, and the columns of M(d) are
indexed by all monomials of degree at most d, represented as follows,

M(d) ∶=
⎛⎜⎜⎜⎝
{xσ1} ⋅ f1{xσ2} ⋅ f2
⋮{xσn} ⋅ fn

⎞⎟⎟⎟⎠ ,

where each equation fi, for i = 1, . . . ,n is multiplied by all monomials of
degrees ≤ d − di, denoted by {xσi}. The rows of M are ordered by considering
the monomials shifting fi by the degree negative lexicographic order. The
multivariate Vandermonde monomial vector k(d) is composed accordingly,
i.e.,

k(d) ∶= ( 1 x1 . . . xn x21 . . . x2n . . . xd1 . . . xdn )T .
The Macaulay matrix construction leads to a very sparse and structured
matrix where each row in the fi-block contains only as many non-zero
elements as there are non-zero coefficients in fi.

Example 5.4. Consider the simple system

f1(x1, x2) = x21 + x1x2 + 4
f2(x1, x2) = 2x31 + 2x1x

2
2 + 8,

with d1 = 2 and d2 = 3. The Macaulay matrix M(4) is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 x1 x2 x21 x1x2 x22 x31 x21x2 x1x
2
2 x32 x41 x31x2 x21x

2
2 x1x

3
2 x42

f1 4 0 0 1 1 0 0 0 0 0 0 0 0 0 0
x1 f1 0 4 0 0 0 0 1 1 0 0 0 0 0 0 0
x2 f1 0 0 4 0 0 0 0 1 1 0 0 0 0 0 0
x21 f1 0 0 0 4 0 0 0 0 0 0 1 1 0 0 0
x1x2 f1 0 0 0 0 4 0 0 0 0 0 0 1 1 0 0
x22 f1 0 0 0 0 0 4 0 0 0 0 0 0 1 1 0
f2 8 0 0 0 0 0 2 0 2 0 0 0 0 0 0
x1 f2 0 8 0 0 0 0 0 0 0 0 2 0 2 0 0
x2 f2 0 0 8 0 0 0 0 0 0 0 0 2 0 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where the first six rows correspond to the shifts of f1 with all monomials of
degrees up to 4 − d1 = 2 and the last three rows are the shifts of f2 with all
monomials of degrees up to 4− d2 = 1.

5.1.3 Homogeneous Macaulay Matrix

In many cases, so-called roots at infinity occur. They are either caused by the
presence of zero coefficients, or by the existence of algebraic relations among
the coefficients in the equations. In order to describe the solutions at infinity,
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we use the well-known concepts of homogenization and projective space. The
construction of the Macaulaymatrix of the system (5.1) as in Definition 5.3 can
(and should) always be interpreted as theMacaulaymatrix of the homogenized
system.

Let us therefore first review the definitions of homogenization and dehomog-
enization.

Definition 5.5 (Homogenization and dehomogenization). The homogeniza-
tion of an equation f , denoted f h, is computed using the formula

f h = xd0 ⋅ f (x1/x0, . . . , xn/x0) .
Dehomogenizing f h yields f , or formally

f h(1, x1, . . . , xn) = f (x1, . . . , xn).
A homogenized system of equations describes solutions in the n + 1-dimen-
sional projective space, and x0, . . . , xn are called the homogeneous coordinates.
In the projective space the roots at infinity are incorporated as regular points
for which x0 = 0.
Definition 5.6 (Homogeneous Macaulay matrix and monomial vector). The
Macaulay matrix for the homogenized system f hi (x0, x1, . . . , xn) = 0, for i =
1, . . . ,n is denoted by Mh(d) and is defined as

Mh(d) ∶=
⎛⎜⎜⎜⎜⎝
{xσ1} ⋅ f h1{xσ2} ⋅ f h2
⋮{xσn} ⋅ f hn

⎞⎟⎟⎟⎟⎠
,

where each equation f hi , for i = 1, . . . ,n is multiplied by all monomials in the
unknowns x0, . . . , xn of degree d− di, denoted by {xσi}. The columns of Mh(d)
are indexed by all monomials in the unknowns x0, . . . , xn of degree d, which
are placed in the multivariate Vandermonde monomial vector kh(d) to obtain
the equation

Mh(d)kh(d) = 0.
The vector kh(d) consists of all monomials in n+ 1 unknowns of degree d,

kh(d) ∶= ( xd0 xd−10 x1 . . . xd−10 xn . . . xd1 . . . xdn )T .
The following proposition will be very important when we are interpreting
the results of our methods.
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Proposition 5.7. The Macaulay matrix for the system of homogeneous
equations f hi (x0, x1, . . . , xn) = 0, for i = 1, . . . ,n, is identical to the Macaulay
matrix for the system (5.1), i.e.,

Mh(d) ≡ M(d).
It is easily seen that the equivalence of M(d) and Mh(d) lies in the mere
relabeling of rows and columns of M(d). The ordering of the monomials in
this relabeling is consistent with the degree negative lexicographic monomial
ordering.

5.2 Properties

5.2.1 Number of Rows and Columns

The following formulas express the number of monomials (either of total
degree d or of total degree ≤ d) by binomial coefficient expressions. These
expressions easily follow from Lemma B.3.

Lemma 5.8 (Dimensions Macaulay matrix). Let p(d) and q(d) denote the
number of rows and columns of M(d), respectively. We have

p(d) = n

∑
i=1
(n + d − di

d − di
),

and

q(d) = (n + d
d
).

5.2.2 Structure and Sparsity

Density of MacaulayMatrix

The Macaulay matrix as defined in Definition 5.3 gives rise to a very sparse
and structured matrix. The sparsity arises because in each row only as
many nonzero elements occur as there are coefficients in the corresponding
constituting polynomial fi. The density of the Macaulay matrix M(d) as a
function of d is shown for a few combinations of n and d○ in Figure 5.1.
For example, the Macaulay matrix of a system of 5 equations with d○ = 3,
the density drops below 1% at d = 12. Due to the Vandermonde structured
basis vectors, and the fact that all rows are shifts of the equations fi, the same
coefficients occur in a very structured fashion.
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Figure 5.1: Density plot ofMacaulay matrix M(d) for a few combinations of n and d○ as a function
of d. We see that the Macaulay matrix very quickly becomes very sparse. For example, the
Macaulay matrix of a system of 5 equations with d○ = 3, the density drops below 1% at d = 12.

Alternative Definition

The Macaulay matrix can alternatively be constructed iteratively by consid-
ering increasing degrees. In every degree iteration, a number of new rows is
added, corresponding to new shifts of equations that can be adjoined because
a larger total degree is considered. It can easily be seen that the Macaulay
matrix obtained in this way, denoted N(d) is related to the Macaulay matrix
from Definition 5.3, denoted M(d) by a row permutation, i.e.,

N(d) = PM(d).
Remark that the Macaulay matrix N(d) is defined such that it exhibits
a ‘nested’ structure: This is a banded block structure with quasi-Toeplitz
structure over the blocks. In N(d) the matrix N(d − 1) occurs as a sub-matrix
in the top-left part; in N(d − 1) the matrix N(d − 2) occurs as a sub-matrix,
etc. Moreover, due to this structure and its construction, one can identify
for every degree a number of nonzero blocks in which the coefficients of the
polynomials fi occur. These blocks are repeated in a quasi-Toeplitz structure:
the blocks are repeated along the diagonals of N. It is called a quasi-Toeplitz
structure because the elements in the repeated blocks do not satisfy a strict
Toeplitz structure, because for increasing degrees the blocks are growing in
row and column dimensions.
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Figure 5.2: Sparsity plot of ‘generalized Sylvester structured’ Macaulay matrix M(6) of (5.2).
We distinguish 3 blocks, each of which corresponds to one of the equations fi and its shifts up
to degree d = 6. The nonzero elements are represented by the blue (•), green (•) and red (•)
bullets, corresponding to coefficients of the equations f1, f2 and f3, respectively. The black dots (⋅)
represent zero elements. The horizontal black lines mark the separation between three equation
blocks. The vertical black lines denote the separation between the degree-blocks of the Macaulay
matrix.

Example 5.9. Consider the system

f1(x1, x2, x3) = x1x2 − 3 = 0,
f2(x1, x2, x3) = x21 − x

2
3 + x1x3 − 5 = 0,

f3(x1, x2, x3) = x33 − 2x1x2 + 7 = 0,
(5.2)

with d1 = 2, d2 = 2 and d3 = 3. The Macaulay matrix M(d) for degree d = 6,
where the rows corresponding to an equation fi occur in blocks, is represented
in Figure 5.2. The quasi-Toeplitz structured Macaulay matrix N(d) for degree
d = 6, in which the subsequent blocks are nested, is shown in Figure 5.3.



74 MACAULAYMATRIX FORMULATION

Figure 5.3: Sparsity plot of ‘quasi-Toeplitz structured’ Macaulay matrix N(6) of (5.2). As the
degree d increases, all ‘new’ shifts of the equations are adjoined to the previous iteration of the
matrix. The nonzero elements are represented by the blue (•), green (•) and red (•) bullets,
corresponding to coefficients of the equations f1, f2 and f3, respectively. The black dots (⋅)
represent zero elements. The horizontal black lines mark the separation between the subsequent
iterations d. The vertical black lines denote the separation between the degree-blocks of the
Macaulay matrix.

5.3 Null Space of the Macaulay Matrix

The Macaulay matrix is a useful tool in computational algebraic geometry
(Macaulay, 1902, 1916; Jónsson and Vavasis, 2004; Bondyfalat et al., 2000;
Batselier et al., 2013b,a). For the problem of polynomial system solving, its
null space is of particular interest. We will therefore employ the polynomial
system solving problem as a starting point to describe its null space.

A central notion in the exposition is the distinction between linearly inde-
pendent and linearly dependent monomials, which is closely related to the
so-called set of standard monomials (also known as the normal set of the
quotient space C[x1, . . . , xn]/⟨ f1, . . . , fs⟩ (see Appendix B). In the null space of
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the Macaulay matrix the linearly independent monomials correspond to the
linearly independent rows. Given the complementarity property (Chapter 3),
it is also expressed in the linearly dependent columns of the Macaulay
matrix.

It will turn out that some of the standard monomials ‘stabilize’ as they are
monitored for increasing degrees d, whereas others ‘move along’ to higher
degrees. This will be linked to the so-called affine solutions and the so-called
solutions at infinity. By monitoring the behavior of the standard monomials
as the degree of the Macaulay matrix increases, the separation between the
affine solutions and the solutions at infinity can be established.

We want to find as linearly independent monomials the monomials of lowest
degrees possible. The complementarity/duality property of Chapter 3 tells us
there are two ways to do this:

- We monitor the linearly independent rows as we adjoin rows in the null
space of M, going ‘from the top to the bottom’. The linearly independent
monomials correspond to the linearly independent rows.

- We monitor the linearly dependent columns in M going ‘from the right to
the left’. The linearly independent monomials are then the monomials
corresponding to the linearly dependent columns of M.

5.3.1 Generic Case: Affine Roots Only

We start with describing the case in which the input system (5.1) has only
simple affine roots, which we call the generic case. This situation occurs e.g.,
if all the possible coefficients in the system (5.1) occur as random numbers.
Although the genericity assumption often does not always hold in practice,
this case will be instrumental as a baseline setting for introducing the main
ideas of the thesis.

Set of Standard Monomials

A central object in our exposition is the set of standard monomials. In
the classical literature, the set of standard monomials (sometimes called
the normal set) is defined as a basis of polynomial ring modulo the ideal
generated by the system of polynomial equations, and is usually determined
by means of Gröbner basis computations (Cox et al., 2005; Stetter, 2004), see
Appendix B.

Here we define the standard monomials by means of numerical rank proper-
ties of the Macaulay matrix.
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Definition 5.10 (Set of standard monomials and its complement). The set of
standard monomials B(d) for degree d of the system (5.1) is defined as the
complement of the monomials of degrees δ = 0, . . . , d indexing the right-most
linear independent columns of M(d). The complementary set B(d) is defined
as the set of all monomials indexing the columns of M(d) that are not standard
monomials.

A rudimentary numerical procedure for numerically determining the stan-
dard monomials is to iterate over the columns of M(d) and monitor increases
in the (numerical) rank as more columns are added, starting from the right-
most column. The columns which leave the rank unchanged are in the set of
standard monomials B(d), whereas columns which increase the rank are in
the complement of the set of standard monomials B(d).2
Remember from the duality property between the indices of the columns
of a matrix and the rows of its null space of Section 3.1. This allows
us to alternatively interpret the standard monomials as the ‘first’ linearly
independent rows of a basis for the null space of the Macaulay matrix. The
notion of standard monomials is illustrated using an example.

Example 5.11. We continue with the equations from Example 5.4. Let the
standard monomials B(d) be monomials indexing the right-most linearly
dependent columns as in the definition. One can easily check that the right-
most linearly dependent columns of M(4) are the columns corresponding to
the monomials x42, x

3
2, x

2
1, x2, x1 and 1.

Alternatively, by computing a basis for the null space of M(d), e.g., using SVD,
and inspecting which rows (starting from the top) contribute to the rank, we
also find 1, x1, x2, x21, x

3
2, x

4
2.

Hence, we have
B(4) = {1, x1, x2, x21, x32, x42}.

Multivariate Vandermonde Null Space of the MacaulayMatrix

From the Macaulay matrix construction it immediately follows that each

solution of (5.1), denoted as x(i) ∶= (x(i)1 , x(i)2 , . . . , x(i)n ), for i = 1, . . . ,mB,
composes a vector in the null space. The multivariate Vandermonde null
space is defined as the collection of all such vectors.

Definition 5.12 (Multivariate Vandermonde null space). Evaluating k at the
mB solutions gives rise to mB independent vectors in the null space of M. We

2Numerical rank tests are implemented in a numerically reliable way by the SVD. Either a
suitable threshold value is required for deciding whether a singular value is small enough to
be considered as zero, or a sufficiently large decay in consecutive singular values needs to be
observed.
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denote by k∣x(i) , for i = 1, . . . ,mB the evaluation of k at one of the mB solutions.
The multivariate Vandermonde null space of M is defined as the collection
of the vectors k∣x(i)into the multivariate Vandermonde structured matrix K of
size q ×mB, i.e.,

K ∶=
⎛⎜⎝
∣ ∣ ∣
⋯ k∣x(i) ⋯∣ ∣ ∣

⎞⎟⎠ .
The multivariate Vandermonde null space K will only be used in the
derivations and will not be constructed explicitly (it can only be constructed
when the solutions are known priorly!). Therefore, the specific order in which
the vectors k are placed in K is not of any relevance for the remainder of our
exposition.

Example 5.13. Let us consider a small system of polynomial equations

f1(x1, x2) = x2 − x21 = 0,

f2(x1, x2) = x2 − 2x1 = 0,

which has the solutions (0, 0) and (2, 4). The Macaulaymatrix for degree d = 2
is

M(2) = ⎛⎜⎜⎜⎝
0 0 1 −1 0 0
0 −2 1 0 0 0
0 0 0 −2 1 0
0 0 0 0 −2 1

⎞⎟⎟⎟⎠
.

The multivariate Vandermonde null space is

K(2) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
0 2
0 4
0 4
0 8
0 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The solutions are in the second and third row of K(2).
The following lemmas describe well-known facts regarding the number of
standard monomials, the number of solutions of the system (5.1). In the next
section, we will relate this to the nullity of the Macaulay matrix.

Lemma 5.14 (Bézout number mB (Cox et al., 2005)). The number of solutions
of (5.1) in projective space (counting multiplicities) is given by the Bézout
number

mB =
n

∏
i=1

di.

We will relate the Bézout number to the nullity of the Macaulay matrix, but
we first need to discuss the issue of roots at infinity.
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5.3.2 Solutions at Infinity

In many cases, the genericity assumption of Section 5.3.1 that the solution set
contains only affine roots does not hold. In addition to affine solutions, so-
called solutions at infinity may exist, which are caused by algebraic relations
between the coefficients or the occurrence of zero coefficients in (5.1). Not
surprisingly, these algebraic relations will be manifested by rank-deficiencies
in the Macaulay matrix.

The following example illustrates how solutions at infinity can show up in a
very simple system of polynomial equations.

Example 5.15. Consider the equations

f1(x1, x2) = x21 − x2 = 0,
f2(x1, x2) = x1 − 5 = 0,

geometrically represented by the intersection of a vertical line and a parabola
(Figure 5.4). We can see that there is only a single solution, which can easily
be confirmed by substituting the value x1 = 5 into the first equation, leading to
the solution (5, 25). The Bézout number of this system predicts that there are
two solutions, and, as a matter of fact, it turns out that there are two solutions,
the first one is the affine solution (5, 25), and the second one is a so-called
solution at infinity.

The solution at infinity can be described using the homogenized system of
equations

f h1 (x0, x1, x2) = x21 − x0x2 = 0,
f h2 (x0, x1, x2) = x1 − 5x0 = 0.

We can now write the solutions of the homogenized system as the triplets(x0, x1, x2) (hereby keeping in mind that points in the projective space are
scaling invariant). We find two projective solutions as (0, 0, 1) and (1, 5, 25).
We recognize the affine solution (5, 25), but additionally, there is a solution
for which x0 = 0. This is the solution at infinity. Notice that ‘dehomogenizing’
would lead to a singularity for the solution at infinity: one would need to
compute x1/0 and x2/0.
Lemma 5.16 (Nullity of Macaulay matrix equals Bézout number). At a
sufficiently large degree dc, the nullity of the Macaulay matrix is equal to the
Bézout number, i.e.,

nullity (M(d)) = n

∏
i=1

di, d ≥ dc.

Proof. The cardinality of the set of standard monomials B(dc) as defined in
Definition 5.10 is equal to the nullity of M, which immediately follows from
the definition. From Cox et al. (2005) it follows that this number corresponds
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Figure 5.4: Geometrical representation of Example 5.15. The Bézout number of the defining
system is mB = 2, however, there is only a single affine root. The second root is a so-called root at
infinity.

to the dimension of the quotient space C[x1, . . . , xn]/⟨ f1, . . . , fn⟩ in the generic
case. The same reasoning holds for the projective case.

Example 5.17. Let us revisit the equations from Example 5.15. The Macaulay
matrix for the system at degree d = 2 is constructed as

M(2) =
1 x1 x2 x21 x1x2 x22⎛⎜⎜⎝

⎞⎟⎟⎠
0 0 −1 1 0 0
−5 1 0 0 0 0
0 −5 0 1 0 0
0 0 −5 0 1 0

,

and we can assert that nullity(M(2)) = 2.
An important observation can be made in this example. Recall that solutions
at infinity are solutions for which x0 = 0. This is expressed in the Macaulay
matrix as a rank-deficiency in the block of the highest degree. Indeed, given
that there are solutions for which x0 = 0, the homogeneous interpretation of
the Macaulay matrix reduces all columns of degrees lower than d to zero.
Hence, in order for a solution to exist, there must be a rank-deficiency in the
block built from the columns corresponding to the monomials of degree d.
In this case, this can easily be checked visually: the column indexed by the
monomial x22 is zero.
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The set of affine standard monomials

From the previous paragraphswe learn that solutions at infinity are defined as
non-zero solutions for which the homogenization variable x0 = 0. Lemma 5.16
and Proposition 5.7 imply that the solutions at infinity compose vectors in the
null space of M(dc).
Proposition 5.18. Consider the partitioning of M(dc) as

M(dc) = ( M0 M1 M2 . . . Mdc ) ,
where the block M i contains the columns of M(dc) indexed by the monomials
of degree i, for i = 0, . . . , dc. The existence of solutions at infinity is revealed by
the column rank deficiency of the block Mdc .

Column rank deficiency of Mdc implies there exist solutions for which the
homogenization variable x0 is zero. Also observe that evaluating x0 = 0 would
reduce all blocks Md for d < dc to zero. An immediate consequence is that
when determining the standardmonomials B(d) for a sufficiently large degree
d, we will find some monomials that are caused by the non-zero solutions
having x0 = 0.3

Corollary 5.19. If n = s, the degree dc is given by the expression

dc = d⋆ ∶=
n

∑
i=1

di − n+ 1.

Proof. When there are no roots at infinity, all columns of d⋆ should be
‘reachable’ by shifts of the original equations. Without loss of generality, we
can reason that in each of the equations there is a term xdi that serves as a pivot
term that is able to reach one of the columns of Md⋆ , it immediately follows
that d > d⋆ is necessary to detect the rank-deficiency of Md⋆ . Consequently,
if not all columns of Md⋆ are linearly independent at d⋆, they will remain
linearly dependent at degrees d > d⋆.
The notion of the solutions at infinity implies the concept of the affine standard
monomials. We will define this using the observation that as the degree d of
the Macaulay matrix increases, the linear independent standard monomials
of the affine solutions and the solutions at infinity become separated. At a
certain degree, which we will call dG, there is a sufficient separation between
the two sets of monomials, and the monomials that stabilize are called the
affine standard monomials.

Let us first reconsider the example of Section 2.3 to fix the ideas.

3Note, however, that it would in general not suffice to simply dismiss the standardmonomials
of degree d alone (and, e.g., remove the corresponding columns from M(d)) to resolve the
solutions at infinity, since they may have — and often do have—an intricate multiplicity structure
that protrudes into degrees smaller than d.
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Example 5.20. Consider the simple system of two equations

f1(x1, x2) = x21 + x1x2 − 2 = 0,
f2(x1, x2) = x22 + x1x2 − 2 = 0.

We construct for several iterations the Macaulay matrix and monitor its rank,
nullity and the indices of the linear independent monomials. The results are
summarized in Table 5.1.

Table 5.1: Diagram showing the properties of the Macaulay matrix M(d) as a function of the
degree d. The rank keeps increasing as d grows, however the nullity stabilizes at the value 4.
Observe that only two of the linear independent monomials stabilize, namely 1 and x1, whereas
the remaining two shift towards higher degrees as the overall degree of the Macaulay matrix
increases.

d size M(d) nullityM(d) standard monomials (affine)

2 2× 6 4 1, x1, x2, x
2
1

3 6× 10 4 1, x1, x
2
1 , x

3
1

4 =∶ dG 12× 15 4 1, x1, x
3
1 , x

4
1

5 20× 21 4 1, x1, x
4
1 , x

5
1

6 30× 28 4 1, x1, x
5
1 , x

6
1

We observe that there are four linear independent monomials in all iterations,
but only the monomials 1 and x1 ‘stabilize’, whereas the other two monomials
are replaced by higher degree monomials as d increases. Observe that there is
a pattern in the two remaining monomials: they are always given by xd1 and
xd−11 . It turns out that the system has two affine roots and two solutions at
infinity. The affine roots will correspond to the monomials 1 and x1 and the
solutions at infinity correspond to the monomials at higher degrees.

By homogenizing the equations we can analyze the solutions at infinity. We
find

f h1 (x0, x1, x2) = x21 + x1x2 − 2x
2
0 = 0,

f h2 (x0, x1, x2) = x22 + x1x2 − 2x
2
0 = 0.

We set x0 = 0 and identify x1 + x2 as a common factor in both equations,
confirming that there exists a solution at infinity, which is be described by(x0, x1, x2) = (0, α,−α).
Observe that the existence of solutions at infinity is also expressed in the
Macaulay matrix. If there can be found linear independent monomials of
degree d in M(d), for any sufficiently large degree d, there are solutions
at infinity. Indeed, setting the homogenization variable x0 to zero in the
homogenized system is equivalent to retaining only the highest degree
columns of the Macaulay matrix. Hence, if there is linear dependence among
these columns, there are solutions at infinity.



82 MACAULAYMATRIX FORMULATION

The dynamical behavior of the structure of the null space as a function of d,
when there are solutions at infinity, is revealed by inspection of the canonical
basis for the null space, denoted by H(d). At degree d = 4 =∶ dG we clearly see
the separation emerging between the affine roots and the solutions at infinity.
At degree dG + 1 = 5 the separation between the affine roots and the solutions
at infinity is increased by one degree block, as shown in H(4) and H(5):

affine³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ infinity³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
000000

H(4) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0
0 2 −1 0
0 0 1 0
0 2 −1 0
0 0 0 1
2 0 0 −1
0 0 0 1
2 0 0 −1
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↑
gap↓

and

affine³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µ infinity³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
0000000

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
2 0 −1 0
0 0 1 0
2 0 −1 0
0 0 1 0
0 0 0 1
0 2 0 −1
0 0 0 1
0 2 0 −1
0 0 0 1
0 2 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↑

gap

↓ = H(5).

In the canonical basis, as a function of the degree d, we see the appearance of
zeros in the top part corresponding to the degrees 0, 1, 2, etc. of the columns
3 and 4. As d increases, a gap between the linear independent monomials
corresponding to the affine roots and the linear independent monomials
corresponding to the solutions at infinity emerges. We will therefore employ
this phenomenon to separate the affine roots and the solutions at infinity.

A formal definition of the set of affine standard monomials is now pro-
vided.

Definition 5.21 (Set of affine standard monomials). We call B⋆(dG) ⊆ B(dG)
the affine standard monomials for degree dG. The degree dG is the smallest
degree for which for all xα ∈ B⋆(dG) and xβ ∈ B(dG)/B⋆(dG), we have∣β − α∣ ≥ 1, where ⋅/⋅ denotes the set difference operator.
The definition leads to a procedure for determining the affine standard
monomials: One inspects the elements in B(d) as the degree d increases. The
standardmonomials corresponding to the affine roots will ‘stabilize’, whereas
the ones corresponding to the solutions at infinity will always appear at high
degrees (and move along as d increases). From a sufficiently large degree dG
on, a degree-gap arises between the set of affine standard monomials and the
remaining standard monomials. A numerically reliable way to do this is to
monitor the (numerical) rank increases by considering growing degree-blocks
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in a basis for the null space of M (or the columns of M going from right to
left).

An interesting implication of the above is that the number of affine roots of
(5.1) equals the number of affine standard monomials.

Lemma 5.22 (Number of affine roots (Batselier, 2013)). The number of affine
standard monomials corresponds to the number of affine roots, or

ma = #B⋆(dG),
where #(⋅) denotes the set cardinality.
5.3.3 Removing the Solutions at Infinity

Assume that the Macaulay matrix for degree dG is constructed and the set
of affine standard monomials B⋆(dG) is determined. The definition of the
affine standard monomials leads to two methods for discarding the solutions
at infinity.

1. By removing from M(dG) the standard monomial columns of the
highest degrees, i.e., the monomials B(dG)/B⋆(dG), the solutions at
infinity are annihilated. This leads to a reduced Macaulay matrix
M⋆(dG).

2. One can also reason that the construction of the Macaulay matrix M(d)
for increasing degrees d ‘separates’ the affine solutions and the solutions
at infinity as suggested in Definition 5.21. This observation can be
employed to search for the affine roots only when devising a root-
finding algorithm (leading to the column compression alternative in
Section 6.2.4).

5.3.4 Multiple Roots and the Dual Space

The Bézout number (Lemma 5.14) counts the number of solutions in the
projective space, including multiplicities. However, the evaluation of the
monomial vector k at a solution x⋆ with multiplicity µ will only produce a
single linearly independent vector in the null space of M.

In the univariate case it is well-known that f (x) has an µ-fold root x⋆ if and
only if (dk f /dxk)(x⋆) = 0, for k = 0, 1, . . . ,µ − 1 and (dµ f /dxµ)(x⋆) ≠ 0.
The generalization of this notion to the multivariate case is attributed to
Gröbner (Marinari et al., 1996). The interested reader is referred to Dayton
et al. (2011);Marinari et al. (1996);Möller and Stetter (1995);Mourrain and Pan
(2000) for a thorough study of the multiplicity structure in the multivariate
case. We will illustrate the main ideas by means of an example, but will not
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go into details as the analysis of the multiplicity structure of the roots is not of
direct relevance for the remainder of this manuscript.

The dual space theory allows to describe the relation between the multiplicity
structure of the roots and the composition of the multivariate Vandermonde
null space K(d) by means of linear combinations of partial derivatives of the
monomial vectors k(d). Let

∂α∣x⋆ = ∂
x

α0
0 x

α1
1 ⋯xαn

n
∣
x⋆
∶= 1

α0! α1!⋯αn!
∂α0+α1+...+αn

∂x
α0
0 ∂x

α1
1 ⋯∂xαn

n

∣
x⋆

be the partial differential operators acting on the monomial vectors k.

Example 5.23. For the case n = 2 and d = 3 and derivatives up to degree 2 we
have the following partial derivatives:

⎛⎜⎝
∣ ∣ ∣ ∣ ∣ ∣

∂00 ∂10 ∂01 ∂20 ∂11 ∂02∣ ∣ ∣ ∣ ∣ ∣
⎞⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
x1 1 0 0 0 0
x2 0 1 0 0 0
x21 2x1 0 1 0 0

x1x2 x2 x1 0 1 0
x22 0 2x2 0 0 1
x31 3x21 0 3x1 0 0

x21x2 2x1x2 x21 x2 2x1 0
x1x

2
2 x22 2x1x2 0 2x2 x1

x32 0 3x22 0 0 3x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.3)

where the horizontal bars indicate the degree blocks of the monomials and the
vertical bars indicate the degrees of the derivatives. The columns are indexed
by a simplified notation of the partial derivatives ∂α.

The dual space K(d) is defined as a collection of linear combinations of such
partial derivatives, evaluated at a solution of the systems, i.e.,

K(d) = ⎛⎜⎝
∣ ∣ ∣
⋯ ∑α cα ∂α∣x⋆ ⋯∣ ∣ ∣

⎞⎟⎠ ,
where cα ∈ C and ∂α fi∣x⋆ = 0, for all i = 1, . . . ,n.
Let us now consider an example where the multiplicity structure of a root is
unraveled.
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Example 5.24. Consider the equations

f1(x1, x2) = (x2 − 2)2 = x22 − 4x2 + 4 = 0,
f2(x1, x2) = (x1 − x2 + 1)2 = x21 − 2x1x2 + 2x1 + x

2
2 − 2x2 + 1 = 0,

having a single solution (1, 2)with multiplicity 4 as we can easily understand
from the equations.

We build the Macaulay matrix M(d) for degree d = 3:

M(3) =

1 x1 x2 x21 x1x2 x22 x31 x21x2 x1x
2
2 x32⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

4 0 −4 0 0 1 0 0 0 0
1 2 −2 1 −2 1 0 0 0 0
0 4 0 0 −4 0 0 0 1 0
0 0 4 0 0 −4 0 0 0 1
0 1 0 2 −2 0 1 −2 1 0
0 0 1 0 2 −2 0 1 −2 1

,

having a 4-dimensional null space, as prescribed by the Bézout number mB =
2 ⋅2. The evaluation of x⋆ = (1, 2) at themultivariate Vandermonde vector k(3)
will only constitute a single vector in the null space of the Macaulaymatrix. It
can be verified that the following vectors are linearly independent and are all
null space vectors of M:

⎛⎜⎝
∣ ∣ ∣ ∣

∂00 ∂10 ∂01 2∂20 + ∂11∣ ∣ ∣ ∣
⎞⎟⎠

=

∂00 ∂10 ∂01 2∂20+∂11⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0 0
x1 1 0 0
x2 0 1 0
x21 2x1 0 2

x1x2 x2 x1 1
x22 0 2x2 0
x31 3x21 0 6x1

x21x2 2x1x2 x21 2x2 + 2x1
x1x

2
2 x22 2x1x2 2x2

x32 0 3x22 0

.
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Evaluated at the root (1, 2)we find

K(3) =

∂00∣(1,2) ∂10∣(1,2) ∂01∣(1,2) (2∂20+∂11)∣(1,2)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0 0
1 1 0 0
2 0 1 0
1 2 0 2
2 2 1 1
4 0 4 0
1 3 0 6
2 4 1 6
4 4 4 4
8 0 12 0

.

5.3.5 Nullity of Macaulay Matrix and Dimension of Variety

An interesting link between the nullity of the Macaulay matrix and the
dimension of the solution space of its constituting equations can bemade. This
exposition requires some notions from algebraic geometry. For background
information the interested reader is referred to Appendix B.

For a sufficiently large degree d, we can write

nullityM(d) = q(d)− rankM(d),
= dimC[x0, . . . , xn]d −dim⟨ f h1 , . . . , f hs ⟩d,
= dimC[x0, . . . , xn]d/⟨ f h1 , . . . , f hs ⟩d,
= dimC[x0, . . . , xn]d/Ihd ,

where Ihd ∶= C[x0, . . . , xn]d ∩ Ih. Remark that this is closely related to the Hilbert
polynomial (Cox et al., 2007):

aHPI(d) = dimC[x1, . . . , xn]≤d/I≤d
= dimC[x0, . . . , xn]d/Ihd
= HPIh(d),

where I ∶= ⟨ f1, . . . , fs⟩ and Ih ∶= ⟨ f h1 , . . . , f hs ⟩.
The Hilbert polynomial can be used to define the dimension of the corre-
sponding variety: its degree corresponds to the dimension of the variety, i.e.,
dimV = degHP.
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Hence, by monitoring the increases in the nullity of the Macaulay matrix, the
dimension of the solution set can be determined: when the nullity of M(d)
stabilizes to a constant, the solution set is zero-dimensional; when the nullity
increases linearly with d, the solution set is one-dimensional, etc.

Remark 5.25. Keep in mind that the Macaulay matrix always describes the
projective solution set: as we have discussed earlier, the Macaulay matrix is
always (implicitly) operating in the projective coordinates x0, . . . , xn.

Remark 5.26. It may happen that the affine variety is zero-dimensional, while
the projective solution set is one-dimensional. As long as the affine standard
monomials can be determined correctly this case will not pose any problems
for the algorithms wewill develop in the next chapter (see, e.g., Example 6.14).





6Polynomial System Solving

Algorithms

In the previous chapter we have introduced the Macaulay matrix and studied
its properties. It was shown that the null space is closely related with the
solutions of the system (5.1). In this chapter we will use this insight and use a
numerical basis of the null space as a tool for computing the roots.

First of all it is shown how the multiplication structure in the null space of the
Macaulay matrix leads to an eigendecomposition. This immediately leads to
the first algorithm operating in the null space of the Macaulay matrix. Also a
procedure to break down the computation of the null space into iterative steps
is developed.

Next the complementarity property between the rows of the null space
and the columns of the Macaulay matrix is used to rewrite the system
solving method such that the null space does not need to be computed.
The second algorithm phrases the polynomial system solving problem as an
eigenvalue problem by means of a column-repartitioned Macaulay matrix.
The numerical implementation of this procedure is by means of a Q-less QR
decomposition.

In both approaches the case of solutions at infinity is discussed and several
numerical examples illustrating the operation of the algorithms are provided.
As an application of these methods we will discuss a problem from system
identification, namely the structured total least squares problem.

6.1 From Multiplication Structure to Eigenvalues

In a similar fashion as in the univariate case described in Section 4.1.2, multi-
plication of a multivariate Vandermonde monomial vector k by a monomial

89
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or a polynomial obeys a shift property which is an essential ingredient for
phrasing the root-finding problem as an eigenvalue problem.

Proposition 6.1 (Monomial Shift in Monomial Vectors k). Multiplication of
entries in a multivariate Vandermonde monomial vector k ∶= k(d) with the
monomial xγ maps the entries of k of degrees 0 up to d − ∣γ∣ to entries in k
of degrees ∣γ∣ up to d. This is expressed by means of row selection matrices
operating on k as

S1kx
γ = Sγk,

where S1 selects all monomials in k of degrees 0 up to d− ∣γ∣ and Sγ selects the
rows of k onto which the monomials S1k are mapped by multiplication by xγ.

Example 6.2. Consider a multivariate Vandermonde monomial vector k of
degree three in two variables x1 and x2, given by

k = ( 1 x1 x2 x21 x1x2 x22 )T ,
and a shift monomial x1. We can write

⎛⎜⎝
1
x1
x2

⎞⎟⎠ x1 =
⎛⎜⎝

x1
x21
x1x2

⎞⎟⎠ ,
which can alternatively be expressed as S1kx1 = Sx1k, with

S1 =
⎛⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎠ , and

Sg =
⎛⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞⎟⎠ .
The same can be done for x2.

This property can be generalized directly to an arbitrary polynomial shift
function g(x) with deg(g) ≤ d.
Proposition 6.3 (Polynomial Shift in Monomial Vectors k). Multiplication
of a multivariate Vandermonde monomial vector k(d) with a polynomial
g(x) ∶= ∑γ cγx

γ gives S1kg(x) = Sgk, where Sg ∶= ∑γ cγSγ, in accordance with
Proposition 6.1. The selection matrix Sg takes in this case linear combinations
of rows of k. A consequence is that any shift function g can be composed by
shifting ‘up’ a single degree block.

Example 6.4. Consider a multivariate Vandermonde monomial vector k of
degree three in two variables x1 and x2, given by

k = ( 1 x1 x2 x21 x1x2 x22 x31 x21x2 x1x
2
2 x32 )T ,
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and a shift function g(x1, x2, x3) = 3x21 + 2x22. We can write

⎛⎜⎝
1
x1
x2

⎞⎟⎠(3x21 + 2x22) =
⎛⎜⎝

3x21 + 2x
2
2

3x31 + 2x1x
2
2

3x21x2 + 2x
3
2

⎞⎟⎠ ,
which can alternatively be expressed as S1kg(x) = Sgk, with

S1 =
⎛⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

⎞⎟⎠ , and

Sg =
⎛⎜⎝

0 0 0 3 0 2 0 0 0 0
0 0 0 0 0 0 3 0 2 0
0 0 0 0 0 0 0 3 0 2

⎞⎟⎠ .

The above shift property in the monomial basis vectors can be applied to the
multivariate Vandermonde basis K at once by means of the introduction of
Dg ∶= diag (g(x(1)), g(x(2)), . . . g(x(mB))). This leads to

S1KDg = SgK, (6.1)

which is an eigenvalue problem. In the following paragraphs, we will
establish how the shift property together with a numerical basis for the null
space leads to an eigenvalue problem from which the solutions of the system
(5.1) are found.

Let us consider an example.

Example 6.5. Consider the equations from Example 5.13 with the solutions(0, 0) and (2, 4):
f1(x1, x2) = x2 − x21 = 0,
f2(x1, x2) = x2 − 2x1 = 0,

We set g(x1, x2) = 2x1 + 3x2. We can now write

S1K(2)Dg = SgK(2),
or

( 1 0 0 0 0 0
0 1 0 0 0 0 )

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1
0 2
0 4
0 4
0 8
0 16

⎞⎟⎟⎟⎟⎟⎟⎟⎠
( 0

16 ) = ( 0 2 3 0 0 0
0 0 0 0 2 3 )

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1
0 2
0 4
0 4
0 8
0 16

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where in Dg the evaluation of g at (0, 0) and (2, 4) can be recognized, i.e.,
g(0, 0) = 0 and g(2, 4) = 16.
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The following example shows that one needs to take precautionwith applying
the shift relation in the case of roots with multiplicity. Instead of using the
diagonal matrix Dg, a matrix Jg exhibiting a Jordan-like structure will be
required.

Example 6.6. We revisit Example 5.24. We have

f1(x1, x2) = (x2 − 2)2 = x22 − 4x2 + 4 = 0,
f2(x1, x2) = (x1 − x2 + 1)2 = x21 − 2x1x2 + 2x1 + x

2
2 − 2x2 + 1 = 0,

with a single solution (1, 2) with multiplicity 4. It is easy to see that the shift
relation S1KDg = SgK does not exactly hold in this case. Indeed, it is easy to
verify that we need to replace the diagonal matrix Dg by a generalization of
the Jordan matrix. We have for the x1 shift

S1
⎛⎜⎝
∣ ∣ ∣ ∣

∂00 ∂10 ∂01 2∂20 + ∂11∣ ∣ ∣ ∣
⎞⎟⎠ Jx1 = Sx1

⎛⎜⎝
∣ ∣ ∣ ∣

∂00 ∂10 ∂01 2∂20 + ∂11∣ ∣ ∣ ∣
⎞⎟⎠ ,

or

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
x1 1 0 0
x2 0 1 0
x21 2x1 0 2

x1x2 x2 x1 1
x22 0 2x2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝

x1 1 0 0
x1 0 2

x2 1
x1

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 1 0 0
x21 2x1 0 2

x1x2 x2 x1 1
x31 3x21 0 6x1

x21x2 2x1x2 x21 2x2 + 2x1
x1x

2
2 x22 2x1x2 2x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For a shift with x2 we have

S1
⎛⎜⎝
∣ ∣ ∣ ∣

∂00 ∂10 ∂01 2∂20 + ∂11∣ ∣ ∣ ∣
⎞⎟⎠ Jx2 = Sx2

⎛⎜⎝
∣ ∣ ∣ ∣

∂00 ∂10 ∂01 2∂20 + ∂11∣ ∣ ∣ ∣
⎞⎟⎠ ,

or

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
x1 1 0 0
x2 0 1 0
x21 2x1 0 2

x1x2 x2 x1 1
x22 0 2x2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝

x2 0 1 0
x2 0 1

x2 0
x2

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2 0 1 0
x1x2 x2 x1 1
x22 0 2x2 0

x21x2 2x1x2 x21 2x2 + 2x1
x1x

2
2 x22 2x1x2 2x2

x32 0 3x22 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We see that the diagonal of J contains the shifts, which means that from the
eigenvalues of S1KJ = Sg J we can obtain the x1 and x2 components, but due
to the multiplicity of the eigenvalues, the reconstruction of K will not work.

6.2 Null Space Based Root-finding

6.2.1 Generic Case

After the construction of the suitably sized Macaulay matrix M ∶= M(dG)
having nullity(M) = mB, the multivariate Vandermonde null space K is not
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available directly, but instead a basis for the null space of M can be computed
as Z. A numerically reliable way to obtain Z is by means of a singular value
decomposition (Golub and Van Loan, 1996). Observe now that K can be
written as K = ZT where T is non-singular. In combination with the previous
results this brings us to the first main theorem which phrases the root-finding
problem as an eigenvalue problem.

Theorem 6.7 (Null space based root-finding). Assume that the system (5.1)
has only affine roots and consider a shift polynomial g(x). Let S1 select the
rows from Z corresponding to the mB standard monomials, and let Sg select
their corresponding mappings after multiplication with the shift function
g(x). The eigenvalues of the generalized eigenvalue problem

S1Z (TDgT
−1) = SgZ, (6.2)

are the evaluations of the roots of (5.1) at the shift function g(x). The matching
between the individual components xi can be obtained by computing K = ZT
and then rescaling the columns of K such that the first row entries equal one.

6.2.2 Two Ways To Use the Shift Property

There are essentially two ways to phrase the eigenvalue problem. The
difference lies in which rows of Z are selected by S1.

1. The first way is to obtain the regular square eigenvalue problem by
letting S1 select the first mB linearly independent rows of Z.

2. Secondly, it is possible to let S1 select all degree-blocks of Z which have
degrees 0 up to d⋆ − 1, resulting in a rectangular generalized eigenvalue
problem.

The resulting generalized eigenvalue problem S1Z (TDgT
−1) = SgZ is either

square or rectangular, but can always be turned into a square eigenvalue
problem by considering the pseudo-inverse of S1Z, where Z is of full column
rank. We have in both cases

(S1Z)+ SgZ = TDgT
−1.

If (6.2) has multiple eigenvalues, the evaluation of g(x) at the roots correctly
corresponds to the eigenvalues, but the individual components xi cannot be
reconstructed from K = ZT . Mutual matching of the solution components
can in such cases only be achieved by solving the eigenvalue problem for
consecutive shift functions g(x) = xi, for i = 1, . . . ,n, and exhaustively
combining the results by evaluating them in the system (5.1).
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Example 6.8. We will illustrate the null space based root-finding procedure
for the generic case by means of an example. Consider the equations

f1(x1, x2, x3) = x21 + 5x1x2 + 4x2x3 − 10 = 0,
f2(x1, x2, x3) = x32 + 3x

2
1x2 − 12 = 0,

f3(x1, x2, x3) = x33 + 4x1x2x3 − 8 = 0,

where d1 = 2 and d2 = d3 = 3. We denote d○ = max(di) = 3, and hence we start
the Macaulay matrix construction at degree d = 3. As equation f1 is of degree
2, we first adjoin the shifted versions x1 f1, x2 f1 and x3 f1 to the matrix M(3) so
that we generate a maximum number of polynomials of degree 3. This gives
rise to the matrix M(3) as
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

−10 0 0 0 1 5 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 −10 0 0 0 0 0 0 0 0 1 5 0 0 4 0 0 0 0 0
0 0 −10 0 0 0 0 0 0 0 0 1 0 5 0 0 0 4 0 0
0 0 0 −10 0 0 0 0 0 0 0 0 1 0 5 0 0 0 4 0

−12 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 0 0 0
−8 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

of which the rows correspond to the equations f1, x1 f1, x2 f1, x3 f1, f2 and f3
and the columns to the monomials 1, x1, x2, x3, x21, x1x2, x1x3, x

2
2, x2x3, x

2
3, x

3
1,

x21x2, x
2
1x3, x1x

2
2, x1x2x3, x1x

2
3, x

3
2, x

2
2x3, x2x

2
3, x

3
3.

The Macaulay matrix becomes too large to print for higher degrees, so we
have summarized the matrix sizes, nullities and the indices of the linearly
independent monomials of M(d) (in the degree negative lexicographic
ordering) for the consecutive degrees d in Table 6.1.

Table 6.1: Diagram for Example 6.8 showing the properties of the Macaulay matrix M(d) as a
function of degree d. We print the size of theMacaulay matrix, its nullity and the indices (counted
in the degree negative lexicographic order) of the linearly independent monomials in the null
space of the Macaulay matrix. The nullity stabilizes at the value mB = 18 at degree d = 5. At the
same degree the linear independent monomials stabilize.

d size M(d) nullityM(d) standard monomials (index)

3 6× 20 14 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16
4 18 × 35 17 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 21, 22, 23
5 40 × 56 18 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 21, 22, 23, 36
d⋆ = 6 75 × 84 18 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 21, 22, 23, 36
7 126 × 120 18 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 21, 22, 23, 36
8 196 × 165 18 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 21, 22, 23, 36
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The number of rows p(d) and the number of columns q(d) of M(d) is given
by

p(d) = (d+1d−2)+ 2( d
d−3) = (d+1)!

2!⋅(d−1)! + 2 d!
3!⋅(d−3)! ,

= 1
3d

3 − d2 + 1
2d,

q(d) = (d+3d ) = (d+3)!
3!⋅d! ,

= 1
6d

3 + d2 + 11
6 d + 1.

Note that there are in this example 18 monomials that ‘stabilize’, as predicted
by the Bézout number: mB = 2 ⋅ 3 ⋅ 3 = 18.
We consider the Macaulay matrix for degree d⋆ = 6. As in the previous
example, we can now compute a basis for the null space of M(6) as Z. We
set up the generalized eigenvalue problems as in (6.2) using a random shift
function g(x1, x2, x3) from which we correctly retrieve the 18 solutions:

x1 x2 x3

0.3404± 0.1844i −1.1743± 2.0411i −0.9622∓ 1.1366i
0.3710± 0.7693i 2.4894∓ 0.2483i 0.5815∓ 0.9147i
2.1409∓ 1.5774i 0.1642± 0.5484i 1.1399∓ 0.4895i
−0.9055± 0.6846i −1.5288∓ 2.3832i 0.5798∓ 0.1978i
1.7601∓ 1.8284i −0.0356± 0.6180i 0.1569∓ 1.9950i

−1.5022 1.3823 3.2782
2.8552± 0.8711i 0.3748∓ 0.2482i −0.8328∓ 2.5953i
−0.0336± 1.8709i −1.3900± 0.1114i −2.3686∓ 2.5545i
−4.0364± 0.1109i 0.2447± 0.0134i −1.3030± 1.1237i

−3.4818 0.3290 2.7391

6.2.3 About the Choice of Basis

The ‘multiplicative shift structure’ is indeed a property of the null space as a
vector space, and not of the specific choice of basis. This was used in phrasing
the generalized eigenvalue problem in any arbitrary basis for the null space,
such as for instance a basis for the null space Z obtained using SVD (which is
the preferred basis from the numerical point of view).

Let us now look at what the repercussions are of choosing a particular basis
for the null space of M. We consider the following three bases for phrasing
the eigenvalue problem:

1. For the Vandermonde basis K for the null space of M, containing the
evaluation of the roots of the system in the multivariate Vandermonde
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vector, the eigenvalue problem becomes

(S1K)IDg = (SgK)I,
from which we see that the eigenvector matrix is I.

2. Consider the canonical basis for the null space H = KV , defined as in
Chapter 3, where V is composed of vectors containing the standard
monomials evaluated at each of the solutions x(i). The eigenvalue
problem in the canonical basis is

(S1H)VDg = (SgH)V ,

where S1H = I and the eigenvectors have the Vandermonde structure
(in the standard monomials).

3. Let Z be a numerically computed basis for the null space, defined by
K = ZT . The eigenvalue problem in the numerical basis is

(S1Z)TDg = (SgZ)T ,
having the same eigenvalues (i.e., Dg) as in the other bases. There is
no specific structure present in T in this case, but by computing ZT the
reconstruction of the multivariate Vandermonde null space is possible.

6.2.4 Solutions at Infinity

As we have discussed in Section 5.3.3, there are two ways to deal with the
solutions at infinity. Either one removes from the Macaulay coefficient matrix
M the columns corresponding to the standard monomials associated with the
solutions at infinity, leading to the reduced Macaulay matrix M⋆, which can
then be used immediately to phrase the generalized eigenvalue problem (6.2).
Alternatively, the phenomenon by which we have observed that the standard
monomials associated to the solutions at infinity move along to higher degrees
as the degree d increases, can be used to separate in the null space of M(d) the
columns corresponding to the affine roots and the columns corresponding to
the solutions at infinity. In this case, the set of affine standard monomials
B⋆(dG) as established in Definition 5.21 is considered.

In the current section we will develop the latter way to deal with the solutions
at infinity, which we will achieve by performing a column compression on a
numerical basis for the null space Z. Since Z by definition contains both null
space vectors generated by affine solutions and null space vectors generated
by solutions at infinity, Z needs to be altered as to obtain W having ma

columns corresponding to the solutions at infinity only. This is achieved by
the column compression of Z, which is defined as follows.
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Theorem 6.9 (Column compression). Consider Z of size q ×m and define

Z ∶= (
m

k Z1
q−k Z2

),
with rank(Z1) = ma < m. The SVD of Z1 is given by Z1 = UΣQT. Then
W ∶= ZQ is called the column compression of Z and can be partitioned as

W = (
ma m−ma

k W11 0
q−k W21 W22

). (6.3)

Proof. The partitioning of the SVD of Z1 is given by

Z1 = ( ma k−ma

k U1 U2 ) (
ma m−ma

Σma 0
0 0 ) (

m

QT
1

QT
2
).

ThenW ∶= ZQ immediately leads to

W = ( Z1Q1 Z1Q2
Z2Q1 Z2Q2

) = ( Z1Q1 0
Z2Q1 Z2Q2

) .

The root-finding method described in Section 6.2.1 can now be used on a
certain block of W to phrase an eigenvalue problem from which we can find
the affine roots of (5.1).

Said in other words, we want to work in the ‘above the gap’ part of Z, in which
interference with columns corresponding to the roots at infinity is eliminated.
This is achieved by means of the column compression technique.

Theorem 6.10 (Null space based polynomial system solving). Let W = ZQ
denote the column compression of Z as in Theorem 6.9, and let W11 denote
the north-western block of W consisting of the first k rows and the first ma

columns (as in (6.3)). The evaluation of the shift function g(x) at the ma affine
roots are then the eigenvalues of the generalized eigenvalue problem

S1W11V11Dg = SgW11V11,

where S1, Dg and Sg are defined in agreement with Proposition 6.3, and V11

is the ma ×ma north-western block of V = Q−1T .
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Proof. Proposition 6.3 holds for the generic case in which there are only affine
roots. When there are solutions at infinity, some vectors in K are caused by the
solutions at infinity. Let us denote by ma the number of affine roots, and let
Ka (size q ×ma) contain the Vandermonde structured basis vectors evaluated
at the ma affine roots. We will now work towards an expression of the form

S1KaDg = SgKa.

Since Ka cannot be obtained directly, we work with a numerical basis for the
null space of M, which we denote by Z. We have that K = ZT , with T a
nonsingular matrix expressing a linear change of basis.

In order to separate the affine roots from the solutions at infinity in Z, we
proceed as follows. Let

Z ∶= (
m

k Z1
q−k Z2

),
where rankZ1 = ma. (The choice of the number of rows k will be elaborated
further on). The Vandermonde structured basis for the null space K is
partitioned accordingly as

K = (
ma m−ma

k Ka1 K∞1
q−k Ka2 K∞2

).
We now perform a column compression on Z as to obtainW as in Theorem 6.9.
Since K = ZT andW = ZQ, there exists a nonsingular V ∶= Q−1T such that we
can express K as

K = ZT ,
= (ZQ)(Q−1T),
= WV .

Hence,

K = (
ma m−ma

k W11 0
q−k W21 W22

) (
ma m−ma

V11 V12
V21 V22

),

= (
ma m−ma

k W11V11 W11V12
q−k W21V11+W22V21 W21V12 +W22V22

),

= (
ma m−ma

k Ka1 0
q−k Ka2 K∞2

).
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From Ka1 = W11V11 the choice for k is done such that the shift property
S1Ka1Dg = SgKa1 can be written. Finally, by replacing Ka1 byW11V11 we find
the generalized eigenvalue problem in terms of the numerically computed
basis for the null space of M (with the column compression) as

S1W11V11Dg = SgW11V11.

Corollary 6.11. The mutual matching between the solution components can
be recovered by computing Ka1 = W11V11 and rescaling the result column-
wise such that the first row contains ones.

The following corollary states that it is never necessary to explicitly determine
the set of affine standard monomials; it suffices to do rank-tests to determine
at which degree the gap occurs between the affine standard monomials and
the standard monomials of the roots at infinity.

Corollary 6.12. It is not necessary to explicitly determine the set of affine
standard monomials B⋆. Instead, dG can be defined as the degree for
which the rank does not change by adding an additional degree block in
the null space, i.e., there are no ‘new’ linearly independent monomials found.
Consequently, by letting S1 select all low degree monomials (ensuring that the
affine standard monomials are included), the rectangular eigenvalue problem
will provide the roots.

Due to the dual rank property between rows in the null space and the columns
of the Macaulay matrix, one can alternatively scan over the columns of M
(per degree-block) and monitor the rank increases, thereby going from right
to left.

Corollary 6.12 is quite important since a critical step in the classical computer
algebra root-finding methods is determining the affine standard monomials
(Stetter, 2004, Chapter 10); making a wrong choice will inevitably lead to
numerical instabilities. In our approach the risk of choosing a ‘wrong’
monomial is impossible, as all monomials are considered.

The complete null space based root-finding procedure is summarized in
Algorithm 3.

Algorithm 3. (Affine null space based root-finding)

input: system of n equations fi = 0 having
total degrees di in n unknowns xi

output: ma affine evaluations of the solutions
at the function g(x)

1. Determine B⋆(dG), and let ma = #B⋆(dG) (Corollary 6.12)
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2. Let M ∶= M(dG) and let Z ∶= Z(dG)
3. Column compression of Z yieldsW11 (Theorem 6.9)

(Note that if ma = mB, W11 ∶= Z)
4. The ma affine roots evaluated at a user-defined shift function g(x) are the

eigenvalues of
S1W11V11Dg = SgW11V11,

where S1, Dg and Sg are defined in accordance with Proposition 6.3.

5. Reconstruct the mutual matching between the solution components xi from

Ka1 =W11V11,

and a consecutive column rescaling

Example 6.13. Consider the polynomial system

f1(x1, x2, x3) = x1x2 − 3 = 0
f2(x1, x2, x3) = x21 − x

2
3 + x1x3 − 5 = 0

f3(x1, x2, x3) = x33 − 2x1x2 + 7 = 0,

with d1 = 2, d2 = 2 and d3 = 3. The Bézout number is mB = 2 ⋅ 2 ⋅ 3 = 12. We
show in Table 6.2 the properties of the Macaulay matrix M(d) as a function of
the degree d.

Table 6.2: Diagram showing the properties of the Macaulay matrix M(d) as a function of the
degree d. The nullity of M(d) stabilizes at the value mB = 12. At degree dG = 7 a degree-gap of
one degree has arisen between the standard monomials of the affine solutions and the solutions
at infinity. The affine standard monomials are denoted in bold-face.

d size M(d) nullityM(d) (affine) standard monomials

3 9× 20 11 1, x1 , x2, x3, x21 , x1x3, x
2
2 , x2x3, x

3
1 , x

3
2, x

2
2x3

4 24 × 35 12 1, x1, x2, x3 , x21, x1x3 , x
2
2, x

3
1 , x

3
2 , x

2
2x3, x

4
2, x

3
2x3

5 50 × 56 12 1, x1, x2, x3 , x21, x1x3 , x
2
2, x

3
2 , x

4
2 , x

3
2x3, x

5
2, x

4
2x3

6 90 × 84 12 1, x1, x2, x3 , x21, x1x3 , x
3
2, x

4
2 , x

5
2 , x

4
2x3, x

6
2, x

5
2x3

7 =∶ dG 147 × 120 12 1, x1, x2 , x3, x21, x1x3 , x
4
2, x

5
2 , x

6
2 , x

5
2x3, x

7
2, x

6
2x3

8 224 × 165 12 1, x1, x2 , x3, x21, x1x3 , x
5
2, x

6
2 , x

7
2 , x

6
2x3, x

8
2, x

7
2x3

Inspection of the ranks gives us at dG the set of affine standard monomials as

B⋆(7) = {1, x1, x2, x3, x21, x1x3}.
We construct the Macaulay matrix M(6) having size 90 × 84 (Figure 5.2 and
Figure 5.3) and find a basis for the null space as Z having size 84× 12.

The remaining standard monomials are

B(dG)/B⋆(dG) = {x42, x52, x62, x52x3, x72, x62x3}.
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We take k = 20, which corresponds to the number of monomials of degrees
zero up to three in three variables. Using ma = 6 and k = 20 we perform a
column compression on Z to findW11 with size 20× 6.

In order to avoid a multiplicity of the evaluation of the roots by the user-
defined function g, it is advised to employ a function with random (complex)
coefficients. Here we choose as a shift function g(x1, x2, x3) = x1 + 2x2 + 3x3 to
allow the reader to easily follow the steps of the algorithm.

We determine the selection matrices S1 and Sg according to Proposition 6.3.
The row selection matrix S1 selects all rows of W11 corresponding to the
monomials of degrees zero up to two (i.e., the first ten rows). We hence find

S1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

Sg =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 2 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 2 3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 2 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From the (rectangular) generalized eigenvalue problem

S1W11V11Dg = SgW11V11,

we find the six affine solutions x(i), i = 1, . . . ,ma evaluated at the function g(x).
From Ka1 =W11V11 we correctly reconstruct their mutual matching as in the
following table.

x1 x2 x3

1.857∓ 0.176i 1.600± 0.151i 0.500± 0.866i
−2.000 −1.500 −1.000

−2.357± 0.689i −1.172∓ 0.343i 0.500∓ 0.866i
3.000 1.000 −1.000
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The following example shows that, when the affine solution set is zero-
dimensional, but the solution set at infinity is positive-dimensional, the root-
finding algorithm still works.

Example 6.14. The case that the affine variety is zero-dimensional while the
projective variety is one-dimensional may occur. Consider the system

f1(x1, x2, x3, x4) = x1 + x2 − 1 = 0,
f2(x1, x2, x3, x4) = x1x3 + x2x4 = 0,
f3(x1, x2, x3, x4) = x1x

2
3 + x2x

2
4 − 2/3 = 0,

f4(x1, x2, x3, x4) = x1x
3
3 + x2x

3
4 = 0.

The stabilization diagram is given in Table 6.3. We observe that after
a few iterations the nullity keeps increasing with 2. By observing the
standard monomials, we observe that the monomials 1 and x4 stabilize and
correspond to two affine solutions. The remaining monomials shift along
as the iteration number increases, and moreover, new linear independent
monomials are found in each iteration. This indicates that the solution set
at infinity is positive-dimensional. The affine roots are retrieved correctly
using the algorithms explained above as (0.5000, 0.5000, 0.8165,−0.8165) and(0.5000, 0.5000,−0.8165, 0.8165).
Table 6.3: Stabilization diagram for Example 6.14, showing the properties of the Macaulay matrix
M(d) as a function of the degree d.

d size M(d) rankM(d) nullityM(d)
4 56 × 70 50 20
5 125 × 126 103 23
6 246 × 210 185 25
7 441 × 330 303 27
8 736 × 495 466 29
9 1161 × 715 684 31

6.2.5 Iterative Null Space Computations

Exploiting Sparsity and Structure

Due to the rapid dimensional growth of the Macaulay matrix as d increases,
the bottleneck of the root-finding algorithm is located at the construction of a
numerical basis of the null space of theMacaulaymatrix. In the current section
we will address this issue and develop an iterative procedure to update the
null space as d increases. The algorithm we will develop will exploit the
structure of the Macaulay coefficient matrix in order to iteratively compute
a basis for the null space.
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We will employ the nested Macaulay matrix, denoted by N(d), in order to
avoid confusion. The iteratively constructed Macaulay matrix N(d) can be
obtained by a row permutation of the Macaulay matrix M(d) (Definition 5.3),
as in

PM(d) = N(d).
A direct consequence is that the (right) null spaces of M(d) and N(d) coincide.
The iterative structure can now be exploited in an algorithm to compute a
basis for the null space in an iterative way.

Block SVDMotzkin Algorithm

In Chapter 3 we have described the so-called Motzkin algorithm as a naive
way to find a numerical basis for the null space of a matrix. This method
has its didactical merits, but from a numerical point of view, the procedure
is flawed: during the consecutive multiplication of the matrices W k, some
elements of bTkW1W2⋯W k−1 may become very small — choosing one of them
as a non-zero pivot elements would lead to an incorrect result.

The following procedure addresses the numerical issues by employing SVDs
on certain blocks of the (row-reordered) Macaulay matrix. A trick similar to
the Motzkin procedure is applied on block-matrix level, instead onmatrix row
level. We will work with subsequent iterations of the nested quasi-Toeplitz
Macaulay matrix N(d).
Let N(d) be the nested quasi-Toeplitz structured Macaulay matrix for degree
d. Let Z(d) denote a basis for the null space of N(d) and denote by p(d), q(d)
and c(d) the number of rows, the number of columns, and the nullity of N(d),
respectively. The nesting property of the Macaulay matrix allows us to write
N(d+ 1) as

N(d + 1) = (
q ∆q

p N(d) 0
∆p N1 N2

),
where the dimensions are added for clarity and the updates of the number of
rows and columns are ∆p ∶= p(d+ 1)− p(d) and ∆q ∶= q(d + 1)− q(d). We now
have

N(d + 1) Z(d+ 1) = (
q ∆q

p N(d) 0
∆p N1 N2

) (
c(d) ∆q

Z(d) 0
0 I

) (
c(d+1)
X
Y
) = 0,

hence,

(
c(d) ∆q

p N(d)Z(d) 0
∆p N1Z(d) N2

) (
c(d+1)
X
Y
) = 0,
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and

(
c(d) ∆q

p 0 0
∆p N1Z(d) N2

) (
c(d+1)
X
Y
) = 0.

The matrices X and Y are obtained as a basis for the null space of

( N1Z(d) N2 ) .
An update of the basis of the null space Z is hence computed as

Z(d+ 1) = ( Z(d)X
Y

) .
In Algorithm 4 the procedure to iteratively update the numerical basis for the
null space of the Macaulaymatrix is summarized. Let us end this section with
the following important remarks.

Remark 6.15. The updating algorithm provides a way to iteratively compute
a basis for the null space of the Macaulaymatrix, implying that largermatrices
can be processed than when using an SVD. Instead of the size of the full
matrix N(d), now the size of ( N1 N2 ) will be the limiting factor in the

computation of ( XT YT )T, making the root-finding algorithm procedure
feasible for larger problems.

Remark 6.16. It is possible to preserve orthogonality of Z if one starts from an

orthogonal basis Z(d○) and ( XT YT )T is orthogonal, which is of interest
for numerical considerations. This can be obtained by the use of the SVD.

Remark 6.17. Regardless of the procedure to obtain the updates of the null

space, the numerical rank determination of ( XT YT )T is a critical step of
Algorithm 4. A wrong rank estimation will influence the subsequent iteration
steps, resulting in an incorrect dimension of Z(d).
Algorithm 4. (Iterative null space updating)

input: system of n equations fi with
d○ ∶=max(di), requested degree d

output: iteratively constructed Macaulay matrix N(d)
and basis for null space Z(d)

1. Construct the initial Macaulay matrix N(d○)
2. Compute basis for the null space of N(d○) as Z(d○)
3. repeat until δ+ 1 = d,

a) Update of the Macaulay matrix (iterative construction)

N(δ+ 1) ← ( N(δ) 0
N1 N2

)
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b) Compute basis for null space

( X
Y
) ← basis for null space of ( N1Z(δ) N2 )

c) Update basis for null space of N(δ+ 1) as
Z(δ+ 1) ← ( Z(δ)X

Y
)

done

6.3 Column Space Based Root-finding

6.3.1 Generic Case

The method starts from a Macaulay matrix M ∶= M(dG) with size p × q.
We will consider as the null space of M the multivariate Vandermonde
basis K of size q ×mB as defined earlier, where column i of K contains the
multivariate Vandermonde monomial vector k evaluated at the i-th root, for
all i = 1, . . . ,mB. As it will turn out, the computation of a numerical basis for
the null space of M will not be required.

Consider the column reordering of M as ( M1 M2 ), such that

( M1 M2 )( K1
K2
) = 0, (6.4)

where rank(M2) = rank(M) = r (full column rank) and K1 is of size mB ×mB

containing the standard monomial rows of K. Recall that q − r = mB is the
number of solutions. Therefore, M1 is of size p × q − r = p ×mB, M2 is of size
p × q −mB, and K2 is of size q −mB ×mB. Now, the shift property (6.1) can be
rephrased according to (6.4) where we let S1 select the standard monomials
(i.e., K1), or

S1KDg = SgK,

K1Dg = ( Σ1 Σ2 )( K1
K2
) , (6.5)

in which the row combination matrix Sg is reordered into Σ1 and Σ2, hence
distinguishing two kinds of ‘shifts’:

- Some monomials in K1 will be mapped to monomials in K1 under the
multiplication with g(x). They are represented by the matrix Σ1.

- The matrix Σ2 represents shifts of monomials of K1 that are mapped by
the multiplication with g(x) to K2.
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The matrices Σ1 (size mB ×mB) and Σ2 (size mB × q −mB) are directly obtained
in accordance with Proposition 6.3, while respecting the possible reordering
of the monomials of M as in (6.4).

Notice that zero columns in Σ2 represent the rows of K2 that are not reached
by multiplying the standard monomials in K1 with g(x). Let us denote by z
the number of zero columns in Σ2. We find from (6.4) that

K2 = −M+2 M1K1,

since M2 has full column rank. Observe that only the rows of K2 selected by
the nonzero elements of Σ2 (reached by shifting the standardmonomials) have
to be determined. Let us now again reorder the columns of M to obtain

( M22 M21 M1 )⎛⎜⎝
K22
K21
K1

⎞⎟⎠ = 0,
where M1 and K1 are defined as above. The matrix K2 is repartitioned into
K21 and K22 such that K21 contains the rows of interest, and K22 contains the
remaining rows of K2. Correspondingly, M2 is repartitioned as M21 and M22.
It turns out that by means of a QR decomposition we can determine the rows
of interest of K21. Consider the QR of ( M22 M21 M1 ) as

( z q−mB−z mB

p M22 M21 M1 ) =

( z q−mB−z p−q+mB

p Q1 Q2 Q3 ) ⎛⎜⎝
z q−mB−z mB

R11 R12 R13
R22 R23

R33

⎞⎟⎠, (6.6)

where the sizes of the matrix blocks are indicated for the sake of clarity.
Observe that due to the rank deficiency of M the block R33 is either
(numerically) zero, or it has zero rows (if rank(M) = p).
We are now ready to phrase the root-finding problem as an eigenvalue
problem.

Theorem 6.18 (Column space based root-finding). Assume that the system
(5.1) has only affine roots and consider a shift polynomial g(x). Let M1,
M21, M22, K1, K21, K22, and the QR decomposition of ( M22 M21 M1 )
be defined as above. The root-finding problem is phrased as the eigenvalue
problem

K1Dg = (Σ1 −Σ
′

2R
−1
22R23)K1, (6.7)

where Σ
′

2 denotes the matrix Σ2 with the zero columns removed, having size
mB × q −mB − z.
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Proof. From (6.6) and ( M22 M21 M1 )( KT
22 KT

21 KT
1 )T = 0 the rows

of interest are obtained as K21 = −R−122R23K1. Combining this with (6.5), we
obtain (6.7).

Corollary 6.19. The eigenvectors of (6.7) obey the multivariate monomial
structure of K1. Provided that the components xi occur as standard mono-
mials (i.e., they are elements of K1), the mutual matching between the
components xi can therefore be reconstructed by rescaling the eigenvectors
such that the entries corresponding to the monomials 1 (typically taken as the
first row entries in a graded ordering) are scaled to 1.

6.3.2 Solutions at Infinity

If there are solutions at infinity, the set of affine standard monomials B⋆(dG)
as established in Definition 5.21 must be considered. After removing from
M(dG) the columns corresponding to the standardmonomials of the solutions
at infinity, one obtains M⋆(dG) and correspondingly K⋆(dG), which can be
used in Theorem 6.18 to find the affine solutions. The complete column space
based algorithm for finding the affine roots is summarized in Algorithm 5.

Algorithm 5. (Affine column space based root-finding)

input: a system of n equations fi having
total degrees di in n unknowns xi

output: the ma affine solutions for a user-chosen
shift function g(x)

1. Determine B⋆(dG) and set ma = #B⋆(dG)
2. Remove from M ∶= M(dG) the columns corresponding to the solutions at

infinity, leading to M⋆K⋆ = ( M1 M2 )( K1
K2
) = 0 where K1 represents the

ma affine standard monomials

3. Σ1 and Σ2 are determined for the user-defined shift function g(x)
4. Partition M⋆ into (M22 M21 M1), where M21 contains the columns of interest

(i.e., corresponding to the monomials hit by the nonzero columns of Σ2) and M22
contains the remaining columns

5. Compute the QR decomposition of (M22 M21 M1)

( M22 M21 M1 ) = ( Q1 Q2 Q3 )
⎛⎜⎝

R11 R12 R13
R22 R23

R33

⎞⎟⎠
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6. The ma roots evaluated at the shift function g(x) are found from

K1Dg = (Σ1 −Σ
′
2R
−1
22R23)K1

7. The mutual matching between the solution components xi is reconstructed by
computing the eigenvectors of Σ1 −Σ

′
2R
−1
22R23 and rescaling them such that the

entries∏n
i=1 x0i = 1 are scaled to 1

Example 6.20. We revisit Example 6.13 and use dG = 7. We remove from M(7)
the columns corresponding to the monomials

x42, x
5
2, x

6
2, x

5
2x3, x

7
2, x

6
2x3,

as to obtain M⋆ ∶= M⋆(7) having size 147× 114. We consider the set of affine
standard monomials B⋆ = {1, x1, x2, x3, x21, x1x3} and choose again as the shift
polynomial g(x1, x2, x3) ∶= x1 + 2x2 + 3x3. The monomials that are reached by
shifting the affine standard monomials B⋆ by the monomials occurring in g
are:

B⋆ = {1, x1, x2, x3, x21, x1x3} ,
B⋆ ⋅ x1 → {x1, x21, x1x2, x1x3, x31, x21x3} ,
B⋆ ⋅ x2 → {x2, x1x2, x22, x2x3, x21x2, x1x2x3} ,
B⋆ ⋅ x3 → {x3, x1x3, x2x3, x23, x21x3, x1x23} .

We now partition M⋆ as ( M22 M21 M1 ) , where M1 contains the
columns of M⋆ corresponding to the monomials in B⋆, M21 contains the
columns of interest, i.e., the columns (outside of B⋆) that are reached by
shifting the monomials in B⋆, namely the monomials x1x2, x22, x2x3, x

2
3, x

3
1,

x21x2, x
2
1x3, x1x2x3 and x1x

2
3 and, finally, M22 contains the remaining columns.

The matrices Σ1 and Σ
′

2 are found in accordance with g as

Σ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 0 0
0 0 0 0 1 3
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

Σ
′

2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
1 2 3 0 0 0 0 0 0
0 0 2 3 0 0 0 0 0
0 0 0 0 1 2 3 0 0
0 0 0 0 0 0 1 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Finally we compute the eigenvalue decomposition of Σ1 −Σ
′

2R
−1
22R23. Rescal-

ing the eigenvectors such that the first entry equals one reveals the six affine
solutions (with absolute errors of the order 10−13:

x1 x2 x3

1.857∓ 0.176i 1.600± 0.151i 0.500± 0.866i
−2.000 −1.500 −1.000

−2.357± 0.689i −1.172∓ 0.343i 0.500∓ 0.866i
3.000 1.000 −1.000

6.4 Application: Polynomial Optimization Problems

6.4.1 Motivation and Approach

Polynomial optimization problems are optimization problems composed of
a polynomial objective criterion that is solved subject to polynomial equality
constraints on the decision variables. Optimization problems occur in nearly
all engineering applications, and are typically solved using local optimization
routines (Nocedal and Wright, 2006).

The Lagrange multipliers method provide the necessary conditions for
optimality of a polynomial optimization problem as a system of polynomial
equations. Let J(x1, . . . , xn) denote the polynomial objective criterion and
gi(x1, . . . , xn) = 0, i = 1, . . . ,ng are the constraints. The polynomial optimiza-
tion problem is often written in the form

minimize
x1,...,xn

J(x1, . . . , xn),
subject to g1(x1, . . . , xn) = 0,

⋮
g1(x1, . . . , xn) = 0,

The Lagrangian is defined as

L(x1, . . . , xn,λ1, . . . ,λng) = J(x1, . . . , xn)+ ng

∑
i=1

λigi(x1, . . . , xn),
where the newly introduced parameters λi are called the Lagrange multipli-
ers. A set of necessary conditions for optimality is obtained from the set of
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equations
∂L/∂x1 = 0,

⋮

∂L/∂xn = 0,

∂L/∂λ1 = 0,

⋮

∂L/∂λng = 0,

which constitutes a system of n + ng polynomial equations in n + ng un-
knowns.

6.4.2 System Identification

System identification is a discipline in systems and control theory concerned
with the question of finding dynamical system models to explain a given
behavior (usually described as input-output data). It can be considered as a
technology underlying many problems in systems and control, digital signal
processing, biomedical engineering, and many more. The classical reference
works are Ljung (1999); Pintelon and Schoukens (2012); Söderström and Stoica
(1989); Van Overschee and De Moor (1996).

A general system identification problem is given as the so-called errors-in-
variables set-up shown in Figure 6.1. The undisturbed input signals are
denoted u0 and the undisturbed output signals are denoted y0. In some cases,
the measurements of u0 and y0 are subject to measurement noise, leading to
the measurements u = u0 + nu and y = y0 + ny, respectively. Certain models
may require an additional unobservable ‘noise’ input e in order to explain as
well as possible the input-output measurements.

Currently, two major approaches dominating the field of system identifica-
tion are the prediction error methods (Ljung, 1999) and the subspace system
identification approach (Van Overschee and De Moor, 1996). The prediction
error methods formulate the system identification problem as a nonlinear
optimization problem. Such a problem can in general only be solved up to
a locally optimal solution is found, depending on the specific choice of the
initial point of the optimization routine. The subspace identification methods
employ numerical linear algebra tools and hence have a single unique
solution. They perform very well in practice (and often the solution obtained
from the subspace identification algorithm is used as an initial point to further
refine the model using the prediction error approach). However, there is
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system

e

u0 y0

nu ny

u = u0 + nu y = y0 + ny

Figure 6.1: Diagram providing a graphical representation of the system identification problem.
An unknown system interacts with its environment through the so-called inputs and outputs
u0 and y0. It is often necessary to suppose that measurement noise nu and ny contaminates the
measurements of u0 and y0, so that only u and y are observable. Additionally, an unobservable
noise input e may be used in order to describe the observed input-output behavior.

no explicit cost criterion underlying the subspace identification methods and
hence the optimality can be questioned.

The work of Lemmerling and De Moor (2001) proposes a unifying optimiza-
tion framework where all possible models that can be conceived on the basis
of Figure 6.1 are incorporated. This includes several prediction error methods,
such as ARMA, ARMAX, as well as ‘new’ errors-in-variables variations, such
as ARMAX with noisy inputs and outputs, dynamical total least squares
models, etc.

The modeling procedure of Lemmerling and De Moor (2001) reduced to
finding a structured low rank approximation of a matrix built from the input-
output data, subject to certain model constraints. As it turns out, struc-
tured low-rank estimation is a central task in systems theory, identification
and control, underlying many modeling problems, ranging from errors-in-
variables system identification, over approximate realization theory to model
reduction (see Markovsky (2008) for an elaborate survey on the problem and
its applications).

Let us consider a simple instance of the structured total least squares problem
and apply the null space based method to solve it.

Example 6.21. In this example a 3 × 3 Hankel structured total least squares
problem is solved as a system of polynomial equations to find the globally
optimal low-rank approximation to a given data matrix. Let A be a given
3× 3 data matrix of full rank, having Hankel matrix structure. De Moor (1993,
1994b) proposes a non-linear generalization of the SVD to solve the STLS
problem, which is called the Riemannian SVD, which essentially comprises

a system of multivariate polynomial equations. Let v = ( v1 v2 v3 )T and
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l = ( l1 l2 l3 )T . The Riemannian SVD equations are

Av = TvT
T
v l,

ATl = T lT
T
l v,

vTv = 1,
(6.8)

where Tv and T l capture the required Hankel structure constraint (distin-
guishing the Riemannian SVD from the SVD) and are defined as

Tv =
⎛⎜⎝

v1 v2 v3
v1 v2 v3

v1 v2 v3

⎞⎟⎠ ,
and T l is defined similarly (De Moor, 1993, 1994b). The best low-rank
approximation of A is reconstructed from the pair of (v, l) vectors that
minimize the objective criterion

J(v) = vTAT(TvT
T
v)−1Av,

as described in De Moor (1993, 1994b).

Consider a 3× 3 full-rank Hankel matrix

A =
⎛⎜⎝

7 −2 5
−2 5 6
5 6 −1

⎞⎟⎠ ,
which is approximated by a Hankel matrix B of rank 2.

Replacing the normalization constraint vTv = 1 in (6.8) by v1 = 1 reduces the
number of variables by one. The first equation in Av = TvT

T
v l now does not

carry any information anymore since it stems from a derivation with respect
to v1 = 1, and hence it can be dropped.

The resulting system is composed of five polynomial equations in five
unknowns, where all equations are of degree three. We apply the method as
described in Algorithm 3. For dG = 11, the matrix M = M(dG) has size 6435×
4368 and is extremely sparse (with only 60489 nonzero elements). A basis
for the null space of M is computed, and the root-counting technique reveals
there are 39 affine solutions. The solutions are computed and after discarding
the complex solutions, the 13 real solutions are retrieved successfully.

The equivalent objective J(v) and the (real) values of the critical points are
represented graphically in Figure 6.2. The optimal rank-2 Hankel matrix
approximation of A is ultimately retrieved as B, where

B =
⎛⎜⎝

7.6582 −0.1908 3.2120
−0.1908 3.2120 1.8342
3.2120 1.8342 2.4897

⎞⎟⎠ .
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Figure 6.2: Level sets of the minimization problem of the 3 × 3 Hankel structured total least
squares problem, given by J(v) = vTAT(TvT

T
v)−1Av. The plot shows that the objective has

several local optima. The proposed method is able to identify all 13 critical (real) points (12 of
which are in the plotted range, indicated by ×), and hence guarantees to retrieve the globally
optimal solution.

6.4.3 Power Iterations to Find Minimizing Solution

When one considers a polynomial optimization problem, often one is only
interested in the minimizing solution of the objective criterion. In this case,
an obvious way to phrase the eigenvalue problem is by using the objective
J as a shift criterion. Then we obtain from Proposition 6.3 the eigenvalue
problem

S1Z (TDgT
−1) = SgZ,

of which the minimizing eigenvalue corresponds to the minimizing solution
of the objective function. By using (inverse) power iterations (Golub and
Van Loan, 1996) for determining the minimal eigenvalue and eigenvector, the
solution of interest can be determined directly.





7Polynomial Systems and

Realization Theory

In Chapter 4 we have alluded to the natural link between polynomial
system solving and realization theory. Although the connections between
multivariate polynomial system solving and multidimensional realization
theory have been described earlier, in these works the notion of a Gröbner
basis took a central role. In this chapter, we will explore the links from the
perspective of the Macaulay matrix method. It turns out that the null space
of the Macaulay matrix can be interpreted as a state sequence of a set of
multi-variable difference equations. Conversely, the null space based solution
method of Chapter 6 can be interpreted as the application of realization theory
on the null space of the Macaulay matrix.

It should be emphasized that this section does not provide any new methods
nor algorithms. Rather, it frames the algorithms developed in the previous
chapters into the framework of realization theory. Our hope is that the link
with the theory of nD systems may provide new insights into polynomial
algebra.

7.1 Introduction

The paper by Hanzon and Hazewinkel (2006) lucidly illustrates the natural
link between multivariate polynomial system solving and multidimensional
systems theory. In simple cases, repeatedly applying the difference equations
easily reveals how this can be done. However, in general, it is not clear on
beforehand how the state vector needs to be composed and how the equations
need to be manipulated in order to arrive to the form where the system can
be written in the desired form. As it turns out, the solution is given by
constructing a Gröbner basis for the given system of polynomials.

115
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It turns out that the notion of Gröbner bases is not necessary to phrase the
eigenvalue problem; instead, the null space based approach boils down to the
application of realization theory applied to the null space of the Macaulay
matrix, ultimately leading to the eigenvalue formulation such as done in
Stetter’s method.

There are indications that the solutions at infinity can be described in a similar
fashion, however, at this point it is not entirely clear how the system of
difference equations should be conceived in order to fully describe this effect.
We will illustrate this by means of a simple example, but have observed that
the proposed method does not hold in general.

7.2 Generic Systems: Affine Roots Only

Let us start with formalizing the mapping between polynomials and time-
shifted signals. In the multivariate (nD) case, the signals have n > 1
independent indices as opposed to a single independent index as in the 1D
case.

Definition 7.1 (Multivariate Polynomials as Multidimensional Shift Opera-
tors). With the monomial xα1

1 xα2
2 ⋯x

αn
n the nD shift operator σ

α1
1 σα2

2 ⋯σαn
n can

be associated, acting on a multidimensional signal as

σ
α1
1 σα2

2 ⋯σαn
n ∶ v(k1, k2, . . . , kn) ↦ v(k1 + α1, k2 + α2, . . . , kn + αn).

In the case there are only affine roots, the well-known multivariate Vander-
monde structure in the null space of the Macaulaymatrix is reminiscent to the
natural link with nD realization theory.

The key observation in the interpretation of the polynomial system solving
problem as a question in realization theory is the fact that the multivariate
Vandermonde structured matrix lies in the null space of the Macaulay matrix.
The simplified Attasi model as introduced in Chapter 3 is given as

v(k1, . . . , ki−1, ki + 1, ki+1, . . . , kn) = Aiv(k1, . . . , kn),
for all i = 1, . . . ,n. The action matrices Ai ∈ Rθ×θ form a commuting family of
matrices: we have that AiAj = AjAi, for all i, j ∈ {1, . . . ,n}.
Iterating the state equations leads to a multivariate generalization of the Van-
dermonde structure observed in the 1D case. The multivariate Vandermonde
structure can again be used to determine the action matrices Ai.

As described in Chapter 3, the multivariate Vandermonde shift-invariance
allows us to determine the matrices Ai, for i = 1, . . . ,n. This is a direct
application of Proposition 6.1. In order to fix the ideas, let us consider an
example.
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Example 7.2. For example, if n = 2 and d = 3, we have that

M(3)VT
0∣3 = 0,

where

V0∣3 =
⎛
⎜
⎝

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
v00 v10 v01 v20 v11 v02 v30 v21 v12 v03
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

⎞
⎟
⎠
,

=
⎛
⎜
⎝

∣ ∣ ∣ ∣ ∣ ∣ ∣
v00 A1v00 A2v00 ⋯ A3

1v00 A2
1A2v00 A1A

2
2v00 A3

2v00
∣ ∣ ∣ ∣ ∣ ∣ ∣

⎞
⎟
⎠
.

From the shift-invariance property we can express A1 and A2 as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ð v00 Ð
Ð v10 Ð
Ð v01 Ð
Ð v20 Ð
Ð v11 Ð
Ð v02 Ð

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
AT
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ð v10 Ð
Ð v20 Ð
Ð v11 Ð
Ð v30 Ð
Ð v21 Ð
Ð v12 Ð

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ð v00 Ð
Ð v10 Ð
Ð v01 Ð
Ð v20 Ð
Ð v11 Ð
Ð v02 Ð

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
AT
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ð v01 Ð
Ð v11 Ð
Ð v02 Ð
Ð v21 Ð
Ð v12 Ð
Ð v03 Ð

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

as we have discussed in Chapter 3.

Let us illustrate this approach by means of an example.

Example 7.3. Consider the following system of polynomial equations which
describes the intersection of a line and a parabola

f1 = x21 − 2x1 − x2 + 3 = 0,
f2 = −x1 + x2 − 1 = 0.

It may be checked that the two solutions are (1, 2) and (2, 3). The Macaulay
matrix for this system is constructed for degree d⋆ = 3 as

M(3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −2 −1 1 0 0 0 0 0 0
0 3 0 −2 −1 0 1 0 0 0
0 0 3 0 −2 −1 0 1 0 0
−1 −1 1 0 0 0 0 0 0 0
0 −1 0 −1 1 0 0 0 0 0
0 0 −1 0 −1 1 0 0 0 0
0 0 0 −1 0 0 −1 1 0 0
0 0 0 0 −1 0 0 −1 1 0
0 0 0 0 0 −1 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.1)
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Let us now consider the canonical null space H(3) for this matrix, which is
found as

H(3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
1 1
−2 3
−2 4
−1 5
−6 7
−8 10
−10 14
−11 19

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.2)

By means of the shift-invariance of Example 7.2 we can extract the action
matrices A1 and A2 that will allow us to formulate the problem as a dynamical
system. We find

AT
1 = ( 0 1

−2 3
) and AT

2 = ( 1 1
−2 4

) .
From the eigenvalue decomposition of AT

1 we find AT
1 = V1D1V

−1
1 as follows,

( 0 1
−2 3

) = ( −.7071 −.4472
−.7071 −.8944 )( 1 0

0 2
)( −.7071 −.4472
−.7071 −.8944 )

−1

.

In the same way, we can compute AT
2 = V2D2V

−1
2 as

( 1 1
−2 4

) = ( −.7071 −.4472
−.7071 −.8944 )( 2 0

0 3
)( −.7071 −.4472
−.7071 −.8944 )

−1

.

Notice that V1 = V2 and hence AT
1 A

T
2 = AT

2 A
T
1 .

From HV1 and a rescaling of the columns such that the first row equals to
ones, the Vandermonde structure of the null space K is reconstructed as

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 2
2 3
1 4
2 6
4 9
1 8
2 12
4 18
8 27

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from which the two solutions and their mutual matching can be read off as(1, 2) and (2, 3). The same can be done for HV2, which yields the same result
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since V1 = V2. The initial condition vT(0, 0) is read off from the first row of H
as

v(0, 0) = ( 1 0 )T .
The complete state space description of this problem is hence

v(k + 1, l) = ( 0 1
−2 3

)v(k, l),
v(k, l + 1) = ( 1 1

−2 4
)v(k, l),

v(0, 0) = ( 1 0 )T .
Notice that when one starts from a different basis for the null space of M,
another system description is found. The eigenvalues of the matrices A1 and
A2 will be the same.

7.3 Solutions at Infinity: Descriptor Systems

Recall from the univariate case that roots at infinity led us to the introduction
of so-called descriptor systems. In Chapter 3 we have seen that descriptor
systems can elegantly be described by separating the states of the system into
a regular part and a singular part, using the Kronecker canonical form (also
see Appendix A). The regular part of the state has a forward-running index,
whereas the singular part has a backward index.

Generalizing these concepts to the multivariate case is not straightforward. As
we have seen in Chapter 5, the homogenization variable needs to be taken into
account. With the homogenization variable also an additional actionmatrix E0
is introduced. The difficulty arises when one tries to unravel the structure of
the multivariate Vandermonde state sequence matrix W0∣d. Let us consider a
very simple example to illustrate this issue.

Example 7.4. We consider the case n = 2 and d = 2. The state sequence matrix
V0∣2 is defined as

V0∣2 =
⎛⎜⎝
∣ ∣ ∣ ∣ ∣ ∣

v00 v10 v01 v20 v11 v02
∣ ∣ ∣ ∣ ∣ ∣

⎞⎟⎠ .
Similarly, we define the state sequence matrixW0∣2 as

W0∣2 =
⎛⎜⎝
∣ ∣ ∣ ∣ ∣ ∣

w200 w110 w101 w020 w011 w002
∣ ∣ ∣ ∣ ∣ ∣

⎞⎟⎠ ,
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where an additional index is introduced explicitly to account for the homog-
enization variable x0. Writing out the Vandermonde shift structure by means
of the action matrices Ei, for i = 0, . . . ,n, which are defined by

w(k0, . . . , kj−1, kj − 1, kj+1, . . . , kn) = Ejw(k0, . . . , kn),
leads to the expressions

E0w(2, 0, 0) = E1w(1, 1, 0) = E2w(1, 0, 1),
E0w(1, 1, 0) = E1w(0, 2, 0) = E2w(0, 1, 1),
E0w(1, 0, 1) = E1w(0, 1, 1) = E2w(0, 0, 2).

An obvious consequence for the multivariate case, is that for the singular part,
there is not a single ‘initial condition’, but rather a set of ‘initial conditions’,
i.e., the states w(0, 2, 0),w(0, 1, 1) and w(0, 0, 2).
In general, since the sum of the indices is always d, it is not always possible to
separate the action matrices E0 and Ei with i = 1, . . . ,n. If the action matrices
Ai and E0/Ei, for i = 1, . . . ,n can be determined, we formulate the polynomial
system as a dynamical system.1 Let us consider a few examples to fix the
ideas.

Example 7.5. This example exhibits two affine roots and a double root at
infinity. Consider the equations

x21 + x1x2 − 10 = 0
x22 + x1x2 − 15 = 0.

(7.3)

We construct the Macaulay matrix for degree d = 4 as

M(4) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−10 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 −10 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 −10 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 −10 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 −10 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 −10 0 0 0 0 0 0 1 1 0−15 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 −15 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 −15 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 −15 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 −15 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 −15 0 0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

1E0/Ei is a simplified notation for E−10 Ei.
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We compute the canonical null space as

H(4) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 2 0 0
4 0 0 0
6 0 0 0
9 0 0 0
0 0 1 0
0 10 −1 0
0 5 1 0
0 18 −1 0
0 0 0 1

40 0 0 −1
20 0 0 1
70 0 0 −1
65 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from which we immediately see that the first two columns correspond to the
affine roots, and the two last columns represent the roots at infinity. From the
first two columns we find the action matrices AT

1 and AT
2 as in the previous

examples as

AT
1 = ( 0 1

4 0
) , and AT

2 = ( 0 1.5
6 0

) .
From the reconstruction of the null space of the affine part we find the affine
roots as (2, 3) and (−2,−3).
Again we can easily retrieve the action matrices E0/E1 and E0/E2 as we did
for the affine part — with the difference that rows from the bottom blocks are
mapped onto top rows, for example,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1
0 1
0 −1
0 1
1 0
−1 0
1 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E0/E1)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0
1 0
−1 0
1 0
0 0
0 0
0 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from which we find

(E0/E1)T = ( 0 0
1 0

) .
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For (E0/E2)T , we have

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 −1
0 1
0 −1
−1 0
1 0
−1 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E0/E2)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0
1 0
−1 0
1 0
0 0
0 0
0 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from which we find

(E0/E2)T = ( 0 0
−1 0

) .
Finally, the complete state space description is

v(k + 1, l) = ( 0 1
4 0

)v(k, l),
v(k, l + 1) = ( 0 1.5

6 0
)v(k, l),

w(k − 1, l) = ( 0 0
1 0

)v(k, l),
w(k, l − 1) = ( 0 0

−1 0
)v(k, l),

with the ‘initial’ conditions (the ones for w have total degree 4 as the iteration
of w runs backward)

v(0, 0) = ( 1 0 )T ,
w(4, 0) = ( 0 1 )T ,
w(3, 1) = ( 0 −1 )T ,
w(2, 2) = ( 0 1 )T ,
w(1, 3) = ( 0 −1 )T ,
w(0, 4) = ( 0 1 )T .

In Figure 7.1 the action matrices Ai and E0/Ei are represented graphically,
together with their initial conditions.
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x1

x2

E0/E2

E0/E1

A2

A1

Figure 7.1: Schematic representation of the action matrices A1, A2, E0/E1 and E0/E2 in the
monomial grid of the exponents. Multiplication with A1 and A2 are represented by moves to
the right and upward, respectively. Multiplication with E0/E1 and E0/E2 are moves to the left
and downward, respectively. The red line contains all exponents of the same degree. It is from
this figure easy to understand that for the affine solutions (regular part) there is a single initial
condition (indicated with the blue dot), whereas for the solutions at infinity (singular part) a set
of initial conditions is required (indicated by the red dots on the red line).





8Solving Over-constrained

Systems

Systems of polynomial equations consisting of more equations than un-
knowns generically have no solutions. Indeed, as there are more equations
than unknowns, it is unlikely that a point exists in which all equations hold.
In certain situations, however, the approximate solutions of such systems are
of interest, which is a relevant problem in many real-life applications.

In the current chapter the Macaulay matrix null space based SVD-based
method is adapted to find the approximate solutions of an over-constrained
system of polynomial equations. By investigating the smallest singular values
of the Macaulay matrix, the number of approximate solutions is detected.
The solutions are again obtained from the computation of the right singular
vectors of the Macaulay coefficient matrix and exploiting a shift-invariance
property leading to the formulation of an eigenvalue problem. The method
is illustrated on several examples and an application in computer vision is
discussed.

8.1 Introduction

8.1.1 Motivation

Over-constrained systems of polynomial equations consist of more equations
than unknowns, and have generically no solutions. However, inmany applied
mathematics and engineering situations, the result of an experiment might
be interpreted as a noisy realization of a set of coefficients of an underlying
exact system of polynomial equations. Often it is possible to perform many
of such experiments, which naturally leads to over-constrained systems of
polynomial equations, of which finding the approximate solutions is of great
interest.

125
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Applications of solving over-constrained polynomial systems are found in
computer vision, e.g., camera pose determination (Reid et al., 2003), molecular
structure determination (Emiris et al., 2006), kinematics (Bonev and Ryu, 2000)
and many more.

8.1.2 Problem Formulation

We consider the problem of finding approximate solutions to an over-
constrained system of polynomial equations. Consider a well-constrained
system of n polynomial equations in n unknowns, formally represented
as

p1(x1, . . . , xn) = 0,
p2(x1, . . . , xn) = 0,

⋮
pn(x1, . . . , xn) = 0,

(8.1)

where di ∶= deg(pi), for i = 1, . . . ,n. The system (8.1) is known to have mB ∶=
∏n

i=1 di affine solutions in the generic case (Cox et al., 2007).1

The aim of this chapter is to study the approximate solutions of an over-
constrained system of s > n equations in n unknowns that is a noisy realization
of the system (8.1). This is formally represented as

ρ1(x1, . . . , xn) ≈ 0,
ρ2(x1, . . . , xn) ≈ 0,

⋮
ρs(x1, . . . , xn) ≈ 0,

(8.2)

where δi ∶= deg(ρi), for i = 1, . . . , s. An over-constrained system generically
has no solutions in the algebraic sense, which is easy to understand as there
are more equations imposing constraints than there are variables.

An instance of a case in which the search for approximate solutions to (8.2)
makes sense is when we assume that each equation ρi = 0 for i = 1, . . . , s
contains as its coefficients a noisy realization of the coefficients of some
underlying (unknown) equation pi = 0, for some i = 1, . . . ,n. For most of
the remainder of this chapter we confine ourselves to the case that there
exists such an underlying system (8.1), which is generic system and has a full
support, meaning that all possible coefficients are nonzero.

8.1.3 Related Work

In the case of linear equations, the problem has well-established solution
methods: the ordinary least-squares and the total least-squares problems

1Genericity is e.g., ensured if in each equation all the possible terms occur and the coefficients
are chosen randomly.
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(Golub and Van Loan, 1996; Van Huffel and Vandewalle, 1991) are the
numerical backbones of many state of the art parameter estimation and
statistics methods. For the case of polynomial equations, however, a
rather limited number of techniques to solve over-constrained systems of
polynomial equations is available. The availability of such methods in off-the-
shelf implementations is virtually non-existent. The discrepancy between the
linear and polynomial case is an indication of the huge gap between numerical
analysis and (computational) algebraic geometry, of which the latter has its
origins mainly in symbolic arithmetic.

Methods in symbolic algebra are suitable only for finding the solutions of a
well-constrained system of polynomial equations. Over-constrained systems
can only be solved using symbolic methods if the existence of exact solutions
is algebraically ensured (in such cases the coefficients need to be of infinite
precision).

The currently existing methods for (approximately) solving over-constrained
polynomial systems can be divided into two classes (after Ruatta et al.
(2004)).

1. Methods from the first class formulate the question in a optimization
framework. Dedieu and Shub (2000) employ a heuristic predictor-
corrector method. Giusti and Schost (1999) reformulate the problem as
the solution of a univariate polynomial. Ruatta et al. (2004) generalize
the Weierstrass iteration to solve the nearest consistent system. These
methods have been reported to perform well, but often need extra a
priori knowledge, such as the number of approximate roots of interest,
which is generally not available in advance.

2. The second class of methods formulates the problem using symbolic
and numerical steps into eigenvalue computations of multiplication
matrices operating in a basis of the quotient space. In general two
methods exist to compute such multiplication matrices, namely Gröbner
basis techniques and the use of Sylvester-like or Macaulay-like resultant
matrices. The Gröbner basis algorithms are, however, due to their
symbolic nature, not easy to modify in order to cope with over-
constrained inconsistent systems.

To the best of the authors’ knowledge, only the modification of Buch-
berger’s algorithm (Becker and Weispfenning, 1993; Buchberger, 1965)
to the floating point case has been investigated in this respect, see e.g.,
Kondratyev (2003); Shirayanagi (1996). The use of Sylvester-like and
Macaulay-like resultant matrices are a natural way to deal with over-
constrained inconsistent systems, as treated in Bondyfalat et al. (2000);
Corless et al. (1995) (among others).

An important step when applying the Macaulay formulation is the
determination of the basis for the quotient space (i.e., the normal set
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or standard monomials). In the classical literature this step usually
proceeds by symbolic methods via the computation of a Gröbner basis
or border basis, and is hence not straightforward for the case of over-
constrained systems.2

8.2 Macaulay SVD Approach

In the current attempt we continue along the lines of the matrix-based
methods and we phrase the task at hand as a numerical linear algebra
problem by the use of theMacaulay coefficientmatrix introduced in Chapter 5.
Instead of the formulation of a Schur complement on a partitioning of a
square Macaulay (sub)matrix, as in Bondyfalat et al. (2000), we will use the
singular value decomposition (SVD) on the rectangular (complete) Macaulay
matrix.

The use of the SVD has two big advantages over the methods discussed
earlier. The classical methods require as prior knowledge at least the number
of approximate solutions, and in many cases even a basis for the quotient
space, in order to phrase the eigenvalue problem. The number of approximate
solutions can in the Macaulay-SVD approach be obtained from counting the
smallest singular values of the Macaulay matrix. Moreover, it is possible to
reliably determine a basis for the set of linearly independent monomials (i.e.,
the normal set), although this will turn out not to be necessary.

A silent assumption that is made throughout most of this chapter is that we
assume that the structure of the null space of the Macaulay matrix built from
the noisy over-constrained system is sufficiently similar to the multiplication
structure in the null space of the Macaulay matrix of the underlying square
system.

8.2.1 Detecting the Number of Approximate Solutions

An important theorem due to Weyl states that the singular values of a
perturbed matrix are bounded by the perturbations.

Theorem 8.1 (Weyl (1912); Stewart (1990)). Let A be an m × n matrix, whose
singular values are denoted σ1, . . . ,σn. Let Ã ∶= A + E denote a perturbation of
the matrix A, having the singular values σ̃1, . . . , σ̃n. Then we have that

∣σ̃i − σi∣ ≤ ∥E∥2, for i = 1, . . . ,n.
2The paper by Bondyfalat et al. (2000) considers the very specific case where (from a priori

physical considerations) the number of (approximate) solutions is known to be one. In that
case, it follows that the only element in the normal set is the monomial 1, and hence the step
of determining the normal set by algebraic means is avoided. The case of more than one
approximate solution is reported to be performed using sparse resultant theory.
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This theorem can now be used to relate the separation of the singular values
to the noise on the coefficients of the system. We use a similar result from
Batselier et al. (2013a) to provide an upper bound of the 2-norm of the
perturbation matrix E as an expression in terms of the noise on the equations.
We have from Schur (1911) that

∥E∥22 ≤max(rici),
where

ri ∶=
q

∑
j=1
∣eij∣,

and

cj ∶=
p

∑
i=1
∣eij∣.

For a Macaulay matrix this simplifies to (Batselier, 2013)

∥E∥2 ≤
¿ÁÁÀ s

∑
i=1
∥δi∥1 ⋅max

1≤i≤s ∥δi∥1,
where δi denotes the coefficient vector corresponding to the perturbation of
some equation fi that led to ρi. This further simplifies to

∥E∥2 ≤ (n+ d
n
)ǫ√s, (8.3)

where ǫ is an upper bound on the perturbation of the equations.

Under the assumption that (n+dn )ǫ√s is small, this means that if the (nu-
merically) zero singular values of the Macaulay matrix built from the well-
constrained underlying system are well-separated from the nonzero singular
values, this will also be the case for a perturbed system. From the following
example, it can be seen that this upper bound is not always very useful in
practice.

Example 8.2. Consider an over-constrained system consisting of 32 equations
of degree 6 in 4 unknowns. Suppose that the maximal perturbation is 5 ⋅ 10−4,
then we find as an upper bound for the shift in the singular values

∥E∥2 ≤ .5940.
This means that a singular value can shift from a numerical zero to a value of
.5940, although the amount of noise on the coefficients is only of the order of
magnitude of 10−4.

From the experiments (reported in detail in Section 8.3), however, it turns
out that the theoretical upper bound (8.3) is quite loose. We have observed
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Figure 8.1: A typical plot of the spectrum of singular values of the original Macaulay matrix
(full line, ×) and the Macaulay matrix built from the perturbed equations (dotted line, ○). We
observe that the singular values are strongly perturbed by the noise on the coefficients, but the
separation between the (approximately) zero singular values and the nonzero singular values
remains present. On the basis of the spectrum of singular values of the Macaulay matrix built
from the noisy equations, the number of approximate roots can be performed.

that, for well-conditioned problems under mild noise conditions, the rank-
gap is quite well maintained in the Macaulay matrix of the perturbed system
and that it was possible to retrieve the number of (approximate) solutions
from inspecting the singular values. For the remainder of this chapter we will
assume that the separation between the singular values is indeed sufficient to
determine the number of approximate solutions. In Figure 8.1we have plotted
the singular values coming from the consistent system and the singular values
coming from the perturbed system for a typical example.

Inspection of the singular values of the Macaulay matrix will therefore
provide the number of approximate solutions. Next, the (approximate)
solutions themselves are obtained from the computation of the right singular
vectors of the Macaulay coefficient matrix by exploiting the well-known shift
property, leading to the formulation of an eigenvalue problem.

8.2.2 An SVD-based Approximate Solution Approach

After the number of approximate solutions m is determined, Algorithm 3
can be easily adapted to solve for the approximate solutions. First of all,



MACAULAY SVD APPROACH 131

an approximate null space Z is determined by collecting the right singular
vectors of M corresponding to the m smallest singular values.

The determination of the standard monomials is in the over-constrained case
a difficult question. However, under the genericity assumption, the standard
monomials need not be determined, and one can employ the shift property
on all monomial of degrees 0 up to d⋆ − 1. This can be done because there
is no influence from solutions at infinity. From the numerical experiments, it
even turns out that the accuracy of the approximate roots is the best when all
monomials are shifted, rather than only a subset of them.

The method for approximately solving an over-constrained generic system is
summarized in Algorithm 6.

Algorithm 6. (Approximate root-finding for over-constrained systems)

input: system of s > n ‘generic’ polynomials in n unknowns
ρ1(x1, . . . , xn) ≈ 0, . . . , ρs(x1, . . . , xn) ≈ 0
number of approximate solutions m
degree d∗

output: m approximate solutions evaluated at the function g(x)
1. Let M ∶= M(d⋆) and let Z ∶= Z(d⋆) denote its approximate null space (built from

the right singular vectors corresponding to the m smallest singular values)

2. Them approximate roots evaluated at the shift function g(x) are the eigenvalues
of

S1Z (TDgT
−1) = SgZ

where S1 selects all rows of Z corresponding to the degrees 0 up to d⋆ − 1 and Sg
the mapping by g(x)

3. Reconstruct the mutual matching between the (approximate) solution compo-
nents xi from

K = ZT ,
and a consecutive column rescaling

Example 8.3. Let us consider a simple example to illustrate the method. We
start from a system of two equations in two unknowns,

p1(x1, x2) = x31 + x
3
2 − 9x

2
1x2 + 20x1x2 − 3x1 − 20 = 0,

p2(x1, x2) = x21 + 4x
2
2 − x1x2 − 80 = 0,

having six affine real solutions
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x1 x2

−0.5942 4.3886
−0.8855 −4.5622
2.8622 −3.8943
2.9921 4.6051
−9.2118 −0.8171
9.2344 1.2729

We normalize the coefficient vectors of the system so that their 2-norm equals
one. Of both the equations we now consider a noisy realization with additive
noise σn = 2 ⋅ 10−3 and form an over-constrained system of four equations
where of both equations two such noisy realizations are considered. We obtain
the polynomials

ρ1(x1, x2) = −0.671429− 0.100961x1+ 0.667031x1x2 + 0.031771x31
−0.299538x21x2 + 0.034994x

3
2,

ρ2(x1, x2) = −0.671400− 0.100145x1+ 0.668768x1x2 + 0.035137x31
−0.302880x21x2 + 0.036594x

3
2,

ρ3(x1, x2) = −1.001697+ 0.013063x21 − 0.015508x1x2 + 0.048478x
2
2,

ρ4(x1, x2) = −1.000747+ 0.015580x21 − 0.012807x1x2 + 0.050581x
2
2.

We then consider the Macaulay matrix of the overdetermined system and
apply Algorithm 6. The approximate solutions are retrieved as

x1 x2

−0.6382 4.3883
−0.9352 −4.5988
2.8772 −3.8374
3.0424 4.6261
−8.6988 −0.7536
8.7327 1.2128

Although the absolute forward errors (with respect to the solutions of the
underlying system) are rather large (i.e., order of .5 ⋅ 10−1), we can visually
verify in Figure 8.2 that the result of the procedure provides a meaningful
answer to the problem.

8.3 Numerical Experiments

In a series of numerical experiments, we illustrate the performance of the
method. We start from a square system having n equations in n unknowns, all
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Figure 8.2: Simple example showing the result of Algorithm 6. An over-constrained system of
four equations in two unknowns is shown as the dashed lines and dash-dotted lines in red and
blue. The black crosses indicate the approximate solutions as retrieved by Algorithm 6. The blue
diamonds represent the solutions of the underlying well-constrained system. The level sets of the
least squares objective V(x1 , . . . , xn) = ρ21(x1, . . . , xn) + . . . + ρ2s(x1 , . . . , xn) are plotted in gray. It
can be seen that Algorithm 6 successfully retrieves the four approximate solutions in the vicinity
of the points where the curves nearly intersect and the least squares objective has its minima.

of degree d○. The coefficients are sampled as pseudo-random integers from a
discrete uniform distribution between −10 and 10, after which the coefficient
vectors of all equations are normalized such that their 2-norm equals one. This
system has mB ∶= dn○ solutions, which are computed with the null space based
root-finding algorithm of Chapter 6.

Then an over-constrained system of s = 3 ⋅ n equations is constructed by
introducing additiveGaussian noise (with standard deviation σn) to the vector
of coefficients. The over-constrained system is then solved using Algorithm 6.
In Table 8.1 we report

- the size of the Macaulay matrix built from the over-constrained system;

- the number of approximate solutions (i.e., the Bézout number of the
underlying square system);

- the average (over 5 runs) of the residual between the solution of the
underlying system and the approximate solution.

For small systems, the method works well, and the residuals computed
with respect to the solution of the underlying system are of the order of
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Table 8.1: Numerical experiments solving over-constrained systems using Algorithm 6. We
consider a number of artificially created square systems of n equations, each of degree d○ in n
variables, where the coefficients are pseudo-random integers sampled from a discrete uniform
distribution between -10 and 10. Next the coefficient vectors are normalized so that their 2-norm
equals 1 and we solve the square system. Then from each of the equations of the square system
we build three noisy equations (using additive Gaussian noise with standard deviation σn) and
solve the over-constrained system. We report the size of the Macaulay matrix M(d⋆) constructed
from the over-constrained system (with d⋆ ∶= n(d○ − 1)+ 1), the number of approximate solutions
mB ∶= dn○ , and the average difference between the approximate solution and the solution of the
underlying system ǫ.

n d○ d⋆ σn size M(d⋆) mB ǫ

2 2 3 1 ⋅ 10−5 18× 10 4 1.51 ⋅ 10−6

2 3 5 1 ⋅ 10−5 36× 21 9 3.51 ⋅ 10−6

2 4 7 1 ⋅ 10−5 60× 36 16 3.34 ⋅ 10−6

2 5 9 1 ⋅ 10−5 90× 55 25 3.07 ⋅ 10−6

2 6 11 1 ⋅ 10−5 126× 78 36 2.87 ⋅ 10−6

2 7 13 1 ⋅ 10−5 168× 105 49 1.80 ⋅ 10−6

3 2 4 1 ⋅ 10−5 90× 35 8 5.83 ⋅ 10−5

3 3 7 1 ⋅ 10−5 315× 120 27 6.90 ⋅ 10−6

3 4 10 1 ⋅ 10−5 756× 286 64 5.86 ⋅ 10−5

3 5 13 1 ⋅ 10−5 1485× 560 125 1.82 ⋅ 10−4

4 2 5 1 ⋅ 10−6 420× 126 16 1.97 ⋅ 10−8

4 3 9 1 ⋅ 10−6 2520× 715 81 4.10 ⋅ 10−7

the noise on the coefficients. For systems of three and four unknowns, it
turned out difficult to obtain a well-conditioned problem for large degrees
after introducing the perturbations. When the conditioning was ascertained,
the results were satisfactory.

8.4 Application: A Computer Vision Problem

Systems of polynomial equations arise very often in a geometric context in
problems in computer vision. Several of such instances are described in the
PhD dissertation of Byröd (2010). We will discuss here the problem of camera
pose estimation.

In the so-called problem of camera pose estimation, the position of a camera is
to be estimated from a given set of noisy measurements, as described in Reid
et al. (2003). The experiment proceeds by taking images of a reference set-up,
for instance a set of n known (3D) points. Typically, for a calibration, one can
perform as many such experiments as desired, which naturally leads to an
over-constrained system of polynomial equations. From the over-constrained
system of equations, the position of the camera can then be obtained.
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Example 8.4. Let us consider the example taken from Reid et al. (2003).
Suppose that we have n = 4 reference points A, B, C and D. A set of (noisy)
images taken by the camera imposes constraints on the geometrical equations,
leading to an over-constrained system. We introduce the following variables:

p = 2 cos(BPC),
q = 2 cos(APC),
r = 2 cos(APB),
s = 2 cos(CPD),
t = 2 cos(APD),
u = 2 cos(BPD).

We now have the over-constrained system of six equations in four unknowns

x21 + x
2
2 − rx1x2 − ∥AB∥2 ≈ 0,

x21 + x
2
3 − qx1x3 − ∥AC∥2 ≈ 0,

x22 + x
2
3 − px2x3 − ∥BC∥2 ≈ 0,

x21 + x
2
4 − sx1x4 − ∥AD∥2 ≈ 0,

x24 + x
2
3 − tx3x4 − ∥CD∥2 ≈ 0,

x22 + x
2
4 − ux2x4 − ∥BD∥2 ≈ 0.

Geometrically, the situation is represented in Figure 8.3.

In the example of Reid et al. (2003), the coefficients p, q, . . . ,u and ∥AB∥, . . .,∥BD∥ are given as

p = −1.490710, ∥AB∥ = 4,

q = −.400000, ∥AC∥ = 8,

r = −.894427, ∥BC∥ = 4,

s = −1.490710, ∥AD∥ = 4,

t = −.666667, ∥CD∥ = 8,

u = −.894427, ∥BD∥ = 4,

and are assumed to be known up to limited precision.

Applying Algorithm 6 reveals there are 4 approximate solutions to the system,
appearing as two double solutions, one of which has negative entries, and the
other one has positive entries:

x1 x2 x3 x4

−2.23606 −2.99999 −2.23606 −0.99362
−2.23606 −2.99999 −2.23606 −1.00636
2.23606 2.99999 2.23606 0.99362
2.23606 2.99999 2.23606 1.00636
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Figure 8.3: Camera pose estimation, a problem in computer vision, is concernedwith determining
the position of a camera on the basis of noisy measurements leading to an overdetermined
system of polynomial equations. A simple instance of this problem is represented in the current
diagram. A camera is centered at an unknown point P. Then a set of images is taken of four
calibration points A, B, C and D, each of which leading to a constraint on the unknown camera
distances x1, . . . x4. From the geometry of this setting we then find six polynomial equations in
the unknowns x1, . . . , x4.

We were able to reduce the average of the residuals of the approximate
solution obtained from averaging the two positive approximate solutions
down to 1.6237 ⋅ 10−5 by varying the shift function g(x). On average the
residual was 2.681 ⋅ 10−5 for a random shift function g, measured over 50
iterations. The residual of the solution obtained from the matrix method of
Reid et al. (2003) is 1.8866 ⋅ 10−5.

8.5 Conclusions and Open Problems

8.5.1 Observations

Thematrix-basedmethod for solving awell-constrained system of polynomial
equations turns out to be a natural starting point for solving over-constrained
systems, which is a rather cumbersome task for classical computer algebra
methods. Starting from a well-conditioned square system, it was shown that
the matrix-based approach can successfully find approximate solutions when
an over-constrained noisy realization of that system is considered.
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8.5.2 Solutions at Infinity

Solutions at infinity can either be caused by the sparse support of the
polynomials (i.e., zero coefficients), or by the existence of algebraic relations
among the coefficients of the highest degree terms. When one considers
perturbations on all nonzero coefficients, solutions at infinity are in the over-
constrained setting only possible when one considers equations having a
sparse monomial support.

Until this point, we have dismissed the possibility of solutions at infinity,
justified by the following arguments.

• The system (8.1) has mB ∶=∏n
i=1 di affine solutions, and under mild noise

conditions we expect as many approximate solutions in (8.2). When
the structure of (5.1), i.e., di for i = 1, . . . ,n, is known, the need for a
root-counting procedure is thus avoided, as well as the choice of the
degree up to which the Macaulay matrix has to be built; we can take
d⋆ = ∑n

i=1 di − n+ 1.
• Solutions at infinity caused by algebraic relations among the noisy

coefficients are highly unlikely in the over-constrained case, as the
algebraic relations that would have been present in the underlying
equations (8.1) are most likely to be destroyed by considering a noisy
realization of the coefficients.

Let us now consider how over-constrained systems with solutions at infinity
can be tackled by adapting the approach developed in Chapter 6. Again,
the solutions at infinity will cause standard monomials of high degree that
move along to higher degrees as the degree of the Macaulay matrix is
increased.

The critical part of the method, however, occurs when a suitable degree dG
needs to be chosen: unless one employs an algorithm that computes the
approximate rank as we have done to determine the number of solutions, the
naive approach of investigating the rank-increases in a numerical basis for
the null space of the Macaulay matrix would lead to the selection of the first
mB −m∞ rows: the is a high risk that one of the subsequent approximate rank
decisions is wrong, leading to a wrong choice of dG.

However, when we assume that a suitable dG can be obtained (e.g., from prior
knowledge of the underlying system), we can simply combine Algorithm 3
and Algorithm 6. We will illustrate this using the following example.

Example 8.5. Consider a well-constrained system of two equations in two
unknowns,

f1(x1, x2) = x1x2 − 8 = 0,
f2(x1, x2) = x21 − 4 = 0,
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having two affine solutions (−2,−4) and (2, 4), that can be obtained for dG = 4.
Since mB = 4, there are also two solutions at infinity, corresponding to the
standard monomials x32 and x42. It can be verified that it concerns a double
root at infinity, described by the (x0, x1, x2) = (0, 0, 1).
Let us now consider an over-constrained system built from noisy realizations
of the given equations. We consider a realization where each of the two
equations is repeated two times under a perturbation of the coefficients by
δ ∼ N(0, 1 ⋅ 10−4) and obtain the following four equations:

ρ1(x1, x2) = 0.99996x1x2 − 7.99998 ≈ 0,
ρ2(x1, x2) = 1.00014x1x2 − 7.99997 ≈ 0,
ρ3(x1, x2) = 1.00015x21 − 3.99999 ≈ 0,
ρ4(x1, x2) = 1.00005x21 − 3.99993 ≈ 0.

We construct the Macaulay matrix for the over-constrained system for degree
dG = 4 and denote it by M. Again the standard monomials x32 and x42
appear. Now a column compression of the numerical basis for the null space
of M is computed, which we denote by W . After retaining from W the part
that corresponds to the affine solutions (as in Chapter 6), we write the shift
relation (Proposition 6.3) for a random shift polynomial g(x1, x2), leading to
the approximate solutions (1.99989, 4.00001) and (−1.99989,−4.00001).
8.5.3 Recovering Underlying System

We have limited the pursuit of solving overdetermined systems to the case
where we find a (dense) low-rank approximation of the Macaulay matrix,
denoted by M̃(d), which has an exact null space, and we assume that the null
space of M̃(d) has a structure sufficiently close to the multiplication structure
needed to phrase the eigenvalue problem.

By discarding the smallest singular values of the Macaulay matrix M(d), the
interpretation which system we are really solving is lost. In specific cases,
one may indeed be interested in recovering some the underlying ‘exact’ well-
constrained system of equations of which the over-constrained system is a
noisy realization. The correct way to go about in this situation is to find a
structured low-rank approximation of the noisy Macaulaymatrix, fromwhich
a set of s (or n) equations can be retrieved, having exact solutions.

This question reduces to solving a structured total least squares problem,
which is discussed in Appendix A, where the Macaulay structure should
be imposed in the constraints. Let M ∶= M(d⋆) denote the p × q Macaulay
matrix built from the over-constrained system of equations. Let Mθ represent
a p × q parametrized Macaulay matrix where the parameter vector θ contains
the coefficients of the equations that need to be recovered. The search for the
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coefficients can be formulated as the minimization problem

minimize
θ

θTθ,

subject to rank(Mθ) = q−mB.

8.5.4 Conditioning of the System

An important factor influencing the ‘good-ness’ of a solution is given by the
conditioning of the problem. In this respect there are in fact two conditioning
aspects we need to consider.3

- First of all, the conditioning of the polynomial evaluation is of impor-
tance, as a small variation of a computed root may give a dramatic
change in the evaluation in one of the equations ρi. We have in general

Ke ∶= lim
ǫ→0+

sup
∥δx∥≤ǫ

∥ρ(x + δx)− ρ(x)∥∥ρ(x)∥ /∥δx∥∥x∥ ,

where ρ(⋅) represents the vectorization of the polynomials ρi, i = 1, . . . , s.
This leads to

Ke = ∥J∥∥ρ(x)∥/∥x∥ ,
where J denotes the Jacobian matrix (1.2) containing the partial deriva-
tives of the equations ρi, i = 1, . . . , s with respect to the unknowns
x1, . . . , xn.

- Secondly, the conditioning of the polynomial system solving problem
itself is of importance. It can be shown (Stetter, 2004) that the amount
of change in the solutions of a problem are related to the change in
the coefficients. Let F(a) represent an implicit expression a certain root
depending on the (noisy) coefficients a. The evaluation of an equation
ρi is then given by ρi(F(a; a), where the explicit dependence of the
coefficients is emphasized. By carefully working out the chain rule for
differentiation, an expression of the condition number is obtained as

Ks = ∥∂ρ

∂x
(F(a); a)−1∥ ⋅ ∥∂ρ

a
(F(a); a)∥ .

The factor ∥ ∂ρ
∂x (F(a); a)−1 ∥ is the norm of the inverse of the Jacobian

matrix (see (1.2)) evaluated at the root under consideration.

3It must be emphasized that in what follows, the influence of the conditioning makes
abstraction of the question of correctly determining the number of solutions by investigating the
singular values. Correctly estimating the number of approximate solutions is of paramount
importance.
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In the numerical experiments, the inspection of the Jacobian matrix and its
singular values was used to detect poor numerical conditions. A detailed
error analysis has not yet been performed, but the methods proposed in Stetter
(2004) seem to be a good starting point to further investigate this matter.
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9Conclusions and Outlook

9.1 Conclusions

Algebraic geometry is perhaps the most fundamental branch of mathematics,
with a rich history and results that pervade all fields of mathematics and
engineering. Although it has turned into a field of mainly theoretical research
for about a century, the last decades have witnessed a renewed interest in its
computational and algorithmic results thanks to the ever increasing advances
in computer science. Due to its theoretical nature, many algorithms are not
directly suited for the implementation on computing devices, witnessed by
the cumbersome generalization of Gröbner basis computations to floating
point environments. This manuscript makes a humble ‘first’ effort in bridging
the worlds of abstract polynomial algebra and numerical computation.

We have presented a framework to tackle polynomial system solving from the
linear algebra point of view. The problem at hand is phrased as a question
of linear algebra by the definition of the Macaulay matrix. The polynomial
system solving problem can then be rephrased as an eigenvalue problem
by making use of the monomial structure present in the null space of the
Macaulaymatrix. This gives rise to the first so-called null space based solution
method. Another way to approach the problem is to investigate the linearly
dependent and independent columns of the Macaulay matrix. It turns out
possible to phrase the polynomial system solving problem as a problem
in the columns of the Macaulay matrix only. This leads to a (Q-less) QR
decomposition on a column-reordered version of the Macaulay matrix, from
which the solutions of the system follow from eigendecompositions.

The observation that there is an intimate link between polynomial system
solving and eigenvalue problems is not new at all, and important numerical
aspects are elaboratelyworked out in great detail in the work by Stetter (2004).
This was a huge source of inspiration for our research, but it assumes that a
set of standard monomials (i.e., normal set) is available. Stetter claims that
a Gröbner basis is one of the ways to determine a normal set, and at the
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time the only way to effectively compute it using widely available software
implementations. The work on border bases (Mourrain, 1999; Kehrein and
Kreuzer, 2006) will supposedly provide a numerically more sound approach,
however this pursuit is at the moment mostly of academic nature, and the
‘algorithms’ that are being developed are theoretical.

This manuscript differs with the classical work on the link between polyno-
mial system solving and eigenvalue problems in exactly this: in this text the
notion of the standard monomials (the normal set) naturally follows from the
problem, but it does not play a central role in the algorithms. We have shown
that all choices regarding the number of solutions, certain selection of rows,
etc., can be incorporated in numerically reliable rank decisions. During the
construction of the eigenvalue problem for finding the solutions of a system,
by selecting all degree blocks that contain standard monomials, the risk of
making a wrong choice of standard monomials is avoided.

Moreover, we have chosen to employ a specific monomial ordering through-
out the text, however, from the numerical linear algebra point of view,
any graded ordering would yield exactly the same results, as this merely
represents a column-permutation of the Macaulay matrix, and hence our
methods are not sensitive to a change of ordering as it is the case for Gröbner
basis algorithms.

Another important observation is the intimate links between polynomial
system solving and multidimensional realization theory, as pointed out first
by Hanzon and Hazewinkel (2006). Our method differs in the sense that the
matrix-based approach presented in this text does not require the construction
of a Gröbner basis to phrase the polynomial system as a state space model
consisting of multivariate difference equations. Indeed, it turns out that
the Macaulay matrix and its null space serve as the interfaces between a
given polynomial system and its interpretation as a multivariate system. It
is expected that the conceptual links between polynomial system solving and
multidimensional systems will turn out fruitful. For instance, we foresee
that certain fundamental algebraic geometry results will have their system
theoretic counterparts, such as the Hilbert regularity of a system and a
variation of the Cayley-Hamilton theorem operating on the null space of the
Macaulay matrix.

The numerical linear algebra approach allowed us to tackle the problem
of over-constrained polynomial systems, which is a rather cumbersome
task to tackle using the classical computer algebra methods. The task of
finding approximate solutions to an over-constrained system of polynomials
occurs often in applied mathematics and engineering contexts where noisy
measurements of a phenomenon lead to an overdetermined system of
equations. We showed that a naiveway of phrasing the task led to competitive
results and pointed out some ideas for future research.
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We have worked out a number toy problems of possible application fields
to show the potential application fields of our work. The first area is the
application of the theory to polynomial optimization problems, where we
discussed applications in the area of system identification. We have illustrated
that the structured total least squares problem, which is an important tool
in system identification, boils down to solving a polynomial optimization
problem, or solving a system of polynomial equations. It was shown that the
approach presented in the thesis is able to solve small, yet nontrivial instances
of this problem. For simple models involving a small number of data points,
our approach is able to retrieve the globally optimal model. The method for
solving over-constrained polynomial systems has been applied to a problem
from computer vision, namely camera pose determination on the basis of a set
of noisy measurements. The approach developed in Chapter 8 turned out to
be competitive with the methods reported in the literature.

9.2 Future Work

In general, although the body of literature in (computational) algebraic
geometry is vast, we strongly feel that the bridging between polynomial
algebra and numerical analysis has only merely begun. Indeed, after several
decades of developing linear modeling into a technology, the natural next step
is turning the attention to polynomial models.

George Bernard Shaw once said that “Science never solves a problem without
creating ten more.” This must be one of the most exciting aspects of doing
research, and it is ever so true in a research field that has been explored only
recently.

The work in this thesis has provided a new framework for tackling certain
questions in polynomial algebra — and at the same time, a multitude of
‘new’ challenges have been coined and remain unanswered. In the following
paragraphs a personal view is outlined along which lines the future work
should be organized.

9.2.1 Solutions at Infinity and Multiplicities in Realization Theory
Framework

An important step in the future research is to work out the relation of the
multiplicity of a solution to the multiple eigenvalue problem as in Dayton
et al. (2011); Marinari et al. (1996); Möller and Stetter (1995) and to work it into
the realization theory framework. Although they are often not of practical
interest, some work should be done on phrasing the solutions at infinity in
the realization theory based framework. The first step, namely developing an
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understanding of the case of multiple solutions, is essential, as in most cases,
solutions at infinity occur with multiplicity.

The realization theory framework allows natural conceptual interpretations
of multivariate polynomial systems. An exciting question is to investigate
whether the notion of the (Hilbert) regularity of an ideal (i.e., the degree
at which the Hilbert function becomes polynomial (Cox et al., 2007)) has
an equivalent system theoretical interpretation: does this have a relation to
the degrees at which the Macaulay matrix becomes sufficiently informative
enough to obtain the solutions from the nilpotency of the part of the singular
parts? Such a notion would correspond closely to a variation of the Cayley-
Hamilton theorem.

9.2.2 Developing Understanding of Numerical Aspects

Whereas the SVD-based Macaulay matrix approach from the numerical point
of view is rather safe, the repercussions on the numerics are rather poorly
understood. As such, the current thesis may be seen as a starting point,
where several interesting connections are established. However, from the
numerical point of view, this is merely a first step; much work can be expected
to phrase the ideas developed in this thesis into truly efficient and reliable
methods.

It is of paramount importance to develop an understanding of the numerical
aspects of the presented framework. The work by Stetter (2004) and Jónsson
and Vavasis (2004) may serve as starting points for this pursuit, as they have
taken important steps in understanding the numerics behind the eigenvalue-
approach to the polynomial system solving problem. However, in both
approaches, the problem is formulated in a different manner as in our
case.

9.2.3 Over-constrained Systems

The work on over-constrained systems is a whole research avenue on
its own with a multitude of potential applications in engineering and
applied mathematics problems. As we already mentioned, there is an
enormous gap between the case of linear overdetermined systems (with well-
known solutions such as (total) least squares approaches) and polynomial
overdetermined systems. As we have shown in Chapter 8 the presented
framework seems a natural starting point for this problem. There are
still many challenges and unanswered questions in this problem, such as
deriving a theoretical (or empirical) upper bound for the required degree
of the Macaulay matrix, understanding numerical aspects and conditioning,
etc.
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9.2.4 Identifiability Analysis of Nonlinear Systems

In the work of Ljung and Glad (1994) an algorithm based on differential
algebra was presented to analyze the identifiability of model parameters in
certain nonlinear dynamical models. Models that can be analyzed in this
framework are polynomial differential equations in which the data and the
model parameters may occur as (differentials of) polynomial functions. The
analysis makes use of Ritt’s algorithm. Loosely speaking, Ritt’s algorithm
is the differential algebra variation of Buchberger’s polynomial algebra
algorithm. The analysis of Ljung and Glad (1994) was done for continuous-
time models, and in recent work by Lyzell et al. (2011) a similar method was
tailored towards discrete-time systems. It would be interesting to investigate
how the methods developed in this manuscript may become of use in this
application field.

9.2.5 Numerical Basis Computation

An important link that has not been investigated in this thesis is the
connection between the Macaulay matrix approach and the so-called border
bases approaches (Mourrain, 1999; Kehrein and Kreuzer, 2006). As opposed to
Gröbner bases, border bases have superior numerical properties. For example,
border bases can be constructed such that they continuously depend on the
coefficients of the system; introducing a small nonzero coefficient does not
dramatically change the border basis, whereas the introduction of a tiny
nonzero coefficient may lead to a completely different (and often, numerically
ill-posed) Gröbner basis. Our approach in not explicitly requiring a set of
standardmonomials does seem to correspond closely to the basic ideas behind
border bases.

9.2.6 Sparsity, Structure and Real Solutions

It must be emphasized that nearly all methods in polynomial system solving
and polynomial optimization suffer from the well-known explosive increase
of the number of monomials as more variables (or higher degrees) are
considered.

There are two important approaches from the literature that might prove
relevant:

1. First of all, although the monomial expansion is an inherent property
of the task at hand, it is of great interest to alleviate these effects
by considering the relation to sparse resultants (Emiris and Mourrain,
1999b), and devising ways to exploit the structure and sparsity in the
matrix computations.
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2. Secondly, recent advances in real algebraic geometry (Lasserre et al.,
2012; Laurent and Rostalski, 2012; Parrilo, 2000) have led to very
competitive methods for solving polynomial optimization problems,
such as the well-known sums-of-squares polynomials.

Moreover, the case of real root-finding and directly solving for the minimizing
root of a certain objective is of particular interest in polynomial optimization;
the work by Hanzon and Jibetean (2003); Lasserre et al. (2012); Laurent and
Rostalski (2012); Parrilo (2000) is likely to be relevant in this context.

The ultimate goal for the problem of solving a polynomial optimization
problem is a method in which the null space of the Macaulay matrix is never
explicitly calculated. By using the most economic representation of a system,
i.e., the coefficients of the system, intelligent FFT-like computations operating
on the coefficients that implicitly employ the quasi-Toeplitz block structure
of the Macaulay matrix could ultimately lead to a direct power method-like
solution of the eigenvalue computation, returning of the (real) root of interest
only.
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ALinear Algebra and Systems

Theory

In the current chapter the fundamental tools of (numerical) linear algebra are
reviewed, such as vectors and matrices, the rank of a matrix, the fundamental
subspaces of a matrix, the QR, SVD and eigendecomposition of a matrix.
Many of the notions here are based on the classical text books Golub and
Van Loan (1996); Strang (2009); Trefethen and Bau (1997). These works are
excellent resources providing a complete treatment of matrix computations
and numerical linear algebra.

Furthermore, we will briefly review some essential concepts coming from
realization theory. The discussion will start with the essentials of dynamical
linear time-invariant systems, and will focus on the state-space description of
a so-called descriptor system. We line out the concept of shift invariance that
occurs often in realization theory, and will turn out to be of great relevance for
the task considered in this manuscript.

A.1 Linear Algebra Basics

A.1.1 Preliminaries

A vector is an 1D array of numbers and a matrix is a 2D array of numbers. In
this manuscript, we usually consider vectors and matrices consisting of real
numbers. However, in certain situations vectors or matrices may consist of
complex numbers, therefore we present the general theory for the complex
case, where necessary.

By default, vectors are assumed to be column vectors. We denote a vector
as a bold-face lowercase latin symbol, e.g., b ∈ Cm is an m-dimensional vector
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(i.e., m×1) consisting of complex numbers. Matrices are represented as a bold-
face uppercase latin symbol, e.g., A ∈ Rm×n is a matrix having m rows and n
columns consisting of real numbers..

Let us now review the concepts of linear dependency, subspaces and bases for
subspaces.

Definition A.1 (Linear Dependency). A set of vectors {a1, . . . , an} is said to
be linearly independent if ∑n

j=1 αjaj = 0 implies that α1 = . . . = αn = 0. If, on the
other hand, a nontrivial linear combination of the ai is zero, then we say that{a1, . . . , an} is linearly dependent.

Definition A.2 (Subspace and Basis). A subspace of Cm is a subset that is also a
vector space. The set of all linear combinations of a given collection of vectors
a1, a2, . . . , an ∈ Cm is a subspace, also referred to as the span of {a1, . . . , an}, i.e.,

span{a1, . . . , an} ∶= ⎧⎪⎪⎨⎪⎪⎩
n

∑
j=1

β jaj ∶ β j ∈ C

⎫⎪⎪⎬⎪⎪⎭ .
A basis {b1, . . . ,bk} for a subspace S has two properties. First, it is linearly
independent, and, second, it spans the subspace, i.e., for all s ∈ S we have that
s = ∑k

j=1 αjbj. All bases for a subspace S have the same number of elements,
which is called the dimension, and is denoted by dim(S).
With any matrix m × n matrix A one can associate two important subspaces,
namely the range and the null space.

Definition A.3. The range of the matrix A and the null space of the matrix A
are defined as

range(A) ∶= {y ∈ Cm ∶ y = Ax,∀x ∈ Cn} ,
null(A) ∶= {x ∈ Cn ∶ Ax = 0} .

Let the column partitioning of A be denoted by

A =
⎛⎜⎝
∣ ∣ ∣

a1 a2 . . . an
∣ ∣ ∣

⎞⎟⎠ ,
then range(A) = span {a1, . . . , an}.
Next we come to a very important property, namely the rank of a ma-
trix.

Definition A.4. The rank of the matrix A is defined as the dimension of its
range, or formally

rank(A) ∶= dim(range(A)).
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In order to introduce the four fundamental subspaces of a matrix, it is
instrumental to use real matrices.1 A real matrix A ∈ Rm×n has the following
four interesting subspaces.

1. The column space of A is defined as range(A).
2. The row space of A is defined as range(AT).
3. The null space of A is null(A) as defined above.

4. The left null space of A is null(AT).
Recall that the dimension of the column space is called the rank of A. A well-
known property of matrices is that the rank of A is equal to the rank of AT,
i.e., the row rank and the column rank are equal: rank(A) = rank(AT) = r. The
dimension of the null space is called the nullity, i.e.,

nullity(A) ∶= dim(null(A)).
The rank-nullity theorem describes a very useful relation between the rank and
the nullity of a matrix.

Theorem A.5. For any m × n matrix A, the following holds,

nullity(A)+ rank(A) = n.
A consequence of the rank-nullity theorem is that the dimension of the left
null space is m − r.

We now come to another important concept, namely the inverse of a ma-
trix.

Definition A.6. Let A ∈ Cn×n be a square matrix. If we can find a matrix X for
which AX = I, where I is the n × n identity matrix, we call X the inverse of A,
denoted as A−1.

If A−1 exists, A is said to be nonsingular; otherwise we say that A is said to be
singular.

A determinant of a square matrix is a number that is a function of the entries of
the matrix. Determinants take a central role in understanding the concepts of
linear algebra and algebraic geometry, e.g.,when an explicit expression of the
inverse of a matrix is required, or to study resultants. Although they are often
cumbersome in a numerical linear algebra setting, we cannot avoid to define
them in order to explain all relevant concepts. In the algorithms, however, we
will avoid their usage.

1Similar considerations hold for complex matrices, but one needs to consider complex
conjugated transpose (⋅)∗. Notice that the interpretation as row space does not hold anymore
in this case.
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Laplace’s formula allows to compute the determinant using the so-called
minors. Let A be an m ×m square matrix, of which the elements are denoted
ai,j. The minor M i,j is defined as the determinant of the (m − 1) × (m − 1)
matrix that results from A by removing the i-th row and the j-th column. The
expression (−1)i+jM i,j is called a cofactor. The determinant of A is then given
by the formula

det(A) = m

∑
i=1
(−1)i+jai,jM i,j.

Furthermore, for a scalar a we have that det(a) = a.
Example A.7. Consider the 3× 3 matrix

A =
⎛⎜⎝

1 2 5
−4 6 0
3 1 −2

⎞⎟⎠ .
Applying Laplace’s formula for the third column, i.e., j = 3 gives

det(A) = (−1)1+3 ⋅ 5 ⋅ ∣ −4 6
3 1

∣+ 0+ (−1)3+3 ⋅ −2 ⋅ ∣ 1 2
−4 6

∣ .
The 2× 2 determinants can be obtained similarly as

∣ −4 6
3 1

∣ = (−1)1+1 ⋅ −4 ⋅ 1+ (−1)1+2 ⋅ 6 ⋅ 3 = −22,
∣ 1 2
−4 6

∣ = (−1)1+1 ⋅ 1 ⋅ 6+ (−1)1+2 ⋅ 2 ⋅ −4 = 14.
Finally we find det(A) = −138.
A vector norm is a function of a vector assigning a (positive) ‘length’ to a vector.
In this manuscript the following two norms will be used:

- The Euclidean norm or 2-norm of a vector v of length n is defined as

∥v∥2 ∶=√∣v1∣2 + . . . + ∣vn∣2.
Notice that ∥v∥2 = v∗v.

- The Manhattan norm or 1-norm of a vector v of length n is defined as

∥v∥1 ∶= n

∑
i=1
∣vi∣.

The notion of norm can be naturally generalized to matrices. We will use the
following matrix norms:
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- We will consider the operator norm, defined as

∥A∥ ∶=max{∥Av∥ ∶ ∥v∥ = 1} .
When the 2-norm is considered, it can be proven that for a given m × n
matrix A this leads to

∥A∥2 ∶= max{∥Av∥2 ∶ ∥v∥ = 1}
= σ1(A),

where σ1(A) denotes the first (largest) singular value of A.
- The Frobenius norm is defined as

∥A∥F ∶=
√
∑m

i=1∑n
j=1 ∣aij∣2

=
√
∑

min(m,n)
i=1 σ2

i .

A.1.2 Eigenvalue Decomposition: Diagonalizable versus
Non-diagonalizable Matrices

To understand the action of a matrix, it is often useful to bring a matrix into
a more structured form. For a diagonal matrix, for instance, it is easy to
understand what the action of a matrix is.

In the current section we will describe the eigenvalue decomposition, which
expresses a matrix by means of its eigenvalues and eigenvectors.

Definition A.8 (Similarity Transform). The m×m matrices A and B are called
similar iff

B = P−1AP.

Definition A.9 (Diagonalizable Matrix). A matrix is called diagonalizable iff it
is similar to a diagonal matrix. Alternatively, A ∈ Cm×m is diagonalizable iff

B = P−1AP,

where B is a diagonal matrix.

Eigenvalue Decomposition

Let A ∈ Cm×m be a square matrix. We call the nonzero vector v ∈ Cm an
eigenvector of A and λ its corresponding eigenvalue if

Av = λv.
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The eigenvalue decomposition of the matrix A is written as

A = VΛV−1,

where V is a matrix containing the eigenvectors vj and Λ is a diagonal matrix
containing the corresponding eigenvalues λ1,λ2, . . . ,λm. The eigenvalue
decomposition can be rewritten as

AV = VΛ,

or

A
⎛⎜⎝
∣ ∣

v1 ⋯ vm
∣ ∣

⎞⎟⎠ =
⎛⎜⎝
∣ ∣

v1 ⋯ vm
∣ ∣

⎞⎟⎠
⎛⎜⎝

λ1
⋱

λm

⎞⎟⎠ .
It is well-known that if the equation Mv = 0 has a nontrivial solution, then
det(M) = 0. Hence, the eigenvalues of A are the roots of its so-called
characteristic polynomial p(λ), defined as

p(λ) ∶= det(A − λI).
A useful property is that a similarity transform leaves the eigenvalues of a
matrix unchanged, whereas the eigenvectors are changed according to the
change of basis prescribed by the similarity transform. Consider the m ×m
matrix A. Let A = VΛV−1 be its eigenvalue decomposition as defined
above, and let λ denote an eigenvalue of A and let v be the corresponding
eigenvector. We also consider the matrix B = P−1AP, defining the similarity
transform. We then have that B = P−1AP = (P−1V)Λ(V−1P) = QΛQ−1, where
Q = P−1V . We see from this that the eigenvalues of A are unchanged under
the similarity transform. The eigenvectors of B are transformed according to
the change of basis described by P, i.e., w = P−1v is an eigenvector of B and λ
is the corresponding eigenvalue.

Geometric and Algebraic Multiplicity

Not all square matrices are diagonalizable. A given m ×m matrix A is not
diagonalizable iff A hasm linearly independent eigenvectors. This will lead us
to the concepts of geometric and algebraic multiplicity of eigenvalues.

A matrix may have certain eigenvalues that occur several times. Such
eigenvalues are called multiple eigenvalues. Consider an m ×m matrix A.
We say that an eigenvalue λi has algebraic multiplicity µ(λi) if (λ − λi)µ(λi)
divides the characteristic polynomial p(λ). The geometric multiplicity γ(λi)
of an eigenvalue λi is the dimension of the eigenspace corresponding to
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the eigenvalues λi, i.e., the number of linearly independent eigenvectors
corresponding to that eigenvalue.

It can be shown that the geometric multiplicity γ(λi) can never exceed the
algebraic multiplicity µ(λi), i.e., γ(λi) ≤ µ(λi),∀i.
Example A.10. For example, consider the 4× 4 matrix

A =
⎛⎜⎜⎜⎝
−26 8 32 22
27 −6 −31 −21
−13 4 17 10
−29 8 33 25

⎞⎟⎟⎟⎠
.

The characteristic polynomial is p(λ) = det(A − λI) = (λ − 2)2(λ − 3)2.
We have as the eigenvalues 2 and 3, both of which occur with (alge-
braic) multiplicity 2. The eigenvalue 2 has geometric multiplicity 2, since( .23 −.61 .63 −.40 )T and ( −.27 −.64 .34 −.62 )T are the eigenvec-
tors corresponding to the eigenvalue 2. The eigenvalue 3 has geometric

multiplicity 1 since ( −.53 .26 .00 −.80 )T is the only eigenvector cor-
responding to the eigenvalue 3. It is clear that the matrix A cannot be
diagonalized by means of an eigenvalue decomposition.

Jordan Canonical Form

Although not all matrices are diagonalizable, in general, any square complex
matrix can be decomposed into a block-diagonal form

A = PJP−1,

where J = diag(J1, J2, . . . , Jq), and where the so-called Jordan block J i defined
as

Ji ∶=
⎛⎜⎜⎜⎝

λi 1
λi ⋱
⋱ 1

λi

⎞⎟⎟⎟⎠
is associated to the eigenvalue λi and has size mi (with m = ∑q

i=1mi). (Note
that the case where the matrix A is diagonalizable is a special case of m Jordan
blocks of size mi = 1).
Consider the equation AP = JP and let P ∶= ( P1 P2 . . . Pq ), where Pi

is composed of the columns of P associated with the i-th Jordan block Ji. We
then write

APi = Pi Ji,

where

Pi ∶=
⎛⎜⎝
∣ ∣ ∣

vi,1 vi,2 ⋯ vi,ni
∣ ∣ ∣

⎞⎟⎠ .
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Then we have that
Avi,1 = λivi,1,

so the first column of Pi is an eigenvector associated with the eigenvalue
λi. For j = 2, 3, . . . ,ni we have that Avi,j = vi,j−1 + λivi,j, defining the so-
called Jordan chain. The vectors vi,j are sometimes called the generalized
eigenvectors.

Cayley-Hamilton Theorem

Let p(x) = a0 + a1x + a2x2 + . . . + akxk be a polynomial and let A be an m ×m
matrix. We then define

p(A) ∶= a0I + a1A + a2A2 + . . . + akA
k.

In its simplest form, the Cayley-Hamilton theorem states that a matrix fulfills
its own characteristic polynomial.

Theorem A.11 (Cayley-Hamilton Theorem). Let A ∈ Cm×m and let p(λ) =
det(A − λI). Then we have that p(A) = 0.
Corollary A.12. An important corollary of the Cayley-Hamilton theorem is
that for every n ≥ m we can write An as a linear combination of the Ai, with
i = 0, 1, . . . ,m.

A.1.3 Two Important Decompositions: QR and SVD

QR Decomposition

In general, any m × n matrix can be decomposed into the product of an
unitary matrix and an upper-triangular matrix. This is called the QR
decomposition.

Theorem A.13. Any rectangular complex matrix A ∈ Cm×n with m ≥ n can be
decomposed as

A =
n m−n( )m Q1 Q2

n

( )R1 n

0 m−n

where Q = ( Q1 Q2 ) is a unitary matrix (i.e., Q∗Q = QQ∗ = Im) and R1 ∈
Cn×n is upper-triangular. We have Q1 ∈ Cm×n and Q2 ∈ Cm×m−n.

The QR decomposition is usually computed using well-conditioned House-
holder reflections or Givens rotations (Golub and Van Loan, 1996).
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Singular Value Decomposition

The singular value decomposition (SVD) of a matrix is sometimes called
the swiss army knife of numerical analysis. It shows up in a multitude of
applied mathematics techniques and is the cornerstone of many mathematical
modeling and analysis approaches. In this manuscript it will be used
for

- determining the (numerical) rank of a matrix;

- finding a basis for the null space of a matrix;

- computing the so-called pseudo-inverse of a matrix; and,

- performing a column compression on a matrix.

TheoremA.14 (Singular Value Decomposition). The singular value decompo-
sition (SVD) of a matrix A ∈ Cm×n with m ≥ n is

A = UΣV∗,

where U ∈ Cm×m and V ∈ Cn×n are unitary (i.e., U∗U = UU∗ = Im and V∗V =
VV∗ = In). Furthermore, the matrix Σ is an m × n real matrix having the form

Σ =
r n−r

( )Σr 0 r

0 0 m−r
(A.1)

where r = rank(A), Σr ∶= diag(σ1, . . . ,σr) and σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are called
the singular values of A.2 The SVD exists for any given m × n matrix.

The SVD is a matrix decomposition method that can be applied to any square
matrix, whereas the eigenvalue decomposition can only be applied to a square
matrix. Nevertheless, the SVD bears a strong resemblance to the eigenvalue
decomposition.

The columns of U are the eigenvectors of AA∗ and the columns of V are the
eigenvectors of A∗A. The r singular values on the diagonal of Σ are the square
roots of the nonzero eigenvalues of both AA∗ and A∗A.

The questions we consider in this thesis are typically studied in the mathe-
matical discipline called algebraic geometry. It is in many cases instructive to
consider the geometrical interpretation of an algebraic notion. The SVD has

2The rank of the matrix is read off as the number of nonzero singular values. The SVD is the
most reliable method for determining the (numerical) rank of a matrix, which is in practice done
by counting the number of singular values that are greater than a certain user-defined threshold
value. The default threshold value used in MATLAB is max(m, n) ⋅ ǫ(σ1) where ǫ(σ1) is the
distance from σ1 to the next larger in magnitude floating point number of the same precision
as σ1 .
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an interesting geometric interpretation. Let us therefore consider the SVD of a
real matrix A ∈ Rm×n. Partitioning U and V accordingly with the partitioning
of Σ as in (A.1) results in

A =
r m−r( )m U1 U2

r n−r

( )Σr 0
0 0

n

( )VT
1 r

VT
2 n−r

The SVD provides numerical bases for the four fundamental subspaces of a
matrix, namely the column space, the row space, the left and right null space.
We have

range(U1) = range(A),
range(U2) = null(AT),
range(V1) = range(AT),
range(V2) = null(A).

Pseudo-inverse of a Matrix

The inverse of a rectangular matrix is not defined, however, a generalization
of the inversion operator is given by the pseudo-inverse. Let A ∈ Cm×n with
m ≥ n and its SVD is given by A = UΣV∗. The Moore-Penrose pseudo-inverse of
A (or pseudo-inverse), denoted by A+, is defined as

A+ ∶= VΣ
+U∗,

where Σ
+ ∶= diag(1/σ1, 1/σ2, . . . , 1/σr, 0, . . . , 0) has dimensions n ×m and r =

rank(A).
Row Compression and Column Compression

Due to the fact the use of orthogonal (unitary) transformations, the SVD
can be used to numerically reliably perform certain transformations on a
given matrix. We now describe the so-called row compression and column
compression operations to ‘compress’ a matrix such that certain rows or
columns, respectively, contain vectors that span the rank of the matrix.

Theorem A.15. Let the SVD of A ∈ Cm×n be given by A = UΣV∗. Then we
have that

U∗A = ΣV∗

= ( Σr 0
0 0 )( V∗1

V∗2
)

= ( ΣrV
∗

1
0 ) ∈ Cm×n
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We have that null(A) = null(U∗A) = null(ΣrV
∗

1 ) and the matrix ΣrV
∗

1 ∈ Cr×n

has full row rank. The pre-multiplication of A by U∗ ‘compresses’ A by row
transformations.

In the same way one can consider the column compression.

Theorem A.16. Let A ∈ Cm×n have the SVD as A = UΣVT . Then we have

AV = UΣ

= ( U1 U2 )( Σr 0
0 0 )

= ( U1Σr 0 ) ∈ Cm×n

Notice that range(A) = range(AV) = range(U1Σr) and the matrix U1Σr ∈
Cm×r has full column rank. The post-multiplication of A by V is a transforma-
tion that ‘compresses’ A by column transformations.

A.1.4 Projections and Least Squares

Orthogonal Projection

Consider a set of vectors ai, with i = 1, . . . ,n and a given vector b /∈
span {a1, . . . , an}. We assume that all vectors ai and b are consisting of real
numbers. Let A denote the matrix having the vectors ai as its columns. Let p
denote the orthogonal projection of b onto the space spanned by the vectors
ai, such that p = Ax = b− e for some unknown vector x, and e is the difference
between b and its orthogonal projection onto the space spanned by the ai. We
then have that e = b − Ab, and e ⊥ ai, i = 1, . . . ,n. Hence we can write

aT
1 e = 0,

aT
2 e = 0,

⋮
aT
n e = 0,

or, more compactly,

AT(b − Ax) = 0 ⇒ x = (ATA)−1ATb.

We can express p by means of the so-called projection matrix P defined by
p = Pb, leading to

p = A(ATA)−1ATb = Pb.
The residual e can be expressed as

e = (In − A(ATA)−1AT)b.
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Least Squares

Today the least squares (LS) method, with its roots going back to Gauss
(1809) and Legendre (1806), is still the basis for many modeling schemes
in applied mathematics and engineering, in particular in a (parameter)
estimation setting.

In its simplest form, i.e., the linear least squares problem, this method can
be viewed as the task of fitting a linear relation to observed noisy data —
or alternatively, to approximately solve an overdetermined linear system (in
practice, the amount of data usually ensures there are more equations than
unknowns). Assume that the data A ∈ Rm×n with m ≥ n are the independent
variables and b ∈ Rm are the dependent variables that are observed, between
which linear relations are expected (however not exact due to measurement
errors). We then have

Ax ≈ b.
One now tries to correct the data b as little as possible such that the
equation

Ax = b +∆b (A.2)

holds. This ‘minimal’ correction to the data b is expressed mathematically as
the minimization of the sum of squared residuals ∆b, subject to the model
equation (A.2). If A is of full column rank n, the solution is found from the
so-called normal equations

(ATA)x = ATb.

In the case the errors are normally distributed (∆b ∼ N (0,σI)), the least
squares estimator corresponds with the Maximum Likelihood estimator.
Observe that a low-rank matrix approximation problem underlies this task,
which becomes clear by investigating (A.2):

( A b +∆b )( x
−1 ) = 0m.

It turns out that behind the scenes, a low-rank matrix approximation problem
is the core task in many (linear) modeling tasks, such as linear dynamical
system identification.

Total Least Squares

A well-known extension of the LS method, is the total least squares (TLS)
problem, also known as errors-in-variables, or orthogonal regression. This
problem is encountered when both the independent variables A and the
dependent variables b are subject to measurement errors. Both A and b are
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adjusted as little as possible such that the corrected data are related linearly,
or equivalently (A +∆A)v = b +∆b, (A.3)

which corresponds to the optimization problem

minimize
x∈Rn

∥( ∆A ∆b )∥2
F
,

subject to (A +∆A)x = b +∆b,
xTx = 1.

Again, there is an obvious underlying low-rank matrix approximation prob-
lem at work, which one can understand from(A.3). The computational task
of finding a solution to the TLS problem is done by finding the SVD of
the augmented data matrix M ∶= ( A b ). The SVD equations are given
by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Mv = uσ,
MTu = vσ,
vTv = 1,
uTu = 1.

(A.4)

Since ∥( ∆A ∆b )∥2
F
= σ2, one needs to find the singular triplet cor-

responding to the smallest singular value. Also in this case, the TLS
estimator corresponds to the Maximum Likelihood estimator when one
assumes i.i.d. additive Gaussian noise: ( ∆A ∆b ) ∼ N (0,σI). Again, it is
natural to view this scheme as a low-rank matrix approximation method, and
the underlying low-rankmatrixmay in this case be reconstructed asM −uσvT,
hence a rank-one modification of M.

The approximation in Frobenius norm of a given matrix by one of lower
rank has a rich and long history, with its roots tracing back to Adcock (1877,
1878), over Pearson (1901), Eckart and Young (1936), Householder and Young
(1938), to Golub and Van Loan (1980, 1996). Several geometric, algebraic and
statistical details can be found in Golub and Van Loan (1996) and Van Huffel
and Vandewalle (1991).

Structured Total Least Squares

When additionally to the former case, the preservation of a specific matrix
structure, and/or a weighting of specific matrix entries has to be taken
into account, the resulting approximation task is termed the Structured,
respectively the Weighted Total Least Squares problem (STLS, respectively
WTLS). Useful references are De Moor (1993, 1994b); Lemmerling (1999);
Markovsky (2008); Rosen et al. (1996).
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Consider an affinely structured data matrix A = (aij) ∈ Rm×n of full column
rank n, which is to be approximated by a low-rank matrix B = (bij) ∈ Rm×n

such that the affine structure is preserved.3 Moreover, an element-wise
weighting W = (wij) ∈ Rm×n can be taken into account. This can be cast as
an optimization problem in the following way

minimize
B,v

∑m
i=1∑n

j=1(aij − bij)2wij,

subject to Bv = 0,
vTv = 1,
B structured.

Two major observations form the underlying motivation for the introduction
of this matrix approximation scheme:

1. It turns out that matrices that are simultaneously affinely structured and
rank deficient occur frequently in many signal processing and system
identification applications. In these applications, the combination of
rank deficiency and structure implies that the underlying data are
‘generated’ by a dynamical system which is linear-in-the-parameters.
However, when dealing with real-life applications, observations are
usually corrupted by additive (measurement) errors, and therefore, the
observed data matrices are never exactly rank deficient. The STLS
problem provides a scheme to correct the data in a least squares
sense, such that an approximation of the underlying system can be
reconstructed.

2. One can tackle this constrained optimization problem by applying the
Lagrange multipliers method to the constrained optimization problem.
When doing so, a ‘nonlinear’ generalized SVD is found: whereas the
SVD arose as an elegant formulation to solve the TLS problem, its
counterpart for STLS was termed the Riemannian SVD in De Moor
(1994a), and is given by the following equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Mv = Dvuτ,
MTu = Duvτ,
vTv = 1,

uTDvu = 1 (= vTDuv),
(A.5)

where u ∈ Rm and v ∈ Rn are a left, respectively right singular vector,
and τ ∈ R is the corresponding singular value. Notice the resemblance

3Affinely structured matrices M can be written as an affine (linear) combination of a given set
{Mk; k = 0, 1, . . . , s} of s+ 1 basis matrices as M = M0 +M1m1 +M2m2 + . . .+Msms. Here, the real
coefficients mk, k = 1, 2, . . . , s ‘parametrize’ the structured matrix M. Examples of such matrices
are symmetric matrices, (block) Hankel, (block) Toeplitz, matrices with a certain sparsity pattern,
etc.
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with the SVD, Equations A.4. The important difference between the SVD
and the Riemannian SVD lies in the symmetric non-negative definite
matrices Dv and Du, the elements of which are quadratic functions of
the components of u, respectively v. Their precise structure depends on
the matrix structure and on the weights in the objective function.

Again, the low-rank approximation problem proceeds by seeking the
minimal singular value τ: it can be shown that τ is exactly equal to the
objective function, i.e.,

τ =
m

∑
i=1

n

∑
j=1
(aij − bij)2wij.

However, when solving the Riemannian SVD, one encounters many subop-
timal local solutions due to the structure constraint. A heuristic approach
to tackle this problem has been presented in De Moor (1993): an iterative
alternating scheme is applied and in consecutive steps, 1) the Riemannian
SVD is solved as a generalized SVD by fixing u and v (and hence also Du

and Dv, and next, 2) an update of u and v is computed and the algorithm
returns to step 1) until convergence. In the specific implementation, QRmatrix
decompositions are employed to speed up the computations.

A.2 State-space Model for 1D Systems

A dynamical linear time-invariant (LTI) discrete time system can be described
using the so-called state-space description

x(k + 1) = Ax(k)+ Bu(k),
y(k) = Cx(k)+Du(k),
x(0) = x0,

(A.6)

where x(k) ∈ Rθ denotes the state vector at time instant k, u(k) ∈ Rρ denotes
the input at time instant k, and y(k) ∈ Rφ is the output vector at time instant k.
The initial state is given as x(0) = x0. Iterating the system equations, starting
from a given initial state x0 and a sequence of inputs u(k) for k = 0, 1, . . ., leads
to

x(1) = Ax0 + Bu(0),
y(0) = Cx0 +Du(0),
x(2) = A2x0 + ABu(0)+ Bu(1),
y(1) = CAx0 +CBu(0)+Du(1),
x(3) = A3x0 + A

2Bu(0)+ ABu(1)+ Bu(2),
y(2) = CA2x0 +CABu(0)+CBu(1)+Du(2),
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In general we obtain

x(k + 1) = Ak+1x(0)+ AkBu(0)+ Ak−1Bu(1)+ . . . + Bu(k),
y(k) = CAkx(0)+CAk−1Bu(0)+ . . . +CBu(k − 1)+Du(k). (A.7)

A.3 Computing the Output to a Given Input Signal

A.3.1 SISO Systems

A fundamental result in LTI system theory is that a system can be completely
characterized by its so-called impulse response. Let us explain this by starting
with a single-input single-output (SISO) system. When dealing with a SISO
system, the input and output are scalar signals, i.e., ρ = φ = 1, hence we denote
the input and output by u and y, respectively. Furthermore the SISO state-
space description is simplified to

x(k + 1) = Ax(k)+ bu,
y(k) = cTx(k)+ du,

with x ∈ Rθ , A ∈ Rθ×θ , b ∈ Rρ, c ∈ Rφ, u(k) ∈ R, y(k) ∈ R, and d ∈ R.

The impulse response of a SISO system is the sequence of outputs y(k)
obtained by applying the impulse input signal δ(k) defined as

δ(k) = { 1 if k = 0,
0 if k ≠ 0. (A.8)

It can be seen from (A.7) that the output of the system, which is called the
impulse response, denoted by g(k), is then given by

g(k) = { d if k = 0,
cTAk−1b if k > 0.

The output of a SISO system to any given input is simply the convolution
of the input with the system’s impulse response. The convolution of two
(univariate) signals, u(k) and g(k) is defined as (u ∗ g) (k) ∶= ∑∞m=−∞ u(m)g(k−
m), however the same operation can be expressed starting from (A.7) as
follows. We have

⎛⎜⎜⎜⎜⎜⎝

y0
y1
y2
⋮

yi−1

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

cT

cTA

cTA2

⋮
cTAi−1

⎞⎟⎟⎟⎟⎟⎟⎠
x0 + T i

⎛⎜⎜⎜⎜⎜⎝

u0
u1
u2
⋮

ui−1

⎞⎟⎟⎟⎟⎟⎠
,
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where the impulse response samples g(k) are placed in a Toeplitz matrix T i,
where

T i ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(0) 0 0 ⋯ 0
g(1) g(0) 0 ⋯ 0
g(2) g(1) g(0) ⋯ 0
⋮ ⋮ ⋮ ⋮

g(i− 2) g(i − 3) g(i− 4) ⋯ 0
g(i− 1) g(i − 2) g(i− 3) ⋯ g(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A.3.2 MIMO Systems

Impulse response experiments of a multiple-input multiple-output (MIMO)
system are a natural generalization of the above-mentioned ideas. In
accordance with the SISO case again we can derive from (A.7) the responses
to an input signal u(k) that is 0 except for at k = 0 as

G(k) = { D if k = 0,
CAk−1B if k > 0. (A.9)

These matrices are called theMarkov parameters. In practice theMIMO impulse
response experiment is executed as follows. First, an impulse signal δ(k) is
applied to the first input, while applying a zero signal to all other inputs.
The response of this experiment provides us with a sequence of vectors that
will compose the first columns of the Markov parameters matrices. Next, an
impulse signal (A.8) is applied to the second input, while applying a zero
signal to all other inputs. The outcome of this experiment will give us the
second columns, etc.

A.4 Realization Theory for 1D Systems

A.4.1 Regular 1D Systems

We consider a state-space model of the form (A.6). An important problem for
this manuscript is the so-called realization problem, which aims at finding a
system description from a given set of impulse response matrices.

Problem A.17 (Realization Problem). Given a set of impulse response ma-
trices G(k), for k = 0, . . . ,N − 1, find the state dimension θ and a system
realization (A,B,C,D).
By embedding the observed impulse response into an appropriately sized
Hankel matrix, the essential information about the underlying model is
revealed, e.g., the rank of the constructed Hankel matrix corresponds to
the McMillan degree of the underlying linear dynamical system — and
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moreover, a state-space model (the so-called realization) is estimated from a
decomposition of this Hankel data matrix.

The extended observability matrix Oi (i > θ) is defined as

Oi =
⎛⎜⎜⎜⎝

C
CA
⋮

CAi−1

⎞⎟⎟⎟⎠
, (A.10)

and the extended controllability matrix Cj (j > n) is defined as

Cj = ( B AB . . . Aj−1B ) . (A.11)

Consider the iφ × jρ block Hankel matrix H i,j with block dimensions i and j
and (i + j − 1) ≤ K, which is defined as

H i,j =

⎛⎜⎜⎜⎜⎜⎜⎝

G(1) G(2) G(3) . . . G(j)
G(2) G(3) G(4) . . . G(j+ 1)
G(3) G(4) . .

.
⋮

⋮ ⋮ . .
.

⋮
G(i) G(i + 1) . . . . . . G(i + j − 1)

⎞⎟⎟⎟⎟⎟⎟⎠
. (A.12)

An obvious consequence from Equation A.9 is that the block Hankel matrix
H i,j can be factorized into the product of the extended observability matrix
and the extended controllability matrix, i.e.,

H i,j = OiCj.

If i and j are sufficiently large — which we will assume — this block Hankel
matrix is rank deficient. Furthermore, its rank is equal to n, the McMillan
degree of the system.

A boiled-down version of the realization algorithm of Ho and Kalman (1966)
is given in Algorithm 7.

Algorithm 7. (Realization Algorithm (Ho and Kalman, 1966))

input: Markov parameters G(k), k = 0, . . . ,K
output: (Minimal order) realization (A,B,C,D)

1. The matrix D is easily found as

D = G(0). (A.13)

2. Construct the (block-)Hankel matrix as in (A.12).



REALIZATION THEORY FOR 1D SYSTEMS 179

3. Perform an SVD on H i,j:

H i,j = UΣVT

and take
Oi = UΣ

1/2,
Cj = Σ

1/2VT .

The rank of the block Hankel matrix, the minimal order of the underly-
ing system, is equal to the number of nonzero singular values.

4. C is formed from the first φ rows of Oi, while B is formed from the first
ρ columns of Cj.

5. It follows from (A.10) that4

OiA =Oi, (A.14)

so A can be calculated as
A =Oi

+Oi. (A.15)

Analogously, A can also be calculated from (A.11) as

A = ∣Cj Cj∣+ . (A.16)

A.4.2 Realization Theory for 1D Descriptor Systems

Consider the autonomous linear time-invariant system

Ẽx(k + 1) = Ãx(k)
y(k) = C̃x(k),

where y(k) ∈ Rφ and x(k) ∈ Rθ denote the output and state vector at time
instant k. For identification purposes, the matrices Ẽ, Ã and C̃ are unknown
matrices of appropriate dimensions. This system called a descriptor system if
the matrix Ẽ is singular, otherwise it is called a regular system.5

We assume that the pencil λE − Ã is given in the Kronecker Canonical Form
(KCF), meaning that Ẽ and Ã are block diagonal matrices, which bears no loss
of generality.6

4If X is a iφ × jρ block matrix, with φ × ρ matrices as its blocks, then X , X are (i − 1)φ × jρ
matrices constructed from X by omission of the first, last block row, respectively. Similarly, ∣X , X∣
are the iφ × (j − 1)ρ block matrices constructed from X by omission of its first, last block column,
respectively.

5Note that, if Ẽ is invertible, the equation Ẽx(k + 1) = Ãx(k) can be rewritten as x(k + 1) =
Ẽ
−1

Ãx(k), resulting in a regular system as in (A.6).
6In the case the matrix pencil is regular, the Kronecker canonical form is also called the

Weierstrass canonical form. A nice discussion about the Kronecker and Weierstrass canonical
forms is beyond the scope of this text. In Gerdin (2004a,b) a nice introduction can be found,
together with algorithms for computing them and several applications. The Kronecker and
Weierstrass canonical forms are also discussed in Gantmacher (1960, Chapter 12). The original
works regarding these canonical forms are Kronecker (1890) and Weierstrass (1868).
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Consider therefore the equivalent model

(PẼQ)(Q−1x(k + 1)) = (PÃQ) (Q−1x(k)) ,
y(k) = (C̃Q)(Q−1x(k)) ,

which allows to decompose the pencil λẼ − Ã into a regular and a singular
part

P (λẼ − Ã)Q = ( AR −λI 0
0 λES − I

) ,
where P,Q ∈ Rθ×θ .

The system equations can then be transformed into the reduced model
(Moonen et al., 1992)

( v(k + 1)
w(k − 1) ) = ( AR 0

0 ES
)( v(k)

w(k) ) ,
y(k) = ( CR CS )( v(k)

w(k) ) ,
which separates the regular part (denoted by the state vector v ∈ RθR ) and
singular part (denoted by the state vector w ∈ RθS ), with θR + θS = θ. Notice
that the singular part is implemented using an iteration running backward in
time. Let the state vector sequences V k andW k be defined as7

V k ∶= ( vk vk+1 . . . vk+j−1 ) , and
W k ∶= ( wk wk+1 . . . wk+j−1 ) .

Define the output Hankel matrix Y1∣i as (with typically j≫ i)

Y1∣i =
⎛⎜⎜⎜⎜⎝

y1 y2 . . . yj

y2 y3 . . . yj+1
⋮ ⋮ ⋮
yi yi+1 . . . yi+j−1

⎞⎟⎟⎟⎟⎠
We now have

Y1∣i =
⎛⎜⎜⎜⎝

CR CSE
i−1
S

CRAR ⋮
⋮ CSES

CRA
i−1
R CS

⎞⎟⎟⎟⎠(
v1 v2 . . . vj

wi wi+1 . . . wi+j−1
)

Indeed, the following equation is a classical result in realization theory

Y1∣i = Γ( V1
W i
) ,

7Remark that, for notational convenience, we sometimes employ the simplified notation xk to
denote x(k).
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where

Γ ∶= ( ΓR ΓC ) ∶=
⎛⎜⎜⎜⎝

CR CSE
i−1
S

CRAR ⋮
⋮ CSES

CRA
i−1
R CS

⎞⎟⎟⎟⎠ (A.17)

Notice that the nilpotency of ES prescribes the existence of a µ for which Ed
S = 0

for d ≥ µ. Consequently, in Γ the following structure emerges,

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

CR 0
CRAR ⋮

0
⋮ CSE

µ−1
S
⋮

CRA
i−1
C CS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is very reminiscent of the Vandermonde structure we encounter in the
null space of the Sylvester matrix.





BAlgebraic Geometry

An important aim of this thesis is to develop a framework to solve systems
of polynomial equations from a linear algebra point of view. Therefore,
throughout the thesis we aim to keep the references to the terminology of
algebraic geometry minimal.

In the current chapter the basics of polynomial algebra (i.e., algebraic
geometry) are presented, including the representation of a polynomial as its
coefficient vector, the notions of ideals and varieties, and the definition of the
dimension of the solution set of a system of polynomial equations. We have
borrowed most of this chapter from Cox et al. (2007, 2005), which provide an
excellent and accessible introduction to the field of algebraic geometry.

B.1 Monomials and Polynomials

We will now discuss the main objects of polynomial algebra, namely mono-
mials and polynomials.

Definition B.1. A monomial in the variables x1, . . . , xn is a product of the form

x
α1
1 ⋅ x

α2
2 ⋯x

αn
n ,

where the exponents α1, . . . , αn are nonnegative integers.

The notation for monomials will usually be simplified as follows: let α =(α1, . . . , αn) be an n-tuple of non-negative integers. Then we write

xα = xα1
1 ⋅ x

α2
2 ⋯x

αn
n .

Notice that, when α = (0, . . . , 0), we have xα = 1.
Definition B.2 (Total Degree). The total degree of the monomial xα is defined
as

deg(xα) ∶= ∣α∣ ∶= n

∑
i=1

αi.

183
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Often, we will need to count the number of monomials. The following
formulas express the number of monomials, either of total degree equal to d
or of total degree less than or equal to d as binomial coefficients.

Lemma B.3 (Number of monomials). The number of monomials of total
degree equal to d in n variables xi, . . . , xn is given by

(n + d − 1
d
) = (n + d − 1

n − 1
) = (n+ d − 1)!(n − 1)! d! . (B.1)

The number of monomials of total degree less than or equal to d in n variables
xi, . . . , xn is given by

(n + d
d
) = (n+ d)!

n! d!
. (B.2)

An intuitive way for to understand these numbers is to consider the following
related counting problem. Assume that there are n boxes (one for each
variable) over which one has to distribute d marbles (degrees). Then the
number of possible configurations can be counted as follows: the number of
permutations of the n − 1 separators between the boxes plus the d marbles,
divided by the permutations of the separators and the permutations of the
marbles. This yields (B.1). Summation over d results in (B.2).

Remark B.4. It can easily be shown that the number of monomials in a fixed
number of variables increases polynomially with the degree d. From (B.2) we
find, for n fixed,

(n + d
d
) = (n + d)!

n! d!

= nd +O(nd−1)
d!

,

where O(nd−1) represents the terms in the expansion of degree less than d.

We are now ready to define multivariate polynomials, the central object of
study in the current thesis.

Definition B.5. A polynomial f in the variables x1, . . . , xn is a finite linear
combination of monomials. A polynomial f can be written in the form

f =∑
α

cαx
α,

where the sum is taken over a finite number of n-tuples α = (α1, . . . , αn). We
call cα the coefficient of the monomial xα. If cα ≠ 0, then we call cαx

α a term
of f . The total degree of the polynomial f , denoted deg( f ), is the maximum
deg(xα) = ∑n

i=1 αi of which the corresponding coefficient cα is nonzero.

Notice that, in this definition, we have not explicitly specified the set out of
which the coefficients are taken. In most cases, we will use real numbers as



VECTOR REPRESENTATION OF A POLYNOMIAL 185

the coefficients of the polynomials. However, without loss of generality, it can
be assumed that we are working over the complex numbers, for mathematical
convenience. When the coefficients are real numbers, the roots are either real
or complex conjugated pairs.

Example B.6. The polynomial f = 2x31x2 + 4x1x22x3 − 5x3 has three terms, and
total degree four. Notice that there are two terms of maximal total degree,
which is something that cannot happen for polynomials of one variable.

It will often turn out to be necessary to carefully order monomials, for which
we have chosen to use the degree negative lexicographic ordering.1

Definition B.7 (Degree Negative Lexicographic Order). Let α, β ∈ Nn be
monomial exponent vectors. Then two monomials represented by α and β are
ordered by the degree negative lexicographic order as α <dnlex β (simplified as
α < β), if

- ∣α∣ < ∣β∣, or
- ∣α∣ = ∣β∣ and in the vector difference β − α ∈ Zn, the left-most non-zero
entry is negative.

Example B.8. Themonomials of maximal degree three in two variables x1 and
x2 are ordered by the degree negative lexicographic order as

1 < x1 < x2 < x21 < x1x2 < x22 < x31 < x21x2 < x1x22 < x32.

B.2 Vector Representation of a Polynomial

In this thesis we study linear algebra methods for solving polynomial equa-
tions. We will therefore use the well-known property that the polynomials of
n variables of (total) degree d form a vector space. A polynomial can hence
be represented as a vector. We consider therefore a row vector containing the
coefficients (together with zeros) multiplied with a column vector containing
all monomials of the n unknowns of degree at most d. The monomials in the
monomial vector are ordered by the degree negative lexicographic monomial
ordering scheme.

Example B.9. The polynomial f = 5 − 8x1 + 4x22 can be written as the inner
product

f = ( 5 −8 0 0 0 4 ) ( 1 x1 x2 x21 x1x2 x22 )T ,
where the bars ∣ separate the blocks of equal total degree.

1Most of the results in this thesis immediately hold for any graded monomial ordering.
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Lemma B.10. The dimension of the vector space of polynomials of degree d
in n variables is given by

(n + d
n
).

B.3 Ideals and Varieties

Ideals and varieties play central roles in the questions studied in this thesis.
An ideal is generated by a system of multivariate polynomial equations and
describes a set of points in the affine space that satisfy all the constituting
equations. This solution set is called a variety. In this text we will mainly
restrict our attention to the case of zero-dimensional varieties, i.e., the solution
set of a system of polynomial equations consisting of a finite number of
points.

Let us start by reviewing the definition of the polynomial ring.

Definition B.11. The set of all polynomials in the variables x1, x2, . . . , xn with
coefficients in C is called a polynomial ring, and denoted by C[x1, . . . , xn].
The next crucial concept is the affine space over the field of coefficients.

Definition B.12. Given the field C and a positive integer n, the n-dimensional
affine space over C is defined as the set

Cn = {(a1, . . . , an) ∶ a1, . . . , an ∈ C} .
The core problem we address in this manuscript, is to find the solutions of
systems of polynomial equations.

Definition B.13. In terms of algebraic geometry, the basic geometric ob-
ject concerned with a system of polynomial equations is an affine variety:
V( f1, . . . , fs) ⊂ kn is the set of all solutions of the system of equations
f1(x1, . . . , xn) = . . . = fs(x1, . . . , xn) = 0.
The next algebraic object playing a fundamental role in algebraic geometry is
the ideal.

Definition B.14. A subset I ⊂ C[x1, . . . , xn] is an ideal if it satisfies:

1. 0 ∈ I.
2. If f , g ∈ I, then f + g ∈ I.
3. If f ∈ I and h ∈ C[x1, . . . , xn], then h f ∈ I.

Naturally, a system of polynomial equations also defines an ideal.
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Definition B.15. Let f1, . . . , fs be polynomials in C[x1, . . . , xn]. Then we set

⟨ f1, . . . fs⟩ = { s

∑
i=1

hi fi ∶ h1, . . . , hs ∈ C[x1, . . . , xn]} .
A crucial observation is that ⟨ f1, . . . fs⟩ is an ideal. We call ⟨ f1, . . . fs⟩ the ideal
generated by f1, . . . fs.

It turns out that there is an interesting correspondence between ideals and
varieties, linking algebra and geometry.

Definition B.16. Let V ⊂ Cn be an affine variety. Then we set

I(V) = { f ∈ C[x1, . . . , xn] ∶ f (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V} .
A crucial observation is that I(V) is an ideal.

Lemma B.17. If V ⊂ Cn is an affine variety, then I(V) ⊂ C[x1, . . . , xn] is an
ideal. We will call I(V) the ideal of V.

B.4 Projective Ideals and Varieties

One of the interesting properties of projective geometry is that points at
infinity are incorporated as regular points for which the homogenization
variable x0 takes the value zero. We will see that our matrix formulations
are implicitly always describing solutions in the projective space.

The projective space is defined by the equivalence relation ∼ on the n + 1-
dimensional space by setting

(x′0, . . . , x′n) ∼ (x0, . . . , xn),
such that (x′0, . . . , x′n) = λ(x0, . . . , xn)with λ ≠ 0.
The projective space is hence defined as follows.

Definition B.18. The n-dimensional projective space over C is defined as the set
of equivalence classes of ∼ on Ck+1 − {0}. Each nonzero n+ 1-tuple (x0, . . . , xn)
defines a point in the projective space, and we call (x0, . . . , xn) its projective
coordinates.

For many purposes, the projective space can be treated similarly as the affine
space, with the difference being an additional dimension. However, it turns
out that care must be taken when the notions of ideals and varieties are
considered for the projective case. In the case one is working in the projective
space, homogeneous polynomials, i.e., polynomials in which all terms are of
equal total degree, must be considered. The following definition states how
the so-called homogenization of a polynomial can be obtained.
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Definition B.19 (Homogenization and dehomogenization). The homogeniza-
tion of an equation f , denoted f h, is computed using the formula

f h = xd0 ⋅ f (x1/x0, . . . , xn/x0) .
Dehomogenizing f h yields f , or formally

f h(1, x1, . . . , xn) = f (x1, . . . , xn).
The variable x0 is sometimes called the homogenization variable.

Now, the notions of ideal and variety can be naturally generalized. For
instance, we have

Definition B.20. Let f1, . . . , fs homogeneous polynomials. Then we set

V( f1, . . . , fs) = {(a0, . . . , an) ∶ fi(a0, . . . , an) = 0 for all 1 ≤ i ≤ s} .
We call V( f1, . . . , fs) the projective variety defined by f1, . . . , fs.

B.5 Dimension of a Variety

There are several definitions of the dimension of a variety in algebraic
geometry. Some of the definitions are of geometric nature, whereas others
are purely algebraic. For this thesis, two definitions are of interest, namely the
one using the Hilbert function and one based on the more intuitive algebraic
and geometric notions of independence.

B.5.1 Intuitive Definition

Throughout this manuscript, an intuitive notion of dimension will suffice in
most cases. We illustrate the idea by the case where a variety V is defined
by a single polynomial. We have that the dimension of the variety, defined
by a homogeneous polynomial f , in the projective space is dimV( f ) = n − 1.
Indeed, this corresponds to our intuitive geometric notion of an equation
imposing a constraint on the free variables: a single equation reduces the
degrees of freedom by one.

Under mild conditions, this intuitive notion can be generalized to the
following proposition.

Proposition B.21. Consider the homogeneous polynomials f1, . . . , fs. We have
that

dimV( f1, . . . , fs) = n − s.
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Said in words, in generic conditions, every equation makes the dimensionality
of the space drop with one — each equation diminishes the available degrees
of freedoms by one.

More precisely, we have the following theorem.

Theorem B.22 (Cox et al. (2007)). Let V ∶= V( f1, . . . , fs) ∈ Cn be a variety and
suppose that x⋆ ∈ V is a point on V where the Jacobian matrix J f (x⋆) has rank
s (see (1.2)). Then x⋆ is a nonsingular point of V and lies on a component of V
of dimension n − s.

The theorem supports the intuitive notion that the dimension of a variety
should drop by one for every equation defining the variety. Moreover, it
specifies the condition under which this happens: the defining equations
f1, . . . , fs should be sufficiently independent (expressed by the rank constraint
on J f ).

B.5.2 Definition Using Hilbert Polynomial

There is another definition of dimension having an algebraic nature and due
to Hilbert (1890). Hilbert’s notion of dimension arose from the insight that
the dimension of a monomial ideal is characterized by the increase of the
monomials not in the ideal as the total degree increases.

A careful generalization of this notion to any ideal leads to the formulation of
the (affine) Hilbert function, defined as

aHFI(d) = dimC[x1, . . . , xn]≤d/I≤d,
= dimC[x1, . . . , xn]−dim I≤d,

where C[x1, . . . , xn]≤d denotes the set of polynomials of total degree ≤ d in
C[x1, . . . , xn], and I≤d ∶= I ∩C[x1, . . . , xn]≤d.
For a sufficiently large degree d ≥ dH , called the index of regularity of I, the
affineHilbert function aHFI(d) coincides with a polynomial, called the (affine)
Hilbert polynomial aHPI(d).
Theorem B.23 (Dimension of a Variety using Hilbert Polynomial). The
dimension of the variety V ∶= V(I) is defined as the degree of the Hilbert
polynomial aHPI(d), or

dimV = deg aHPI.
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B.6 Gröbner Bases and Buchberger’s Algorithm

Knowing + and × is good enough,
understanding their interaction is
ideal.

BRUNO BUCHBERGER

B.6.1 Introduction

Buchberger (1965) developed the algorithm that sparked the beginning of
computer algebra. The so-called Gröbner basis algorithm computes a nicely
behaved basis for a given set of polynomial equations. Loosely speaking,
the procedure can be understood as the polynomial generalization of the
Gaussian elimination algorithm and EuclideanGCD algorithm tomultivariate
polynomials.

In essence, Buchberger’s algorithm proceeds by manipulating the given set of
equations with the objective of eliminating certain terms, while at all times the
‘new’ set of equations is algebraically equivalent to the given equations, i.e.,
defining the same ideal and hence describing the same solution set.

A typical way to do this is to aim at finding a triangular structure: one or
more equations would be univariate, then some equations would involve two
or a few variables, until the most complicated equation involves (almost) all
variables. This requires that one defines an ordering on the monomials to
decide in what order the terms should be eliminated.

The triangular structure greatly simplifies the task of solving the system. For
instance, if a lexicographic ordering is used, one of the polynomials in the
result will be univariate. After the univariate equation can be solved, the
solutions can be substituted in the next equation which has two unknowns,
from which the second unknowns can again be determined, etc. By iterating
in this way, all unknowns are ultimately determined. Not only lexicographic
term orderings are considered; the properties of a Gröbner basis with different
term orderings (e.g., total degree orderings (Cox et al., 2007)) are in several
circumstances even more desirable.

Gröbner bases would become the backbone of nearly all computational
algebraic geometry methods, and is until today the most dominant tool in
computer algebra. We have deliberately avoided the precise description of
the Gröbner basis algorithm until this point, because we aim to show how a
numerical linear algebra approach can be used as an alternative for finding the
zeros of a system of polynomial equations. For the sake of completeness, and
in order to fully describe the Stetter-Möller matrix method, which is closely
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related to our matrix method, the definition of a Gröbner basis is presented
now.

Much of the material in this section is taken from Cox et al. (2007).

B.6.2 General Definitions and Multivariate Division

An important ingredient in Buchberger’s algorithm is a term ordering. For
example the degree negative lexicographic ordering we have defined in
Definition 5.1 can be used. In the literature, a number of different orderings
is described, but their enumeration is not of any relevance for the current
manuscript. Let us briefly recall two of the well-known ones: lexicographic
ordering (analogous to the ordering of words in a dictionary) and graded
lexicographic ordering.

Definition B.24. (Lexicographic Ordering) Let xα and xβ be monomials in
C[x1, . . . , xn]. We say xα >lex xβ if in the difference α − β ∈ Zn, the leftmost
nonzero entry is positive.

Definition B.25. (Graded Lexicographic Ordering) Let xα and xβ be monomials
in C[x1, . . . , xn]. We say xα >grlex xβ if ∑n

i=1 αi > ∑n
i=1 βi, or if ∑

n
i=1 αi = ∑n

i=1 βi,

and xα >lex xβ.

Let us assume that a monomial ordering is chosen, expressed by >, and let
us now consider the terms appearing in a given polynomial f = ∑α cαx

α and
introduce some definitions.

Definition B.26 (Leading Term, Leading Coefficient, LeadingMonomial). The
leading term of f (w.r.t. >) is the product cαx

α where xα is the largest monomial
appearing in f in the ordering >. The notation LT( f ) will be used for the
leading term. Furthermore, if LT( f ) = cxα, then LC( f ) = c is the leading
coefficient of f and LM( f ) = xα is the leading monomial.

A multivariate division algorithm can now be devised, for which an algorithmic
implementation is presented below. Let us first set up some basics.

Definition B.27 (Multivariate Division). Fix any monomial order >, and let
F = f1, . . . , fs be an ordered set of polynomials. Then any polynomial f ∈
C[x1, . . . , xn] can be written as

f = a1 f1 + a2 f2 + . . . + as fs + r, (B.3)

where ai, r ∈ C[x1, . . . , xn], for each i, ai fi = 0 or LT( f ) ≥ LT(ai fi), and either
r = 0, or r is a linear combination of monomials, none of which is divisible by
any of LT( f1), . . . , LT( fs). We call r a remainder of f on division by F.

Algorithm 8 provides a procedure to perform themultivariate division.

Algorithm 8. (Multivariate Division Algorithm)
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input: f1, . . . , fs, f
output: a1, . . . , as, r

1) a1 ∶= 0; . . . ; as ∶= 0; r ∶= 0
2) p ∶= f

3) while p ≠ 0, do
a) i ∶= 1
b) divisionoccurred ∶= false
c) while i ≤ s and divisionoccurred = false, do

i. if LT( fi) divides LT(p), then
A. ai ∶= ai + LT(p)/LT( fi)
B. p ∶= p− (LT(p)/LT( fi)) fi
C. divisionoccurred ∶= true

ii. else

A. i ∶= i + 1
d) if divisionoccurred = false, then

i. r ∶= r + LT(p)
ii. p ∶= p− LT(p)

B.6.3 From S-Polynomials to Buchberger’s Algorithm

Another central ingredient in Buchberger’s algorithm are the so-called S-
polynomials (from subtraction polynomials, or syzygy polynomials). S-
Polynomials are used to eliminate leading terms from a system of equations
by considering two polynomials p and q from the system, and consequently
computing a least common multiple, leading to the vanishing of the leading
terms.

The multivariate division algorithm is used to reduce the result from this
operation to a normal form with respect to a set of polynomial equations (this
normal form is the remainder r in the multivariate division algorithm).

Let us consider the following definition.

Definition B.28 (S-Polynomial). Let f , g ∈ C[x1, . . . , xn] be nonzero polynomi-
als. Fix a monomial order > and let

LT( f ) = cxα and LT(g) = dxβ,
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where c, d ∈ k. Let xγ be the least common multiple of xα and xβ. The S-
polynomial of f and g, denoted S( f , g), is the polynomial

S( f , g) ∶= xγ

LT( f ) ⋅ f − xγ

LT(g) ⋅ g.
By definition, S( f , g) ∈ ⟨ f , g⟩.
Example B.29. Consider f = x3y − 2x2y2 + x and g = 3x4 − y in Q[x, y], and
using >lex, we have xγ = x4y, and

S( f , g) = x f − (y/3)g = −2x3y2 + x2 + y2/3.
If we continue with the equations from the previous example, and now take

the remainder on division by F = ( f , g), denoted S( f , g)F, we can uncover
new leading terms of elements in ⟨ f , g⟩. Note that this step requires the
multivariate division algorithm as described above, and essentially reduces
the result from the S-polynomial with respect to the system of equations we
are dealing with. In this case, we find that the remainder is

S( f , g)F = −4x2y3 + x2 + 2xy+ y2/3,
and LT (S( f , g)F) = −4x2y3 is divisible by neither LT( f ) nor LT(g). Buch-

berger’s algorithm consists in identifying such interfering polynomials in
the system, computing the normal form (i.e., the remainder in the division
algorithm), adding the result to the set of equations, and repeating this
procedure until all reductions yield zero. The following theorem expresses
a criterion by Buchberger that is essential in this sense.

Theorem B.30. A finite set G = g1, . . . , gt is a Gröbner basis of I = ⟨g1, . . . , gt⟩
iff S(gi, gj)G = 0 for all pairs i ≠ j.
This exposition leads to a rudimentary version of Buchberger’s algorithm,
presented in Algorithm 9.

Algorithm 9. (Buchberger’s Algorithm)

input: Set of Polynomial Equations
F = { f1, . . . , fs}

output: Reduced Gröbner Basis
G = {g1, . . . , gt} for I =< F >

1) G ∶= F
2) repeat

a) H ∶= G;
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b) for each pair p ≠ q in H, do

i. h ∶= S(p, q)H
ii. if h ≠ 0, do G ∶= G ∪ {h}

until G = H
Definition B.31 (Reduced Gröbner Basis, Monic Gröbner Basis). A reduced
Gröbner basis for an ideal I ⊂ C[x1, . . . , xn] is a Gröbner basis G for I such that
for all distinct p, q ∈ G, no monomial appearing in p is a multiple of LT(q). A
monic Gröbner basis is a reduced Gröbner basis in which the leading coefficient
of every polynomial is 1, or ∅ if I = ⟨0⟩.
Although Buchberger’s rudimentary algorithm is constructive and finishes

in a finite number of steps (albeit its worst-case complexity is d2
O(n)

○
, where

n is the number of variables, and d○ is the max degree of the equations,
i.e., d○ ∶= maxdeg( fi)), it requires exact arithmetic, and turns out to be
impractical for evenmedium-sized problems. During the last decades, a series
of optimizations has been introduced, of which the work by Faugère (1999,
2002) are currently the most competitive approaches (also among other classes
of solution methods).

B.7 Stetter’s Eigendecomposition Approach

In the current section we will illustrate the Stetter approach (sometimes called
the Stetter-Möller approach) for solving a system of polynomial equations as
an eigenvalue problem. The approach works by computing an eigenvalue
decomposition of a matrix representing multiplication in the quotient space
C[x1, . . . , xn]/I with I ∶= ⟨ f1, . . . , fs⟩.
We assume that ideal I ∶= ⟨ f1, . . . , fs⟩ is radical, i.e.,

√
I = I with

√
I ∶={g ∈ C[x1, . . . , xn] ∶ gµ ∈ I for some µ ≥ 1}, and describes a zero-dimensional

variety. Let G be a Gröbner basis of I. The quotient space C[x1, . . . , xn]/I
is an m-dimensional vector space and has as a monomial basis the set of m
monomials that do not lie in the ideal spanned by the leading terms of G,
which we denote by B.

Any polynomial f ∈ C[x1, . . . , xn] can now be reduced modulo f1, . . . , fs
to a linear combination of the monomials in B. Moreover, multiplication
in C[x1, . . . , xn] can be represented by a multiplication operator, defined
as

Axi ∶ C[x1, . . . , xn]/I → C[x1, . . . , xn]/I
g ↦ xi ⋅ g.
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This operator defines anm×mmultiplicationmatrix Axi . Thematrices Axi and
Ax j for i, j ∈ {1, . . . ,n} commute since xi ⋅ xj = xj ⋅ xi. As a result, the matrices
Axi have common eigenspaces. It canmoreover be shown that the eigenvalues
λi, i = 1, . . . ,n associated to a common eigenvector v are the i-th component of
the points on the variety V(I). From the eigenvectors, the mutual matching
among the components xi can be retrieved.

Summarizing, the approach proceeds as follows:

1. A basis for the quotient space C[x1, . . . , xn]/I is obtained by computing
a Gröbner basis G. The normal set B of the Gröbner basis G serves as a
basis for the quotient space and are placed in the Stetter (eigen)vector.
The normal set B is defined as the set of monomials that do not lie in the
ideal spanned by the leading terms of G.

2. For any given multiplication polynomial g(x1, . . . , xn), the shifts of
the normal set monomials with g are reduced to an expression in
terms of the normal set elements. This is done using a normal form
algorithm. The normal form is the remainder r in the polynomial
division procedure, expressed in terms of the monomials that are not in
the ideal of G. In this way, the rows of a so-called multiplication matrix
Ag are constructed.

3. The eigenvalues of the multiplication matrix Ag provide the evaluations
of the roots (i.e., the points of V(I), evaluated in the shift polynomial g.
Properly rescaling the eigenvectors reveals the monomials of the normal
set and hence the mutual matching between the solution components.

Example B.32. Let us show this approach on a small example. We revisit the
equations of Example 6.13. The equations are

f1(x1, x2, x3) = x1x2 − 3 = 0
f2(x1, x2, x3) = x21 − x

2
3 + x1x3 − 5 = 0

f3(x1, x2, x3) = x33 − 2x1x2 + 7 = 0,

and a Gröbner basis G is computed using the degree negative lexicographic
ordering. We find

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1x2 − 3 = 0,
14x22 − 25− 5x1x3 + 2x3 − 5x2 + x1 = 0,

5x3x2 + 15− 6x1x3 − 3x21 − x2 = 0,
x23 + 5− x1x3 − x

2
1 = 0,

5x31 − 25+ 4x1x3 + 2x
2
1 − 25x3 + 84x2 − 75x1 = 0,

5x3x21 + 15− 2x1x3 − x
2
1 − 42x2 + 25x1 = 0.

The leading terms of G are {x1x2, x22, x2x3, x23, x31, x31x3}, so the normal set is

B = {1, x1, x2, x3, x21, x1x3} .
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Next, we choose g(x1, x2, x3) = x1 + 2x2 + 3x3 as the shift polynomial as in
Example 6.13 and we have the multiplication matrix Ag as

Ag =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 0 0
6 0 0 0 1 3

−17/7 −1/7 46/35 −2/7 9/5 151/35
−21 0 2/5 0 21/5 32/5
−4 6 42/5 5 1/5 2/5
3 10 −84/5 21 −2/5 −4/5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is obtained by computing for each element of B its multiplication with
g and reducing the result with respect to the Gröbner basis G; the remainder
is linear in the elements of B and composes a row of Ag.

We have then

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 3 0 0
6 0 0 0 1 3

−17/7 −1/7 46/35 −2/7 9/5 151/35
−21 0 2/5 0 21/5 32/5
−4 6 42/5 5 1/5 2/5
3 10 −84/5 21 −2/5 −4/5

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
x1
x2
x3
x21
x1x3

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= (x1 + 2x2 + 3x3)

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
x1
x2
x3
x21
x1x3

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

The eigenvectors of Ag are rescaled such that the first entry equals one. From
this we read off the solutions as

x1 x2 x3

1.857∓ 0.176i 1.600± 0.151i 0.500± 0.866i
−2.000 −1.500 −1.000

−2.357± 0.689i −1.172∓ 0.343i 0.500∓ 0.866i
3.000 1.000 −1.000



CPolynomial System Solving:

Historical Notes

C.1 Introduction

The problem of finding the roots of a polynomial, or a system of multivariate
polynomials, is one of the oldest questions in mathematics and an essential
task in scientific computing. It arises at many problems in science and
engineering, and has a very long and rich history that be traced back to
the Sumerians, ancient Egypt and Babylon, where the problem originated
in mensuration and surveying problems. The problem has defined the very
course of mathematical development for thousands of years.

In the current chapter, some historical and bibliographic notes and anecdotes
regarding the development of algebra, geometry, and algebraic geometry have
been collected. Emphasis is put on the facts concerning the task of solving
systems of polynomial equations and linear algebra. This chapter is heavily
based on Pan (1997); Smith (1951, 1953); Stewart (1993), which provide a
most intriguing collection of historical facts about the history of mathematics
in general, and specifically the history of the problems addressed in this
thesis.

C.2 Pre-history

The task of solving a polynomial equation has historically motivated the
development of several fundamental mathematical concepts. The interaction
between algebra and geometry has been central throughout the development
of mathematics: often, algebraic problems were solved by geometric meth-
ods.
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The Sumerians (3rd millennium BCE) knew in some way the problem of
finding the solutions of a polynomial equation. The problem occurs also in
the ancient mathematics developed in Egypt and Babylon. The questions
were stated in words (i.e., rhetorical), although traces of symbolic algebra have
been found.

The Egyptians had methods for solving linear equations around 1800 BCE
and were able to solve systems of two equations in two unknowns around
300 BCE. The mathematics of Babylon (1800-1600 BCE) was already more
advanced than that of Egypt: they considered problems involving more
than two unknowns and equations of higher degrees. Solution procedures
were presented through the use of examples; reasons and explanation were
omitted.

The word ‘geometry’ is derived from the Greek words for ‘earth’ and
‘measurement’ and was the central feature of the mathematics of the Greeks
and often arising from mensuration problems of simple geometric objects or
the study of symmetry. The Greek mathematicians viewed problems and
their proposed solutions from a geometrical viewpoint, without attempting
to demonstrate the reasoning behind them.

Euclid of Alexandria (fl. 300 BCE) is often considered as the father of
geometry. His ‘Elements’ would serve as the main textbook for geometry
from the time of its publication until the late 19th and early 20th century.
Euclid devised a geometrical method for solving a quadratic equation. Several
typical geometric problems were tackled by finding the intersections of
algebraic curves. He is also known for Euclid’s algorithm, a procedure to
compute the greatest common divisor of two numbers, one of the oldest
algorithms still in use today.

The later Greek mathematician Diophantus of Alexandria (250 CE) turned
away from the purely geometrical viewpoint: In ‘Arithmetica’, he gives
a treatment of indeterminate equations, usually in two or more equations
in several variables that have an infinite number of rational solutions.
Diophantus was the first to introduce symbols for the unknowns, together
with other algebraic symbols. General methods were lacking: each of the 189
problems in Arithmetica are solved by different methods.

The problems that were studied in Hindu algebra (800 BCE) were mainly
motivated by astronomy and astrology and were in their later development
significantly influenced by Greek mathematics. Only around 600 CE, their
base 10 positional numeral system had become standard. From then on, the
number zero was treated as a true number, and operations involving this new
number were studied.

In the 7th and 8th centuries CE, the Arabs conquered the land from India,
across northern Africa, to Spain. In the following centuries (until the 14th
century CE), many mathematical and scientific developments were made.
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From the viewpoint of algebraic geometry, the Arabmathematicians were able
to solve — by purely algebraic means — certain cubic equations, and were
then able to interpret the results geometrically.

An important contribution from the same era was the word ‘algebra’ that
is derived from the title of a text book in the subject, ‘Hisab al-jabr w’al
muqabala’, written about 830 CE by the Persian astronomer-mathematician
Mohammed ibn-Musa al-Khowarizmi. The word ‘algorithm’ is a corruption
of his name. Subsequently, the Persian mathematician Omar Khayyám
(born 1048 CE) discovered a general method of solving cubic equations by
intersecting a parabola with a circle.

In the following centuries, a lot of interesting developments in mathematics
were made in China. Zhu Shijie wrote his second book, ‘Jade Mirror of the
Four Unknowns’ in 1303 CE. The first four solutions of the 288 problems
illustrate his method of the four unknowns. He shows how to convert a
problem stated verbally into a system of polynomial equations (up to degree
fourteen), and how to reduce the system to a single polynomial equation
in one unknown, which he solves by Qin Jiushao’s method published in
‘Mathematical Treatise in Nine Sections’ in 1247 CE, making use of a diagram,
nowadays known as the Pascal triangle.

Preceding the work of Carl Friedrich Gauss by 500 years, Zhu Shijie showed
how to solve systems of linear equations be reducing the matrix of their
coefficients to a diagonal form. Rather amazingly, many of the methods
described by Zhu pre-date those by Blaise Pascal (1623-1662 CE), William
Horner (1786-1837 CE), and modern matrix methods by centuries.

C.3 Renaissance

Techniques in which geometrical constructions are applied to algebraic prob-
lems were adopted by a number of Italian Renaissance mathematicians such
as Gerolamo Cardano, Scipione del Ferro and Niccolò Fontana Tartaglia on
their studies of the cubic equation. The development of imaginary numbers
stemmed from the work of Rafael Bombelli around the same time period.
The geometrical approach to construction problems, rather than the algebraic
one, was favored by most 16th and 17th century mathematicians.

The birth of analytic geometry was possible due to three important develop-
ments: a coordinate system, a one-to-one correspondence between algebra
and geometry, and a graphical representation of an algebraic expression.
Although coordinate systems were known to Greek, Arab, Persian and
Hindu, it were the French mathematicians Franciscus Vieta and later René
Descartes and Pierre de Fermat who revolutionized the conventional way of
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thinking about construction problems through the introduction of coordinate
geometry.

During the same period, Blaise Pascal and Gérard Desargues approached
geometry from a different perspective, developing the synthetic notions of
projective geometry. Ultimately, the analytic geometry of Descartes and
Fermatwould supply the 18th centurymathematicians with quantitative tools
needed to study physical problems using the new calculus of Isaac Newton
and Gottfried Wilhelm Leibniz. By the end of the 18th century, most of the
algebraic character of coordinate geometry was subsumed by the calculus
of infinitesimals of Joseph-Louis Lagrange and Leonhard Euler. Later, the
renaissance of pure geometry, beginning in the 19th century and characterized
by the projective geometry of Jean-Victor Poncelet, would ultimately lead
to the non-Euclidean hypotheses of Nikolai Lobachevsky, János Bolyai, and
Bernhard Riemann.

The Italian algebraists of the 16th century assumed that every rational integral
equation has a root. The first writer to assert positively that every polynomial
equation of the nth degree has n roots and no more seems to have been Peter
Roth. Descartes (1637) more clearly expressed the law, but distinguished
between real and imaginary roots and between positive and negative real
roots in making the total number. After these early steps the statement was
repeated in one form or another by various later writers, but the first rigorous
demonstration is due toGauss (1799).

Around 1770, Lagrange started to study resolvents to unify the many different
tricks to solve polynomial equations. The work was a precursor to Galois
theory. Lagrange failed to develop methods for solving equations of degree
five or higher; however, he could not prove that this was impossible. Later
on, this was indeed proved by Paolo Ruffini (1799) and Niels Henrik Abel
(1823). Modern proofs use Galois theory (the first proof using Galois theory
dates back to 1846).

C.4 19th Century

During the 19th century, the branch of mathematics that was concerned
with solving polynomial equations was elimination theory. The Sylvester
matrix construction beautifully shows the intimate link between polynomials,
matrices and resultants, an important tool in elimination theory that expresses
the existence of common solutions by conditions on the coefficients. This
insight would ultimately lead to the formulation of eigenproblems. A number
of methods exists for constructing resultants matrices, which are matrices
whose determinant is the resultant. Important contributions in this field are



20TH CENTURY 201

due to Leopold Kronecker, Étienne Bézout, David Hilbert, James Joseph
Sylvester and Francis Sowerby Macaulay.1

The algebraists of the late 19th century, such as Sylvester and Macaulay,
must have already been aware of the connection between polynomial system
solving and the multiplicative structure of its quotient space (and, hence,
in our current understanding, matrix eigenvalue problems), albeit in the
language of their own time: matrix theory was still premature.

Around 1840, the German mathematicianHermann Grassmann began inves-
tigating vectors. The American physicist Josiah Willard Gibbs developed
an algebra of vectors in three-dimensional space and recognized in vector
algebra a system of great utility for physicists. The widespread influence
of this abstract approach led George Boole to write ‘The Laws of Thought’
(1854), an algebraic treatment of basic logic. Since that time, modern algebra
— also called abstract algebra — has continued to develop. Important new
results have been discovered, and the subject has found applications in all
branches of mathematics and in many of the sciences as well.

The mathematical discipline of abstract algebra resulted out of the work of a
bright German mathematician, David Hilbert. Hilbert is recognized as one
of the most influential mathematicians of the 19th and 20th century. Hilbert’s
famous basis theorem can be translated into terms of algebraic geometry as
follows: ‘every algebraic set over a field can be described as the set of common
solutions of finitely many polynomial equations’.

By the 19th century, the scope of algebra had expanded to the study of
algebraic form and structure and was no longer limited to ordinary systems
of numbers. The attention shifted from solving polynomial equations
to studying the structure of abstract mathematical systems whose axioms
were based on the behavior of mathematical objects that mathematicians
encountered when studying polynomial equations. Since matrix theory was
still in an early stage of development, there was no immediate emphasis on
matrix methods. It should therefore come as no surprise that the equivalence
of polynomial system solving and matrix eigenvalue problems was only
rediscovered at the end of the 20th century.

C.5 20th Century

Adriving force throughout the history and development of mathematics so far
is a desire for algorithms and computation. Tools and devices for facilitating
computation and manipulating numbers have been around since the pre-
history of mathematics, ranging from the abacus (2700-2300 BCE) for addition

1A modern and systematic version of the theory of the discriminants has been developed by
Israel Moiseevich Gelfand and coworkers (Gelfand et al., 1994).
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and subtraction operations to Blaise Pascal’s ‘arithmetic machine’ (ca. 1642) to
add and subtract numbers directly and perform multiplication and division
by repetition, and many more.

The 20th century would witness a boom in computation, leading to the
digital age in which we are living today. Important steps in the history
of modern digital computing can be traced back to the 19th century when
Charles Babbage conceived his difference engines (ca. 1820-1824)which were
able to tabulate polynomial functions. His later analytical engines (ca. 1834)
were programmable and are thus considered as the precursor of modern
digital computers, because of which Babbage is still considered ‘the father
of computing’.2,3 Only well into the 20th century mechanical calculators
took central stage in the the process of ‘computing’ which was until then a
laborious task which was mainly taken up by ‘human computers’.

During the 1930’s and 1940’s, Alan Turing and John von Neumann made
substantial contributions that would ultimately shape the field of digital
computing. The seminal development of the semiconductor transistor in
1947 sparked the era of digital computing. Since 1965 Gordon Moore’s
law prescribes the exponential increase of the number of transistors on an
integrated circuit, leading to the exponential rise in processing speed and
memory capacity, first leading to mainframe computers (ca. 1950-1970) and
later to the era of personal computing.

The study of matrix algebra appeared in the mid 1800’s in England and
was studied by Sylvester and Arthur Cayley, but was at the time mainly
focusing on determinants and elimination theory. During the 20th century,
matrix algebra was turning out to be applicable to many subjects outside pure
mathematics, such as physics, statistics, quantum mechanics, etc. and, on the
other hand, the advent of digital computing was at hand. The modern use
of matrix algebra, and consequently numerical linear algebra, took its form
only around the 1950’s. Numerical linear algebra would turn out to become
an essential tool for modeling and simulation, and is still one of the most
important areas of scientific computing today.

The singular value decomposition (SVD) would (much later) become a central
computational tool in numerical linear algebra. SVD theory can be traced
back to contributions of Eugenio Beltrami, Sylvester,Camille Jordan, Erhard
Schmidt and Hermann Weyl. It was Gene Golub and William Kahan who
proposed the first practical algorithm for computing the SVD in 1965.

2Unfortunately, Babbage’s devices were never built during his lifetime— the London Science
Museum has built a fully operational difference machine on the basis of Babbage’s design only in
1990.

3Together with the first programmable machine, it was Ada Lovelace (1815-1852) who
became the first computer programmer: she came up with a set of instructions intended to be
processed by a machine such as Babbage’s analytical machine.
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Due to historical reasons, by the 1950’s, the (natural) links between matrix
algebra and polynomial system solving had seemed to be abandoned or
forgotten. It was only by the end of the 20th century that these links were
rediscovered independently by a number of researchers.

One of the new developments in ‘computational’ algebraic geometry came
from the side of algebraic geometry. Bruno Buchberger proposes in his PhD
thesis (1965) an algorithm for computing a generating set of ideals, having
some desirable properties. He coins such a generating set a ‘Gröbner basis’ in
honor of his thesis advisorWolfgang Gröbner.

Being one of the first computational tools in algebraic geometry, Buchberger’s
approach would dominate the field of ‘computer algebra’ for decades, despite
some major drawbacks. Although the algorithm is guaranteed to end,
the computational complexity is rather poor (both in terms of computing
time and memory required), since intermediate computations and results
can become very large, even for medium-sized problems. Moreover, the
algorithm is conceived in a symbolic setting which makes an implementation
in floating point arithmetic extremely cumbersome. Nevertheless, due to
the huge amount of research activity which has yielded improvements to
the rudimentary algorithm for several decades, Gröbner basis techniques are
today one of the most used tools in computer algebra.

In the 1980s, due to the independent research developments of a number of
scholars, the natural links between polynomial system solving and eigenvalue
problems were rediscovered. Daniel Lazard rediscovers in the resultant-
based framework the work of Macaulay and Sylvester and illustrates how
a algebraic system of polynomials can be solved using matrix computations.
He describes how from a Macaulay coefficient matrix a Gröbner basis can be
computed bymeans of Gaussian elimination. Although the emphasis is not on
the link to eigenvalue problems specifically, seeds of the eigenvalue method
are in this work.

Later, Hans J. Stetter and coworkers propose a method for the determination
of all isolated zeros of a system of multivariate polynomial equations. By
so-called ‘polynomial combination’, the system is reduced to a special form
which is interpreted as a multiplication table for power products (monomials)
modulo the ideal generated by the polynomial equations. The zeros are
then computed from an ordinary eigenvalue problem from the matrix of the
multiplication table; either as the eigenvalues, or they can be read off from
the eigenvectors. After Lazard and Stetter, a series of authors further explores
the links between polynomial system solving and eigenvalue computations,
such as Dinesh Manocha, Bernard Mourrain, Ioannis Z. Emiris, Victor Pan,
Guðbjörn Jónsson and Stephen Vavasis, among others.

At the moment, interesting developments in polynomial optimization prob-
lems are taking place. For numerically solving a system, probably the
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homotopy methods of Tien-Yien Li and Jan Verschelde are currently the most
efficient algorithms. For specific subclasses of problems modern methods
using positivity or convex optimization, such as the methods of Pablo
Parrilo and Jean-Bernard Lasserre, greatly outperform the classical computer
algebra methods. The 21st century may well become the golden century for
polynomial algebra.
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