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Beknopte Samenvatting

Niet-parametrische regressie is een krachtige methode voor data analyse omdat
deze techniek weinig assumpties oplegt aan de vorm van de gemiddelde functie.
Deze technieken zijn uiterst geschikt voor het ontdekken van niet lineaire verban-
den tussen variabelen. Een nadeel van deze methodes is hun rekencomplexiteit
wanneer grote data sets worden beschouwd. Reductie van de complexiteit voor
kleinste kwadraten support vector machines (LS-SVM) is mogelijk door gebruik te
maken van vaste-grootte kleinste kwadraten support vector machines (FS-LSSVM).
Deze methode is geschikt voor behandelen van grote data sets op een PC.

De eigenschappen van LS-SVM worden bestudeerd wanneer de Gauss-Markov
condities niet vervuld zijn. We ontwikkelen een robuuste versie van LS-SVM
gebaseerd op iteratieve herweging waarbij de gewichten gebaseerd zijn op de
distributie van de residuen. We tonen aan dat de empirische maxbias curve
van de ontwikkelde robuuste procedure slechts licht verhoogt als functie van het
aantal uitbijters. Verder, stellen we drie conditions voor om een volledig robuuste
procedure te verkrijgen.

Verder worden de gevolgen bestudeerd wanneer de onafhankelijk en identisch
verdeelde assumptie niet vervuld is. We tonen voor niet-parametrische kernel
gebaseerde regressie aan dat de methodes voor model selectie falen wanneer de
data gecorreleerd is. We ontwikkelen een model selectie procedure voor LS-
SVM die bestand is tegen correlatie. Hierbij is geen enkele voorkennis van de
correlatiestructuur vereist.

Vervolgens, ontwikkelen we bias gecorrigeerde 100(1 − α)% benaderende be-
trouwbaarheids- en predictie-intervallen voor lineaire smoothers (regressie en
classificatie). We tonen, onder bepaalde condities, de asymptotische normalitiet
van LS-SVM aan. Verder, worden d.m.v. voorbeelden het praktische nut van deze
intervalschattingen gëıllustreerd voor regressie en classificatie.

Tot slot, worden er een aantal toepassingen gegeven i.v.m. systeemidentificatie,
hypothesetesten en dichtheidsfunctieschatting gebaseerd op de ontwikkelde tech-
nieken.
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Abstract

Nonparametric regression is a very popular tool for data analysis because these
techniques impose few assumptions about the shape of the mean function. Hence,
they are extremely flexible tools for uncovering nonlinear relationships between
variables. A disadvantage of these methods is their computational complexity
when considering large data sets. In order to reduce the complexity for least
squares support vector machines (LS-SVM), we propose a method called Fixed-
Size LS-SVM which is capable of handling large data set on standard personal
computers.

We study the properties of the LS-SVM regression when relaxing the Gauss-
Markov conditions. We propose a robust version of LS-SVM based on iterative
reweighting with weights based on the distribution of the error variables. We show
that the empirical maxbias of the proposed robust estimator increases slightly with
the number of outliers in region and stays bounded right up to the breakdown
point. We also establish three conditions to obtain a fully robust nonparametric
estimator.

We investigate the consequences when the i.i.d. assumptions is violated. We
show that, for nonparametric kernel based regression, classical model selection
procedures such as cross-validation, generalized cross-validation and v-fold cross-
validation break down in the presence of correlated data and not the chosen
smoothing method. Therefore, we develop a model selection procedure for LS-
SVM in order to effectively handle correlation in the data without requiring any
prior knowledge about the correlation structure.

Next, we propose bias-corrected 100(1 − α)% approximate confidence and
prediction intervals (pointwise and uniform) for linear smoothers, in particularly
for LS-SVM. We prove, under certain conditions, the asymptotic normality of LS-
SVM. Further, we show the practical use of these interval estimates by means of
toy examples for regression and classification.

Finally, we illustrate the capabilities of the proposed methods on a number of
applications i.e. system identification, hypothesis testing and density estimation.
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Chapter 1

Introduction

1.1 Historical Evolution and General Background

The regression estimation problem has a long history. Already in 1632 Galileo
Galilei used a procedure which can be interpreted as fitting a linear relationship
to contaminated observed data. Such fitting of a line through a cloud of points
is the classical linear regression problem. Roughly 125 years later, Roger Joseph
Boscovich (1757) addressed the fundamental mathematical problem of determining
the parameters which best fits observational equations to data. Since then, a large
number of estimation methods have been developed for linear regression. Four of
the most commonly used methods are the least absolute deviations, least squares,
trimmed least squares and M-regression.

Probably the most well-known method is the method of least squares, although
Boscovich (1757) first considered least absolute deviations. The method of
least squares was first published by Legendre in 1805 and by Gauss in 1809.
Legendre and Gauss both applied the method to the problem of determining,
from astronomical observations, the orbits of bodies around the sun. Gauss
published a further development of the theory of least squares in 1821, including
a version of the Gauss-Markov theorem. The term “regression” was coined by
Francis Galton in the nineteenth century to describe a biological phenomenon.
The phenomenon was that the heights of descendants of tall ancestors tend to
regress down towards a normal average (a phenomenon also known as regression
toward the mean). For Galton, regression had only this biological meaning, but
his work was later extended by Yule (1897) and Pearson (1903) to a more general
statistical context. In the work of Yule and Pearson, the joint distribution of the
response and explanatory variables is assumed to be Gaussian. This assumption
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was weakened by R.A. Fisher in his works of 1922 and 1925. Fisher assumed that
the conditional distribution of the response variable is Gaussian, but the joint
distribution need not be. In this respect, Fisher’s assumption is closer to Gauss’s
formulation of 1821.

At some point in time, it became clear that it is not always easy to find a suitable
parametric (linear or nonlinear) model to explain some phenomena. One was
searching for a more flexible method where “the data would speak for themselves”.
For this reason, nonparametric smoothing methods were invented. Smoothing
methods also have a long tradition. In the nineteenth century the nonparametric
approach has been used as a major tool for empirical analysis: in 1857 the Saxonian
economist Engel found the famous Engelsches Gesetz by constructing a curve
which we would nowadays call a regressogram. The nonparametric smoothing
approach has then long been neglected and the mathematical development of
statistical theory in the first half of this century has mainly suggested a purely
parametric approach for its simplicity in computation, its compatibility with model
assumptions and also for its mathematical convenience.

The real breakthrough of these methods dates back to 1950s and early 1960s
with pioneering articles of Rosenblatt (1956) and Parzen (1962) in the density
estimation setting and with Nadaraya (1964) and Watson (1964) in the regression
setting. Ever since, these methods are gaining more and more attention and
popularity. Mainly, this is due to the fact that statisticians realized that pure
parametric thinking in curve estimations often does not meet the need for flexibility
in data analysis. Also the development of hardware created the demand for theory
of now computable nonparametric estimates. However, nonparametric techniques
have no intention of replacing parametric techniques. In fact, a combination of
both can lead to the discovery of many interesting results which are difficult to
accomplish by a single method e.g. semiparametric regression (Ruppert et al.,
2003).

Regression methods continue to be an area of active research. In recent decades,
new methods have been developed for robust regression, regression involving
correlated responses such as time series and growth curves, regression in which
the predictor or response variables are curves, images, graphs, or other complex
data objects, regression methods accommodating various types of missing data,
nonparametric regression, Bayesian methods for regression, regression in which
the predictor variables are measured with error, regression with more predictor
variables than observations, and causal inference with regression.

The increasing importance of regression estimation is also stimulated by the growth
of information technology in the past twenty years. The demand for procedures
capable of automatically extracting information from massive high-dimensional
data sets is rapidly growing. Usually there is no prior knowledge available, leaving
the data analyst with no other choice but a nonparametric approach. Often
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these nonparametric techniques are pushed towards and possibly even over their
limits because of their extreme flexibility. Therefore, caution is still advised when
applying these techniques. Properties such as (universal) consistency (Stone, 1977)
and rate of convergence may be not be neglected.

Kernel-based methodologies have been developed in the area of statistics (Rosen-
blatt, 1956; Nadaraya, 1964; Watson, 1964; Rao, 1983) and became popular
in the fields of machine learning and data mining. The statistical learning
framework proposed by Vapnik (Vapnik, 1999) led to the introduction of the
Support Vector Machine (SVM) which has been successfully applied for nonlinear
classification and regression in learning problems. The success of the SVM
led to further developments in the area of kernel-based learning such as kernel
principal component analysis (Jolliffe, 2002; Suykens et al., 2002), kernel canonical
correlation analysis (Suykens et al., 2002) and kernel independent component
analysis (Gretton et al., 2005). One particular class of kernel machines are
the least squares support vector machines (LS-SVM) (Suykens and Vandewalle,
1999; Suykens et al., 2002) aimed at simplifying classical SVM formulations and
developing a wider range of learning algorithms applicable beyond classification
and regression. LS-SVMs are formulated using the L2 loss function in a constrained
optimization framework with primal and dual formulations.

We developed the present LS-SVMLab toolbox version 1.7 (De Brabanter et al.,
2010b) containing Matlab implementations for a number of LS-SVM algorithms.
The toolbox and user’s guide are freely available for research purposes and can
be downloaded from http://www.esat.kuleuven.be/sista/lssvmlab/. The
toolbox is mainly intended for use with the commercial Matlab package. The
Matlab toolbox is compiled and tested for different computer architectures
including Linux and Windows. Most functions can handle data sets up to 20.000
data points or more. LS-SVMlab’s interface for Matlab consists of a basic version
for beginners as well as a more advanced version with programs for multiclass
encoding techniques. Also, a number of methods to estimate the generalization
performance of the trained model (regression and classification) are included
such as leave-one-out cross-validation, v-fold cross-validation and generalized
cross-validation. The latest version also includes computation of pointwise and
simultaneous confidence intervals for LS-SVM regression.

The amount of data available from fields such as bioinformatics, system
identification and process industry is increasing at an explosive rate. Large-scale
problems become more and more a challenge for supervised learning techniques in
order to extract useful information from a “tsunami” of data. Approximation
techniques, reduced set methods, subsampling schemes and sparse models are
needed to deal with the large-scale data (up to 1.000.000 data points) using
standard computers. The problem kernel methods face when dealing with large
data sets is that the kernel matrix can become too large and hence memory
problems often occur.

http://www.esat.kuleuven.be/sista/lssvmlab/
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1.2 Practical Applications

Scientific data must be clean and reliable. While this can be the case in the
majority of physical, chemical and engineering applications, biomedical data rarely
possess such qualities. The very nature of biomedical objects is volatile and
irregular, as are the results of biomedical assessments collected in large biomedical
data sets. These data sets contain the results of tests which fluctuate with
the patient’s state, and long term trends are difficult to distinguish from short
term fluctuations, taking into account that these data sets rarely contain reliable
longitudinal components. The other typical problem is the large number of
incomplete records, for example, if certain tests are missing for some individuals,
then deleting such records may essentially reduce the power of the ongoing
calculations. Even mortality statistics, probably the most reliable type of
biomedical data, are not free from error: while the date of death is usually known
precisely, the date of birth can be biased.

Next, we describe several applications in order to illustrate the practical
relevance of nonparametric regression estimation. Notice that not all of the
techniques/methods described in this thesis can be applied directly to these type
of data sets.

1.2.1 Biomedical Data

Example 1.1 (Survival Analysis) In survival analysis one is interested in
predicting the survival time of a patient with a life-threatening disease given a
description of the case, such as type of disease, blood measurements, sex, age,
therapy, etc. The result can be used to determine the appropriate therapy for a
patient by maximizing the predicted survival time with respect to the therapy (see
Dippon et al., 2002) for an application in connection with breast cancer data). One
specific feature in this application is that usually one cannot observe the survival
time of a patient. Instead, one gets only the minimum of the survival time and
a censoring time together with the information as to whether the survival time is
less than the censoring time or not.

Example 1.2 (The Stanford Heart Transplant Program) Various versions
of data from the transplant study has been reported in Fan and Gijbels (1994). The
sample consisted of 157 cardiac patients who where enrolled in the transplantation
program between October 1967 and February 1980. Patients alive beyond February
1980 were considered to be censored (55 in total). One of the questions of interest
was the effect of the age of a patient receiving a heart transplantation, on his
survival time after transplantation.
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1.2.2 Financial Data

Example 1.3 (Interest Rate Data) Short-term risk-free interest rate play a
fundamental role in financial markets. They are directly related to consumer
spending, inflation and the overall economy.

Example 1.4 (Loan Management) A bank is interested in predicting the
return on a loan given to a customer. Available to the bank is the profile of the
customer including his credit history, assets, profession, income, age, etc. The
predicted return affects the decision as to whether to issue or refuse a loan, as well
as the conditions of the loan.

Example 1.5 (NYSE Data Set) The NYSE data set includes daily prices of
19 stocks out of 36 stocks of the NYSE old dataset along a 44-year period
(11178 trading days) ending in 2006. From the 17 missing stocks: 13 companies
became bankrupt after ’85 and the other 4 stocks do not satisfy some liquidity
constraints that can cause misleading results in the simulations. Further
information can be found in Györfi et al. (2007), Györfi et al. (2008) and
http: // www. cs. bme. hu/ ˜ oti/ portfolio/ .

1.2.3 System Identification

Example 1.6 (Wiener-Hammerstein Benchmark) In such a structure there
is no direct access to the static nonlinearity starting from the measured input-
output, because it is sandwiched between two unknown dynamic systems. The
signal-to-noise ratio of the measurements is quite high, which puts the focus of the
benchmark on the ability to identify the nonlinear behavior, and not so much on
the noise rejection properties (see e.g. De Brabanter et al., 2009). This application
is described in more detail in Chapter 8.

Example 1.7 (Identification of a Pilot Scale Distillation Column) Input-
output data was collected from a distillation column. The task is, given some
control inputs, to identify the bottom and top temperature of the column. It
is necessary to obtain accurate predictions of these temperatures, since they
control the final quality of the product. More information can be found in Huyck
et al. (2010). In this real life example, there is a linear model describing the
measured temperature very accurately for both the top as well as the bottom
temperature. However, a nonlinear ARX (obtained with least squares support
vector machines) shows better performance compared to these best linear models
(output-error, ARMAX, transfer function models). More information and practical
considerations can be found in Chapter 8.

http://www.cs.bme.hu/~oti/portfolio/
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1.2.4 Time Series Analysis

Example 1.8 (Canadian Lynx Data) This data set consists of the annual fur
returns of lynx at auction in London by the Hudson Bay Company for the period
1821-1934. This data reflects to some extent the population size of the lynx in
the Mackenzie River district. It helps us to study the population dynamics of the
ecological system in that area. Indeed, if the proportion of the number of lynx being
caught to the population size remains approximately constant, after logarithmic
transforms, the differences between the observed data and the population sizes
remain approximately constant. For further background information on this data
see Tong (1990).

Example 1.9 (Electric Load Forecasting) This particular data set consists of
time series containing values of power load in 245 different high voltage - low
voltage substations within the Belgian national grid operator ELIA for a period of
5 years. The sampling rate is 1 hour. The data characterize different profiles of
load consumption such as business, residential and industrial. The yearly cycles
are visible together with the daily cycles. From the daily cycle it is also possible to
visualize morning, noon and evening peaks (Espinoza et al., 2006, 2007).

1.3 Organization and Contributions of the Thesis

This thesis is organized in nine chapters. Figure 1.1 presents an overview of the
chapters as well as their mutual relation.

Chapter 2: Model Building

In Chapter 2 we give an overview of parametric and nonparametric modeling
techniques. We introduce some measures of closeness which will be used in the
rest of the thesis. Further, we emphasize the assumptions when one is using
a certain model structure. We illustrate the fact that any universally consistent
estimator can have an arbitrarily slow rate of convergence without imposing strong
restrictions on the distribution of (X,Y ). Another important phenomenon is the
curse of dimensionality. By means of a simple toy example, we show that the L2

distance between two random points uniformly distributed in a hypercube [0,1]d

will not go to zero even if the sample size is large. Finally, we discuss the four
paradigms of nonparametric regression and give s short introduction to support
vector machines (SVM) and least-squares support vector machines (LS-SVM). We
also provide consistency results for some methods.
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Chapter 3: Model Selection Methods

From the methods introduced in Chapter 2, we know that most learning algorithms
such as local polynomial regression, SVM, LS-SVM, etc. have some additional
tuning parameters. In Chapter 3, we describe some commonly used methods
(cross-validation and complexity criteria) to find suitable values for the tuning
parameters in case of i.i.d. data and illustrate why such methods are necessary.
In theory, one has to minimize the cost functions of these methods to find suitable
parameters. This sometimes turns out to be a quite difficult task in practice due
to the presence of many local minima. A standard method would define a grid over
the parameters of interest and perform cross-validation for each of these grid values.
However, three disadvantages come up with this approach: (i) the limitation of
the desirable number of tuning parameters in a model, due to the combinatorial
explosion of grid points. (ii) The practical inefficiency, namely, they are incapable
of assuring the overall quality of the produced solution. (iii) Discretization fails
to take into account the fact that the tuning parameters are continuous.

In order to overcome these drawbacks we propose a methodology consisting of
two steps: first, determine good initial start values by means of a state of the art
global optimization technique (coupled simulated annealing) and second, perform
a fine-tuning derivative-free simplex search using the previous result as start value.
Coupled simulated annealing accepts multiple coupled starters and is designed to
easily escape from local optima and thus improves the quality of solution without
compromising too much the speed of convergence. This will be the method of
choice for finding the extra tuning parameters in the nonparametric regression
models.

Chapter 4: Fixed-Size Least Squares Support Vector Machines

Solving LS-SVMs for large data set is computationally and memory expensive due
to the large size of the full kernel matrix. In order to handle large data sets (up
to 1.000.000 data points on a standard PC), we introduce the so called fixed-size
approach where a finite feature map can be approximated by the Nyström method.
In this way, LS-SVM can be solved in the primal space and this turns out to be
computationally less expensive than solving the dual. In order to construct a finite
feature map one needs a number of representative points or vectors. These points
or vectors are selected by means of maximizing the quadratic Rényi entropy. In
addition, we show that the distribution of the selected sample of points or vectors
is uniform over the input space.

This quadratic Rényi entropy criterion requires the tuning of an extra parameter
(bandwidth of the kernel). Since large data sets are considered, one needs a
fast and reliable method to select this parameter. Here, the bandwidth of the
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kernel is determined via the solve-the-equation plug-in method. We employ a
technique called improved fast Gauss transform to speed up the many summations
of Gaussians needed in the solve-the-equation plug-in method. Further, we develop
a fast and stable cross-validation procedure capably of handling large data sets.
Finally, we demonstrate the ability of the proposed method on several benchmark
data sets. The speed-up achieved by our algorithm is about 10 to 20 times
compared to LIBSVM (state-of-the-art software for solving SVMs). We observed
that our method requires less prototype vectors than support vectors in SVM,
hence resulting into sparser models.

Chapter 5: Robustness in Kernel Based Regression

The use of an L2 loss function and equality constraints for the models results
into simpler formulations but on the other hand they have a potential drawback
such as the lack of robustness. We discuss how one can robustify LS-SVM and
FS-LSSVM via iteratively reweighting. In order to understand the robustness
of these estimators against outliers, we use the empirical influence function and
empirical maxbias curves. We showed that, in order to obtain a fully robust
nonparametric method, three requirements have to be fulfilled i.e. (i) robust
smoother, (ii) bounded kernel and (iii) a robust model selection procedure.

We compared four different weight functions and investigated their application in
iteratively reweighted LS-SVM. We derived a weight function, Myriad, from the
maximum likelihood estimation of a Cauchy distribution with a scaling factor. We
showed that this weight function is very flexible and depending on the value of
scale factor it can serve as a mean and mode estimator. Further, we illustrated
the existence of a speed of convergence-robustness tradeoff. From these results,
it follows that the proposed weight function is robust against extreme outliers
but exhibits a slower speed of convergence compared to the other three weight
functions.

By means of a toy example, we illustrate that the empirical maxbias of the
proposed robust estimator increases very slightly with the number of outliers in
region and stays bounded right up to the breakdown point. This is in strong
contrast with the non-robust estimate which has a breakdown point equal to zero.
Finally, the effectiveness of the proposed method is shown on a toy example and
two real life data sets with extreme outliers.

Chapter 6: Kernel Regression with Correlated Errors

In Chapter 6, we investigated the consequences when the i.i.d. (independent and
identically distributed) assumption is violated. We showed that, for nonparametric
kernel based regression, classical model selection procedures such as cross-
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validation (CV), generalized CV and v-fold CV break down in the presence of
correlated data and not the chosen smoothing method. Since the latter stays
consistent when correlation is present in the data, it is not necessary to modify
or add extra constraints to the smoother. We proved that by taking a kernel
K satisfying K(0) = 0, the correlation structure is successfully removed without
requiring any prior knowledge about its structure. By adding this extra constraint
the kernel function K it implies that K cannot be unimodal. We also show that
there exist no optimal class of kernels satisfying the constraints of our theorem.
Further, we showed both theoretically and experimentally, that by using bimodal
kernels the estimate will suffer from increased mean squared error. In order to
reduce both effects on the estimation, we developed a class of so-called ε-optimal
class of bimodal kernels which approaches the optimal kernel for ε→ 0.

Since we proved that a bimodal kernel can never positive (semi) definite, we
developed a model selection procedure for LS-SVM in order to effectively handle
correlation in the data. Finally, we illustrated the proposed method on toy
examples with different noise models.

Chapter 7: Confidence and Prediction Intervals

We discussed the construction of bias-corrected 100(1 − α)% approximate
confidence and prediction intervals (pointwise and uniform) for linear smoothers,
in particularly for LS-SVM. We proved, under certain conditions, the asymptotic
normality of LS-SVM. In order to estimate the bias without estimating higher
order derivatives, we discussed a technique called double smoothing. Further, we
developed a nonparametric variance estimator which can be related to other well-
known nonparametric variance estimators.

In order to obtain uniform or simultaneous confidence intervals we used two
techniques i.e Bonferroni/S̆idák correction and volume-of-tube formula. We
provided extensions of this formula in higher dimensions and discussed how to
compute some of the coefficients in practice. We illustrated that the width of the
bands are expanding with increasing dimensionality by means of an example. By
means of a Monte Carlo study, we demonstrated that the proposed bias-corrected
100(1 − α)% approximate simultaneous confidence intervals achieve the proper
empirical coverage rate. By comparing our proposed method with bootstrap
based simultaneous confidence interval, we concluded that both methods produced
similar intervals.

Since classification and regression are equivalent for LS-SVM, the proposed
simultaneous confidence intervals are extended to the classification case. Finally,
we provided graphical illustrations and interpretations of the proposed method for
classification.
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Chapter 8: Applications and Case Studies

We discuss some practical examples and case studies. We demonstrate the
capabilities of the developed techniques in several scientific domains. First, we
show that FS-LSSVM is a powerful tool for black-box modeling and is capable
of handling large data sets. Second, by transforming LS-SVM for regression to a
density estimator via a binning technique, we formulate a hypothesis test based on
bootstrap with variance stabilization. This test can assist the researcher to decide
which user specified parametric distribution best fits the given data. Finally, we
use LS-SVM to determine the maximum shift in hysteresis curves.

Chapter 9: Summary, Conclusions and Future Research

In the last Chapter of this thesis, summary and conclusions of the presented studies
are given chapter by chapter. We also discuss some suggestions for further research.
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Chapter 2

Model Building

In this Chapter, we give an overview of various ways to define parametric and
nonparametric regression estimates. First, we introduce some measure of closeness
and derive the regression function that minimizes the L2 risk. Second, we discuss
the assumptions and restrictions on the regression function and clarify that any
regression estimate can have an arbitrary slow rate of convergence. Finally, we
illustrate the curse of dimensionality by means of an example and by giving an
overview of parametric and nonparametric modeling techniques.

2.1 Regression Analysis and Loss Functions

A model is just an abstraction of reality and it provides an approximation of
some relatively more complex phenomenon. Models may be broadly classified
as deterministic or probabilistic. Deterministic models abound in science and
engineering e.g. Ohm’s law, the ideal gas law and the laws of thermodynamics. An
important task in statistics is to find a probabilistic model, if any, that exist in a set
of variables being subject to random fluctuations and possibly measurement error.
In regression problems typically one of the variables, often called the response,
output, observation or dependent variable, is of particular interest. The other
variables, usually called explanatory, input, covariates, regressor or independent
variables, are primarily used to explain the behavior of the response variable.

Let X ∈ X ⊆ Rd denote a real valued random input vector and Y ∈ Y ⊆ R a
real valued output variable with joint distribution FXY . In regression analysis one
is interested in how the value of the response variable Y depends on the value
of the observation vector X . In fact, one wants to find a (measurable) function
f : Rd → R, such that f(X) is a good approximation of Y or in other words

13
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|f(X) − Y | should be made small. However, since X and Y are random it is
not really clear what small |f(X) − Y | means. To overcome this problem, it is
common to introduce so-called risk or loss functions e.g. L2 risk or mean squared
error (MSE)

R(f) = E |f(X)− Y |2,
where E[X ] =

∫
Rd xdF (x) with F the distribution of X . Then, the latter is

required to be as small as possible.

While it is quite natural to use the expectation operator, it is not obvious why one
wants to minimize the expectation of the squared distance between f(X) and Y
and not, more generally, the Lp risk

E |f(X)− Y |p

for some p ≥ 1. There are two reasons for considering the L2 risk or loss. First, the
mathematical treatment of the whole problem is simplified. As shown below, the
function that minimizes the L2 risk can be derived explicitly. Second, minimizing
the L2 risk leads naturally to estimates which can be computed rapidly e.g. the
ordinary least squares problem.

We are interested in a (measurable) function m∗ : X → Y such that

E |m∗(X)− Y |2 = min
f :X →Y

E |f(X)− Y |2.

Such a function can be explicitly found as follows. Let

m(x) = E[Y |X = x]

be the regression function. Then, the regression function minimizes the L2 risk.
For any arbitrary f : X → Y, one has

E |f(X)− Y |2 = E |f(X)−m(X) +m(X)− Y |2

= E |f(X)−m(X)|2 + E |m(X)− Y |2,

because

E[(f(X)−m(X))(m(X)− Y )] = E [E [(f(X)−m(X))(m(X)− Y )|X ]]

= E[(f(X)−m(X)) E[(m(X)− Y )|X ]]

= E[(f(X)−m(X))(m(X)−E[Y |X ])]

= E[(f(X)−m(X))(m(X)−m(X))]

= 0.
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Hence,

E |f(X)− Y |2 =

∫

Rd

|f(x)−m(x)|2dF (x) + E |m(X)− Y |2, (2.1)

where F denotes the distribution of X . The first term is always nonnegative and is
zero when f(x) = m(x). Therefore, m∗(x) = m(x) i.e. the optimal approximation
(with respect to the L2 risk) of Y by a function of X is given by m(X).

In applications, the distribution of (X,Y ) and hence the regression function is
usually unknown. Therefore, it is impossible to predict Y using m(X). But on
the other hand, it is often possible to observe data according to the distribution
of (X,Y ) and to estimate the regression function from data. In the regression
estimation setting, one wants to use the data Dn = {(X1,Y1), . . . ,(Xn,Yn)}, where
(X1,Y1), . . . ,(Xn,Yn) are independent and identically distributed (i.i.d.) random
variables with E[Y 2] < ∞, in order to construct an estimate m̂n : X → Y of
the regression function m. Since in general estimates will not be equal to the
regression function, one needs error criteria which measure the difference between
the regression function and an arbitrary estimate. First, the pointwise error,

|m̂n(x)−m(x)| for some fixed x ∈ R
d,

second, the supremum norm error,

‖m̂n(x)−m(x)‖∞ = sup
x∈C
|m̂n(x)−m(x)| for some fixed set C ⊆ R

d,

and third, the Lp error, ∫

C

|m̂n(x) −m(x)|p dx,

where the integration is with respect to the Lebesgue measure, C is a fixed subset of
Rd and p ≥ 1 is arbitrary. In many cases p = 2 is often used. Other error criteria
are also possible such as the Hellinger distance, Kullback-Leibler,. . . . Further
theoretical aspects of each of these error criteria as well as their mutual relations
can be found in Halmos (1974) and Tsybakov (2009). As an example, let [a,b] ⊂ R

be a non-empty closed and bounded interval and let m̂n and m ∈ C[a,b]. Figure 2.1
graphically illustrates the supremum norm error (Figure 2.1a) and the L1 error
norm (Figure 2.1b).

Recall that the main goal was to find a function f such that the L2 risk E |f(X)−
Y |2 is small. The minimal value of the L2 risk is E |m(X)−Y |2 and it is achieved
by the regression function m. Similarly to (2.1), one can show that the L2 risk
E[|m̂n(X)− Y |2|Dn] of an estimate m̂n satisfies

E[|m̂n(X)− Y |2|Dn] =

∫

Rd

|m̂n(x) −m(x)|2dF (x) + E |m(X)− Y |2.
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Figure 2.1: (a) Supremum norm error. The vertical line shows the largest distance
between m̂n and m; (b) L1 norm error. This is the area between m̂n and m.

Thus the L2 risk of an estimate m̂n is close to the optimal value if and only if the
L2 error ∫

Rd

|m̂n(x) −m(x)|2dF (x)

is close to zero.

2.2 Assumptions, Restrictions and Slow Rate

From the previous Section we know that regression function m satisfies

E |m(X)− Y |2 = min
f :X →Y

E |f(X)− Y |2.

Here, the minimum is taken over all measurable functions f : X → Y. This is
impossible in the regression estimation problem since the risk functional depends
on the distribution of (X,Y ) which is usually unknown in practice. Given the
observations X and the training data Dn = {(X1,Y1), . . . ,(Xn,Yn)} of i.i.d random
variables, minimizing the empirical L2 risk functional defined as

Remp(f) =
1

n

n∑

k=1

(f(Xk)− Yk)2 (2.2)

leads to infinitely many solutions. Indeed, any function f̂n passing through the
training data Dn is a solution. To obtain useful results for finite number of points,
one must restrict the solution to (2.2) to a smaller set of functions. First, choose
a class of suitable functions Fn and select a function f : X → Y, where f ∈ Fn is
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the minimizer of the L2 risk functional. The estimate m̂n is defined as follows

m̂n ∈ Fn and
1

n

n∑

k=1

(m̂n(Xk)− Yk)2 = min
f∈Fn

1

n

n∑

k=1

(f(Xk)− Yk)2.

A possible model structure states that the training dataDn = {(X1,Y1), . . . ,(Xn,Yn)}
of i.i.d random variables can be written as

Yk = m(Xk) + ek. (2.3)

In (2.3) one assumes that the error term e in the model has zero mean and constant
variance i.e. E[ek|X = xk] = 0 and E[e2

k|X = xk] = σ2 < ∞, and {ek} are
uncorrelated random variables i.e. Cov[ek,ej] = 0 for k 6= j. Further, one assumes
that the observations X1, . . . ,Xn could be measured accurately. Otherwise, if
the observations X1, . . . ,Xn are measured with error, the true values would be
unknown and a errors-in-variables model (linear or nonlinear) is needed (Fuller,
1987; Carroll et al., 2006). More recent work, in the nonparametric setting,
regarding the topic of measurement errors as well as deconvolution can be found
in Meister (2009).

For most systems, the pairs (X,Y ) will not have a deterministic relationship i.e.
Yk = m(Xk). Generally, there will be other unmeasurable variables that will also
contribute to Y including measurement errors (the measurement error is strictly
on the Y ’s and not on the X ’s). The “additive error model” (2.3) assumes that
one can capture all these deviations from a deterministic relationship via the error
e.

Consider the L2 error criterion

‖m̂n −m‖2 =

∫
(m̂n(x) −m(x))2dF (x).

The average L2 error, E ‖m̂n−m‖2, is completely determined by the distribution of
(X,Y ) and the regression function estimator m̂n. Although there exist universally
consistent regression estimates e.g. neural networks estimates, kernel estimates,. . .
one would be interested in regression function estimates with E ‖m̂n−m‖2 tending
to zero with a “guaranteed” rate of convergence. Disappointingly, such estimates
do not exist. Györfi et al. (2002, Chapter 3) have shown that is impossible to obtain
nontrivial rate of convergence results without imposing strong restrictions on the
distribution of (X,Y ). Even when the distribution of X is good and Y = m(X),
the rate of convergence of “any” estimator can be arbitrary slow (Györfi et al.,
2002; Devroye et al., 2003). For completeness, we state this strong result in the
following theorem.

Theorem 2.1 (Györfi et al., 2002) Let {an} be a sequence of positive numbers
converging to zero. For every sequence of regression estimates, there exists a
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distribution of (X,Y ), such that X is uniformly distributed on [0,1], Y = m(X),
m is ±1 valued, and

lim sup
n→∞

E ‖m̂n −m‖2

an
≥ 1.

Therefore, rate of convergence studies for particular estimates must necessarily be
accompanied by conditions on (X,Y ). Only under certain regularity conditions
it is possible to obtain upper bounds for the rate of convergence to zero for
E ‖m̂n−m‖2. One can derive the optimal rate of convergence for a certain class of
distributions of (X,Y ) by imposing some smoothness conditions on the regression
function depending on some parameter p:

Definition 2.1 Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. A
function f : Rd → R is called (p,C)-smooth if for every υ = (υ1, . . . ,υn), υi ∈ N0,∑d

j=1 υj = k the partial derivative ∂kf

∂x
υ1
1 ···∂xυd

d

exists and satisfies

∣∣∣∣
∂kf

∂xυ1
1 · · ·∂xυd

d

(x) − ∂kf

∂xυ1
1 · · · ∂xυd

d

(z)

∣∣∣∣ ≤ C · ‖x− z‖β (x,z ∈ R
d).

For classes Fn,p, where m is p times continuously differentiable, the optimal rate

of convergence will be n− 2p
2p+d (Györfi et al., 2002). This optimal rate shows, if we

consider p fixed, a clear dependence on the dimensionality of the problem i.e. the
dimension of the design variable X . We will clarify this in more detail in the next
Section.

2.3 Curse of Dimensionality

From the previous Section we know that estimating a regression function is more
and more difficult if the dimensionality of the problem is becoming larger. This
phenomenon is commonly referred to as the curse of dimensionality and was first
reported by Bellman (1961) in the context of approximation theory to signify
the fact that estimation difficulty not only increases with dimension but can also
increase superlinearly. The reason for this is that in the case of large d it is, in
general, not possible to densely pack the space of X with finitely many sample
points, even if the sample size n is very large (see also Kendall (1961) for a study of
the geometry in higher dimensions). we will illustrate this by means of an example.

Let X1, . . . ,Xn be i.i.d. Rd-valued random variables with X uniformly distributed
in the hypercube [0,1]d. Denote the expected L2-norm distance of X to its nearest
neighbor in X1, . . . ,Xn by d2(d,n), i.e. set

d2(d,n) = E

[
min

i=1,...,n
‖X −Xi‖

]
.
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Here ‖x‖ is the L2 norm of a vector x = (x(1), . . . ,x(d))T ∈ Rd defined by

‖x‖ =

√√√√
d∑

i=1

(
x(i)
)2
.

Then

d2(d,n) =

∫ ∞

0

P

[
min

i=1,...,n
‖X −Xi‖ > t

]
dt

=

∫ ∞

0

(
1−P

[
min

i=1,...,n
‖X −Xi‖ ≤ t

])
dt.

The bound

P

[
min

i=1,...,n
‖X −Xi‖ ≤ t

]
≤ nP [‖X −X1‖ ≤ t]

≤ n
πd/2

Γ
(
d
2 + 1

) td,

where πd/2

Γ( d
2 +1)

td is the volume of a ball in Rd with radius t and Γ(x) =
∫∞

0 tx−1e−t dt for x > 0 satisfies Γ(x + 1) = xΓ(x), Γ(1) = 1 and Γ(1/2) =
√
π,

implies

d2(d,n) ≥
∫ Γ( d

2
+1)1/d

√
πn1/d

0

(
1− n πd/2

Γ
(
d
2 + 1

) td
)
dt

=

[
t− n

d+ 1

πd/2

Γ
(
d
2 + 1

) td+1

] Γ( d
2

+1)
1/d

√
πn1/d

0

=
Γ
(
d
2 + 1

)1/d

√
πn1/d

− n

d+ 1

πd/2

Γ
(
d
2 + 1

) Γ
(
d
2 + 1

)1+ 1
d

n1+ 1
d π

d+1
2

=
d

d+ 1

Γ
(
d
2 + 1

)1/d

√
π

1

n1/d
.

Table 2.1 shows values of this lower bound for various values of d and n. It is
clear that for dimension d = 10 and larger this lower bound is not close to zero
even if the sample size n is large. So for most values of x one only has data points
(Xi,Yi) available where Xi is not close to x. At such data points m(Xi) will, in
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Table 2.1: Lower bounds for d2(d,n) for i.i.d. R
d-valued random variables with X

uniformly distributed in the hypercube [0,1]d

n = 100 n = 1000 n = 10.000 n = 100.000
d2(1,n) ≥ 0.0025 ≥ 0.00025 ≥ 0.000025 ≥ 0.0000025
d2(10,n) ≥ 0.5223 ≥ 0.4149 ≥ 0.3296 ≥ 0.2618
d2(20,n) ≥ 0.9083 ≥ 0.8095 ≥ 0.7215 ≥ 0.6430
d2(50,n) ≥ 1.6093 ≥ 1.5369 ≥ 1.4677 ≥ 1.4016

general, not be close to m(x) even for a smooth regression function. Naturally,
a similar phenomenon also occurs if one replaces the L2 norm by the supremum
norm. Notice that the above arguments are no longer valid if the components of
X are not independent.

So we observed that the optimal rate of convergence converges to zero rather slowly
if the dimension d is large compared to p (degree of smoothness). Vapnik (1999)
has shown that the asymptotic rate of convergence decreases with increasing input
dimension when the characteristic of smoothness remains fixed. Therefore, one
can guarantee good estimation of a high dimensional function only if the function
m ∈ Fp for p→∞ i.e. m is extremely smooth.

In practice, one can circumvent the curse of dimensionality by posing additional
assumptions on the regression function. Examples of such techniques are additive
models (Breiman and Friedman, 1985; Buja et al., 1989; Hastie and Tibshirani,
1990), projection pursuit (Friedman and Tukey, 1974; Friedman and Stuetzle, 1981)
and tree-based methods (Breiman et al., 1984) and its variants (Friedman, 1991;
Jordan and Jacobs, 1994). More recently, Ferraty and Vieu (2006) showed that
the curse of dimensionality does not affect functional data with high correlation
but is dramatic for the uncorrelated ones. Nevertheless, by considering functional
features, even if the data are not correlated, the curse of dimensionality can be
partially canceled out.

We conclude this Section with a remarkable quote from Clarke et al. (2009)
regarding the curse of dimensionality

“Suppose you had to use an estimator to estimate m(x) when d =
20.000 and data collection was not rapid. Then, humans could well
have evolved into a different species rendering the analysis meaningless,
before the estimator got close to the true function.”
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2.4 Parametric and Nonparametric Regression Esti-

mators: An Overview

In this Section we give an overview of various ways to define parametric and
nonparametric estimates. The description of the four paradigms of nonparametric
regression is based on Friedman (1991), Fan and Gijbels (1996), Györfi et al. (2002)
and Hastie et al. (2009).

2.4.1 Parametric Modeling

The classical approach for estimating a regression function is to use parametric
regression estimation. One assumes that the structure of the regression function
is known and depends only on finitely many parameters. The linear regression
model provides a relatively flexible framework. However, linear regression models
are not appropriate for all situations. There are many situations where the
dependent variable and the independent variables are related through a known
nonlinear function. It should be clear that in dealing with the linear and nonlinear
regression models the normal distribution plays a central role. There are a lot of
practical situations where this assumption is not going to be even approximately
satisfied. Extensions to this classical linear model are also developed and are called
generalized linear models, see e.g. McCullagh and Nelder (1999) for a detailed
description.

Consider, as an example, linear regression estimation. Let Fn denote a class of
linear combinations of the components of X = (X(1), . . . ,X(d))T ∈ Rd

Fn =

{
m : m(x) = β0 +

d∑

i=1

βiX
(i), βi ∈ R

}
.

The unknown parameters β0, . . . ,βd can be estimated from the data Dn =
{(X1,Y1), . . . ,(Xn,Yn)} e.g. by applying the principle of least squares

(β̂0, . . . ,β̂d) = arg min
β0,...,βd∈Rd


 1

n

n∑

k=1

(
Yk − β0 −

d∑

i=1

βiX
(i)
k

)2

 .

The estimate m̂n can be evaluated in a point x = (x(1), . . . ,x(d))T ∈ Rd leading to

m̂n(x) = β̂0 +
d∑

i=1

β̂ix
(i).

However, parametric estimates have a drawback. Regardless of the data, a
parametric estimate cannot approximate the regression function better than the



22 MODEL BUILDING

best function with the assumed parametric structure. This inflexibility concerning
the structure of the regression function is avoided by nonparametric regression
estimates.

Remark If (X,Y ) is jointly Gaussian, then m(x) is a linear function.

2.4.2 Local Averaging

Nadaraya-Watson kernel smoother

As a first example of a local averaging estimate consider the Nadaraya-Watson
(NW) kernel smoother which was independently proposed by Nadaraya (1964)
and Watson (1964). Recall from Section 2.1 that the regression function is given
by

m(x) = E[Y |X = x] =

∫
yfY |X(y|x) dy

=
1

fX(x)

∫
yfX,Y (x,y) dy, (2.4)

where fX(x), fX,Y (x,y) and fY |X(y|x) denote the marginal density of X , the
joint density of X and Y and the conditional density of Y given X respectively.
Let K∗ : R → R and K : Rd → R be an isotropic kernel functions, i.e. the
argument of the kernel only depends on the distance between two points and not
on multiplications between points such as the linear or polynomial kernel, and let
h,h∗ > 0 denote the bandwidths or smoothing parameters. Then, the unknown
quantity fX,Y (x,y) in (2.4) can be estimated by a bivariate kernel estimate with
a product kernel (Silverman, 1986; Scott, 1992)

f̂X,Y (x,y) =
1

nhdh∗

n∑

i=1

K

(
x−Xi

h

)
K∗
(
y − Yi
h∗

)
.

The quantity
∫
yfX,Y (x,y) dy can be estimated by

∫
yf̂X,Y (x,y) dy =

1

nhdh∗

n∑

i=1

∫
yK

(
x−Xi

h

)
K∗
(
y − Yi
h∗

)
dy

=
1

nhd

n∑

i=1

K

(
x−Xi

h

)
1

h∗

∫
yK∗

(
y − Yi
h∗

)
dy

=
1

nhd

n∑

i=1

K

(
x−Xi

h

)∫
(Yi + uh∗)K∗(u) du

=
1

nhd

n∑

i=1

K

(
x−Xi

h

)
Yi,
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if
∫
K(u) du = 1 and

∫
uK(u) du = 0. These two conditions are fulfilled when K

is a symmetric probability density function. Since an estimator for the marginal
density of X is given by

f̂X(x) =
1

nhd

n∑

i=1

K

(
x−Xi

h

)
,

the resulting estimator for m(x) is the Nadaray-Watson kernel smoother

m̂n(x) =

n∑

i=1

K
(
x−Xi

h

)
Yi∑n

i=1 K
(
x−Xi

h

) . (2.5)

Notice that (2.5) has universally consistency properties even in the case when X
and Y have no densities. The NW kernel smoother is most natural in the random
design case. Indeed, if the marginal density fX(x) is known, one can use this

instead of f̂X(x) in (2.5). Then the following estimator, which is slightly different
from the NW kernel smoother, is obtained

m̂n(x) =
1

nhdfX(x)

n∑

i=1

K

(
x−Xi

h

)
Yi.

In particular, if fX is the density of the uniform distribution on [0,1], then

m̂n(x) =
1

nhd

n∑

i=1

K

(
x−Xi

h

)
Yi. (2.6)

There exists a vast literature studying these type of estimators for fixed design e.g.
the Priestley-Chao estimator (Priestley and Chao, 1972) and the Gasser-Müller
estimator (Gasser and Müller, 1979) are closely related to (2.6).

If one uses the naive kernel (or window kernel) K(u) = I{‖u‖≤1}, then (2.5) yields

m̂n(x) =

n∑

i=1

I{‖x−Xi‖≤h}Yi∑n
i=1 I{‖x−Xi‖≤h}

,

i.e. one estimates m(x) by averaging Y ′
i s such that the distance between Xi and

x is not larger than h. When considering multivariate data, simply replace K(u)
by K(‖u‖).
Notice that (2.5) can be considered as locally fitting a constant to the data. In
fact (2.5) satisfies

m̂n(x) = arg min
c∈R

1

n

n∑

i=1

K

(
x−Xi

h

)
(Yi − c)2. (2.7)



24 MODEL BUILDING

From the above formulation for the NW kernel smoother it is clear that it
corresponds to locally approximating the regression function with a constant where
the weight of the Yi depends on the distance between Xi and x. Figure 2.2
illustrates the principle of the Nadaraya-Watson kernel smoother for the one
dimensional case.
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Figure 2.2: 100 pairs (Xi,Yi) are generated at random from Y = sin(4X) (dashed line)
with Gaussian errors ε ∼ N (0,1/3) and X ∼ U [0,1]. The dot around 0.38 (vertical line)
is the fitted constant m̂n(x), and the full circles indicate those observations contributing
to the fit at x. The solid region indicates the weights assigned to observations according
the Epanechnikov kernel. The full NW estimate is shown by the full line.

k-Nearest Neighbor Regression Estimate

As a second example of local averaging consider the k-nearest neighbor estimate.
Here one determines the k nearest Xi’s to x in terms of distance ‖x − Xi‖
and estimates m(x) by averaging the corresponding Yi’s. For X ∈ Rd, let
(X(1)(x),Y(1)(x)), . . . ,(X(n)(x),Y(n)(x)) be a permutation of (X1,Y1), . . . ,(Xn,Yn)
such that

‖x−X(1)(x)‖ ≤ . . . ≤ ‖x−X(n)(x)‖.
The k-nearest neighbor estimate is defined by

m̂n(x) =
1

k

k∑

i=1

Y(i)(x).

Here the weight equals 1
k if Xi is among the k nearest neighbors of x and equals

zero otherwise.
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Concerning the consistency of the k-nearest neighbor regression estimate Devroye
et al. (1994) presented the following two results. First, all modes of convergence
in L1 (in probability, almost sure, complete) are equivalent if for all distributions
(X,Y ) the regression variable is bounded. Further, by the boundedness of Y they
also obtained Lp-consistency. Second, if k is chosen to satisfy limn→∞ k/ log(n) =
∞ and limn→∞ k/n =∞ strong universal consistency of the estimate was obtained
even if Y is not bounded. The estimate has sense and universal properties even
when the density does not exist.

2.4.3 Local Modeling

A generalization of (2.7) leads to this class of modeling i.e. instead of locally
fitting a constant to the data, locally fit a more general function which depends
on several parameters. Let g(·,{ak}lk=1) : Rd → R be a function depending on
parameters {ak}lk=1. For each x ∈ R

d, choose values of these parameters by a
local least squares criterion

{âk}lk=1 = arg min
{ak}l

k=1

1

n

n∑

i=1

K

(
x−Xi

h

)
(Yi − g(Xi,{ak}lk=1))2. (2.8)

Notice that if one chooses g(x,{ak}lk=1) = c (x ∈ Rd), then this leads to the NW
kernel smoother (2.7).

One of the most popular local modeling estimate is the local polynomial kernel
estimate. Here one fits a polynomial of certain order to the data given by

g
(
x,{ak}lk=1

)
=

l∑

k=1

akx
k−1. (2.9)

This is a polynomial of degree l − 1 (or less) in x. Within the framework of the
local polynomial kernel estimate often l = 2 is chosen i.e. the local linear kernel
estimate. This kernel estimate in particular has several advantages over the NW
kernel estimate: (i) The method adopts to various types of designs such as random
and fixed designs, highly clustered and nearly uniform designs. This is referred
to as the design adaption property. This is in contrast with the Gasser-Müller
estimator which cannot adapt to random design: the unconditional variance is 1.5
times higher for random design. More explanation about this statement can be
found in Mack and Müller (1989) and Chu and Marron (1991a); (ii) There is an
absence of boundary effects i.e. the bias at the boundary stays automatically of
the same order as in the interior without the use of specially designed boundary
kernels which is referred to as automatic boundary carpentry (Fan and Gijbels,
1992; Ruppert and Wand, 1994). (iii) Also, local polynomial estimators have nice
minimax efficiency properties: the asymptotic minimax efficiency for commonly
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used orders is 100% among all linear estimators and only a small loss has to be
tolerated beyond this class. More theoretical aspects as well as applications and
extensions to the multivariate case regarding this class of modeling can be found
in Fan and Gijbels (1996) and Loader (1999).

For local linear kernel estimate, it is clear that it corresponds to locally
approximating the regression function with a linear model where the weight of
the Yi depends on the distance between Xi and x. Figure 2.3 illustrates the
principle of the local linear kernel estimate.
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Figure 2.3: 100 pairs (Xi,Yi) are generated at random from Y = sin(4X) (dashed line)
with Gaussian errors ε ∼ N (0,1/3) and X ∼ U [0,1]. The dot around 0.38 (vertical line)
is the fitted constant m̂n(x), and the full circles indicate those observations contributing
to the fit at x. The solid region indicates the weights assigned to observations according
the Epanechnikov kernel. The full local linear kernel estimate is shown by the full line.

The local polynomial estimate has no global consistency properties. Similar to the
linear partitioning estimate (Györfi et al., 2002), the local linear kernel estimate m̂n

is not weakly universally consistent. This holds because due to interpolation effects,
the local linear kernel estimate can take arbitrary large values even for bounded
data. The counterexample for the consistency of the local polynomial kernel
estimate is due to Devroye (personal communication to L. Györfi, 1998). However,
this problem can be easily avoided by minimizing (2.8) only over coefficients which
are bounded in absolute value by some constant depending on n and converging
to infinity (Kohler, 2002).



PARAMETRIC AND NONPARAMETRIC REGRESSION ESTIMATORS: AN OVERVIEW 27

2.4.4 Global Modeling

Least squares estimates are defined by minimizing the empirical L2 risk functional
over a general set of functions Fn. This leads to a function which interpolates the
data and hence is not a reasonable estimate. Therefore, one has to restrict the set
of functions over which one minimizes the empirical L2 risk functional. The global
modeling estimate is defined as

m̂n(·) = arg min
f∈Fn

1

n

n∑

i=1

|f(Xi)− Yi|2,

and hence it minimizes the empirical L2 risk

1

n

n∑

i=1

|f(Xi)− Yi|2.

As an examples of this class consider neural networks (Bishop, 1995; Dreyfus, 2005).
Given a training data set Dn = {(X1,Y1), . . . ,(Xn,Yn)} and let the parameters of
the network chosen to minimize the empirical L2 risk functional for the class of
neural networks

Fn =

{
h∑

i=1

βig(wTi X + bi) + β0 : h ∈ N, wi ∈ R
d, bi ∈ R,

h∑

i=1

|βi| ≤ an
}
, (2.10)

where g : R→ [0,1] is e.g. a sigmoidal or hyperbolic tangent function, w1, . . . ,wh ∈
Rd, b1, . . . ,bh ∈ R, β0,βh ∈ R are the parameters that specify the network. Notice
that the range of some parameters in (2.10) is restricted. This restriction is needed
to obtain consistency (Lugosi and Zeger, 1995). The estimate m̂n ∈ Fn satisfies

1

n

n∑

i=1

|m̂n(Xi)− Yi|2 = min
f∈Fn

1

n

n∑

i=1

|f(Xi)− Yi|2

Other examples of this class are regression splines (Eubank, 1999; Hastie et al.,
2009) and partitioning estimates (Györfi et al., 2002).

2.4.5 Penalized Modeling

Instead of restricting the class of functions penalized least squares estimates add
a term to the functional to be minimized. This idea, in particular for smoothing
splines, goes back to Whittaker (1923), Schoenberg (1964) and Reinsch (1967).
This additional term penalizes the roughness of a function f . Let v ∈ N, λn > 0
and let the univariate penalized least squares estimate be defined as

m̂n(·) = arg min
f∈Cv(R)

{
1

n

n∑

i=1

|f(Xi)− Yi|2 + λnJn,v(f)

}
,
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where Cv(R) is the set of all v-times differentiable functions f : Rd → R and
Jn,v(f) =

∫
|f (v)(u)|2 du. For the penalty term with v = 2, the minimum is

achieved by a cubic spline with knots at the Xi’s between adjacent values of the
Xi’s (Eubank, 1999; Györfi et al., 2002). This leads to the so-called smoothing
spline.

For multivariate X , the estimate is defined as

m̂n(·) = arg min
f∈Wv(Rd)

{
1

n

n∑

i=1

|f(Xi)− Yi|2 + λnJn,v(f)

}
,

where W v(Rd) is the Sobolev space consisting of all functions where weak deriva-
tives of order v are contained in L2(Rd) (space of square integrable functions over

Rd) (Kohler and Krzyżak, 2001) and Jn,v(f) =
∫
Rd

∑
i1,...,ik∈{1,...,d}

∣∣∣ ∂kf(x)
∂xi1 ···∂xik

∣∣∣
2

dx

which leads to the so-called thin plate spline estimates.

Further information about spline modeling can be found in Wahba (1990) and
references therein.

2.5 Support Vector Machines

In this Section we give an overview of Support Vector Machines (SVM) (Vapnik,
1999) and Least Squares Support Vector Machines (LS-SVM) (Suykens et al.,
2002). The latter will be the method of choice in this thesis and therefore we discuss
this in a separate Section. Roughly speaking, these methods could be classified
under the global penalized modeling paradigm. Hastie et al. (2009, Chapter 7)
call these type of methods an application of Vapnik’s structural risk minimization
program (Vapnik, 1999). Although the general nonlinear version of SVM is quite
recent (Vapnik, 1999, 2000), the roots of the SVM (linear case) approach dates
back to the early 1960s (Vapnik and Lerner, 1963; Vapnik and Chervonenkis, 1964)
and was originally proposed for classification (separable case). In what follows we
will illustrate the idea behind the nonlinear SVM for regression and derive the
LS-SVM formulation from it.

2.5.1 Basic Idea of Support Vector Machines

The key ingredient of the nonlinear Support Vector Machine (SVM) for classi-
fication as well as for regression is the following: let Ψ ⊆ Rnf denote a high
dimensional (possibly infinite) feature space. Then a random input vector X ∈ Rd

is mapped into this high dimensional feature space Ψ through some mapping
ϕ : Rd → Ψ (in fact there is a relation with the existence of a Hilbert space
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H (Courant and Hilbert, 1953) such that ϕ : Rd → H and nf is the dimension of
H). In this space, one considers a class of linear functions defined as

Fn,Ψ =
{
f : f(X) = wTϕ(X) + b, ϕ : Rd → Ψ, w ∈ R

nf , b ∈ R
}
. (2.11)

However, even if the linear function in the feature space (2.11) generalizes well,
the problem of how to treat the high-dimensional feature space remains. Notice
that for constructing the linear function (2.11) in the feature space Ψ, one does
not need to consider the feature space in explicit form i.e. one only needs to
replace the inner product in the feature space ϕ(Xk)Tϕ(Xl), for all k,l = 1, . . . ,n,
with the corresponding kernel K(Xk,Xl). This result is known as Mercer’s
conditions (Mercer, 1909) and is given in the following theorem.

Theorem 2.2 (Mercer, 1909) Let K ∈ L2(C), g ∈ L2(C) where C is a compact
subset of Rd and K(t,z) describes an inner product in some feature space and let
t,z ∈ Rd. To guarantee that a continuous symmetric function K has an expansion

K(t,z) =

∞∑

i=1

aiφi(t)φi(z)

with coefficients ai > 0. Then it is necessary and sufficient that the condition
∫∫

C

K(t,z)g(t)g(z) dtdz ≥ 0

is valid for all g ∈ L2(C).

Using Mercer’s condition, one can write K(t,z) =
∑nf

i=1

√
aiφi(t)

√
aiφi(z) and

define ϕi(t) =
√
aiφi(t) and ϕi(z) =

√
aiφi(z) such that the kernel function can

be expressed as the inner product

K(t,z) = ϕ(t)Tϕ(z). (2.12)

Hence, having a positive semidefinite kernel is a condition to guarantee that (2.12)
is valid.

2.5.2 Primal-Dual Formulation of Support Vector Machines

Given a training data set Dn = {(X1,Y1), . . . ,(Xn,Yn)} and consider the model
class Fn,Ψ defined in (2.11). Following Vapnik (1999), one minimizes the empirical
risk functional in the feature space

Remp(w,b) =
1

n

n∑

i=1

|Yi − wTϕ(Xi)− b|ε
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subject to the constraint ‖w‖ ≤ an with an ∈ R+. | · |ε denotes the Vapnik
ε-insensitive loss function defined as

|Y − f(X)|ε =

{
0, if |Y − f(X)| ≤ ε;
|Y − f(X)| − ε, otherwise.

The optimization problem (minimization of the empirical risk functional in the
feature space)





min
w,b
JP (w,b) = 1

n

∑n
i=1 |Yi − wTϕ(Xi)− b|ε

s.t. ‖w‖ ≤ an
is related to the problem of finding w and b minimizing the quantity defined by
slack variables ξi,ξ

∗
i ,i = 1, . . . ,n and c > 0

P





min
w,b,ξ,ξ∗

JP (w,ξ,ξ∗) = 1
2w

Tw + c

n∑

i=1

(ξi + ξ∗
i )

s.t. Yi − wTϕ(Xi)− b ≤ ε+ ξi, i = 1, . . . ,n,
wTϕ(Xi) + b− Yi ≤ ε+ ξ∗

i , i = 1, . . . ,n,
ξi,ξ

∗
i ≥ 0, i = 1, . . . ,n.

(2.13)

The constant c > 0 (notice that c also depends on n) determines the amount
up to which deviations from the desired ε accuracy are tolerated. This above
optimization problem is called an optimization in the primal space. Since we
do not know ϕ(·) explicitly, it is impossible to solve (2.13). However, by using
the method of Lagrange multipliers (Bertsekas, 1996; Boyd and Vandenberghe,
2004) one only has inner product of the form ϕ(Xk)Tϕ(Xl), for all k,l = 1, . . . ,n
which can be replaced by a kernel function K(Xk,Xl) satisfying Mercer’s condition
(Theorem 2.2). Hence, after taking the Lagrangian and conditions for optimality,
one obtains the following dual problem in the dual variables α and α∗

D





max
α,α∗
JD(α,α∗) = − 1

2

n∑

i,j=1

(αi − α∗
i )(αj − α∗

j )K(Xk,Xj)

−ε
n∑

i=1

(αi − α∗
i ) +

n∑

i=1

Yi(αi − α∗
i )

s.t.

n∑

i=1

(αi − α∗
i ) = 0

αi, α
∗
i ∈ [0,c].

(2.14)

The dual representation of the model becomes

m̂n(x) =

n∑

i=1

(αi − α∗
i )K(x,Xi) + b,
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where αi, α
∗
i are the solutions to the Quadratic Programming (QP) problem (2.14)

and b follows form the complementary conditions for optimality. The non-zero
αi are called support vectors. The solution to the QP problem is global and
unique provided that the chosen kernel function K satisfies Mercer’s condition
(Theorem 2.2). For K(Xk,Xl) there are usually the following choices:

• linear kernel: K(Xk,Xl) = XT
k Xl ,

• polynomial kernel of degree k with c ≥ 0: K(Xk,Xl) = (XT
k Xl + c)k,

• Gaussian kernel with bandwidth h: K(Xk,Xl) = (2π)−d/2 exp
(

−‖Xk−Xl‖2

2h2

)
.

• RBF kernel with bandwidth h: K(Xk,Xl) = exp
(

−‖Xk−Xl‖2

h2

)
.

There exist numerous methods to solve the QP problem in (2.14) in a fast and
numerically stable way e.g. interior point algorithms (Nesterov and Nemirovskii,
1993; Nocedal and Wright, 2006), successive overrelaxation (Mangasarian and
Musicant, 1999), sequential minimal optimization (Platt, 1999).

Recently, Christmann and Steinwart (2007) have shown that kernel based
regression using a square loss function is weakly universally consistent if H is
a reproducing kernel Hilbert space of a universal kernel (Micchelli et al., 2006) on
X and 0 < cn < ∞ with cn → 0 and c4

nn → ∞ for n → ∞. A kernel is called
universal if for any prescribed compact subset Z of X , any positive number ε and
any function f ∈ C(Z) there exist a function g ∈ K(Z) such that ‖f − g‖Z ≤ ε.
Here ‖ · ‖Z denotes the maximum norm over the compact subset Z. Note that
universality of kernels can also be expressed in terms of Taylor series and Fourier
series (Steinwart, 2001). Theoretical results of Christmann and Steinwart (2007)
also show that kernel based regression methods using a loss function with bounded
first derivative (e.g. logistic loss) in combination with a bounded and continuous
kernel (e.g. Gaussian kernel) are not only consistent and computational tractable,
but also offer attractive robustness properties.

Steinwart (2001) showed, in the classification setting, that the soft margin
algorithms with universal kernels are consistent for a large class of classification
problems including some kind of noisy tasks provided that the regularization
parameter is chosen well i.e. independent of the training set size (Steinwart, 2001,
Theorem 18, 19 and 24). Finally, Steinwart (2001) shows that even for simple
cases, noise free classification problems SVMs with polynomial kernels can behave
arbitrarily bad (Steinwart, 2001, Proposition 20). However, in this area some
problems are still open i.e. it is interesting whether the soft margin algorithms
yield arbitrarily good generalization for all distributions. The results of Steinwart
(2001) only provide consistency if the noise level is constant.



32 MODEL BUILDING

2.5.3 Least Squares Support Vector Machines

A interesting aspect of SVM is that one solves nonlinear regression (and
classification) problems by means of convex quadratic programs. Moreover, one
also obtains sparseness as a result of this QP problem. Is it possible to simplify
the SVM formulation without loosing any of its advantages? As we will show, this
turns out to be true at the loss of sparseness. The following SVM modification was
proposed by Suykens et al. (2002): replace the inequality constraints by equality
constraints and use a squared loss function instead of an ε-insensitive loss function.
Given a training data set Dn = {(X1,Y1), . . . ,(Xn,Yn)} where X ∈ Rd and Y ∈ R

and consider the model class Fn,Ψ defined in (2.11) and let γ > 0. Minimizing
the empirical risk functional in the feature space with a squared loss leads to the
following primal optimization problem

P





min
w,b,e
JP (w,e) = 1

2w
Tw + γ

2

n∑

i=1

e2
i

s.t. Yi = wTϕ(Xk) + b + ei, i = 1, . . . ,n,

Note that this cost function consists of a Residual Sum of Squares (RSS) fitting
error and a regularization term, which is also a standard procedure for the training
of Multi-Layer Perceptrons (MLPs). Also, the above formulation is related to ridge
regression (Hoerl and Kennard, 1970; Golub and Van Loan, 1996). The relative
importance of these terms is determined by the positive real constant γ. In the
case of noisy data one avoids overfitting by taking a smaller γ value.

To solve the optimization problem in the dual space, one defines the Lagrangian

L(w,b,e;α) =
1

2
wTw +

γ

2

n∑

i=1

e2
i −

n∑

i=1

αi{wTϕ(Xi) + b+ ei − Yi},

with Lagrange multipliers αi ∈ R (called support vectors). The conditions for
optimality are given by





∂L

∂w
= 0 → w =

∑n
i=1 αiϕ(Xi)

∂L

∂b
= 0 → ∑n

i=1 αi = 0

∂L

∂ei
= 0 → αi = γei, i = 1, . . . ,n

∂L

∂αi
= 0 → wTϕ(Xi) + b+ ei − Yi = 0, i = 1, . . . ,n.

After elimination of w and e the solution yields

D

[
0 1Tn

1n Ω + 1
γ In

] [
b

α

]
=

[
0

Y

]
, (2.15)
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with Y = (Y1, . . . ,Yn)T , 1n = (1, . . . ,1)T and α = (α1, . . . ,αn)T the Lagrange
multipliers. By using Mercer’s condition, the kl-th element of Ω is given by

Ωkl = ϕ(Xk)Tϕ(Xl) = K(Xk,Xl) k,l = 1, . . . ,n,

where Ω is a positive definite matrix and the kl-th element of the matrix Ωkl =
K(Xk,Xl) is a symmetric, continuous function. The kernel function K can be
chosen as K(u) = (2π)−d/2 exp(−‖u‖2/2) where u = (Xk −Xl)/h and bandwidth
h. The resulting LS-SVM model is given by

m̂n(x) =

n∑

i=1

αiK(x,Xi) + b. (2.16)

As with SVM, one has a global and unique solution. The dual problem for
nonlinear LS-SVMs corresponds to solving a linear system which is easier to
solve compared to a QP problem with SVM. Unfortunately, a drawback of this
simplification is the loss of sparseness. Therefore, in the LS-SVM case, every
data point is a support vector. This is immediately clear from the condition for
optimality

αi = γei, i = 1, . . . ,n.

However, there are numerous works addressing the sparseness of LS-SVM models
based on different approaches. They can be broadly divided into two categories:
(i) Pruning after training and then retraining (Suykens et al., 2000; Li et al.,
2006). A common problem in both works is that it is not guaranteed that the
number of support vectors will be greatly reduced; (ii) Enforcing sparseness from
the beginning. Recently, in this last category, López et al. (2011) suggested to use
the L0 norm in order to obtain sparse LS-SVM models via an iterative reweighting
scheme since the problem is non-convex.

2.6 Conclusions

In this Chapter, we have reviewed the basic properties of parametric and
nonparametric modeling. Several model classes were briefly discussed such as
local averaging, local modeling, global modeling and penalized modeling. We have
described the assumptions and restrictions on the regression estimates and also
we have clarified that any estimate can have an arbitrary slow rate of convergence.
Further, we have illustrated the curse of dimensionality by means of an example
and how it can effect the quality of estimation. Finally, we motivated the basic
principle of support vector machines and least squares support vector machines.
The latter method will be the method of choice in this thesis.





Chapter 3

Model Selection Methods

From Chapter 2 we know that most learning algorithms such as local polynomial
regression, SVM, LS-SVM, etc. have some additional tuning parameters. These
are often the bandwidth of the kernel and the regularization parameter. In this
Chapter we describe and motivate some methods for selecting these additional
parameters. As we will show, this is not always an easy task since the designed
cost functions for finding these parameters (model selection) are not necessarily
convex. In order to select suitable parameters we proposed a methodology (De
Brabanter et al., 2010a) consisting of two steps which gives rise to fully automated
model selection procedures.

3.1 Introduction

Most learning algorithms such as neural networks, local polynomial regression,
smoothing splines, SVM, LS-SVM, etc. require the tuning of some extra parameter
or parameters. Mostly, in kernel methods these are the bandwidth of the kernel
and a regularization parameter. The latter is not always needed e.g. in local
polynomial regression, Nadaraya-Watson,. . .

Tuning parameter selection methods can be divided into three classes: (i)
Cross-validation (Clark, 1975; Wahba and Wold, 1975; Burman, 1989) and
bootstrap (Davison and Hinkley, 2003); (ii) Plug-in methods (Härdle, 1989;
Fan and Gijbels, 1996); (iii) Complexity criteria (Mallows, 1973; Akaike, 1973;
Schwartz, 1979; Vapnik, 1999). The reason why these parameters have to be
determined in such a way is due to the bias–variance tradeoff. Simply, this can be
interpreted as follows: With too much fitting, the model adapts itself too closely
to the training data and will not generalize well on new or unseen data. In this

35
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case we will have a large variance and small bias. On the other hand, when the
model is not complex enough, it will underfit the data and will have a large bias
(and small variance) and hence resulting in poor generalization. We will now study
this tradeoff in some more detail.

Let m̂n be an arbitrary estimate. For any x ∈ R
d the expected squared error of

m̂n at x can be written as

E[|m̂n(x)−m(x)|2] = E[|m̂n(x)−E[m̂n(x)]|2] + |E[m̂n(x)]−m(x)|2

= Var[m̂n(x)] + | bias[m̂n(x)]|2,

where bias[m̂n(x)] is the difference between the expectation of m̂n(x) and m(x).
Similarly, a decomposition of the expected L2 error yields

E

[∫
|m̂n(x)−m(x)|2 dF (x)

]
=

∫
Var[m̂n(x)] dF (x) +

∫
| bias[m̂n(x)]|2 dF (x).

The importance of these decompositions is that the integrated variance and the
integrated squared bias depend in opposite ways on the wiggliness of an estimate.
If one increases the wiggliness of an estimate, then usually the integrated bias
will decrease, but the integrated variance will increase. Under certain regularity
conditions (Fan and Gijbels, 1996; Simonoff, 1996) it can be shown for local
polynomial regression (with a polynomial of even degree (l in the sense of (2.9))
that ∫

Rd

Var[m̂n(x)] dF (x) =
κ1

nhd
+ o

(
1

nhd

)

and ∫

Rd

| bias[m̂n(x)]|2 dF (x) = κ2h
l + o(h2l),

where h denotes the bandwidth of the kernel estimate, κ1 is a constant depending
on the conditional variance Var[Y |X = x], the kernel and the design density
and κ2 is a constant depending on the kernel and the lth derivative of the true
regression function. Note that the notation for the odd degree of the polynomial
in Fan and Gijbels (1996) equals l − 1 in our notation. Figure 3.1 shows the
integrated variance, squared bias and the expected L2 error for local polynomial
regression with l = 2. The optimal value h∗ for which the sum of the integrated
variance and the squared bias is minimal depends on κ1 and κ2. Since κ1 and
κ2 depend on the underlying distribution, it is important to have methods which
choose the bandwidth automatically using only the data Dn. In the remaining of
the Chapter such methods will be discussed.
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Figure 3.1: Bias-variance tradeoff. The integrated variance, squared bias and the
expected L2 error for local polynomial regression with degree l = 2. h∗ is the optimal
value for which the sum of the integrated variance and the squared bias is minimal.

3.2 Cross-Validation Procedures

The purpose of this Section is to describe the rationale behind cross-validation
(CV) and to define several CV procedures. For a historical as well as a theoretical
overview of CV procedures see Arlot and Celisse (2010).

3.2.1 Cross-Validation Philosophy

Larson (1931) already noticed that training an algorithm and evaluating its
statistical performance on the same data yields an overoptimistic result. To avoid
such results CV procedures were developed (Stone, 1974; Geisser, 1975).

Since in most real life applications the number of data is limited, a technique
called splitting the data has to employed. Part of the data is used for training
the algorithm (training data) and the other part is used for evaluating the
performance of the model (validation data). Here, the validation data plays
the role of new data as long as the data are i.i.d. Various splitting strategies
exist e.g. hold-out (Devroye and Wagner, 1979; Devroye et al., 1996), leave-one-
out (Stone, 1974; Allen, 1974), leave-p-out (Shao, 1993), v-fold (Geisser, 1975;
Burman, 1989), Monte-Carlo (Picard and Cook, 1984; Marron, 1992), repeated
learning testing (Breiman et al., 1984; Burman, 1989).

The major interest of CV lies in the universality of the data splitting heuristics.
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It only assumes that data are identically distributed, and training and validation
samples are independent which can even be relaxed. Therefore, CV can be applied
to many algorithms in (almost) any framework, such as regression (Stone, 1974),
density estimation (Rudemo, 1982; Bowman, 1984), and classification (Devroye
and Wagner, 1979).

3.2.2 Leave-One-Out Cross-Validation

Consider the integrated squared error (ISE) as a measure of accuracy for the
estimator m̂n(x; θ), let θ denote the tuning parameter(s) of the estimator e.g.
θ = h in the NW kernel smoother or θ = (h,γ) for LS-SVM, and given a data
set Dn = {(X1,Y1), . . . ,(Xn,Yn)}. Note that all elements of θ should be strictly
positive. The main idea is to construct estimates m̂n(x; θ) such that the ISE is
small. Let F denote the distribution over the input space, then

∫
|m̂n(x; θ)−m(x)|2 dF (x) =

∫
m2(x) dF (x) +

∫
m̂2
n(x; θ) dF (x)

− 2

∫
m̂n(x; θ)m(x) dF (x).

(3.1)

Since the first term in (3.1) is independent of θ, minimizing (3.1) is equivalent to
minimizing ∫

m̂2
n(x; θ) dF (x) − 2

∫
m̂n(x; θ)m(x) dF (x). (3.2)

In practice this would be impossible to compute since this quantity depends on the
unknown real-valued (true) function m and the density f . The first term of (3.2)
can be entirely computed from the data Dn and the second term can be written
as ∫

m̂n(x; θ)m(x) dF (x) = E[m̂n(x; θ)m(x)|Dn ]. (3.3)

If one estimates (3.3) by its empirical version n−1
∑n

i=1 Yim̂n(Xi; θ) the selection
will be a biased estimator of the ISE. The bias is due to the fact that the observation
Yi is used in m̂n(Xi; θ) to predict itself. However, there exist several methods to
find an unbiased estimate of the ISE e.g. plug-in methods, leave-one-out (LOO)
technique and a modification so that bias cancels out asymptotically. Here we will
use the LOO technique in which one observation is left out. Therefore, a better
estimator for (3.3) instead of its straight empirical version is

1

n

n∑

i=1

Yim̂
(−i)
n (Xi; θ), (3.4)



CROSS-VALIDATION PROCEDURES 39

where m̂
(−i)
n (Xi; θ) denotes the LOO estimator with point i left out from the

training. Similarly, the first term of (3.2) can be written as

1

n

n∑

i=1

∣∣∣m̂(−i)
n (Xi; θ)

∣∣∣
2

. (3.5)

From (3.4) and (3.5), the LOO-CV function is given by

CV(θ) =
1

n

n∑

i=1

∣∣∣Yi − m̂(−i)
n (Xi; θ)

∣∣∣
2

.

The LOO cross-validated selection of θ is

θ̂ = arg min
θ

1

n

n∑

i=1

∣∣∣Yi − m̂(−i)
n (Xi; θ)

∣∣∣
2

.

3.2.3 v-fold Cross-Validation

In general there is no reason that training sets should be of size n − 1 as in
the LOO-CV case. There is the possibility that small perturbations, when single
observations are left out, make CV(θ) too variable, if the fitted values m̂n(x; θ)
do not depend smoothly on the empirical distribution F̂n or if the loss function
L(Y, m̂n(X ; θ)) is not continuous. These potential problems can be avoided to a
large extent by leaving out groups of observations, rather than single observations.
Also, it offers a computational advantage since we do not have to compute n
estimates but only v in v-fold CV. The latter plays an important role for large
data sets.

For v-fold CV the splits are chosen in a special deterministic way. Let 1 ≤ v ≤ n
and assume that n/v is an integer. Divide the data Dn into v disjoint groups of
equal size n/v and denote the set of data consisting of all groups, except the lth

one, by Dn,l:

Dn,l =
{

(X1,Y1), . . . ,(Xn
v (l−1),Yn

v (l−1)),(Xn
v
l+1,Yn

v
l+1), . . . ,(Xn,Yn)

}
.

For each data set Dn,l construct estimates m̂
(−Dn,l)
n (· ; θ). Choose θ such that

1

v

v∑

l=1

1

n/v

n
v l∑

i= n
v (l−1)+1

∣∣∣Yi − m̂(−Dn,l)
n− n

v
(Xi; θ)

∣∣∣
2

.

is minimal. Also note that v-fold CV with v = n is LOO-CV.
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The use of groups have the desired effect of reducing variance, but at the cost of
increasing bias. According to Beran (1984) and Burman (1989) the bias of v-fold
CV yields

a0

[
(v − 1)−1n−1

]
.

For LOO-CV the bias is of order O(n−2), but when v is small the bias term is
not necessarily small. Therefore, the use of 2-fold CV is never recommended. The
term a0, depending on the loss function L used in the CV procedure and the
empirical distribution F̂n, is of the order of the number of effective parameters
being estimated. As a result, if the number of effective parameters is not small,
the v-fold CV is a poor estimate of the prediction error. However, there are
adjustments possible to reduce the bias in v-fold CV, see e.g. Burman (1989, 1990);
Tibshirani and Tibshirani (2009); Arlot and Celisse (2010). These adjustments to
the v-fold CV procedure reduce the bias to

a1

[
(v − 1)−1n−2

]
,

for some constant a1 depending on the loss function L used in the CV procedure
and the empirical distribution F̂n.

Precise understanding of how Var[v-fold CV] depends on the splitting scheme is
rather complex since the number of splits (folds) v is linked with the number of
points used as validation. Furthermore, the variance of CV strongly depends on
the framework and on the stability of the algorithm. Therefore, radically different
results have been obtained in different frameworks, in particular on the value of v
for which the v-fold CV estimator has a minimal variance, see e.g. Burman (1989)
and Hastie et al. (2009, Chapter 7).

What is a suitable value for v? Davison and Hinkley (2003) have suggested the
following rule of thumb. Take v = min(

√
n,10), because taking v > 10 maybe

computationally too expensive while taking groups of size at least
√
n should

perturb the data sufficiently to give a small variance of the estimate.

3.2.4 Generalized Cross-Validation

Generalized Cross-Validation (GCV) was first proposed by Craven and Wahba
(1979) in the context of nonparametric regression with a roughness penalty.
However, Golub et al. (1979) showed that GCV can be used to solve a wide
variety of problems. Before formulating the GCV estimator we need the following
definition first.

Definition 3.1 (Linear smoother) An estimator m̂n of m is called a linear
smoother if, for each x ∈ Rd, there exists a vector L(x) = (l1(x), . . . ,ln(x))T ∈ Rn
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such that

m̂n(x) =

n∑

i=1

li(x)Yi.

In matrix form, this can be written as m̂n = LY , with L ∈ R
n×n and L is called

the smoother matrix. Craven and Wahba (1979) showed that the deleted residuals

Yi − m̂(−i)
n (Xi; θ) can be written in terms of Yi − m̂n(Xi; θ) and the trace of the

smoother matrix L. Also note that the smoother matrix depends on θ. The GCV
criterion satisfies

GCV (θ) =
1

n

n∑

i=1

∣∣∣∣
Yi − m̂n(Xi; θ)

1− n−1 tr[L(θ)]

∣∣∣∣
2

. (3.6)

The GCV estimate of θ can be found by minimizing (3.6).

GCV is actually closer to CL, i.e. Cp generalized for linear estimators (Mallows,
1973) than CV, since GCV can be seen as an approximation to Cp with a particular
estimator of variance (Efron, 1986). The efficiency of GCV has been investigate
in Li (1987) and Cao and Golubev (2006). An interesting fact regarding GCV is
that for a given data set, GCV always selects the same θ, no matter the magnitude
of noise.

3.3 Complexity Criteria: Final Prediction Error, AIC,

Mallows’ Cp and BIC

Let P be a finite set of parameters. For θ ∈ P , let Fn,θ be a set of functions

Fn,θ =

{
m : m(x,θ) = θ0 +

d∑

l=1

θlx
l, x ∈ R

d and θ ∈ P
}
,

let Qn(θ) ∈ R+ be a complexity term for Fn,θ and let m̂n be an estimator of m
in Fθ. The learning parameters are chosen to be the minimizer of a cost function
defined as

J(θ) =
1

n

n∑

k=1

L (yk,m̂n (xk; θ)) + λ (Qn(θ)) σ̂2

where L denotes the loss function, Qn(θ) ∈ R+ is a complexity term, λ > 0 is a
cost complexity parameter and the term σ̂2 is an estimate of the error variance.
The Final Prediction Error (FPE) criterion depends only on m̂n and the data. If
m̂n is defined by minimizing the empirical L2 risk over some linear vector space
Fn,θ of functions with dimension dθ (number of estimated parameters), then J(θ)
will be of the form:



42 MODEL SELECTION METHODS

• Let λ = 2 and Qn(θ) = n−1dθ, then Mallows’ Cp is defined as

Cp(θ) =
1

n

n∑

k=1

|Yk − m̂n(Xk; θ)|2 + 2

(
dθ
n

)
σ̂2. (3.7)

The Akaike Information Criterion (AIC) is a similar to (3.7) but more
generally applicable when a log-likelihood loss function is used (Hastie et al.,
2009). For the Gaussian model (with variance σ2 = σ̂2 assumed known), the
AIC statistic is equivalent to Cp, and is often referred collectively as AIC.

• Let λ = logn and Qn(θ) = n−1dθ, then the Bayesian Information Criterion
(BIC) is defined as

BIC(θ) =
1

n

n∑

k=1

|Yk − m̂n(Xk; θ)|2 + logn

(
dθ
n

)
σ̂2.

The Bayesian information criterion, like AIC, is applicable in settings where
the fitting is carried out by maximization of a log-likelihood. Therefore BIC
is proportional to AIC and Cp, with the factor 2 replaced by logn. Assuming
n > e2 ≈ 7.4, BIC tends to penalize complex models more heavily, giving
preference to simpler models in selection. Despite its similarity with AIC,
BIC is motivated in quite a different way. It arises in the Bayesian approach
to model selection (Schwartz, 1979).

• Let λ = log(logn) and Qn(θ) = n−1dθ, then the Hannan-Quinn Information
Criterion (HQIC) (Hannan and Quinn, 1979) is defined as

HQIC(θ) =
1

n

n∑

k=1

|Yk − m̂n(Xk; θ)|2 + log(logn)

(
dθ
n

)
σ̂2.

The HQIC was proposed in the context of autoregressive model order
determination.

• Some other complexity criteria are Takeuchi’s Information Criterion (TIC)
(Takeuchi, 1976), Minimum Description Length (MDL) (Rissanen, 1983) and
Vapnik-Chervonenkis (VC) dimension (Vapnik, 2000).

In case of linear regression and time series models, Hurvich and Tsai (1989) showed
for small samples that the bias of AIC can be quite large especially as the dimension
of the candidate model approaches the sample size (leading to overfitting of the
model). In order to overcome this drawback they proposed a corrected AIC
(AICC), which was found to be less biased than the classical AIC. The AICC
is given by

AICC(θ) =
1

n

n∑

k=1

|Yk − m̂n(Xk; θ)|2 +

(
1 +

2(dθ + 1)

n− dθ − 2

)
σ̂2. (3.8)
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The AIC was originally proposed for parametric models as an approximately
unbiased estimate of the expected Kullback-Leibler (KL) divergence. Extensions
to the nonparametric case are also possible. In this case let Q denote a finite set
of parameters and let θ ∈ Q. Let Fn,θ be a set of functions satisfying

Fn,θ =
{
m : m(X,θ),X ∈ R

d, Y ∈ R, θ ∈ Q and m̂n = L(θ)Y
}
,

where L denotes the smoother matrix (depending on θ), see (3.1), and m̂n is an
estimator of m in Fn,θ. The above set of functions are valid for splines, wavelets,
local polynomial regression, LS-SVM etc. and are called linear estimators or linear
smoothers in the sense that m̂n = L(θ)Y where the smoother matrix L(θ) depends
on X ∈ Dn and not on Y . Analogously to the formulation of the AICC for
parametric models and based on the effective numbers of parameters (also called
effective degrees-of-freedom) used in the nonparametric fit (Hastie and Tibshirani,
1990; Moody, 1992; Hastie et al., 2009), the tuning parameters are chosen to be
the minimizer of

AICC(θ) =
1

n

n∑

k=1

|Yk − m̂n(Xk; θ)|2 +

(
1 +

2(tr[L(θ)] + 1)

n− tr[L(θ)] − 2

)
σ̂2,

where it is assumed that tr[L(θ)] < n− 2.

3.4 Choosing the Learning Parameters

3.4.1 General Remarks

In most practical cases it is often preferable to have a data-driven method to select
learning parameters. For this selection process, many data-driven procedures have
been discussed in the literature. Commonly used are those based on the cross-
validation criterion (leave-one-out and v-fold) and the generalized cross-validation
criterion. One advantage of cross-validation and generalized cross-validation over
some other selection criteria such as Mallows’ Cp, AIC, AICC, HQIC, TIC and BIC
is that they do not require estimates of the error variance. As a consequence, these
selection criteria require a roughly correct working model to obtain the estimate of
the error variance while this is not a requirement for CV. The difficulty with leave-
one-out cross-validation is that it can become computationally very expensive in
practical problems involving large data sets. Especially for this reason v-fold CV
was introduced.

Closely related to CV are the bootstrap bandwidth selectors (Efron, 1982). In
fact, the bootstrap procedures are nothing more than smoothed versions of cross-
validation, with some adjustments made to correct for bias. The improvement of
the bootstrap estimators over cross-validation, in the dichotomous situation where
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both Y and the prediction rule are either 0 or 1, is due mainly to the effect of
smoothing. In smoother prediction problems, when Y and the prediction rule
are continuous, there is little difference between cross-validation and bootstrap
methods. Finally, the choice which criterion to use will depend on the situation.

It is well known that data-driven regression smoothing parameters (bandwidth) θ̂
based on CV methods and related methods exhibit a slow rate of convergence to
their optimum. This rate can be a slow as n−1/10 (Härdle et al., 1988) i.e. for

a bandwidth θ̂0 optimizing the averaged squared error, n1/10(θ̂ − θ̂0)/θ̂0 tends to
an asymptotic normal distribution. In order to improve this rate Härdle et al.
(1992) consider the mean averaged squared error optimal bandwidths h0. This
nonrandom smoothing parameter can be approximated much faster. They used
double smoothing to show that there is a θ̂ such that, under certain conditions
(compactly supported kernels of orders r and s, m(r+max(r,s)) is continuous on (0,1)

and σ̂2 is
√
n consistent for σ2), n1/2(θ̂ − θ0)/θ0 tends to an asymptotic normal

distribution.

Data-driven methods such as CV can be computationally quite expensive when
considering large data sets. Numerous attempts have been reported in literature
in order to reduce the computational burden. However, these speed-up techniques
are designed for a specific nonparametric regression smoother. In the case of LS-
SVM, consider the works of Cawley and Talbot (2004) and Ying and Keong (2004)
for fast LOO-CV and An et al. (2007) for fast v-fold CV.

Another approach to smoothing introduced by Chaudhuri and Marron (1999)
and Chaudhuri and Marron (2000) is called scale-space smoothing that avoids the
idea of selecting a single bandwidth. But rather than choosing a single bandwidth,
they examine m̂n over a set of bandwidths θ as a way of exploring the scale-space
surface

S = {mn(x),x ∈ X ,θ ∈ P} .
One way to summarize the estimated scale-space surface

Ŝ = {m̂n(x),x ∈ X ,θ ∈ P}

is to isolate important shape summaries. Chaudhuri and Marron (1999) look for
points x where m′

n(x) = 0 by using m̂′
n(x) as a set of test statistics. They call the

resulting method SiZer (significant zero crossings of derivatives). The method is
also a very useful tool for inferring significant features as opposed to being spurious
sampling artifacts.

3.4.2 Optimization Strategy

In the previous Sections we have discussed several methods that enable and
assist the user to choose the tuning parameters. This is a rather difficult task
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in practice since the cost functions, described in the previous Section, are non-
smooth and therefore can contain multiple local minima. The theoretical results
of Hall and Marron (1991) provide an explanation and quantification of this
empirical observation through modeling the cross-validation function as a Gaussian
stochastic process in the context of density estimation. They show asymptotically
that the degree of wiggliness of the cross-validation function depends on the
underlying density, but conclude that the dependence of the kernel function is
much more complicated.

A typical method to estimate the tuning parameters (finding the minimum value
of the CV cost function) would define a grid (grid-search) over these parameters
of interest and perform CV for each of these grid values. However, three
disadvantages come up with this approach (Bennett et al., 2006; Kunapuli et al.,
2008). A first disadvantage of such a grid-search CV approach is the limitation of
the desirable number of tuning parameters in a model, due to the combinatorial
explosion of grid points. A second disadvantage of this approach is their practical
inefficiency, namely, they are incapable of assuring the overall quality of the
produced solution. A third disadvantage in grid-search is that the discretization
fails to take into account the fact that the tuning parameters are continuous.

In order to overcome these drawbacks we propose a methodology consisting of two
steps: first, determine good initial start values by means of a state of the art global
optimization technique and second, perform a fine-tuning derivative-free simplex
search (Nelder and Mead, 1965; Lagarias et al., 1998) using the previous result as
start value. In order to determine good initial starting values, we use the method of
Coupled Simulated Annealing with variance control (CSA) (Xavier-de-Souza et al.,
2010), see Appendix A for a brief review of the algorithm. Global optimization
methods are typically very slow. For many difficult problems, ensuring convergence
to a global optimum might mean impractical running times. For such problems,
a reasonable solution might be enough in exchange for a faster convergence.
Precisely for this reason, many Simulated Annealing (SA) algorithms (Ingber,
1989; Rajasekaran, 2000) and other heuristic based techniques have been developed.
However, due to speed-up procedures, these methods often get trapped in poor
optima. The CSA method is designed to easily escape from local optima and
thus improves the quality of solution without compromising too much the speed
of convergence.

The working principle of CSA was inspired by the effect of coupling in Coupled
Local Minimizers (CLM) (Suykens et al., 2001) when compared to the uncoupled
case i.e. multi-start based methods. CLM and CSA have already proven to be
more effective than multi-start gradient descent optimization (Suykens et al., 2001,
2003). Another advantage of CSA is that it uses the acceptance temperature
to control the variance of the acceptance probabilities with a control scheme
that can be applied to an ensemble of optimizers. This leads to an improved
optimization efficiency because it reduces the sensitivity of the algorithm to the
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initialization parameters while guiding the optimization process to quasi-optimal
runs. This initial result is then used as a starting value for a derivative-free simplex
search. This extra step is a fine-tuning procedure resulting in more optimal tuning
parameters and hence better performance. This optimization method will be the
method of choice in this thesis to find the tuning parameters.

3.5 Conclusions

In this Chapter we have given an overview of data-driven model selection methods
and complexity criteria. Often in practice the chosen criterion will depend on
the situation e.g. small or large data set, can we obtain a good noise variance
estimation? We have also illustrated why these methods should be used in order
to acquire suitable tuning parameters with respect to the bias-variance tradeoff.
Finally, we made clear that minimizing these criteria is often troublesome since
there can be multiple local minima present. In order to remove the drawbacks of a
grid-search we have proposed a method consisting of two steps giving rise to fully
automated model selection procedures.



Chapter 4

Fixed-Size Least Squares
Support Vector Machines

In this Chapter, we show that solving LS-SVMs for large data sets is computational
as well as memory intensive. In order to handle larger data sets, we introduce the
so called fixed-size approach where a finite feature map can be approximated by
the Nyström method. Suitable selection of the prototype vectors for this approach
is performed by maximizing the Rényi entropy where the bandwidth of the kernel
is determined via the solve-the-equation plug-in method. Contributions are made
in Section 4.3, Section 4.4 and Section 4.5.

4.1 Introduction

From Chapter 2 we know that SVM leads to solving a QP problem. Unfortunately,
the design of QP solvers e.g. MINOS and LOQO assume that the full kernel matrix
is readily available. To overcome this difficulty, decomposition methods (Osuna
et al., 1997; Saunders et al., 1998; Joachims, 1999) were designed. A particular case
of the decomposition method is iterative chunking where the full scale problem is
restricted to a small subset of training examples called the working set. An extreme
form of chunking is Sequential Minimal Optimization (SMO) proposed by Platt
(1999). SMO uses the smallest possible working set size, i.e. two elements. This
choice greatly simplifies the method. Due to this reason SMO is considered as the
current state-of-the-art QP solver for solving medium as well as large-scale SVMs.

In the LS-SVM formulation the inequality constraints are replaced by equality
constraints and a sum of squared errors cost function is used. Due to the use

47
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of equality constraints and L2 cost function in LS-SVM, the solution is found by
solving a linear system instead of a QP problem. To tackle large-scale problems
with LS-SVM Suykens and Vandewalle (1999) and Van Gestel et al. (2004)
effectively employed the Hestenes-Stiefel conjugate gradient algorithm (Golub and
Van Loan, 1996; Suykens and Vandewalle, 1999). This method is well suited for
problems with a larger number of data (up to about 10.000 data points). As an
alternative, an iterative algorithm for solving large-scale LS-SVMs was proposed
by Keerthi and Shevade (2003). This method is based on the solution of the dual
problem using a similar idea to that of the SMO algorithm, i.e. using Wolfe duality
theory, for SVMs. The vast majority of textbooks and articles discussing SVMs
and LS-SVMs first state the primal optimization problem and then go directly to
the dual formulation, see e.g. Vapnik (1999) and Suykens and Vandewalle (1999).

A successful attempt for solving LS-SVMs in primal weight space resulting in a
parametric model and sparse representation, introduced by Suykens et al. (2002),
is called Fixed-Size Least Squares Support Vector Machines (FS-LSSVM). In this
method an explicit expression of the feature map or an approximation to it is
required. A procedure to find this approximated feature map is based on the
Nyström method (Nyström, 1930; Baker, 1977) which was also used by Williams
and Seeger (2001) to speed up Gaussian Processes.

4.2 Estimation in the Primal Space

In the following Section we review how to estimate a finite approximation to the
feature map ϕ for LS-SVMs, see Chapter 2, using the Nyström method. The
computed finite approximation will then be used to solve the problem in primal
space.

4.2.1 Finite Approximation to the Feature Map

Recall that the primal optimization problem for LS-SVM was given by

P





min
w,b,e
JP (w,e) = 1

2w
Tw + γ

2

n∑

i=1

e2
i

s.t. Yi = wTϕ(Xk) + b+ ei, i = 1, . . . ,n.

(4.1)

Mostly, this problem is solved by constructing the Lagrangian (see Chapter 2).
However, if one could obtain an explicit expression for the feature map ϕ : Rd → H
the above minimization problem can be solved in the primal space. We will show
that a finite approximation ϕ̂ : Rd → Rm of ϕ is possible and in general m≪ n.
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Let Xk ∈ Rd, k = 1, . . . ,n be a random sample from an unknown distribution
FX . Let C be a compact subset of Rd, V = L2(C) and M(V,V ) be a class of
linear operators from V into V . Consider the eigenfunction expansion of a kernel
function

K(x,t) =
∑

i

λiφi(x)φi(t),

where K(x,t) ∈ V, λi ∈ C and φi ∈ V are respectively the eigenvalues and the
eigenfunctions, defined by the Fredholm integral equation of the first kind

(Tφi)(t) =

∫

C

K(x,t)φi(x)dFX (x)

= λiφi(t), (4.2)

where T ∈M(V,V ).

Then (4.2) can be discretized on a finite set of evaluation points {X1,...,Xn} ∈
C ⊆ R

d with associated weights vk ∈ R, k = 1,...,n. Define a quadrature method
Qn, n ∈ N

Qn =

n∑

k=1

vkψ(Xk).

Let vk = 1
n ,k = 1, . . . ,n, the Nyström method (Nyström, 1930) approximates the

integral by means of Qn and determines an approximation φi by

λiφi(t) ≈
1

n

n∑

k=1

K(Xk,t)φi(Xk),∀t ∈ C ⊆ R
d. (4.3)

Let t = Xj, in matrix notation one obtains

ΩU = UΛ,

where Ωkj = K(Xk,Xj) are the elements of the kernel matrix, U = (u1,...,un) is a
n×n matrix of eigenvectors of Ω and Λ is a n×n diagonal matrix of nonnegative
eigenvalues in a decreasing order. Expression (4.3) delivers direct approximations
of the eigenvalues and eigenfunctions for the xk ∈ Rd,k = 1, . . . ,n points

φi(xj) ≈
√
nui,n and λi ≈

1

n
λi,n, (4.4)

where λi,n and ui,n denote the ith eigenvalue and the ith eigenvector of (4.3)
respectively (the subscript n denotes the eigenvalues and eigenvectors of (4.3)
based on the complete data set). λi denote the eigenvalues of (4.2). Substitut-
ing (4.4) in (4.3) results in an approximation of an eigenfunction evaluation in
point t ∈ C ⊆ Rd

φ̂i(t) ≈
√
n

λi,n

n∑

k=1

K(Xk,t)uki,n,



50 FIXED-SIZE LS-SVM

with uki,n the kth element of the ith eigenvector of (4.3). Based on the Nyström
approximation, an expression for ith entry of the n-approximated finite feature
map ϕ̂ : Rd → R

n is given by

ϕ̂i(x) =
√
λiφ̂i(X)

=
1√
λi,n

n∑

k=1

uki,nK(Xk,x). (4.5)

This method was used in Williams and Seeger (2001) to speed up Gaussian
processes. However, Williams and Seeger (2001) used the Nyström method to
approximate the eigenvalues and eigenvectors of the complete kernel matrix by
using a random subset of size m≪ n. A major difference is also that we estimate
here in the primal space which leads to a sparse representation.

4.2.2 Solving the Problem in Primal Space

In order to introduce parsimony, one can choose a fixed-size m (m ≪ n) as a
working subsample (see Section 4.3 on how to choose this sample). A likewise
m-approximation to (4.5) can be made yielding

ϕ̂i(x) =
1√
λi,m

m∑

k=1

uki,mK(Xk,x). (4.6)

Given a data set Dn = {(X1,Y1), . . . ,(Xn,Yn)} and the finite m-dimensional
approximation to the feature map ϕ̂, (4.1) can be written as

min
w̃,b

1

2

m∑

i=1

w̃2
i + γ

1

2

n∑

k=1

|Yk − w̃T ϕ̂(Xk)− b|2, (4.7)

with unknowns w̃ ∈ Rm,b ∈ R and m the number of prototype vectors (PVs).
Notice that this result is exactly the same in case of classification. The solution
to (4.7) is given by

(
ˆ̃w

b̂

)
=
(

Φ̂Te Φ̂e + Im+1

γ

)−1

Φ̂Te Y, (4.8)

where Φ̂e is the n× (m+ 1) extended feature matrix

Φ̂e =




ϕ̂1(X1) · · · ϕ̂m(X1) 1
...

. . .
...

...

ϕ̂1(Xn) · · · ϕ̂m(Xn) 1


 , (4.9)

and Im+1 the (m+ 1)× (m+ 1) identity matrix.
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4.3 Active Selection of a Subsample

Instead of using a purely random selection of PVs an entropy based selection
method is discussed as introduced by Suykens et al. (2002). It is especially
important to select the PVs. The selected PVs should represent the main
characteristics of the whole training data set, i.e. they take a crucial role in
constructing the FS-LSSVM model. Further in this Section it will be illustrated,
by means of a toy example, why this criterion is preferred over a purely random
selection. This active selection of PVs, based on entropy, refers to finding a subset
of size m, with m≪ n, of the columns in the kernel matrix that best approximate
the kernel matrix.

First, two entropy criteria will be discussed: Shannon (Shannon, 1948; Vollbrecht
and Wolf, 2002) and Rényi (Rényi, 1961; Principe et al., 2000; Girolami, 2002;
Vollbrecht and Wolf, 2002). See also Beirlant et al. (1997) for a thorough overview
concerning nonparametric entropy estimation. Second, we review the solve-the-
equation plug-in method introduced by Sheather and Jones (1991), to select the
smoothing parameter for entropy estimation. Third, we show how the previous
method can used to determine d smoothing parameters (bandwidths) if X ∈ Rd.
We investigate this for the use in FS-LSSVM for large scale applications.

4.3.1 Subsample Based on Entropy Criteria

Let Xk ∈ Rd, k = 1,...,n be a set of input samples from a random variable X ∈ Rd.
The success of a selection method depends on how much information about the
original input sample Xk ∈ Rd, k = 1, . . . ,n, is contained in a subsample Xj ∈ Rd,
j = 1,...,m (m ≪ n). In other words, the purpose of a subsample selection is to
extract m (m≪ n) samples from {X1, . . . ,Xn}, such that Hm(x), the information
or entropy of the subsample becomes as close to Hn(x) i.e. the entropy of the
original sample. As mentioned before, two entropy criteria will be discussed i.e.
Shannon and Rényi. The Shannon or differential entropy HS(X) is defined by

HS(X) = E[− log f(X)]

= −
∫

Rd

f(x) log(f(x)) dx, (4.10)

and the Rényi entropy H
(q)
R (x) of order q is defined as

H
(q)
R (x) =

1

1− q log

∫
f(x)q dx, (4.11)

with q > 0, q 6= 1. In order to compute both entropy criteria it can be seen that
an estimate of the density f is required.
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The (multivariate) density function f can be estimated by the (multivariate) kernel
density estimator (Silverman, 1986; Scott, 1992)

f̂(x1, . . . ,xd) =
1

n
∏d
j=1 hj

n∑

i=1





d∏

j=1

K

(
xi −Xij

hj

)
 ,

where hj denotes the bandwidth for each dimension j and the kernel K : R→ R+

satisfies
∫
R
K(u)du = 1. For d > 1, the same (univariate) kernel is used

in each dimension but with a different smoothing parameter (bandwidth) for
each dimension. The point Xij is the ijth entry of the given data matrix
(X1, . . . ,Xn)T ∈ Rn×d. Another possibility to estimate f(x) is by using the general
multivariate kernel estimator (Scott, 1992) given by

f̂(x) =
1

n|D|
n∑

i=1

K
{
D−1(x−Xi)

}
, (4.12)

where | · | denotes the determinant, D is a non-singular matrix of the form D =
diag(h1, · · · ,hd) and the kernel K : Rd → R+ satisfies

∫
Rd K(u)du = 1. In what

follows the general multivariate kernel estimator (4.12) will be used. Calculation
of the bandwidths h1, · · · ,hd will be discussed in the next two paragraphs.

When the Shannon (differential) entropy, given by (4.10), is used along with the

kernel density estimate f̂(x), the estimation of the entropy HS(x) becomes very

complicated. However, Rényi’s entropy of order q = 2, denoted by H
(2)
R (x), (also

called quadratic Rényi entropy) leads to a simpler estimate of entropy, see (4.11)).
The Shannon entropy can be viewed as one member of the Rényi’s entropy

family, because limq→1 H
(q)
R (x) = HS(x). Although Shannon’s entropy is the only

one which possesses properties such as continuity, symmetry, extremal property,
recursivity and additivity for an information measure, Rényi’s entropy family is
equivalent with respect to entropy maximization (Rényi, 1961, 2007). In real
problems, the choice of information measure depends on other requirements such
as ease of implementation. Combining (4.12) and (4.11), Rényi’s quadratic entropy
estimator, based on m prototype vectors and setting q = 2, becomes

Ĥ
(2)
R (X) = − log

1

m2|D|2
m∑

k=1

m∑

l=1

K

{(
D
√

2
)−1

(Xk −Xl)

}
. (4.13)

We choose a fixed size m (m ≪ n) for a working set of data points (prototype
vectors) and actively select points from the pool of training input samples as a
candidate for the working set (PVs). In the working set, a point is randomly
selected and replaced by a randomly selected point from the training input sample
if the new point improves Rényi’s quadratic entropy criterion. This leads to the
following active selection algorithm as introduced in Suykens et al. (2002). In the
classification setting, Algorithm 1 can be used in a stratified sampling scheme.
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Algorithm 1 Active prototype vector selection

1: Given a training set Dn = {(X1,Y1), · · · ,(Xn,Yn)}, choose a working set of
prototype vectors Wm ⊂ Dn of size m at random

2: Randomly select a sample point X∗ ∈ Wm, and X+ ∈ Dn, swap (X∗,X+)

3: if Ĥ
(2)
R (X1, . . . ,Xm−1;X+) > Ĥ

(2)
R (X1, . . . ,X

∗
i , . . . ,Xm) then

4: X+ ∈ Wm and X∗ /∈ Wm, X
∗ ∈ Dn

5: else
6: X+ /∈ Wm and X∗ ∈ Wm, X

∗ ∈ Dn
7: end if
8: Calculate Ĥ

(2)
R (X) for the present Wm

9: Stop if the change in entropy value (4.13) is small

Remark In our kernel entropy criterion, we have used the Gaussian kernel.
However, it can be shown that better kernel entropy estimates can be obtained by
using the naive (uniform or step) kernel if one is interested in the numerical value
of the entropy. Paninski and Yajima (2008) provide a kernel entropy estimator
whose error term may be bounded by a term which goes to zero if the kernel
bandwidth scales as 1/n. Therefore, accurate density estimates are not required for
accurate kernel entropy estimates. In fact it is a good idea when estimating entropy
to sacrifice some accuracy in the quality of the corresponding density estimate i.e.
to undersmooth. Paninski and Yajima (2008) also show that a uniformly consistent
kernel entropy estimator exists if nh→ 0 sufficiently slowly. Finally, it was already
observed in Beirlant et al. (1997) that consistent density estimates are not required
for consistent entropy estimates. Mnatsakanov et al. (2008) and Leonenko et al.
(2008a,b) showed the asymptotic unbiasedness and consistency of the Shannon,
Rényi and Tsallis entropy, under minimal assumptions on the density, based on k-
nearest neighbors. Leonenko and Seleznjev (2010) proved the asymptotic normality
of these estimators and illustrated applications areas in mathematical statistics and
computer science. Numerical implementations and speed-ups regarding these type
of estimators, based on k-nearest neighbors, are given by Vejmelka and Hlaváčková-
Schindler (2007).

4.3.2 Bandwidth Selection for Density Estimation

The most popular non-parametric density estimate f̂ of a density f based on a
random sample X1, . . . ,Xn is given by (Rosenblatt, 1956; Parzen, 1962)

f̂(x) =
1

nhd

n∑

k=1

K

(
x−Xk

h

)
.

Efficient use of kernel density estimation requires the optimal selection of the
bandwidth of the kernel. A wide variety of methods to select the bandwidth
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h in the case of kernel density estimation are available e.g. least squares
cross-validation (Rudemo, 1982; Bowman, 1984; Silverman, 1986; Li and Racine,
2006), biased cross-validation (Scott and Terrell, 1987), bootstrap bandwidth
selector (Hall et al., 1999; Li and Racine, 2006), regression-based bandwidth
selector (Härdle, 1991; Fan and Gijbels, 1996), double kernel method (Devroye,
1989; Devroye and Lugosi, 2001), plug-in methods (Silverman, 1986; Li and Racine,
2006; Raykar and Duraiswami, 2006), normal reference rule of thumb (Silverman,
1986; Scott, 1992) and the test graph method (Silverman, 1978, 1986).

However, since large data sets are considered, computational aspects of the
selection of the bandwidth should not be neglected. Therefore, only the normal
reference rule of thumb and plug-in methods can be considered. In what follows
only the plug-in method will be discussed. The selection of the smoothing
parameter is based on choosing h to minimize a kernel-based estimate of the mean
integrated squared error (MISE)

MISE(f̂) = E

∫ [
f̂(x) − f(x)

]2

dx

Fubini
=

∫
E
[
f̂(x) − f(x)

]2

dx

=

∫
MSE(f̂(x)) dx

=

∫
bias2(f̂(x)) dx +

∫
Var(f̂(x)) dx. (4.14)

Let X1, . . . ,Xn
i.i.d∼ X and under necessary conditions on f and K, an asymptotic

approximation for bias of f̂(x) is given by

E[f̂(x)] =
1

h

∫
K

(
x− y
h

)
f(y) dy

=

∫
K(u)f(x− uh) du, where u =

(
x− y
h

)

= f(x)

∫
K(u) du− f ′(x)h

∫
uK(u) du+

1

2
f ′′(x)h2

∫
u2K(u) du+ o(h2).

If

K ≥ 0,

∫
K(u) du = 1,

∫
uK(u) du = 0, 0 <

∫
u2K(u) du <∞,

and the underlying unknown density f has continuous derivatives of all orders
required, then an approximations for the bias is given by

E[f̂(x)] − f(x) =
1

2
f ′′(x)h2

∫
u2K(u) du+ o(h2).
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The variance of f̂(x) is given by

Var[f̂(x)] =
1

n

[
1

h2
E

[
K2

(
x−X
h

)]
−
{

1

h
E

[
K

(
x−X
h

)]}2
]
. (4.15)

Since

1

h2
E

[
K2

(
x−X
h

)]
=

1

h

∫
K2(u)f(x− uh) du

=
1

h
f(x)

∫
K2(u) du − f ′(x)

∫
uK2(u) du + o(1)

under the same assumptions as before, the variance is given by

Var[f̂(x)] =
1

nh
f(x)

∫
K2(u) du+ o(n−1h−1). (4.16)

Hence, the asymptotic approximation for MISE(f̂) is given by plugging (4.15) and
(4.16) in (4.14), yielding

MISE(f̂) =
1

4
h4µ2

2(K)

∫
(f ′′(x))2 dx+

1

nh
R(K) + o(h4 +

1

nh
),

with µ2(K) =
∫
u2K(u) du and R(K) =

∫
K2(u) du. The asymptotic MISE

bandwidth hAMISE is given by minimizing the asymptotic MISE

hAMISE = arg min
h

MISE(f̂). (4.17)

The result of (4.17) is given by

hAMISE =

[
R(K)

µ2
2(K)R(f ′′)

]1/5

n−1/5. (4.18)

However, the above expression cannot be used directly since R(f ′′) depends on the
second derivative of the density f . An estimator of the functional R(f (r)) using a
kernel density derivative estimate for f (r), with bandwidth g, is given by

R̂
(
f (r)

)
=

1

n2gr+1
AMISE

n∑

i=1

n∑

j=1

K(r)

(
Xi −Xj

gAMISE

)
. (4.19)

The optimal bandwidth gAMISE for estimating the density functional is given in
Theorem 4.1. Note that it is not necessary to take the same kernel functions for
density estimation and for the estimation of the functional R

(
f (r)

)
, see e.g. Scott

et al. (1977).

Theorem 4.1 (Wand and Jones, 1995) The asymptotic mean integrated squared
error (AMISE) optimal bandwidth gAMISE for (4.19) is given by

ĝAMISE =

(
−2K(r)(0)

µ2(K)R̂
(
f (r+2)

)
)1/(r+3)

n−1/(r+3).
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4.3.3 Solve-the-Equation Plug-In Method

One of the most successful methods for bandwidth selection for kernel density
estimation is the solve-the-equation plug-in method (Sheather and Jones, 1991;
Jones et al., 1996). The basic idea is to write the AMISE optimal bandwidth (4.18)
as follows

ĥAMISE =


 R(K)

µ2
2(K)R̂

(
f (4),ρ(ĥAMISE)

)




1/5

n−1/5, (4.20)

where R̂
(
f (4),ρ(ĥAMISE)

)
is an estimate of R(f (4)) using the pilot bandwidth

ρ(hAMISE). Note that this bandwidth to estimate the density functional (4.19) is
different from the bandwidth hAMISE used for kernel density estimation. Based on
Theorem 4.1 the bandwidth ĝAMISE for R

(
f (4)

)
is given by

ĝAMISE =

(
−2K(4)(0)

µ2(K)R̂
(
f (6),ρ(ĝAMISE)

)
)1/7

n−1/7.

Using (4.18) and substituting for n, gAMISE can be written as a function of the
bandwidth hAMISE for kernel density estimation

ĝAMISE =



−2K(4)(0)µ2(K) R̂

(
f (4),ĥ1

)

R(K) R̂
(
f (6),ĥ2

)




1/7

ĥ
5/7
AMISE,

where R̂
(
f (4),ĥ1

)
and R̂

(
f (6),ĥ2

)
are estimates of R

(
f (4),h1

)
and R

(
f (6),h2

)

using bandwidths h1 and h2 respectively. The bandwidths are chosen such that
they minimize the AMISE and are given by Theorem 4.1

ĥ1 =

(
−2K(4)(0)

µ2(K)R̂
(
f (6)

)
)1/7

n−1/7 and ĥ2 =

(
−2K(6)(0)

µ2(K)R̂
(
f (8)

)
)1/9

n−1/9, (4.21)

where R̂
(
f (6)

)
and R̂

(
f (8)

)
are estimates of R

(
f (6)

)
and R

(
f (8)

)
.

This of course also reveals the problem of how to choose r, the number of stages.
As r increases the variability of this bandwidth selector will increase, but it
becomes less biased since the dependence on the normal reference rule diminishes.
Theoretical considerations by Hall and Marron (1987) and Park and Marron (1992)
favour taking r to be at least 2, with r = 2 being a common choice.

If f is a normal density with variance σ2 then, according to Wand and Jones
(1995), R

(
f (6)

)
and R

(
f (8)

)
can be calculated exactly. An estimator of R

(
f (r)

)
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will use an estimate σ̂2 of the variance. An estimator for R
(
f (6)

)
and R

(
f (8)

)
, in

case of a normal density with variance σ2, is given by

R̂
(
f (6)

)
=
−15

16
√
π
σ̂−7 and R̂

(
f (8)

)
=

105

32
√
π
σ̂−9. (4.22)

The main computational bottleneck is the estimation of the kernel density
derivatives R

(
f (r)

)
which is of O(n2). A method for fast evaluation of these

kernel density derivatives R
(
f (r)

)
is proposed in Raykar and Duraiswami (2006) .

This method is based on the Taylor expansion of the Gaussian and hence adopts
the main idea of the Improved Fast Gauss Transform (IFGT) (Yang et al., 2003).
IFGT reduces the complexity to O(n). However, the constant factor in O(n)
grows exponentially with increasing dimensionality d, which makes the algorithm
impractical in higher dimensions i.e. d > 9.

The two stage solve-the-equation plug-in method using a Gaussian kernel is given
in Algorithm 2. A general overview of IFGT with applications to machine learning
can be found in Raykar and Duraiswami (2007).

Algorithm 2 solve-the-equation plug-in method

1: Compute an estimate σ̂ of the standard deviation.
2: Estimate density functionals R̂

(
f (6)

)
and R̂

(
f (8)

)
using (4.22).

3: Estimate density functionals R̂
(
f (4)

)
and R̂

(
f (6)

)
with bandwidths ĥ1 and ĥ2

using (4.21) and (4.19).
4: The optimal bandwidth is the solution to the nonlinear equation (4.20). This

equation can be solved by using e.g. Newton-Raphson method.

The previously discussed method is able, for a given univariate data set, to
compute the bandwidth. However, in the multivariate case one needs to compute
several bandwidths. One can then proceed as follows. To obtain the bandwidth
matrix D = diag(h1, . . . ,hd), one computes a bandwidth hi, i = 1, . . . ,d, for each
dimension according to Algorithm 2. This bandwidth matrix D can then be used
in (4.13) to compute the entropy estimate of multivariate sample.

4.3.4 Maximizing Rényi Entropy vs. Random Sampling

It is possible to compare the performance on test between models estimated
with a random prototype vector selection versus the same models estimated with
quadratic Rényi entropy based prototype vector selection. In order to compare
both performances on test we use the UCI Boston Housing data set (this data
set is publicly available at http://kdd.ics.uci.edu/). 168 test data points were
used and the number of prototype vectors was set to m = 200. The test is randomly

http://kdd.ics.uci.edu/
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selected in each run. Each model is tuned via 10-fold CV for both selection criteria.
Figure 4.1 shows the comparison for the results based on 100 runs. Table 4.1 shows
the average MSE and the standard deviation of the MSE. These results show that
using the entropy based criterion yields a lower mean and dispersion value on test.
Similar results were also obtained for different data sets.

Entropy Random

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
es

t
se

t
er

ro
r

(M
S
E

)

Figure 4.1: Boxplot of the MSE on test (100 runs) for models estimated with entropy
based and random selection of prototype vectors.

Table 4.1: Comparison of the mean and standard deviation of the MSE on test for the
Boston Housing data set using m = 200 over 100 randomizations.

Selection method Average MSE standard deviation MSE

Entropy 0.1293 0.0246

Random 0.1433 0.0323

Maximizing entropy criteria has been a widely studied area, see e.g. Cover and
Thomas (1991). The density which maximizes the entropy on a closed interval
without imposing additional moment constraints is the uniform density on that
closed interval. Theorem 4.2 states this result for the one dimensional case.

Theorem 4.2 The Rényi entropy on a closed interval [a,b] with a,b ∈ R and no
additional moment constraints is maximized for the uniform density 1/(b− a).

PROOF. For q > 0 and q 6= 1, maximizing the Rényi entropy with density f

1

1− q log

∫ b

a

f q(x) dx
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is equivalent to minimizing ∫ b

a

f q(x) dx,

since 1
1−q is always negative and logarithm is a monotone function. By the reverse

of Jensen’s inequality and noting that f is a density

1

b− a

∫ b

a

f q(x) dx ≥
(

1

b− a

∫ b

a

f(x) dx

)q
=

1

(b− a)q
.

Therefore, it follows that

∫ b

a

f q(x) dx ≥ (b− a)1−q

for
∫ b
a
f(x) dx = 1. This lower bound is reached if

f(x) =
1

b− a on [a,b].

�

Therefore, using a maximum entropy strategy to select the position of PVs will
result in a uniform subset over the input space (the selection only considers the
inputs and not the outputs), at least in theory. This is illustrated by means
of the following toy example. Let m(X) = sinc(X) + ε where X ∼ N (0,1)
and ε ∼ N (0,0.12). The sample size was taken to be 500. Maximizing the
quadratic Rényi entropy (4.13) was chosen as criterion to select 50 PVs. The
kernel entropy bandwidth h = 0.2634 was determined by the solve-the-equation
plug-in method (4.20). The results are shown in Figure 4.2. From the Q-Q plot
one can observe that the selected subset has a uniform distribution over the input
space.

4.4 Selecting the number of prototype vectors

An important task in this framework is to determine the number of PVs m ∈ N0

used in the FS-LSSVM model. Existing methods (Smola and Schölkopf, 2000;
Keerthi et al., 2006; Jiao et al., 2007; Zhao and Sun, 2009) select the number of
PVs based on a greedy approach. One disadvantage of these type of methods is that
they are time consuming, hence making them infeasible for large scale data sets.
In Smola and Schölkopf (2000) and Keerthi et al. (2006) an additional parameter is
introduced in the subset selection process which requires tuning. This parameter
determines the number of random PVs to try outside the already selected subset.
Keerthi et al. (2006) pointed out that there is no universal answer to set this
parameter because the answer would depend on the cost associated with the
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Figure 4.2: (a) Illustration of the function m(X) and the selected prototype vectors
(big dots); (b) Q-Q plot of the selected prototype vectors (x-coordinate) versus a uniform
distribution. The data falls clearly on the the straight line, confirming that the selected
subset has a uniform distribution over the input space.

computation of the kernel function, on the number of selected PVs and on the
number of training points.

A second class of methods to select the PVs is by constructing a basis in feature
space (Baudat and Anouar, 2001). This method was also used by Cawley and
Talbot (2002). The main idea of the method is to minimize the normalized
Euclidean distance between the position of a data item in feature space and
its optimal reconstruction using the set of basis vectors (PVs). This method is
computationally heavy since it involves numerous matrix-matrix products and
matrix inverses.

A third class of method is based on matrix algebra to obtain the number of
PVs. Valyon and Horváth (2004) obtain PVs by bringing the kernel matrix to the
reduced row echelon form (Golub and Van Loan, 1996). The total complexity of the
method is given by 1

3m
3 +m2(n+1)+n2. This method can be become intractable

for large data sets. Abe (2007) uses an incomplete Cholesky factorization to select
the PVs. The number of PVs are controlled by an extra tuning parameter that
can be determined by CV. A benefit of this method is that it does not require
storage of the complete kernel matrix into the memory, which can be problematic
when data sets are large, but the factorization can be done incrementally.

A fourth class is based on error bounds. Zhang et al. (2008) have used a k-means
clustering algorithm to select the PVs (i.e. m) for the Nyström approximation (4.6).
However, the bound in approximating the full kernel matrix using a low rank
approximation (Nyström method) appears not to be tight. Therefore, the number
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of PVs can be expected to be relatively large compared to n, hence making this
strategy not well suited for large data sets.

More recently, an optimization scheme for computing sparse approximate solutions
of over-determined linear systems was proposed by Karsmakers et al. (2010) called
Sparse Conjugate Directions Pursuit (SCDP). SCDP aims to construct a solution
using only a small number of nonzero (i.e. non-sparse) coefficients. The main idea
is to build up iteratively a conjugate set of vectors (PVs) of increasing cardinality,
by solving in each iteration a small linear subsystem. By exploiting the structure of
this conjugate basis, an algorithm is found (i) converging in at most d-iterations for
d-dimensional systems, (ii) with computational complexity close to the classical
conjugate gradient algorithm, and (iii) which is especially efficient when a few
iterations suffice to produce a good approximation.

Our proposed method selects the PVs by maximizing the quadratic Rényi
entropy (4.13). This algorithm requires the entropy kernel bandwidth(s). The
computational complexity associated with determining d bandwidths is roughly
nd (Raykar and Duraiswami, 2006). One only has to calculate the kernel matrix
associated with the PVs which has a computational cost of m2. The entropy value
is then almost given by the sum of all elements of this kernel matrix. Each time
when the set of PVs is altered by using the active selection strategy the entropy
value of the new set can be simply obtained by updating the previous value. Hence,
in this strategy the kernel matrix associated with the PVs has to be calculated
only once and can then be removed from the memory.

In theory we could gradually increase the number of PVs till m = n. Naturally
it would be too computationally expensive, but it gives an insight of how an
increasing amount of prototype vectors will influence the performance (on test) of
a classifier or regression estimate. Consider the Spam data set (1533 data points
are randomly selected as test set) and the Boston Housing data set (168 data
points are randomly selected as test set). In these examples the number of PVs m
are gradually increased and the performance on test data is determined for each
of the chosen prototype vector sizes. Figure 4.3 shows the number of prototype
vectors of the FS-LSSVM as a function of the performance on test data for both
data sets. The straight line is the LS-SVM estimate on the same data sets and
serves as a baseline comparison. These results indicate that only a percentage of
the total number of data points is required to obtain a performance on test which
is equal to the LS-SVM estimate.

In practice, however, due to time constraints and computational burden, it is
impossible to gradually increase the number of prototype vectors till e.g. m = n.
Therefore, we propose a simple heuristic in order to obtain a rough estimate of
the number of prototype vectors to be used in the FS-LSSVM model. Choose k
different values for the number of prototype vectors, say k = 5. Determine k FS-
LSSVM models and calculate the performance on test of each model. Choose
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Figure 4.3: Number of prototype vectors in function of the performance on a test set.
The straight line is the LS-SVM estimate and serves as a baseline comparison. (a) Spam
data (binary classification); (b) Boston Housing data (regression).

as final m, the number of prototype vector of the model which has the best
performance on test data. Also note that in this way not always the sparsest
model is selected, but it reduces computation time.

In the FS-LSSVM framework the number of PVs, m, is a tuning parameter but
the choice is not very crucial as can be seen in Figure 4.3. This is however an
inherent drawback of the method in contrast to SVM where the number of SVs
follow from solving a convex QP problem.

4.5 Fast v-fold Cross-Validation for FS-LSSVM

When considering large data sets, it is also important to have a fast and accurate
algorithm for cross-validation (see also Chapter 3). In what follows we propose a
fast algorithm for v-fold CV based on a simple updating scheme for FS-LSSVM.
Depending whether the extended feature matrix Φ̂e (4.9) can be stored completely
into the memory or not, two version of the algorithm will be discussed.

4.5.1 Extended Feature Matrix Can Fit Into Memory

The algorithm is based on the fact that the extended feature matrix Φ̂e (4.9) has
to be calculated only once instead of v times. Unlike An et al. (2007) and Ying
and Keong (2004), the algorithm is not based on one full matrix inverse because
of the complexity O(m+ 1)3 of this operation.
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Given a data set Dn. At each fold of the cross-validation, the vth group is left out
for validation and the remaining is for training. Recall that the extended feature
matrix Φ̂e ∈ R

n×(m+1) is given by

Φ̂e =




ϕ̂1(Xtr,1) · · · ϕ̂m(Xtr,1) 1
...

. . .
...

...

ϕ̂1(Xtr,ntr ) · · · ϕ̂m(Xtr,ntr ) 1

ϕ̂1(Xval,1) · · · ϕ̂m(Xval,1) 1
...

. . .
...

...

ϕ̂1(Xval,nval
) · · · ϕ̂m(Xval,nval

) 1




=

(
Φ̂tr 1tr

Φ̂val 1val

)
, (4.23)

where 1tr = (1, . . . ,1)T , 1val = (1, . . . ,1)T , Xtr,j and Xval,j denote the jth element
of the training data and validation data respectively. ntr and nval are the number
of data points in the training data set and validation set respectively such that

ntr + nval = n. Also set A = Φ̂Te Φ̂e + Im+1

γ
and c = Φ̂Te Y . At each fold of the

cross-validation, the v-th group is left out for validation and the remaining is for
training. So in the v-th iteration

Av

(
w̃

b

)
= cv, (4.24)

where Av is a square matrix with the same dimension as A but modified from A by
taking only the training data to build it. The motivation is to get Av from A with
a few simple steps instead of computing Av in each fold from scratch. Using (4.8)
and (4.23), the following holds

Φ̂Te Φ̂e +
Im+1

γ
=

(
Φ̂Ttr Φ̂Tval
1Ttr 1Tval

)(
Φ̂tr 1tr

Φ̂val 1val

)
+
Im+1

γ

=

(
Φ̂TtrΦ̂tr + Im

γ Φ̂Ttr1tr

1TtrΦ̂tr 1Ttr1tr + 1
γ

)
+

(
Φ̂TvalΦ̂val Φ̂Tval1val

1TvalΦ̂val 1Tval1val

)

=

(
Φ̂Te,trΦ̂e,tr +

Im+1

γ

)
+

(
Φ̂Tval
1Tval

)(
Φ̂val 1val

)
,

where Φ̂e,tr =
(

Φ̂tr 1tr

)
is the extended feature matrix of the training data

and hence

Φ̂Te,trΦ̂e,tr +
Im+1

γ
=

(
Φ̂Te Φ̂e +

Im+1

γ

)
−
(

Φ̂Tval

1Tval

)(
Φ̂val 1val

)
.
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This results in

Av = A−
(

Φ̂Tval

1Tval

)(
Φ̂val 1val

)
. (4.25)

The most time consuming step in (4.25) is the calculation of matrix A. However,
this calculation needs to be performed only once. The second term in (4.25) does
not require complete recalculation since Φ̂val can be extracted from Φ̂e, see (4.23).
A similar result holds for cv

c = Φ̂Te Y

=

(
Φ̂Ttr Φ̂Tval
1Ttr 1Tval

)(
Ytr

Yval

)

=

(
Φ̂Ttr

1Ttr

)
Ytr +

(
Φ̂Tval
1Tval

)
Yval

= cv +

(
Φ̂Tval
1Tval

)
Yval,

thus

cv = c−
(

Φ̂Tval
1Tval

)
Yval. (4.26)

In each fold one has to solve the linear system (4.24). This leads to Algorithm 3
for fast v-fold cross-validation.

Algorithm 3 Fast v-fold cross-validation for FS-LSSVM

1: Calculate the matrix Φ̂e (for all data using the Nyström approximation (4.6))

and A = Φ̂Te Φ̂e + Im+1

γ
.

2: Split data randomly into v disjoint sets of nearly equal size.
3: Compute in each fold Av and cv using (4.25) and (4.26) respectively.
4: Solve the linear system (4.24).

5: Compute the residuals in each fold êv,i = Yval,i − ( ˆ̃wT ϕ̂(Xval,i) + b̂) in each
fold.

6: Choose an appropriate loss function to assess performance (e.g. MSE).

The literature describes other fast implementations for CV, see e.g. the methods
of Cawley and Talbot (2004) and Ying and Keong (2004) for leave-one-out CV
(LOO-CV) and An et al. (2007) for v-fold CV. The method of choice greatly
depends on the number of folds used for CV. Table 4.2 gives an overview of which
method can be best used with different type of folds.
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Table 4.2: Summary of different implementations of CV.

implementation ♯ folds

Cawley and Talbot (2004) n

An et al. (2007) > 20

proposed 3-20

4.5.2 Extended Feature Matrix Cannot Fit Into Memory

The fast v-fold CV algorithm for FS-LSSVM (Algorithm 3) is based on the fact that
the extended feature matrix (4.9) can fit into the memory. In order to overcome
this problem we propose to calculate the extended feature matrix Φ̂e in a number
of S blocks. In this way, the extended feature matrix Φ̂e does not need to be
stored completely into the memory. Let ls, with s = 1, . . . ,S denote the length of
the s-th block and also

∑S
s=1 ls = n. The matrix Φ̂e can be written as follows

Φ̂e =




Φ̂e,[1]

...

Φ̂e,[S]


 ,

with Φ̂e,[s] ∈ Rls×(m+1) and the vector Y

Y =




Y[1]

...

Y[S]


 ,

with Y[s] ∈ Rls . The matrix Φ̂Te,[s]Φ̂e,[s] and vector Φ̂Te,[s]Y[s] can be calculated in an

updating scheme and stored into the memory since their sizes are (m+1)×(m+1)
and (m+ 1)× 1 respectively.

Also because of the high computational burden, we can validate using a holdout
estimate (Devroye et al., 1996). The data sequence Dn is split into a training
sequence Dtr = {(X1,Y1), . . . ,(Xt,Yt)} and a fixed validation sequence Dval =
{(Xt+1,Yt+1), . . . ,(Xt+l,Yt+l)}, where t + l = n. Algorithm 4 summarizes the
above idea. The idea of calculating Φ̂e in blocks can also be extended to v-fold
CV.
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Algorithm 4 Holdout estimate for very large-scale FS-LSSVM

1: Choose a fixed validation sequence Dval.
2: Divide the remaining data set Dtr into approximately S equal blocks such that

Φ̂e,[s] with s = 1, . . . ,S, calculated by (4.6), can fit into the memory.

3: Initialize matrix Av ∈ R(m+1)×(m+1) and vector cv ∈ Rm+1.
4: for s = 1 to S do
5: Calculate matrix Φ̂e,[s] for the s-th block using the Nyström approxima-

tion (4.6)
6: Av ← Av + Φ̂Te,[s]Φ̂e,[s]

7: cv ← cv + Φ̂Te,[s]Y[s]

8: end for

9: Set Av ← Av +
Im+1

γ
.

10: Solve the linear system (4.24).
11: Compute the residuals ê on the fixed validation sequence Dval.
12: Compute the holdout estimate.

4.6 Computational Complexity Analysis and Numeri-

cal Experiments on Fast v-fold CV for FS-LSSVM

In this Section, we discuss the complexity of the proposed fast v-fold CV and
present some experimental results compared to a simple implementation of v-fold
CV on a collection of data sets from UCI benchmark repository.

4.6.1 Computational Complexity Analysis

The simple implementation of v-fold CV computes the extended feature ma-
trix (4.9) for each split of data and uses no updating scheme. This is
computationally expensive when v is large (e.g. leave-one-out CV). Note that
the complexity of solving a linear system with dimension m+1 is 1

3 (m+1)3 (Press
et al., 1993) and the complexity of calculating the Nyström approximation (with
eigenvalue decomposition of the kernel matrix of size m) is m3 + m2n. The total
complexity of the proposed method is then given by the sum of the complexities
of

• v times solving a linear system of dimensions m+ 1

• calculating the Nyström approximation + eigenvalue decomposition of the
kernel matrix of size m once

• Matrix matrix product Φ̂Te Φ̂e once.
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Hence, the resulting complexity of the proposed method, neglecting lower order
terms, is given by (v3 + 1)m3 + 2nm2. In a similar way, the resulting complexity of
the simple method is given by 4

3vm
3 +(2v−2)nm2. The computational complexity

of the proposed method is smaller than the simple method for v ≥ 2. Keeping m
fixed, it is clear that the number of folds has a small influence on the proposed
method resulting in a small time increase with increasing number of folds v. This is
in contrast to the simple method were the computational complexity is increasing
heavily with increasing folds. On the other hand, consider the number of folds v
fixed and m variable, a larger time increase is expected with the simple method
rather than with the proposed method i.e. the determining factor is m3.

4.6.2 Numerical Experiments

All the experiments that follow are performed on a PC machine with Intel Core
2 Quad (Q6600) CPU and 3.2 GB RAM under Matlab R2008a for Windows.
During the simulations the RBF kernel is used unless mentioned otherwise. To
compare efficiency of the proposed algorithm, the experimental procedure, adopted
from Mika et al. (1999) and Rätsch et al. (2001), is used where 100 different random
training and test splits are defined.

Table 4.3 verifies the computational complexity of the algorithm on the Concrete
Compressive Strength (publicly available at http://kdd.ics.uci.edu/ and has
1030 number of instances and 8 attributes.) data set (regression) for various
number of prototype vectors (the number of prototype vectors are chosen
arbitrarily). From the experiments, it can be seen that the computation time
is not very sensitive to the number of folds while this influence is larger in the
simple implementation. Both algorithms experience an increasing complexity at
an increasing number of prototype vectors. This increase is stronger with the
simple implementation. The latter has also a larger standard deviation. The
results of Table 4.3 are visualized in Figure 4.4 showing the number of folds as
a function of computational time for various number of prototype vectors in the
regression case.

Table 4.4 verifies the complexity of the algorithm on the Magic Gamma Telescope
(this data set is publicly available at http://kdd.ics.uci.edu/ and has 19020
number of instances and 10 attributes.) data set (binary classification) for various
number of prototype vectors (also chosen arbitrarily) and folds. The conclusions
are the same as in the regression case. The results of Table 4.4 are visualized in
Figure 4.5 showing the number of folds as a function of computational time for
various number of prototype vectors in the classification case.

http://kdd.ics.uci.edu/
http://kdd.ics.uci.edu/
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Table 4.3: (Regression) The average run time (seconds) over 100 runs of the proposed
algorithm compared with the simple implementation for various folds and prototype
vectors on the Concrete Compressive Strength data set for one pair of fixed tuning
parameters. The standard deviation is given within parentheses.

(a) 50 prototype vectors

number of folds 5 10 20 30 40 50

simple [s]
0.066 0.14 0.29 0.44 0.57 0.71

(0.0080) (0.0038) (0.0072) (0.0094) (0.0085) (0.0079)

optimized [s]
0.009 0.012 0.015 0.018 0.019 0.021

(0.0013) (0.0013) (0.0003) (0.0004) (0.0004) (0.0004)

(b) 100 prototype vectors

number of folds 5 10 20 30 40 50

simple [s]
0.19 0.38 0.75 1.15 1.49 1.86

(0.0060) (0.010) (0.0140) (0.0160) (0.0160) (0.0160)

optimized [s]
0.031 0.033 0.035 0.039 0.052 0.058

(0.0060) (0.0006) (0.0007) (0.0001) (0.0006) (0.0007)

(c) 400 prototype vectors

number of folds 5 10 20 30 40 50

simple [s]
3.60 7.27 14.51 21.62 31.07 39.12

(0.0400) (0.1100) (0.1000) (0.1100) (0.1200) (0.1200)

optimized [s]
0.40 0.45 0.53 0.57 0.65 0.76

(0.0030) (0.0020) (0.0020) (0.0020) (0.0050) (0.0050)
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Figure 4.4: Number of folds as a function of computation time (in seconds) for various
number of prototype vectors (50, 100, 400) on the Concrete Compressive Strength data
set. The full line represents the simple implementation and the dashed line the proposed
method.
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Table 4.4: (Binary Classification) The average run time (seconds) over 100 runs of
the proposed algorithm compared with the simple implementation for various folds and
prototype vectors on the Magic Gamma Telescope data set for one pair of fixed tuning
parameters. The standard deviation is given within parentheses.

(a) 50 prototype vectors

number of folds 5 10 20 30 40 50

simple [s]
0.71 1.51 2.98 4.47 6.05 7.60

(0.040) (0.020) (0.026) (0.030) (0.040) (0.039)

optimized [s]
0.15 0.16 0.16 0.17 0.19 0.19

(0.010) (0.006) (0.004) (0.005) (0.005) (0.005)

(b) 300 prototype vectors

number of folds 5 10 20 30 40 50

simple [s]
6.27 12.80 25.49 38.08 50.94 64.43

(0.080) (0.240) (0.270) (0.430) (0.260) (0.420)

optimized [s]
1.52 1.57 1.60 1.64 1.66 1.83

(0.050) (0.020) (0.050) (0.050) (0.040) (0.030)

(c) 700 prototype vectors

number of folds 5 10 20 30 40 50

simple [s]
29.01 58.56 117.12 179.44 231.59 290.36

(0.200) (0.120) (0.160) (0.170) (0.180) (0.710)

optimized [s]
5.95 6.06 6.34 6.60 6.94 7.11

(0.046) (0.090) (0.025) (0.024) (0.032) (0.026)
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Figure 4.5: Number of folds as a function of computation time (in seconds) for various
number of prototype vectors (50, 300, 700) on the Magic Gamma Telescope data set.
The full line represents the simple implementation and the dashed line the proposed
method.
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4.7 Classification and Regression Results

In this Section, we report the application of FS-LSSVM on benchmark data
sets (Blake and Merz, 1998) of which a brief description is included in the following
paragraph. The performance of the FS-LSSVM is compared to standard SVM
and ν-SVM (LIBSVM software, Chang and Lin (2001)). Although we focuss in
this Chapter on large-scale data sets, also smaller data sets will be included for
completeness. The randomized test set results are discussed for classification and
regression.

4.7.1 Description of the Data Sets

All the data sets have been obtained from the publicly accessible UCI benchmark
repository (Blake and Merz, 1998). As a preprocessing step, all records containing
unknown values are removed from consideration. All given inputs are normalized
to zero mean and unit variance.

Classification

The following binary data sets were downloaded from http://kdd.ics.uci.edu/:
Magic Gamma Telescope (mgt), Pima Indians Diabetes (pid), Adult (adu), Spam
Database (spa) and Forest Covertype (ftc) data set. The main characteristics
of these data sets are summarized in Table 4.5. A modification was made from
this last data set (Collobert et al., 2002; Hall and Bowyer, 2004): the 7-class
classification problem was transformed into a binary classification problem where
the goal is to separate class 2 from the other 6 classes.

Table 4.5: Characteristics of the binary classification UCI data sets, where NCV is
the number of data points used in CV based tuning procedure, ntest is the number of
observations in the test set and n is the total data set size. The number of numerical
and categorial attributes is denoted by dnum and dcat respectively, d is the total number
of attributes.

pid spa mgt adu ftc

nCV 512 3068 13000 33000 531012

ntest 256 1533 6020 12222 50000

n 768 4601 19020 45222 581012

dnum 8 57 11 6 10

dcat 0 0 0 8 44

d 8 57 11 14 54

http://kdd.ics.uci.edu/
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The following multi-class data sets were used: Letter Recognition (let), Optical
recognition (opt), Pen based Recognition (pen), Statlog Landsat Satellite (lan)
and Statlog Shuttle (shu) data set. The main characteristics of these data sets are
summarized in Table 4.6.

Table 4.6: Characteristics of the multi-class classification UCI data sets. The M row
denotes the number of classes for each data set encoded by LMOC and L1vs1 bits for
minimum output coding (MOC) and one-versus-one output coding (1vs1) respectively.

opt lan pen let shu

nCV 3750 4435 7328 13667 43500

ntest 1870 2000 3664 6333 14500

n 5620 6435 10992 20000 58000

dnum 64 36 16 16 9

dcat 0 0 0 0 0

d 64 36 16 16 9

M 10 7 10 26 7

LMOC 4 3 4 5 3

L1vs1 45 21 45 325 21

Regression

The following data sets for regression were also downloaded from the UCI
benchmark data set: Boston Housing (bho) and Concrete Compressive Strength
(ccs). The main characteristics of these data sets are given in Table 4.7.

Table 4.7: Characteristics of the regression UCI data sets.

bho ccs

nCV 338 687

ntest 168 343

n 506 1030

dnum 14 9

dcat 0 0

d 14 9

4.7.2 Description of the Reference Algorithms

The test performance of the FS-LSSVM classifier/regression model is compared to
the performance of SVM and ν-SVM (Schölkopf et al., 2000), both implemented
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in the LIBSVM software. In case of ν-SVM the parameter ν ∈ ]0,0.8] is also
considered as a tuning parameter. The three methods use a cache size of 1GB
and the stopping criterion is set to 10−3. Shrinking is applied in the SVM case.
For Classification, the default classifier or majority rule (Maj.Rule) is included as
a baseline in the comparison tables. The majority rule (in percent) is given by
the largest number of data points belonging to a class divided by total number of
data points (of all classes) multiplied by hundred. All comparisons are made on
the same 10 randomizations.

The comparison is performed on an out-of-sample test set consisting of 1/3 of the
data. The first 2/3 of the randomized data is reserved for training and/or cross-
validation. For each algorithm, the average test set performances and sample
standard deviations on 10 randomizations are reported. Also the mean total
time and corresponding standard deviation are mentioned. The total time of the
algorithms consists of (i) 10-fold CV using the optimization strategy described in
Section 3.4. The total number of function evaluations is set to 160 (90 for CSA
and 70 for simplex search). In case of ν-SVM the parameter ν is also considered
as a tuning parameter. We have used 5 multiple starters for the CSA algorithm;
(ii) training with optimal tuning parameters and (iii) evaluation on test set. For
FS-LSSVM we set the parameter k = 5.

4.7.3 Performance of binary FS-LSSVM classifiers

In what follows, the results are presented and discussed for the 7 UCI binary
benchmark data sets described above. As kernel types RBF and linear (Lin) kernels
were used. Performances of FS-LSSVM, SVM (C-SVC) and ν-SVC are reported.
The following experimental setup is used: each binary classifier is designed on
2/3 (random selection) of the data using 10-fold CV, while the remaining 1/3 are
put aside for testing. The test set performances on the data sets are reported in
Table 4.8. Table 4.9 gives the average computation time (in seconds) and standard
deviation for both algorithms.

The FS-LSSVM classifier with RBF kernel (RBF FS-LSSVM) achieves the best
average test performance on 3 of the 5 benchmark domains, while its accuracy is
comparable to RBF SVM (C-SVC). On all binary classification data sets ν-SVC
has a slightly lower performance compared to FS-LSSVM and C-SVC. Comparison
of the average test set performance achieved by the RBF kernel with the average
test set performance of the linear kernel illustrates that most domains are weakly
nonlinear (Holte, 1993), except for the Magic Gamma Telescope data set. Due
to the high training time for SVM (C-SVC and ν-SVC) in case of the Forest
Covertype data set, it is practically impossible to perform 10-fold CV. Therefore,
the values in Table 4.8 and Table 4.9 with an asterisk only denote the training time
for a fixed pair of tuning parameters for SVM. No cross-validation was performed
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because of the computational burden. Notice also that the FS-LSSVM models are
sparser than the RBF SVM (C-SVC and ν-SVC) models while resulting in equal
or better performance on test.

Table 4.8: Comparison of the 10 times randomized test set performances (in
percentage) and standard deviations (within parentheses) of FS-LSSVM (linear and RBF
kernel) with the performance of C-SVC, ν-SVC and Majority Rule classifier on 5 binary
domains. ntest is the number of observations in the test set and d is the total number
of attributes. Also the number of prototype vectors (PV) for FS-LSSVM and number
of support vectors (SV) used by the algorithms are reported. The number of prototype
vectors of FS-LSSVM are determined by the heuristic described in Section 4.4. The
values with an asterisk only denote the performance of the C-SVC and ν-SVC for fixed
tuning parameter(s). No cross-validation was performed because of the computational
burden.

pid spa mgt adu ftc

ntest 256 1533 6020 12222 50000

d 8 57 11 14 54

♯ PV FS-LSSVM 150 200 1000 500 500

♯ SV C-SVC 290 800 7000 11085 185000

♯ SV ν-SVC 331 1525 7252 12205 165205

RBF FS-LSSVM 76.7(3.43) 92.5(0.67) 86.6(0.51) 85.21(0.21) 81.8(0.52)

Lin FS-LSSVM 77.6(0.78) 90.9(0.75) 77.8(0.23) 83.9(0.17) 75.61(0.35)

RBF C-SVC 75.1(3.31) 92.6(0.76) 85.6(1.46) 84.81(0.20) 81.5(∗)

Lin C-SVC 76.1(1.76) 91.9(0.82) 77.3(0.53) 83.5(0.28) 75.24(∗)

RBF ν-SVC 75.8(3.34) 88.7(0.73) 84.2(1.42) 83.9(0.23) 81.6(∗)

Maj. Rule 64.8(1.46) 60.6(0.58) 65.8(0.28) 83.4(0.1) 51.23(0.20)

Table 4.9: Comparison of the average computation time in seconds for the FS-LSSVM,
C-SVC and ν-SVC on 5 binary classification problems. The standard deviation is shown
within parentheses. The values with an asterisk only denotes the training time for a fixed
pair of tuning parameters for C-SVC and ν-SVC. No cross-validation was performed
because of the computational burden.

Av. Time (s) pid spa mgt adu ftc

RBF FS-LSSVM 30.1(1.9) 249(16) 9985(112) 7344(295) 122290(989)

Lin FS-LSSVM 19.8(0.5) 72(3.8) 1298(13) 1404(47) 5615(72)

RBF C-SVC 24.8(3.1) 1010(53) 20603(396) 139730(5556) 58962(∗)

Lin C-SVC 18(0.65) 785(22) 13901(189) 130590(4771) 53478(∗)

RBF ν-SVC 30.3(2.3) 1372(43) 35299(357) 139927(3578) 55178(∗)
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4.7.4 Performance of multi-class FS-LSSVM classifiers

Each multi-class problem is decomposed in a set of binary classification problems
using minimum output coding (MOC) and one-versus-one (1vs1) output coding
for FS-LSSVM and one-versus-one (1vs1) output coding for SVM (C-SVC and ν-
SVC). The same kernel types as in the binary classification problem are considered.
Performances of FS-LSSVM and SVM (C-SVC and ν-SVC) are reported. We used
the same experimental setup as for binary classification. The test set performances
on the different data sets are reported in Table 4.10. Table 4.11 gives the average
computation time (in seconds) and standard deviation for the three algorithms.
Performance on test as well as the accuracy of the multi-class FS-LSSVM and
multi-class SVM (C-SVC and ν-SVC) are similar. From Table 4.10 it is clear that
there is a difference between the encoding schemes. In general, 1vs1 output coding
results in better performances on test than minimum output coding (MOC). This
can be especially seen from the Lin FS-LSSVM result on the Letter Recognition
data set. Notice that the FS-LSSVM models are again sparser than the two types
of SVM models.

Table 4.10: Comparison of the 10 times randomized test set performances (in
percentage) and standard deviations (within parentheses) of FS-LSSVM (RBF kernel)
with the performance of C-SVC, ν-SVC and Majority Rule classifier on 5 multi-class
domains using MOC and 1vs1 output coding. ntest is the number of observations in the
test set and d is the total number of attributes. Also the number of prototype vectors
(PV) and number of support vectors (SV) used by the algorithms are reported. The
number of prototype vectors of FS-LSSVM are determined by the heuristic described in
Section 4.4.

opt lan pen let shu

ntest 1870 2000 3664 6333 14500

d 64 36 16 16 9

♯ PV FS-LSSVM 420 330 250 1500 175

♯ SV C-SVC 3750 1876 1178 8830 559

♯ SV ν-SVC 2810 2518 4051 11359 521

RBF FS-LSSVM (MOC) 96.87(0.70) 91.83(0.43) 99.44(0.17) 89.14(0.22) 99.87(0.03)

RBF FS-LSSVM (1vs1) 98.14(0.10) 91.93(0.3) 99.57(0.10) 95.65(0.17) 99.84(0.03)

Lin FS-LSSVM (1vs1) 97.18(0.35) 85.71(0.77) 96.67(0.35) 84.87(0.49) 96.82(0.18)

Lin FS-LSSVM (MOC) 78.62(0.32) 74.35(0.26) 68.21(0.36) 18.20(0.46) 84.78(0.33)

RBF C-SVC (1vs1) 97.73(0.14) 92.14(0.45) 99.51(0.13) 95.67(0.19) 99.86(0.03)

Lin C-SVC (1vs1) 97.21(0.26) 86.12(0.79) 97.52(0.62) 84.96(0.56) 97.02(0.19)

RBF ν-SVC (1vs1) 95.3(0.12) 88.3(0.31) 95.96(0.16) 93.18(0.21) 99.34(0.03)

Maj. Rule 10.45(0.12) 23.61(0.16) 10.53(0.07) 4.10(0.14) 78.81(0.04)
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Table 4.11: Comparison of the average computation time in seconds for the FS-LSSVM,
C-SVM and ν-SVC on 5 multi-class classification problems. The standard deviation is
shown within parentheses.

Av. Time (s) opt lan pen let shu

RBF FS-LSSVM (MOC) 4892(162) 2159(83) 2221(110) 105930(2132) 5908(272)

RBF FS-LSSVM (1vs1) 623(36) 739(17) 514(42) 10380(897) 2734(82)

Lin FS-LSSVM (1vs1) 282(19) 153(6) 156(4) 2792(11) 501(8)

Lin FS-LSSVM (MOC) 942(6) 409(13) 279(10) 44457(1503) 645(31)

RBF C-SVC (1vs1) 11371(573) 6612(347) 11215(520) 59102(2412) 52724(3619)

Lin C-SVC (1vs1) 474(1) 1739(48) 880(16) 11203(467) 50174(2954)

RBF ν-SVC (1vs1) 7963(178) 8229(304) 16589(453) 79040(2354) 50478(2879)

4.7.5 Performance of FS-LSSVM for Regression

We have used the same preprocessing and tuning as in the classification case.
The test performances of the data sets are given in Table 4.12. Table 4.13
reports the average computation time (in seconds) and standard deviations for
both algorithms. In each of the regression examples the RBF kernel is used. From
these results it can be seen that our algorithm has better performances and smaller
standard deviations than ε-SVR and ν-SVR. FS-LSSVM results into a sparser
model for both data sets compared to ε-SVR.

Table 4.12: Comparison of the 10 times randomized test set performances (L2, L1,
L∞) and standard deviations (within parentheses) of FS-LSSVM (RBF kernel) on 2
regression domains.

bho ccs

ntest 168 343

d 14 9

♯ PV FS-LSSVM 200 120

♯ SV ε-SVR 226 670

♯ SV ν-SVR 195 330

L2 0.13(0.02) 0.17(0.02)

RBF FS-LSSVM L1 0.24(0.02) 0.30(0.03)

L∞ 1.90(0.50) 1.22(0.42)

L2 0.16(0.05) 0.23(0.02)

RBF ε-SVR L1 0.24(0.03) 0.33(0.02)

L∞ 2.20(0.54) 1.63(0.58)

L2 0.16(0.04) 0.22(0.02)

RBF ν-SVR L1 0.26(0.03) 0.34(0.03)

L∞ 1.97(0.58) 1.72(0.52)
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Table 4.13: Comparison of the average computation time in seconds for the FS-LSSVM,
ε-SVR and ν-SVR on 2 regression problems. The standard deviation is shown within
parentheses.

Av. Time (s) bho ccs

RBF FS-LSSVM 74(2) 94(3)

RBF ε-SVR 63(1) 168(3)

RBF ν-SVR 61(1) 131(2)

4.8 Conclusions

In this Chapter, we elucidated the problem with kernel based methods when
considering large data sets. For LS-SVM, we estimated a finite m-approximate
feature map based on the Nyström approximation so that the problem could
be solved in the primal space. In order to select proper prototype vectors, we
used the quadratic Rényi entropy. Also, we have illustrated how to select the
bandwidth for the entropy estimation in a fast and reliable way using the solve-
the-equation plug-in method. Further, we have shown that this entropy criterion
with no additional moment constraints is maximized by a uniform density over the
input space. In order to select the tuning parameters for large scale data sets, a fast
cross-validation procedure was developed. Finally, the performance of FS-LSSVM
is compared to different methods on several data sets. The speed-up achieved by
our algorithm is about 10 to 20 times compared to LIBSVM. We observed that
our method requires less prototype vectors than support vectors in SVM, hence
resulting into sparser models.



Chapter 5

Robustness in Kernel Based
Regression

In the previous Chapters, basic methods for LS-SVM and FS-LSSVM regression
were discussed. The use of an L2 loss function and equality constraints for
the models results into simpler formulations but on the other hand they have a
potential drawback such as the lack of robustness. In this Chapter we will robustify
LS-SVM and FS-LSSVM via iteratively reweighting. In order to understand the
robustness of these estimators against outliers, we use the empirical influence
function and empirical maxbias curves. Contributions are made in Section 5.4.

5.1 Introduction

Regression analysis is an important statistical tool routinely applied in most
sciences. However, using least squares techniques, there is an awareness of the
dangers posed by the occurrence of outliers present in the data. Not only the
response variable can be outlying, but also the explanatory part, leading to
leverage points. Both types of outliers may totally spoil an ordinary LS analysis.

To cope with this problem, statistical techniques have been developed that are
not so easily affected by outliers. These methods are called robust or resistant. A
first attempt was done by Edgeworth (Edgeworth, 1887). He argued that outliers
have a very large influence on LS because the residuals are squared. Therefore, he
proposed the least absolute values regression estimator (L1 regression).

The second great step forward in this class of methods occurred in the 1960s
and early 1970s with fundamental work of Tukey (Tukey, 1960), Huber (Huber,

77
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1964) (minimax approach) and Hampel (influence functions) (Hampel, 1971).
Huber (Huber, 1964) gave the first theory of robustness. He considered the general
gross-error model or ǫ-contamination model

Gǫ = {F : F (x) = (1− ǫ)F0(x) + ǫG(x), 0 ≤ ǫ ≤ 1}, (5.1)

where F0 is some given distribution (the ideal nominal model), G is an arbitrary
continuous distribution and ǫ is the first parameter of contamination. This
contamination model describes the case, where with large probability (1 − ǫ),
the data occurs with distribution F0 and with small probability ǫ outliers occur
according to distribution G.

Example 5.1 ǫ-contamination model with symmetric contamination

F (x) = (1− ǫ)N (0,1) + ǫN (0,κ2σ2), 0 ≤ ǫ ≤ 1, κ > 1.

Example 5.2 ǫ-contamination model for the mixture of the Normal and Laplace
or double exponential distribution

F (x) = (1 − ǫ)N (0,1) + ǫLap(0,λ), 0 ≤ ǫ ≤ 1, λ > 0.

Huber considered also the class of M -estimators of location (also called generalized
maximum likelihood estimators) described by some suitable function. The Huber
estimator is a minimax solution: it minimizes the maximum asymptotic variance
over all F in the gross-error model.

Huber developed a second theory (Huber, 1965, 1968; Huber and Strassen, 1973,
1974) for censored likelihood ratio tests and exact finite sample confidence intervals,
using more general neighborhoods of the normal model. This approach may be
mathematically the most rigorous but seems very hard to generalize and therefore
plays hardly any role in applications. A third theory proposed by Hampel (Hampel,
1968, 1971, 1974; Hampel et al., 1986) is closely related to robustness theory which
is more generally applicable than Huber’s first and second theory. Three main
concepts are introduced: (i) qualitative robustness, which is essentially continuity
of the estimator viewed as functional in the weak topology; (ii) the Influence Curve
(IC) or Influence Function (IF), which describes the first derivative of the estimator,
as far as existing; and (iii) the Breakdown Point (BP), a global robustness measure
describing how many percent gross errors are still tolerated before the estimator
totally breaks down.

Robustness has provided at least two major insights into statistical theory and
practice: (i) Relatively small perturbations from nominal models can have very
substantial deleterious effects on many commonly used statistical procedures and
methods (e.g. estimating the mean, F-test for variances). (ii) Robust methods
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are needed for detecting or accommodating outliers in the data (Hubert, 2001;
Debruyne et al., 2009; Debruyne, 2009).

From their work the following methods were developed: M -estimators, Gener-
alized M -estimators, R-estimators, L-estimators, S-estimators, repeated median
estimator, least median of squares, . . . Detailed information about these estimators
as well as methods for robustness measuring can be found in the books by Hampel
et al. (1986), Rousseeuw and Leroy (2003), Maronna et al. (2006) and Huber and
Ronchetti (2009). See also the book by Jurečková and Picek (2006) for robust sta-
tistical methods with R (a language and environment for statistical computing and
graphics freely available at http://cran.r-project.org/bin/windows/base/)
providing a systematic treatment of robust procedures with an emphasis on
practical applications.

5.2 Measures of Robustness

In order to understand why certain estimators behave the way they do, it is
necessary to look at various measures of robustness. There exist numerous
approaches towards the robustness problem. The approach based on influence
functions will be used here. The effect of one outlier on the estimator can be
described by the influence function (IF). The IF describes the (approximate and
standardized) effect of an additional observation in any point x on a statistic T ,
given a (large) sample with distribution F . Another measure of robustness of an
estimator is the maxbias curve. The maxbias curve gives the maximal bias that an
estimator can suffer from when a fraction of the data come from a contaminated
distribution. By letting the fraction vary between zero and the breakdown value
a curve is obtained. The breakdown value is defined as how much contaminated
data an estimator can tolerate before it becomes useless.

5.2.1 Influence Functions and Breakdown Points

Let F be a fixed distribution and T (F ) a statistical functional defined on a set
Gǫ of distributions satisfying that T is Gâteaux differentiable at the distribution
F in domain(T ) (Hampel et al., 1986). Let the estimator T (F̂n) of T (F ) be the
functional of the sample distribution Fn.

Definition 5.1 (Influence Function) The influence function (IF) of T at F is
given by

IF(x;T,F ) = lim
ǫ↓0

T [(1− ǫ)F + ǫ∆x]− T (F )

ǫ
(5.2)

http://cran.r-project.org/bin/windows/base/
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in those x where this limit exists. ∆x denotes the probability measure which puts
mass 1 at the point x.

Hence, the IF reflects the bias caused by adding a few outliers at the point x,
standardized by the amount ǫ of contamination. Therefore, a bounded IF leads to
robust estimators. Note that this kind of differentiation of statistical functionals
is a differentiation in the sense of von Mises with a kernel function (Fernholz,
1983; Clark, 1983). From the influence function, several robustness measures can
be defined: the gross error sensitivity, the local shift sensitivity and the rejection
point, see Hampel et al. (1986, Section 2.1c) for an overview. Mathematically
speaking, the influence function is the set of all partial derivatives of the functional
T in the direction of the point masses. For functionals, there exist several concepts
of differentiation i.e. Gâteaux, Hadamard or compact, Bouligand and Fréchet. An
application of the Bouligand IF can be found in Christmann and Messem (2008)
in order to investigate the robustness properties of SVMs. The Bouligand IF
has the advantage of being positive homogeneous which is in general not true for
Hampel’s influence function (5.2). Christmann and Messem (2008) also show that
there exists an interesting relationship between the Bouligand IF and the IF: if
the Bouligand IF exists, then the IF does also exist and both are equal.

Next, we give the definitions of the maxbias curve and the breakdown point. Note
that some authors can give a slightly different definition of the maxbias curve, see
e.g. Croux and Haesbroeck (2001).

Definition 5.2 (Maxbias Curve) Let T (F ) denote a statistical functional and
let the contamination neighborhood of F be defined by Gǫ for a fraction of
contamination ǫ. The maxbias curve is defined by

B(ǫ,T,F ) = sup
F∈Gǫ

|T (F )− T (F0)|. (5.3)

Definition 5.3 (Breakdown Point) The breakdown point ǫ⋆ of an estimator
T (F̂n) for the functional T (F ) at F is defined by

ǫ⋆(T,F ) = inf{ǫ > 0|B(ǫ,T,F ) =∞}.

From the previous definition it is obvious that the breakdown point defines the
largest fraction of gross errors that still keeps the bias bounded. We will give some
examples of influence functions and breakdown points for the mean, median and
variance.

Example 5.3 (Mean) The corresponding functional T (F ) =
∫
xdF (x) of the

mean is defined for all probability measures with existing first moment. From (5.2),
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it follows that

IF(x;T,F ) = lim
ǫ↓0

∫
xd[(1 − ǫ)F + ǫ∆x](x)−

∫
xdF (x)

ǫ

= lim
ǫ↓0

(1− ǫ)
∫
xdF (x) + ǫ

∫
xd∆x(x)−

∫
xdF (x)

ǫ

= lim
ǫ↓0

ǫ
∫
xdF (x) + ǫ

∫
xd∆x(x)

ǫ

= lim
ǫ↓0

ǫ x− ǫ T (F )

ǫ

= x− T (F ).

Hence, the IF of the sample mean is clearly unbounded in R, see Figure 5.1. This
means that an added observation at a large distance from T (F ) gives a large value
in absolute sense for the IF. The finite sample breakdown point of the sample mean
is ǫ⋆ = 1/n but often the limiting value limn→∞ 1/n = 0 is used as a measure of
the global stability of the estimator. One of the more robust location estimators
is the median.

Example 5.4 (Median) The corresponding functional T (F ) = F−1(1
2 ) of the

median is defined for all probability measures. Using the influence function of an
M -estimator yields

IF(x;T,F ) =
sign(x)

[sign(p+)− sign(p−)]f(p)

=
sign(x)

2f(0)
,

where p is the point of discontinuity with left and right limits sign(p+) 6= sign(p−)
and f is the density.

Because the IF of the median has a jump at zero (Figure 5.1a), the median is
sensitive to wiggling near the center of symmetry. A surprising fact is that the
median does not reject outliers. Indeed, if one adds an outlier to the sample, then
the middle order statistic will move in that direction. The breakdown point of the
median is 0.5 and its asymptotic efficiency is low.

Example 5.5 (Variance) The corresponding functional T (F ) =
∫

(x−E[x])2 dF (x)
of the variance is defined for all probability measures with existing first and second
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T = median

T = mean
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T = variance
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Figure 5.1: (a) Influence functions of the mean and median. The influence function
of the mean is unbounded in R while the influence function of the median is bounded
in R; (b) Influence function of the variance. The influence function of the variance is
unbounded in R.

moments. From (5.2), it follows that

IF(x;T,F ) = lim
ǫ↓0

∫
(x−E[x])2 d[(1 − ǫ)F + ǫ∆x](x) −

∫
(x−E[x])2 dF (x)

ǫ

= lim
ǫ↓0

ǫ
∫

(x− E[x])2 d∆x(x)− ǫ
∫

(x−E[x])2 dF (x)

ǫ

= (x−E[X ])2 − T (F ).

The influence function of the variance is shown in Figure 5.1b and is unbounded
in R. This means that an added observation at a large distance from T (F ) gives a
large value in absolute sense for the IF. The finite sample breakdown point of the
sample variance is ǫ⋆ = 1/n but often the limiting value limn→∞ 1/n = 0 is used
as a measure of the global stability of the estimator.

5.2.2 Empirical Influence Functions

The definition of the influence function (5.2) is entirely asymptotic because it
is focused on functionals which coincide with the estimator’s asymptotic value.
However, there exist also some simple finite-sample or empirical versions, which
can be easily computed. The most important empirical influence functions are the
sensitivity curve (Tukey, 1977) and the Jackknife (Quenouille, 1956; Tukey, 1958).
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Sensitivity Curve

There exist two version of the sensitivity curve i.e. one with addition and one
with replacement. In case of an additional observation, one starts with a sample
(x1, . . . ,xn−1) of size n− 1. Let Tn(F̂n−1) = Tn(x1, . . . ,xn−1) be the estimator of
T (Fn−1). The change in estimate when an nth observation xn = x is included
gives Tn(x1, . . . ,xn−1,x) − Tn(x1, . . . ,xn−1). Multiplying this change by n results
in the sensitivity curve

Definition 5.4 (Sensitivity Curve) The sensitivity curve is obtained by replac-
ing F by F̂n−1 and ǫ by 1

n in (5.2):

SCn(x;T,F̂n−1) =
T
[(
n−1
n

)
F̂n−1 + 1

n∆x

]
− T (F̂n−1)

1
n

(5.4)

= (n− 1)T (F̂n−1) + T (∆x)− nT (F̂n−1)

= n[Tn(x1, . . . ,xn−1,x)− Tn−1(x1, . . . ,xn−1)].

It can be seen that (5.4) is a special case of (5.2), with Fn−1 as an approximation
for F and with contamination size ǫ = 1

n . In many situations, SCn(x;T,F̂n−1) will
therefore converge to IF(x;T,F ) when n→∞.

Example 5.6 (Mean) Let T (F ) = µ = E[X ] denote the mean in a population
and let x1, . . . , xn−1 denote a sample from that population. The sensitivity curve
of the mean is given by

SCn(x;µ,F̂n−1) = n[µ̂(x1, . . . ,xn−1,x) − µ̂(x1, . . . ,xn−1)]

= (n− 1)µ̂(x1, . . . ,xn−1)− nµ̂(x1, . . . ,xn−1) + x

= x− µ̂(x1, . . . ,xn−1).

Example 5.7 (Median) The sample median is defined as

med =

{
xn(k+1), if n = 2k + 1;
xn(k)+xn(k+1)

2 , if n = 2k,

where xn(1) ≤ . . . ≤ xn(n) are the order statistics. The sensitivity curve of the
median is given by

SCn(x; med ,F̂n−1) =





n[xn(k) −med(x1, . . . ,xn−1)], if x < xn(k);

x, if xn(k) ≤ x ≤ xn(k+1);

n[xn(k+1) −med(x1, . . . ,xn−1)], if x > xn(k+1).
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Given a univariate data set with X ∼ N (0,1). The following location estimators
are applied to the sample: sample mean and sample median. The sensitivity curve
for both location estimators is shown in Figure 5.2a. The sensitivity curve for the
mean becomes unbounded for both X →∞ and X → −∞, whereas the sensitivity
curve of the median remains bounded.

Example 5.8 (Variance) Let T (F ) = σ2 denote the variance of a population
and let x1, . . . ,xn denote a sample from that population. An estimate of the
variance is given by σ̂2

n = 1
n

∑n
i=1(xi − µ̂n)2 where µ̂n denotes the sample mean

computed over n data points. Also shift the horizontal axis so that
∑n−1

i=1 xi = 0
i.e. µ̂n−1 = 0. The sensitivity curve of the sample variance is given by

SCn(x; σ̂2,F̂n−1) = n[σ̂2
n − σ̂2

n−1]

=

n∑

i=1

x2
i − nµ̂2

n − nσ̂2
n−1

=
n−1∑

i=1

x2
i + x2 − x2

n
− nσ̂2

n−1

=
n−1∑

i=1

x2
i − (n− 1)µ̂2

n−1 +
n− 1

n
x2 − nσ̂2

n−1

=
n− 1

n
x2 − σ̂2

n−1.

For n→∞, SCn(x; σ̂2,F̂n−1) converges to IF(x;σ2,F ).

Given a univariate data set with X ∼ N (0,1). The following scale estimators are
applied to the sample: variance, mean absolute deviation and Median Absolute
Deviation (MAD). The mean absolute deviation is defined as

T (F̂n) =
1

n

n∑

i=1

∣∣∣∣∣Xi −
1

n

n∑

k=1

Xk

∣∣∣∣∣ .

This estimator is nonrobust to outliers and has a breakdown point ǫ⋆ = 0. The
MAD, a more robust scale estimator, is defined as

T (F̂n) = medi(|Xi −med(X1, . . . ,Xn)|).

This estimator is robust to outliers and has a breakdown point ǫ⋆ = 0.5. The
sensitivity curves for the three scale estimators are shown in Figure 5.2b. The
variance and the mean absolute deviation become unbounded for both X → ∞
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and X → −∞, whereas the sensitivity curve of the MAD remains bounded. Better
robust estimates of scale are the Sn and Qn estimator proposed by Rousseeuw and
Croux (1993). These estimators have a breakdown point ǫ⋆ = 0.5 and have a better
efficiency than MAD for Gaussian models as well as for non Gaussian models.
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Figure 5.2: (a) Empirical IF (sensitivity curve) of the mean and median. The influence
function of the mean is unbounded in R while the influence function of the median is
bounded in R; (b) Empirical influence function of the variance, mean absolute deviation
and median absolute deviation. The empirical IF of the variance and mean absolute
deviation is unbounded in R whereas the empirical IF median absolute deviation is
bounded.

Jackknife Approximation

An other approach to approximate the IF, but only at the sample values x1, . . . ,xn
is the Jackknife.

Definition 5.5 (Jackknife Approximation) Substituting F̂n for F and setting
ǫ = −1

n−1 in (5.2), one obtains

IFJA(xi;T,F̂n) =
T
[(

n
n−1

)
F̂n − 1

n−1 ∆xi

]
− T (F̂n)

− 1
n−1

= (n− 1)[Tn(x1, . . . ,xn)− Tn−1(x1, . . . xi−1,xi+1, . . . ,xn)].

In some cases, namely when the IF does not depend smoothly on F , the Jackknife
is in trouble.
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5.3 Residuals and Outliers in Regression

Residuals are used in many procedures designed to detect various types of
disagreement between the data and an assumed model. In this Section, we consider
observations that do not belong to the model and often exhibit numerically large
residuals. In this case these observations are called outliers. Although the
detection of outliers in a univariate sample has been investigated extensively in the
statistical literature (e.g. Barnett and Lewis (1984)), the word outlier has never
been given a precise definition. In this thesis we use the one of Barnett and Lewis
(1984). A quantitative definition has been given by Davis and Gather (1993).

Definition 5.6 (Barnett and Lewis, 1984) An outlier is an observation (or
subset of observations) which appears to be inconsistent with the remainder of that
set of data.

An introduction to residuals and outliers is given by Fox (1991). More advanced
treatments are given by Cook and Weisberg (1982) and by Atkinson and Riani
(2000).

5.3.1 Linear Regression

A simple linear regression model assumes the following relation

Yk = β1Xk + β0 + ek, k = 1, . . . ,n,

in which the slope β1 and the intercept β0 have to be estimated from data. The
slope and intercept are often determined by the Least Squares (LS) principle with
loss function L i.e. the parameters β1 and β0 are found by minimizing

(β̂0,β̂1) = arg min
β0,β1∈R2

{
1

n

n∑

k=1

L(Yk,m(Xk))

}

with m(Xk) = β1Xk+β0. It is well-known that by taking a squared loss, an outlier
has a large influence on the LS regression line. On the other hand, taking an L1 loss
leads to robust estimates w.r.t. outliers in the Y -direction. Figure 5.3 illustrates
the effect of an outlier on L2 and L1 regression. Although L1 regression leads to
robust estimates in case of outliers in the Y -direction, it certainly does not have the
same property for an outlier in the X-direction (leverage point). In order to obtain
a fully robust method, Rousseeuw and Leroy (2003) developed the least median of
squares and least trimmed squares estimators. Also the use of decreasing kernels,
i.e. kernels such that K(u) → 0 when u → ∞, leads to quite robust methods
w.r.t. to leverage points. The influence for both x→∞ and x→ −∞ is bounded
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Figure 5.3: The original data and one outlier in the Y -direction. (a) The solid
line corresponds to the L2 regression estimate without the outlier. The dashed line
corresponds to L2 regression estimate with the outlier. The influence of the outlier is
clearly visible in the figure; (b) The solid line corresponds to the L1 regression estimate
without the outlier. The dashed line corresponds to L1 regression estimate with the
outlier. The L1 regression estimate is not affected by the outlier.

in R when using decreasing kernels. Common choices for decreasing kernels are:
K(u) = max(1− u2,0), K(u) = exp(−u2) and K(u) = exp(−u).

In the following toy example we will illustrate how the L1 and L2 regression
estimators deal with several outliers in the data set. Given 50 “good” observations
according to the linear relation

Yk = 5Xk + 3 + ek, k = 1, . . . ,50,

where e ∼ N (0,0.52) and X ∼ U(0,5). Applying the L1 and L2 regression
estimators to this data yield values of the slope and intercept which are close
to the original values. In what follows we will contaminate the data by deleting,
at each step, a “good” point and replace it with a “bad” point Y bk , generated
according to Y bk ∼ N (2,62). This was repeated until 25 “good” points remained.
Figure 5.4 illustrates the breakdown plot where the value of the slope and the
intercept are given as a function of the contamination percentage. It is clearly
visible that the L2 estimates are immediately affected by the outliers, whereas the
L1 estimates almost do not change.

A disadvantage of robust methods is their lack of efficiency when the errors are
normally distributed. In order to improve the efficiency of these robust methods
reweighted least squares is often used. First, one calculates the residuals obtained
by a robust estimator. Then, the residuals are given a weight according to their
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value and chosen weight function leading to weighted observations. Finally, a
standard LS method can be used to obtain the final estimate.
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Figure 5.4: Breakdown plot. Solid line corresponds to L2 regression and dashed line
to L1 regression. (a) Estimated slope as a function of the contamination percentage; (b)
Estimated intercept as a function of the contamination percentage.

5.3.2 Kernel Based Regression

Recall that the one dimensional LS-SVM regression estimate m̂n (see Chapter 2)
is given by

m̂n(x) =

n∑

k=1

α̂kK

(
x−Xk

h

)
+ b̂,

where α̂k ∈ R and b̂ ∈ R. Since the primal LS-SVM formulation is based on a
squared loss, the estimate cannot be expected to be robust against outliers in the
Y -direction. Although the estimate is not robust, one does not observe a similar
behavior as in the parametric case i.e. global breakdown of the estimate as a
result of even one single outlier. In case of LS-SVM (also for NW, local polynomial
regression, etc.), one observes only a local effect on the estimate (influence region)
due to the outlier or groups of outliers. This behavior is illustrated in Figure 5.5a
for a single outlier and a group of outliers in the Y -direction. Hence, residuals
obtained from a robust estimator embody powerful information to detect outliers
present in the data. This behavior is of course only observed when a small number
of outliers are present in the data set.

Let (Xi,Y
b
i ) be an outlier (Y -direction) and let A be the influence region. In

general (in case of kernel based regression), an outlier will have a relatively
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larger influence on the estimate m̂n(Xi) when (Xi,m̂n(Xi)) ∈ A than when
(Xj ,m̂n(Xj)) /∈ A. Also, the residuals from kernel based regression estimates
are very useful as outlier diagnostics. Figure 5.5b gives evidence of the presence
of an outlying observation and a group of outliers.
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Figure 5.5: (a) The effects of a single outlier and a group of outliers in the Y -direction
on LS-SVM regression. The estimate is only effected in a neighborhood of the outliers
(influence region); (b) Residual plot associated with LS-SVM regression. From this plot
we can conclude that the data set contains one outlier and a group of outliers.

5.4 Robustifying LS Kernel Based Regression

In the previous Section we have illustrated that taking a non-robust loss function,
e.g. L2, can totally spoil the LS estimate in the presence of only one outlying
observation. In case of Kernel Based Regression (KBR) based on an L2 loss, the
estimate is only affected in an influence region if the number of outliers is small.
In this Section we will demonstrate that even if the initial estimate is non-robust,
we can obtain a robust estimate via iteratively reweighting. However, there is
another important issue influencing the KBR estimate when outliers are present
in the data i.e. the model selection. Before summarizing some theoretical results,
we will demonstrate how model selection criteria can influence the final result.

5.4.1 Problems with Outliers in Nonparametric Regression

Consider 200 observations on the interval [0,1] and a low-order polynomial mean
function m(X) = 300(X3−3X4+3X5−X6). Figure 5.6a shows the mean function
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with normally distributed errors with variance σ2 = 0.32 and two distinct groups of
outliers. Figure 5.6b shows the same mean function, but the errors are generated
from the gross error or ǫ-contamination model (5.1). In this simulation F0 ∼
N(0,0.32), G ∼ N(0,102) and ǫ = 0.3. This simple example clearly shows that the
estimates based on the L2 norm with classical CV (bold line) are influenced in
a certain region (similar as before) or even breakdown (in case of the gross error
model) in contrast to estimates based on robust KBR with robust CV (thin line).
The fully robust LS-SVM method will be discussed later in this Section.
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Figure 5.6: LS-SVM estimates with (a) normal distributed errors and two groups of
outliers; (b) the ǫ-contamination model. This clearly shows that the estimates based on
the L2 norm (bold line) are influenced in a certain region or even breakdown in contrast
to estimates based on robust loss functions (thin line).

Another important issue to obtain robustness in nonparametric regression is the
kernel function K. Kernels that satisfy K(u) → 0 as u → ∞, for X → ∞ and
X → −∞, are bounded in R. These type of kernels are called decreasing kernels.
Using decreasing kernels leads to quite robust methods with respect to outliers
in the X-direction (leverage points). Common choices of decreasing kernels are:
K(u) = max((1 − u2),0), K(u) = exp(−u2), K(u) = exp(−|u|), . . .
The last issue to acquire a fully robust estimate is the proper type of cross-
validation (CV). When no outliers are present in the data, CV has been shown to
produce tuning parameters that are asymptotically consistent (Härdle et al., 1988).
Yang (2007) showed that, under some regularity conditions, for an appropriate
choice of data splitting ratio, cross-validation is consistent in the sense of selecting
the better procedure with probability approaching 1. However, when outliers
are present in the data, the use of CV can lead to extremely biased tuning
parameters (Leung, 2005) resulting in bad regression estimates. The estimate can
also fail when the tuning parameters are determined by standard CV using a robust
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smoother. The reason is that CV no longer produces a reasonable estimate of the
prediction error. Therefore, a fully robust CV method is necessary. Figure 5.7
demonstrates this behavior on the same toy example (see Figure 5.6). Indeed, it
can be clearly seen that CV results in less optimal tuning parameters resulting
in a bad estimate. Hence, to obtain a fully robust estimate, every step has to be
robust i.e. robust CV with a robust smoother based on a decreasing kernel.
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Figure 5.7: LS-SVM estimates and type of errors as in Figure 5.6. The bold line
represents the estimate based on classical L2 CV and a robust smoother. The thin line
represents estimates based on a fully robust procedure.

An extreme example to show the absolute necessity of a robust model selection
procedure is given next. Consider 200 observations on the interval [0,1] and a
low-order polynomial mean function m(X) = 1− 6X + 36X2− 53X3 + 22X5 and
X ∼ U [0,1]. the errors are generated from the gross error model with the same
nominal distribution as above and the contamination distribution is taken to be
a cubed standard Cauchy with ǫ = 0.3. We compare SVM, which is known to be
robust, with L2 CV and the fully robust LS-SVM (robust smoother and robust
CV). The result is shown in Figure 5.8. This extreme example confirms the fact
that, even if the smoother is robust, also the model selection procedure has to be
robust in order to obtain fully robust estimates.

We have demonstrated that fully robust estimates can only be acquired if (i)
the smoother is robust, (ii) decreasing kernels are used and (iii) a robust model
selection criterion is applied. In what follows we provide some theoretical
background on the matter and show how the LS-SVM can be made robust.
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Figure 5.8: SVM (bold straight line) cannot handle these extreme type of outliers and
the estimate becomes useless. The fully robust LS-SVM (thin line) can clearly handle
these outliers and does not break down. For visual purposes, not all data is displayed in
the figure.

5.4.2 Theoretical Background

KBR methods estimate a functional relationship between a dependent variable X
and an independent variable Y , using a sample of n observations (Xi,Yi) ∈ X×Y ⊆
Rd ×R with joint distribution FXY . First, we give the following definitions taken
from Steinwart and Christmann (2008).

Definition 5.7 (Steinwart and Christmann, 2008) Let X be a non-empty
set. Then a function K : X × X → R is called a kernel on X if there exists
a Hilbert space H with an inner product 〈·,·〉 and a map ϕ : X → H such that for
all x,y ∈ X we have

K(x,y) = 〈ϕ(x), ϕ(y)〉 .
ϕ is called the feature map and H is a feature space of K.

An example of a frequently used (isotropic) kernel, when X = Rd, is the Gaussian
kernel K(u) = (1/

√
2π) exp(−u2) with u = ‖x− y‖/h. Since the Gaussian kernel

is an isotropic kernel the notation K(x,y) = (1/
√

2π) exp(−‖x − y‖2/h2) is the
same as K(u) = (1/

√
2π) exp(−u2) with u = ‖x − y‖/h. In this case the feature

space H is infinite dimensional. Also note that the Gaussian kernel is bounded
since

sup
x,y∈Rd

K(x,y) = 1.
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Definition 5.8 (Steinwart and Christmann, 2008) Let X be a non-empty
set and H be a Hilbert function space over X , i.e. a Hilbert space that consists of
functions mapping from X into R.

• A function K : X × X → R is called a reproducing kernel of H if we have
K(·, x) ∈ H for all x ∈ X and the reproducing property m(x) = 〈m,K(·,x)〉
holds for all m ∈ H and all x ∈ X .

• The space H is called a Reproducing Kernel Hilbert Space (RKHS) over X
if for all x ∈ X the Dirac functional δx : H → R defined by

δx(m) = m(x), m ∈ H

is continuous.

Let L : Y ×R→ [0,∞) be a convex loss function. Then the theoretical regularized
risk is defined as

mγ = arg min
m∈H

E [L (Y,m(X))] + γ‖m‖2
H. (5.5)

Before stating the influence function of (5.5) two technical definitions are needed.
First, the growth of the loss function L is described (Christmann and Steinwart,
2007).

Definition 5.9 (Christmann and Steinwart, 2007) Let L : Y × R → [0,∞)
be a loss function, a : Y → [0,∞) be a measurable function and p ∈ [0,∞). Then
L is a loss function of type (a,p) if there exists a constant c > 0 such that

L(y,t) ≤ c(a(y) + |t|p + 1)

for all y ∈ Y and all t ∈ R. Furthermore, L is of strong type (a,p) if the first two

partial derivatives L′(y,r) = ∂
∂rL(y,r) and L′′(y,r) = ∂2

∂2rL(y,r) of L exist and L,
L′ and L′′ are of (a,p)-type.

Second, we need the following definition about the joint distribution FXY . For
notational ease, we will suppress the subscript XY .

Definition 5.10 (Christmann and Steinwart, 2007) Let F be a distribution
on X × Y, let a : Y → [0,∞) be a measurable function and let |F |a be defined as

|F |a =

∫

X ×Y
a(y)dF (x,y).

If a(y) = |y|p for p > 0 we write |F |p.
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Regarding the theoretical regularized risk (5.5), DeVito et al. (2004) proved the
following result.

Proposition 5.1 Let p = 1, L be a convex loss function of strong type (a,p), and
F be a distribution on X × Y with |F |a < ∞. Let H be the RKHS of a bounded,
continuous kernel K over X and ϕ : X → H be the feature map of H. Then with
h(x, y) = L′(y,mγ(x)) it holds that

mγ = − 1

2γ
E[hϕ].

Consider the map T which assigns to every distribution F on X×Y with |F |a <∞,
the function T (F ) = mγ ∈ H. An expression for the influence function (5.2) of T
was proven in Christmann and Steinwart (2007).

Proposition 5.2 Let H be a RKHS of a bounded continuous kernel K on X with
feature map ϕ : X → H, and L : Y ×R→ [0,∞) be a convex loss function of some
strong type (a,p). Furthermore, let F be a distribution on X × Y with |F |a < ∞.
Then the IF of T exists for all z = (zx, zy) ∈ X × Y and is given by

IF(z;T,F ) = S−1 {E [L′ (Y,mγ(X))ϕ(X)]} − L′ (zy,mγ(zx))S−1ϕ(zx),

with S : H → H defined as S(m) = 2γm+ E [L′′(Y,mγ(X)) 〈ϕ(X),m〉ϕ(X)].

From this proposition, it follows immediately that the IF only depends on z
through the term

−L′ (zy,mγ(zx))S−1ϕ(zx).

From a robustness point of view, it is important to bound the IF. It is obvious
that this can be achieved by using a bounded kernel, e.g. the Gaussian kernel and
a loss function with bounded first derivative e.g. L1 loss or Vapnik’s ε-insensitive
loss. The L2 loss on the other hand leads to an unbounded IF and hence is not
robust.

Although loss functions with bounded first derivative are easy to construct, they
lead to more complicated optimization procedures such as QP problems. In case
of LS-SVMs this would mean that the L2 loss should be replaced by e.g. an L1

loss, what immediately would lead to a QP problem. In what follows we will study
an alternative way of achieving robustness by means of reweighting. This has the
advantage of easily computable estimates i.e. solving a weighted least squares
problem in every iteration. First, we need the following definition concerning the
weight function.

Definition 5.11 For m ∈ H, let V : R→ [0,1] be a weight function depending on
the residual Y −m(X) w.r.t. m. Then the following assumptions will be made on
V
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• V is a non-negative bounded Borel measurable function;

• V is an even function of r;

• V is continuous and differentiable with V ′(r) ≤ 0 for r > 0.

A sequence of successive minimizers of a weighted least squares regularized risk is
defined as follows.

Definition 5.12 (Debruyne et al., 2010) Let m
(0)
γ ∈ H be an initial fit, e.g.

obtained by ordinary unweighted LS-KBR. Let V be a weight function satisfying
the conditions in Definition 5.11. Then the (k+1)th reweighted LS-KBR estimator
is defined by

m(k+1)
γ = arg min

m∈H
E
[
V (Y −m(k)

γ (X))(Y −m(X))2
]

+ γ‖m‖2
H. (5.6)

Debruyne et al. (2010) proved that, under certain condition, the IF of reweighted
LS-KBR estimator (5.6) is bounded when k →∞ and is given as follows.

Proposition 5.3 Denote by Tk+1 the map Tk+1(F ) = m
(k+1)
γ . Furthermore, let

F be a distribution on X×Y with |F |2 <∞ and
∫

X ×Y V (y−m(∞)
γ (x)) dF (x,y) > 0.

Denote by T∞ the map T∞(F ) = m
(∞)
γ . Denote the operators SV,∞ : H → H and

CV,∞ : H → H given by

SV,∞(m) = γm+ E
[
V
(
Y −m(∞)

γ (X)
)
〈m,ϕ(X)〉ϕ(X)

]

and

CV,∞(m) = −E
[
V ′
(
Y −m(∞)

γ (X)
)(

Y −m(∞)
γ (X)

)
〈m,ϕ(X)〉ϕ(X)

]
.

Further, assume that ‖S−1
V,∞ ◦ CV,∞‖ < 1. Then the IF of T∞ exists for all z =

(zx,zy) ∈ X × Y and is given by

IF(z;T∞,F ) = (SV,∞ − CV,∞)
−1
{
−E

[
V
(
Y −m(∞)

γ (X)
)(

Y −m(∞)
γ (X)

)
ϕ(X)

]

+ V
(
zy −m(∞)

γ (zx)
)(

zy −m(∞)
γ (zx)

)
ϕ(zx)

}
.

The condition ‖S−1
V,∞ ◦ CV,∞‖ < 1 is needed to ensure that the IF of the initial

estimator eventually disappears. Notice that the operators SV,∞ and CV,∞ are
independent of the contamination z. Since ‖ϕ(x)‖2

H = 〈ϕ(x), ϕ(x)〉 = K(x,x), the
IF(z;T∞,F ) is bounded if

‖V (r)rϕ(x)‖H = w(r)|r|
√
K(x,x)
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is bounded for all (x,r) ∈ Rd × R. From Proposition 5.3, the following result
immediately follows

Corollary 5.1 Assume that the conditions of Proposition 5.3 and Definition 5.11
are satisfied, then ‖ IF(z;T∞,F )‖H bounded implies ‖ IF(z;T∞,F )‖∞ bounded for
bounded kernels.

PROOF. For any m ∈ H : ‖m‖∞ ≤ ‖m‖H‖K‖∞. The result immediately follows
for a bounded kernel K. �

An interesting fact which has practical consequences is the choice of the kernel
function. It is readily seen that if one takes a Gaussian kernel, only downweighting
the residual is needed as the influence in the X-space is controlled by the kernel.
On the other hand, taking an unbounded kernel such as the linear or polynomial
kernel requires a weight function that decreases with the residual as well as with x
to obtain a bounded IF. See also Dollinger and Staudte (1991) for similar results
regarding ordinary LS and Jorgensen (1993) for iteratively defined statistics.

It does not suffice to derive the IF of the reweighted LS-KBR but also to establish
conditions for convergence. The following proposition is due to Debruyne et al.
(2010).

Proposition 5.4 (Conditions for Convergence) Define V (r) = ψ(r)
r with ψ

the contrast function. Then, reweighted LS-KBR with a bounded kernel converges
to a bounded influence, even if the initial LS-KBR is not robust, if

(c1) ψ : R→ R is a measurable, real, odd function;

(c2) ψ is continuous and differentiable;

(c3) ψ is bounded;

(c4) EFe ψ
′(e) > −γ where Fe denotes the distribution of the errors.

Finally, Debruyne et al. (2010) pointed out that reweighting is not only useful
when outliers are present in the data but it also leads to a more stable method,
especially at heavy tailed distributions. Debruyne et al. (2010) introduced the
following stability criterion based on the IF

sup
i∈{1,...,n}

| IF(zi;T,F )|
n

→ 0. (5.7)

If a method is robust, then its IF is bounded over all possible points z in the
support of F and hence (5.7) is obviously satisfied. The speed of convergence
of (5.7) is of order O(log n/n) for Gaussian distributed noise. For more heavy
tailed distributions, this rate will be much slower.
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5.4.3 Application to Least Squares Support Vector Machines

A first attempt to robustify LS-SVM was introduced by Suykens et al. (2002).
Their approach is based on weighting the residuals from the unweighted LS-SVM
(one time). However, from the above theoretical results we know that reweighting
only once does not guarantee that the IF is bounded. In order to bound the IF,
we have to repeat the weighting procedure a number of times.

Given a data set Dn = {(X1,Y1), . . . ,(Xn,Yn)}. The weighted LS-SVM is
formulated as follows

min
w,b,e
J (w,e) = 1

2w
Tw + γ

2

n∑

k=1

vke
2
k

s.t. Yk = wTϕ(Xk) + b+ ek, k = 1, . . . ,n,

(5.8)

where vk denotes the weight of the kth residual. Again, by using Lagrange
multipliers, the solution to (5.8) in the dual variables α is given by solving the
linear system (

0 1Tn

1n Ω +Dγ

)(
b

α

)
=

(
0

Y

)
, (5.9)

with Dγ = diag
{

1
γv1

, . . . , 1
γvn

}
, Y = (Y1, . . . ,Yn)T , 1n = (1, . . . ,1)T , α =

(α1, . . . ,αn)T and Ωkl = ϕ(Xk)Tϕ(Xl) = K(Xk,Xl) for k,l = 1, . . . ,n and K a
positive definite bounded kernel.

Based on the previous LS-SVM solutions, using an iteratively reweighting
approach, a robust estimate can be obtained. In the ith iteration, one weighs

the error variables ê
(i)
k = α̂

(i)
k /γ for k = 1, . . . ,n with weighting factors v(i) =

(v
(i)
1 , . . . ,v

(i)
n )T ∈ Rn, determined by a weight function V . Hence, one obtains

an iterative algorithm (Algorithm 5) to obtain a robust estimate. This type of

Algorithm 5 Iteratively Reweighted LS-SVM

1: Compute the residuals êk = α̂k/γ from the unweighted LS-SVM (vk = 1, ∀k)
2: repeat

3: Compute ŝ = 1.483 MAD(e
(i)
k ) from the e

(i)
k distribution

4: Choose a weight function V and determine weights v
(i)
k based on r(i) = e

(i)
k /ŝ;

5: Solve (5.9) with Dγ = diag
{

1/(γv
(i)
1 ), . . . ,1/(γv

(i)
n )
}

,

6: Set i = i+ 1
7: until consecutive estimates α

(i−1)
k and α

(i)
k are sufficiently close to each other,

e.g. maxk(|α(i−1)
k − α(i)

k |) ≤ 10−4.
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algorithm can be applied to any kernel based smoother based on an L2 loss, e.g.
local polynomial regression, NW,. . ., to result in a robust estimate. Naturally, it
can also be extended to FS-LSSVM (see Chapter 4). The selection of the prototype
vectors will not change when outliers are present in the data set since it considers
only the values in the X-space. Even if leverage points are present, the use of
bounded kernels in the Nyström approximation will control the influence in the
X-space. Therefore, no noteworthy adaptations are needed in order to robustify
FS-LSSVM.

5.4.4 Weight Functions

It is without doubt that the choice of weight function V plays a significant role
in the robustness aspects of the smoother. We will show later that the choice of
weight function also has an influence on the speed of convergence. We consider
four different weight functions illustrated in Table 5.1.

Table 5.1: Definitions for the Huber, Hampel, Logistic and Myriad weight functions
V (·). The corresponding loss L(·) and score function ψ(·) are also given.

Huber Hampel Logistic Myriad

V (r)

{
1, if |r| < β;
β

|r|
, if |r| ≥ β.





1, if |r| < b1;
b2−|r|
b2−b1

, if b1 ≤ |r| ≤ b2;

0, if |r| > b2.

tanh(r)

r

δ2

δ2 + r2

ψ(r)

L(r)

{
r2, if |r| < β;

β|r| − c2

2
, if |r| ≥ β.





r2, if |r| < b1;
b2r2−|r3|

b2−b1
, if b1 ≤ |r| ≤ b2;

0, if |r| > b2.

r tanh(r) log(δ2 + r2)

The first three are well-known in the field of robust statistics, while the last one
is less or not known. We introduce some of the properties of the last weight
function i.e. the Myriad (see Arce (2005) for applications of Myriad filters in
signal processing). The Myriad is derived from the Maximum Likelihood (ML)
estimation of a Cauchy distribution with scaling factor δ (see below) and can be
used as a robust location estimator in stable noise environments. Given a set
of i.i.d. random variables X1, . . . ,Xn ∼ X and X ∼ C(ζ,δ), where the location

parameter ζ is to be estimated from data i.e. ζ̂ and δ > 0 is a scaling factor. The
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ML principle yields the sample Myriad

ζ̂δ = arg max
ζ∈R

(
δ

π

)n n∏

i=1

1

δ2 + (Xi − ζ)2
,

which is equivalent to

ζ̂δ = arg min
ζ∈R

n∑

i=1

log
[
δ2 + (Xi − ζ)2

]
. (5.10)

Note that, unlike the sample mean or median, the definition of the sample Myriad
involves the free parameter δ. We will refer to δ as the linearity parameter of
the Myriad. The behavior of the Myriad estimator is markedly dependent on the
value of its linearity parameter δ. Tuning the linearity parameter δ adapts the
behavior of the myriad from impulse-resistant mode-type estimators (small δ) to
the Gaussian-efficient sample mean (large δ). If an observation in the set of input
samples has a large magnitude such that |Xi − ζ| ≫ δ, the cost associated with
this sample is approximately log(Xi − ζ)2 i.e. the log of squared deviation. Thus,
much as the sample mean and sample median respectively minimize the sum of
square and absolute deviations, the sample myriad (approximately) minimizes the
sum of logarithmic squared deviations. Some intuition can be gained by plotting
the cost function (5.10) for various values of δ. Figure 5.9a depicts the different
cost function characteristics obtained for δ = 20,2,0.75 for a sample set of size
5. For a set of samples defined as above, an M-estimator of location is defined
as the parameter ζ minimizing a sum of the form

∑n
i=1 L(Xi − ζ), where L is

δ = 0.75

δ = 2

δ = 20

X1 X2X3X4 X5

(a)

Mean

Median

Myriad

ψ

(b)

Figure 5.9: (a) Myriad cost functions for the observation samples X1 = −3,X2 =
8, X3 = 1,X4 = −2, X5 = 5 for δ = 20,2,0.2; (b) Influence function for the mean,
median and Myriad.
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the cost or loss function. In general, when L(x) = − log f(x), with f a density,

the M-estimate ζ̂ corresponds to the ML estimator associated with f . According
to (5.10), the cost function associated with the sample Myriad is given by

L(x) = log[δ2 + x2].

Some insight in the operation of M-estimates is gained through the definition of
the IF. For an M-estimate, the IF is proportional to the score function (Hampel
et al., 1986, p. 101). For the Myriad (see also Figure 5.9b), the IF is given by

L′(x) = ψ(x) =
2x

δ2 + x2
.

When using the Myriad as a location estimator, it can be shown that the Myriad
offers a rich class of operation modes that can be controlled by varying the
parameter δ. When the noise is Gaussian, large values of δ can provide the optimal
performance associated with the sample mean, whereas for highly impulsive noise
statistics, the resistance of mode-type estimators can be achieved by setting low
values of δ. Also, the Myriad has a linearity property i.e. when δ → ∞ then the
sample Myriad reduces to the sample mean.

Theorem 5.1 (Linearity Property) Given a set of samples X1, . . . ,Xn. The

sample Myriad ζ̂δ converges to the sample mean as δ →∞, i.e.

ζ̂∞ = lim
δ→∞

ζ̂δ = lim
δ→∞

{
arg min
ζ∈R

n∑

i=1

log
[
δ2 + (Xi − ζ)2

]
}

=
1

n

n∑

i=1

Xi.

PROOF. First, we establish upper and lower bounds for ζ̂δ. Consider the order
statistic X(1) ≤ . . . ≤ X(n) of the sample X1, . . . ,Xn. Then, by taking ζ < X(1) =
min{X1, . . . ,Xn} and for all i

δ2 + (Xi −X(1))
2 < δ2 + (Xi − ζ)2,

it follows that ζ̂δ ≥ X(1). Similarly, one can find that ζ̂δ ≤ X(n). Hence,

ζ̂δ = arg min
X(1)≤ζ≤X(n)

n∏

i=1

[
δ2 + (Xi − ζ)2

]

= arg min
X(1)≤ζ≤X(n)

δ2n + δ2n−2
n∑

i=1

(Xi − ζ)2 +O(δ2n−4)

= arg min
X(1)≤ζ≤X(n)

n∑

i=1

(Xi − ζ)2 +
O(δ2n−4)

δ2n−2
.
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For δ →∞ the last term becomes negligible and

ζ̂∞ → arg min
X(1)≤ζ≤X(n)

n∑

i=1

(Xi − ζ)2 =
1

n

n∑

i=1

Xi.

�

As the Myriad moves away from the linear region (large values of δ) to lower values
of δ, the estimator becomes more resistant to outliers. When δ tends to zero, the
myriad approaches the mode of the sample.

Theorem 5.2 (Mode Property) Given a set of samples X1, . . . ,Xn. The

sample Myriad ζ̂δ converges to a mode estimator for δ → 0. Further,

ζ̂0 = lim
δ→0

ζ̂δ = arg min
Xj∈K

n∏

Xi 6=Xj

|Xi −Xj|,

where K is the set of most repeated values.

PROOF. Since δ > 0, the sample Myriad (5.10) can be written as

arg min
ζ∈R

n∏

i=1

[
1 +

(Xi − ζ)2

δ2

]
.

For small values of δ, the first term in the sum, i.e. 1, can be omitted, hence

n∏

i=1

[
1 +

(Xi − ζ)2

δ2

]
= O

(
1

δ2

)n−κ(ζ)

, (5.11)

where κ(ζ) is the number of times that ζ is repeated in the sample X1, . . . ,Xn.
The right-hand side of (5.11) is minimized for ζ when the exponent n − κ(ζ) is

minimized. Therefore, ζ̂0 will be a maximum of κ(ζ) and consequently, ζ̂0 will be
the most repeated value in the sample X1, . . . ,Xn or the mode.

Let κ = maxj κ(Xj) and Xj ∈ K. Then,

n∏

Xi 6=Xj

[
1 +

(Xi −Xj)
2

δ2

]
=

n∏

Xi 6=Xj

[
(Xi −Xj)

2

δ2

]
+O

(
1

δ2

)(n−κ)−1

. (5.12)
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For small δ, the second term in (5.12) will be small compared to the first term,

since this is of order O
(

1
δ2

)n−κ
. Finally, ζ̂0 can be computed as follows.

ζ̂0 = arg min
Xj ∈K

n∏

Xi 6=Xj

[
(Xi −Xj)

2

δ2

]

= arg min
Xj ∈K

n∏

Xi 6=Xj

|Xi −Xj | .

�

5.4.5 Speed of Convergence-Robustness Tradeoff

Debruyne et al. (2010) established conditions for convergence in case of reweighted
LS-KBR, see Proposition 5.4. Define

d = EFe

ψ(e)

e
and c = d−EFe ψ

′(e),

then c/d establishes an upper bound on the reduction of the influence function at
each step (Debruyne et al., 2010). The upper bound represents a trade-off between
the reduction of the influence function (speed of convergence) and the degree of
robustness. The higher the ratio c/d, the higher the degree of robustness but
the slower the reduction of the influence function at each step and vice versa. In
Table 5.2 this upper bound is calculated for a Normal distribution and a standard
Cauchy for the four types of weighting schemes. Note that the convergence of
the influence function is quite fast, even at heavy tailed distributions. For Huber
and Myriad weights, the convergence rate decreases rapidly as β respectively δ
increases. This behavior is to be expected, since the larger β respectively δ, the
less points are downweighted. Also note that the upper bound on the convergence
rate approaches 1 as β, δ → 0, indicating a high degree of robustness but slow
convergence rate. Therefore, logistic weights offer a good tradeoff between speed
of convergence and degree of robustness. Also notice the small ratio for the Hampel
weights indicating a low degree of robustness. The highest degree of robustness is
achieved by using Myriad weights.

5.4.6 Robust Selection of Tuning Parameters

It is shown in Figure 5.7 that also the model selection procedure plays a significant
role in obtaining fully robust estimates. Leung (2005) theoretically shows that a
robust CV procedure differs from the Mean Asymptotic Squared Error (MASE)
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Table 5.2: Values of the constants c, d and c/d for the Huber, Logistic, Hampel and
Myriad weight function at a standard Normal distribution and a standard Cauchy. The
bold values represent an upper bound for the reduction of the influence function at each
step.

Weight Parameter N(0,1) C(0,1)

function settings c d c/d c d c/d

β = 0.5 0.32 0.71 0.46 0.26 0.55 0.47
Huber

β = 1 0.22 0.91 0.25 0.22 0.72 0.31

Logistic 0.22 0.82 0.26 0.21 0.66 0.32

Hampel
b1 = 2.5

0.006 0.99 0.006 0.02 0.78 0.025
b2 = 3

δ = 0.1 0.11 0.12 0.92 0.083 0.091 0.91Myriad
δ = 1 0.31 0.66 0.47 0.25 0.50 0.50

by a constant shift and a constant multiple. Neither of these are dependent on the
bandwidth. Further, it is shown that this multiple depends on the score function
and therefore, also on the weight function. To obtain a fully robust procedure for
LS-KBR one needs also, besides a robust smoother and bounded kernel, a robust
model selection criterion. Consider for example the robust LOO-CV (RLOO-CV)
given by

RLOO-CV(θ) =
1

n

n∑

i=1

L
(
Yi,m̂

(−i)
n,rob(Xi; θ)

)
, (5.13)

where L is a robust loss function e.g. L1, Huber loss, Myriad loss, m̂n,rob is

a robust smoother and m̂
(−i)
n,rob(Xi; θ) denotes the leave-one-out estimator where

point i is left out from the training and θ denotes the tuning parameter vector,
e.g. when using Myriad weights θ = (h,γ,δ). A similar principle can be used
in robust v-fold CV. For robust counterparts of GCV and complexity criteria see
e.g. Lukas (2008), Ronchetti (1985) and Burman and Nolan (1995). De Brabanter
(2004, Chapter 11) transformed the robust CV as a location estimation problem
and used L-estimators (Daniell, 1920) (trimmed mean and Winsorized mean) to
achieve robustness.
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5.5 Simulations

5.5.1 Empirical Maxbias Curve

We compute the empirical maxbias curve (5.3) for both LS-SVM and its robust
counterpart iteratively reweighted (IRLS-SVM) on a test point. Given 150 “good”
equispaced observations according to the relation

Yk = m(xk) + ek, k = 1, . . . ,150,

where ek ∼ N (0,0.12) and m(xk) = 4.26 [exp(−xk)− 4 exp(−2xk) + 3 exp(−3xk)]
(Wahba, 1990, Chapter 4, p. 45). Let A = {x : 0.8 ≤ x ≤ 2.22} denote a
particular region (consisting of 60 data points) and let x = 1.5 be a test point in
that region. In each step, we start to contaminate the region A by deleting one
“good” observation and replacing it by a “bad” point (xk,Y

b
k ), see Figure 5.10a.

In each step, the value Y bk is chosen as the absolute value of a standard Cauchy
random variable. We repeat this until the estimation becomes useless. A maxbias
plot is shown in Figure 5.10b where the values of the non-robust LS-SVM estimate
m̂n(x) and the robust IRLS-SVM estimate m̂n,rob(x) are drawn as a function of
the number of outliers in regionA. The tuning parameters are tuned with L2 LOO-
CV for LS-SVM and RLOO-CV (5.13), based on an L1 loss and Myriad weights,
for IRLS-SVM. The maxbias curve of m̂n,rob(x) increases very slightly with the
number of outliers in region A and stays bounded right up to the breakdown point.
This is in strong contrast with the non-robust LS-SVM estimate m̂n(x) which has
a breakdown point equal to zero.

0 0.5 1 1.5 2 2.5 3 3.5

−2

0

2

4

6

8

10

12

14

16

18

Region A

x

Y
,
m

(x
)

(a)

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

Number of outliers in region A

E
m

p
ir

ic
a
l

m
a
x
b
ia

s

(b)

Figure 5.10: (a) In each step, one good point (circled dots) of the the region A =
{x : 0.8 ≤ x ≤ 2.22} is contaminated by the absolute value of a standard Cauchy
random variable (full dots) until the estimation becomes useless; (b) Empirical maxbias
curve of the non-robust LS-SVM estimator m̂n(x) (thine line) and IRLS-SVM estimator
m̂n,rob(x) (bold line) in a test point x = 1.5.
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5.5.2 Toy example

Recall the low order polynomial function, in the beginning of this Section, with 200
observations according to m(X) = 1−6X+ 36X2−53X3 + 22X5 and X ∼ U [0,1].
The distribution of the errors is given by the gross error model with ǫ = 0.3,
F0 = N(0,0.1) and G = C3(0,1). The results for the four types of weight functions
(see Table 5.1) are shown in Figure 5.11 and performances in the three norms are
given in Table 5.3. For this simulation we set β = 1.345, b1 = 2.5 and b2 = 3
and δ is tuned via 10-fold robust CV (5.13) with L1 loss. For all simulations, the
learning parameters are tuned via 10-fold robust cross-validation with L1 loss. This
simulation shows that the four weight functions are able to handle these extreme
outliers. It is clear that the Myriad weight function outperforms the others. This
is to be expected since it was designed for such types of outliers.

Due to the non-robust CV procedure, used to find the tuning parameters of SVM,
the estimate breaks down even when SVMs are robust. The simulation confirms
the theoretical justifications, saying that three requirements have to be satisfied
in order to achieve a fully robust method.
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Figure 5.11: Low order polynomial function with 200 observations according to f(X) =
1 − 6X + 36X2 − 53X3 + 22X5 and X ∼ U [0,1]. The distribution of the errors is given
by the gross error model with ǫ = 0.3, F0 = N(0,0.1) and G = C3(0,1). The dotted line
is the corresponding SVM fit (tuned with L2 CV). The iteratively reweighted LS-SVM
with (a) Huber weights (full line) and Hampel weights (dash dotted line); (b) Logistic
weights (full line) and Myriad weights (dash dotted line). For visual purposes, not all
data is displayed in the figure.
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Table 5.3: Performances in the three norms (difference between the estimated function
and the true underlying function) of the different weight functions used in iteratively
reweighted LS-SVM on the low order polynomial. The last column denotes the number
of iterations imax needed to satisfy the stopping criterion in Algorithm 5.

L1 L2 L∞ imax

Huber 0.06 0.005 0.12 7

Hampel 0.06 0.005 0.13 4

Logistic 0.06 0.005 0.11 11

Myriad 0.03 0.002 0.06 17

5.5.3 Real Life Data Sets

The octane data (Hubert et al., 2005) consist of NIR absorbance spectra over 226
wavelengths ranging from 1102 to 1552 nm. For each of the 39 production gasoline
samples the octane number was measured. It is well known that the octane data
set contains six outliers to which alcohol was added. Table 5.4 shows the result
(median and median absolute deviation for each method are reported) of a Monte
Carlo simulation (200 runs) of the iteratively reweighted LS-SVM (IRLS-SVM),
weighted LS-SVM (WLS-SVM) (Suykens et al., 2002) (based on Hampel weights)
and SVM in different norms on a randomly chosen test set of size 10. Model
selection was performed using robust LOO-CV.

As a next example consider the data about the demographical information on the
50 states of the USA in 1980. The data set provides information on 25 variables.
The goal is to determine the murder rate per 100,000 population. The result
is shown in Table 5.4 for randomly chosen test sets of size 15. The results of
the simulations show that by using reweighting schemes the performance can be
improved over weighted LS-SVM and SVM. To illustrate the trade-off between the
degree of robustness and speed of convergence, the number of iterations imax are
also given in Table 5.4. The stopping criterion was taken identically to the one in
Algorithm 5. The number of iterations, needed by each weight function, confirms
the results in Table 5.2.
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Table 5.4: Results on the Octane and Demographic data sets. For 200 simulations the
medians and median absolute deviations (between brackets) of three norms are given (on
test data). imax denotes the number of iterations needed to satisfy the stopping criterion
in Algorithm 5. The best results are bold faced.

Octane Demographic

weights L1 L2 L∞ imax L1 L2 L∞ imax

Huber
0.19 0.07 0.51

15
0.31 0.14 0.83

8
(0.03) (0.02) (0.10) (0.01) (0.02) (0.06)

IRLS
Hampel

0.22 0.07 0.55
2

0.33 0.18 0.97
3

(0.03) (0.03) (0.14) (0.01) (0.04) (0.02)

SVM
Logistic

0.20 0.06 0.51
18

0.30 0.13 0.80
10

(0.03) (0.02) (0.10) (0.02) (0.01) (0.07)

Myriad
0.20 0.06 0.50

22
0.30 0.13 0.79

12
(0.03) (0.02) (0.09) (0.01) (0.01) (0.06)

WLS 0.22 0.08 0.60
1

0.33 0.15 0.80
1

(0.03) (0.02) (0.15) (0.02) (0.01) (0.02)SVM

SVM
0.28 0.12 0.56

-
0.37 0.21 0.90

-
(0.03) (0.02) (0.13) (0.02) (0.02) (0.06)

5.6 Conclusions

In this Chapter, we reviewed some measures of robustness and applied these
measures to simple statistics such as the mean, median and variance. We
discussed the different approaches used in the literature for achieving robustness
in parametric and nonparametric regression models. Further, we illustrated how
robustness in the nonparametric case can be obtained by using a least squares
cost function. Also, we showed, in order to achieve a fully robust procedure,
three requirements have to be fulfilled i.e. (i) robust smoother, (ii) bounded
kernel and (iii) a robust model selection procedure. Finally, we obtained a robust
LS-SVM estimator via iterative reweighting. We compared four different weight
functions and investigated their application in iteratively reweighted LS-SVM. We
introduced the Myriad reweighting and derived its linear and mode property. We
demonstrated that, by means of simulations and theoretical results, reweighting
is useful not only when outliers are present in the data but also to improve
stability, especially at heavy tailed distributions. By means of an upper bound
for the reduction of the influence function in each step, we revealed the existence
of a tradeoff between speed of convergence and the degree of robustness. We
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demonstrated that the Myriad weight function is highly robust against (extreme)
outliers but exhibits a slow speed of convergence. A good compromise between the
speed of convergence and robustness can be achieved by using Logistic weights.



Chapter 6

Kernel Regression with
Correlated Errors

In all previous Chapters, i.i.d. data is considered. In this Chapter, we will
investigate the consequences when this assumption is violated. We will show that,
for nonparametric kernel based regression, the model selection procedures such as
LOO-CV, GCV, v-fold CV break down in the presence of correlated data rather
than the smoothing method. In order to cope with correlated data, we prove that
a kernel K satisfying K(0) = 0 removes the correlation structure without requiring
any prior knowledge about its structure. Finally, we will show that the form of the
kernel, based on mean squared error, is very important when errors are correlated.
Contributions are made in Section 6.3.

6.1 Introduction

From the previous Chapters, we can conclude that nonparametric regression
is a very popular tool for data analysis because these techniques impose few
assumptions about the shape of the mean function. Hence, they are extremely
flexible tools for uncovering nonlinear relationships between variables. Given the
data {(x1,Y1), . . . ,(xn,Yn)} where xi ≡ i/n and x ∈ [0,1]. Then, the data can be
written as

Yi = m(xi) + ei, i = 1, . . . ,n, (6.1)

where ei = Yi −m(xi) satisfies E(e) = 0 and Var(e) = σ2 < ∞. Thus Yi can be
considered as the sum of the value of the regression function at xi and some error
ei with the expected value zero and the sequence {ei} is a covariance stationary
process.

109
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Definition 6.1 (Covariance Stationarity) The sequence {ei} is covariance
stationary if

• E[ei] = µ for all i;

• Cov[ei,ei−j ] = E[(ei − µ)(ei−j − µ)] = γj for all i and any j.

Many techniques include a smoothing parameter and/or kernel bandwidth which
controls the smoothness, bias and variance of the estimate. A vast number of
techniques (see Chapter 3) have been developed to determine suitable choices for
these tuning parameters from data when the errors are independent and identically
distributed (i.i.d.) with finite variance. More detailed information can be found
in the books of Fan and Gijbels (1996), Davison and Hinkley (2003) and Konishi
and Kitagawa (2008) and the article by Feng and Heiler (2009). However, all
the previous techniques have been derived under the i.i.d. assumption. It has
been shown that violating this assumption results in the break down of the above
methods (Altman, 1990; Hermann et al., 1992; Opsomer et al., 2001; Lahiri, 2003).
If the errors are positively (negatively) correlated, these methods will produce
a small (large) bandwidth which results in a rough (oversmooth) estimate of
the regression function. The focus of this Chapter is to look at the problem
of estimating the mean function m in the presence of correlation, not that of
estimating the correlation function itself. Approaches describing the estimation of
the correlation function are extensively studied in Hart and Wehrly (1986), Hart
(1991) and Park et al. (2006).

Another issue in this context is whether the errors are assumed to be short-range
dependent, where the correlation decreases rapidly as the distance between two
observations increases or long-range dependent. The error process is said to be
short-range dependent if for some τ > 0, δ > 1 and correlation function ρ(·), the

spectral density H(ω) = σ2

2π

∑∞
k=−∞ ρ(k)e−iω of the errors satisfies (Cox, 1984)

H(ω) ∼ τω−(1−δ) as ω → 0,

where A ∼ B denotes A is asymptotic equivalent to B. In that case, ρ(j) is of
order |j|−δ (Adenstedt, 1974). In case of long-range dependence, the correlation
decreases more slowly and regression estimation becomes even harder (Hall et al.,
1995b; Opsomer et al., 2001). Here, the decrease is of order |j|−δ for 0 < δ ≤ 1.
Estimation under long-range dependence has attracted more and more attention
in recent years. In many scientific research fields such as astronomy, chemistry,
physics and signal processing, the observational errors sometimes reveal long-range
dependence. Künsch et al. (1993) made the following interesting remark:

“Perhaps most unbelievable to many is the observation that high-quality
measurements series from astronomy, physics, chemistry, generally
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regarded as prototype of i.i.d. observations, are not independent but
long-range correlated.”

Further, since Kulkarni et al. (2002) have proven consistency for the data-
dependent kernel estimators i.e. correlated errors and/or correlation among the
independent variables, there is no need to alter the kernel smoother by adding
constraints. Confirming their results, we show that the problem is due to the
model selection criterion. In fact, we will show in Section 6.3 that there exists a
simple multiplicative relation between the bandwidth under correlation and the
bandwidth under the i.i.d. assumption.

In the parametric case, ordinary least squares estimators in the presence of
autocorrelation are still linear-unbiased as well as consistent, but they are no longer
efficient (i.e. minimum variance). As a result, the usual confidence intervals and
the test hypotheses cannot be legitimately applied (Sen and Srivastava, 1990).

6.2 Problems with Correlation

Some quite fundamental problems occur when nonparametric regression is
attempted in the presence of correlated errors. For all nonparametric regression
techniques, the shape and the smoothness of the estimated function depends on
a large extent on the specific value(s) chosen for the kernel bandwidth (and/or
regularization parameter). In order to avoid selecting values for these parameters
by trial and error, several data-driven methods are developed (see Chapter 3).
However, the presence of correlation between the errors, if ignored, causes
breakdown of commonly used automatic tuning parameter selection methods such
as CV or plug-in.

Data-driven bandwidth selectors tend to be “fooled” by the correlation, interpret-
ing it as reflecting the regression relationship and variance function. So, the cyclical
pattern in positively correlated errors is viewed as a high frequency regression
relationship with small variance, and the bandwidth is set small enough to track
the cycles resulting in an undersmoothed fitted regression curve. The alternating
pattern above and below the true underlying function for negatively correlated
errors is interpreted as a high variance, and the bandwidth is set high enough to
smooth over the variability, producing an oversmoothed fitted regression curve.

The breakdown of automated methods, as well as a suitable solution, is illustrated
by means of a simple example shown in Figure 6.1. For 200 equally spaced
observations and a polynomial mean function m(x) = 300x3(1 − x)3, four
progressively more correlated sets of errors were generated from the same vector
of independent noise and added to the mean function. The errors are normally
distributed with variance σ2 = 0.3 and correlation following an Auto Regressive
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process of order 1, denoted by AR(1), corr(ei,ej) = exp(−α|xi − xj |) (Fan and
Yao, 2003). Figure 6.1 shows four local linear regression estimates (see Chapter 2)
for these data sets. For each data set, two bandwidth selection methods were used:
standard CV and a correlation-corrected CV (CC-CV) which is further discussed
in Section 6.3. Table 6.1 summarizes the bandwidths selected for the four data
sets under both methods.

Table 6.1 and Figure 6.1 clearly show that when correlation increases, the
bandwidth selected by CV becomes smaller and smaller, and the estimates
become more undersmoothed. The bandwidths selected by CC-CV (explained
in Section 6.3), a method that accounts for the presence of correlation, are much
more stable and result in virtually the same estimate for all four cases. This
type of undersmoothing behavior in the presence of positively correlated errors
has been observed with most commonly used automated bandwidth selection
methods (Altman, 1990; Hart, 1991; Opsomer et al., 2001; Kim et al., 2009).

Table 6.1: Summary of bandwidth selection for simulated data in Figure 6.1

Correlation level Autocorrelation CV CC-CV

Independent 0 0.09 0.09

α = 400 0.14 0.034 0.12

α = 200 0.37 0.0084 0.13

α = 100 0.61 0.0072 0.13

6.3 New Developments in Kernel Regression with

Correlated Errors

In this Section, we address how to deal with, in a simple but effective way,
correlated errors using CV. We make a clear distinction between kernel methods
requiring no positive definite kernel and kernel methods requiring a positive definite
kernel. We will also show that the form of the kernel, based on the mean squared
error, is very important when errors are correlated. This is in contrast with the
i.i.d. case where the choice between the various kernels, based on the mean squared
error, is not very crucial (Härdle, 1999). In what follows, the kernel K is expected
to be an isotropic kernel.
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(b) α = 400
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(c) α = 200
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Figure 6.1: Simulated data with four levels of AR(1) correlation, estimated with local
linear regression; bold line represents estimate obtained with bandwidth selected by CV;
thin line represents estimate obtained with bandwidth selected by our method.

6.3.1 No Positive Definite Kernel Constraint

To estimate the unknown regression function m, consider the Nadaraya-Watson
(NW) kernel estimator defined as (see also Chapter 2)

m̂n(x) =

n∑

i=1

K(x−xi

h )Yi∑n
j=1 K(

x−xj

h )
,

where h is the bandwidth of the kernel K. This kernel can be one of the following
kernels: Epanechnikov, Gaussian, triangular, spline,. . . An optimal h can for
example be found by minimizing the leave-one-out cross-validation (LOO-CV)
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score function

LOO–CV(h) =
1

n

n∑

i=1

(
Yi − m̂(−i)

n (xi;h)
)2

, (6.2)

where m̂
(−i)
n (xi;h) denotes the leave-one-out estimator where point i is left out

from the training. For notational ease, the dependence on the bandwidth h will
be suppressed. We can now state the following.

Lemma 6.1 Assume the errors are zero-mean, then the expected value of the
LOO-CV score function (6.2) is given by

E[LOO–CV(h)] =
1

n
E

[
n∑

i=1

(
m(xi)− m̂(−i)

n (xi)
)2
]

+σ2− 2

n

n∑

i=1

Cov
[
m̂(−i)
n (xi),ei

]

PROOF. We first rewrite the LOO-CV score function in a more workable form.
Since Yi = m(xi) + ei

LOO–CV(h) =
1

n

n∑

i=1

[
Yi − m̂(−i)(xi)

]2

=
1

n

n∑

i=1

[
m2(xi) + 2m(xi)ei + e2

i − 2Yim̂
(−i)
n (xi) +

(
m̂(−i)
n (xi)

)2
]

=
1

n

n∑

i=1

[
m(xi)− m̂(−i)

n (xi)
]2

+
1

n

n∑

i=1

e2
i

+
2

n

n∑

i=1

[
m(xi)− m̂(−i)

n (xi)
]
ei.

Taking expectations yields,

E[LOO–CV(h)]=
1

n
E

[
n∑

i=1

(
m(xi)− m̂(−i)

n (xi)
)2
]

+σ2− 2

n

n∑

i=1

Cov
[
m̂(−i)
n (xi),ei

]
.

�

Note that the last term on the right-hand side in Lemma 6.1 is in addition to
the correlation already included in the first term. Hart (1991) shows, if n → ∞,
nh → ∞, nh5 → 0 and for positively correlated errors, that E[LOO–CV(h)] ≈
σ2 + c/nh where c < 0 and c does not depend on the bandwidth. If the correlation
is sufficiently strong and n sufficiently large, E[LOO–CV(h)] will be minimized
at a value of h that is very near to zero. The latter corresponds to almost
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interpolating the data (see Figure 6.1). This result does not only hold for leave-
one-out cross-validation but also for Mallow’s criterion (Chiu, 1989) and plug-in
based techniques (Opsomer et al., 2001). The following theorem provides a simple
but effective way to deal with correlated errors. In what follows we will use the
following notation

k(u) =

∫ ∞

−∞
K(y)e−iuy dy

for the Fourier Transform of the kernel function K.

Theorem 6.1 Assume uniform equally spaced design, x ∈ [0,1], E[e] = 0,
Cov[ei,ei+k] = E[eiei+k] = γk and γk ∼ k−a for some a > 2. Assume that

(C1) K is Lipschitz continuous at x = 0;

(C2)
∫
K(u) du = 1, lim|u|→∞ |uK(u)| = 0,

∫
|K(u)| du <∞, supu |K(u)| <∞;

(C3)
∫
|k(u)| du <∞ and K is symmetric.

Assume further that boundary effects are ignored and that h → 0 as n → ∞ such
that nh2 →∞, then for the NW smoother it follows that

E[LOO–CV(h)] =
1

n
E

[
n∑

i=1

(
m(xi)− m̂(−i)

n (xi)
)2
]

+ σ2

− 4K(0)

nh−K(0)

∞∑

k=1

γk + o(n−1h−1).

(6.3)

PROOF. Consider only the last term of the expected LOO-CV (Lemma 6.1), i.e.

A(h) = − 2

n

n∑

i=1

Cov
[
m̂(−i)
n (xi),ei

]
.

Plugging in the Nadaraya-Watson kernel smoother for m̂
(−i)
n (xi) in the term above

yields

A(h) = − 2

n

n∑

i=1

Cov




n∑

j 6=i

K
(
xi−xj

h

)
Yj

∑n
l6=iK

(
xi−xl

h

) ,ei


 .
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By using the linearity of the expectation operator, Yj = m(xj) + ej and E[e] = 0
it follows that

A(h) = − 2

n

n∑

i=1

n∑

j 6=i
E



K
(
xi−xj

h

)
Yj

∑n
j 6=iK

(
xi−xl

h

)ei




= − 2

n

n∑

i=1

n∑

j 6=i

K
(
xi−xj

h

)

∑n
j 6=iK

(
xi−xl

h

) E [eiej] .

By slightly rewriting the denominator and using the covariance stationary property
of the errors (see Definition 6.1), the above equation can be written as

A(h) = − 2

n

n∑

i=1

n∑

j 6=i

K
(
xi−xj

h

)

∑n
j=1 K

(
xi−xl

h

)
−K(0)

γ|i−j|. (6.4)

Let f denote the design density. The first term of the denominator can be written
as

n∑

j=1

K

(
xi − xl
h

)
= nhf̂(xi)

= nhf(xi) + nh(f̂(xi)− f(xi)).

If conditions (C2) and (C3) are fulfilled, f is uniform continuous and h → ∞ as
n→∞ such that nh2 →∞, then

|f̂(xi)− f(xi)| ≤ sup
xi

|f̂(xi)− f(xi)| P−→ 0 as n→∞,

due to the uniform weak consistency of the kernel density estimator (Parzen,

1962).
P−→ denotes convergence in probability. Hence, for n → ∞, the following

approximation is valid
nhf̂(xi) ≈ nhf(xi).

Further, by grouping terms together and using the fact that xi ≡ i/n (uniform
equispaced design) and assume without loss of generality that x ∈ [0,1], (6.4) can
be written as

A(h) = − 2

n

n∑

i=1

1

nhf(xi)−K(0)

n∑

j 6=i
K

(
xi − xj
h

)
γ|i−j|

= − 4

nh−K(0)

n−1∑

k=1

(
n− k
n

)
K

(
k

nh

)
γk.
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Next, we show that
∑n−1
k=1

(
n−k
n

)
K
(
k
nh

)
γk = K(0)

∑∞
k=1 γk + o(n−1h−1) for n→

∞. Since the kernel K ≥ 0 is Lipschitz continuous at x = 0

[K(0) + C2x]+ ≤ K(x) ≤ K(0) + C1x,

where [z]+ = max(z,0). Then, for K(0) ≥ 0 and C1 > C2, we establish the
following upperbound

n−1∑

k=1

(
n− k
n

)
K

(
k

nh

)
γk ≤

n−1∑

k=1

(
1− k

n

)(
K(0) + C1

k

nh

)
γk

≤
n−1∑

k=1

K(0)γk +

n−1∑

k=1

C1
k

nh
γk.

Then, for n→∞ and using γk ∼ k−a for a > 2,

C1

n−1∑

k=1

k

nh
γk = C1

n−1∑

k=1

k1−a

nh
= o(n−1h−1).

Hence,
n−1∑

k=1

(
n− k
n

)
K

(
k

nh

)
γk ≤ K(0)

∞∑

k=1

γk + o(n−1h−1).

For the construction of the lower bound, assume first that C2 < 0 and K(0) ≥ 0
then

n−1∑

k=1

(
n− k
n

)
K

(
k

nh

)
γk ≥

n−1∑

k=1

(
1− k

n

)[
K(0) + C2

k

nh

]

+

γk.

Since C2 < 0, it follows that k ≤ K(0)
−C2

nh and therefore

n−1∑

k=1

(
1− k

n

)[
K(0) + C2

k

nh

]

+

γk =

min
(
n−1,

K(0)
−C2

nh
)

∑

k=1

(
1− k

n

)(
K(0) + C2

k

nh

)
γk.

Analogous to deriving the upper bound, we obtain for n→∞
n−1∑

k=1

(
n− k
n

)
K

(
k

nh

)
γk ≥ K(0)

∞∑

k=1

γk + o(n−1h−1).

In the second case i.e. C2 > 0, the same lower bound can be obtained. Finally,
from the upper and lower bound, for n→∞, yields

n−1∑

k=1

(
n− k
n

)
K

(
k

nh

)
γk = K(0)

∞∑

k=1

γk + o(n−1h−1). �
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From this result it is clear that, by taking a kernel satisfying the condition K(0) =
0, the correlation structure is removed without requiring any prior information
about its structure and (6.3) reduces to

E[LOO–CV(h)] =
1

n
E

[
n∑

i=1

(
m(xi)− m̂(−i)

n (xi)
)2
]

+ σ2 + o(n−1h−1). (6.5)

Therefore, it is natural to use a bandwidth selection criterion based on a kernel
satisfying K(0) = 0, defined by

ĥb = arg min
h∈Qn

LOO–CV(h),

where Qn is a finite set of parameters. We have relaxed the conditions of Kim
et al. (2009) in order to derive Theorem 6.1, i.e. they require the kernel to be
differentiable at zero while in our proof the kernel only needs to satisfy a Lipschitz
condition at zero. Further, we extended the proof for the NW estimator. As
will be shown later, this relaxation can lead to kernel classes resulting in a better
regression estimate (lower mean squared error).

Notice that if K is a symmetric probability density function, then K(0) = 0 implies
that K is not unimodal. Hence, it is obvious to use bimodal kernels. Such a kernel
gives more weight to observations near to the point x of interest than those that
are far from x. But at the same time it also reduces the weight of points which are
too close to x. A major advantage of using a bandwidth selection criterion based
on bimodal kernels is the fact that is more efficient in removing the correlation
than leave-(2l+ 1)-out CV (Chu and Marron, 1991b).

Definition 6.2 (Leave-(2l + 1)-out CV) Leave-(2l+1)-out CV or modified CV
(MCV) is defined as

MCV(h) =
1

n

n∑

i=1

(
Yi − m̂(−i)

n (xi)

)2

, (6.6)

where m̂
(−i)
n (xi) is the leave-(2l + 1)-out version of m(xi), i.e. the observations

(xi+j ,Yi+j) for −l ≤ j ≤ l are left out to estimate m̂n(xi).

Taking a bimodal kernel satisfying K(0) = 0 results in (6.5) while leave-(2l+1)-out
CV with unimodal kernel K, under the conditions of Theorem 6.1, yields

E[MCV(h)] =
1

n
E

[
n∑

i=1

(
m(xi)− m̂(−i)

n (xi)
)2
]

+ σ2

− 4K(0)

nh−K(0)

∞∑

k=l+1

γk + o(n−1h−1).
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The formula above clearly shows that leave-(2l+ 1)-out CV with unimodal kernel
K cannot completely remove the correlation structure. Only the first l elements
of the correlation are removed.

Another possibility of bandwidth selection under correlation, not based on bimodal
kernels, is to estimate the covariance structure γ0,γ1, . . . in (6.3). Although the
usual residual-based estimators of the autocovariances γ̂k are consistent,

∑∞
k=1 γ̂k

is not a consistent estimator of
∑∞

k=1 γk (Simonoff, 1996). A first approach
correcting for this, is to estimate

∑∞
k=1 γk by fitting a parametric model to the

residuals (and thereby obtaining estimates of γk) and use these estimates in (6.3)
together with a univariate kernel. If the assumed parametric model is incorrect,
these estimates can be far from the correct ones resulting in a poor choice of the
bandwidth. However, Altman (1990) showed that, if the signal to noise ratio
is small, this approach results in sufficiently good estimates of correlation for
correcting the selection criteria. A second approach, proposed by Hart (1989,
1991), suggests estimating the covariance structure in the spectral domain via
differencing the data at least twice. A third approach is to derive an asymptotic
bias–variance decomposition under the correlated error assumption of the kernel
smoother. In this way and under certain conditions on the correlation function,
plug-ins can be derived taking the correlation into account, see e.g. Hermann et al.
(1992), Opsomer et al. (2001), Hall and Keilegom (2003), Francisco-Fernández and
Opsomer (2004) and Francisco-Fernández et al. (2005). More recently, Park et al.
(2006) proposed to estimate the error correlation nonparametrically without prior
knowledge of the correlation structure.

6.3.2 Positive Definite Kernel Constraint

From Chapter 2, we know that methods like SVM and LS-SVM require a positive
(semi) definite kernel. However, the following proposition reveals why a bimodal
kernel K̃ cannot be directly applied in these methods.

Proposition 6.1 A bimodal kernel K̃ is never positive (semi) definite.

PROOF. We split up the proof in two parts, i.e. for positive definite and positive
semi-definite kernels. The statement will be proven by contradiction.

• Suppose there exists a positive definite bimodal kernel K̃. This leads to
a positive definite kernel matrix Ω. Then, all eigenvalues of Ω are strictly
positive and hence the trace of Ω is always larger than zero. However, this
is in contradiction with the fact that Ω has all zeros on its main diagonal.
Consequently, a positive definite bimodal kernel K̃ cannot exist.
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• Suppose there exists a positive semi-definite bimodal kernel K̃. Then, at least
one eigenvalue of the matrix Ω is equal to zero (the rest of the eigenvalues
is strictly positive). We have now two possibilities i.e. some eigenvalues are
equal to zero and all eigenvalues are equal to zero. In the first case, the
trace of the matrix Ω is larger than zero and we have again a contradiction.
In the second case, the trace of the matrix Ω is equal to zero and also the
determinant of Ω equals zero (since all eigenvalues are equal to zero). But the
determinant can never be zero since there is no linear dependence between
the rows or columns (there is a zero in each row or column). This concludes
the proof.

�

Consequently, the previous strategy of using bimodal kernels cannot directly be
applied to SVM and LS-SVM. A possible way to circumvent this obstacle, is to use
the bandwidth ĥb, obtained from the bimodal kernel, as a pilot bandwidth selector
for other data-driven selection procedures such as leave-(2l+ 1)-out CV or block
bootstrap bandwidth selector (Hall et al., 1995b). Since the block bootstrap in Hall
et al. (1995b) is based on two smoothers, i.e. one is used to compute centered
residuals and the other generates bootstrap data, the procedure is computationally
costly. Therefore, we will use leave-(2l + 1)-out CV or MCV which has a lower
computational cost. A crucial parameter to be estimated in MCV, see also Chu
and Marron (1991b), is l. Indeed, the amount of dependence between m̂n(xk) and
Yk is reduced as l increases.

A similar problem arises in block bootstrap where the accuracy of the method
critically depends on the block size that is supplied by the user. The
orders of magnitude of the optimal block sizes are known in some inference
problems (see Künsch, 1989; Hall et al., 1995a; Lahiri, 1999; Bühlmann and
Künsch, 1999). However, the leading terms of these optimal block sizes depend
on various population characteristics in an intricate manner, making it difficult to
estimate these parameters in practice. Recently, Lahiri et al. (2007) proposed a
nonparametric plug-in principle to determine the block size.

For l = 0, MCV is ordinary CV or leave-one-out CV. One possible method to select
a value for l is to use ĥb as pilot bandwidth selector. Define a bimodal kernel K̃
and assume ĥb is available, then one can calculate

m̂n(x) =

n∑

i=1

K̃
(
x−xi

ĥb

)
Yi

∑n
j=1 K̃

(
x−xj

ĥb

) . (6.7)

From this result, the residuals are obtained by

êi = Yi − m̂n(xi), for i = 1, . . . ,n
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and choose l to be the smallest q ≥ 1 such that

|rq| =
∣∣∣∣∣

∑n−q
i=1 êiêi+q∑n
i=1 ê

2
i

∣∣∣∣∣ ≤
Φ−1(1− α

2 )√
n

, (6.8)

where Φ−1 denotes the quantile function of the standard normal distribution
and α is the significance level, say 5%. Observe that (6.8) is based on the
fact that rq is asymptotically normal distributed under the centered i.i.d. error
assumption (Kendall et al., 1983) and hence provides an approximate 100(1 −
α)% confidence interval for the autocorrelation. The reason why (6.8) can be
legitimately applied is motivated by combining the theoretical results of Kim et al.
(2004) and Park et al. (2006) stating that

1

n− q

n−q∑

i=1

êiêi+q =
1

n− q

n−q∑

i=1

eiei+q +O(n−4/5).

Once l is selected, the tuning parameters of SVM or LS-SVM can be determined by
using leave-(2l+1)-out CV combined with a positive definite kernel, e.g. Gaussian
kernel. We then call Correlation-Corrected CV (CC-CV) the combination of
finding l via bimodal kernels and using the obtained l in leave-(2l + 1)-out CV.
Algorithm 6 summarizes the CC-CV procedure for LS-SVM.

Algorithm 6 Correlation-Corrected CV for LS-SVM

1: Determine ĥb in (6.7) with a bimodal kernel by means of LOO-CV
2: Calculate l satisfying (6.8)
3: Determine both tuning parameters for LS-SVM by means of leave-(2l+ 1)-out

CV (6.6) and a positive definite unimodal kernel.

6.3.3 Drawback of Using Bimodal Kernels

Although bimodal kernels are very effective in removing the correlation structure,
they have an inherent drawback. When using bimodal kernels to estimate the
regression function m, the estimate m̂n will suffer from increased mean squared
error (MSE). The following theorem indicates the asymptotic behavior of the MSE
of m̂n(x) when the errors are covariant stationary.

Theorem 6.2 (Simonoff, 1996) Let (6.1) hold and assume that m has two
continuous derivatives. Assume also that Cov[ei,ei+k] = γk for all k, where
γ0 = σ2 < ∞ and

∑∞
k=1 k|γk| < ∞. Now, as n → ∞ and h → 0, the

following statement holds uniformly in x ∈ (h,1 − h) for the Mean Integrated
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Squared Error (MISE)

MISE(m̂n) =
µ2

2(K)h4
∫

(m′′(x))2 dx

4
+
R(K)[σ2 + 2

∑∞
k=1 γk]

nh
+ o(h4 + n−1h−1),

where µ2(K) =
∫
u2K(u) du and R(K) =

∫
K2(u) du.

An asymptotic optimal constant or global bandwidth ĥAMISE, for m′′(x) 6= 0, is
the minimizer of the Asymptotic MISE (AMISE)

AMISE(m̂n) =
µ2

2(K)h4
∫

(m′′(x))2 dx

4
+
R(K)[σ2 + 2

∑∞
k=1 γk]

nh
,

w.r.t. to the bandwidth, yielding

ĥAMISE =

[
R(K)[σ2 + 2

∑∞
k=1 γk]

µ2
2(K)

∫
(m′′(x))2 dx

]1/5

n−1/5. (6.9)

We see that ĥAMISE is at least as big as the bandwidth for i.i.d data ĥ0 if γk ≥ 0
for all k ≥ 1. The following corollary shows that there is a simple multiplicative
relationship between the asymptotic optimal bandwidth for dependent data
ĥAMISE and bandwidth for independent data ĥ0.

Corollary 6.1 Assume the conditions of Theorem 6.2 hold, then

ĥAMISE =

[
1 + 2

∞∑

k=1

ρ(k)

]1/5

ĥ0, (6.10)

where ĥAMISE is the asymptotic MISE optimal bandwidth for dependent data, ĥ0

is the asymptotic optimal bandwidth for independent data and ρ(k) denotes the
autocorrelation function at lag k, i.e. ρ(k) = γk/σ

2 = E[eiei+k]/σ2.

PROOF. From (6.9) it follows that

ĥAMISE =

[
R(K)σ2

nµ2
2(K)

∫
(m′′(x))2 dx

+
2R(K)

∑∞
k=1 γk

nµ2
2(K)

∫
(m′′(x))2 dx

]1/5

=

[
ĥ5

0 +
σ2R(K)

nµ2
2(K)

∫
(m′′(x))2 dx

2
∑∞
k=1 γk
σ2

]1/5

=

[
1 + 2

∞∑

k=1

ρ(k)

]1/5

ĥ0.

�



NEW DEVELOPMENTS IN KERNEL REGRESSION WITH CORRELATED ERRORS 123

Thus, if the data are positively autocorrelated (ρ(k) ≥ 0 ∀k), the optimal
bandwidth under correlation is larger than that for independent data. Unfor-
tunately, (6.10) is quite hard to use in practice since it requires knowledge about

the correlation structure and an estimate of the bandwidth ĥ0 under the i.i.d.
assumption, given correlated data.

By taking ĥAMISE as in (6.9), the corresponding asymptotic MISE is equal to

AMISE(m̂n) = cD
2/5
K n−4/5,

where c depends neither on the bandwidth nor on the kernel K and

DK = µ2(K)R(K)2 =

(∫
u2K(u) du

)(∫
K2(u) du

)2

. (6.11)

It is obvious that one wants to minimize (6.11) with respect to the kernel function
K. This leads to the well-known Epanechnikov kernel Kepa. However, adding the
constraint K(0) = 0 (see Theorem 6.1) to the minimization of (6.11) would lead
to the following optimal kernel

K⋆(u) =

{
Kepa(u), if u 6= 0;

0, if u = 0.

Certainly, this kernel violates assumption (C1) in Theorem 6.1. In fact, an optimal
kernel does not exist in the class of kernels satisfying assumption (C1) and K(0) =
0. To illustrate this, note that there exist a sequence of kernels {Kepa(u,ǫ)}ǫ∈]0,1[,
indexed by ǫ, such thatKepa(u) converges toK⋆(u) and the value of

∫
Kepa(u,ǫ)2du

decreases to
∫
K⋆(u)2du as ǫ tends to zero. Since an optimal kernel in this class

cannot be found, we have to be content with a so-called ǫ-optimal class of bimodal
kernels K̃ǫ(u), with 0 < ǫ < 1, defined as

K̃ǫ(u) =
4

4− 3ǫ− ǫ3





3
4 (1− u2)I{|u|≤1}, |u| ≥ ǫ;
3
4

1−ǫ2

ǫ |u|, |u| < ǫ.
(6.12)

For ǫ = 0, we define K̃ǫ(u) = Kepa(u). Table 6.2 displays several possible bimodal
kernel functions with their respective DK value compared to the Epanechnikov
kernel. Although it is possible to express the DK value for K̃ǫ(u) as a function
of ǫ, we do not include it in Table 6.2 but instead, we graphically illustrate the
dependence of DK on ǫ in Figure 6.2a. An illustration of the ǫ-optimal class of
bimodal kernels is shown in Figure 6.2b.
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Table 6.2: Kernel functions with illustrations and their respective DK value compared
to the Epanechnikov kernel. IA denotes the indicator function of an event A.

kernel function Illustration DK
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3
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Figure 6.2: (a) DK as a function of ǫ for the ǫ-optimal class of kernels. The dot on the
left side marks the Epanechnikov kernel; (b) Illustration of the ǫ-optimal class of kernels
for ǫ = 0.3.



SIMULATIONS 125

6.4 Simulations

6.4.1 CC-CV vs. LOO-CV with Different Noise Models

In a first example, we compare the finite sample performance of CC-CV with the
classical leave-one-out CV (LOO-CV) based on a unimodal kernel in the presence
of correlation. Consider the following function m(x) = 300x3(1 − x)3 for 0 ≤
x ≤ 1. The sample size is set to n = 200. We consider two types of noise
models: (i) an AR(5) process ej =

∑5
l=1 φlej−l +

√
1− φ2

1Zj where Zj are i.i.d.
normal random variables with variance σ2 = 0.5 and zero mean. The errors ej
for j = 1, . . . ,5 are standard normal random variables. The AR(5) parameters
are set to [φ1, φ2, φ3, φ4, φ5] = [0.7,−0.5, 0.4,−0.3, 0.2]. (ii) m-dependent models
ei = r0δi + r1δi−1 with m = 1 where δi is i.i.d. standard normal random variable,

r0 =
√

1+2ν+
√

1−2ν
2 and r1 =

√
1+2ν−

√
1−2ν

2 for ν = 1/2.

Figure 6.3 shows typical results of the regression estimates for both noise models.
Table 6.3 summarizes the average of the regularization parameters, bandwidths
and asymptotic squared error, defined as ASE = 1

n

∑n
i=1(m(xi) − m̂n(xi))

2, for
50 runs for both noise models. By looking at the average ASE, it is clear that
the tuning parameters obtained by CC-CV result into better estimates which are
not influenced by the correlation. Also notice the small bandwidths and larger
regularization constants found by LOO-CV for both noise models. This provides
clear evidence that the kernel smoother is trying to model the noise instead of the
true underlying function. These findings are also valid if one uses generalized CV
or v-fold CV. Figure 6.4 and Figure 6.5 show the CV surfaces for both model

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

Y
,
m̂
n
(x

)

x

(a) AR(5)

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

7

8

x

Y
,
m̂
n
(x

)
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Figure 6.3: Typical results of the LS-SVM regression estimates for both noise models.
The thin line represents the estimate with tuning parameters determined by LOO-CV
and the bold line is the estimate based on the CC-CV tuning parameters.
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Table 6.3: Average of the regularization parameters, bandwidths and average ASE for
50 runs for both noise models

AR(5) m-dependence models

LOO-CV CC-CV LOO-CV CC-CV

γ̂ 224.69 2.28 1.03× 105 6.96

ĥ 0.027 1.06 0.03 1.89

av. ASE 0.36 0.021 0.89 0.04

selection methods on the AR(5) noise model. These plots clearly demonstrate
the shift of the tuning parameters. A cross section for both tuning parameters is
provided below each surface plot. Also note that the surface of the CC-CV tends
to be flatter than LOO-CV and so it is harder to minimize numerically (see Hall
et al., 1995b). Because of this extra difficulty, we used the optimization approach
discussed at the end of Chapter 3 in all the examples.
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Figure 6.4: (a) CV surface for LOO-CV; (b) cross sectional view of log(h) for fixed
log(γ) = 5.5; (c) cross sectional view of log(γ) for fixed log(h) = −3.6. The dot indicates
the minimum of the cost function obtained by Coupled Simulated Annealing with simplex
search. These results correspond with the first column of Table 6.3.
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Figure 6.5: (a) CV surface for CC-CV; (b) cross sectional view of log(h) for fixed
log(γ) = 0.82; (c) cross sectional view of log(γ) for fixed log(h) = 0.06. The dot indicates
the minimum of the cost function obtained by Coupled Simulated Annealing with simplex
search. These results correspond with the second column of Table 6.3.

6.4.2 Evolution of the Bandwidth Under Correlation

Consider the same function as in the previous simulation and let n = 400. The
noise error model is taken to be an AR(1) process with varying parameter φ =
−0.95, − 0.9, . . . ,0.9,0.95. For each φ, 100 replications of size n were made to
report the average regularization parameter, bandwidth and average ASE for both
methods. The results are summarized in Table 6.4. The results indicate that the
CC-CV method is indeed capable of finding good tuning parameters in the presence
of correlated errors. The CC-CV method outperforms the classical LOO-CV for
positively correlated errors, i.e. φ > 0. The method is capable of producing good
bandwidths which do not tend to very small values as in the LOO-CV case. In
general, the regularization parameter obtained by LOO-CV is larger than the one
from CC-CV. However, the latter is not theoretically verified and serves only as a
heuristic.
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On the other hand, for negatively correlated errors (φ < 0), both methods perform
equally well. The reason why the effects from correlated errors is more outspoken
for positive φ than for negative φ might be related to the fact that negatively
correlated errors are seemingly hard to differentiate form i.i.d. errors in practice.

Table 6.4: Average of the regularization parameters, bandwidths and average ASE for
50 runs for the AR(1) process with varying parameter φ

LOO-CV CC-CV
φ

γ̂ ĥ av. ASE γ̂ ĥ av. ASE

-0.95 14.75 1.48 0.0017 7.65 1.43 0.0019

-0.9 11.48 1.47 0.0017 14.58 1.18 0.0021

-0.8 7.52 1.39 0.0021 18.12 1.15 0.0031

-0.7 2.89 1.51 0.0024 6.23 1.21 0.0030

-0.6 28.78 1.52 0.0030 5.48 1.62 0.0033

-0.5 42.58 1.71 0.0031 87.85 1.75 0.0048

-0.4 39.15 1.55 0.0052 39.02 1.43 0.0060

-0.3 72.91 1.68 0.0055 19.76 1.54 0.0061

-0.2 98.12 1.75 0.0061 99.56 1.96 0.0069

-0.1 60.56 1.81 0.0069 101.1 1.89 0.0070

0 102.5 1.45 0.0091 158.4 1.89 0.0092

0.1 1251 1.22 0.0138 209.2 1.88 0.0105

0.2 1893 0.98 0.0482 224.6 1.65 0.0160

0.3 1535 0.66 0.11 5.18 1.86 0.0161

0.4 482.3 0.12 0.25 667.5 1.68 0.023

0.5 2598 0.04 0.33 541.8 1.82 0.033

0.6 230.1 0.03 0.36 986.9 1.85 0.036

0.7 9785 0.03 0.41 12.58 1.68 0.052

0.8 612.1 0.03 0.45 1531 1.53 0.069

0.9 448.8 0.02 0.51 145.12 1.35 0.095

0.95 878.4 0.01 0.66 96.5 1.19 0.13

6.4.3 Comparison of Different Bimodal Kernels

Consider a polynomial mean function m(xk) = 300x3
k(1 − xk)3, k = 1, . . . ,400,

where the errors are normally distributed with variance σ2 = 0.1 and correlation
following an AR(1) process, corr(ei,ej) = exp(−150|xi − xj |). The simulation
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shows the difference in regression estimates (Nadaraya-Watson) based on kernels
K̃1, K̃3 and K̃ǫ with ǫ = 0.1, see Figure 6.6a and 6.6b respectively. Due to the
larger DK value of K̃1, the estimate tends to be more wiggly compared to kernel
K̃3. The difference between the regression estimate based on K̃3 and K̃ǫ with
ǫ = 0.1 is very small and almost cannot be seen on Figure 6.6b. For the sake of
comparison between regression estimates based on K̃1, K̃3 and K̃ǫ with ǫ = 0.1,
we show the corresponding asymptotic squared error (ASE) in Figure 6.7 based on
100 simulations with the data generation process described as above. The boxplot
shows that the kernel K̃ǫ with ǫ = 0.1 outperforms the other two.

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

x

Y
,
m̂
n
(x

)

(a)

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

x

Y
,
m̂
n
(x

)

(b)

Figure 6.6: Difference in the regression estimate (Nadaraya-Watson) (a) based on
kernel K̃1 (bold line) and K̃3 (thin line). Due to the larger DK value of K̃1, the estimate
tends to be more wiggly compared to K̃3; (b) based on kernel K̃3 (bold line) and ǫ-
optimal kernel with ǫ = 0.1 (thin line).
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Figure 6.7: Boxplot of the asymptotic squared errors for the regression estimates based
on bimodal kernels K̃1, K̃3 and K̃ǫ with ǫ = 0.1.
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6.4.4 Real life data sets

First, we apply the proposed method to a time series of the Beveridge (1921)
index of wheat prices from the year 1500 to 1869 (Anderson, 1971). These data
are an annual index of prices at which wheat was sold in European markets. The
data used for analysis are the natural logarithms of the Beveridge indices. This
transformation is done to correct for heteroscedasticity in the original series. The
result is shown in Figure 6.8 for LS-SVM with Gaussian kernel. It is clear that
the estimate based on classical leave-one-out CV (assumption of no correlation) is
very rough. The proposed CC-CV method produces a smooth regression fit.
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Figure 6.8: Difference in regression estimates (LS-SVM) for standard leave-one-out CV
(thin line) and the proposed method (bold line).

As a second and third example, we consider the nursing time of the beluga
whale (see Figure 6.9a) and birth rate (see Figure 6.9b) data set (Simonoff, 1996).
Figure 6.9a shows the scatter plot that relates the nursing time (in seconds) of a
newborn beluga whale calf Hudson to the time after birth, where time is measured
is six-hour time periods. Figure 6.9b shows the the U.S. monthly birth rate for
the period from January 1940 through December 1947. As before, the proposed
CC-CV method produces a smooth regression fit.
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Figure 6.9: Typical results of the LS-SVM regression estimates for the (a) nursing time
of the beluga whale and (b) birth rate data set. The thin line represents the estimate
with tuning parameters determined by LOO-CV and the bold line is the estimate based
on the CC-CV tuning parameters.

6.5 Conclusions

In this Chapter, we investigated the possible consequences when the i.i.d.
assumption was violated. We showed that classical model selection procedures
break down in the presence of correlation rather than the nonparametric regression
methods. Since the latter stays consistent when correlation is present in the
data, it is not necessary to modify or add extra constraints to the smoother.
In order to cope with the problem of correlation, we proved that by taking a
kernel K satisfying K(0) = 0, the correlation structure is successfully removed
without requiring any prior knowledge about its structure. Further, we showed
both theoretically and experimentally, that by using bimodal kernels the estimate
will suffer from increased mean squared error. We developed a class of so-called
ǫ-optimal class of bimodal kernels, since an optimal bimodal kernel satisfying
K(0) = 0 cannot be found, which reduces this effect as much as possible. Finally,
we proposed, based on our theoretical justifications, a model selection procedure
(CC-CV) for LS-SVM in order to effectively handle correlation in the data.





Chapter 7

Confidence and Prediction
Intervals

In this Chapter, we discuss the construction of bias-corrected 100(1 − α)%
approximate confidence and prediction intervals (pointwise and uniform) for linear
smoothers, in particular for LS-SVM. We prove the asymptotic normality of
LS-SVM. Also, we discuss a technique called double smoothing to determine
the bias without estimating higher order derivatives. Further, we develop a
nonparametric variance estimator which can be related to other well-known
nonparametric variance estimators. In order to obtain uniform or simultaneous
confidence intervals, we will use two techniques: (i) Bonferroni/Šidák correction
and (ii) volume-of-tube formula. We provide extensions of this formula in higher
dimensions and show that the width of the bands are expanding with increasing
dimensionality. Finally, the results for the regression case will be extended to the
classification case. Contributions are made in Section 7.2 and Section 7.3.

7.1 Introduction

Nowadays, nonparametric function estimators have become very popular data
analytic tools in various fields, see e.g. Tsybakov (2009), Sun et al. (2010) and Ong
et al. (2010). Many of their properties have been rigorously investigated and
are well understood. An important tool accompanying these estimators is the
construction of interval estimates e.g. confidence intervals. In the area of kernel
based regression, a popular tool to construct interval estimates is the bootstrap (see
e.g. Hall, 1992). This technique produces very accurate intervals at the expense
of heavy computational burden.

133
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In the field of neural networks, Chryssoloiuris et al. (1996) and Papadopoulos et al.
(2001) have proposed confidence and prediction intervals. In case of nonlinear
regression Rivals and Personnaz (2000) proposed confidence intervals, based on
least squares estimation, using the linear Taylor expansion of the nonlinear model.
Excellent books discussing confidence intervals for nonlinear regression are written
by Seber and Wild (2003) and Ritz and Streibig (2008).

Early works of Bishop and Qazaz (1997) and Goldberg et al. (1998) address the
construction of interval estimates via a Bayesian approach and a Markov Chain
Monte Carlo method to approximate the posterior noise variance. An extension
of the latter was proposed by Kersting et al. (2007). In general, Bayesian intervals
(which are often called Bayesian credible intervals) do not exactly coincide with
frequentist confidence intervals (as discussed in this Chapter) for two reasons:
first, credible intervals incorporate problem-specific contextual information from
the prior distribution whereas confidence intervals are only based on the data and
second, credible intervals and confidence intervals treat nuisance parameters in
radically different ways (see Bernardo and Smith (2000) and references therein).

In this Chapter, we will address some of the difficulties in constructing these
interval estimates as well as develop a methodology for interval estimation in case
of least squares support vector machines (LS-SVM) for regression which is not
based on bootstrap.

Consider the bivariate data {(X1,Y1), . . . ,(Xn,Yn)} which form an independent and
identically distributed (i.i.d.) sample from a population (X,Y ). Our interest is to
estimate the regression function m(X) = E[Y |X ] (see Chapter 2), with E[Y |X ] =∫
yfY |X(y|x) dy where fY |X is the conditional distribution of the random variables

(X,Y ). We regard the data as being generated from the model

Y = m(X) + σ(X)e, (7.1)

where E[e|X ] = 0, Var[e|X ] = E[e2|X ]−E2[e|X ] = 1 andX and e are independent.
In setting (7.1), it is immediately clear that E[Y |X ] = m(X) and Var[Y |X ] =
σ2(X) > 0. Two possible situations can occur: (i) σ2(X) = σ2 = constant
and (ii) the variance is a function of the random variable X . The first is called
homoscedasticity and the latter heteroscedasticity.

One of the problems we will address is the construction of uniform or simultaneous
confidence intervals for m. Specifically, given α ∈ (0,1) and an estimator m̂n for
m, we want to find a bound gα such that

P

[
sup
x
|m̂n(x) −m(x)| ≤ gα

]
≥ 1− α, (7.2)

at least for large sample sizes.

A major difficulty in finding a solution to (7.2) is the fact that nonparametric
estimators for m are biased (kernel estimators in particular). As a consequence,
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confidence interval procedures must deal with estimator bias to ensure that
the interval is correctly centered and proper coverage is attained (Eubank and
Speckman, 1993). In case of an unbiased estimator, we refer to the books of Rice
(1995) and Draper and Smith (1998) for the construction of confidence intervals.

In order to avoid the bias estimation problem, several authors have studied the
limiting distribution of supx |m̂n(x) − m(x)| for various estimators m̂n of m. A
pioneering article in this field is due to Bickel and Rosenblatt (1973) for kernel
density estimation. Extensions of Bickel and Rosenblatt (1973) to kernel regression
are given in Johnston (1982), Hall and Titterington (1988) and Härdle (1989).

A second way to avoid calculating the bias explicitly is to undersmooth. If we
smooth less than the optimal amount, then the bias will decrease asymptotically
relative to the variance. Hall (1992) showed theoretically that undersmoothing
in combination with a pivotal statistic based on bootstrap results into the lowest
reduction in coverage error of confidence intervals. Unfortunately, a simple and
practical rule for choosing just the right amount of undersmoothing does not seem
to exist.

A third and more practical way is to be satisfied with indicating the level of
variability involved in a nonparametric regression estimator, without attempting
to adjust for the inevitable presence of bias. Bands of this type are easier
to construct but require careful interpretation. Formally, the bands indicate
pointwise variability intervals for E[m̂n(X)|X ]. Based on this idea, often
misconceptions exist between confidence intervals and error bars (Wasserman,
2006).

Finally, if it is possible to obtain a reasonable bias estimate it can be used to
construct confidence intervals for m. The application of this approach can be
found in local polynomial regression (Fan and Gijbels, 1995, 1996) where a bias
estimate can be easily obtained.

Applications of confidence intervals can be found in e.g. the chemical industry,
fault detection/diagnosis and system identification/control. These intervals give
the user the ability to see how well a certain model explains the true underlying
process while taking statistical properties of the estimator into account. In control
applications, these intervals are used for robust design while the applicability of
these intervals in fault detection are based upon reducing the number of false
alarms. For further reading regarding this topic we refer to the books of Isermann
(2005) and Witczak (2007).
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7.2 Estimation of Bias and Variance

7.2.1 LS-SVM Regression and Smoother Matrix

By noticing that LS-SVM is a linear smoother (see Definition 3.1), suitable bias and
variance formulations can be found. On training data, LS-SVM can be written
in matrix form as m̂n = LY , where m̂n = (m̂n(X1), . . . ,m̂n(Xn))T and L is a
smoother matrix whose ith row is L(Xi)

T , thus Lij = lj(Xi). The entries of the
ith row show the weights given to each Yi in forming the estimate m̂n(Xi). We
can state the following theorem.

Theorem 7.1 The LS-SVM estimate (2.16) can be written as

m̂n(x) =

n∑

i=1

li(x)Yi (7.3)

with L(x) = (l1(x), . . . ,ln(x))T the smoother vector and

L(x) =

[
Ω⋆Tx

(
Z−1 − Z−1 Jn

c
Z−1

)
+

1Tn
c
Z−1

]T
, (7.4)

with Ω⋆x = (K(x,X1), . . . ,K(x,Xn))T the kernel vector evaluated at point x, c =

1Tn

(
Ω + In

γ

)−1

1n, Z = Ω + In

γ , Jn a square matrix with all elements equal to 1

and 1n = (1, . . . ,1)T .

Then the estimator, under model (2.16), has conditional mean

E[m̂n(x)|X = x] =

n∑

i=1

li(x)m(xi)

and conditional variance

Var[m̂n(x)|X = x] =

n∑

i=1

li(x)2σ2(xi). (7.5)

PROOF. In matrix form, the resulting LS-SVM model (2.16) on training data is
given by

m̂n = Ωα̂+ 1nb̂. (7.6)

Solving the linear system (2.15) yields

α̂ =

(
Ω +

In
γ

)−1

(Y − 1nb̂)
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and

b̂ =

1Tn

(
Ω +

In
γ

)−1

Y

1Tn

(
Ω +

In
γ

)−1

1n

.

Plugging the expressions for α̂ and b̂ into (7.6) gives

m̂n =

[
Ω

(
Z−1 − Z−1Jn

c
Z−1

)
+
Jn
c
Z−1

]
Y

= LY,

with c = 1Tn

(
Ω + In

γ

)−1

1n, Z = Ω + In

γ , Jn is a square matrix with all elements

equal to 1. The above derivation is valid when all points x are considered as
training data. However, evaluating LS-SVM in an arbitrary point x can be written
as follows

m̂n(x) = Ω⋆Tx α̂+ 1nb̂

=

[
Ω⋆Tx

(
Z−1 − Z−1 Jn

c
Z−1

)
+

1Tn
c
Z−1

]
Y

= L(x)TY,

with Ω⋆x = (K(x,X1), . . . ,K(x,Xn))T the kernel vector evaluated in an arbitrary
point x and 1n = (1, . . . ,1)T .

The conditional mean and conditional variance of the LS-SVM can then be derived
as follows

E[m̂n(x)|X = x] =

n∑

i=1

li(x) E[Yi|X = xi]

=

n∑

i=1

li(x)m(xi)

and

Var[m̂n(x)|X = x] =

n∑

i=1

li(x)2 Var[Yi|X = xi]

=

n∑

i=1

li(x)2σ2(xi).
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�

Remark Note that one should not confuse linear smoothers i.e. smoothers of
the form (7.3) such as NW, local polynomial regression, splines, LS-SVM, wavelets
etc. with linear regression, in which one assumes that the regression function m
is linear.

7.2.2 Bias Estimation

Using Theorem 7.1, the conditional bias can be written as

b(x) = E[m̂n(x)|X = x]−m(x) =

n∑

i=1

li(x)m(xi)−m(x).

It can be shown that, in the one dimensional case, by using a Taylor series
expansion around the fitting point x ∈ R, that for |xi − x| ≤ h the conditional
bias is equal to

E[m̂n(x)|X = x]−m(x)=m′(x)

n∑

i=1

(xi−x)li(x)+
m′′(x)

2

n∑

i=1

(xi−x)2li(x)+o(ϑ(h,γ)),

where ϑ is an unknown function describing the relation between the two tuning
parameters.

Although the above expression gives insight on how the conditional bias behaves
asymptotically, it is quite hard to use this in practice since it involves the
estimation of first and second order derivatives of the unknown m. In fact, this
procedure can be rather complicated in the multivariate case, especially when
estimating derivatives.

Therefore, we opt for a procedure which does not rely completely on the asymptotic
expression, but stays “closer” to the exact expression for the conditional bias. As
a result, this will carry more information about the finite sample bias.

Theorem 7.2 Let L(x) be the smoother vector evaluated in a point x and denote
m̂n = (m̂n(X1), . . . ,m̂n(Xn))T . Then, the estimated conditional bias for LS-SVM
is given by

b̂(x) = b̂ias[m̂n(x)|X = x] = L(x)T m̂n − m̂n(x). (7.7)

PROOF. The exact conditional bias for LS-SVM is given by (in matrix form)

E[m̂n|X ]−m = (L− In)m,
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where m = (m(X1), . . . ,m(Xn))T and m̂n = LY . Observe that the residuals are
given by

ê = Y − m̂n = (In − L)Y.

Taking expectations yields

E[ê|X ] = m− Lm

= − bias[m̂n|X ].

This suggests estimating the conditional bias by smoothing the negative residuals

b̂ias[m̂n|X ] = −Lê

= −L(In − L)Y

= (L− In)m̂n.

Therefore, evaluating the estimated conditional bias at a point x can be written
as

b̂(x) = b̂ias[m̂n(x)|X = x] =

n∑

i=1

li(x)m̂n(xi)− m̂n(x)

= L(x)T m̂n − m̂n(x).

�

Techniques as (7.7) are known as plug-in bias estimates and can be directly
calculated from the LS-SVM estimate (see also Cornillon et al., 2009). However, it
is possible to construct better bias estimates, at the expense of extra calculations,
by using a technique called double smoothing (Härdle et al., 1992) which can be
seen as a generalization of the plug-in based technique. Before explaining the
double smoothing, we need to introduce the following definition.

Definition 7.1 (Jones and Foster, 1993) A kernel K is called a kth-order
kernel if 




∫
K(u) du = 1∫
ujK(u) du = 0, j = 1, . . . ,k − 1∫
ukK(u) du 6= 0.

For example, the Gaussian kernel satisfies this condition for k = 2 but the linear
and polynomial kernels do not. There are several rules for constructing higher-
order kernels, see e.g. Jones and Foster (1993). Let K[k] be a kth-order symmetric
kernel (k even) which is assumed to be differentiable. Then

K[k+2](u) =
k + 1

k
K[k](u) +

1

k
uK ′

[k](u), (7.8)
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is a (k + 2)th-order kernel. Hence, this formula can be used to generate higher-
order kernels in an easy way. Consider for example the standard normal density
function φ which is a second-order kernel. Then a fourth-order kernel can be
obtained via (7.8):

K[4](u) =
3

2
φ(u) +

1

2
uφ′(u)

=
1

2
(3− u2)φ(u)

=
1

2

1√
2π

(3− u2) exp

(
−u

2

2

)
. (7.9)

In the remaining of this Chapter, the Gaussian kernel (second and fourth order)
will be used. Figure 7.1 shows the standard normal density function φ together
with the fourth-order kernel K[4] derived from it. It can be easily verified using
Bochner’s lemma (Bochner, 1959) that K[4] is an admissible positive definite kernel.
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Figure 7.1: Plot of K[2](u) = φ(u) (solid curve) and K[4](u) (dashed curve).

The idea of double smoothing bias estimation is then given by Müller (1985)
and Härdle et al. (1992).

Proposition 7.1 (Double Smoothing) Let L(x) be the smoother vector eval-
uated in a point x, let m̂n,g = (m̂n,g(X1), . . . ,m̂n,g(Xn))T be another LS-SVM
smoother based on the same data set and a kth-order kernel with k > 2 and different
bandwidth g. Then, the double smoothing bias estimate of the conditional bias for
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LS-SVM is defined by

b̂(x) = L(x)T m̂n,g − m̂n,g(x). (7.10)

A criticism on this approach is that it requires selection of another bandwidth
g. Härdle et al. (1992) suggested to take g of larger order than n−1/9 but of
smaller order than n−1/8 in case of a combination of a 2th and 4th-order kernel.
Recently, Beran et al. (2009) proposed an iterative data-driven approach to find
the bandwidth g.

Note that the bias estimate (7.10) can be thought of as an iterated smoothing
algorithm. The pilot smooth m̂n,g (with fourth-order kernel K[4] and bandwidth
g) is resmoothed with kernel K (Gaussian kernel), incorporated in the smoother
matrix L, and bandwidth h. Because smoothing is done twice, it is called double
smoothing. A generalization of double smoothing, called iterative smoothing, is
proposed by Cornillon et al. (2009).

7.2.3 Variance Estimation

Our goal is to derive a fully-automated procedure to estimate the variance
function σ2. Due to the simple decomposition σ2(x) = Var[Y |X = x] =
E[Y 2|X = x]− {E[Y |X = x]}2, one tends to use the following obvious and direct
estimator (Härdle and Tsybakov, 1997)

σ̂2
d(x) = E[Y 2|X = x]− {m̂n(x)}2.

However, there are some drawbacks in using such an estimator. For example,
σ̂2
d(x) is not always non-negative due to estimation error, especially if different

smoothing parameters are used in estimating the regression function and E[Y 2|X ].
Furthermore, such a method can result into a very large bias (see Fan and Yao,
1998). Before stating our proposed estimator, we first need a condition on the
weights of the LS-SVM (see Lemma 7.1). The resulting variance estimator is
given in (7.12) by making use of Theorem 7.3.

Lemma 7.1 The weights {li(x)} of the LS-SVM smoother in an arbitrary point
x are normal i.e.

n∑

i=1

li(x) = 1.
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PROOF. Lemma 7.1 will be proven if we show that L1n = 1n. Using the expression
for the smoother matrix (7.4) for LS-SVM

L1n =

[
Ω

(
Z−1 − Z−1 Jn

c
Z−1

)
+
Jn
c
Z−1

]
1n

= Ω

(
Z−1 − Z−1 Jn

c
Z−1

)
1n +

Jn
c
Z−11n

= ΩZ−1

(
1n −

Jn
c
Z−11n

)
+
Jn
c
Z−11n.

It suffices to show that
Jn
c
Z−11n = 1n to complete the proof.

Jn
c
Z−11n =

1n1Tn

(
Ω + In

γ

)−1

1n

1Tn

(
Ω + In

γ

)−1

1n

= 1n.

We can now formulate the result for any arbitrary point x. Let L(x) be the
smoother vector in an arbitrary point x, then

n∑

i=1

li(x) = L(x)T 1n

=

[
Ω⋆Tx

(
Z−1 − Z−1 Jn

c
Z−1

)
+

1Tn
c
Z−1

]
1n.

Similar to the derivation given above, we have to show that
1Tn
c
Z−11n = 1 to

conclude the proof.

1Tn
c
Z−11n =

1Tn

(
Ω + In

γ

)−1

1n

1Tn

(
Ω + In

γ

)−1

1n

= 1.

�

Theorem 7.3 (Variance Estimation) Assume model (7.1), let L denote the
smoother matrix corresponding to the initial smooth. Let S denote the smoother
matrix corresponding to a natural way of estimating σ2(·) based on smoothing the
squared residuals. Denote by S(x) the smoother vector in an arbitrary point x.



ESTIMATION OF BIAS AND VARIANCE 143

Assume that S preserves constant vectors i.e. S1n = 1n, then an estimator for the
variance function σ2(·), evaluated in an arbitrary point x, is given by

σ̂2(x) =
S(x)T diag(êêT )

1 + S(x)T diag(LLT − L− LT )
, (7.11)

where ê denote the residuals and diag(A) is the column vector containing the
diagonal entries of the square matrix A.

PROOF. Let L be the smoother matrix corresponding to an initial smooth of the
data and set

ê = (In − L)Y

the vector of residuals. Then, a natural way of estimating the variance function
σ2(·) is to smooth the squared residuals to obtain S diag(êêT ). It is also reasonable
that the estimator should be unbiased when the errors are homoscedastic. Thus,
under homoscedasticity, set Σ′ = E[(Y − m)2|X ] and B1 = E[LY |X ] − m, we
obtain

E[S diag(êêT )|X ] = SE
[
diag

{
(In − L)Y Y T (In − L)T

}
|X
]

= S
[
diag

{
(In − L) E(Y Y T |X)(In − L)T

}]

= S
[
diag

{
(In − L)(mmT + Σ′)(In − L)T

}]

= S
[
diag

{
(In − L)mmT (In−L)T + (In − L)Σ′(In − L)T

}]

= S
[
diag

(
B1B

T
1

)
+ σ2 diag

(
(In − L)(In − L)T

)]

= S
[
diag

(
B1B

T
1

)
+ σ2(1n + ∆)

]
,

where ∆ = diag
(
LLT − L− LT

)
. When m̂n is conditionally unbiased, i.e. B1 = 0,

E[S diag(êêT )|X ] = σ2(1n + S∆). Using Lemma 7.1, motivates the following
variance estimator at an arbitrary point x

σ̂2(x) =
S(x)T diag(êêT )

1 + S(x)T diag (LLT − L− LT )
, (7.12)

where S(x) is the smoother matrix, based on smoothing the squared residuals, in
an arbitrary point x. �

For other nonparametric estimates of σ̂2(x) see e.g. Müller and Stadtmüller
(1987), Neumann (1994), Stadtmüller and Tsybakov (1995), Müller et al. (2003)
and Kohler (2006).

The class of variance function estimators (7.11) can be viewed as a generalization of
those commonly used in parametric modeling (see e.g. Rice, 1995). This can easily
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be seen as follows. Consider a linear model in the heteroscedastic case, then one
should replace the smoother matrix L by the hat matrix Q = X ′(X ′TX ′)−1X ′T

where X ′ denotes the n× p design matrix with p the number of parameters to be
estimated in the model. Since Q is symmetric and idempotent, (7.11) reduces to

σ̂2(x) =
S(x)T diag(êêT )

1− S(x)T diag (Q)
.

On the other hand, considering a homoscedastic nonparametric regression model
(and by taking a smoother resulting in a symmetric smoother matrix L), then
averaging the squared residuals, by taking S = n−11n1Tn , will result in the following
estimator of the error variance

σ̂2 =
Y T (L− In)T (L − In)Y

n+ tr(LLT − 2L)
,

which includes variance estimators for nonparametric regression considered by
e.g. Buckley et al. (1988). For the homoscedastic linear regression model, the
estimator reduces to well-known estimator of the error variance

σ̂2 =
Y T (In −Q)Y

n− p .

All the above estimators of error variance are model based, i.e. either based on a
parametric or nonparametric model. For the homoscedastic case, model-free error
variance estimators are proposed by Rice (1984), Gasser et al. (1986), Hall and
Marron (1990) and Pelckmans et al. (2005).

Next we approximate the conditional variance of LS-SVM (7.5). Given the
estimator for the error variance function (7.11), then an estimate of the conditional
variance of LS-SVM with heteroscedastic errors is given by

V̂ (x) = V̂ar[m̂n(x)|X = x] = L(x)T Σ̂2L(x), (7.13)

with Σ̂2 = diag(σ̂2(X1), . . . ,σ̂2(Xn)).

7.3 Confidence and Prediction Intervals: Regression

7.3.1 Pointwise Confidence Intervals

The estimated bias (7.10) and variance (7.13) can be used to construct pointwise
Confidence Intervals (CIs). In the next theorem we show the asymptotic normality
of LS-SVM by using a central limit theorem for sums of independent random
variables, see Gnedenko and Kolmogorov (1968), Serfling (1980), Shiryaev (1996)
and Petrov (2004). The following derivation is not only valid for LS-SVM, but for
all linear smoothers.
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Theorem 7.4 (Asymptotic Normality) Let ξ1, . . . ,ξn, with ξk = lk(x)Yk, be
a sequence of independent random variables with finite second moments. Let
Var[ξk|X = xk] > 0 and m̂n(x) = ξ1 + . . . + ξn. Let the error variance function
σ2(xk) > 0 for all k. Denote the conditional bias and variance of m̂n(x) by b(x)
and V (x) respectively. Further, assume that P[|Y | ≤M ] = 1 with M <∞. Then,
for

max
1≤k≤n

|lk(x)|
‖l(x)‖ → 0, n→∞,

it follows that
m̂n(x)−m(x) − b(x)√

V (x)

d−→N (0,1).

PROOF. First, let µk = E[ξk|X = xk] and set D2
n =

∑n
k=1 Var[ξk|X = xk] =∑n

k=1 l
2
k(x)σ2(xk). Since we have a triangular array of random variables, the

theorem will be proven if the Lindeberg condition is satisfied: for every ε > 0

1

D2
n

n∑

k=1

∫

{z:|z−µk|≥εDn}
(z − µk)2 dFk(z)→ 0, n→∞.

First, notice that for any k the following two statements are valid

|ξk| = |lk(x)Yk| = |lk(x)||Y | ≤M |lk(x)|

and therefore

|ξk − µk| ≤ |ξk|+ |µk| ≤ |ξk|+ E[|ξk|X = x] ≤ 2M |lk(x)|.

Second, by Chebyshev’s inequality

∫

{z:|z−µk|≥εDn}
(z − µk)2 dFk(z) = E

[
(ξk − µk)2I(|ξk−µk|≥εDn)

]

≤ 4M2|lk(x)|2 P[(|ξk − µk| ≥ εDn)]

≤ 4M2|lk(x)|2 σ
2(xk)l2k(x)

ε2D2
n

,
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Consequently,

1

D2
n

n∑

k=1

∫

{z:|z−µk|≥εDn}
(z − µk)2 dFk(z) ≤ 1

D2
n

n∑

k=1

4M2|lk(x)|2 σ
2(xk)l2k(x)

ε2D2
n

≤ 4M2

ε2D4
n

max
1≤k≤n

|lk(x)|2
n∑

k=1

σ2(xk)l2k(x)

≤ 4M2

ε2 min
1≤k≤n

σ2(xk)
max

1≤k≤n

|lk(x)|2
‖l(x)‖2

Hence, the Lindeberg condition

1

D2
n

n∑

k=1

∫

{z:|z−µk|≥εDn}
(z − µk)2 dFk(z)→ 0, n→∞,

is satisfied and therefore, the theorem is verified. �

Conditions of the form

max
1≤k≤n

|lk(x)|
‖l(x)‖ , (7.14)

have been studied in Shao (2003) and Bhansali et al. (2006). They show that
condition (7.14) goes to zero, for n→∞, if the largest eigenvalue of the smoother
matrix L is dominated by all other eigenvalues together. In case of linear smoothers
with a simpler smoother matrix, e.g. Priestley-Chao and NW, condition 7.14
is satisfied for nhd → ∞ as n → ∞ and f(x) > 0. Figure 7.2 illustrates
condition (7.14) as a function of the number of data points for LS-SVM. This
empirically confirms that when n is large, condition (7.14) will become small.

With the estimated bias and variance, an approximate 100(1− α)% pointwise CI
for m̂n(x) is

m̂n(x)− b̂(x)± z1−α/2

√
V̂ (x), (7.15)

where z1−α/2 denotes the (1−α/2)th quantile of the standard Gaussian distribution.
This approximate CI is valid if

V̂ (x)

V (x)

P−→ 1 and
b̂(x)

b(x)

P−→ 1.

This in turn requires a different bandwidth used in assessing the bias and
variance (Fan and Gijbels, 1996), as we have done in Section 7.2.
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Figure 7.2: Condition (7.14) as a function of the number of data points n for LS-SVM.

The previous approach can also be easily applied for FS-LSSVM (see Chapter 4).
By replacing

L = Φ̂e

(
Φ̂Te Φ̂e +

Im+1

γ

)−1

Φ̂Te ,

i.e. the smoother matrix of FS-LSSVM, all the above derivations remain valid.

7.3.2 Simultaneous Confidence Intervals

The confidence intervals presented so far in this Section are pointwise. However,
in many cases one is often more interested in simultaneous or uniform CIs. With
two simple examples we can state the difference between both types of CIs.

Example 7.1 By looking at two pointwise confidence intervals, constructed
by (7.15) for the Fossil data set (Ruppert et al., 2003), in Figure 7.3 we can
make the following two statements separately

• (0.70743,0.70745) is an approximate 95% pointwise confidence interval for
m(105);

• (0.70741,0.70744) is an approximate 95% pointwise confidence interval for
m(120).

However, as is well known in multiple comparison theory, it is wrong to state that
m(105) is contained in (0.70743,0.70745) and simultaneously m(120) is contained
in (0.70741,0.70744) with 95% confidence.
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Figure 7.3: Fossil data with two pointwise 95% confidence intervals.

Example 7.2 Suppose our aim is to estimate some function m. For example,
m might be the proportion of people of a particular age who support a given
candidate in an election. If the data is measured at the precision of a single year,
we can construct a “pointwise” 95% confidence interval for each age. Each of
these confidence intervals covers the corresponding true value m(x) with a coverage
probability of 0.95. The “simultaneous” coverage probability of a collection of
confidence intervals is the probability that all of them cover their corresponding
true values simultaneously.

From these two examples, it is clear that it is not correct to connect the pointwise
confidence intervals to produce a band or interval around the estimated function.
Also, simultaneous confidence bands will be wider than pointwise confidence bands.
In order to make these statements simultaneously we have to modify the interval
to obtain simultaneous confidence intervals. Mathematically speaking, we are
searching for the width of the bands c, given a confidence level α ∈ (0,1), such
that

inf
m∈Fn,p

P

{
m̂n(x) − c

√
V̂ (x) ≤ m(x) ≤ m̂n(x) + c

√
V̂ (x),∀x ∈ X

}
= 1− α,

for some suitable class of smooth functions Fn,p (see Chapter 2) with m̂n an
estimate of the true function m and X ⊆ Rd.

Three major groups exist to determine a suitable width of the bands: (i) Monte
Carlo simulations, (ii) Bonferroni/Šidák corrections (Šidák, 1967) or other types,
e.g. the length heuristic (Efron, 1997) and (iii) volume-of-tube formula (Weyl,
1939; Rice, 1939; Knafl et al., 1985; Sun and Loader, 1994; Loader, 1999). The
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latter was originally formulated as a geometric problem of primary importance by
Hotelling at the Mathemetics Club at Princeton in the late 1930s.

Although Monte Carlo based modifications are accurate (even when the number of
data points n is relatively small), they are computationally expensive. Therefore,
we will not discuss this type of methods in this Chapter. Interested readers can
browse through Ruppert et al. (2003) and reference therein.

Šidák and Bonferroni corrections are one of the most popular since they are easy
to calculate and produce quite acceptable results. In what follows, the rationale
behind the Šidák correction (generalization of Bonferroni) is elucidated. This
correction is derived by assuming that individual tests are independent. Let the
significance threshold for each test be β (significance level op pointwise confidence
interval), then the probability that at least one of the tests is significant under
this threshold is (1 - the probability that none of them are significant). Since we
are assuming that they are independent, the probability that all of them are not
significant is the product of the probabilities that each of them is not significant, or
1− (1− β)n. Now we want this probability to be equal to α, the significance level
for the entire series of tests (or simultaneous confidence interval). By solving for
β, we get β = 1− (1−α)1/n. To obtain an approximate 100(1−α)% simultaneous
confidence intervals, based on a Šidák correction, (7.15) has to be modified into

m̂n(x)− b̂(x)± z1−β/2

√
V̂ (x)

The last method analytically approximates the modification of the interval,
i.e. the width c of the interval or bands. Sun (1993) studied the tail
probabilities of suprema of Gaussian random processes. This turns out to be
very useful in constructing simultaneous confidence bands. Proposition (7.2) and
Proposition (7.3) summarize the results of Sun (1993) and Sun and Loader (1994)
in the two and d dimensional case respectively when the error variance σ2 is
not known a priori and has to be estimated. It is important to note that the
justification for the tube formula assumes the errors have a normal distribution
(this can be relaxed to spherically symmetric distributions, see Loader and Sun
(1997)), but does not require letting n→∞. As a consequence, the tube formula
does not require embedding finite sample problems in a possibly artificial sequence
of problems, and the formula can be expected to work well at small sample sizes.

Proposition 7.2 (two-dimensional) Suppose X is a rectangle in R2. Let κ0 be
the area of the continuous manifold M = {T (x) = L(x)/‖L(x)‖2 : x ∈ X}, let ζ0

be the volume of the boundary of M denoted by ∂M. Let Tj(x) = ∂T (x)/∂xj , j =
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1 . . . ,d and let c be the width of the bands. Then,

α =
κ0√
π3

Γ
(

(ν+1)
2

)

Γ
(
ν
2

) c√
ν

(
1 +

c2

ν

)− ν+1
2

+
ζ0

2π

(
1 +

c2

ν

)− ν
2

+ P [|tν | > c]

+ o

(
exp

(
−c

2

2

))
,

(7.16)

with κ0 =
∫

X det1/2(ATA) dx, ζ0 =
∫
∂X det1/2(AT⋆ A⋆) dx where A = (T1(x), . . . ,Td(x))

and A⋆ = (T1(x), . . . ,Td−1(x)). tν is a t-distributed random variable with ν =
n− tr(L), smoother matrix L ∈ R

n×n, degrees of freedom.

Proposition 7.3 (d-dimensional) Suppose X is a rectangle in Rd and let c be
the width of the bands. Then,

α = κ0

Γ
(

(ν+1)
2

)

π
d+1

2

P

[
Fd+1,ν >

c2

d+ 1

]
+
ζ0

2

Γ
(
d
2

)

π
d
2

P

[
Fd,ν >

c2

d

]

+
κ2 + ζ1 + z0

2π

Γ
(

(ν−1)
2

)

π
d−1

2

P

[
Fd−1,ν >

c2

d− 1

]

+O

(
cd−4 exp

(
−c

2

2

))
,

(7.17)

where κ2, ζ1 and z0 are certain geometric constants. Fq,ν is an F -distributed
random variable with q and ν = η2

1/η2 degrees of freedom (Cleveland and Devlin,

1988) where η1 = tr
[
(In − LT )(In − L)

]
and η2 = tr

[(
(In − LT )(In − L)

)2
]
.

Equations (7.16) and (7.17) contain quantities which are often rather difficult
to compute in practice. Therefore, the following approximations can be made:
(i) according to Loader (1999), κ0 = π

2 (tr(L)− 1) and (ii) it is shown in the
simulations of Sun and Loader (1994) that the third term is negligible in (7.17).
In this thesis, we neglected the third term and calculated the other quantities
by means of quasi Monte Carlo integration based on lattice rules (Nuyens, 2007).
More details on the computation of these constants can be found in Sun and Loader
(1994) and Ruppert et al. (2003). Finally, to compute the value c, the width of
the bands, any method for solving nonlinear equations can be used.

Remark Fortunately, in the one dimensional case the volume-of-formula can
be greatly simplified. The width of the bands is approximately given by (Ruppert
et al., 2003; Wasserman, 2006)

c =

√
2 log

( κ0

απ

)
(7.18)
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where

κ0 =

∫ √
‖L(x)‖2‖L′(x)‖2 − (L(x)TL′(x))2

‖L(x)‖2
dx,

where L′(x) = (d/dx)L(x), with the differentiation applied elementwise.

Remark We would like to emphasize that the volume-of-tube formula was derived
for the homoscedastic case. In the linear regression context, some modifications
of the volume-of-tube formula have been developed to adjust for cases with
heteroscedastic errors (Faraway and Sun, 1995) and correlated errors (Sun et al.,
1999), whereas (Sun et al., 2000) considered generalized linear models. Extensions
to handling of correlated and heteroscedastic data in a nonparametric framework
is still an open problem.

To illustrate the effect of increasing dimensionality on the c value in (7.17), we
conduct the following Monte Carlo study. For increasing dimensionality, we
calculate the c value for a Gaussian density function. 1000 data points were
generated uniformly on [−3,3]d. Figure 7.4 shows the result of the calculated c
value averaged over 20 times for each dimension. It can be seen that the width
of the bands is increasing for increasing dimensionality. Theoretical derivations
confirming this simulation can be found in (Hastie et al., 2009; Vapnik, 1999).
Simply put, estimating a regression function in a high-dimensional space is
especially difficult because it is not possible to densely pack the space with finitely
many sample points (Györfi et al., 2002), see also the curse of dimensionality
in Chapter 2. The uncertainty of the estimate is becoming larger for increasing
dimensionality, hence the confidence bands are wider.

For the Fossil data set (n = 106), set α = 0.05, then z1−α/2 = 1.96 and

z1−β/2 = 3.49. The simultaneous intervals, obtained by using a Šidák correction,
are about 1.78 (= 3.49/1.96) times wider than the pointwise intervals. Monte
Carlo simulations and the volume-of-tube formula (7.18) resulted in a width c
of 3.2 and 3.13 respectively. This is the reason why Šidák (and also Bonferroni)
corrections are often said to produce conservative confidence intervals.

Finally, 100(1− α)% bias-corrected simultaneous CI are of the form

m̂n(x)− b̂(x)± c
√
V̂ (x). (7.19)

Unfortunately, Sun and Loader (1994) and Loader (1999) showed that CIs of
form (7.19) cannot work well. Suppose m̂n is a reasonably efficient estimate of m.

Then, subtracting the bias estimate b̂ will generally increase variance more than
it reduces bias, even if the bias is estimated by the principle of double smoothing.
Sun and Loader (1994) reported that this correction fails badly, sometimes being
worse than no correction (low coverage probability). Similar results were obtained
by Härdle and Marron (1991). Therefore, we use the proposition of Sun and
Loader (1994) to attain the required coverage probability. Let Fn,p,δ be the class
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Figure 7.4: Result of the calculated c value averaged over 20 times for each dimension
(for a Gaussian density function) with corresponding standard error.

of smooth functions and m ∈ Fn,p,δ where

Fn,p,δ =

{
m : sup

x∈X

∣∣∣∣∣
b(x)√
V (x)

∣∣∣∣∣ ≤ δ
}
,

then bands of the form
(
m̂n(x)− (δ + c)

√
V̂ (x), m̂n(x) + (δ + c)

√
V̂ (x)

)
(7.20)

are a confidence band for m(x), where the bias b(x) can be estimated using (7.10).
Note that the confidence interval (7.20) expands the bands in the presence of bias
rather than recentering the bands to allow for bias (7.19). Sun and Loader (1994)
showed that, if c is chosen according (7.17), bands of the form (7.20) lead to a
lower bound for the true coverage probability of the form

inf
m∈Fn,p,δ

P

{
|m̂n(x) −m(x)| ≤ c

√
V̂ (x), ∀x ∈ X

}
= 1− α−O(δ)

as δ → 0. The error term can be improved to O(δ2) if one considers classes of
functions with bounded derivatives.

Recently, Krivobokova et al. (2010) have applied the volume-of-tube formula to
penalized spline estimators. They showed that the mixed-model formulation of
penalized splines can help to obtain, at least approximately, confidence bands with
either Bayesian or frequentist properties. Further, they showed that for confidence
bands, based on the conditional mixed model, the critical value for the width of
the bands automatically accounts for the bias.
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We conclude by summarizing the construction of simultaneous confidence intervals
given in Algorithm 7.

Algorithm 7 Construction of Simultaneous Confidence Bands

1: Given the data {(X1,Y1), . . . ,(Xn,Yn)}, calculate m̂n using (2.16)
2: Calculate residuals êk = Yk − m̂n(Xk), k = 1, . . . ,n
3: Calculate the variance of the LS-SVM by using (7.11) and (7.13)
4: Calculate the bias using double smoothing (7.10)
5: Set significance level e.g. α = 0.05
6: Calculate the width c of the bands from (7.17)
7: Use (7.20) to obtain simultaneous confidence bands.

7.3.3 Pointwise and Simultaneous Prediction Intervals

In some cases one may also be interested in the uncertainty on the prediction
for a new observation. This type of requirement is fulfilled by the construction
of a prediction interval. Assume that the new observation Y ⋆ at a point x⋆ is
independent of the estimation data, then

Var[Y ⋆ − m̂n(x⋆)|X = x⋆] = Var[Y ⋆|X = x⋆] + Var[m̂n(x⋆)|X = x⋆]

= σ2(x⋆) +
n∑

i=1

li(x
⋆)2σ2(xi).

Thus, an approximate pointwise 100(1−α)% prediction interval in a new point x⋆

is constructed by

m̂n(x⋆)− b̂(x⋆)± z1−α/2

√
σ̂2(x⋆) + V̂ (x⋆). (7.21)

An approximate simultaneous 100(1− α)% prediction interval in a new point x⋆

is given by
(
m̂n(x⋆)−(δ+c)

√
σ̂2(x⋆)+V̂ (x⋆), m̂n(x⋆)+(δ+c)

√
σ̂2(x⋆)+V̂ (x⋆)

)
. (7.22)

7.4 Bootstrap Based Confidence and Prediction In-
tervals

In this Section we will briefly review the current state-of-the-art regarding
bootstrap based confidence and prediction intervals, which are used for comparison
in the experimental section.



154 CONFIDENCE AND PREDICTION INTERVALS

7.4.1 Bootstrap Based on Residuals

Härdle (1989) showed that the standard bootstrap (Efron, 1979) based on residuals
does not work for nonparametric heteroscedastic regression models. A technique
used to overcome this difficulty is the wild or external bootstrap, developed in Liu
(1988) following suggestions in Wu (1986) and Beran (1986). Further theoretical
refinements are found in Mammen (1993). Algorithm 8 and Algorithm 9 have to
be applied when the errors are homoscedastic and heteroscedastic respectively.

Algorithm 8 Bootstrap based on residuals (homoscedastic case)

1: Given the data {(X1,Y1), . . . ,(Xn,Yn)}, calculate m̂n using (2.16)
2: Calculate residuals êk = Yk − m̂n(Xk)
3: Re-center residuals ẽk = êk − n−1

∑n
j=1 êj

4: Generate bootstrap samples {ẽ⋆k}nk=1 by sampling with replacement from
{ẽk}nk=1

5: Generate {Y ⋆k }nk=1 from Y ⋆k = m̂n(Xk) + ẽ⋆k
6: Calculate m̂⋆

n from {(X1,Y
⋆

1 ), . . . ,(Xn,Y
⋆
n )}

7: Repeat steps (4)-(6) B times

Algorithm 9 Bootstrap based on residuals (heteroscedastic case)

1: Given the data {(X1,Y1), . . . ,(Xn,Yn)}, calculate m̂n using (2.16)
2: Calculate residuals êk = Yk − m̂n(Xk)
3: Re-center residuals ẽk = êk − n−1

∑n
j=1 êj

4: Generate bootstrap data ẽ⋆k = ẽkηk where ηk are Rademacher variables, defined
as

ηk =

{
1, with probability 1/2;
−1, with probability 1/2.

5: Generate {Y ⋆k }nk=1 from Y ⋆k = m̂n(Xk) + ẽ⋆k
6: Calculate m̂⋆

n from {(X1,Y
⋆

1 ), . . . ,(Xn,Y
⋆
n )}

7: Repeat steps (4)-(6) B times

Other possibilities for the two-point distribution in Algorithm 9 of the ηk also
exist, see e.g. Liu (1988). The Rademacher distribution was chosen because it was
empirically shown in Davidson et al. (2007) that this distribution came out as best
among six alternatives.

7.4.2 Construction of Bootstrap Confidence and Prediction
Intervals

The construction of bootstrap confidence and prediction intervals for nonparamet-
ric function estimation consists of two parts, i.e. the construction of a confidence
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or a prediction interval based on a pivotal method for the expected value of
the estimator and bias correction through undersmoothing. Then, a confidence
interval is constructed by using the asymptotic distribution of a pivotal statistic.
The latter can be obtained by bootstrap. Before illustrating the construction of
intervals based on bootstrap, we give a formal definition of a key quantity used in
the bootstrap approach.

Definition 7.2 (Pivotal quantity) Let X = (X1, . . . ,Xn) be random variables
with unknown joint distribution F and denote by T (F ) a real-valued parameter
of interest (e.g. the regression function). A random variable T (X,T (F )) is a
pivotal quantity (or pivot) if the distribution of T (X,T (F )) is independent of all
parameters.

Hall (1992) suggested the following approach: estimate the distribution of the
pivot

T (m(x),m̂n(x)) =
m̂n(x) −m(x)√

V̂ (x)

by the bootstrap. Depending on homoscedastic or heteroscedastic errors
Algorithm 8 or Algorithm 9 should be used to estimate this distribution. Now,
the distribution of the pivotal statistic T (m(x),m̂n(x)) is approximated by the
corresponding distribution of the bootstrapped statistic

V(m̂⋆
n(x),m̂n,g(x)) =

m̂⋆
n(x) − m̂n,g(x)√

V̂ (x)
,

where m̂n,g denotes the undersmoother with bandwidth g and ⋆ denote bootstrap
counterparts. Practically, we choose bandwidth g = h/3. Hence, a 100(1 − α)%
pointwise confidence interval is given by

(
Ψα/2,Ψ1−α/2

)
,

with

Ψα/2 = m̂n(x) +Qα/2

√
V̂ (x)

and

Ψ1−α/2 = m̂n(x) +Q1−α/2

√
V̂ (x).

Qα denotes the αth quantile of the bootstrap distribution of the pivotal statistic.
A 100(1−α)% simultaneous confidence interval can be constructed by applying a
Šidák correction or using the length heuristic (Efron, 1997). Similarly, 100(1−α)%
pointwise and simultaneous prediction intervals are obtained.

A question which remains unanswered is how to determine B, the number of
bootstrap replications in Algorithm 8 and Algorithm 9. The construction of
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confidence (and prediction) intervals demands accurate information of the low and
high quantiles of the limit distribution. Therefore, enough resamplings are needed
in order for bootstrap to accurately reproduce this distribution. Typically, B is
chosen in the range of 1.000-2.000 for pointwise intervals and more than 10.000 for
simultaneous intervals.

7.5 Simulations: The Regression Case

In all simulations, the Gaussian kernel was used and α = 0.05. The tuning
parameters (regularization parameter γ and kernel bandwidth h) of the LS-SVM
were obtained via leave-one-out cross-validation.

7.5.1 Empirical Coverage Probability

To assess the performance of the proposed simultaneous CI in practice (for the
homoscedastic case), we conducted a Monte Carlo experiment. Data was generated
from model (7.1) using normal errors and for the regression curve

m(x) = e−32(x−0.5)2

.

Sample sizes n = 50,100,200,400,600 and 800 were used and σ(x) = σ was chosen
to be 0.05 and 0.1. We investigated simultaneous confidence intervals (7.20) for
α = 0.05. For this experiment we generated 5000 replicate samples for each setting
(using a different seed in each setting). We recorded the proportion of times all
the m(xk), k = 1, . . . ,n, fell inside the bands. In addition, empirical coverage
probabilities were computed for the proposed simultaneous intervals without bias
correction, pointwise bias-corrected intervals (7.15), Šidák confidence bands with
and without bias correction, i.e.

m̂n(x)− b̂(x)± z1−β/2

√
V̂ (x)

and

m̂n(x) ± z1−β/2

√
V̂ (x)

respectively where β = 1 − (1 − α)1/n. Figure 7.5 shows the empirical coverage
probabilities for the different methods. For illustration purposes, we did not
include the pointwise bias-corrected intervals since their coverage probability is too
low (around 0.25), which is expected. we observe that the proposed simultaneous
CIs attain the coverage probability close to the nominal value, i.e. 0.95, for
both noise levels. We find that, if no bias correction is included in the proposed
simultaneous CIs, the coverage probability is on average 5% to 10% lower than the
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nominal value. These results confirm that a suitable bias correction is absolutely
necessary to attain proper coverage and that centering the bands to allow for
bias is not a good strategy. It is also clear that the Šidák confidence bands
produce conservative bands, i.e. a larger coverage probability is attained for all
the simulated sample sizes, even if no bias correction is performed for the low noise
level. This is because the Šidák correction gives a very crude upperbound of the
width of the intervals and the noise level is still small. However, increasing the
noise level (see Figure 7.5b) also leads to undercoverage for these type of bands.
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Figure 7.5: Empirical coverage probabilities for the proposed simultaneous CIs
with bias correction (◦), proposed simultaneous CIs without bias correction (2),
Šidák confidence bands with bias correction (+), Šidák confidence bands without bias
correction (⋄).

7.5.2 Homoscedastic Examples

In the first example, data were generated from model (7.1) using normal errors
and following the regression curve

m(x) = e−32(x−0.5)2

.

The sample size is taken to be n = 200 and σ2(x) = σ2 = 0.01. Pointwise (7.15)
and simultaneous 95% confidence intervals (7.20) are shown in Figure 7.6. The
line in the middle represents the LS-SVM model. For illustration purposes the
95% pointwise confidence intervals are connected.

In a second example, we generate data from model (7.1) following the regression
curve (normal errors with σ2(x) = σ2 = 0.01)

m(x) = sin2(2πx).
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Figure 7.6: Pointwise and simultaneous 95% confidence intervals. The outer (inner)
region corresponds to simultaneous (pointwise) confidence intervals. The full line (in the
middle) is the estimated LS-SVM model. For illustration purposes the 95% pointwise
confidence intervals are connected.

Figure 7.7 illustrates the 95% simultaneous confidence (7.20) and prediction
intervals (7.22). The outer (inner) region corresponds to the prediction
(confidence) interval.
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Figure 7.7: Simultaneous 95% confidence and prediction intervals. The outer (inner)
region corresponds to simultaneous prediction (confidence) intervals. The full line (in
the middle) is the estimated LS-SVM model.
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In a third example, we compare the proposed simultaneous confidence inter-
vals (7.20) with the bootstrap method on the Fossil data set. The number of
bootstrap replications was B = 15.000. From Figure 7.8 it is clear that both
methods produce similar confidence intervals. it is shown that our proposed CIs
produce intervals which are close the ones obtained by bootstrap.
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Figure 7.8: Simultaneous 95% confidence intervals for the Fossil data set. The dashed
lines correspond to the proposed simultaneous confidence intervals and the full lines are
the bootstrap confidence intervals. The full line (in the middle) is the estimated LS-SVM
model.

7.5.3 Heteroscedastic Examples and Error Variance Estimation

The data is generated according to the following model (with standard normal
errors)

Yk = sin(xk) +
√

0.05x2
k + 0.01 ek, k = 1, . . . ,200,

where the xk are equally spaced over the interval [−5,5] and e ∼ N (0,1).
Figure 7.9a and Figure 7.9b show 95% pointwise (7.21) and simultaneous (7.22)
prediction intervals for this model and the estimated (and true) variance function
respectively. The variance function was obtained by Theorem 7.3. The latter
clearly demonstrates the capability of the proposed methodology for variance
estimation.

As a last example, consider the Motorcycle data set. We compare the proposed
simultaneous confidence intervals (7.20) with the wild bootstrap method. The
number of bootstrap replications was B = 15.000. The result is given in
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Figure 7.9: (a) Pointwise and simultaneous 95% prediction intervals for heteroscedastic
errors. The outer (inner) region corresponds to simultaneous (pointwise) prediction
intervals. The full line (in the middle) is the estimated LS-SVM model. For illustration
purposes the 95% pointwise prediction intervals are connected; (b) Variance function
estimation. The full line represents the real variance function and the dashed line is the
estimated variance function obtained by Theorem 7.3.

Figure 7.10a. As before, both intervals are very close to each other. Figure 7.10b
shows the estimated variance function σ̂2(·) of this data set.
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Figure 7.10: (a) Simultaneous 95% confidence intervals for the Motorcycle data set.
The dashed lines correspond to the proposed simultaneous confidence intervals and the
full lines are the bootstrap confidence intervals. The full line (in the middle) is the
estimated LS-SVM model; (b) Variance function estimation of the Motorcycle data set
obtained by Theorem 7.3.
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7.6 Confidence Intervals: Classification

7.6.1 Classification vs. Regression

Given a training set defined as Dn = {(Xk,Yk) : Xk ∈ R
d, Yk ∈ {−1, + 1}; k =

1, . . . ,n}, where Xk is the kth input pattern and Yk is the kth output pattern. In
the primal weight space, LS-SVM for classification is formulated as (Suykens and
Vandewalle, 1999)

min
w,b,e
Jc(w,e) = 1

2w
Tw + γ

2

n∑

i=1

e2
i

s.t. Yi[w
Tϕ(Xi) + b] = 1− ei, i = 1, . . . ,n,

(7.23)

However, by using the substitution ei = Yiei in (7.23), which does not change
the objective function since Y 2

i = 1, LS-SVM formulations for classification and
regression are equivalent. Therefore, we can also apply all of the above techniques
for constructing CIs in the classification case, by considering the classification
problem as a regression problem.

7.6.2 Illustration and Interpretation of the Method

We will graphically illustrate the proposed method for the construction of CIs on
the Ripley data set. First, an LS-SVM regression model from the Ripley data
set is estimated according to (2.16). From the obtained model, confidence bands
can be calculated using (7.20) and based on the two dimensional volume-of-tube
formula (7.16). Figure 7.11 shows the obtained results in three dimensions and
its two dimensional projection respectively. In the latter the two outer bands
represent 95% confidence intervals for the classifier. An interpretation of this result
can be given as follows. For every point within or without the two outer bands,
the classifier casts doubt with significance level α or is confident with significance
level α on its label respectively. However, in higher dimensions, the previous
figures cannot be made anymore. Therefore, we can visualize the classifier via its
latent variables, i.e. the output of the LS-SVM before taking the sign function,
and show the corresponding confidence intervals, see Figure 7.12. The middle
full line represents the sorted latent variables of the classifier. The dots above
and below the full line are the 95% confidence intervals of the classifier. These
dots correspond to the confidence bands in Figure 7.11. The dashed line at zero
represents the decision boundary. The rectangle visualizes the critical area for the
latent variables. Hence, for all points with latent variables between the two big
dots, the classifier, i.e. |latent variable| ≤ 0.51, casts doubt on the corresponding
label with significance level of 5%. Such a visualization can always be made and
can assist the user in assessing the quality of the classifier.
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Figure 7.11: Ripley data set (a) Regression on the Ripley data set with corresponding
95% confidence intervals obtained with (7.20) where X1, X2 are the corresponding
abscissa and m̂n(X1,X2) the function value; (b) Two dimensional projection of (a)
obtained by cross-secting the regression surfaces with the decision plane Y = 0. The two
outer lines represent 95% confidence intervals on the classifier. The line in the middle is
the resulting classifier.
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Figure 7.12: Visualization of the 95% confidence bands (small dots above and below
the middle line) for the Ripley data set based on the latent labels (middle full line). The
rectangle visualizes the critical area for the latent variables, therefore, every point lying
between the two big dots the classifier casts doubt on its label with significance level of
5%. The dashed line is the decision boundary.
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7.6.3 Simulations: The Classification Case

First, consider the Pima Indians data set (d = 8). Figure 7.13 shows the 100(1−
α)% confidence bands for the classifier based on the latent variables where α is
varied from 0.05 to 0.1 respectively. Figure 7.13a illustrates the 95% confidence
bands for the classifier based on the latent variables and Figure 7.13b the 90%
confidence bands. It is clear that the width of the confidence band will decrease
when α increases. Hence, the 95% and 90% confidence band for the latent variables
is given roughly by (−0.70,0.70) and (−0.53,0.53). Second, consider the Fourclass
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Figure 7.13: Pima Indians data set. Effect of larger significance level on the width of
the confidence bands. The bands will become wider when the significance level decreases.
(a) 95% confidence band on the latent variables; (b) 90% confidence band on the latent
variables.

data set (d = 2). This is an example of a non-linear separable classification problem
(see Figure 7.14a). We can clearly see in Figure 7.14a that the 95% confidence
bands are not wide, indicating no overlap between classes. Figure 7.14b shows the
95% confidence bands for the classifier based on the latent variables. The two black
dots indicate the critical region. Therefore, if for any point |latent variable| ≤ 0.2
we have less than 95% confidence on the decision of the class label.

As a third example, consider the Haberman’s Survival data set (d = 3). The data
set contains cases from a study that was conducted between 1958 and 1970 at
the University of Chicago’s Billings Hospital on the survival of patients who had
undergone surgery for breast cancer. The task is to predict whether the patient
will survive five years or longer. Figure 7.15a shows the 95% confidence bands for
the latent variables. Every point lying left from the big dot i.e. latent variable
< 0.59, the classifier casts doubt on its label on a significance level of 5%. This is
a quite difficult classification task as can be seen from the elongated form of the
sorted latent variables and is also due to the unbalancedness in the data.
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Figure 7.14: Fourclass data set. (a) Two dimensional projection of the classifier (inner
line) and its corresponding 95% confidence bands (two outer lines); (b) Visualization of
the 95% confidence bands for classification based on the latent labels (middle full line).
For every latent variable lying between the two big dots the classifier casts doubt on its
label. The dashed line is the decision boundary.

A fourth example is the Wisconsin Breast Cancer data set (d = 10). Figure 7.15b
shows the 95% confidence bands for the latent variables. Thus every point lying
between the big dots, the classifier casts doubt on its label on a significance level
of 5%.
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Figure 7.15: (a) Visualization of the 95% confidence bands for Haberman’s survival
data set based on the latent labels (middle full line). For every latent variable lying left
from the big dot the classifier casts doubt on its label on a 5% significance level. The
dashed line is the decision boundary; (b) Visualization of the 95% confidence bands for
Wisconsin Breast Cancer data set based on the latent labels. For every latent variable
lying between the big dots the classifier casts doubt on its label on a 5% significance
level. The dashed line is the decision boundary.
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7.7 Conclusions

In this Chapter, we discussed the construction of bias-corrected 100(1 − α)%
approximate confidence and prediction intervals (pointwise and simultaneous) for
linear smoothers, in particularly for LS-SVM. Under certain conditions, we proved
the asymptotic normality of LS-SVM. We discussed a technique called double
smoothing to determine the bias without estimating higher order derivatives.
Further, we developed a nonparametric variance estimator which can be related to
other well-known nonparametric variance estimators. In order to obtain uniform
or simultaneous confidence intervals we used two techniques i.e Bonferroni/Šidák
correction and volume-of-tube formula. We provided extensions of this formula
in higher dimensions and discussed how to compute some of the coefficients
in practice. We illustrated that the width of the bands are expanding with
increasing dimensionality by means of an example. By means of a Monte Carlo
study, we demonstrated that the proposed bias-corrected 100(1−α)% simultaneous
confidence intervals achieve the proper empirical coverage rate. Finally, the results
for the regression case are extended to the classification case.





Chapter 8

Applications and Case Studies

In this Chapter, we will discuss some practical examples and case studies. We will
demonstrate the capabilities of the developed techniques on system identification,
density estimation and on finding maxima in hysteresis curves.

8.1 System Identification with LS-SVMLab

8.1.1 General Information

In this Section we describe how the user can identify a system based on input-
output data via the LS-SVMLab v1.7 toolbox (De Brabanter et al., 2010b). As
an example, consider the pilot scale distillation column data set (Huyck et al.,
2010). One of the key task is to model the bottom temperature of the column
given the following inputs: feed flow rate, feed duty, reboiler duty and reflux flow
rate. Photos of the distillation column are shown in Figure 8.1. The training data
set consists out of the first 2/3 of the recorded data set and the remaining 1/3 is
taken as validation data. Let U and Y denote the input matrix and output vector
of the complete data set. The data has zero mean and unit variance.

8.1.2 Model Identification

We consider the following model structure (nonlinear ARX)

yt = f(yt−1, . . . ,yt−p;ut−1, . . . ,ut−p) + et,

167
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Figure 8.1: Distillation column (left) condensor; (center) packed section and feed
introduction; (right) reboiler. (Courtesy of Bart Huyck)

where p denotes the order of the NARX model (number of lags), u and y denote the
inputs and outputs of the system respectively. The number of lags are determined
via the MSE on validation data. The following code can be employed to determine
the MSE for a certain lag p on validation data with the LS-SVMLab software (using
an RBF kernel).

% Re-arrange the data into a block Hankel matrix for NARX

% Data points 1 to R contain the training data

>> [Xw,Yw]=windowizeNARX(U(1:R,:),Y(1:R),p,p);

>> Ytraininit=Xw(1,end-p+1:end); Xwtrain = Xw(:,1:end-p);

% Train and tune the model in a fully automatic way (10-fold CV)

>> model=initlssvm(Xw,Yw,’f’,[],[],’RBF_kernel’);

>> model=tunelssvm(model,’simplex’,’crossvalidatelssvm’,{10,’mse’});

>> model=trainlssvm(model);

% Create block Hankel matrix to simulate model on validation

>> [Xweval,˜]=windowizeNARX(U(R+1:end,:),Y(R+1:end),p,p);

% Set starting point for simulation

>> Yinit=Xweval(1,end-p+1:end); Xweval=Xweval(:,1:end-p);

% Start simulation at zero

>> sim=zeros(1,size(Xweval,1)+p);

>> sim(p+1-(1:p)’)=fliplr(Yinit);

>> for n=1:size(Xweval,1)

>> sim(1,p+n)=simlssvm(model,[Xweval(n,:) fliplr(sim(p+n-(1:p)’))]);

>> end

>> sim=sim’;

% MSE on validation data

>> errorL2 = mse(Y(R+1:end)-sim)
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Using the above code for various lags p e.g. from 1 to 60, we obtain the MSE
on validation data as a function of the number of lags p. From Figure 8.2a it is
clear the number of lags are set to p = 28. Finally, setting p = 28 and train the
final LS-SVM will give the result on test data. The final result is illustrated in
Figure 8.2b. The MSE on test data is 0.0063.

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of lags p

M
S
E

o
n

va
li
d
a
ti

o
n

d
a
ta

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
77

77.5

78

78.5

79

79.5

 

 

B
o
tt

o
m

T
em

p
er

a
tu

re
(◦ C

)

Time (s)
(b)

Figure 8.2: (a) MSE on validation data as a function of the number of lags p. The dot
(p = 28) indicates the lowest value of the MSE on validation data.; (b) Final LS-SVM
model (dotted line) with p = 28 on test data. The full line represents the measured data.
(Courtesy of Bart Huyck)

8.2 SYSID 2009: Wiener-Hammerstein Benchmark

8.2.1 Model Structure

Since this was a large-scale problem, we advocate the use of FS-LSSVM (see
Chapter 4). For this method different number of prototype vectors are selected.
All subsamples are selected by maximizing the quadratic Rényi entropy criterion,
see Chapter 4 Algorithm 1.

The general model structure is a nonlinear ARX (NARX) of the form

yt = f(yt−1, . . . ,yt−p;ut−1, . . . ,ut−p) + et,

where p denotes the order of the NARX model (number of lags). The number of
lags are determined via 10-fold cross-validation.
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8.2.2 Data Description and Training Procedure

The data consists of samples for the input ui and the outputs yi, with i =
1, . . . ,188.000. A plot of the inputs and outputs is given in Figure 8.3. Next, the
strategy for the using the data in terms of training and testing will be outlined.
This goes as follows:

• Training + validation sample: from data point 1 to data point 100.000. Using
10-fold CV, models are repeatedly (10 times) estimated using 90% of the data
and validated on the remaining 10%. Two approaches will be used here i.e
CV on a one-step-ahead-basis (CV-RMSE1) and CV based on simulating
the estimated model (CV-RMSEsim). The mean squared error (MSE) for a
one-step-ahead prediction/simulation can be computed using this validation
sample. The number of lags p are determined by the lowest value of the
MSE of the cross-validation function.

• Test sample: from data points 100.001 to data points 188.000. After defining
the optimal lags p and optimal tuning parameters γ and σ (in case of RBF
kernel), the prediction on the test set can be done. In this paper, an iterative
prediction is computed for the entire test set. This is done by using each time
the past predictions as inputs while using the estimated model in simulation
mode.
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Figure 8.3: Available data for the Wiener-Hammerstein identification problem. The
zones for training + validation (estimation set) and test are indicated in the output
series.
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8.2.3 Estimation and Model Selection

Using the above described training + validation scheme (10-fold CV), we start
checking different lag orders and tuning parameters. Each time the model
is repeatedly estimated using the training set (90% of the training data) and
validated using the remaining 10%. This is done on a one-step-ahead basis and
simulation basis. The best model is selected based on the lowest MSE on cross-
validation (CV-MSE1 or CV-MSEsim).

Consider a linear ARX with varying input and output lags. The model order is
determined by 10-fold CV (CV-MSE1). Figure 8.4 shows the CV-MSE1 obtained
for lags varying from 1 to 40.
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Figure 8.4: The error on cross-validation (CV-MSE1) using a linear ARX model with
increasing number of lags.

Table 8.1 shows the best results in RMSE on cross-validation (one-step-ahead
based (CV-RMSE1) and simulation based CV-RMSEsim) obtained for each of the
techniques. NARX is a nonlinear ARX model obtained with the Matlab System
Identification Toolbox. The lags for MLP-NARX are found by validation on a
single set. The nonlinearity was modeled with an MLP and a sigmoid activation
function with 10 hidden neurons. Due to the use of a single validation set the lags
for MLP-NARX differ from the rest. For the FS-LSSVM three kernel types are
reported i.e. RBF, polynomial and linear. All three techniques make use of the
complete training data set of 100.000 data points. All RMSE figures are expressed
in the original units of the data.

From the results in Table 8.1, it is clear that the FS-LSSVM using the RBF kernel
outperforms the others. The linear ARX is unable to capture the nonlinearity in
the data resulting in a lower performance on cross-validation RMSE (up to 2 orders
of magnitude). Although two nonlinear techniques (NARX and FS-LSSVM) are
used, their performances are quite different.
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The effect of varying numbers of selected prototype vectors m on both cross-
validation techniques are reported in Table 8.2 for the FS-LSSVM with RBF
kernel. The best performance is bold faced in Table 8.2. The total number of
prototype vectors is set to m = 5000. The position of the selected prototype vectors
(quadratic Rényi entropy criterion) is shown according to the corresponding
position of the input data. Figure 8.5 shows the training input data together
with the position of the selected prototype vectors, represented by dark bars.

Table 8.1: Best models based on cross-validation RMSE. MLP-NARX is a nonlinear
ARX model obtained with the Matlab SYSID Toolbox. Two types of CV are displayed:
CV based on one-step-ahead (CV-RMSE1) and simulation (CV-RMSEsim)

Method Kernel lags CV-RMSE1 CV-RMSEsim

ARX - 10 5.67×10−2 5.66 ×10−2

MLP-NARX - 11 7.62 ×10−4 2.15 ×10−2

Lin 10 8.64 ×10−4 4.51 ×10−2

FS-LSSVM Poly 10 5.63 ×10−4 5.87 ×10−3

RBF 10 4.77 ×10−4 4.81 ×10−3

Table 8.2: Effect of different numbers of prototype vectors m on the performance (CV-
RMSE1 and CV-RMSEsim) of the FS-LSSVM estimator with RBF kernel. The chosen
number of prototype vectors is bold faced.

m CV-RMSE1 CV-RMSEsim

100 5.82 ×10−4 2.14 ×10−2

400 5.36 ×10−4 7.85 ×10−3

600 5.13 ×10−4 6.76 ×10−3

800 5.05 ×10−4 5.87 ×10−3

1200 4.95 ×10−4 5.52 ×10−3

1500 4.93× 10−4 5.05× 10−3

1750 4.91 ×10−4 5.01 ×10−3

2000 4.89× 10−4 4.98× 10−3

2500 4.88 ×10−4 4.97 ×10−3

5000 4.77× 10−4 4.81× 10−3

Finally, the effect of different lags was tested for lags varying from 2 to 35.
Figure 8.6 shows the evolution of the lags on cross-validation MSE (one-step-ahead
based and simulation based) for the model based on m = 5000 (best model). In
these experiments the number of input lags and output lags was kept equal to each
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other (setting different input and outputs lags did not result in better performance
on cross-validation MSE). For this example it did not matter whether the lags were
selected by CV-MSE1 or CV-MSEsim. The CV line only moves up and does not
show any significant shifts to left or right. Thus, the selection of the number of
lags seems independent of the chosen CV criterion. Selecting the number of lags is
based on the least complex model that falls within one standard error (represented
by the error bar at lag 23) of the best model (Hastie et al., 2009). In this case the
number of lags have chosen to be 10 (vertical dashed line in Figure 8.6).
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Figure 8.5: (top) The input training sample; (bottom) the position, as time index, of
the 5000 selected prototype vectors by quadratic Rényi entropy is represented by the
dark bars.
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Figure 8.6: MSE on cross-validation (CV-MSE1 full line, CV-MSEsim dash-dotted line)
for FS-LSSVM NARX model (m = 5000) for different number of lags. The number of
lags are chosen so that the least complex model falls within one standard error (error
bar at lag 23) of the best, i.e. number of lags equal to 10.
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8.2.4 Results on Test Data

After selecting the model order and the involved parameters each of the models
is used to make an iterative prediction i.e. using only past predictions and input
information, for data points starting at sample 100.001 to sample 188.000. Since
this is unseen data for the model, the following source of error can be expected:
due to the iterative nature of the simulation, past errors can propagate to the
next predictions. From the difference between the iterative prediction and the
true values, the root mean squared error (RMSE) on test (RMSEtest) is computed.
In all results on test data the initial conditions for simulation were set to the real
output values (first lag samples). The first 1001 samples of the prediction are
omitted from consideration to eliminate the influence of transient errors.

Table 8.3 shows the performances (RMSEtest) of the iterative prediction on test
data for all types of model structures. The FS-LSSVM, using an RBF kernel,
outperforms the ARX and NARX by a factor 10 and 4 respectively on RMSE on
test data. The last column is Table 8.3 gives a fit percentage, i.e. the percentage
of the output variation explained by the model and is defined as

fit = 100

(
1− ‖y − ŷ‖‖y − ȳ‖

)
,

where y is the measured output, ŷ the simulated output and ȳ the mean of y.
Table 8.4 shows for the three different models the following results: the mean
value of the iterative prediction and the standard deviation of the error (on test)
defined as

µt =
1

8700

188000∑

t=101001

e(t) and st =
1

8700

188000∑

t=101001

√
(e(t)− µt)2)

respectively, with e(t) the simulation error. Figure 8.7 shows the result of the
final iterative prediction and the corresponding errors in the time and frequency
domain.

Table 8.3: RMSE and fit percentage with the final iterative prediction using the model
in simulation mode on the predefined test set. nh denotes the number of hidden neurons
in the MLP. nh and lags for MLP-NARX are found by validation on a single set.

Method lags/nh RMSEtest fit (%)

Linear ARX 10/- 5.6× 10−2 76.47

MLP-NARX 11/15 2.3× 10−2 86.06

FS-LSSVM (Lin) 10/- 4.3× 10−2 81.93

FS-LSSVM (Poly) 10/- 6.0 ×10−3 96.86

FS-LSSVM (RBF) 10/- 4.7× 10−3 97.98
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Table 8.4: RMSE on training (RMSEtr) with iterative prediction on the training data
using the model in simulation mode. The mean value of the simulation error µt and the
standard deviation of the error st are also reported (on test data).

Method µt st RMSEtr

Linear ARX −3.6× 10−2 4.3× 10−2 5.5× 10−2

MLP-NARX −2.4× 10−3 2.7× 10−2 2.2× 10−2

FS-LSSVM (Lin) −1.4× 10−4 4.3×10−2 4.2× 10−2

FS-LSSVM (Poly) 1.2× 10−4 6.1×10−3 5.9× 10−3

FS-LSSVM (RBF) 6.3× 10−5 4.8× 10−3 4.5× 10−3
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Figure 8.7: (top left) Iterative prediction (simulation mode) of the test data; (top
right) Normalized frequency plot of the simulated test data; (bottom left) Errors of the
iterative prediction (simulation mode) in the test set; (bottom left) Normalized frequency
plot of the errors of the iterative prediction.
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8.3 Nonparametric Comparison of Densities Based

on Statistical Bootstrap

In this Section, we study which user specified parametric density best fits a given
data set. It is quite common in the field of reliability analysis of MOSFETs
to model failure times with a Weibull or a lognormal distribution. However,
sometimes it can be quite hard to decide which density best explains the data. We
develop a hypothesis test to determine which parametric density can be chosen.
This test is based on the Kullback-Leibler divergence between a nonparametric
kernel density estimator and the parametric densities. The distribution of the test
statistic will be determined by means of bootstrap with variance stabilization.

8.3.1 Introduction to the Problem

One of the key issues in the evolution of MOSFET technology is device scaling (Hu,
1993). Thin oxide layers are an important part of most microelectronic devices.
They serve as insulating gate material in transistors. When these very thin oxide
layers are subjected to voltages of a few volts, due to the induced electrical field,
a gradual degradation of the oxide properties occurs and finally device failure is
followed.

Different phases before the final device failure are shown in Figure 8.8. Due to
the stress, defects are generated in the oxide which can create conduction paths
with multiple traps where current flows through. This phenomenon is observed
as a small current jump and is referred to as soft-breakdown. In the following
part, the wear-out phase, more defects are generated along the existing conduction
paths resulting in the wear out of the paths. This phenomenon is observed as
fluctuation of current until device failure occurs. At this final stage, called hard-
breakdown, abrupt increase of the current (up to mA) is observed. The time-
to-soft-breakdown (tSBD), wear out time (tWO) and the time-to-hard-breakdown
(tHBD) are random variables. Understanding the related distributions of oxide
breakdown and its preceding degradation phase are needed in order to predict the
lifetime at operating conditions. SBD is well known to be Weibull distributed (Wu
et al., 2000). About the distribution of the wear-out phase however, contradictory
reports can be found (Kerber et al., 2006). It is even claimed (Wu et al., 2007)
that the shape of the wear-out distribution depends on the choice of the failure
current criterion.

In this Section, we propose a hypothesis test, based on statistical bootstrap with
variance stabilization and a nonparametric kernel density estimator, assisting
the researcher to find the best pre-specified parametric distribution of random
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Figure 8.8: Illustration of the different phases of oxide degradation and breakdown in
ultra-thin gate stacks (a.u. denotes arbitrary units).

variables. Further, we illustrate the capability of this technique by means of toy
examples.

8.3.2 Kernel Density Estimation

In what follows, we describe two possible techniques to estimate a density function
f . First, we state some notations and conventions.

Throughout this Section, it will be assumed that we have a sample X1, . . . ,Xn

of independent, identically distributed observations from a continuous univariate
distribution with probability density function f . Also f̂ will be the kernel estimator
with kernel K and window width (or bandwidth) h.

Parzen-Rosenblatt Kernel Density Estimator

Probably one of the most popular and known methods to estimate a density
function is the Parzen-Rosenblatt estimator (Rosenblatt, 1956; Parzen, 1962). This
kernel estimator with kernel K is defined by

f̂(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
, (8.1)

where h is called the bandwidth or smoothing parameter of the kernel. Also, the
kernel K satisfies the following conditions

∫
K(u) du = 1,

∫
uK(u) du = 0, 0 <

∫
u2K(u) du <∞,
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with u = (x − y)/h. The estimator (8.1) can be considered as a sum of “bumps”
placed above each observation. The resulting estimator is then the sum of all
these bumps. The kernel function K determines the shape of the bumps while the
bandwidth h determines their width.

Regression View of Density Estimation

Here, we will establish a connection between density estimation and nonparametric
regression (Fan and Gijbels, 1996; Wasserman, 2006). This connection can be seen
by using a binning technique. Suppose we are interested in estimating the density
function f on an interval [a,b]. Partition the interval [a,b] into N subintervals
{Ik,k = 1, . . . ,N} of equal length ∆ = (b − a)/N . Let xk be the center of Ik
and yk be the proportion of the data {Xi,i = 1, . . . ,n} falling in the interval Ik,
divided by the bin length ∆. The number of subintervals can be determined by
N = ⌈(b − a)/3.49 MAD(X)n−1/3⌉, where ⌈·⌉ denotes the largest integer. It is
clear that the bin counts n∆yk i.e. the number of sample points falling in the kth
bin, have a binomial distribution (Johnson et al., 1997)

n∆yk ∼ Bin(n,pk) with pk =

∫

Ik

f(x)dx, (8.2)

with pk the probability content of the kth bin. For a fine enough partition i.e.
N →∞, it can be calculated from (8.2), by using a Taylor series expansion of the
density in the kth bin around the midpoint of the bin, that

E[yk] ≈ f(xk), Var[yk] ≈ f(xk)

n∆
. (8.3)

Consequently, we could regard the density estimation problem as a heteroscedastic
nonparametric regression problem based on the data {(xk,yk) : k = 1, . . . ,N}
which are approximately independent (Fan, 1996). The nonparametric regression
problem is defined as follows

yk = m(xk) + εk, εk = ekη(m(xk), xk),

where ek are independent and identically distributed. The function η expresses
the heteroscedasticity and m is an unknown real-valued smooth function that
we want to estimate. Often in practice homoscedastic data are preferred.
The homoscedasticity can be accomplished via Anscombe’s variance stabilizing
transformation (Anscombe, 1948) to the bin count ck = n∆yk, i.e.

y⋆k = 2

√
ck +

3

8
.

The density estimator is then obtained by applying a nonparametric smoother
to the transformed data set {(xk,y⋆k) : k = 1, . . . ,N}, and taking the inverse of
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Anscombe’s transformation. Let m̂⋆
n(x) be a regression smoother based on the

transformed data. Then the density estimator is defined by

f̂(x) = C
[
m̂⋆
n(x)2

4
− 3

8

]

+

, (8.4)

where C is a normalization constant such that f̂(x) integrates to 1 and [z]+ =
max(z,0). Then, m̂⋆ can be estimated by means of an LS-SVM or any other
nonparametric method.

The following example motivates the regression view of density estimation and
illustrates an inherent problem of the Parzen-Rosenblatt estimator (8.1).

Example 8.1 Given the failure times of an electric device (O’Connor, 1985)
measured in days. We want to estimate the failure density by means of the Parzen-
Rosenblatt estimator and the regression view of density estimation. Figure 8.9
shows the result of both estimates. It is clear that the Parzen-Rosenblatt estimator
(thin line) suffers from a slight drawback when applied to data from long-tailed
distributions. Because the bandwidth is fixed across the entire sample, there
is a tendency for spurious noise to appear in the tails of the estimates. This
example shows this behavior by disregarding the fact that failure times are
naturally non-negative. However, this drawback can be overcome by adaptive
bandwidths (Silverman, 1996) and/or boundary kernels (Scott, 1992; Wand and
Jones, 1995). On the other hand, the LS-SVM based estimate (bold line) for
density estimation can deal with this difficulty.
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Figure 8.9: Density estimation of failure times of an electric device (measured in
days) for the Parzen-Rosenblatt estimator (thin line) and the regression view of density
estimation based on LS-SVM (bold line).
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Remark To determine the number of subintervals N we have used a reference
rule. The literature describes better procedures to find the number of subintervals,
see e.q. Park and Marron (1990) for an overview, Wand (1997) for a plug-in type
and Devroye and Lugosi (2004) for L1 optimal bin width selection.

Remark Unfortunately, we lack theoretical evidence for the proposed method.
However, histogram based density estimators have been frequently studied in
literature. Beirlant et al. (1999) considered estimating consistently an unknown
probability density function in L1 from a sample of i.i.d. random variables by
means of histogram-based estimators. They showed that their proposed estimator
is universally L1 consistent and attains the kernel estimate rate in the expected
L1 error i.e. n−2/5 in the univariate case. The disadvantage of their density
estimate is that it can take on negative values wit probability close to 1. In order
to overcome this, the idea of Beirlant et al. (1999) was extended to nonnegative
piecewise linear histograms (Berlinet and Vajda, 2001) and to generalized piecewise
linear histograms (Berlinet et al., 2002).

8.3.3 Formulation and Construction of the Hypothesis Test

Given the observations X1, . . . ,Xn, we are interested in the probability density
function f . One way to proceed is to use nonparametric techniques to estimate
f . On the other hand, in some domains one is particularly interested in acquiring
a parametric probability density function (Sahhaf et al., 2009). Often, one has
some presumption about the form of the parametric density. For example in the
field of reliability analysis of MOSFETs, Weibull, lognormal, exponential, gamma
and Gumbel densities are widely used (O’Connor, 1985). As an example, we
can formulate the following problem statement: “Which of the given parametric
probability density function, Weibull or lognormal, best fits our data?”

To answer this question we propose a methodology based on the comparison
between a nonparametric density estimate, obtained by LS-SVM, and a parametric
density (chosen by the user). Let us assume that the nonparametric density
estimate is our best possible estimator of the unknown true underlying density.
Simply put, we can then calculate some kind of distance measure between
the nonparametric density estimate and the chosen parametric density. The
parametric density corresponding to the smallest distance best fits the given data.
Many types of distances between probability densities exist (Tsybakov, 2009) e.g.
Hellinger distance, Total Variation (Devroye and Györfi, 1984), Kullback-Leibler
(KL) divergence,... In this paper we use the Kullback-Leibler divergence.

Definition 8.1 The Kullback-Leibler divergence between two distributions P and
Q is defined as

KL(P,Q) =

∫
p(x) log

p(x)

q(x)
dx, (8.5)
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where p and q denote the densities of P and Q.

Typically P represents our best possible estimate of the “true” distribution of the
data e.g. the LS-SVM estimate (8.4) and Q is the chosen parametric distribution
e.g. Weibull, lognormal, etc.

Let F̂ be the LS-SVM estimate of the distribution and let f̂ denote the
corresponding estimated density. Also, denote by Q1 and Q2 the parametric
distributions and by q1 and q2 their corresponding parametric densities. These
parametric densities are chosen by the user. Consider a situation in which a
random sample X = {X1, . . . ,Xn} is observed from its unspecified probability
distribution function Gθ, where θ, a characteristic of G, is unknown. We can
formulate a hypothesis test as follows:

H0 : θ = KL(F̂ ,Q1)−KL(F̂ ,Q2) ≤ θ0

vs.

H1 : θ = KL(F̂ ,Q1)−KL(F̂ ,Q2) > θ0

(8.6)

where θ0 is some known bound, H0 and H1 represent the null hypothesis and the
alternative hypothesis respectively. In other words, if H0 is accepted, then the
parametric density q1 is closest to the nonparametric estimate and hence is more
suited to model the density of the sample than the parametric density q2 and vice
versa.

Let θ̂ be an estimator of θ and σ̂2 an estimator of the variance σ2 of θ̂. Define the
“studentized” test statistic

Tn =
θ̂ − θ0

σ̂
.

The inclusion of the scale factor σ̂ ensures that Tn is asymptotically pivotal
as n → ∞ (Hall and Titterington, 1989; Hall and Wilson, 1991). A statistic
Tn is called pivotal if it possesses a fixed probability distribution independent
of θ (Cramér, 1999; Lehmann and Romano, 2005). Using a pivotal statistic
means that we only need to deal with the appropriate standard distribution
rather than the whole family of distributions. Note, however, that pivoting
often does not hold (Efron and Tibshirani, 1993) unless a variance stabilizing
transformation (Tibshirani, 1988) for the parameter estimate of interest is applied
first.

Since the distribution function of Tn under H0 is not known or cannot be derived
analytically, we can use the bootstrap principle (Efron, 1979; Efron and Tibshirani,
1993; Davison and Hinkley, 2003) to test the hypothesis (8.6). The bootstrap
principle is based on bootstrap samples. A bootstrap sample X ∗ = {X∗

1 , . . . ,X
∗
n}

is an unordered collection of n sample points drawn randomly form X with
replacement, so that each X∗

i has probability n−1 of being equal to any of the
Xj ’s. Algorithm 10 states the bootstrap principle to test the hypothesis θ ≤ θ0

using variance stabilization.
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Note that the constant θ0 has been replaced in Step 2 of Algorithm 10 by the
estimate of θ, i.e. θ̂, derived from X . This is crucial if the test is to have good
power properties. It is also important in the context of the accuracy level of the
test (Hall and Titterington, 1989; Hall and Wilson, 1991). Also because we have
used variance stabilization we do not need to divide by a standard error estimate
in Step 2 and Step 4 since it is constant (Tibshirani, 1988; Efron and Tibshirani,
1993). Another advantage of variance stabilization is that the number of bootstrap
resamples decreases significantly. Indeed, the number of bootstrap resamples in
this case is B1 · B2 + B3 = 100 · 25 + 1000 = 3500. In case we did not use this
transformation we would have to calculate for each bootstrap resample an estimate
of the standard error. Denote by B the number of bootstrap resamples to calculate
the test statistic and B∗ the number of resamples to calculate an estimate of the
standard error, then the total number of resamples is B ·B∗ = 1000 · 25 = 25000.

Algorithm 10 Testing the hypothesis θ ≤ θ0 using variance stabilization

1: Estimation of the variance stabilizing transformation

(a) Generate B1 bootstrap samples X ∗
i from X and calculate θ̂∗

i ,i = 1, . . . ,B1

for B1 = 100.

(b) Generate B2 bootstrap samples from X ∗
i ,i = 1, . . . ,B1, and calculate σ̂∗2

i ,

a bootstrap estimate for the variance of θ̂∗
i ,i = 1, . . . ,B1. Set B2 = 25.

(c) Estimate the variance function ψ by smoothing the values of σ̂∗2
i against

θ̂∗
i .

(d) Estimate the variance stabilizing transformation Λ by

Λ =

∫

θ

[ψ(u)]−1/2 du.

2: Calculation of the bootstrap statistic. Generate B3 bootstrap samples
X ∗
i from X and calculate T ∗

n,i = Λ(θ̂∗)− Λ(θ̂), i = 1, . . . ,B3 for B3 = 1000.
3: Ranking. Rank the collection T ∗

n,1, . . . ,T
∗
n,B3

into increasing order to obtain
T ∗
n,(1) ≤ . . . ≤ T ∗

n,(B3).

4: Test. Reject H0 if Tn = Λ(θ̂) − Λ(θ0) > T ∗
n,(q), q determines the level of

significance of the test and is given by α = ⌊(B3 + 1 − q)(B3 + 1)−1⌋, with α
the nominal level of significance (Hall and Titterington, 1989) and ⌊·⌋ denotes
the smallest integer.

5: Back-transformation. If required, transform T ∗
n,i and Tn back by

considering the inverse transformation of Λ, i.e. Λ−1(Λ(θ̂∗) − Λ(θ̂)) and

Λ−1(Λ(θ̂)− Λ(θ0)) respectively.
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8.3.4 Illustrative Examples

In all simulations F̂ denotes the LS-SVM estimate of the distribution. As kernel
function we used the Gaussian kernel and the tuning parameters of the LS-SVM
(kernel bandwidth h and regularization parameter γ) are each bootstrap resample
determined by leave-one-out cross-validation. The nominal level of significance α
is set to 0.05, B1 = 100, B2 = 25 and B3 = 1000 in Algorithm 10. For each
bootstrap resample the parameter(s) of the parametric densities are estimated via
Maximum Likelihood (ML).

Toy Example 1

In this toy example we generate a data set Xi ∼ Weib(1,2) for i = 1, . . . ,500.
Suppose we want to test the following hypothesis

H0 : KL(F̂ ,Weib)−KL(F̂ ,LogN ) ≤ 0

vs.

H1 : KL(F̂ ,Weib)−KL(F̂ ,LogN ) > 0.

Figure 8.10a shows the lognormal (thin line) and Weibull (bold line) density for
the data set with parameters estimated by ML. Figure 8.10b shows the histogram
of the test statistic T ∗

n,i, i = 1 . . . ,B3. Based on Tn < T ∗
n,(⌊(B3+1)(1−α)⌋) we cannot

reject the null hypothesis H0 on a significance level α = 0.05. This indicates
that the Weibull distribution is best suited for the given data set, since its KL
divergence is the smallest.

Toy Example 2

We generate a data set Xi ∼ Exp(1) for i = 1, . . . ,500. We test the following
hypothesis

H0 : KL(F̂ ,LogN )−KL(F̂ ,Exp) ≤ 0

vs.

H1 : KL(F̂ ,LogN )−KL(F̂ ,Exp) > 0.

Figure 8.11a shows the lognormal (thin line) and exponential (bold line) density for
the data set with parameters estimated by ML. Figure 8.11b shows the histogram
of the test statistic T ∗

n,i, i = 1 . . . ,B3. Based on Tn > T ∗
n,(⌊(B3+1)(1−α)⌋) we reject

the null hypothesis H0 on a significance level α = 0.05. This indicates that the
exponential distribution best fits the given data set, since its KL divergence is the
smallest.
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Figure 8.10: (a) lognormal (thin line) and Weibull (bold line) density for the generated
data set with parameters estimated by ML; (b) Null distribution of the test statistic. The
dashed line indicates the value of Tn and the solid line indicates the critical value based
on the bootstrap samples T ∗

n .
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Figure 8.11: (a) lognormal (thin line) and exponential (bold line) density for the
generated data set with parameters estimated by ML; (b) Null distribution of the test
statistic. The dashed line indicates the value of Tn and the solid line indicates the critical
value based on the bootstrap samples T ∗

n .

Real Data Set

Given runaway phase data (Sahhaf et al., 2009) (783 data points). In the
field of nano-electronics, there have been many contradictory reports about the
distribution of the runaway phase (Kerber et al., 2006; Wu et al., 2007), i.e. Weibull
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or lognormal. These distributions are preferred, since the parameters of these
distributions can be related to physical mechanisms inside the transistor. We have
used the proposed test in order to decide which parametric distribution best fits
the given data. We have tested the following hypothesis

H0 : KL(F̂ ,LogN )−KL(F̂ ,Weib) ≤ 0

vs.

H1 : KL(F̂ ,LogN )−KL(F̂ ,Weib) > 0.

The result is shown in Figure 8.12. Based on this result, we cannot reject the null
hypothesis on a significance level of 5% and we can conclude that the runaway
phase data is best described by a lognormal distribution.
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Figure 8.12: (a) Null distribution of the test statistic. The dashed line indicates the
value of Tn and the solid line indicates the critical value based on the bootstrap samples
T ∗

n ; (b) Density estimate based on LS-SVM (full line).

8.4 Finding the Maximum in Hysteresis Curves

In the field of nano-electronics, one often performs so-called hysteresis Id-Vg

measurements of which an illustration is shown in Figure 8.13a. The maximum
extracted ∆V from Id-Vg hysteresis curves are a measure for the defect density.
More specifically, in reliability studies (Sahhaf, 2010), the change of ∆V is used
in order to study the degradation of devices. As these ∆V values can be small, it
is important to use an accurate procedure for extracting ∆V in order to reduce
the analysis-induced errors as much as possible. The idea is to fit both traces (up
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and down) by LS-SVM (m̂up and m̂down) and to find the maximum shift in the
hysteresis ∆V .
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Figure 8.13: (a) Illustration of the maximum voltage-shift in a hysteresis curve. ∆V
denotes the maximum shift of the hysteresis curves, m̂up and m̂down represent the
resulting LS-SVM models of the up and down traces; (b) Extracted maximum hysteresis
∆V (dots) with corresponding pointwise standard errors. The dashed curve serves only
as a trend line for the maxima.

In order to find voltages V1 and V2 (see Figure 8.13a) resulting in the maximum
voltage-shift (∆V = V2−V1) between the up and the down trace in the hysteresis,
we use the LS-SVM models describing the up and down traces. Denote by m̂up

and m̂down, the estimated LS-SVM models for the up and down traces respectively
for the given data. The problem of finding the maximum shift ∆V is formulated
as follows 




max
V1,V2

J (V1,V2) = V2 − V1

s.t. m̂up(V1) = m̂down(V2).

By using Lagrange multipliers, it is easy to show that the maximum ∆V = V2−V1

is found by solving the following system

{
m̂up(V1) = m̂down(V2)

m̂′
up(V1) = m̂′

down(V2).

Figure 8.13b shows the extracted maxima for different hysteresis curves with
corresponding pointwise standard error. Based on the extracted ∆V as a function
of voltage, Sahhaf et al. (2010) specified the position of the defects in the
dielectricum of the transistor.
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8.5 Conclusions

In this Chapter, we illustrated the applicability of LS-SVM in several scientific
domains. First, we have shown that FS-LSSVM is a powerful tool for black-box
modeling and is capable of handling large data sets. Second, by transforming
LS-SVM for regression to a density estimator via a binning technique, we have
formulated a hypothesis test based on bootstrap with variance stabilization. This
test can assist the researcher to decide which user specified parametric distribution
best fits the given data. Finally, we used LS-SVM to determine the maximum shift
in hysteresis curves.





Chapter 9

Summary, Conclusions and
Future Research

9.1 Summary and Main Conclusions

Summary of Chapter 1

We reviewed the history of parametric and nonparametric regression. Further,
we illustrated, by means of some applications, the usefulness of nonparametric
regression. Finally, we gave an overview of this thesis and summarized the
contributions.

Summary of Chapter 2

We reviewed the basic properties of parametric and nonparametric modeling.
Several model classes were briefly discussed such as local averaging, local modeling,
global modeling and penalized modeling. We have described the assumptions and
restrictions on the regression estimates and also we have clarified that any estimate
can have an arbitrary slow rate of convergence. Further, we illustrated the curse
of dimensionality by means of an example and how it can effect the quality of
estimation. Finally, we motivated the basic principle of support vector machines
and least squares support vector machines.
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Summary of Chapter 3

We gave an overview of data-driven model selection methods and complexity
criteria. Often in practice the chosen criterion will depend on the situation e.g.
small or large data set, can we obtain a good noise variance estimation? We also
illustrated why these methods should be used in order to acquire suitable tuning
parameters with respect to the bias-variance tradeoff. Finally, we made clear that
minimizing these criteria is often troublesome since there can be multiple local
minima present.

Main Conclusions/Contributions of Chapter 3

A typical method to estimate the tuning parameters (finding the minimum value
of the CV cost function) would define a grid over these parameters of interest
and perform CV for each of these grid values. However, three disadvantages come
up with the grid-search approach: (i) the limitation of the desirable number of
tuning parameters in a model, (ii) practical inefficiency and (iii) discretization
fails to take into account the fact that the tuning parameters are continuous. In
order to overcome these drawbacks we proposed a two-step optimization approach.
First, good initial start values are determined by means of coupled simulated
annealing. Second, a fine tuning is performed by means of simplex search. This
two-step procedure will result in more optimal tuning parameters and hence better
performance.

Summary of Chapter 4

When considering large scale data sets, we often run into computational problems
since the complete kernel matrix cannot be stored in the memory. We investigated
if LS-SVm could be solved in the primal space. In order to solve the problem in
the primal space, we need a finite approximation of the feature map based on
selected prototype vectors. To obtain a suitable selection of these vectors, we
maximized the quadratic Rényi entropy. Hence, given such a finite approximation,
the problem can be solved as a classical ridge regression problem in the primal
space. Finally, the performance of FS-LSSVM is compared to different methods
on several data sets. The speed-up achieved by our algorithm is about 10 to
20 times compared to LIBSVM (state-of-the-art library for solving SVMs). We
observed that our method requires less prototype vectors than support vectors in
SVM, hence resulting in a sparser model.
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Main Conclusions/Contributions of Chapter 4

For LS-SVM, we estimated a finite m-approximate feature map based on the
Nyström approximation so that the problem could be solved in the primal space.
In order to select proper prototype vectors, we used the quadratic Rényi entropy.
Also, we have illustrated how to select the bandwidth for the entropy estimation
in a fast and reliable way using the solve-the-equation plug-in method. Further,
we have shown that this entropy criterion with no additional moment constraints
is maximized by a uniform density over the input space. In order to select the
tuning parameters for large scale data sets, we developed a fast cross-validation
procedure. The developed method is able to handle up to one million data points
on a current state-of-the-art PC.

Summary of Chapter 5

We discussed the different approaches used in the literature for achieving
robustness in parametric and nonparametric regression models. Further, we
illustrated how robustness in the nonparametric case can be obtained by using
a least squares cost function via influence functions. Also, we showed, in order to
achieve a fully robust procedure, three requirements have to be fulfilled. A robust
LS-SVM estimator was obtained via iterative reweighting. We compared four
different weight functions and investigated the application in iteratively reweighted
LS-SVM. We demonstrated that, by means of simulations and theoretical results,
reweighting is useful not only when outliers are present in the data but also
to improve stability, especially at heavy tailed distributions. By means of an
upper bound for the reduction of the influence function in each step, we revealed
the existence of a tradeoff between speed of convergence and the degree of
robustness. We demonstrated that the Myriad weight function is highly robust
against (extreme) outliers but exhibits a slow speed of convergence. A good
compromise between the speed of convergence and robustness can be achieved
by using Logistic weights.

Main Conclusions/Contributions of Chapter 5

In order to achieve a fully robust procedure, we showed that three requirements
have to be fulfilled i.e. (i) robust smoother, (ii) bounded kernel and (iii) robust
model selection procedure. We compared four different weight functions and
investigated the application in iteratively reweighted LS-SVM. We introduced
the Myriad reweighting and derived its linear and mode property. By means
of an upper bound for the reduction of the influence function in each step,
we revealed the existence of a tradeoff between speed of convergence and the
degree of robustness. We demonstrated that the Myriad weight function is highly
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robust against (extreme) outliers but exhibits a slow speed of convergence. We
constructed an empirical maxbias curve of the proposed robust smoother. We
showed that its maxbias increases very slightly with the number of outliers and
stays bounded right up to the breakdown point which is in strong contrast with
the non-robust LS-SVM estimate.

Summary of Chapter 6

We investigated the possible consequences when the i.i.d. assumption was violated.
We illustrated that classical model selection procedures break down in the presence
of correlation and not the nonparametric regression method. Since the latter
stays consistent when correlation is present in the data, it is not necessary to
modify or add extra constraints to the smoother. We proposed a model selection
procedure which can handle correlation present in the data without requiring any
prior knowledge about its structure. The key to this method are bimodal kernels.

Main Conclusions/Contributions of Chapter 6

In order to cope with the problem of correlation, we proved that by taking a
kernel K satisfying K(0) = 0, the correlation structure is successfully removed
without requiring any prior knowledge about its structure. Further, we showed
both theoretically and experimentally, that by using bimodal kernels the estimate
will suffer from increased mean squared error. We developed a class of so-called ǫ-
optimal class of bimodal kernels, since an optimal bimodal kernel satisfying K(0) =
0 cannot be found, which reduces this effect as much as possible. Finally, we
proposed, based on our theoretical justifications, a model selection procedure (CC-
CV) for LS-SVM in order to effectively handle correlation in the data.

Summary of Chapter 7

We discussed the construction of bias-corrected 100(1 − α)% approximate
confidence and prediction intervals (pointwise and simultaneous) for linear
smoothers, in particularly for LS-SVM. To construct pointwise confidence intervals,
we relied on the asymptotic normality of LS-SVM. Further, we discussed a
technique called double smoothing to determine the bias without estimating
higher order derivatives. In order to obtain uniform or simultaneous confidence
intervals we used two techniques i.e Bonferroni/S̆idák correction and volume-of-
tube formula. We provided extensions of this formula in higher dimensions and
discussed how to compute some of the coefficients in practice.
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Main Conclusions/Contributions of Chapter 7

We proved, under certain conditions, the asymptotic normality of LS-SVM.
Further, we developed a nonparametric variance estimator which can be related
to other well-known nonparametric variance estimators. We illustrated that
the width of the bands, based on the volume-of-tube formula, are expanding
with increasing dimensionality by means of an example. A Monte Carlo
study demonstrated that the proposed bias-corrected 100(1 − α)% approximate
simultaneous confidence intervals achieve the proper empirical coverage rate.
Finally, the results for the regression case are extended to the classification case.
We illustrated how these intervals can assist the user in assessing the quality of
the classifier.

Summary of Chapter 8

We illustrated the applicability of LS-SVM in several scientific domains. First,
we have shown that FS-LSSVM is a powerful tool for black-box modeling and
is capable of handling large data sets. Second, by using LS-SVM as a density
estimator, we have formulated a hypothesis test based on bootstrap with variance
stabilization. This test can assist the researcher to decide which user specified
parametric distribution best fits the given data. Finally, we used LS-SVM to
determine the maximum shift in hysteresis curves.

Main Conclusions/Contributions of Chapter 8

We developed a nonparametric density estimation method based on regression and
showed that this method is capable of handling densities which difficult to estimate
by the classical Parzen method. Further, based on this technique, we developed
a hypothesis test based on bootstrap with variance stabilization. We showed the
usefulness of the test by means of toy examples and a real life example.

9.2 Future Research

The thesis presents some contributions for regression using least-squares support
support vector methods. However, still a lot of research has to be done. We will
state some future research topics.

• Many consistency properties and rates of convergence are obtained under
the i.i.d. assumption. It would be meaningful to investigate under which
conditions these results can be extended to the dependent data case.



194 SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

• In order to construct a finite approximation of the feature map, we selected
a subsample of the data has. Although the criterion to select this subsample
seems to work good in practice, it cannot determine how large this subsample
has to be to obtain good estimates. Therefore, sharper error bounds could
be created on the Nyström approximation so that the sample size can be
determined beforehand and not in greedy manner. This would greatly
simplify the FS-LSSVM algorithm and reduces time when considering large
data sets.

• Extending the results obtained in Chapter 6 to random design would be a
merit from theoretical point of view.

• Modifying/adapting the volume-of-tube formula to handle correlated and
heteroscedastic data in a nonparametric regression framework would widen
its application area.

• Extension of our proposed method to obtain confidence intervals to the
support vector machine (SVM) case. Our method is based on the linear
smoother property of the estimator. However, since SVM is a nonlinear
smoother, these results are not valid anymore. Although construction
of confidence intervals for SVM can be realized by a (double) bootstrap
procedure, it would be beneficial (less time consuming than bootstrap) to
work with saddlepoint approximations. Further investigation is needed on
how to realize this for nonlinear smoothers.

• Theoretical results could be investigated in case of the LS-SVM for density
estimation regarding rate of convergence and consistency properties.
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Coupled Simulated Annealing

CSA (Xavier-de-Souza et al., 2010) features a new form of acceptance probability
functions that can be applied to an ensemble of optimizers. This approach
considers several current states which are coupled together by their energies in their
acceptance probability function. Also, as distinct from classical SA techniques,
parallelism is an inherent characteristic of this class of methods. The objective
of creating coupled acceptance probability functions that comprise the energy of
many current states or solutions is to generate more information when deciding to
accept less favorable solutions.

The following equation describes the acceptance probability function A with
coupling term ρ

Aθ(ρ,xi → yi) =
exp

(
− E(yi)
Tac

k

)

exp
(

− E(yi)
Tac

k

)
+ ρ

,

with Aθ(ρ,xi → yi) the acceptance probability for every xi ∈ Θ, yi ∈ Υ and Υ ⊂ Θ.
Υ denotes the set of all possible states and the set Θ = {xi}qi=1 is presented as the
set of current states of q minimizers. The variance σ2 of Aθ equals

1

q

∑

∀xi∈Θ

A2
Θ −

1

q2
.

The coupling term ρ is given by

ρ =
∑

xj∈Θ

exp

(−E(yi)

T ack

)
.

Hence, CSA considers many current states in the set Θ, which is a subset of
all possible solutions Υ and accepts a probing state yi based not only on the
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corresponding current state xi but by considering also the coupling term, which
depends on the energy of all other elements of Υ. Algorithm 11 summarizes the
complete CSA procedure:

Algorithm 11 CSA with variance control (Xavier-de-Souza et al., 2010)

1: Initialization: assign q random initial solutions to Θ; assess the costs E(xi), ∀xi ∈ Θ and
evaluate coupling term ρ; set initial temperatures Tk = T0 and T ac

k
= T ac

0 ; set time index

k = 0, σ2
D

= 0.99
(

q−1
q2

)
and α = 0.05

2: for g = 1 to G inner iterations do
3: Generate a probing solution yig for each element of Θ according to yig = xig+εig, ∀xig ∈ Θ

and εi is a random variable sampled from a given distribution; assess the costs for all
probing solutions E(yig), ∀i = 1, . . . ,q,

4: For each i ∈ 1, . . . ,q

5: if E(yig) ≤ E(xig) then
6: accept solution yig with probability 1
7: else
8: accept solution with probability Aθ(ρ,xig → yig)
9: if AΘ > r, with r sampled from U [0,1] then

10: set xig = yig

11: end if
12: end if
13: evaluate ρg

14: end for
15: Adjust acceptance temperature T ac

k

16: if σ2 < σ2
D

then
17: T ac

k
= T ac

k−1(1 − α)
18: else
19: T ac

k
= T ac

k−1(1 + α)
20: end if
21: Decrease generation temperature e.g. Tk = T0

k+1
22: if stopping criterion is met then
23: Stop

24: else
25: Go to Step 2
26: end if
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W. Härdle and A. Tsybakov. Local polynomial estimators of the volatility function
in nonparametric autoregression. Journal of Econometrics, 81(1):223–242, 1997.
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