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Data integration plays important roles in
combining clinical, and environmental
data with high-throughput genomic data
to identify functions of genes,
proteins,and other aspects of the
genome.

The problems of high dimensionality and
heterogeneity of data always raise lots of
challenges in computational biology and
chemistry.

As the size of data sets increase, as well
their complexity, dimensionality
reduction and advanced analytics will
gain importance.
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Data integration can be de�ned as the process of combining data residing in diverse
sources to provide users with a comprehensive view of such data

Applications

Tumor classi�cation: A reliable and precise classi�cation of tumors is essential for
successful treatment of cancer

The identi�cation of �marker� genes that characterize the di�erent tumor classes.
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Feature Selection also known as variable selection, attribute selection or variable
subset selection, is the process of selecting a subset of relevant features (variables,
predictors) for use in model construction.

Important genes

Problem description Application and methods

t-test
PAM

Lasso etc..

Feature Extraction transforms the data in the high-dimensional space to a space of
fewer dimensions.

What is feature reduction?

dY ℜ∈pdTG ×ℜ∈

pX ℜ∈

dTdp XGYXG ℜ∈=→ℜ∈ × :

Linear transformation

Original data reduced data
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Microarray Data Analysis

Quantitative structure�activity relationship models

Clinical Data Analysis

01

Expression data Literature

Other data, e.g. 

protein-protein 

interaction, 

genetic 

interaction, 

genotype etc.

integration of external data

Clinical  data

Prediction / identification of

differentially expressed genes
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If we have an m× n matrix A,

Singular Value Decomposition (SVD) of A

A = USV T ,

where S is a diagonal matrix and U and V are orthogonal
matrices.

Eigenvalue Decomposition (EVD) of A

ATA = V LV T ,

where L is a diagonal matrix and V is orthogonal n× n matrix.

Principal Component Decomposition of A

T = AV,

where V is an n× n matrix whose columns are the eigenvectors
of ATA.
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If we have an m× n matrix A and p× n matrix B

Generalized Singular Value Decomposition (GSVD) of A and B

A = UΣAX
T

B = V ΣBX
T

where U , V are orthogonal matrices, the columns of X are generalized singular vectors and
ΣA, ΣB are diagonal matrices

Generalized Eigenvalue Decomposition (GEVD) of the matrix pair ATA, BTB,

ATA(XT )−1 = BTB(XT )−1Λ

where Λ is a diagonal matrix with diagonal entries Λii = (
ΣAii
ΣBii

)2, i = 1, . . . , n, if BTB is

invertible.
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Kernel Methods are class of algorithms for pattern analysis which �nd and study
general types of relations in a data sets.

The functions that are most frequently employed in classi�cation problems are

Linear Kernel: xi
T
xj

Polynomial Kernel: (xi
T
xj + b)d with - as kernel parameters - the intercept constant

b ∈ R+ and degree d ∈ N
Radial Basis Function (RBF): exp(−||xi − xj ||22/σ2) with σ ∈ R+ representing the
bandwidth.
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The constrained optimization problem for an LS-SVM for
classi�cation has the following form:

min
w,b,e

(
1

2
wTw + γ

1

2
ΣNk=1e

2
k)

subject to:

yk[wTφ(xk) + b] = 1− ek, k = 1, . . . , N

where φ(.): Rd → Rdh is a nonlinear function which maps the d-dimensional input vector x from the input
space to the dh-dimensional feature space, possibly in�nite.

The classi�er in the dual space takes the form

y(x) = sign[
N∑
k=1

βkykK(x, xk) + b]
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For a binary classi�cation model,

Confusion Matrix

p’
( predicted)

n’ 
(predicted)

p
(actual)

True Positive True Negative

n
(actual)

False Positive False Negative
TP=True Positive
TN=True Negative
FP=False Positive
FN=False Negative

Precision  =    TP Recall  =   TP
TP + FP TP + FN

F1-Score= 2 * precision * recall

precision + recall

The receiver operating characteristics (ROC) curve summarizes the performance of a
classi�er by showing the true positive rate (sensitivity) versus the false positive rate
(1-speci�city) as the discrimination threshold is varied.
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Let SVD of A (BTB)−1/2 be

A(BTB)−1/2 = PSQT

Then

(BTB)−1/2ATA(BTB)−1/2Q = QSTS

where STS = Λ and W = Q with QTQ = In.

Let de�ne,

D = A(BTB)−1/2Q = A(XT )−1

with (X)−1(BTB)(XT )−1 = In and columns of (XT )−1 are GEVs.

We use this relationship to identify maximum likelihood estimation via the
generalized eigenvalue decomposition (MLGEVD).
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We have,

D = A(BTB)−1/2Q = A(XT )−1

with (X)−1(BTB)(XT )−1 = In and columns of (XT )−1 are GEVs.

Referring to above Equation, MLGEVD problem which estimates the optimal generalized eigenvectors are
formulated, as follows

minimize ||D −A(XT )−1||2
subject to [(X)−1(BTB)(XT )−1] = In

By solving Lagrangian of the above problem, we obtain the solution as

r̃i = (ATF−1
i A+BTB)−1ATF−1

i Di, i = 1 . . . , n

It reveals an important mathematical property that in GSVD/GEVD framework, one of the
data matrix acts as a prior information in the model development to obtain the generalized
eigenvectors.
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projected onto the direction of GEVs

Mahalanobis Distance

MLGEVD/GEVD

Cancerous 
Samples

Normal 
Samples

Z1 Z2

MDi
2  = (gi – c)∑-1(gi - c)T

Let gi = Z1
i − Z2

i be the di�erence in score for gene i between normal and cancerous samples.

The assumptions that the gene i with similar expression levels has approximately the same scores Z1
i ≈ Z2

i
and form a cloud of points around the origin.
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LS-SVM model: prediction of tumor and non-tumor samples for colon cancer

Genes selected by kernel function test AUC p-valuea

full data set RBF 0.821(0.147) 0.019

GEVD RBF 0.841(0.087) 0.072

MLGEVD RBF 0.895(0.060)
�-
a two-sided sign test for the comparison of full data sets
and GEVD with MLGEVD.

Results

LS-SVM classi�er on subsets of genes by MLGEVD o�ered the best prediction
performances than LS-SVM classi�er on whole gene sets and subsets of genes selected
by GEVD framework.

Out of 50 genes identi�ed as di�erentially expressed by MLGEVD, majority of these
genes are reported as top ranked genes in colon cancer in various studies.
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GEVs

Data projected onto the direction of GEVs

MLGEVD/GEVD
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Predicting breast cancer based on clinical and microarray data.

kernel function linear RBF polynomial
Case I
test AUC MLGEVD 0.80(0.09) 0.79(0.01) 0.77(0.07)

GEVD 0.77(0.08) 0.74(0.09) 0.63(0.02)
p-value 0.03 0.01 2.72E-10

test F-score MLGEVD 0.64(0.01) 0.57(0.02) 0.51 (0.13)
GEVD 0.55(0.01) 0.49 (0.01) 0.26(0.03 )
p-value 0.17 0.23 0.03

Case II
test AUC MLGEVD 0.80(0.05) 0.75(0.09) 0.70(0.10)

GEVD 0.79(0.06) 0.78(0.08) 0.61(0.06)
p-value 0.01 0.04 0.01

test F-score MLGEVD 0.60(0.03) 0.46 (0.06) 0.47(0.01)
GEVD 0.56(0.02) 0.51(0.07) 0.50(0.05)
p-value 0.02 0.06 0.11

p-value: two-sided sign test ; RBF: radial basis function

Results:
The LS-SVM classi�er with the linear kernel function resulted in the best test AUC for
both GEVD and MLGEVD.
With this kernel function, MLGEVD signi�cantly outperformed GEVD for all three breast
cancer case studies.

Deepening the methodology behind Data integration and Dimensionality reduction: � Thomas, Minta



2 � 5 Conclusion 21/54

This work shows the equivalence between MLGEVD and generalized ridge regression.
This relationship reveals an important mathematical property of generalized eigenvalue
decomposition (GEVD), in which the second argument acts as prior information in the
model.

We illustrate the importance of prior knowledge in clinical decision making/in
identifying di�erentially expressed genes with case studies for which microarray data
sets with corresponding clinical/literature information are available.

The proposed approach could be used as an alternative of GEVD which signi�cantly
improved diagnosis, prognosis and prediction of therapy response.

Both GEVD and MLGEVD used high-throughput data, which were di�cult and
expensive to collect only for model development.

Deepening the methodology behind Data integration and Dimensionality reduction: � Thomas, Minta



3 � Outline 22/54

1 Chapter 1: Introduction

2 Chapter 2: Maximum Likelihood Estimation via Generalized Eigenvectors

3 Chapter 3: Robust PCA

4 Chapter 4: New Bandwidth Selection Criterion for KPCA

5 Chapter 5: Weighted LS-SVM Classi�er

6 Chapter 6: Chemical Descriptor based on Connection-Table

7 Chapter 7:Conclusion and Future Studies

Deepening the methodology behind Data integration and Dimensionality reduction: � Thomas, Minta



3 � Robust PCA to identify di�erentially expressed genes 23/54

3-1 Introduction

3-2 Robust PCA and Gene Expression Analysis

3-3 Conclusion

Deepening the methodology behind Data integration and Dimensionality reduction: � Thomas, Minta



3 � 1 Introduction 24/54

The robust PCA proposed by Candes et al can recover a low-rank matrix C from highly
corrupted measurements D.

Robust PCA solves the following optimization problem

min
C,S
‖C‖∗ + λ‖S‖1,

subject to D=C+S

where λ is a positive regulation parameter, ‖C‖∗ = Σiσi(C) denote the nuclear norm of
the matrix C, that is, the sum of its singular values, and ‖S‖1 = Σij |Sij | denote the

l1-norm of S, which is e�cient and robust to outliers.
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Steps involved in:

Identi�ed di�erentially expressed genes using RPCA

Search for co-expressed genes of di�erentially expressed ones using GeneMANIA, an
online tool which �nds other genes that are related to a set of input genes, using a
very large set of functional association data.

LS-SVM classi�er applied on whole data sets, subsets of genes obtained by robust PCA for predicting colon
cancer.

Data Sources No. of genes Methods Accuracy
Microarray and literature information 23 proposed approach 0.834(0.087)
Microarray 30 RPCA in Liu et al. 0.834(0.085)
Microarray and literature information 33 proposed approach and GeneMania 0.870(0.078)
Microarray 46 RPCA in et al. and GeneMania 0.795(0.095)
Microarray 2000 whole data set 0.834(0.097)

Results:

The predictive performance has improved while considering both co-expressed genes and di�erentially
expressed ones.

The incorporation of literature information into microarray analysis improves the identi�cation of disease
associated genes.
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Robust PCA is a modi�cation of the widely used statistical procedure of PCA which
works well with respect to grossly corrupted observations.

The proposed robust PCA approach on colon cancer data incorporating external
knowledge into microarray analysis improves the identi�cation of disease speci�c genes
and performance of decision support in cancer diagnosis.

The biological relevance and the prediction performance of selected genes emphasize
the relevance of our approach for the identi�cation of di�erentially expressed genes.

This study show single data source is inadequate to explain complex network of genes
underlying a disease.
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4-2 Bandwidth selection criterion for kernel PCA

4-3 Results

4-4 Conclusion

The work was published as Thomas M., De Brabanter K., De Moor B.: New bandwidth
selection criterion for Kernel PCA: Approach to Dimensionality Reduction and
Classi�cation Problems. BMC Bioinformatics 2014, 15:137 (2014).
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Kernel PCA is de�ned as,
Ωcα = λα

where Ωc,i,j centered kernel matrix with RBF kernel function K(xi, xj) = exp(− ||xi−xj ||
2

2h2 )
(RBF kernel with bandwidth h), is the eigenvector and λ is an eigenvalue.

zn(x) = ΣNi=1α
(n)
i K(xi, x)

-zn(x) the score variable of sample x on nth eigenvector α(n).
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Link with LS-SVM approach to kernel PCA and least squares cross validation in kernel
density estimation, we proposed a data driver bandwidth selection criterion for kernel PCA.
We propose the following tuning criterion for the bandwidth h:

J(h) =
h∈R+

0

1

N

N∑
j=1

∫
|z(−j)
n (x)|dx,

where E denotes the expectation operator, N is the number of samples and z
(−j)
n denotes

the score variable with the jth observation is left out.

Figure: Bandwidth Selection of KPCA for a Fixed Number of Components
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The optimal bandwidth h and number of components k of kernel PCA can be obtained by

J(h, k) =
h∈R+

0 ,k∈N0

1

N

k∑
n=1

N∑
j=1

∫
|z(−j)
n (x)|dx

where N is the number of samples and z
(−j)
n denotes the score variable with the jth

observation is left out.

Figure: Selection of optimal bandwidth and number of components for kernel PCA
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Dataset Kernel preprocessing + LS-SVM PAM Lasso
whole data PCA KPCA t-test(p<0.05)

RBF 0.769(0.127) 0.793(0.081) 0.822(0.088) 0.816(0.094)
I lin 0.822(0.068) 0.837(0.088) 0.864(0.078) 0.858(0.077) 0.787(0.097) 0.837(0.116)

poly 0.818(0.071) 0.732(0.072) 0.825(0.125) 0.829(0.071)

RBF 0.637(0.146) 0.749(0.093) 0.780(0.076) 0.760(0.080)
II lin 0.803(0.059) 0.772(0.094) 0.790(0.075) 0.764(0.067) 0.659(0.084) 0.766(0.074)

poly 0.701(086) 0.752(0.063) 0.753(0.072) 0.766(0.064)

RBF 0.832(0.143) 0.762(0.066) 0.879(0.058) 0.913(0.047)
III lin 0.915(0.043) 0.785(0.063) 0.878(0.066) 0.913(0.047) 0.707(0.067) 0.9359( 0.0374)

poly 0.775(0.080) 0.685(0.105) 0.8380(0.068) 0.913(0.047)

RBF 0.615(0.197) 0.853(0.112) 0.867(0.098) 0.853(0.187)
IV lin 0.953(0.070) 0.917(0.083) 0.929(0.077) 0.924(0.070) 0.759(0.152) 0.707(0.194)

poly 0.762(0.118) 0.811(0.140) 0.840(0.131) 0.733(0.253)

Results:

As a preprocessing step kernel PCA outperformed PCA in the performance of LS-SVM
classi�er on all case studies.

The feature selection techniques such as t-test, Lasso and PAM preformed well on few
cases, but the number of genes selected on each iterations widely varied.

Considering the possibility of increasing size and complexity of microarray data sets in
future, dimensionality reduction and nonlinear techniques have its own signi�cance.
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We propose a data-driven bandwidth selection criterion for kernel PCA by tuning the
optimum bandwidth and the number of principal components.

The performance of the proposed strategy is signi�cantly better than an existing
optimization algorithm for kernel PCA

Its classi�cation performance is not sensitive to any number of selected genes, so the
proposed method is more stable than others proposed in literature

It reduces the dimensionality of the data while keeping as much information as
possible of the original data
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This paper was published in BMC Bioinformatics: Thomas M., De Brabanter K.,
Suykens J.A.K., De Moor B.: Predicting breast cancer using an expression values
weighted clinical classi�er. BMC Bioinformatics 2014, 15:6603 (2014).
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Several data fusion techniques are available to integrate genomics or proteomics data, but only a few
studies have created a single prediction model using both gene expression and clinical data.

Singular Value Decomposition (SVD) and generalized SVD (GSVD) have been shown to have great
potential within bioinformatics for extracting common information from data sets such as genomics and
proteomics data.

LS-SVM is a powerful classi�er in microarray analsyis

While bringing up the bene�ts of these two techniques, we propose a machine learning approach, a
weighted LS-SVM classi�er to integrate two data sources.
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Given a training data set of n points D = {x(1)
i , x

(2)
i , yi}ni=1 with output data yi ∈ R

and input data sets x
(1)
i ∈ Rm, x(2)

i ∈ Rp (x
(1)
i and x

(2)
i are the ith column of m× n

matrix A and p× n matrix B respectively).

Consider the feature maps ϕ(1)(.) :Rm → Rn1 and ϕ(2)(.) :Rp → Rn2 to a high
dimensional feature space F , which is possibly in�nite dimensional. The centered
feature matrices Φ

(1)
c ∈ Rn1×N , Φ

(2)
c ∈ Rn2×N become

Φ(1)
c = [ϕ(1)(x

(1)
1 )T − µ̂T(ϕ1); . . . ;ϕ

(1)(x
(1)
N )T − µ̂T(ϕ1)]

T

Φ(2)
c = [ϕ(2)(x

(2)
1 )T − µ̂T(ϕ2); . . . ;ϕ

(2)(x
(2)
N )T − µ̂T(ϕ2)]

T ,

where µ̂ϕl = 1
N

ΣNi=1ϕ
(l)(x

(l)
i ), l = 1, 2

The kernel GEVD is described as follows:

Ω(1)
c α = λΩ(2)

c α,

where λ = 1
γ
eigenvalue, Ω

(1)
c , Ω

(2)
c are centered kernel matrices and α are generalized

eigenvectors.
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Given the link between LS-SVM approach to kernel GEVD and the weighted LS-SVM
classi�er, we proposed a mathematical framework which representing the kernel GEVD in
the form of weighted LS-SVM classi�er.

In primal space the problem:

P : minv,e,b J(v, e) = γ 1
2
eT (Φ

(2)T

c Φ
(2)
c )−1e+ 1

2
vT v

such that y = Φ
(1)T

c v + b1N + e,

[
0 1TN

1N Ω
(1)
c + γ−1Ω

(2)
c

] [
b
α

]
=

[
0
y

]
In dual space,

y(x) =

N∑
i=1

αi([K
(1)(x, xi) +

1

γ
K(2)(x, xi)] + b)

with αi are the Lagrange multipliers, γ is a regularization parameter chosen by the user,

K(1)(x, z) = ϕ(1)(x)
T
ϕ(1)(z), K(2)(x, z) = ϕ(2)(x)

T
ϕ(2)(z) and

y(x) is the output corresponding to validation point x.
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Figure: Optimization algorithm for the weighted LS-SVM classi�er. The data sets represented as matrices with
rows corresponding to patients and columns corresponding to genes and clinical parameters respectively for �rst
and second data sets. v-fold (in this �gure for simplicity we assumes v = 1) cross validation is applied to select
the optimal parameters for the LS-SVM classi�er.
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Comparisons of Di�erent Classi�ers, on Single Data source vs. Multiple Data Sources

Case I Case II Case III Case IV Case V
Classi�ers
CL +LS-SVM
test AUC 0.7795(0.0687) 0.7979(0.1358) 0.6152(0.0565) 0.6622(0.0628) 0.7740(0.0833)
p-value 0.0511 0.0609 0.0086 2.2790E-09 0.0931
MA+LS-SVM
test AUC 0.7001(0.0559) 0.8060(0.0728) 0.6216(0.0348) 0.7357(0.0085) 0.5465(0.0797)
p-value 0.0001 0.0010 00.0040 3.4954E-05 2.7153E-06
GEVD+LS-SVM
test AUC 0.7716(0.0818) 0.7685(0.0645) 0.6172(0.0426) 0.7528(0.1257) 0.7890(0.0529)
p-value 0.0756 2.0196E-05 0.0040 0.0722 0.01145
KGEVD+LS-SVM
test AUC 0.7936(0.0650) 0.821(0.0670) 0.6539(0.0616) 0.773(0.1011) 0.7916(0.0538)
p-value 0.1701 0.0525 0.0064 0.1485 0.0305
weighted LS-SVM
test AUC 0.8177(0.0666) 0.8465(0.0480) 0.6921(0.0327) 0.8119(0.0893) 0.8040(0.0387)

p-value: One-sided paired-sampled t-test for the comparison of weighted LS-SVM with other classi�ers.
CL and MA are the clinical and microarray kernels of RBF kernel functions.

Results:
On all case studies, weighted LS-SVM classi�er outperformed all other discussed methods (LS-SVM on RBF clinical kernel and microarray kernel
individually, GEVD and kernel GEVD as pre-processing step,followed by LS- SVM on reduced data), in terms of test AUC.

The weighted LS-SVM performance is slightly better on the second and fourth cases, but not signi�cantly, than the kernel GEVD.
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The ultimate goal of this work is to propose a machine learning approach which is
functional in both data fusion and supervised learning.

We further analyzed the potential bene�ts of merging microarray and clinical data sets
for prognostic application in breast cancer diagnosis.

A clinical classi�er weighted with microarray data set results in signi�cantly improved
diagnosis, prognosis and prediction responses to therapy.

The proposed model has been shown to be a promising mathematical framework in
both data fusion and non-linear classi�cation problems.

Possible additional applications of weighted LS-SVM include integration of genomic
information collected from di�erent sources and biological processes.
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Activity/Function prediction for molecules

~106 – 109

molecules

~102  – 103

molecules

VIRTUAL 

SCREENING

Similarity Search

Consensus QSAR 

models
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Molecular descriptors are numerical values that characterize properties of molecules. The
descriptors fall into Four classes

Topological
Geometrical
Electronic
Hybrid or 3D Descriptors

Connection Table a portion of a structure-data File (SDF File):

A chemical file format: MOL file

Connection-Table
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An overview of chemical descriptor formation from the connection table of compounds

MOLCONV
3 2  0  0  1  0              1 V2000
5.9800   -0.0000   -0.0000 Br 0  0  0  0  0  0
4.4000   -0.6600    0.8300  C 0  0  0  0  0  0
3.5400   -1.3500   -0.1900  C 0  0  0  0  0  0
1  2  1  0
2  3  1  0

N compoundsConnection Table of a Compound

C-0

N-1 

H-2  

F-3  

Br-4  

O-5  

S-6  

CL-7  

Si-8  

K-9

...

5.9800   -0.0000   -0.0000 4 0  0  0  0  0  0
4.4000   -0.6600    0.8300  0 0  0  0  0  0  0
3.5400   -1.3500   -0.1900  0 0  0  0  0  0  0

1  2  1  0
2  3  1  0
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Optimal parameters

PCA is applied to the connection-table of each compounds to de�ne a new structural descriptor in terms of
two vectors. This results into two matrices: atoms vs. compounds and bonds vs. compounds.

The weighted LS-SVM framework integrates these two vectors into a single vector named as weighted
chemical descriptor and performs further prediction.

LOO-CV is applied to select the optimal parameters.
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Weighted LS-SVM classi�er, a mathematical framework for integrating two data sources
are de�ned as ,

y(x) =

N∑
i=1

αi([K
(1)(x, xi) +

1

γ
K(2)(x, xi)] + b)

with αi are the Lagrange multipliers, γ is a regularization parameter chosen by the user,

K(1)(x, z) = ϕ(1)(x)
T
ϕ(1)(z), K(2)(x, z) = ϕ(2)(x)

T
ϕ(2)(z) and y(x) is the output

corresponding to validation point x.
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Identify new compounds which inhibit biofilms

formed by either Salmonella or

Pseudomonas.

Classifier Model

Class = Active / Inactive?

Test Chemical 

Compound

Descriptor-space

Representation
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Comparison of averaged classi�cation performances of di�erent descriptors: proposed descriptor, MACCS keys,
ECF, Path keys and BCUT descriptors to identify the active and inactive compounds in Salmonella and
Pseudomonas bio�lm

Proposed Method MACCS Keys ECF Path keys BCUT
Salmonella
Accuracy(std) 0.8071(0.0581) 0.7706(0.0500) 0.7686(0.0438) 0.7735(0.0454) 0.766(0.04)
p-value 0.0100 0.0100 0.0005 0.012

Test AUC(std) 0.6453(0.0409) 0.6988(0.0294) 0.6525(0.0263) 0.6425(0.0328) 0.665 (0.077)
p-value 6.73E-05 0.3528 0.2800 0.031

F-score(std) 0.3058(0.0375) 0.0212(0.0333) 0.0315(0.0241) 0.036(0.0142) 0.484(0.0823)
p-value 1.29E-16 5.52E-17 1.00E-17 0.064

Pseudomonas
Accuracy(std) 0.8179(0.0492) 0.7908(0.0441) 0.7829(0.0360) 0.7882(0.0313) 0.65(0.055)
p-value 0.0001 0.0019 0.0004 0.012

Test AUC(std) 0.6549(0.0267) 0.7041(0.0258) 0.6559(0.0397) 0.7118(0.0395)) 0.588(0.066)
p-value 5.06E-06 0.9104 3.30E-05 0.212

F-score(std) 0.3277(0.0346) 0.0211(0.0330) 0.1401(0.0854) 0.0874(0.0469) 0.743(0.059)
p-value 2.34E-17 1.38E-07 8.71E-14 0.024

Results:
In both case studies, the proposed weighted LS-SVM based descriptor performed well in terms of test
accuracy and F-score.

While the best test AUC returned by MACCS keys for Salmonella and Path keys for Pseudomonas.
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PCA was used to decompose the connection-table of each compound e�ectively to a
low dimensional representation, as such de�ning a new structural descriptor of
chemical compounds.

A weighted LS-SVM approach was used to design a weighted chemical descriptor and
to predict the biological activity of chemical compounds.

The results illustrate that the obtained descriptor o�ers an improved model to identify
very active compounds in a speci�c biological condition.

The newly proposed approach, the weighted chemical descriptors of molecular
structure, identi�ed accurately the inhibitors on Salmonella, Pseudomonas bio�lms
formation, Thrombin, Trypsin and FactorXa, than other discussed descriptors.

The proposed machine learning technique could be applicable to any
classi�cation/prediction problem which is based on the molecular structure of
compounds.
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Microarray data, which was di�cult and expensive to collect were incorporated as prior information into
clinical decision-making, improving the classi�cation performance and o�ering better diagnosis and
prognosis.

Incorporation of literature information into microarray analysis improved the possibility for obtaining stable
disease associated genes.

The linear projections based on GEVD will not perform very well in the model development, if the primary
data source contains only limited number of features.

To tackle these problems either we have to perform the projection based on kernel based GEVD or remove
irrelevant features from the prior data using feature selection techniques.

The unsupervised dimensionality reduction methods are most useful in the practical applications in which
the labeled data are usually expensive to collect.

We o�ers a data driven bandwidth selection criterion for KPCA which is executing in an unsupervised mode.

We proposed a kernel-based mathematical framework for data integration and classi�cation: a weighted
LS-SVM classi�er.

This approach could be considered as a standard mathematical problem to produce better classi�cation
performance based on heterogeneous data integration.
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The big data technologies process large quantities of data within tolerable elapsed time. In future one can
propose the implementation of GEVD and MLGEVD for these platform and overcome the technical
challenges with big data.

If the data set grows or changes over time, the RPCA algorithm needs to run from scratch. This raises the
question of how the existing models can be extended to include the scalable data sets.

Advanced analytics techniques are needs to be formulated for multivariate statistics, such as kernel PCA
and kernel regression, in matrix form over big data platforms.

The chemoinformatics work will be extended to address the questions such as the parameters which are
important for activity and how to modify molecules to improve the activity in a speci�c biological condition
etc.
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