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Abstract

This dissertation considers two main research topics. First, this thesis
explores the applicability of Proper Orthogonal Decomposition (POD) and
Galerkin projection in the design of Model Predictive Control (MPC)
schemes for tubular chemical reactors. These processes pose very interesting
control problems, since their behavior is modeled by highly nonlinear Partial
Differential Equations (PDEs), and they require the satisfaction of both
their input (physical limitation of the actuators) and state constraints (e.g.,
the temperature inside the reactor must be below a given value in order to
avoid the formation of byproducts). In this study, POD is used together with
Garlerkin projection for reducing the high-dimensionality of the discretized
systems used to approximate the PDEs that model the reactors. Then,
based on the resulting reduced-order models, Kalman filters and predictive
controllers are designed. Although a significant model order reduction can
be obtained with POD and Galerkin projection, these techniques do not
reduce the number of state constraints (linear inequality constraints) which
is typically very large. In this thesis we propose two methods to tackle this
problem. In the first method we use univariate polynomials to approximate
part of the basis vectors derived with the POD technique, and then we apply
the theory of positive polynomials to find good approximations of the state
constraints by Linear Matrix Inequalities (LMIs). In the second method,
we exploit the similarities between the coefficients of consecutive state
constraints for developing a greedy algorithm that selects a small number
of constraints from the complete set. This algorithm reduces dramatically
the number of state constraints, and consequently the memory needed for
storing them and the time required for solving the optimization problem.

The second main research subject of this thesis is related to speeding up
the evaluation of reduced-order models derived by POD from nonlinear
high-dimensional systems. Unlike the Linear Time Invariant (LTI) case,
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the model-order reduction by POD and Galerkin projection does not
conduce to an important computational saving when the high-dimensional
models under consideration are nonlinear or Linear Time Variant (LTV).
Therefore, this thesis introduces two methods for coping with this situation.
The first method takes advantage of the input-output nonlinear mapping
capabilities, and the fast on-line evaluation of Multi-Layer Perceptrons
(MLPs) for accelerating the evaluation of the POD models. The second
method exploits the polynomial nature of POD models derived from input-
affine high-dimensional systems with polynomial nonlinearities, in order to
generate compact and efficient formulations that can be evaluated much
faster. Moreover, in this study it is shown how the use of sequential feature
selection algorithms can provide a significant boost in the computational
saving. Although this method is not as general as the first one, it might
be applied to models with non-polynomial nonlinearities, provided that the
nonlinearities can be approximated by low degree polynomials. In addition,
conditions for guaranteeing the local stability of these POD models with
polynomial nonlinearities are discussed.



Notation

Variables and Symbols

xT Transpose of the vector x
AT Transpose of the matrix A
Aij or A(i, j),A ∈ R

m×n Element at the ith row and jth column of A
A(i, :),A ∈ R

m×n ith row of A
A(:, j),A ∈ R

m×n jth column of A
AH Conjugate transpose of the matrix A
In Identity matrix of size n × n
I Identity matrix
‖x‖2, x ∈ R

n L2-norm or Euclidean norm of a vector :
√

xTx
‖x‖Q, x∈ R

n,Q∈ R
n×n Weighted norm:

√
xTQx

〈x,y〉, x,y ∈ R
n Euclidean inner product between two vectors:

xTy = yTx
[x; z],x, z ∈ R

n Stacked vectors : [xT , zT ]T ∈ R
2n

{xi}p
i=1 Data set with p elements : {x1,x2, . . . ,xp}

1 Vector where all components are equal to 1
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Acronyms

ARE Algebraic Riccati Equation
BDS Bidirectional Search
BMI Bilinear Matrix Inequality
CTR Continuous Tubular Reactor
CSTR Continuous Stirred-Tank Reactor
KLD Karhunen-Loève Decomposition
LMI Linear Matrix Inequality
LTI Linear Time Invariant
LTV Linear Time Variant
LRS Plus-L Minus-R Selection
MEMS Micro-Electro-Mechanical System
MLP Multi-Layer Perceptron
MPC Model Predictive Control
MPE Missing Point Estimation
MSE Mean Squared Error
NSDP Nonlinear SemiDefinite Program or Programming
ODE Ordinary Differential Equation
PCA Principal Component Analysis
PDE Partial Differential Equation
PFR Plug Flow Reactor
POD Proper Orthogonal Decomposition
POM Proper Orthogonal Mode
POV Proper Orthogonal Value
P-POD Polynomial POD model
PRBNS Pseudo Random Binary Noise Signals
PRMNS Pseudo Random Multilevel Noise Signals
QP Quadratic Programming or Program
RHC Receding Horizon Control
SBS Sequential Backward Selection
SDP SemiDefinite Program or Programming
SFS Sequential Forward Selection
SOS Sum Of Squares
SQP Sequential Quadratic Programming
SSE Sum Squared Error
SVD Singular Value Decomposition
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Chapter 1

General Introduction

1.1 Introduction and motivation

This thesis explores the application of a technique known as Proper
Orthogonal Decomposition (POD), in the design of Model Predictive
Control (MPC) strategies for tubular chemical reactors. Additionally,
this dissertation develops new methods for improving the performance in
simulation of models derived by POD from nonlinear high-dimensional
systems.

Tubular chemical reactors are distributed parameter systems that typically
are modeled by coupled nonlinear Partial Differential Equations (PDEs)
which are derived from mass and energy balance principles. One way of
addressing the control of these infinite-dimensional systems is by approx-
imating the PDEs by a large number of Ordinary Differential Equations
(ODEs). Afterwards, given the high-dimensionality of the resulting systems,
reduced order models are derived to make possible the control design. Figure
1.1 shows this general control design framework. In this dissertation, the
reduced order models are found by means of POD and Galerkin projection.
Proper orthogonal decomposition is a data driven technique where a
suitable set of orthonormal basis vectors are computed from simulation
or experimental data. These basis vectors, which are organized in order
of relevance, capture the spatial dynamics of the original systems. The
reduced order models are obtained by projecting (Galerkin Projection) the
high-dimensional models on the space spanned by the most relevant basis
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2 General Introduction

vectors. The advantage of using these two techniques is the incorporation of
simulated or experimental data as well as the existing physical relationships
from the original model [64].

Model predictive control is a popular control method for handling input
and state constraints within an optimal control setting. In MPC, the
control actions are obtained by solving continually, on-line, a finite-horizon
constrained open-loop optimal control problem. The popularity of this
approach resides largely in its ability to handle, among other issues, mul-
tivariable interactions, constraints on controls and states, and optimization
requirements. The use of this control strategy in tubular reactors is of
special interest since this control methodology has demonstrated that it can
push the plants towards their limits of performance while satisfying both
the input (constraints in the actuators) and the state constraints (e.g., the
temperature inside the reactor must be within a predefined range).

Tubular reactors typically operate under steady state conditions in order
to efficiently produce high product volumes of a consistent quality. Nev-
ertheless, transient operation regimes are also used to minimize the off-
spec material during transitions, when reactors are employed for producing
different kind of products. In this dissertation, the POD-based MPC
controllers have the goal of rejecting the disturbances that affect the nominal
operation of the reactors, under steady state regimes. For a complete
literature review about model based control and optimization of tubular
reactors, readers are referred to [95, page 43].

From the studies presented in [33–36], a general and practical framework for
robust control synthesis for transport reaction process, which also encompass
tubular reactors, has been established. However, the drawback of this
framework is that it does not include the input and output constraints of
the process under consideration. Consequently, the research efforts have
been recently focused on the use of model predictive control strategies,
which are characterized by dealing with the input and state constraints
of a process in a very natural way. Thus, predictive controllers have been
devised in [46, 133] for hyperbolic systems (convection-reaction processes,
e.g., a tubular reactor where a plug-flow behavior is assumed), and in [44–46]
for parabolic systems (Diffusion-reaction processes, e.g., a tubular reactor
with axial diffusion/dispersion).

The well-known success of POD in many applications for deriving reduced-
order models for simulation and control purposes, motivates its use in
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this thesis for the development of alternative predictive control strategies
(POD-based predictive control systems) for tubular chemical reactors. As
it was mentioned before, these predictive control schemes should push the
reactors to their limits of performance while satisfying the input and output
constraints.

There is however, an important aspect of the POD-based predictive
controllers that should be addressed at the moment of their implementation:
the reduction of the number of state/output constraints which typically is
very large, since it is given by the number of discretization points multiplied
by the prediction horizon of the controllers. This large set of constraints
consumes a significant amount of memory due to the large size of the
matrices storing it, which by the way are not sparse. Furthermore, this large
amount of constraints increase the computational time required for solving
the optimization problem of the MPC. Clearly, methods that can cope with
the reduction of the number of state/output constraints are necessary in
order to generate more efficient POD-based predictive controllers.

Leaving aside the topic of POD-based predictive controllers for tubular
reactors, another problem that motivates this thesis is the one related
with the performance improvement in simulation of nonlinear reduced-order
models derived by means of POD and Galerkin projection. Although a
large model-order reduction can be achieved with these techniques, such
reduction does not lead to a significant computational saving when nonlinear
or Linear Time Variant (LTV) models are considered. This limitation is
due to the necessity of having the full spatial information from the original
high-dimensional systems, at the moment of evaluating the reduced-order
models. In [10–12] a general method known as Missing Point Estimation
(MPE) is introduced for coping with this problem. The method achieves
a computational saving by conducting the Galerkin projection on some
pre-selected state variables or points of the spatial domain instead of the
complete set. The remaining state variables are estimated from the POD
basis vectors. Although it has been reported that this technique can save
considerable computation effort, the speeding up of nonlinear POD models
is still an open problem that might be addressed from a different angle.
Methods that exploit the nature of the nonlinearities, although more specific
than the MPE, might provide more accurate reduced-order models that can
be evaluated much faster.
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1.2 Objectives 5

1.2 Objectives

The main objectives of this dissertation are summarized in the following
lines.

• To explore the applicability of proper orthogonal decomposition in
the design of model predictive control schemes for tubular chemical
reactors.

• To propose methods for reducing the number of state/output con-
straints of POD-based model predictive controllers.

• To derive alternative techniques for speeding up the evaluation of
nonlinear or Linear Time Variant (LTV) POD models.

1.3 Chapter by chapter overview

This thesis is organized in 6 chapters. Figure 1.2 presents an overview of
them as well as the way they relate to each other.

A brief description of each chapter is given as follows.

• Chapter 2: This chapter starts by introducing the fundamentals of
proper orthogonal decomposition. Subsequently, the chapter describes
how POD and Galerkin projection are used for deriving reduced
order models from high-dimensional systems. The basics of model
predictive control and Kalman filtering are also given here. The
chapter concludes with a detailed example, where all these techniques
are used together in the control of the temperature profile of a one-
dimensional bar.

• Chapter 3: This chapter addresses the control of a non-isothermal
tubular chemical reactor by using POD and predictive control tech-
niques. After describing the system to be controlled, this chapter
introduces an optimization algorithm for deriving the operating
profiles in steady state of the reactor. The algorithm is described
in detail and some numerical results are presented. Based on the
POD model obtained from the linearized equations of the system



6 General Introduction

around the operating profiles, two MPC control schemes are proposed
for the reactor. Their control goal is to keep the process at the
operating profiles despite the disturbances in the feed flow, while
maintaining the temperature inside the reactor below a given value
in order to prevent undesirable side reactions. The basic difference
between the MPC schemes is in their formulations. One of them
is formulated in terms of the POD coefficients (MPC-NTC) and the
other one in terms of physical variables (MPC-PV). In addition, the
second one incorporates in its formulation the temperature constraint
of the reactor and imposes it to some selected points of the spatial
domain. This scheme also incorporates a mechanism for handling the
possible infeasibilities that can arise. At the end of this chapter, some
simulation results are presented in addition to a detailed comparison
regarding the performance along several tests of the proposed control
schemes. The pros and cons of each control system are also discussed.

• Chapter 4: This chapter starts by presenting an extension of the
MPC-NTC controller proposed in the previous chapter. The new
controller incorporates in its formulation the temperature constraint
of the reactor and uses a slack variable approach with �∞-norm and
time-dependent weights for dealing with the infeasibilities that might
emerge [68]. Since POD only reduces the number of states and not
the number of temperature constraints which is very large, the opti-
mization algorithm within the MPC requires a considerable amount
of memory and it also demands more computational effort for finding
the optimal solution. In this chapter, two methods for reducing the
number of temperature constraints are proposed. In the first method,
the large set of inequality constraints (temperature constraints) is
approximated by using the theory of positive polynomials [1]. This
approximation conduces to a reduction in the number of constraints
by replacing the large number of inequality constraints by a few linear
matrix inequalities and a small number of linear equalities. The basics
of this positive polynomials theory are also discussed very briefly.
In the second method, a greedy algorithm is used for selecting a
reduced set of constraints from the full set [5]. The algorithm exploits
the similarities between the coefficients of consecutive temperature
constraints, which tend to be alike as consequence of the smoothness
of the most relevant basis vectors. Here it is shown that the greedy
algorithm can be used for finding a suitable set of points for the
MPC-PV controller proposed in the previous chapter. In addition,
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Chapter 1

Proper Orthogonal Decomposition 
and Predictive Control

Linear POD 
Models

Nonlinear
POD Models

General Introduction

Chapter 2

Control of a Non-isothermal 
Tubular Reactor

POD
Coefficients

Physical
Variables 

MPC formulation based on:

Chapter 3

Performance Improvement in 
Model Simulation

Neural POD 
Models

Polynomial 
POD  Models

Chapter 5

General Conclusions

Chapter 6

Constraint Handling

Greedy
Selection
Algorithm

Positive
Polynomial 
Approach

Chapter 4

Figure 1.2: Overview and connection between the different chapters in this
thesis. The arrows suggest the reading order of the chapters.



8 General Introduction

an improved formulation of this controller is discussed. Based on
the polynomial approximation of the temperature constraints, and
based on the reduced set of constraints found by the greedy algorithm,
two new MPC controllers are presented in this chapter. The chapter
includes several simulation results of all the control schemes as well
as a discussion about their performance and the advantages and
disadvantages of the methods proposed for reducing the number of
constraints.

• Chapter 5: This chapter presents two methods for speeding up
the evaluation of nonlinear POD models, which typically do not
provide a significant computational gain with respect to the high-
dimensional systems from which they are derived. This limitation
comes from the fact that the vector function of the resulting POD
models is still in terms of the high-dimensional vector function of
the original models. In the first method proposed to tackle this
problem, a multilayer perceptron is employed for approximating the
nonlinear vector function of the reduced order models [7]. Provided
that the output of a trained multilayer perceptron can be computed in
a very short time, a significant computational saving can be expected.
The second method is mostly intended for accelerating nonlinear
POD models derived from input-affine high-dimensional systems with
polynomial nonlinearities. It is shown that by taking advantage
of the polynomial nature of the resulting POD models, a compact
and efficient representation of the nonlinear vector function can be
built, which significantly reduces the time required for evaluating
the POD models. Given that the number of monomials of these
polynomial representations can be very large and could compromise
the computational saving, in this chapter a sequential feature selection
algorithm is employed for selecting the most relevant monomials
(suboptimal solution) in order to boost the computational gain. In
order to guarantee the local stability of POD models with polynomial
nonlinearities, an eigenvalue constraint is derived from Lyapunov’s
theory. Given that the inclusion of this constraint conduces to a
non-smooth and non-convex optimization problem, in this chapter
two approaches are proposed for dealing with this difficulty. In one
method a semidefinite optimization problem has to be solved whereas
in the second one the solution of a nonlinear semidefinite optimization
problem must be found. The pros and cons of each of these approaches
are discussed through a numerical example. In order to explain the
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techniques introduced in this chapter for speeding up the evaluation
of nonlinear POD models, the nonlinear heat transfer problem in a
one-dimensional bar is used (it has nonlinearities of polynomial type).
The last part of the chapter presents the simulation and validation
results of the different POD models developed for the bar as well as
a detailed discussion about the advantages and disadvantages of the
techniques proposed. These techniques are also compared with an
existing method known as missing point estimation [11,12].

• Chapter 6: In this chapter the general conclusions of this dissertation
are presented as well as some future research subjects.

1.4 Contribution of this thesis

The main contributions of this dissertation can be summarized as follows.

• In Chapter 2 by using a didactic and illustrative example, namely,
the control of the temperature profile in a one-dimensional bar [2],
we present a tutorial about the application of POD and Galerkin
projection in the derivation of reduced-order models, which are the
basis for developing predictive control schemes for high-dimensional
processes, like the ones resulting from the discretization of partial
differential equations.

• In Section 3.2.2 we propose an optimization algorithm (a sort of
Sequential Quadratic Programming solver) for deriving the steady
state operating profiles of a non-isothermal tubular reactor where a
plug flow behavior is assumed [3]. The optimization problem solved
by the algorithm, considers both the input and state constraints of
the process and its cost function takes into account both the squared
deviations of the concentration at the reactor outlet with respect to
zero (terminal cost), and the squared deviations of the temperature
along the reactor regarding the temperature of the feed flow (integral
cost). To sum up, the proposed algorithm solves a multi-objective
optimization where two conflictive objectives, the terminal and integral
costs, are combined by a weighted sum in the cost function.

• Along Chapters 3 and 4, several POD-based predictive control schemes
are developed for the tubular reactor considered in this dissertation.
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A list of them is given as follows.

– MPC-NTC (see Section 3.4.1): MPC controller whose formula-
tion is in terms of the POD coefficients and does not incorporate
the temperature constraint of the reactor in its formulation [3].

– MPC-PV (check Section 3.4.2): MPC controller whose formula-
tion is in terms of physical variables. It imposes the temperature
constraint of the system on some selected points of the spatial
domain [4].

– MPC-QP (see Section 4.2): This is an extension of the MPC-
NTC controller where the temperature constraint of the reactor
is taken into account. It is characterized for dealing with a very
large number of linear inequality constraints [1].

– MPC-SDP (given by (4.10) in Section 4.3.3): This is a variation of
the MPC-QP controller in which the large set of linear inequality
constraints is replaced by few Linear Matrix Inequalities (LMIs)
and equality constraints [1].

– MPC-QP-RS (defined by (4.13) in Section 4.4): This controller is
also an adaptation of the MPC-QP controller in which the large
set of linear inequality constraints is substituted by a reduced
set of inequalities that has been found by the greedy selection
algorithm introduced in Section 4.4 [5].

In addition, at the end of Section 4.4, we discuss an improved
formulation of the MPC-PV controller.

• In Chapter 4, we propose two techniques for reducing the number of
state/output constraints of POD-based predictive controllers, which
typically is quite large. In our first approach, we use the theory of
positive polynomials for approximating the feasible region delimited
by the state/output constraints of the process [1]. This approximation
leads to a reduction in the number of constraints by substituting
many inequalities by a small number of LMIs and a few equality
constraints. In our second approach, we exploit the fact that the
coefficients of consecutive constraints are similar in order to formulate
a greedy algorithm which chooses a reduced set of constraints from the
complete set [5]. These techniques are applied to some of the predictive
controllers proposed for the reactor treated in this dissertation.

• In Chapter 5, we introduce two methods for accelerating the evaluation
of nonlinear POD models, given that their computational gain is
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compromised by the fact that they need the original full spatial
information of the high-dimensional models from which they are
calculated. The first method takes advantage of the input-output
nonlinear mapping capabilities, and the fast on-line evaluation of
multilayer perceptrons for speeding up the evaluation of the POD
models. From the approaches proposed, this is the most general
one. Our second method is characterized by exploiting the polynomial
nature of the POD models derived from input-affine high-dimensional
systems with polynomial nonlinearities, in order to generate compact
and efficient formulations that can be evaluated much faster. Although
this method is not as general as the first one, it might be applied
to models with non-polynomial nonlinearities, provided that the
nonlinearities can be approximated by low degree polynomials.

• In Section 5.5.2, we show how to use the sequential feature selection
theory for obtaining an extra boost in the computational gain of POD
models with polynomial nonlinearities.

• Based on Lypaunov’s theory, in Section 5.6 we propose constrained op-
timization problems that guarantee the local stability of the resulting
polynomial POD models.
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Chapter 2

Proper Orthogonal
Decomposition
and Predictive Control

2.1 Introduction

This chapter is dedicated to introducing the reader to Proper Orthogonal
Decomposition (POD), Galerkin projection, Model Predictive Control
(MPC) and Kalman Filtering. We will use these techniques along this thesis
to design control schemes for processes described by Partial Differential
Equations (PDEs) like tubular chemical reactors, for example.

The general procedure is as follows; first we discretize the PDE or PDEs
modeling the process, usually this leads to a high-dimensional system that
is not adequate for control design. Therefore we use POD and Galerkin
projection for deriving a reduced order model that can be used in the design
of MPC control schemes. Typically the state of the reduced order model is
not measured as well as the disturbances that affect the process, and this
information is required in the on-line implementation of the MPC algorithm.
Hence, we use a Kalman filter (optimal estimation techniques) for estimating
the unknown variables. This filter is also based on the reduced order model
of the high-dimensional system.

The chapter is structured as follows. Section 2.2 introduces the proper

13
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orthogonal decomposition technique and shows how it can be used in
conjunction with Galerkin Projection for deriving reduced order models
of high-dimensional systems. In Section 2.3 the basis of model predictive
control are presented as well as the fundamentals of the Kalman filter.
Finally we conclude this chapter with a very didactic and detailed example
where we apply all the techniques presented in previous sections to the
control of the temperature profile of a one-dimensional bar.

2.2 Proper orthogonal decomposition

Proper orthogonal decomposition and Galerkin projection are two well-
known techniques that have been used together for deriving reduced order
models of high-dimensional systems. These high-dimensional systems are
typically obtained after discretizing in space the partial differential equations
that model many processes. In this method an orthonormal basis for modal
decomposition is extracted from an ensemble of data (called snapshots)
obtained in the course of experiments or numerical simulations [93, 134].
The basis functions calculated with the POD technique are commonly
called either empirical eigenfunctions, empirical basis functions, empirical
orthogonal functions, Proper Orthogonal Modes (POMs) or basis vectors
[91]. The POD method not only provides an orthonormal basis, but also a
measure of the importance of each basis vector. This measure of importance
is sometimes referred to as Proper Orthogonal Value (POV) [93]. Now, if
we select the most relevant basis vectors and project (Galerkin projection)
the original high-dimensional model on the space spanned by this subset,
then we can obtain a reduced order model of the process. The most
striking feature of the POD method is its optimality: it provides the
most efficient way of capturing the dominant components of an infinite-
dimensional process with only a finite number of “modes”, and often
surprisingly few “modes” [66].

Depending on the field of application, POD is also known by other names
such as Karhunen-Loève Decomposition (KLD) or Expansion [94], Principal
Component Analysis (PCA) [74], and Singular Value Decomposition (SVD)
[9, 32] among others. POD has been developed by several people [91].
Lumley [98] traced the idea of POD back to independent investigations
by Kosambi (1943) [82], Loev̀e (1945), Karhunen (1946), Pougachev (1953)
and Obukhov (1954). Nevertheless, if we consider the history of PCA and
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SVD, then we can not forget the work of Pearson who introduced PCA in
1901 [118], and we have to mention the contributions of Beltrami (1873) [19],
Jordan (1874) [75,76], Sylvester (1889) [141–143], Schmidt (1907) [130] and
Weyl (1912) [154], who were responsible for establishing the existence of
the singular value decomposition and developing its theory [139]. POD
has been applied successfully in many engineering fields. It has been
widely used in studies of turbulence [22, 23, 31, 79, 97, 134, 136], and also
has been used in vibration analysis [37, 51], data analysis or compression
as in characterization of human faces [80, 135], damage detection [129],
signal analysis, map generation by robots [110], process identification,
control in chemical engineering [1, 3–5, 78, 100, 146], model reduction of
microelectromechanical systems (MEMS) [92], etc. There have been
applications of POD to both optimization [47, 99, 100, 146] and feedback
control design [1–5,12,17,64,71,72,78,84,85]. Besides in [14,15], a method for
reducing controllers for systems described by PDEs using POD is discussed.
A list of additional examples regarding the application of POD can be found
in [23, 66]. Concerning the PDEs to which POD has been applied, we have
among others: the incompressible/compressible Navier-Stokes equations
[16, 59, 73, 121], the heat equation (Parabolic PDE) [2, 11, 26, 64, 156], the
Burgers equation [31, 85], the wave equation (Hiperbolic PDE) [11], the
Boussinesq equation [49], and the Helmholtz equation (Eliptic PDE) [151].

In general, POD can be interpreted or realized in three different ways,
namely, Karhunen-Loève Decomposition (KLD), Principal Component Anal-
ysis (PCA) and Singular Value Decomposition (SVD) [91,93]. In this thesis
the POD technique will be interpreted as an application of SVD. The reader
is referred to [91] for a detailed discussion about the equivalence of the
SVD, PCA and KLD interpretations of POD as well as their particular
characteristics.

2.2.1 General procedure

Let x(t) ∈ R
N = [x1(t), x2(t), . . . , xN ]T be the state vector of a given

dynamical system, and let X ∈ R
N×Nd with Nd ≥ N be the so-called

snapshot matrix

X = [x(t1),x(t2), . . . ,x(tNd
)] =

⎡
⎢⎢⎢⎣

x1(t1) x1(t2) · · · x1(tNd
)

x2(t1) x2(t2) · · · x2(tNd
)

...
...

. . .
...

xN (t1) xN (t2) · · · xN (tNd
)

⎤
⎥⎥⎥⎦
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containing a finite number of samples or snapshots of the evolution of x(t)
at t = t1, t2, . . . , tNd

. In POD we start by observing that each snapshot can
be written as a linear combination of a set of ordered orthonormal basis
vectors (POD basis vectors) ϕj ∈ R

N , ∀j = 1, 2, . . . , N :

x(ti) =
N∑

j=1

aj(ti)ϕj , ∀i = 1, 2, . . . , Nd (2.1)

aj(ti) =
〈
x(ti),ϕj

〉
= ϕT

j x(ti), ∀j = 1, 2, . . . , N,

where aj(ti) is the coordinate of x(ti) with respect to the basis vector ϕj (it
is also called time-varying coefficient or POD coefficient) and 〈·, ·〉 denotes
the Euclidean inner product. Since the first n most relevant basis vectors
capture most of the energy in the data collected, we can construct an nth
order approximation of the snapshots by means of the following truncated
sequence

xn(ti) =
n∑

j=1

aj(ti)ϕj , ∀i = 1, 2, . . . , Nd, n 
 N. (2.2)

In POD, the orthonormal basis vectors are calculated in such a way that the
reconstruction of the snapshots using the first n most relevant basis vectors
is optimal in the sense that the Sum Squared Error (SSE) En between x(ti)
and xn(ti), ∀i = 1, . . . , Nd,

En =
Nd∑
i=1

‖x(ti) − xn(ti)‖2
2 (2.3)

is minimized. Herein ‖·‖2 denotes the L2-norm or Euclidean Norm. In
other words, the POD basis vectors are the ones that solve the following
constrained optimization problem:

min
ϕ1,...,ϕn

Nd∑
i=1

∥∥∥∥∥∥x(ti) −
n∑

j=1

〈
x(ti),ϕj

〉
ϕj

∥∥∥∥∥∥
2

2

(2.4)

subject to

ϕT
i ϕj =

{
1 if i = j
0 otherwise.

The constraint in (2.4) imposes the orthonormality condition of the basis
vectors. The orthonormal basis vectors that solve (2.4) can be found by
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calculating the singular value decomposition of the snapshot matrix X (see
[85, 91] for details about the derivation of the solution). If we write (2.1)
using a matrix formulation,

[x(t1), . . . ,x(tNd
)]︸ ︷︷ ︸

X

= [ϕ1, . . . ,ϕN ]︸ ︷︷ ︸
Φ∈RN×N

Γ∈R
N×Nd︷ ︸︸ ︷⎡

⎢⎢⎢⎣
a1(t1) · · · a1(tNd

)
a2(t1) · · · a2(tNd

)
...

. . .
...

aN (t1) · · · aN (tNd
)

⎤
⎥⎥⎥⎦ (2.5)

X = ΦΓ, ΦTΦ = IN .

then we obtain the proper orthogonal decomposition of X [9]. The matrices
Φ and Γ which contain the orthonormal basis vectors and the evolution of
the POD coefficients respectively, are found from the SVD of the snapshot
matrix X that is given by

X = ΦΣΨT

where Φ = [ϕ1,ϕ2, . . . ,ϕN ] ∈ R
N×N and Ψ = [ψ1,ψ2, . . . ,ψNd

] ∈ R
Nd×Nd

are unitary matrices, and Σ ∈ R
N×Nd is a matrix which contains the singular

values σi,∀i = 1, 2, . . . , N of X in a decreasing order on its main diagonal.
The matrix Γ containing the evolution of the POD coefficients is then equal
to the matrix product between Σ and ΨT . The orthonormal POD basis
vectors are just the left singular vectors of X. The minimum value of the
SSE is given by the following summation,

En =
N∑

j=n+1

σ2
j . (2.6)

The singular values of X are positive real numbers that are ordered in
a decreasing way, σ1 ≥ σ2 · · · ≥ σN ≥ 0. These values quantify the
importance of the basis vectors in capturing the information present in the
data. Therefore, the first POD basis vector is the most relevant one and
last POD basis vector is the least important element.

For the application of POD to concrete problems, the choice of the n
most relevant basis vectors is certainly of central importance. A criterion
commonly used for choosing n based on heuristic considerations is the so-
called energy criterion [48]. In this criterion we check the ratio between the
modeled energy and the total energy contained in X,
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P̄n =

n∑
j=1

σ2
j

N∑
j=1

σ2
j

, n = 1, . . . , N. (2.7)

The ratio P̄n is used to determine the truncation degree of the selected
POD basis vectors. The number of POD basis elements should be chosen
such that the fraction of the first singular values in (2.7) is large enough
to capture most of the information in the data [11]. An ad-hoc rule often
applied is that n has to be determined for P̄n = 0.99 [66]. The closer P̄n to
1, or similarly the closer 1− P̄n to 0, the better the approximation of X will
be.

Given that the POD basis vectors only reflect the information provided by
the snapshots, the generation of the snapshot matrix X is of vital importance
in the model reduction process by using POD. We have to keep in mind that
this technique attempts to capture the spatial dynamics (typically the state
vector x(t) comes from the discretization in space of a PDE) of a system
via the POD basis vectors and the temporal dynamics through the POD
coefficients. So, we must try to get representative data of the process around
the operating conditions on which we want to find its reduced order model.

2.2.2 Model reduction

For explaining the ideas and procedures in this section, we are going to
suppose that the dynamical behavior of the high-dimensional system from
which we want to find a reduced order model, is described by the following
nonlinear model in state space form,

ẋ(t) = f (x(t),u(t)) (2.8)
y(t) = g (x(t),u(t))

where x(t) ∈ R
N is the state vector which acts as a memory containing all

the information about the past of the system that is necessary to predict
the future behavior, u(t) ∈ R

nu is the input vector, y(t) ∈ R
ny is the

vector containing the outputs of the system, and f and g are vector-valued
functions or maps of appropriate dimensions. The order of (2.8) is given by
the number of state variables, that is, N .
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Model reduction aims to approximate (2.8) by a lower complexity model,
that is, a model with less number of states and therefore less state equations.
When POD is used for this purpose, we can basically distinguish two steps:

• The derivation and selection of the n most relevant basis vectors
[ϕ1,ϕ2, . . . ,ϕn] from an ensemble of simulation or experimental data
(time snapshots) of the process described by (2.8) and,

• The derivation of the dynamical model for the POD coefficients
aj(t),∀j = 1, 2, . . . , n associated to the selected basis vectors. The
POD coefficients would be the states of the reduced order model.

It should be clear that the magnitude of the model-order reduction depends
on the difference between the number of selected basis vectors and the order
of the high-dimensional process. As it was explained in the previous section,
the derivation of the basis vectors is performed by calculating the SVD of
an ensemble of data called the snapshot matrix X and the selection of the
most important basis vectors is carried out through the energy criterion.
Notice that the reduced order model would exist in the low-dimensional
space spanned by the selected POD basis vectors.

The derivation of the dynamical model for the POD coefficients can be
done in two ways, by using the Galerkin projection or by means of system
identification techniques. For the system identification case, we have to
postulate a model structure for the relation between the process inputs
u(t) and the POD coefficients aj(t),∀j = 1, 2, . . . , n and determine the
unknown parameters in this model based on the data sets {u(tk)}Nd

k=1 and
{a1(tk), a2(tk), . . . , an(tk)}Nd

k=1. The data set {u(tk)}Nd
k=1 contains the inputs

that were applied to the process in the generation of the snapshot matrix
X. The data set of the POD coefficients is nothing else than the first n rows
of the matrix Γ = ΣΨT . Notice that this data set can also be generated
by using this relation: aj(ti) =

〈
x(ti),ϕj

〉
= ϕT

j x(ti), ∀j = 1, 2, . . . , n, and
∀i = 1, 2, . . . , Nd. Once the unknown model parameters are estimated, a
reduced order model is available that can predict the time evolution of the
POD coefficients from a given time trajectory of the process input u(t).
In [70–72] subspace identification techniques [113] are used together with
POD in the derivation of a reduced order model of an industrial glass feeder.

The Galerkin projection [11, 16, 24, 73, 90, 121] is the most common way of
deriving the dynamical model for the POD coefficients, and it will be the
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method used in this thesis.

Let us define a residual function R(ẋ,x) for Equation (2.8) as follows:

R(ẋ,x) = ẋ(t) − f (x(t),u(t)) , (2.9)

and let R(ẋn,xn) be the residual when the state vector x(t) is approximated
by its nth order approximation

xn(t) =
n∑

j=1

aj(t)ϕj = Φna(t), n 
 N

where Φn = [ϕ1,ϕ2, . . . ,ϕn] and a(t) = [a1(t), a2(t), . . . , an(t)]T . In the
Galerkin projection, the projection of the residual R(ẋn,xn) on the space
spanned by the basis vectors Φn vanishes, that is,〈

R(ẋn,xn),ϕj

〉
= 0, ∀j = 1, 2, . . . , n, (2.10)

where 〈·, ·〉 denotes the Euclidean inner product. This means that the
residual R(ẋn,xn) is not correlated to ϕj ,∀j = 1, 2, . . . , n at all. Moreover,
the orthogonality of the residual to the span of the basis vectors implies
that the residual is minimal [11]. Therefore, in order to find the model
for the POD coefficients, we replace x(t) by its nth order approximation
xn(t) = Φna(t) in the state equation of (2.8),

Φnȧ(t) = f (Φna(t),u(t))

and then we apply the inner product criterion (2.10) as follows,〈
Φnȧ(t),ϕj

〉
=
〈
f (Φna(t),u(t)) ,ϕj

〉
, ∀j = 1, 2, . . . , n

ΦT
nΦnȧ(t) = ΦT

n f (Φna(t),u(t))

and given that ΦT
nΦn = In because of the orthonormality of the basis

vectors, we have that the model for the POD coefficients reduces to

ȧ(t) = ΦT
n f (Φna(t),u(t)) .

Finally, the reduced order model of (2.10) with only n states has the
following form,

ȧ(t) = ΦT
n f (Φna(t),u(t)) (2.11)

y(t) = g (Φna(t),u(t)) .

We can use this reduced order model for control design purposes or for
carrying out faster simulations.



2.3 Model predictive control 21

2.3 Model predictive control

Model Predictive Control (MPC), also referred to as Receding Horizon
Control (RHC) or moving horizon control, is a control strategy where
a finite horizon open-loop optimal control problem is solved on-line at
each sampling time using the current state of the plant as the initial
state, in order to get a sequence of future control actions from which
only the first one is applied to the plant. The fact of solving on-line
an optimization problem where commonly plant constraints are included,
makes MPC different from conventional control which uses a pre-computed
control law [104]. MPC has been widely adopted by the industrial process
control community and implemented successfully in many applications.
Several reasons are attributed to this success [145]. First of all, the MPC
algorithms can handle in a very natural way constraints on both process
inputs (manipulated variables or control actions) and process outputs values
(controlled variables), which often have a significant impact on the quality,
effectiveness and safety of the production. Additionally, the MPC controllers
can take into account the internal interactions within the process, thanks
to the multivariable models on which they are typically based. This
make the MPC algorithms a quite suitable option for multivariable process
control. Another reason of the success of MPC is the fact that the principle
of operation is comprehensible and relatively easy to explain to process
operators and engineers. This is an important aspect at the moment of
introducing new techniques into industrial practice.

MPC was originally developed to meet the specialized control needs of power
plants and petroleum refineries, and its application was first reported in
the seventies [38, 125]. Nowadays, the MPC technology can be found in
a wide variety of application areas including chemicals, food processing,
automotive, and aerospace applications. A recent survey that provides an
overview of commercially available model predictive control technology can
be found in [120]. Several past reviews regarding theoretical and practical
aspects of MPC are offered in [56,89,103,104,107,109,123,126].

Linear MPC refers to a family of MPC schemes in which linear models
are used to predict the system dynamics, even though the dynamics of the
closed-loop system are nonlinear due to the presence of constraints. Along
this thesis we will deal with MPC controllers based on discrete-time Linear
Time Invariant (LTI) models in state space form:

x(k + 1) = Ax(k) + Bu(k) (2.12)
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y(k) = Cx(k)

where x(k) ∈ R
nx , u(k) ∈ R

nu and y(k) ∈ R
ny are the state, input

and output vectors respectively and A ∈ R
nx×nx , B ∈ R

nx×nu and
C ∈ R

ny×nxare the matrices defining the system dynamics.

In the next subsection we will present very briefly the principle of operation
of an MPC controller and the formulation that will be used in this thesis.

2.3.1 Predictive control principle

The predictive control principle is as follows. Based on the measurement or
estimation of the state x(k) of the process at time k, the controller predicts
the future dynamic behavior of the plant {x(k +1),x(k +2), . . . ,x(k +Np)}
over a prediction horizon Np, and determines (over a control horizon Nc ≤
Np) a sequence of future control actions {u(k),u(k + 1), . . . ,u(k + Nc −
1)} such that a predetermined open-loop performance objective function
J is optimized. Then only the first element of this sequence is applied
to the plant. At the next sampling time (k + 1) a new measurement or
estimation of the state is obtained and the whole procedure is repeated, with
the prediction and control horizons of the same length Np and Nc but shifted
by one step forward. This is known as the principle of Receding Horizon
Control (RHC) and it is depicted in Figure 2.1. It is important to remark
that the future control actions are calculated assuming that u(k +Nc−1) =
u(k + Nc) = · · · = u(k + Np − 1). Typically, the prediction horizon is set in
such a way that the difference between the prediction and control horizons
is at least equal to the largest settling time of the process. This criterion is
commonly used in industry for guaranteeing the stability of the closed-loop
system when the process to be controlled is stable.

For tracking problems, an MPC controller typically tries to minimize the
following performance objective function J at each time instant k,

J =
Np∑
i=1

‖xref(k + i) − x(k + i)‖2
Q +

Nc−1∑
i=0

‖Δu(k + i)‖2
R (2.13)

subject to the model (2.12) of the plant and the input and state constraints
of the process. Here Q ∈ R

nx×nx � 0 and R ∈ R
nu×nu  0 are positive

semidefinite and definite weighting matrices, ‖v‖2
Q denotes vTQv, xref(k+i)

is the reference vector of x(k + i) and Δu(k + i) = u(k + i) − u(k + i − 1).
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Figure 2.1: The principle of Receding Horizon Control (RHC). At each time
instant k an optimal control sequence is calculated after which only the first
element of such a sequence is applied to the plant.

Notice that in the cost function J we use Δu(k) instead of u(k). This is
necessary for having an integral action in the controller that guarantees an
offset free tracking [128]. The optimization problem that is solved by the
MPC controller at each sampling time k is then formally defined as follows:

min
xNp ,ΔuNc

Np∑
i=1

‖xref(k + i) − x(k + i)‖2
Q +

Nc−1∑
i=0

‖Δu(k + i)‖2
R (2.14a)

subject to

x(k + i + 1) = Ax(k + i) + Bu(k + i), i = 0, . . . , Np − 1, (2.14b)
u(k + i) = u(k + i − 1) + Δu(k + i), i = 0, . . . , Nc − 1, (2.14c)
u(k + i) = u(k + i − 1), i = Nc, . . . , Np − 1, (2.14d)
x(k + i) ∈ X , i = 1, . . . , Np, (2.14e)
u(k + i) ∈ U , i = 0, . . . , Nc − 1, (2.14f)

with

xNp = [x(k + 1); x(k + 2); . . . ; x(k + Np)] (2.15)
ΔuNc = [Δu(k); Δu(k + 1); . . . ; Δu(k + Nc − 1)] (2.16)
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where (2.14e) and (2.14f) are the state and input constraints and X and U
are convex sets. Notice that by using (2.12), constraints on the outputs can
always be rewritten as state constraints Cx(k) ∈ Y,∀k, where Y is a convex
set. A convex set is defined as follows [29]:

Definition 2.1. A set S ⊆ R
n is convex iff for any two points x1,x2 ∈ S

all convex combinations of these points also lie within the set S:

(1 − θ)x1 + θx2 ∈ S, ∀θ ∈ [0, 1],∀x1,x2 ∈ S.

That is, S is a convex set if the straight line segment connecting any two
points in S lies entirely in S.

Particularly, if X and U are the feasible regions delimited by linear inequality
constraints, and we express the cost function and the constraints of (2.14)
in terms of ΔuNc (condensed form of the MPC), then problem (2.14) can
be written as a Quadratic Program (QP) in ΔuNc ∈ R

nu·Nc as follows:

min
ΔuNc

1
2

(ΔuNc)
T H(ΔuNc) + fT

l ΔuNc (2.17)

subject to

AineqΔuNc ≤ bineq

where H ∈ R
(nu·Nc)×(nu·Nc)  0 is the so-called Hessian matrix, fl ∈ R

nu·Nc

is the vector accompanying the linear term, m is the number of linear
inequality constraints, Aineq ∈ R

m×(nu·Nc) is the matrix of the inequality
constraint coefficients and bineq ∈ R

m is the right hand side vector of
the inequality constraints. See [29] for more information on Quadratic
Programming and its history. By ensuring that Q and R in (2.14)
are positive semi-definite and positive definite respectively, the positive
definiteness of H is guaranteed, and therefore problem (2.17) is strictly
convex. In (2.17) only the matrix H can be computed off-line. In contrast,
the vector fl has to be calculated at each time instant k, since it depends on
the current measured/estimated state of the plant.

2.3.2 Estimation of the states

The MPC control algorithm described in the previous section requires having
the current state of the plant for solving the optimization problem (2.17)
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Figure 2.2: MPC control Scheme.

at each time instant k. However, in general, the entire state vector x(k) is
not available. Therefore the use of an observer or soft-sensor is necessary in
order to estimate the state vector of the plant from the process input values
and the measured process outputs, on the basis of a mathematical model of
the system. The estimation of the state vector x(k) will be denoted by x̂(k).
Figure 2.2 shows a typical MPC control loop. For the design of an observer
it is assumed that the discrepancies between the model predictions and the
measured process outputs are caused by errors in the initial values of the
state variables, disturbances on the process state variables and disturbances
on the measured process outputs. The equation of an observer (Luenberger
observer [96]) includes the model of the plant (2.12) and an additional term
that uses the error between the predicted outputs and the measured outputs
for correcting the estimations of the state vector via a feedback gain matrix.
This equation is given by

x̂(k + 1) = Ax̂(k) + Bu(k) + L (y(k) − ŷ(k)) (2.18)
ŷ(k) = Cx̂(k)

where L ∈ R
nx×nu is the feedback gain matrix or observer gain. The

dynamics of the estimation error e(k) = x(k) − x̂(k) is modelled by
e(k+1) = (A − LC) e(k) with e(0) = x(0)−x̂(0). From this last equation it
is clear that the estimation error will converge to zero when k goes to infinity,
and that the velocity of this convergence is influenced by the observer gain
L. Here it was assumed that the observer gain has been chosen such that
the observer is asymptotically stable, that is, the eigenvalues of A − LC
are inside the unit circle. The observer gain L can be found by the pole
placement method [54] or by using optimal estimation theory. When L
is calculated by means of optimal estimation techniques, the observer is
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referred to as Kalman filter. The Kalman filter was introduced in the sixties
by R. E Kalman [77] and it will be the observer used in this thesis. The
fundamentals of this observer will be presented very briefly in the following
lines.

Consider the following discrete-time model of the plant,

x(k + 1) = Ax(k) + Bu(k) + Gw(k) (2.19)
y(k) = Cx(k) + v(k)

where G ∈ R
nx×nw is a weighting matrix and w(k) ∈ R

nw and v(k) ∈ R
ny

are random variables that represent the process and measurement noises
respectively. The process noise w(k) is modeled as a Gaussian white noise
with zero mean and covariance matrix Rw ∈ R

nw×nw and the measurement
noise v(k) is modeled as a Gaussian white noise with zero mean and
covariance matrix Rv ∈ R

ny×ny . These covariance matrices are defined
by

Rw = ε
{
w(k)w(k)T

}
, (2.20a)

Rv = ε
{
v(k)v(k)T

}
, (2.20b)

where ε{·} denotes expectation. Additionally we have that ε
{
v(k)w(k)T

}
=

0 and it is assumed that w(k) and v(k) are not correlated with x(k) and
y(k).

We are interested in finding an observer gain L such that the covariance of
the estimation error (x(k) − x̂(k)) given by

Jobs =
1
2
ε

{ ∞∑
k=0

(x(k) − x̂(k))T (x(k) − x̂(k))

}

is minimized. The solution of this optimization problem is given by the
so-called Kalman Gain,

L = AQ̄CT
(
CQ̄CT + Rv

)−1
(2.21)

where Q̄ is the covariance matrix of the steady-state estimation error that
satisfies the so-called Algebraic Riccati Equation (ARE),

Q̄ − AQ̄AT + AQ̄CT
(
Rv + CQ̄CT

)−1
CQ̄AT − GRwGT = 0. (2.22)

Readers interested in the derivation of the solution (2.21) are referred to
[54,86].
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Finally, we want to stress that for the control of high-dimensional systems,
the MPC controller and the Kalman Filter in Figure 2.2 will be designed
from the reduced order model of the process obtained by means of the POD
and Galerkin projection techniques.

2.4 Example: Temperature control in a one–
dimensional bar

For illustration purposes, in this section we present the application of POD
and predictive control techniques to the control of the temperature profile of
a one-dimensional bar [2]. Initially an MPC controller without a disturbance
model is designed. The control objective is to allow the bar to reach a desired
temperature distribution in steady state as fast as possible, satisfying at the
same time the process constraints. Afterwards, an MPC with a disturbance
model is implemented in order to reject the perturbations that affect the
bar. Both MPCs are based on the reduced order model of the system found
by using POD and Galerkin projection.

2.4.1 Heat transfer in a one-dimensional bar

The system to be controlled is a “perfectly insulated heated bar” (see Figure
2.3), which has 3 inputs (u1(t),u2(t) and u3(t)) and 2 measurement points
(y1(t) and y2(t)). It is important to underline that the inputs of the bar
correspond to the boundary conditions of the PDE describing the system.

If only temperature variations in the z−direction are considered, the
dynamics of the temperature T (z, t) of the bar can be modeled by the
following parabolic PDE :

G
∂2T (z, t)

∂z2
=

∂T (z, t)
∂t

(2.23)

with
G =

κ

ρcp

where ρ is the density of the bar in [kg ·m−3], κ is the thermal conductivity
in [J · s−1 · m−1 · K−1], cp is the heat capacity in [J · kg−1 · K−1] and z is
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Figure 2.3: Heated bar. The signals u1(t), u2(t) and u3(t) are the boundary
conditions at z = 0, z = L/2 and z = L. The measured outputs y1(t) and
y2(t) are the temperatures of the bar at z = L/4 and z = 3L/4 respectively.
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Figure 2.4: Spatial discretization of the bar.

the position in [m]. The initial and boundary conditions (Dirichlet type) of
(2.23) are given by,

T (z, 0) = T0(z), (2.24a)

T (0, t) = u1(t), T (L/2, t) = u2(t), T (L, t) = u3(t). (2.24b)

The length of the bar is L = 0.1 m and the parameter G is equal to 10−5. The
initial temperature distribution is set to T0(z) = 0◦C and the input signals
u1(t), u2(t) and u3(t) must be between 0◦C and 150◦C (input constraints).

2.4.2 Discretization

For design and simulation purposes, Equation (2.23) is discretized in space
(see Figure 2.4) and time by means of the “Implicit Backward Euler method”
(a finite difference method), which unlike the “Explicit Forward Euler
method”, is unconditionally stable [155]. The stability condition of the
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explicit forward Euler algorithm turns out to be G Δt
Δz2 ≤ 1

2 . This implies
that as we decrease the spatial interval Δz for better accuracy, we must
also decrease the time step Δt at the cost of more computations in order
not to lose the stability. In the backward Euler method, the second partial
derivative with respect to z is replaced by a central difference approximation,
and the time derivative by a backward difference approximation as follows:

G

(
Ti+1(k) − 2Ti(k) + Ti−1(k)

Δz2

)
=

Ti(k) − Ti(k − 1)
Δt

(2.25)

for i = 1, 2, . . . , P − 1, P + 1, . . . , N − 1

for k = 1, 2, . . . , M

with

T0(k) = u1(k), TP (k) = u2(k), TN (k) = u3(k),

where N is the number of sections in which the bar is divided, Δz is the
length of each section, Δt is the sampling time, Ti(k) = T (zi, tk) is the
temperature in the grid point zi = iΔz at the time tk = kΔt, P is the grid
point where u2(t) is located (z = L/2) and M is the number of time steps.

If we define T(k) ∈ R
N−2 = [T1(k), . . . , TP−1(k), TP+1(k), . . . , TN−1(k)]T

as the vector containing the temperatures of the grid points zi,∀i =
1, 2, . . . , P − 1, P + 1, . . . , N − 1 at each time step k, Equation (2.25) can be
cast into a recursive linear system of equations as follows:

AT(k + 1) = T(k) + Bu(k)

T(k + 1) = A−1T(k) + A−1Bu(k) (2.26)

where u(k) = [u1(k), u2(k), u3(k)]T is the vector of inputs, and A ∈
R

(N−2)×(N−2) and B ∈ R
(N−2)×3 are the matrices describing the system

defined as follows,

A =
[

As 0
0 As

]
, B =

⎡
⎣ r 0 · · · 0 0 0 0 · · · 0 0

0 0 · · · 0 r r 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 r

⎤
⎦T

,
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with

As ∈ R
(P−1)×(P−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 + 2r −r 0 · · · 0

−r 1 + 2r
. . . . . .

...

0 −r
. . . −r 0

...
. . . . . . 1 + 2r −r

0 · · · 0 −r 1 + 2r

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, r = G

Δt

Δz2
.

In this example the sampling time is set to 1 s, and the spatial domain is
divided into N = 400 sections which means that Equation (2.26) has N − 2
= 398 states. This large number of states makes the design of feedback
controllers for the bar difficult. Therefore, it is necessary to find a reduced
order model. Such a model is derived in the following subsection by using
POD and Galerkin projection.

2.4.3 Model reduction using POD

For deriving a reduced order model of (2.26), the subsequent steps were
followed:

1. Generation of the Snapshot Matrix. We have constructed
a snapshot matrix Tsnap ∈ R

398×500 from the system response
when Pseudo Random Binary Noise Signals (PRBNS) were applied
simultaneously to the inputs u1(k), u2(k), and u3(k) of the discrete
model of the bar (2.26),

Tsnap = [T(k = 1),T(k = 2), . . . ,T(k = 500)] . (2.27)

Along the simulations, a switching probability of 2% and an amplitude
of 100◦C were set to the PRBNS signals, and 500 samples were
collected using a sampling time of 1 s.

2. Derivation of the POD basis vectors. As it was explained in
Section 2.2.1, the POD basis vectors are found by calculating the SVD
of the snapshot matrix Tsnap,

Tsnap = ΦΣΨT

where Φ ∈ R
398×398 and Ψ ∈ R

500×500 are unitary matrices, and
Σ ∈ R

398×500 is a matrix containing the singular values of Tsnap in a
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Figure 2.5: The logarithmic plot of 1 − P̄n which is used to determine the
truncation degree of the POD basis vectors.

decreasing order on its main diagonal. The left singular vectors, that
is, the columns of the matrix Φ,

Φ = [ϕ1,ϕ2, . . . ,ϕ398]

are the POD basis vectors.

3. Selection of the most relevant POD basis vectors. The n
most relevant POD basis vectors are chosen using the energy criterion
presented in Section 2.2.1. The plot of 1 − P̄n (see Equation (2.7))
for the first 50 basis vectors is shown in Figure 2.5. In this case, we
selected the first n = 10 POD basis vectors (they are shown in Figure
2.6) based on their truncation degree 1− P̄n = 2.454 · 10−5. Thus, the
10th order approximation of T(k) is given by

Tn(k) =
10∑

j=1

aj(k)ϕj = Φna(k) (2.28)

where Φn = [ϕ1,ϕ2, . . . ,ϕ10] and a(k) = [a1(k), a2(k), . . . , a10(k)]T .

4. Construction of the model for the first n=10 POD coeffi-
cients. As it was explained in Section 2.2.2, the dynamic model for the
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POD coefficients can be derived by projecting (Galerkin projection)
the model (2.26) on the space spanned by the selected POD basis
vectors Φn = [ϕ1,ϕ2, . . . ,ϕ10]. If we replace T(k) by its nth order
approximation Tn(k) = Φna(k) in Equation (2.26), and we apply the
inner product criterion (Galerkin projection) to the resulting equation,
we have that〈

Φna(k + 1),ϕj

〉
=
〈
A−1Φna(k) + A−1Bu(k),ϕj

〉
, (2.29)

∀j = 1, 2, . . . , n = 10.
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By evaluating the inner product in (2.29),

ΦT
nΦna(k + 1) = ΦT

nA−1Φna(k) + ΦT
nA−1Bu(k)

a(k + 1) = ΦT
nA−1Φna(k) + ΦT

nA−1Bu(k) (2.30)

we obtain the model for the first n POD coefficients. The reduced
order model of the bar with only 10 states is then given by

a(k + 1) = Ãa(k) + B̃u(k) (2.31)
Tn(k) = Φna(k)

where Ã ∈ R
10×10 = ΦT

nA−1Φn and B̃ ∈ R
10×3 = ΦT

nA−1B.

For validating the reduced order model, constant inputs u1(k) = 0◦C,
u2(k) = 100◦C and u3(k) = 50◦C were applied to the full order model and
to the reduced order model, and afterwards their outputs were compared.
Figure 2.7 shows the temperature profile of the bar at the time steps k = 1,
k = 25, k = 50 and k = 250 for each model. It is really difficult to observe
differences between the responses of the models. Figure 2.8 presents the plot
of the average of the absolute error which was calculated by means of the
following formula:

ET =
1
Ns

Ns∑
k=1

|T(k) − Tn(k)|

where Ns = 250 is the number of simulation time steps. The maximum peak
in Figure 2.8 is only 0.198◦C, which means that the reduced order model
with only 10 states approximates very well the behavior of the full order
model (398 states).

2.4.4 MPC control scheme without a disturbance model

The control goal is to allow the bar to reach a desired temperature
distribution in steady state as fast as possible. In addition, the control
actions must satisfy the input constraints of the process, that is, 0◦C ≤
u1(k), u2(k), u3(k) ≤ 150◦C. In the top plot of Figure 2.10, the desired tem-
perature profile Tref ∈ R

398 for the bar can be observed. This temperature
profile corresponds to the steady state temperature distribution when the
bar is heated from zero temperature by constant inputs u1(k) = 30◦C,
u2(k) = 60◦C and u3(k) = 10◦C. The control of the temperature profile
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Figure 2.7: Temperature profile at different time steps. Solid line - Full
order model (2.26). Dashed line - Reduced order model (2.31).

of the bar is achieved indirectly by controlling the POD coefficients. The
references (aref) of these POD coefficients can be calculated by

aref = ΦT
nTref . (2.32)

For controlling the first n = 10 POD coefficients and consequently the
temperature profile of the bar, we initially implemented the MPC control
scheme shown in Figure 2.9. In this scheme the MPC controller uses the
reduced order model given by (2.31) to predict the future behavior of the
process. An observer, which in this case is a Kalman filter, is used for
estimating the state of the reduced order model from the measurements
y(k) = [y1(k), y2(k)]T and the process inputs u(k) = [u1(k), u2(k), u3(k)]T .
The observer equations are given by,

â(k + 1) = Ãâ(k) + B̃u(k) + L (y(k) − ŷ(k)) (2.33)

ŷ(k) = CsT̂n(k) = CsΦnâ(k)
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Figure 2.9: MPC control scheme without a disturbance model.

where â(k) is the estimated vector of the POD coefficients, ŷ(k) and
T̂n(k) are the estimations of the output vector y(k) and the nth order
approximation of the temperature profile Tn(k) respectively, L is the
observer gain (Kalman gain) and Cs is a selection matrix which selects
the measured temperatures (y1(k) and y2(k)) from the vector T̂n(k). The
Kalman gain was calculated from the following covariance matrices: Rv =
10−6 · I2, Rw = I10. Here, Rv is the covariance matrix of the measurement
noise (v(k)) and Rw is the covariance matrix of the process noise (w(k)).
The diagonal of Rv contains the measured noise variance of each output



36 Proper Orthogonal Decomposition and Predictive Control

signal which are assumed to be uncorrelated. For this example these
values were assumed to be equal to 10−6. Physically, Rw tries to explain
unknown disturbances, whether they are steps, white noise, or imperfections
in the model of the plant. This parameter can be used to trade speed and
robustness. In this case, Rw was chosen to be equal to the identity matrix.
The simulations results confirmed that it was an appropriated choice for
calculating the observer gain.

The estimated state â(k) is used together with the reference vector aref

by the MPC controller to calculate the appropriated control actions to be
applied to the bar. The minimization problem that is solved by the MPC
controller at each time instant k is defined as:

min
aNp ,ΔuNc

Np∑
i=1

‖aref(k + i) − a(k + i)‖2
Q +

Nc−1∑
i=0

‖Δu(k + i)‖2
R (2.34)

subject to

a(k + i + 1) = Ãa(k + i) + B̃u(k + i), i = 0, . . . , Np − 1,

u(k + i) = u(k + i − 1) + Δu(k + i), i = 0, . . . , Nc − 1,

u(k + i) = u(k + i − 1), i = Nc, . . . , Np − 1,

umin ≤ u(k + i) ≤ umax, i = 0, . . . , Nc − 1,

with

aNp = [a(k + 1); a(k + 2); . . . ; a(k + Np)]
ΔuNc = [Δu(k); Δu(k + 1); . . . ; Δu(k + Nc − 1)]

where ‖v‖2
Q denotes vTQv, Δu(k) = u(k) − u(k − 1), Np is the prediction

horizon, Nc is the control horizon, Q � 0 and R  0 are weighting matrices,
and umin ∈ R

3 and umax ∈ R
3 are the lower and upper bounds of u(k).

The control horizon Nc was set to 7 samples and the prediction horizon
Np was selected according to the following criterion: “Prediction Horizon
= Control Horizon + Largest Settling Time = 80 samples”. umin and umax

were set according to the input constraints of the process, that is, umin =
[0, 0, 0]T and umax = [150, 150, 150]T , and the weighting matrices in this
way: Q = I10, R = I3.

The simulation results are shown in Figures 2.10 and 2.11. In Figure 2.10 we
can observe the steady state temperature profile of the bar when the MPC
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Figure 2.10: Steady-state temperature profile of the bar when the MPC
controller (2.34) is used.

controller (2.34) is used. Also the absolute error between the reference and
the steady state response of the closed loop system is shown. The maximum
deviation in the temperature profile is only 0.055◦C. Figure 2.11 presents
the evolution in time of the temperature at the measurement points and the
control actions of the MPC controller, which satisfy the input constraints
of the process. The closed-loop responses reach steady state faster than
the open loop responses because the control system pushes the inputs to
the limits. In spite of the dramatic reduction of model order, on which the
controller is based, the controller performs very well.

Now, we are going to suppose that the left edge of the bar is exposed to the
ambient temperature (20◦C) from a specific time instant. It implies that
temperature at the left edge would be given by the ambient temperature
plus u1(k). Figure 2.12 presents the steady state temperature profile of the
bar in disturbed conditions with the MPC controller. It is clear that the
behavior of the control system in the presence of input disturbances is not
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Figure 2.11: Temperature at the measurement points and control actions of
the MPC controller (2.34). Solid line - Closed-loop response. Dashed line -
Open loop response.

good. At the left edge of the bar there is a large temperature deviation of
14.22◦C. This was an expected result, since the control scheme does not
include a mechanism for rejecting such kind of disturbances. So, in order to
overcome such limitation, an MPC controller with a disturbance model is
designed and presented in the next subsection.

2.4.5 MPC control scheme with a disturbance model

The new MPC control scheme can be observed in Figure 2.13. The
formulation of the MPC controller with a disturbance model is given by

min
aNp ,ΔuNc

Np∑
i=1

‖aref(k + i) − a(k + i)‖2
Q +

Nc−1∑
i=0

‖Δu(k + i)‖2
R (2.35a)

subject to

a(k + i + 1) = Ãa(k + i) + B̃u(k + i) + Fd(k + i), i = 0, . . . , Np − 1,
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d(k + i + 1) = d(k + i), i = 0, . . . , Np − 1,
(2.35b)

u(k + i) = u(k + i − 1) + Δu(k + i), i = 0, . . . , Nc − 1,

u(k + i) = u(k + i − 1), i = Nc, . . . , Np − 1,

umin ≤ u(k + i) ≤ umax, i = 0, . . . , Nc − 1,

with

aNp = [a(k + 1); a(k + 2); . . . ; a(k + Np)]
ΔuNc = [Δu(k); Δu(k + 1); . . . ; Δu(k + Nc − 1)]

where F is the disturbance model matrix, d(k) ∈ R is the disturbance
signal and Equation (2.35b) is the disturbance equation, which in this case
corresponds to a step. Since the disturbance d(k) and the state a(k) are
unknown, they must be estimated by means of a new Kalman filter with the
following formulation:[

â(k + 1)
d̂(k + 1)

]
=
[

Ã F
0 1

] [
â(k)
d̂(k)

]
+
[

B̃
0

]
u(k)+ (2.36)

+
[

La

Ld

]
(y(k) − ŷ(k))

ŷ(k) = CsT̂n(k) = CsΦnâ(k)

where â(k) is the estimated state, d̂(k) is the estimated disturbance vector,
ŷ(k) is the estimated output vector,

[
LT

a ,LT
d

]T is the Kalman gain and Cs

is a selection matrix which selects the measured temperatures (y1(k) and
y2(k)) from the vector T̂n(k).

The number of disturbance terms that can be estimated without losing
observability is equal to the number of sensors [114]. This means that
in this problem we might estimate at most 2 disturbance signals. In the
MPC formulation (2.35) the disturbance model is defined by the matrix F.
Since we are interested in rejecting the disturbance associated to the input
u1(k) (left edge of the bar), the matrix F is chosen in the following way:
F = B̃(:, 1), where B̃(:, 1) denotes the first column of the matrix B̃.

The control and prediction horizon were set to 7 samples and 80 samples
respectively, umin and umax were selected according to the input constraints
of the process and the weighting matrices in this way: Q = I10, R = I3.
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Figure 2.12: Steady-state temperature profile of the bar in disturbed
conditions with the MPC controller (2.34).
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Figure 2.13: MPC control scheme with a disturbance model.

The simulation results of the MPC controller with an input disturbance
model are shown in Figures 2.14 and 2.15. The left edge of the bar was
exposed to the ambient temperature at the time step k = 201. Figures
2.14 and 2.15 show the evolution of the temperature profile before and after
the disturbance respectively. The controller works very well and rejects
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Figure 2.14: Evolution of the temperature profile before the disturbance
(MPC with a disturbance model). Solid line - Closed-loop response. Dashed
line - Reference.
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42 Proper Orthogonal Decomposition and Predictive Control

0 100 200 300 400
0

10

20

30

40

50

0 100 200 300 400
0

10

20

30

40

0 200 400
0

26

52

78

104

130

0 200 400
50

75

100

125

150

0 200 400
0

20

40

60

80

y
1
(k

)-
T
em

p
er

a
tu

re
[◦

C
]

y
2
(k

)-
T
em

p
er

a
tu

re
[◦

C
]

u
1
(k

)-
T
em

p
er

a
tu

re
[◦

C
]

u
2
(k

)-
T
em

p
er

a
tu

re
[◦

C
]

u
3
(k

)-
T
em

p
er

a
tu

re
[◦

C
]

samples - ksamples - ksamples - k

samples - ksamples - k

d(k)

d(k)
d(k) d(k)

d(k)

Figure 2.16: Temperature at the measurement points and control actions of
the MPC controller (2.35) before and after the disturbance.

the perturbation quickly. In steady state, the maximum deviation in the
temperature profile is only 0.21◦C which is practically negligible. The
control actions of the MPC Controller with a disturbance model as well as
the evolution of the temperature at the measurement points can be observed
in Figure 2.16. The control actions are all the time within the limits.

2.5 Conclusions

In this chapter we have presented the basics of Proper Orthogonal De-
composition (POD) and Galerkin projection, and we have shown how
these two techniques can be used for deriving reduced order models of
high-dimensional systems, typically obtained after discretizing in space the
PDEs that model many processes. Furthermore we have presented the
fundamentals of Model Predictive Control (MPC) and we have reviewed
very briefly the basic ideas behind the Kalman filter. In the last section of
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this chapter, we have included a very detailed example where the mentioned
techniques have been used to control the temperature profile of a one-
dimensional bar. In the example, a big model order reduction is achieved
thanks to the POD technique that makes possible the control design.
Initially, an MPC controller without a disturbance model was developed for
controlling the temperature distribution when no input disturbances were
applied to the bar. Its performance was very good in spite of the dramatic
reduction of model order on which the controller is based. Afterwards, an
MPC controller with a disturbance model was designed in order to reject
the kind of disturbances that affect the system. This controller worked very
well and rejected the perturbations quickly.
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Chapter 3

Control of a Non-isothermal
Tubular Reactor

3.1 Introduction

In this chapter the control of a non-isothermal tubular chemical reactor
is addressed using POD and predictive control techniques. The control
goal is to maintain the reactor at a desired operating condition in spite
of disturbances in the feed flow, while keeping the maximum temperature
inside the reactor low enough to avoid the formation of undesirable
byproducts. The operating condition of the reactor is determined by means
of an optimization algorithm which provides the optimal temperature and
concentration profiles for the process [3]. This algorithm, which takes into
account the input and state constraints of the system, is described in detail
in this chapter. For controlling the reactor, we propose two MPC control
schemes: an MPC where its formulation is in terms of the POD coefficients
(similar to the formulation of the MPCs used to control the bar in Section
2.4) [3] and an MPC whose formulation is in terms of physical variables (the
temperature of some selected points and the concentration at the reactor
outlet) [4]. Unlike the first MPC controller, the second one incorporates the
temperature constraint of the reactor in some selected points of the spatial
domain. This MPC handles this constraint as a soft-constraint using a slack
variable approach with l∞-norm and time-dependent weights to deal with
the infeasibilities that can emerge [68,69].

45
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Both MPC controllers are based on a linear model derived by means
of the POD and Galerkin projection techniques, which reduce the high-
dimensionality of the discretized system used to approximate the linear
PDEs that model the reactor around the operating profiles. In this chapter
several tests are carried out in order to evaluate the performance of the MPC
controllers.

This chapter is organized as follows. In Section 3.2 we present a description
of the tubular reactor that is used along this dissertation. We provide
both the nonlinear and linear mathematical models of the system, and
additionally we introduce the optimization algorithm for deriving the
operating profiles of the reactor. Section 3.3 shows the derivation of the
reduced order model of the process using POD and Galerkin projection. In
Section 3.4 the design and implementation of the MPC control schemes is
described. Section 3.5 presents some simulation results, and finally Section
3.6 summarizes the main conclusions.

3.2 Tubular chemical reactor

A chemical reactor is basically a vessel where chemical reactions take place.
A reactor is usually the heart of an overall chemical or biochemical process.
In order to model the behavior of most chemical reactors there are three
main basic models that are commonly used, namely, the batch reactor
model (batch), the Continuous Stirred-Tank Reactor (CSTR) model and
the Plug Flow Reactor (PFR) model [122]. Plug flow reactors are also
called Continuous Tubular Reactors (CTRs) or simply tubular reactors and
nowadays are widespread in chemical industry. In [95], a tubular chemical
reactor is defined and described as a tube in which chemical reactions take
place during the continuous axial transport of the reaction mixture from the
inlet towards the outlet. Typically, they are operated under time-invariant
or steady-state conditions which leads to the production of large amounts of
products with a constant and high quality. One big advantage of this kind
of reactors is the possibility of large-scale and low cost production related
to their continuous operation since there are no down times as there are in
batch processes. Furthermore, they are suitable for advanced, automated
process control and optimization techniques, and they deliver constant and
high product quality due to the tight monitoring and control of the reaction
environment. However, they have some disadvantages, the investment costs
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are larger than in the other kinds of reactors and they are not suitable to
produce a variety of products in small amounts since the switching between
products can lead to a considerable amount of off-spec production [95].

For the sake of the generality of the results and conceptual contributions,
in this dissertation we will focus our attention on an elementary reaction
in an ideal plug-flow reactor model, instead of reactions in specific complex
industrial reactors. In the following subsection we will describe in detail the
type of tubular reactor for which we will design and implement POD-based
MPC control strategies.

3.2.1 Plug flow reactor model

The system to be controlled is a non-isothermal tubular reactor where a
single, first order, irreversible, exothermic reaction takes place (A → B).
The reactor is surrounded by 3 cooling/heating jackets as it is shown
in Figure 3.1. The temperature of the jackets fluids (TJ1, TJ2 and TJ3)
can be manipulated independently in order to control the concentration
and temperature profiles in the reactor. It is assumed that the fluid or
mixture flows as a plug through the reactor body in the axial direction.
In this dynamic only three phenomena are taken into account, namely,
convection (macroscopic movement of the fluid inside the reactor), reaction
(transformation of the chemical species present in the reactor, while releasing
heat at the same time) and heat transfer (between the reactor and its
jackets). In this study we are not considering the diffusion/dispersion
phenomena and we are neglecting the heat transfer effects between the
jackets fluids and the reactor wall. Under the previous assumptions, the
mathematical model of the tubular chemical reactor consists of the following
coupled nonlinear PDEs:

∂C

∂t
= −v

∂C

∂z
− k0Ce−

E
RT (3.1a)

∂T

∂t
= −v

∂T

∂z
+ GrCe−

E
RT + Hr(Tw − T ) (3.1b)

Gr = −ΔHk0

ρCp
, Hr =

4h

2rsρCp
,

with the following boundary conditions:

C = Cin at z = 0 and T = Tin at z = 0.
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Figure 3.1: Tubular chemical reactor with 3 cooling/heating jackets.

Here C(z, t) is the reactant concentration in [mol/l], T (z, t) is the reactant
temperature in [K], v is the fluid superficial velocity in [m/s], ΔH is the
heat of the reaction in [cal/mol] (ΔH < 0 for an exothermic reaction),
ρ and Cp are the density in [kg/l] and the specific heat in [cal/kg/K] of
the mix respectively, k0 is the kinetic constant in [1/s], E is the activation
energy in [cal/mol], R is the ideal gas constant in [cal/mol/K], h is the heat
transfer coefficient in [cal/s/m2/K], rs is the reactor radius in [m], L is the
reactor length in [m], Cin and Tin are the concentration in [mol/l] and the
temperature in [K] of the feed flow, z is the axial coordinate in [m], t is
the time in [s] and Tw(z, t) is the reactor wall temperature in [K] defined as
follows (see Figure 3.1),

Tw =

⎧⎨
⎩

TJ1, 0 ≤ z < Za

TJ2, Za ≤ z < Zb

TJ3, Zb ≤ z ≤ L.

The parameters values of the reactor model are taken from [138] which were
inspired by the values given in [53]. These values are presented in Table
3.1. Additionally, in Equation (3.1) the following assumptions have been
made: perfect radial mixing (the reactor diameter is assumed to be small
enough such that radial and angular variations are negligible), a constant
heat transfer between the jacket and the reactor, a constant volume of the
fluid in the reactor, a constant density and heat capacity of the reacting
fluid, a constant velocity, and a constant heat of reaction. In Equation
(3.1) only the temperature dependence of the reaction rate is incorporated
through the Arrhenius law (kr = k0e

−E/(RT ), where kr is the reaction
rate constant). This is not the case for the other properties where the
temperature dependence is neglected. As it is stated in [95], in spite of
the conceptual and highly simplified character of model (3.1), this model
can provide valuable insights for tubular reactors in practice, for example,
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Table 3.1: Values of the reactor parameters

Parameter Value
v 0.1 m·s−1

L 1 m
k0 106 s−1

E 11250 cal·mol−1

R 1.986 cal·mol−1·K−1

Cin 0.02 mol·l−1

Tin 340 K
Gr 4.25 · 109 l·K·mol−1·s−1

Hr 0.2 s−1

in the production of low density polyethylene (LDPE) [30], or in oxidation
processes in an environment with an excess of oxygen [52].

The temperature of the jacket sections TJ1, TJ2 and TJ3 must be between
280 K and 400 K. In addition, the temperature inside the reactor must be
below 400 K in order to avoid the formation of side products. The kind
of disturbances that affects the reactor are principally the variations in the
temperature and concentration of the feed flow. Typically, such variations
are in the range of ±10 K for the temperature and ±5% of the nominal
value for the concentration. In this system, only the temperature of the
feed flow is measured directly. In addition, the reactor has a temperature
sensor at the output and 3 temperature sensors (s1, s2 and s3) distributed
in its interior as shown in Figure 3.1.

3.2.2 Operating profiles

The operating profiles (steady-state concentration and temperature profiles)
of the reactor are derived by means of an optimization algorithm, which
minimizes a cost function subject to the steady-state equations of the reactor
described by (3.1), and the input and state constraints defined previously.
The steady-state model of the reactor is given by the following Ordinary
Differential Equations (ODEs):

dC

dz
= −k0

v
Ce−

E
RT (3.2)

dT

dz
=

Gr

v
Ce−

E
RT +

Hr

v
(Tw − T )
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with T = Tin at z = 0 and C = Cin at z = 0, and the discrete version of
(3.2) can be found by replacing the spatial derivatives by forward difference
approximations as follows:

C̄i+1 = C̄i − k0Δz

v
C̄ie

−E
RTf T̄i (3.3)

T̄i+1 = T̄i

(
1 − HrΔz

v

)
+
(

GrΔzCf

vTf

)
C̄ie

−E
RTf T̄i +

(
HrΔz

v

)
T̄w,i

for i = 1, 2, . . . , N = 300,

with

T̄w,i =

⎧⎨
⎩

T̄J1 = TJ1/Tf , ∀i = 1, . . . , za

T̄J2 = TJ2/Tf , ∀i = za + 1, . . . , zb

T̄J3 = TJ3/Tf , ∀i = zb + 1, . . . , N

T̄0 =
Tin

Tf

C̄0 =
Cin

Cf

where N is the number of sections in which the reactor is divided, za and
zb are the reactor sections defining the ending of the first and second jacket
respectively, Tf and Cf are normalization factors, C̄i = Ci/Cf and T̄i = Ti/Tf

are the normalized concentration and temperature of the ith section of the
reactor, T̄w,i = Tw,i/Tf is the normalized reactor wall temperature of the ith
section, and Δz is the length of each section. The variables are normalized
in order to avoid possible numerical problems. The optimization problem
that is solved for deriving the operating profiles is defined as:

min
T̄J1,T̄J2,T̄J3

w(C̄r − C̄N )2 + (1 − w)
1
N

N∑
i=1

(
T̄r,i − T̄i

)2 (3.4)

subject to

steady − state model given by (3.3)
TJmin

Tf
≤ T̄J1, T̄J2, T̄J3 ≤ TJmax

Tf

T̄i ≤ Tmax

Tf
, for i = 1, 2, . . . , N = 300,

where C̄r is the normalized desired concentration at the reactor output, T̄r,i

is the normalized desired temperature inside the reactor of the ith section,
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C̄N is the normalized concentration at the reactor output, w is a trade-off
parameter, TJmin and TJmax are the limits of the jackets temperatures, and
Tmax is the maximum allowed temperature inside the tubular reactor.

The first term of the cost function corresponds to the squared error of
the normalized concentration at the reactor output (terminal cost), and
the second term is related to the mean squared error of the normalized
temperature along the reactor (integral cost). In this problem C̄r was set
to 0, and T̄r,i was selected equal to the normalized temperature of the
feed flow (T̄in = Tin/Tf) for i = 1, 2, . . . , N . The trade-off parameter w
can take values from 0 to 1. When w goes to 1, the reduction of the
reactant concentration at the reactor output becomes more important than
the temperature deviations. On the other hand when w goes to 0, the
temperature deviations become more important than the concentration at
the reactor output and the risk of the formation of hot spots is reduced.

In order to solve the optimization problem described by (3.4) the following
algorithm (a sort of Sequential Quadratic Programming - SQP) is proposed:

1. Choose the initial values of the jackets temperatures T̄∗
J =

[
T̄ ∗

J1, T̄
∗
J2, T̄

∗
J3

]T
in such a way that the constraints are satisfied.

2. Using T̄∗
J, simulate (3.3) in order to obtain the temperature (T̄∗ ∈ R

N )
and concentration (C̄∗ ∈ R

N ) profiles of the reactor in steady state.

3. Linearize the nonlinear model given by (3.3) around T̄∗,C̄∗, and T̄∗
J

by means of the Taylor series. The resulting linear model would have
the following structure:[

C̄Δ
i+1

T̄Δ
i+1

]
= Ass(i)

[
C̄Δ

i

T̄Δ
i

]
+ BssT̄

Δ
w,i (3.5)[

C̄i

T̄i

]
=
[

C̄Δ
i

T̄Δ
i

]
+
[

C̄∗
i

T̄ ∗
i

]

for i = 1, 2, . . . , N,

with

Ass(i) =

⎡
⎢⎣ 1 − k0Δz

v e
− E

RT∗
i −k0TfEΔz

vCfR
C∗

i

T ∗
i

2 e
− E

RT∗
i

CfGrΔz
vTf

e
− E

RT∗
i 1 − HrΔz

v + GrEΔz
vR

C∗
i

T ∗
i

2 e
− E

RT∗
i

⎤
⎥⎦ ,
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Bss =
[

0
HrΔz

v

]
,

where Ass(i) and Bss are the matrices describing the system dy-
namics, C̄∗

i , T̄ ∗
i and T̄ ∗

w,i are the normalized operating points of the
concentration, temperature and reactor wall temperature of the ith
section, C̄Δ

i , T̄Δ
i and T̄Δ

w,i are the normalized deviation variables of the
concentration, temperature and reactor wall temperature respectively.

4. Solve the following Quadratic Problem (QP):

min
T̄Δ
J1,T̄Δ

J2,T̄Δ
J3

w(C̄r − C̄N )2 + (1 − w)
1
N

N∑
i=1

(
T̄r,i − T̄i

)2
subject to

steady − state linear model given by (3.5)
TJmin

Tf
≤ T̄J1, T̄J2, T̄J3 ≤ TJmax

Tf

−TΔmax
J

Tf
≤ T̄Δ

J1, T̄
Δ
J2, T̄

Δ
J3 ≤ TΔmax

J

Tf

T̄i ≤ Tmax

Tf
, for i = 1, 2, . . . , N = 300,

where T̄Δ
J1, T̄

Δ
J2, T̄

Δ
J3 are the normalized deviation variables of the jackets

temperatures, and TΔmax
J is a “local input constraint” which limits the

range of the jackets temperatures in such a way that the linear model
(3.5) is still a good approximation of the nonlinear model (3.3). If this
is not the case, then we would have convergence problems.

5. Calculate the new jackets temperatures T̄op
J ∈ R

3 as follows:

T̄op
J = T̄Δ,op

J + T̄∗
J

where T̄Δ,op
J =

[
T̄Δ,op

J1 , T̄Δ,op
J2 , T̄Δ,op

J3

]T
is the solution of the QP

problem stated in the previous step.

6. Using T̄op
J , simulate (3.3) in order to obtain the new temperature

(T̄op ∈ R
N ) and concentration (C̄op ∈ R

N ) profiles of the reactor in
steady state.
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7. If max
(∣∣T̄op

J − T̄∗
J

∣∣) ≤ Tol then stop, else make T̄∗
J = T̄op

J , C̄∗ = C̄op,
T̄∗ = T̄op and go to step 3.

The proposed algorithm was executed with the following parameters : N =
300, Tf = 340 K, Cf = 0.02 mole/l, Δz = 1/300 m, TJmin = 280 K, TJmax =
400 K, Tmax = 390 K, Tol = 10−4, w = 0.3 and TΔmax

J = 20 K.

The maximum allowed temperature (Tmax) inside the reactor was chosen
10 degrees below the actual limit (400 K) in order to give to the feedback
controller enough room of maneuverability. The trade-off coefficient w was
found by trial and error and the local input constraint TΔmax

J was selected
in such a way that the differences between the nonlinear and linear model
are small.

The algorithm was executed using different initial conditions and some of
the results obtained are presented in Table 3.2. Along the experiments,
three local minima were found, however it does not mean that these are
the only ones. Figures 3.2, 3.3 and 3.4 show the reactor profiles associated
to these local minima. This result was expected due to the non-convex
nature of the optimization problem. These local minima might be unified
by modifying the cost function, for instance, by adding a term that penalizes
the temperature deviation at the reactor output.

The selection of the optimal temperature and concentration profiles was
done by checking the value of the cost function and the deviation of the
temperature at the reactor output with respect to the temperature of the
feed flow. In many practical situations, a large deviation is undesirable since
it increases the heat loss [137].

From the three local minima, the second one (TJ1 = 374.6 K, TJ2 = 310.1 K
and TJ3 = 325.2 K) was chosen since it has the smallest cost function value
and a small temperature deviation at the reactor output. The optimal
concentration and temperature profiles can be observed in Figure 3.4. The
concentration at the reactor output is 1.5737 ·10−3 mol/l which is 12.7 times
smaller than the concentration of the feed flow (0.02 mol/l). In addition,
the temperature of the hot spot is 390 K.

3.2.3 Linear model

The linear model of the tubular chemical reactor is obtained by linearizing
(3.1) around the jackets temperatures and the operating profiles presented
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Figure 3.2: Steady-state concentration and temperature profiles when TJ1 =
359.6 K, TJ2 = 348.5 K and TJ3 = 291.5 K.
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Figure 3.3: Steady-state concentration and temperature profiles when TJ1 =
340.7 K, TJ2 = 355.1 K and TJ3 = 365.7 K.



3.2 Tubular chemical reactor 55

Table 3.2: Some results obtained with the optimization algorithm

Initial Jackets Final Jackets
Cost

Cin/CN
No.

Temperatures Temperatures
Function Iter a

TJ1 TJ2 TJ3 TJ1 TJ2 TJ3

- First Minimum - (see Figure 3.2 )

300 300 300
359.6 348.5 291.5 8.356 · 10−3 12.6

66
350 350 350 73
280 400 280 91

- Second Minimum - (see Figure 3.4)

350 280 350
374.6 310.1 325.2 8.337 · 10−3 12.7

38
370 290 370 39

- Third Minimum - (see Figure 3.3)

280 280 400
340.7 355.1 365.7 8.416 · 10−3 12.7

29
380 340 400 24

aNumber of iterations
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Figure 3.4: Selected operating profiles. Steady-state concentration and
temperature profiles when TJ1 = 374.6 K, TJ2 = 310.1 K and TJ3 = 325.2 K.
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in Figure 3.4. This linear model is given by,

∂CΔ

∂t
= −v

∂CΔ

∂z
− αA(z)CΔ − αB(z)TΔ (3.6)

∂TΔ

∂t
= −v

∂TΔ

∂z
− αC(z)CΔ − αD(z)TΔ + HrT

Δ
w

with

αA(z) = k0e
− E

RT∗

αB(z) = k0C
∗ E

RT ∗2 e−
E

RT∗

αC(z) = −Gre
− E

RT∗

αD(z) = −GrC
∗ E

RT ∗2 e−
E

RT∗ + Hr

and with these boundary conditions

CΔ = Cin − C∗
in, TΔ = Tin − T ∗

in at z = 0.

Here C∗, T ∗ and T ∗
w are the steady state profiles (operating profiles) of the

concentration, temperature and reactor wall temperature respectively, C∗
in

and T ∗
in are the concentration and temperature in steady state of the feed

flow, CΔ = C−C∗, TΔ = T −T ∗ and TΔ
w = Tw−T ∗

w are the deviations from
steady state of the concentration, temperature and reactor wall temperature.

In order to reduce the infinite dimensionality of (3.6), the partial derivatives
with respect to space are replaced by backward difference approximations
leading to the following system of ODEs:

dC̄Δ
i

dt
= − v

Δz

(
C̄Δ

i − C̄Δ
i−1

)− αA,iC̄
Δ
i − αB,i

Tf

Cf
T̄Δ

i (3.7)

dT̄Δ
i

dt
= − v

Δz

(
T̄Δ

i − T̄Δ
i−1

)− αC,i
Cf

Tf
C̄Δ

i − αD,iT̄
Δ
i + HrT̄

Δ
w,i

for i = 1, 2, . . . , N,

with
C̄Δ

0 = C̄Δ
in , T̄Δ

0 = T̄Δ
in ,



3.2 Tubular chemical reactor 57

where αA,i = αA(zi), αB,i = αB(zi), αC,i = αC(zi), αD,i = αD(zi), zi = iΔz,
Ci, Ti, Tw,i are the concentration, temperature and reactor wall temperature
of the ith section, Tf and Cf are normalization factors, C∗

i , T ∗
i , T ∗

w,i are
the steady state concentration, temperature and reactor wall temperature
of the ith section, C∗

in and T ∗
in are the the steady state concentration and

temperature of the feed flow, C̄Δ
i = (Ci − C∗

i )/Cf , T̄Δ
i = (Ti − T ∗

i )/Tf ,
T̄Δ

w,i = (Tw,i − T ∗
w,i)/Tf are the normalized deviations from steady state

of the concentration, temperature and reactor wall temperature of the ith
section, C̄Δ

in = (Cin − C∗
in)/Cf and T̄Δ

in = (Tin − T ∗
in)/Tf are the normalized

deviations from steady state of the concentration and temperature of the
feed flow, N is the number of sections in which the reactor is divided, and
Δz is the length of each section.

If we define the following vectors,

x(t) =
[
C̄Δ

1 , C̄Δ
2 , . . . , C̄Δ

N , T̄Δ
1 , T̄Δ

2 , . . . , T̄Δ
N

]T
d(t) =

[
C̄Δ

in , T̄Δ
in

]T
u(t) =

[
T̄Δ

J1, T̄
Δ
J2, T̄

Δ
J3

]T
then (3.7) can be cast as follows:

ẋ(t) = Ax(t) + Bu(t) + Fd(t) (3.8)

with

A ∈ R
2N×2N =

[
A1 A2

A3 A4

]
, B ∈ R

2N×3 =
[

0
B1

]
, F ∈ R

2N×2 =
[

f1 0
0 f1

]
,

A1 ∈ R
N×N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− (αA,1 + v
Δz

)
0 · · · · · · 0

v
Δz − (αA,2 + v

Δz

) . . .
...

0 v
Δz

. . . . . .
...

...
. . . . . . . . . 0

0 · · · 0 v
Δz − (αA,N + v

Δz

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

A2 ∈ R
N×N =

⎡
⎢⎢⎢⎢⎢⎣

−αB,1
Tf
Cf

0 · · · 0

0 −αB,2
Tf
Cf

. . .
...

...
. . . . . . 0

0 · · · 0 −αB,N
Tf
Cf

⎤
⎥⎥⎥⎥⎥⎦
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A3 ∈ R
N×N =

⎡
⎢⎢⎢⎢⎢⎣

−αC,1
Cf
Tf

0 · · · 0

0 −αC,2
Cf
Tf

. . .
...

...
. . . . . . 0

0 · · · 0 −αC,N
Cf
Tf

⎤
⎥⎥⎥⎥⎥⎦

A4 ∈ R
N×N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− (αD,1 + v
Δz

)
0 · · · · · · 0

v
Δz − (αD,2 + v

Δz

) . . .
...

0 v
Δz

. . . . . .
...

...
. . . . . . . . . 0

0 · · · 0 v
Δz − (αD,N + v

Δz

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

B1 ∈ R
N×3 =

⎡
⎣ Hr · · · Hr 0 · · · 0 0 · · · 0

0 · · · 0 Hr · · · Hr 0 · · · 0
0 · · · 0 0 · · · 0 Hr · · · Hr

⎤
⎦T

f1 ∈ R
N =

[
v

Δz 0 · · · 0
]T

where T ∗
J1, T ∗

J2, T ∗
J3, are the steady state jacket temperatures, T̄Δ

J1 =
(TJ1 − T ∗

J1) /Tf , T̄Δ
J2 = (TJ2 − T ∗

J2) /Tf and T̄Δ
J3 = (TJ3 − T ∗

J3) /Tf are the
normalized deviations of the jacket temperatures, A, B and F are the
matrices describing the system, x(t) ∈ R

2N is the state vector, u(t) ∈ R
3 is

the vector of the inputs and d(t) ∈ R
2 is the vector of the disturbances.

Since the spatial domain of the reactor is divided into N = 300 sections, the
number of states of (3.8) is equal to 600. Given that such large number of
states makes the design and implementation of feedback controllers for the
reactor difficult, in the next section a reduced order model will be derived
using POD and Galerkin projection.

3.3 Model reduction using POD

In a similar fashion as it was done in Section 2.4.3, the reduced order model
of (3.8) is found by following the subsequent steps:

1. Generation of the Snapshot Matrix. We have created a snapshot
matrix Xsnap ∈ R

600×1500 from the system response when independent
step changes were made in the input u(t) and perturbation d(t) signals
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of the linear model (3.8),

Xsnap = [x(t = Δt),x(t = 2Δt), . . . ,x(t = 1500Δt)] . (3.9)

Along the simulations 1500 samples were collected using a sampling
time Δt of 0.05 s. The amplitude of the step changes was chosen
in such a way as to produce changes of similar magnitude in the
temperature and concentration profiles. This avoids a possible bias
in the resulting model.

2. Derivation of the POD basis vectors. The POD basis vectors are
obtained by computing the SVD of the snapshot matrix Xsnap,

Xsnap = ΦΣΨT

where Φ ∈ R
600×600 and Ψ ∈ R

1500×1500 are unitary matrices, and
Σ ∈ � 600×1500 is a matrix that contains the singular values of Xsnap

in a decreasing order on its main diagonal. The left singular vectors,
i.e., the columns of Φ,

Φ = [ϕ1,ϕ2, . . . ,ϕ600]

are the POD basis vectors.

3. Selection of the most relevant POD basis vectors. The n
most relevant POD basis vectors are chosen using the energy criterion
presented in Section 2.2.1. The plot of 1 − P̄n (see Equation (2.7))
for the first 160 basis vectors is shown in Figure 3.5. In this problem,
we chose the first n = 20 POD basis vectors based on their truncation
degree 1−P̄n = 3.3 ·10−4 (P̄n = 0.9996). In Figures 3.6 and 3.7 we can
observe the basis vectors associated to the 20 largest singular vectors.
Observe that the first half of each basis vector is associated to the
normalized deviations of the concentration profile whereas the second
half is related to the normalized deviations of the temperature profile.

The 20th order approximation of x(t) is given by the following
truncated sequence:

xn(t) =
20∑

j=1

aj(t)ϕj = Φna(t) (3.10)

where Φn = [ϕ1,ϕ2, . . . ,ϕ20] and a(t) = [a1(t), a2(t), . . . , a20(t)]T .
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Figure 3.5: Logarithmic plot of 1− P̄n for determining the truncation degree
of the POD basis vectors in the reactor case.

4. Construction of the model for the first n=20 POD coeffi-
cients. As it was explained in Section 2.2.2, the dynamic model for the
POD coefficients can be derived by projecting (Galerkin projection)
the model (3.8) on the space spanned by the selected POD basis
vectors Φn = [ϕ1,ϕ2, . . . ,ϕ20]. If we replace x(t) by its nth order
approximation xn(t) = Φna(t) in Equation (3.8), and we apply the
inner product criterion (Galerkin projection) to the resulting equation,
we have that〈

Φnȧ(t),ϕj

〉
=
〈
AΦna(t) + Bu(t) + Fd(t),ϕj

〉
(3.11)

∀j = 1, 2, . . . , n = 20.

By evaluating the inner product in (3.11),

ΦT
nΦnȧ(t) = ΦT

nAΦna(t) + ΦT
nBu(t) + ΦT

nFd(t)

ȧ(t) = ΦT
nAΦna(t) + ΦT

nBu(t) + ΦT
nFd(t) (3.12)

we obtain the model for the first n POD coefficients. The reduced
order model of the reactor with only 20 states is then given by

ȧ(t) = Ara(t) + Bru(t) + Frd(t) (3.13)
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Figure 3.6: POD basis vectors : ϕ1,ϕ2, . . . ,ϕ10.

xn(t) = Φna(t)

where Ar = ΦT
nAΦn, Br = ΦT

nB and Fr = ΦT
nF. The initial condition

for a(t) reads as a(0) = 0.
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Figure 3.7: POD basis vectors : ϕ11,ϕ12, . . . ,ϕ20.

For validating the reduced order model of the reactor, we applied constant
input signals T̄Δ

J1(t) = 0.125 (TΔ
J1(t) = 10 K), T̄Δ

J2(t) = −0.25 (TΔ
J2(t) = −20

K) and T̄Δ
J3(t) = 0.25 (TΔ

J3(t) = 20 K) and constant perturbation signals
C̄Δ

in (t) = 0.05 (CΔ
in (t) = 10−3 mol/l) and T̄Δ

in (t) = 0.0625 (TΔ
in (t) = 5 K)

to both the full order model (3.8) and the reduced order model (3.13),
and afterwards we compared their responses. Figures 3.8 and 3.9 show the
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Figure 3.8: Temperature and concentration deviation profiles at t = 1 s and
t = 4 s. Solid line - Full order model. Dashed line - Reduced order model.
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Figure 3.9: Temperature and concentration deviation profiles at t = 8 s and
t = 15 s. Solid line - Full order model. Dashed line - Reduced order model.
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Figure 3.10: Average of the absolute error between the full order model (3.8)
and the reduced order model (3.13).

temperature and concentration deviation profiles of the reactor at different
time instants for each model. During the first seconds we can see some
differences between the models, but as the simulation advances, these
differences become negligible and really difficult to observe. In order to
measure the quality of the reduced order model the averages of the absolute
error for the temperature (ET) and concentration (EC) were calculated by
means of the following formulas:

ET =
Tf

Ns

Ns∑
k=1

∣∣T̄Δ(kΔt) − T̄Δ
n (kΔt)

∣∣
EC =

Cf

Ns

Ns∑
k=1

∣∣C̄Δ(kΔt) − C̄Δ
n (kΔt)

∣∣
where Ns = 300 is the number of time steps and Δt = 0.05 s. The plots
of ET and EC with respect to the spatial coordinate z are shown in Figure
3.10. The maximum values for the errors ET and EC are 0.405 Kelvin and
9.35 · 10−5 mol/l respectively. From the previous results we can conclude
that the reduced order model with only 20 states provides an acceptable
approximation of the full order model.
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The discrete-time version of (3.13) that will be used by the predictive
controllers is obtained using the bilinear transformation [116] with a
sampling time of 0.2 s,

a(k + 1) = Ãa(k) + B̃u(k) + F̃d(k) (3.14)

xn(k) = Φna(k),

where Ã, B̃ and F̃ are the matrices describing the new system. The sampling
time was chosen by dividing the smallest time constant of the system (3.13)
by 10.

3.4 Predictive control schemes

The control objective is to reject the disturbances that affect the reactor,
that is the changes in the temperature and concentration of the feed flow. In
addition, the control actions must satisfy the input constraints of the process
(280 K≤ TJ1(t), TJ2(t), TJ3(t) ≤ 400 K), and the control system should keep
the temperature inside the reactor below 400 K. In the following subsections
we are going to present two POD-based MPC control schemes: a scheme
where the MPC is formulated in terms of the POD coefficients (MPC-NTC),
and a scheme where the formulation of the MPC controller is in terms of
physical variables (MPC-PV).

3.4.1 First MPC control scheme (MPC-NTC) - Formulation
in terms of the POD coefficients

In this scheme, the control of the temperature and concentration profiles
is achieved indirectly by controlling the POD coefficients. The references
(aref) of these POD coefficients can be calculated by

aref = ΦT
nxref (3.15)

where xref is the reference of the vector x(t) and is equal to 0 since the
control system has to keep the reactor operating around the profiles shown
in Figure 3.4. The MPC controller, which uses model (3.14) to predict the
future behavior of the reactor, is formulated as follows:
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min
aNp ,ΔuNc ,dNp

Np∑
i=1

‖aref(k + i) − a(k + i)‖2
Q +

Nc−1∑
i=0

‖Δu(k + i)‖2
R (3.16a)

subject to

a(k + i + 1) = Ãa(k + i) + B̃u(k + i) + F̃d(k + i), i = 0, . . . , Np − 1,

d(k + i + 1) = d(k + i), i = 0, . . . , Np − 1,
(3.16b)

u(k + i) = u(k + i − 1) + Δu(k + i), i = 0, . . . , Nc − 1,

u(k + i) = u(k + i − 1), i = Nc, . . . , Np − 1,

umin ≤ u(k + i) ≤ umax, i = 0, . . . , Nc − 1,

with

aNp = [a(k + 1); a(k + 2); . . . ; a(k + Np)]
dNp = [d(k + 1); d(k + 2); . . . ; d(k + Np)]

ΔuNc = [Δu(k); Δu(k + 1); . . . ; Δu(k + Nc − 1)]

where Q and R are weighting matrices (Q � 0,R  0), ‖v‖2
Q denotes vTQv,

Np is the prediction horizon, Nc is the control horizon, umin and umax are
the lower and upper bounds (these hard constraints are necessary due to
physical limitations of the actuators) of u(k) and Equation (3.16b) describes
the dynamics of the disturbance vector which in this case is assumed to be
a step. Observe that the temperature constraint T (z, t) ≤ 400 K of the
reactor has not been included in this MPC formulation.

Since the state vector a(k) is unknown and the changes in the concentration
of the feed flow (d1(k) = C̄Δ

in (k)) are not measured directly, they are
estimated by means of an observer (in this case a Kalman filter) with the
following formulation:[

â(k + 1)
d̂1(k + 1)

]
=
[

Ã F̃C

0 1

] [
â(k)
d̂1(k)

]
+
[

B̃
0

]
u(k)+

+
[

F̃T

0

]
d2(k) +

[
La

Ld

]
(y(k) − ŷ(k)) (3.17a)

ŷ(k) = Csx̂n(k) = CsΦnâ(k) (3.17b)
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where â(k) is the estimated vector of the POD coefficients, d̂1(k) is the
estimation of C̄Δ

in (k), d2(k) is the normalized temperature deviation of
the feed flow T̄Δ

in (k), y(k) ∈ R
4 is a vector which contains the four

temperature measurements (normalized deviations) along the reactor, ŷ(k)
is the estimate of y(k), La and Ld are the submatrices of the observer gain
(Kalman gain), F̃C and F̃T are the column vectors of F̃ =

[
F̃C, F̃T

]
and

Cs is a selection matrix which selects the measured temperatures from the
vector xn(k).

The block diagram of this control system can be observed in Figure
3.11. The control horizon Nc was set to 10 samples and the prediction
horizon Np was selected according to the following criterion: “Prediction
Horizon = Control Horizon + Largest Settling Time = 80 samples”.
umin = [−1.1825,−0.3759,−0.565]T and umax = [0.3175, 1.1241, 0.935]T

were selected according to the input constraints of the process and the
operating temperatures of the jackets, and the weighting matrices in this
way: Q = I20 and R = 110 · I3. The Kalman gain matrix was computed
from the following covariance matrices: Rw = I21, Rv = 10−6 · I3. As it was
mentioned in the previous chapter, the diagonal of the covariance matrix
of the measurement noise Rv contains the measured noise variance of each
process output. In this case we assumed a variance value of 10−6 for each
process output, and we used the covariance matrix of the process noise Rw

to trade speed and robustness.

3.4.2 Second MPC control scheme (MPC-PV) - Formulation
in terms of physical variables

Unlike the previous control system, in this scheme the formulation of the
MPC controller is in terms of physical variables. These variables are the
temperature of some selected points along the reactor and the concentration
at the reactor outlet. This formulation makes the tuning procedure more
intuitive and allows us to have more flexibility in the definition of the control
objectives; for example, we can give more importance to the concentration
at the reactor outlet than to the temperature of the selected points or vice
versa. In this MPC formulation, the temperature constraint (T (z, t) ≤
400 K) of the system is imposed in the selected points. It has been observed
through simulations that only imposing the temperature constraint in some
points, is sufficient for guaranteeing the satisfaction of the temperature
constraint in the remaining points of the spatial domain.
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Figure 3.11: Block diagram of the MPC control systems. For the MPC-
NTC case rMPC(k) = aref(k), and for the MPC-PV case rMPC(k) =
[C̄Δ

N,ref(k), T̄Δ
p,ref(k)]T . In the diagram, TJ(t) = [TJ1(t), TJ2(t), TJ3(t)]T ,

T∗
J = [T ∗

J1, T
∗
J2, T

∗
J3]T , Tm(t) ∈ R

4 contains the temperature measurements
of the reactor and T∗

m ∈ R
4 contains their steady state values.

Since in this MPC formulation the temperature constraint along the reactor
is taken into account, it is necessary to define a mechanism for handling the
infeasibilities that can emerge due to the differences between the process
and the model used by the MPC, the magnitude of the disturbances, the
saturation of the actuators, etc. A way to deal with these infeasibilities is by
softening the temperature constraint using a slack variables approach. A soft
constraint formulation avoids infeasibilities problems by allowing violations
in the temperature constraint, but at the same time it tries to minimize
such violations by penalizing them in the objective function. In this MPC
control system a slack variable approach with �∞-norm and time-dependent
weights is used [68,69]. The MPC controller is then formulated as follows:

min
wNp ,ΔuNc ,dNp ,ξ

Np∑
i=1

(∥∥T̄Δ
p,ref(k + i) − T̄Δ

p (k + i)
∥∥2

QT
+ (3.18a)

+
∥∥C̄Δ

N,ref(k + i) − C̄Δ
N (k + i)

∥∥2

QC

)
+

Nc−1∑
i=0

‖Δu(k + i)‖2
R+ξTPQξ + PT

Lξ

subject to

a(k + i + 1) = Ãa(k + i) + B̃u(k + i) + F̃d(k + i), i = 0, . . . , Np − 1,
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d(k + i + 1) = d(k + i), i = 0, . . . , Np − 1,

u(k + i) = u(k + i − 1) + Δu(k + i), i = 0, . . . , Nc − 1,

u(k + i) = u(k + i − 1), i = Nc, . . . , Np − 1,

T̄Δ
p (k + i) = Cs1Φna(k + i), i = 1, . . . , Np,

C̄Δ
N (k + i) = Cs2Φna(k + i), i = 1, . . . , Np,

umin ≤ u(k + i) ≤ umax, i = 0, . . . , Nc − 1,

T̄Δ
p (k + i) ≤ T̄Δmax

p + η(i)ξ, i = 1, . . . , Np, (3.18b)

ξ ≥ 0, (3.18c)

with

w(k) =
[
C̄Δ

N (k); T̄Δ
p (k)

]
wNp = [w(k + 1); w(k + 2); . . . ; w(k + Np)]
dNp = [d(k + 1); d(k + 2); . . . ; d(k + Np)]

ΔuNc = [Δu(k); Δu(k + 1); . . . ; Δu(k + Nc − 1)]

where QT � 0 and R  0 are weighting matrices, QC > 0 is a weighting
factor, ‖v‖2

Q denotes vTQv, Np is the prediction horizon, Nc is the control
horizon, umin and umax are the lower and upper bounds of u(k), T̄Δ

p (k)
is a vector which contains the normalized deviations of the temperature of
the selected points, C̄Δ

N (k) is the normalized deviation of the concentration
at the reactor outlet, T̄Δ

p,ref(k) and C̄Δ
N,ref(k) are the references for T̄Δ

p (k)
and C̄Δ

N (k) respectively, T̄Δmax
p is a vector which contains the maximum

allowed temperatures for the selected points, the inequality (3.18b) is the
temperature constraint, Cs1 and Cs2 are matrices for extracting T̄Δ

p (k) and
C̄Δ

N (k) from xn(k) = Φna(k), PL is a weighting vector and PQ is a weighting
matrix, ξ ∈ R

7 is the vector of the slack variables, and η(i) = 1
/
ri−1
c , is a

time-dependent weight (rc > 1).

In this formulation, we are penalizing the maximum violation of the
temperature constraint along the prediction horizon for each selected point
by means of the term ξTPQξ+PT

Lξ. A sufficiently large PL will ensure that
the constraints are enforced as exact soft constraints, that is, that constraint
violations will only occur when there is no feasible solution of the original
problem [68]. The quadratic term ξTPQξ is used as an additional tuning
parameter and it also leads to a well-posed quadratic program (positive
definite Hessian) [131].
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The time-dependent weight η(i) penalizes future predicted constraint viola-
tions increasingly, avoiding long-lasting constraint violations [68].

For estimating the state vector a(k) and the changes in the concentration
of the feed flow (d1(k) = C̄Δ

in (k)), this control scheme employs the same
observer (see Equation (3.17)) used by the previous control system. In fact,
the block diagrams of both control schemes are practically the same (see
Figure (3.11)), the only difference is the reference vector and of course the
internal formulation of the MPC controller.

The points where the temperature is controlled were found by trial and
error. Seven points were used and they correspond to the following sections
of the reactor (N = 300 sections): P = {100, 122, 150, 200, 250, 270, 300}.

The parameters of the MPC controller were set as follows: Nc = 10 samples,
Np = 80 samples, rc = 1.2, PL ∈ R

7 = 104 · [1, 1, . . . , 1]T , PQ ∈ R
7×7 = I7,

QT = I7, QC = 1000, R = 110 · I3. The references for the variables were
selected in this way: T̄Δ

p,ref = 0, and C̄Δ
N,ref = −5 · 10−3 (this corresponds to

a reduction of 6.5% in the concentration at the reactor outlet). Notice that
in this tuning, it is considered more important to bring the concentration
at the reactor outlet to its desired value than to bring the temperatures of
the selected points to their references.

3.5 Simulation results

In order to perform the closed-loop simulations of the control systems
described in the previous sections, the nonlinear model of the process given
in (3.1) was discretized in space by replacing the partial derivatives with
respect to space by backward difference approximations [41,138], leading to
the following set of nonlinear ODEs:

dC̄i

dt
= − v

Δz

(
C̄i − C̄i−1

)− k0C̄ie
− E

RTf T̄i (3.19)

dT̄i

dt
= − v

Δz

(
T̄i − T̄i−1

)
+ Gr

Cf

Tf
C̄ie

− E
RTf T̄i + Hr

(
T̄w,i − T̄i

)

for i = 1, 2, . . . , N
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with

T̄w,i =

⎧⎨
⎩

T̄J1 = TJ1/Tf , ∀i = 1, . . . , za

T̄J2 = TJ2/Tf , ∀i = za + 1, . . . , zb

T̄J3 = TJ3/Tf , ∀i = zb + 1, . . . , N

T̄0 =
Tin

Tf

C̄0 =
Cin

Cf

where N = 300 is the number of sections in which the reactor is divided, za

and zb are the reactor sections defining the ending of the first and second
jacket respectively, Tf and Cf are normalization factors, C̄i = Ci/Cf and
T̄i = Ti/Tf are the normalized concentration and temperature of the ith
section of the reactor, T̄J1, T̄J2, T̄J3 are the normalized jackets temperatures,
and Δz is the length of each section. As it was mentioned before, the
variables are normalized in order to avoid possible numerical problems.

On one hand, the use of low order approximations for the spatial derivatives
is known to produce excessive smoothing of the profiles due to numerical
diffusion, and on the other hand, high-order approximations lead to excessive
non-physical oscillations due to numerical dispersion [95]. Notice that both
numerical diffusion and dispersion are two kinds of computational errors that
occur as a result of the discretization process, and therefore they should not
be confused with their physical counterparts. One way of decreasing these
undesirable effects is by increasing the grid density (finer grid), but this
measure leads to an increment of the computational burden. So, a trade-off
between computational time and accuracy must be found. At the beginning,
we divided the reactor into N = 100, N = 300, N = 500 and N = 1000
sections, and we found that a partition of 300 sections provides a good trade-
off. Alternatively, nonlinear methods like slope or flux limiters and adaptive
grids (see [95,144,147] for details about these two nonlinear methods) might
be used in order to mitigate the numerical diffusion and dispersion.

Initially, in order to compare and evaluate the performance of the control
systems, the following tests were carried out:

• Test 1: the temperature and concentration of the feed flow are
increased by 10 K and 10−3 mol/l respectively.

• Test 2: the temperature and concentration of the feed flow are
decreased by 10 K and 10−3 mol/L respectively.
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Figure 3.12: Steady-state temperature and concentration profiles of the
reactor for Test 1. Dotted line - Nominal profile (reference). Dashed line -
MPC-NTC. Solid line - MPC-PV. Dash-dotted line - Open loop response.

0 5 10 15 20 25 30
350

352

354

356

358

0 5 10 15 20 25 30
0

0.5

1

1.5

2
x 10

−3

 

 

T
em

p
er

a
tu

re
[K

]
C

o
n
ce

n
tr

a
ti

o
n

[m
o
l/

l]

t [s]

t [s]

Figure 3.13: Temperature and concentration at the reactor outlet during
Test 1. Dashed line - MPC-NTC. Solid line - MPC-PV. Dash-dotted line -
Open loop response.
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Figure 3.14: Maximal peak of the temperature profile during Test 1. Dashed
line - MPC-NTC. Solid line - MPC-PV. Dash-dotted line - Open loop
response.
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Figure 3.15: Control actions (jackets temperatures) of the MPC controllers
along Test 1. Dashed line - MPC-NTC. Solid line - MPC-PV.
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Figure 3.16: Steady-state temperature and concentration profiles of the
reactor for Test 2. Dotted line - Nominal profile (reference). Dashed line -
MPC-NTC. Solid line - MPC-PV. Dash-dotted line - Open loop response.
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Figure 3.17: Temperature and concentration at the reactor outlet during
Test 2. Dashed line - MPC-NTC. Solid line - MPC-PV. Dash-dotted line -
Open loop response.
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Figure 3.18: Maximal peak of the temperature profile during Test 2. Dashed
line - MPC-NTC. Solid line - MPC-PV. Dash-dotted line - Open loop
response.
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Figure 3.19: Control actions (jackets temperatures) of the MPC controllers
along Test 2. Dashed line - MPC-NTC. Solid line - MPC-PV.
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For carrying out the simulations, we have used as ODE solver the function
ODE45 of Matlab. This function is based on an explicit Runge-Kutta (4,5)
formula, the Dormand-Prince pair [43]. It is a one step solver that has been
configured with a variable integration step and with a relative tolerance of
10−5. In order to solve the optimization problem of the MPC controllers,
the solver Quadprog has been used. Quadprog is part of the Optimization
Toolbox of Matlab [101], and it uses an active set method similar to that
described in [57].

The simulation results of Test 1 are presented in Figures 3.12, 3.13, 3.14
and 3.15. Figures 3.16, 3.17, 3.18 and 3.19 show the simulation results
of Test 2. Furthermore in Table 3.3, some numbers for quantifying the
performance of the control systems are shown. In this table, Tmax is the
maximum temperature reached inside the reactor during the test. ΔCout is
the percentage of change of the concentration in steady state at the reactor
output with respect to its nominal value. That is,

ΔCout(%) =
CN − C∗

N

C∗
N

× 100 (3.20)

where C∗
N is the nominal value (1.5737 · 10−3 mol/l) and CN is the

concentration at the reactor output in steady state after the test.

In Test 1, there is a permanent violation of the temperature constraint (see
Figures 3.12 and 3.14) for the open loop case, which leads to undesirable side
reactions. The maximum temperature value registered is 413.03 K, which is
far from the maximum allowed (400 K). However this temperature increment
in steady state conduces to a reduction of 79.39 % in the concentration at the
reactor output. For the case of the MPC control schemes, the temperature
inside the reactor is kept below 400 K, and the concentration at reactor
outlet is reduced a little bit. The control efforts of the MPC controllers can
be observed in Figure 3.15, where it is clear that their control actions are
all the time within the boundaries (280 K ≤ TJ1, TJ2, TJ3 ≤ 400 K).

In Test 2, a significant increment of the concentration at the reactor outlet
is observed when the system is operating in an open loop configuration
(see Figures 3.16 and 3.17). We have an increment of 198.25% in steady
state, which means that the performance of the tubular chemical reactor has
been reduced dramatically. The MPC controllers overcome this situation
by manipulating the temperatures of the jackets in such a way that the
temperature inside the reactor is increased in order to compensate the effect
of the input disturbances. We have an increment in the concentration of only
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Table 3.3: Performance parameters of the control systems

Test
Open-loop MPC-NTC MPC-PV

ΔCout[%] Tmax[K] ΔCout[%] Tmax[K] ΔCout[%] Tmax[K]
1 -79.39 413.03 -0.69 394.09 -0.7 394.59
2 198.25 390 3.19 397.59 0.63 395.05
3 -99.46 440.46 52.38 405.08 -6.89 396.62
4 493.7 390 134 399.67 -54.12 399.34

Tmax [K] = Maximum temperature reached inside the reactor during the test.

ΔCout [%] = Percentage of change of the concentration in steady state at the reactor

output with respect to its nominal value (see Equation (3.20)).

3.19% and 0.63% for the MPC-NTC and MPC-PV controllers respectively.
It is clear that the performance of the reactor practically has not been
affected. Additionally as it is shown in Figure 3.19, the control actions
of both controllers are within the limits.

In general, the control schemes showed a good behavior for rejecting the
disturbances (typical magnitudes: Cin = ±10−3 mol/l and Tin = ±10 K)
and both presented a similar performance.

Under the previous tests, the control systems were not operating close to the
temperature constraints, and therefore during the tests, these constraints are
not active in the MPC-PV controller. So, in order to evaluate the ability
of this control scheme of dealing with the temperature constraint along the
reactor, the following tests were designed:

• Test 3: the temperature and concentration of the feed flow are
increased by 24 K and 3 · 10−3 mol/l respectively.

• Test 4: the temperature and concentration of the feed flow are
decreased by 30 K and 4 · 10−3 mol/l respectively.

Notice that under these new tests (where the disturbances are too large in
comparison with the typical ones) the tubular reactor operates far from the
operating profiles shown in Figure 3.4, and therefore the differences between
the nonlinear model of the process and the linear POD model used by the
controllers are considerable.

The simulation results of Test 3 are given in Figures 3.20, 3.21, 3.22 and
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Figure 3.20: Steady-state temperature and concentration profiles of the
reactor for Test 3. Dotted line - Nominal profile (reference). Dashed line -
MPC-NTC. Solid line - MPC-PV.
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Figure 3.21: Temperature and concentration at the reactor outlet during
Test 3. Dashed line - MPC-NTC. Solid line - MPC-PV.
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Figure 3.22: Maximal peak of the temperature profile during Test 3. Dashed
line - MPC-NTC. Solid line - MPC-PV.
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Figure 3.23: Control actions (jackets temperatures) of the MPC controllers
along Test 3. Dashed line - MPC-NTC. Solid line - MPC-PV.
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Figure 3.24: Steady-state temperature and concentration profiles of the
reactor for Test 4. Dotted line - Nominal profile (reference). Dashed line -
MPC-NTC. Solid line - MPC-PV.
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Figure 3.25: Temperature and concentration at the reactor outlet during
Test 4. Dashed line - MPC-NTC. Solid line - MPC-PV.



3.5 Simulation results 81

0 5 10 15 20 25 30 35
365

370

375

380

385

390

395

400

T
em

p
er

a
tu

re
[K

]

t [s]

Figure 3.26: Maximal peak of the temperature profile during Test 4. Dashed
line - MPC-NTC. Solid line - MPC-PV.
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Figure 3.27: Control actions (jackets temperatures) of the MPC controllers
along Test 4. Dashed line - MPC-NTC. Solid Line - MPC-PV.
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3.23, and Figures 3.24, 3.25, 3.26 and 3.27 present the simulation results
of Test 4. In addition, Table 3.3 shows the performance parameters of the
control systems.

In Test 3, the MPC-NTC controller violates temporarily the temperature
constraint as can be observed from Figure 3.22. The constraint is violated
during 1.46 s and the maximum peak registered is 405.08 K. On the other
hand the MPC-PV controller keeps all the time the temperature profile
below 400 K. It is important to keep in mind that MPC-NTC does not take
into account the temperature constraint and the results obtained with it were
expected. From Table 3.3, it is clear that the performance of the reactor
is degraded in a considerable way (the concentration at the reactor outlet
is increased by 52.38%) for the MPC-NTC case, whereas for the MPC-PV
case the performance of the reactor is increased. Notice in Figure 3.20, how
the last part (particularly when z > 0.667 m) of the temperature profiles
is different. The temperature profile of the MPC-PV control scheme is
over the profile of the MPC-NTC control system allowing a good reduction
of the concentration at the reactor outlet (see also Figure 3.21) for the
MPC-PV case. This behavior is the consequence of giving more weight
to the concentration (QC = 1000) than to the temperature of the selected
points (QT = I7) in the formulation of the MPC-PV controller. The control
actions of both control systems are displayed in Figure 3.23. There are
some temporary saturations of the actuators as a consequence of the large
disturbances, but the control efforts are all the time between 280 K and
400 K.

In Test 4, there is no violation of the temperature constraint (see Figure 3.26)
when both MPC control systems are used. It is remarkable how MPC-PV
reduces the concentration at the reactor outlet by 54.12%. This is not the
case for the MPC-NTC controller where the concentration at the reactor
output is increased by 134%. In order to compensate the considerable
decrement in the temperature of the feed flow, both controllers try to
increase the temperature of the first jacket as much as possible, in this case
until 400 K (actuator upper limit). This can be observed in Figure 3.27.

From the previous two tests, it is evident that MPC-PV notably outperforms
MPC-NTC when large disturbances are applied to the reactor. At this point
it is important to remark that the MPC-PV controller was somehow favored
by the differences between the nonlinear model of the process and the linear
POD model on which it is based. This observation can be corroborated by
the fact that the controller was set to reduce the concentration at the reactor
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outlet by 6.5% and not by 54.12% as happened in Test 4 for instance. It
is remarkable how the MPC-PV controller can deal with the temperature
constraint of the system in spite of using a linear POD model of the tubular
reactor.

3.5.1 Tests on a reactor with axial dispersion

In order to include the axial dispersion phenomena in the plug flow reactor
model (3.1), second-order dispersion terms have to be added as follows:

∂C

∂t
= DC

∂2C

∂z2
− v

∂C

∂z
− k0Ce−

E
RT (3.21a)

∂T

∂t
= DT

∂2C

∂z2
− v

∂T

∂z
+ GrCe−

E
RT + Hr(Tw − T ) (3.21b)

where DC and DT are the mass and energy dispersion coefficients in [m2/s].
Note, however, that in practice the dimensionless mass and energy Peclet
numbers, i.e., PeC = vL/DC, and PeT = vL/DT, are mostly used for
indicating the level of dispersion. The boundary conditions of the previous
PDEs are the classical Danckwerts boundary conditions [39] given by

DC
∂C

∂z
= v (C − Cin) at z = 0 (3.22a)

DT
∂T

∂z
= v (T − Tin) at z = 0 (3.22b)

∂C

∂z
= 0 at z = L (3.22c)

∂T

∂z
= 0 at z = L. (3.22d)

For carrying out the closed-loop simulations of the MPC-NTC and MPC-
PV controllers with the dispersive plug flow reactor model, the nonlinear
model (3.21) was discretized in space by using a finite difference method.
So, the second and first partial derivatives with respect to z were replaced by
central difference approximations and backward difference approximations
respectively, leading to the following set of nonlinear ODEs:

dC̄i

dt
=

DC

Δz2

(
C̄i+1 + C̄i−1 − 2C̄i

)− v

Δz

(
C̄i − C̄i−1

)− k0C̄ie
− E

RTf T̄i (3.23)

dT̄i

dt
=

DT

Δz2

(
T̄i+1 + T̄i−1 − 2T̄i

)− v

Δz

(
T̄i − T̄i−1

)
+

+ Gr
Cf

Tf
C̄ie

− E
RTf T̄i + Hr

(
T̄w,i − T̄i

)
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for i = 1, 2, . . . , N

with

T̄w,i =

⎧⎨
⎩

T̄J1 = TJ1/Tf , ∀i = 1, . . . , za

T̄J2 = TJ2/Tf , ∀i = za + 1, . . . , zb

T̄J3 = TJ3/Tf , ∀i = zb + 1, . . . , N

T̄0 =
1

DT + vΔz

(
vΔz

Tin

Tf
+ DTT̄1

)

C̄0 =
1

DC + vΔz

(
vΔz

Cin

Cf
+ DCC̄1

)
T̄N+1 = T̄N

C̄N+1 = C̄N

where N = 300 is the number of sections in which the reactor is divided, za

and zb are the reactor sections defining the ending of the first and second
jacket respectively, Tf and Cf are normalization factors, C̄i = Ci/Cf and
T̄i = Ti/Tf are the normalized concentration and temperature of the ith
section of the reactor, T̄J1, T̄J2, T̄J3 are the normalized jackets temperatures,
and Δz is the length of each section.

For the sake of simplicity, in this study it is assumed that the mass and
energy dispersion coefficients are equal, that is, DC = DT = D (PeC = PeT =
Pe). In Figure 3.28 we can observe the effect of increasing the dispersion
coefficient D on the steady-state profiles of the reactor derived by means of
the optimization algorithm presented in Section 3.2.2 (in Figure 3.28, case
when D = 0 or equivalently Pe = ∞). It is clear that as the dispersion
coefficient increases, the dispersion induces lower temperatures inside the
reactor, which decreases the magnitude of the hot spot but inevitably
degrades the reactor performance. For D = 0.001 m2/s (Pe = 100) and
D = 0.005 m2/s (Pe = 20), the concentration at the reactor outlet is
increased by 22.48% and 79.8% respectively (these increments are measured
with respect to the concentration at the reactor outlet when D = 0). Notice
also, that as the dispersion coefficient D grows, the difference between
the feed values (Cin = 0.02 mol/l and Tin = 340 K) and the inlet values
(C(z = 0) and T (z = 0)) increases according to the Danckwerts boundary
conditions.

Tests 1 and 2 were carried out again, but this time the predictive controllers
were attached to the dispersive plug flow reactor model (3.21). The fact
of using a dispersive tubular reactor constitutes a way of evaluating the
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Figure 3.28: Effect of increasing the dispersion coefficient D [m2/s] on the
steady-state profiles of the reactor when TJ1 = 374.6 K, TJ2 = 310.1 K and
TJ3 = 325.2 K.

robustness of the MPC-NTC and MPC-PV controllers, since the model on
which they are based does not consider the dispersion phenomena. Two
levels of dispersion were used along the tests, D = 0.001 m2/s and D =
0.005 m2/s.

The simulation results of Test 1 for D = 0.001 m2/s and D = 0.005 m2/s
are presented in Figures 3.29, 3.30, 3.31 and 3.32. Figures 3.33, 3.34, 3.35
and 3.36, show the simulation results of Test 2 for D = 0.001 m2/s and
D = 0.005 m2/s. In addition, Table 3.4 presents some numerical values that
quantify the performance of the control systems. The initial conditions of
the dispersive reactor model are given by the profiles shown in Figure 3.28
for D > 0.

In Test 1, once more, we can observe a permanent violation of the
temperature constraint for the open loop case (see Figures 3.29, 3.30, 3.31
and 3.32), which leads to undesirable side reactions. Notice, however, that
the magnitude of this violation becomes smaller as the dispersion coefficient
increases. Additionally, the increment of the level of dispersion increases
the concentration at the reactor outlet. For the case of the MPC control
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Table 3.4: Performance parameters of the control systems

Test
D Open-loop MPC-NTC MPC-PV

[m2/s] ΔCout Tmax ΔCout Tmax ΔCout Tmax

1
0 -79.39 413.03 -0.69 394.09 -0.7 394.59

0.001 -71.35 411.6 24.21 390.3 10.04 389.5
0.005 -35.18 404.3 97.82 385.6 11.41 390.44

2
0 198.25 390 3.19 397.59 0.63 395.05

0.001 211.4 388.6 38.5 390.48 8.43 389.13
0.005 261.7 384.98 153.1 384.99 1.87 399.42

Tmax [K] = Maximum temperature reached inside the reactor during the test.

ΔCout [%] = Percentage of change of the concentration in steady state at the reactor

outlet with respect to 1.5737 · 10−3 mol/l (see Equation (3.20)).

schemes, the temperature inside the reactor is kept below 400 K. From Table
3.4, it is clear that the MPC-NTC controller is not as good as the MPC-PV
controller for keeping the concentration at the reactor outlet close to its
nominal value.

In Test 2, the reactor conversion is notably reduced when the system is
operating in an open-loop configuration. This situation becomes more and
more critical as the level of dispersion increases (see Figures 3.33 and 3.34
and Table 3.4). In order to counteract the effect of the input disturbances,
the predictive controllers manipulate the jackets temperatures in such a
way that the temperature inside the reactor is increased. From the results
obtained, it is clear that the MPC-PV controller does a much better job than
the MPC-NTC controller, which loses performance when the dispersion in
the reactor is increased.

In general, the presence of dispersion in the reactor has had a much
bigger impact on the performance of the MPC-NTC controller than on
the performance of the MPC-PV controller. As the dispersion increases,
the MPC-NTC controller loses its ability of keeping the concentration at
the reactor outlet close to its nominal value. So, it is clear that for
improving the behavior of this controller, it would be necessary to include
the dispersion phenomena in the POD model on which this controller is
based. Furthermore, the nonlinearities of the reactor contribute to the poor
performance exhibited by the MPC-NTC controller, since under dispersive
conditions the reactor can operate far away from the nominal operating
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Figure 3.29: Steady-state profiles of the reactor with D = 0.001 m2/s for
Test 1. Dotted line - Nominal profile (reference). Dashed line - MPC-NTC.
Solid line - MPC-PV. Dash-dotted line - Open loop response.
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Figure 3.30: Steady-state profiles of the reactor with D = 0.005 m2/s for
Test 1. Dotted line - Nominal profile (reference). Dashed line - MPC-NTC.
Solid line - MPC-PV. Dash-dotted line - Open loop response.
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Figure 3.31: Maximal peak of the temperature profile during Test 1 when
D = 0.001 m2/s. Dashed line - MPC-NTC. Solid line - MPC-PV. Dash-
dotted line - Open loop response.
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Figure 3.32: Maximal peak of the temperature profile during Test 1 when
D = 0.005 m2/s. Dashed line - MPC-NTC. Solid line - MPC-PV. Dash-
dotted line - Open loop response.
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Figure 3.33: Steady-state profiles of the reactor with D = 0.001 m2/s for
Test 2. Dotted line - Nominal profile (reference). Dashed line - MPC-NTC.
Solid line - MPC-PV. Dash-dotted line - Open loop response.
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Figure 3.34: Steady-state profiles of the reactor with D = 0.005 m2/s for
Test 2. Dotted line - Nominal profile (reference). Dashed line - MPC-NTC.
Solid line - MPC-PV. Dash-dotted line - Open loop response.



90 Control of a Non-isothermal Tubular Reactor

0 5 10 15 20 25 30 35
365

370

375

380

385

390

395

T
em

p
er

a
tu

re
[K

]

t [s]

Figure 3.35: Maximal peak of the temperature profile during Test 2 when
D = 0.001 m2/s. Dashed line - MPC-NTC. Solid line - MPC-PV. Dash-
dotted line - Open loop response.
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Figure 3.36: Maximal peak of the temperature profile during Test 2 when
D = 0.005 m2/s. Dashed line - MPC-NTC. Solid line - MPC-PV. Dash-
dotted line - Open loop response.
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profiles (see Figure 3.28, case when D = 0 m2/s) where the linear POD
model provides a suitable approximation of the nonlinear model of the
system.

Observe in Figures 3.29, 3.30, 3.33 and 3.34, how the MPC-PV controller
increases the temperature of the last sections of the reactor in order to
guarantee a good performance of the system. As it was explained before,
this behavior is the consequence of giving more importance to the reduction
of the concentration at the rector outlet than to the reduction of the
temperature deviations in the formulation of the predictive controller.
It is remarkable how the MPC-PV controller is able to maintain the
concentration at the reactor outlet close to its nominal value, in spite of
using a POD model that does not incorporate both the dispersion effects
and the nonlinearities of the system.

Although it is not shown in this section, the control efforts of the predictive
controllers were all the time within the boundaries (280 K ≤ TJ1, TJ2, TJ3 ≤
400 K).

3.6 Conclusions

In this chapter we have presented the results of applying POD and predictive
control techniques to the control of the temperature and concentration
profiles of a non-isothermal tubular reactor. In addition, we have in-
troduced an optimization algorithm for deriving the operating profiles of
the process. Thanks to the POD and Galerkin projection techniques,
the high-dimensionality of the linearized model of the reactor has been
significantly reduced making possible the control design. Two POD-based
MPC control schemes have been proposed: a scheme where the formulation
of the predictive controller is in terms of the POD coefficients (MPC-
NTC) and a scheme where the MPC is formulated in terms of physical
variables (MPC-PV). In the first case, the control of the reactor profiles
is achieved indirectly by controlling the POD coefficients which have no
physical meaning. This makes the tuning of the controller little intuitive
and the definition of the control goals little flexible. This is not the case
for the second MPC controller where its formulation is in terms of the
temperature of some selected points along the reactor and the concentration
at the reactor output. Taking advantage of the flexibility that this scheme
provides, we gave more importance to the reduction of the concentration at
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the reactor outlet than to the reduction of the temperature deviations. As
a consequence of this setting, we observed in the simulation results how this
control system outperforms the first one when large disturbances are applied
to the plant. Notice however that under typical disturbances (Test 1 and
2), both control systems practically exhibit a similar performance. In tests
with a dispersive tubular reactor, the second control scheme outperformed
once more the MPC formulated in terms of the POD coefficients.

Unlike the first control scheme, the MPC formulated in terms of physical
variables imposes the temperature constraint of the reactor (T (z, t) ≤
400 K) in some selected points of the spatial domain. It was argued that
imposing the temperature constraint in some specific points might indirectly
enforce this constraint in the remaining points given the smoothness of the
temperature profile and the limited number of jackets. The simulation
results showed that the controller was able to reject large disturbances
without letting this constraint be violated. Nevertheless, the most difficult
part in the tuning of this controller is the selection of the points where the
temperature constraint is imposed. In this study, such selection was done by
trial and error and therefore we had to carry out a lot of simulations in order
to find a suitable set of points. This is of course not practical since a lot
of time and computational resources are needed. In Section 4.4 of the next
chapter, we present a way of finding a suitable set of points by means of a
greedy selection algorithm. The reader is referred to the end of this section
where we also discuss an improved formulation of the MPC-PV controller.

Given that the MPC-NTC controller does not take into account the
temperature constraint of the reactor, a temporary violation of this
constraint was observed during Test 3. In the next chapter, we propose an
extension of this controller which incorporates the temperature constraint
in its formulation. We will see that this new MPC will have to deal with
a very large number of linear inequality constraints (24 000). Since such
a large number of constraints demands a considerable amount of memory
and computational time for solving the optimization problem of the MPC
controller, in the next chapter we propose two approaches for reducing or
approximating this large number of inequality constraints.

Finally, it is important to remark that the tuning of the controllers have
been done in a conservative way in order to let them deal with large input
disturbances. We have to keep in mind that under large disturbances in the
feed flow (Tests 3 and 4), the reactor operates far from its nominal operating
profiles and therefore the differences between the linear POD model used by
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the controllers and the nonlinear model of the reactor are considerable. It
should be clear that if a tight tuning is required, it would be necessary to
incorporate the nonlinear characteristics of the reactor into the POD model.
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Chapter 4

Constraint Handling

4.1 Introduction

In the previous chapter, two POD-based predictive controllers were pro-
posed for controlling the temperature and concentration profiles of a non-
isothermal tubular chemical reactor. The control goal was to reject the
disturbances that affect the process, that is, the changes in the temperature
and concentration of the feed flow. One important constraint of the system
is that the temperature inside the reactor must be below a given value in
order to prevent undesirable side reactions. Under typical disturbances, the
controller formulated in terms of the POD coefficients, which is referred to as
MPC-NTC (described by (3.16)), performs very well, and the temperature
constraint is not violated despite the fact that the predictive controller
does not incorporate this constraint in its formulation. However, if
larger disturbances are applied, temporary violations of this constraint are
observed.

In this chapter we start by presenting an extension of the MPC-NTC
controller proposed in Section 3.4.1. This new POD-based controller takes
into account the temperature constraint of the reactor and uses a slack
variable approach with �∞-norm and time-dependent weights for handling
the infeasibilities that can arise [68]. Given that POD only reduces the
number of states and not the number of temperature constraints which
usually is very large, the optimization problem posed by this MPC, demands
a considerable amount of memory and requires more computational time.

95
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In this chapter we present two techniques for reducing the number of
temperature constraints. In the first technique, we approximate the
feasible region delimited by the large set of temperature constraints (linear
inequalities) by means of the theory of positive polynomials [1]. This
approximation leads to a reduction in the number of constraints by replacing
many linear inequalities by a few Linear Matrix Inequalities (LMIs) and a
small number of linear equalities. In this method the MPC optimization
problem is written as a Semidefinite Program (SDP). In the second
approach, we propose a greedy algorithm that exploits the similarities
between the coefficients of consecutive constraints for selecting a reduced set
of them [5], and unlike the first approach the MPC optimization problem
is written as a Quadratic Program (QP). These approaches are some of the
main contributions of this dissertation.

Based on the polynomial approximation of the temperature constraints, and
based on the reduced set of constraints found by the greedy algorithm, two
new predictive controllers are devised. These controllers also incorporate
the mechanism for handling infeasibilities mentioned before.

This chapter is structured as follows. Section 4.2 presents the extension
of the MPC-NTC controller, that is, a POD-based MPC controller that
deals with a very large number of temperature constraints. In Section 4.3,
our method for approximating the temperature constraints by using the
theory of positive polynomials is described, and a new MPC is presented.
Furthermore, the basics of this theory are discussed and some simulation
results are shown. Section 4.4 presents our greedy selection algorithm for
reducing the number of temperature constraints. Additionally, we show
some simulation results. Finally in Section 4.5, we summarize and conclude
this chapter.

4.2 POD-based MPC controller with temperature
constraints

In this section we present an extension of the control scheme described
in Section 3.4.1, which takes into account the temperature constraint of
the reactor and incorporates a mechanism for dealing with infeasibilities.
As it was explained in Section 3.4.1, the control of the temperature
and concentration profiles is achieved indirectly by controlling the POD
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coefficients, whose references aref are given by

aref = ΦT
nxref

where xref is the reference of the state vector x(t) and is equal to 0 since the
control system has to keep the reactor operating around the profiles shown
in Figure 3.4.

As it was stated in Section 3.4.2, the fact of taking into account the
temperature constraint of the reactor, creates the necessity of establishing a
mechanism for handling the infeasibilities that can come out due to the
differences between the process and the model used by the MPC, the
magnitude of the disturbances, the saturation of the actuators, and so
on. In this MPC formulation, we treat the temperature constraint as a
soft constraint by using a slack variable approach with �∞-norm and time-
dependent weights [68,69]. This MPC, which will be referred to as MPC-QP,
is formulated as follows:

min
aNp ,ΔuNc ,dNp ,ξ

Np∑
i=1

‖aref(k + i) − a(k + i)‖2
Q +

Nc−1∑
i=0

‖Δu(k + i)‖2
R+ (4.1a)

+PQξ2 + PLξ

subject to

a(k + i + 1) = Ãa(k + i) + B̃u(k + i) + F̃d(k + i), i = 0, . . . , Np − 1,

d(k + i + 1) = d(k + i), i = 0, . . . , Np − 1,

u(k + i) = u(k + i − 1) + Δu(k + i), i = 0, . . . , Nc − 1,

u(k + i) = u(k + i − 1), i = Nc, . . . , Np − 1,

umin ≤ u(k + i) ≤ umax, i = 0, . . . , Nc − 1,

T̄Δ(k + i) = ΦTa(k + i) ≤ T̄Δmax + 1 · η(i)ξ, i = 1, . . . , Np, (4.1b)
ξ ≥ 0, (4.1c)

with

aNp = [a(k + 1); a(k + 2); . . . ; a(k + Np)]
dNp = [d(k + 1); d(k + 2); . . . ; d(k + Np)]

ΔuNc = [Δu(k); Δu(k + 1); . . . ; Δu(k + Nc − 1)]
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where Q and R are weighting matrices (Q � 0,R  0), ‖v‖2
Q denotes vTQv,

Np is the prediction horizon, Nc is the control horizon, umin and umax are the
lower and upper bounds (these hard constraints are necessary due to physical
limitations of the actuators) of u(k), ΦT is the lower part (the last N = 300
rows) of the matrix Φn =

[
ΦT

C,ΦT
T

]T that is associated to the temperature
profile, T̄Δ(k) = ΦTa(k) is a vector which contains the normalized
deviations of the temperature profile, T̄Δmax = (400 K · 1 − T∗) /Tf is a
vector that contains the maximal allowed temperature for each point of the
reactor, ξ is the slack variable (a scalar quantity), PQ and PL are weighting
factors (PQ > 0, PL > 0), 1 ∈ R

300 is a vector of 1’s and η(i) = 1
/
ri−1
c , is a

time-dependent weight (rc > 1).

In this formulation the maximum violation of the temperature constraint
along the reactor and the prediction horizon is penalized by means of the
term PQξ2 +PLξ. A sufficiently large PL will ensure that the constraints are
enforced as exact soft constraints, that is, that constraint violations will only
occur when there is no feasible solution of the original problem [68]. The
quadratic term PQξ2 is used as an additional tuning parameter and it also
leads to a well-posed quadratic program (positive definite Hessian) [131].

The time-dependent weight η(i) is used for penalizing future predicted
constraint violations increasingly, avoiding long-lasting constraint violations
[68].

Similarly to the MPC controllers presented in the previous chapter, this
controller is embedded in the same block diagram depicted in Figure 3.11
(case MPC-NTC), and it uses the Kalman filter described by (3.17) for
estimating the state vector a(k) of the POD model (3.14) and the changes
in the concentration of the feed flow (d1(k) = C̄Δ

in (k)).

The control horizon Nc was set to 10 samples and the prediction horizon
Np was selected according to the following criterion: “Prediction Horizon
= Control Horizon + Largest Settling Time = 80 samples”. umin and umax

were selected according to the input constraints of the process and the
operating temperatures of the jackets. The other parameters were selected
as follows: rc = 1.2, PL = 104, PQ = 104, Q = I20 and R = 110 · I3.

The optimization problem (4.1) that is solved by the MPC controller is a
quadratic programming (QP) problem which has N × Np = 300 × 80 =
24 000 temperature constraints. This amount of constraints demands a
considerable amount of memory and computing power. Although the POD
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technique has reduced the number of state variables of the high-dimensional
model (3.8), the number of temperature constraints is still very large.

In the next sections, we present two approaches for tackling this problem.
Initially, we introduce an interesting approach which uses the positive
polynomials theory for replacing the large number of inequalities by a few
linear matrix inequalities while maintaining a control of the temperature
at every point at the reactor (infinity number of points). Afterwards, we
present a greedy selection algorithm which reduces the number of constraints
by choosing properly only some of them. Note however that unlike the
positive polynomial approach, in this method we do not have any command
on the temperature between the discretization points.

4.3 Positive polynomial approach

4.3.1 Fundamentals

Many specific problems, particularly in systems and control, can be reduced
to the verification of the global nonnegativity of a polynomial function [28].
In [117] some examples are provided, namely, Lyapunov function computa-
tion, output feedback stabilization, multidimensional system stability, etc.

The Tarski-Seidenberg decision procedure described in [27,28,106], provides
an explicit algorithm for deciding if a polynomial is nonnegative, so it is
clear that this problem is decidable. In addition, there are some alternative
approaches based on decision algebra like the ones discussed in [18,28].

In general, the problem of testing the global nonnegativity of a multivariate
polynomial function is in fact Nondeterministic Polynomial-time hard (NP-
hard), when its degree is larger or equal than four [117]. So, in order to
avoid the complexity problems of the previous methods which provide an
exact solution to this problem, we have to look for relaxed conditions that
can be efficiently tested while guaranteeing the global nonnegativity of the
polynomial.

An obvious necessary condition for the nonnegativity of a polynomial is that
its degree has to be even. Now, a simple sufficient condition for a real-valued
polynomial G(x1, . . . , xl) = G(x) : R

l → R to be nonnegative everywhere is
given by the existence of its Sum Of Squares (SOS) decomposition defined
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as follows,

G(x) =
m∑

j=1

g2
j (x) (4.2)

where gj(x) = gj(x1, . . . , xl) ∀j = 1, . . . , m are real-valued polynomials in
x1, . . . , xl. Notice however that in general, SOS is not equivalent to the
nonnegativity of a polynomial. Only in the following special cases they
are equivalent: quadratic polynomials, univariate polynomials and quartic
polynomials in two variables.

Further, the SOS representability of a polynomial can be expressed as a
semidefinite feasibility problem [111,117], as the following proposition states.

Proposition 4.1. A multivariate polynomial G(x) of degree 2d is SOS if
and only if there exists a positive semidefinite matrix W and a vector of
monomials h(x) containing monomials in x1, . . . , xl of degree ≤ d such that

G(x) = h(x)TW h(x). (4.3)

The number of components of h(x) is given by
„

d + l
d

«
and the number of

squares m in (4.2) is equal to the rank of W, which in general is not unique.

Example 4.1 ( [115,117]). In this example, we are interested in finding out
whether or not the quartic (2d = 4) polynomial in two variables G(x1, x2) =
2x4

1 + 2x3
1x2 − x2

1x
2
2 + 5x4

2 is SOS.

First of all, let us define h(x1, x2) as follows: h(x1, x2) =
[
x2

1, x
2
2, x1x2

]T .
We can write G(x1, x2) in the following quadratic form:

G(x1, x2) = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2

=

⎡
⎣ x2

1

x2
2

x1x2

⎤
⎦T ⎡⎣ w11 w12 w13

w12 w22 w23

w13 w23 w33

⎤
⎦
⎡
⎣ x2

1

x2
2

x1x2

⎤
⎦

= w11x
4
1 + w22x

4
2 + (2w12 + w33)x2

1x
2
2 + 2w13x

3
1x2 + 2w23x1x

3
2.

By equating the coefficients of G(x1, x2) to the coefficients of the monomials
obtained from expanding h(x1, x2)TW h(x1, x2), we obtain the following
set of affine relations:

w11 = 2,
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w22 = 5,

w13 = 1,

w23 = 0,

2w12 + w33 = −1.

A positive semidefinite matrix W � 0 that satisfies the previous linear
equalities can then be found by using semidefinite programming. After
solving numerically, we obtained the following particular solution:

w12 = −3,

w33 = 5,

W =

⎡
⎣ 2 −3 1

−3 5 0
1 0 5

⎤
⎦ � 0.

This is a certificate that G(x1, x2) is nonnegative everywhere since G(x1, x2)
is SOS. Given that the rank of W is 2, we have only 2 squares in the SOS
decomposition. If we want to compute the SOS decomposition of G(x1, x2)
we proceed as follows. First we calculate the Cholesky factorization of W,

W = UT
c Uc, where Uc =

1√
2

[
2 −3 1
0 1 3

]
,

and finally, we substitute the previous factorization into the quadratic form
of G(x1, x2),

G(x1, x2) = h(x1, x2)TUT
c Uc h(x1, x2)

= ‖Uc h(x1, x2)‖2
2

=
∥∥∥∥ 1√

2

[
2x2

1 − 3x2
2 + x1x2

x2
2 + 3x1x2

]∥∥∥∥2

2

=
1
2
(
2x2

1 − 3x2
2 + x1x2

)2 +
1
2
(
x2

2 + 3x1x2

)2
.

As it was mentioned at the beginning of this section, checking the
nonnegativity of a polynomial G(x) is an NP-hard problem when the degree
of G(x) is at least 4 [108], whereas checking whether G(x) can be written as
an SOS is computationally tractable, since it can be formulated as an SDP
problem which in the worst case has a polynomial time complexity. Although
we are not going into details, there are several results that suggest that this
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relaxation is not too conservative [124]. Observe that when we increase the
number of variables or the degree of G(x), the computational complexity for
testing whether or not G(x) is SOS also increases. Even so, the complexity
overload is still a polynomial function of these parameters [115].

4.3.2 Approximation of the temperature constraints by means
of positive polynomials

In spite of the fact that the POD model of the reactor has 20 states, in this
chapter a 2nd order POD model is used for visualizing the feasible regions
delimited by the temperature constraints and explain the main ideas of both
this positive polynomial approach and the technique based on the greedy
selection algorithm.

Figure 4.1 shows in dashed line the feasible region delimited by the
temperature constraints

ΦTa(k) ≤ T̄Δmax (4.4)

of a 2nd order POD model.

As it was mentioned before, ΦT ∈ R
300×20 is the lower part of the matrix

Φn =
[
ΦT

C,ΦT
T

]T , therefore each column of ΦT corresponds to the part of the
basis vectors ϕj ∀j = 1, 2, . . . , n = 20 that is associated to the temperature
profile. That is,

ΦT =
[
ϕ̃1, ϕ̃2, . . . , ϕ̃j , . . . , ϕ̃20

]
,

where ϕ̃j ∈ R
300 for j = 1, 2, . . . , n = 20.

In this thesis we use the term “smoothness” to indicate that a function
does not change abruptly and/or that it does not oscillate too much (low
frequency content). By taking advantage of the smoothness of the most
relevant columns of ΦT, we can find polynomial approximations Pj(z) of
the vectors ϕ̃j ∀j = 1, 2, . . . , 20 by means of a least squares regression.
These approximations would satisfy:

Pj(zi) ≈ ϕ̃ij ∀j = 1, 2, . . . , n = 20, (4.5a)

Pmax(zi) ≈ T̄Δmax
i (4.5b)

for i = 1, 2, . . . , N = 300,

where ϕ̃ij is the ith element of ϕ̃j associated to the ith grid point, T̄Δmax
i is

the ith element of T̄Δmax associated to the ith grid point, Pj(z) and Pmax(z)
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Figure 4.1: Feasible regions delimited by the temperature constraints of
a 2nd order POD model. Dashed line - Original temperature constraints.
Solid line - Polynomial approximations of different degree given by (4.6).
Solid line with dots - Polynomial approximations of different degree given
by (4.9).

are univariate real polynomials of degree d that approximate the vectors ϕ̃j

and T̄Δmax respectively, z is the spatial coordinate and zi = iΔz is the value
of the spatial coordinate at the ith grid point.

By using Equations (4.5a) and (4.5b) we can approximate Equation (4.4)
by

Φ̂Ta(k) ≤ T̂Δmax (4.6)

with

Φ̂T =

⎡
⎢⎢⎢⎣

P1(z1) P2(z1) · · · Pn(z1)
P1(z2) P2(z2) · · · Pn(z2)

...
...

. . .
...

P1(zN ) P2(zN ) · · · Pn(zN )

⎤
⎥⎥⎥⎦
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T̂Δmax =

⎡
⎢⎢⎢⎣

Pmax(z1)
Pmax(z2)

...
Pmax(zN )

⎤
⎥⎥⎥⎦

where Φ̂T and T̂Δmax are the approximations of ΦT and T̄Δmax respectively,
N = 300 is the number of sections into which the reactor is divided (number
of grid points) and n = 20 is the number of the selected POD basis vectors.

Figure 4.1 shows the feasible regions (in solid line) delimited by Equation
(4.6) for a 2nd order POD model when polynomials of different degree are
used. From this Figure, it is clear that polynomials of degree 10 are accurate
enough for approximating ϕ̃j ∀j = 1, 2 and T̄Δmax .

Equation (4.6) imposes the temperature constraint only on the grid points
of the interval [0, 1]. However, we can impose the condition (4.6) on every
point of the interval [0, 1], giving

n∑
j=1

aj(k)Pj(z) ≤ Pmax(z), ∀z ∈ [0, 1]

which can be rewritten by defining

P (k)(z) = Pmax(z) −
n∑

j=1

aj(k)Pj(z)

as follows:
P (k)(z) ≥ 0, ∀z ∈ [0, 1]. (4.7)

The resulting polynomial P (k)(z) of degree d has to be nonnegative, at least
in the interval z ∈ [0, 1].

Even though we have now seemingly complicated the problem by replacing
many by infinitely many inequalities, this new formulation can efficiently be
handled by positive polynomials techniques.

4.3.3 Semidefinite representability of positive polynomials
on an interval

As it was stated in Section 4.3.1, a sufficient condition for a multivariate
real polynomial to be nonnegative everywhere is whether it can be written
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as a sum of squared polynomials. We denoted this property, as common, by
the acronym SOS, for Sum Of Squares. In general, SOS is not equivalent
to the nonnegativity of a polynomial. Nevertheless, as a direct consequence
of the Fundamental Theorem of Algebra, univariate real polynomials are
nonnegative everywhere if and only if they are SOS. In Section 4.3.1
we showed through Proposition 4.1 that the SOS representability of a
polynomial can be expressed as a semidefinite feasibility problem [111,117].
An adaptation of this proposition to the specific case of univariate real
polynomials is given as follows.

Proposition 4.2 (see [111]). A univariate polynomial P (z) of degree 2d is
SOS if and only if there exists a (d+1)× (d+1) positive semidefinite matrix
W such that

P (z) = f(z)TWf(z), (4.8)

where f(z) =
[
1, z, z2, . . . , zd

]T .

As the SOS representation of a polynomial is generically not unique, the
matrix W can not be uniquely defined.

It is possible to relate the positivity of a real univariate polynomial on a
compact interval [a, b] to the positivity of some other polynomial on the
whole real line by the following transformation.

Proposition 4.3 (see Section 4.2, Example 21.b in [20]). A real univariate
polynomial p of degree d is nonnegative on the compact interval [a, b] if and
only if

(1 + z2)dp

(
a +

(b − a)z2

1 + z2

)
≥ 0, ∀z ∈ R.

The proof relies on the observation that the conditions:

• the rational function g(z) = gn(z)/gd(z) = a +
(
(b − a)z2/(1 + z2)

)
has [a, b] as image,

• the denominator gd(z) is positive on z ∈ R,

• and p(z) ≥ 0 on z ∈ [a, b]

are equivalent to p(g(z)) ≥ 0 on z ∈ R.
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For every 1 ≤ k ≤ Np, the condition (4.7):

P (k)(z) = Pmax(z) −
n∑

j=1

aj(k)Pj(z) ≥ 0, ∀z ∈ [0, 1]

can be converted into:

P̃ (k)(z) = (1 + z2)dP (k)

(
z2

1 + z2

)
≥ 0, ∀z ∈ R,

and, denoting by S
d+1
+ the set of (d + 1) × (d + 1) positive semidefinite

matrices, into:
find W(k) ∈ S

d+1
+ (4.9)

such that P̃ (k)(z) = f(z)TW(k)f(z).

Observe that the coefficients of P (k)(z), and thus the coefficients of P̃ (k)(z)
depend linearly on aj(k) ∀j = 1, ..., n. Therefore, the coefficients of W(k)

are themselves linear functions of aj(k). Henceforth, the MPC optimization
problem with the polynomial approximation of the temperature constraints
can be written as a Semidefinite Program (SDP). SDP are a subclass of self-
scaled optimization problems (see [112]), that can be solved efficiently by
Interior-Point Methods, such as the one implemented in the Matlab toolbox
Sedumi [140].

Figure 4.1 depicts the feasible regions (solid line with dots) delimited by
Equation (4.9) for a 2nd order POD model when polynomials of different
degree are used. Notice how this approximation overlaps completely the
approximation given by (4.6) for all the cases. It means that the error in the
approximation given by (4.9) are mainly due to the errors of approximating
the columns of ΦT and T̄Δmax by polynomials.

For degree 10, the feasible region induced by the polynomial approximation
(4.9) and by the original temperature constraints (4.4) are almost indistin-
guishable.

The new MPC controller based on polynomial approximations of the
temperature constraints will be referred to as MPC-SDP. Its formulation
is given as follows:

min
aNp ,ΔuNc ,dNp ,ξ

Np∑
i=1

‖aref(k + i) − a(k + i)‖2
Q+

Nc−1∑
i=0

‖Δu(k + i)‖2
R+ (4.10a)
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Figure 4.2: Polynomial approximations of the vectors ϕ̃1 and ϕ̃20. Solid
line - vector. Dashed line - Approximation with a polynomial of degree 12.

+PQξ2 + PLξ

subject to

a(k + i + 1) = Ãa(k + i) + B̃u(k + i) + F̃d(k + i), i = 0, . . . , Np − 1,

d(k + i + 1) = d(k + i), i = 0, . . . , Np − 1,

u(k + i) = u(k + i − 1) + Δu(k + i), i = 0, . . . , Nc − 1,

u(k + i) = u(k + i − 1), i = Nc, . . . , Np − 1,

umin ≤ u(k + i) ≤ umax, i = 0, . . . , Nc − 1,

W(k+i) � 0, i = 1, . . . , Np (4.10b)

P̃ (k+i)(z) = f(z)TW(k+i)f(z), i = 1, . . . , Np (4.10c)
ξ ≥ 0,

with

P̃ (k+i)(z) = (1 + z2)dP (k+i)

(
z2

1 + z2

)

P (k+i)(z) = Pmax(z) + η(i)ξ −
n∑

j=1

aj(k + i)Pj(z)

aNp = [a(k + 1); a(k + 2); . . . ; a(k + Np)]
dNp = [d(k + 1); d(k + 2); . . . ; d(k + Np)]

ΔuNc = [Δu(k); Δu(k + 1); . . . ; Δu(k + Nc − 1)] .
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Here ξ is the slack variable (a scalar quantity) and η(i) = 1
/
ri−1
c , is a

time-dependent weight (rc > 1). As it was explained in Section 4.2, the
slack variable ξ and the time-dependent weight allow the MPC to deal with
possible infeasibilities. The only difference of this formulation and the one
of the MPC-QP controller is that (4.1b) has been replaced by (4.10b) and
(4.10c). Observe that the semidefinite representation of the temperature
constraint still yields linear matrix inequalities, which fall into the scope of
interior-point methods for self-scaled programming.

This new MPC has the same tuning parameters as the MPC presented
in Section 4.2, and it uses the same Kalman filter (3.17) as described in
Section 3.4.1. We have set the degree of the polynomials Pmax(z) and
P1(z), P2(z), . . . , P20(z) to d = 12. With this selection, the first seven vectors
ϕ̃1, . . . , ϕ̃7 are approximated very well. On the other hand, the last five
vectors ϕ̃15, . . . , ϕ̃20 (the less relevant ones) are approximated very poorly
(see Figure 4.2). In general, the less important the POD basis function, the
more oscillatory it is. If we want to improve the polynomial approximations,
we would have to increase d, but this would lead to an increment in the
number of constraints.

Unlike the MPC presented in Section 4.2 which deals with 24 000 tempera-
ture constraints, this MPC has only (2d + 1) × Np = 25 × 80 = 2000 linear
equality constraints and Np = 80 Linear Matrix inequalities of dimension
13× 13 for dealing with the temperature constraint of the reactor. Hence, a
large reduction in the number of temperature constraints has been achieved
by means of the polynomial approximations.

4.3.4 Simulation results

In order to perform the closed-loop simulations of the control systems
proposed in this chapter, the same simulation environment described in
Section 3.5 has been used.

In this section, we solve the optimization problem of the MPC controllers
by means of Sedumi, a Matlab toolbox for optimization over symmetric
cones [140]. It is important to remark that all the MPC controllers have been
implemented using the condensed form of the MPC formulations presented
before. It means that the cost function and constraints of the MPC-QP
described by (4.1) have been expressed in terms of Δu(k) and ξ, and the
formulation of the MPC controller based on the polynomial approximations
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Figure 4.3: Steady-state temperature and concentration profiles of the
reactor for Test 3. Dotted line - Reference. Solid line - MPC-QP. Dashed
line - MPC-SDP. Dash-dotted line - MPC-NTC.
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Figure 4.7: Control actions (jackets temperatures) of the MPC controllers
along Test 3. Solid line - MPC-QP. Dashed line - MPC-SDP. Dash-dotted
line - MPC-NTC.

(MPC-SDP) has been expressed in terms of Δu(k), ξ and the entries of the
matrix W(k).

Initially we carried out the Tests 1 and 2 proposed in Section 3.5 to compare
the new MPC controllers MPC-QP and MPC-SDP and the MPC-NTC
(MPC with No Temperature Constraints) controller described by (3.16)
under typical disturbances. The simulations results were quite similar to the
ones reported in Section 3.5 for the MPC-NTC case. Hence along Tests 1
and 2, the MPC-QP, MPC-SDP and MPC-NTC controllers kept the reactor
working around the nominal operating profiles, there were no violations of
the temperature constraint, the concentration in steady state at the reactor
outlet was kept quite close to its nominal value, and the control actions were
all the time within the allowed bounds.

The similarities in the results are due to the fact that the control systems
were not operating close to the temperature constraints, and therefore during
the tests, these constraints are not active in the MPC-QP and MPC-SDP
controllers. In Section 3.5 two additional tests were suggested for evaluating
the capability of the controllers of dealing with the temperature constraint
of the reactor. From these two tests, only Test 3 pushes the reactor to
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line - MPC-SDP.

operating conditions where we can have temperature constraint violations
when this constraint is not taken into account by the MPC formulation.
This test is as follows:

• Test 3: the temperature and concentration of the feed flow are
increased by 24 K and 3 · 10−3 mol/l respectively. These disturbances
are large in comparison with the typical ones.

Observe that under this test, the tubular reactor operates far from
the operating profiles shown in Figure 3.4, and consequently there are
considerable differences between the nonlinear model of the process and
the linear POD model used by the controllers. Figures 4.3, 4.4, 4.5, 4.6 and
4.7 present the simulation results of Test 3.

Notice that in Figure 4.3 for all the cases, the steady state profiles of the
reactor are overlapping.

In Figure 4.5 we can observe that for the case of the MPC-NTC controller,
the temperature constraint is temporarily violated during 1.46 s with a
maximal peak of 405.08 K. On the other hand, the MPC-QP and MPC-SDP
controllers keep the temperature profile below 400 K along the test. Figure
4.6 shows the position of the hot spot (maximal peak of the temperature
profile) of the reactor during the experiment. Regarding the control actions
of the control systems, they were all the time within the allowed limits as
can be observed in Figure 4.7.



4.3 Positive polynomial approach 113

0
0.2

0.4
0.6

0.8
1 1.2 

5.2 

9.2 

13.2

17.2

340

350

360

370

380

390

400

Prediction Horizon
    (80 samples)

t [s]

z [m]

T
em

p
er

a
tu

re
[K

]

Figure 4.9: MPC-QP predictions of the temperature profile at t = 1.2 s
(Test 3).
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Figure 4.10: MPC-SDP predictions of the temperature profile at t = 1.2 s
(Test 3).

Figure 4.8 shows the cost function values obtained with the MPC-QP and
MPC-SDP controllers along Test 3. We can see that the largest differences
occur between t = 1 s and t = 5.6 s approximately. Notice that along
this interval the temperature constraints are active and the differences in
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Figure 4.11: Predictions of the maximal peak of the temperature profile at
t = 1.2 s (Test 3). Solid line - MPC-QP. Dashed line - MPC-SDP. Dash-
dotted line - MPC-NTC.

the cost function values are due to the polynomial approximation of these
constraints. After this interval the difference between the cost function
values becomes small and at the end practically negligible. We also can see
the repercussions of the polynomial approximation in the plots of Figure
4.4, where the evolution in time of the concentration and temperature at
the reactor outlet is shown for all the controllers.

The predictions of the temperature profile at t = 1.2 s of the MPC-QP and
MPC-SDP controllers are plotted in Figures 4.9 and 4.10 respectively. The
maximal peak of these predictions can be found by projecting the plots
shown in Figures 4.9 and 4.10 on the plane z = 0. Figure 4.11 shows the
controllers’ predictions of the maximal peak of the temperature profile at
t = 1.2 s. From Figure 4.11 it is clear that the temperature constraints of
MPC-QP and MPC-SDP are active. Both controllers keep the temperature
below and on 400 K along the prediction horizon. The differences observed
between the predictions of MPC-QP and MPC-SDP, are mainly due to the
errors of approximating the temperature constraints with polynomials. If we
want to reduce these discrepancies, we would have to increase the degree of
the polynomials. However, this would lead to an increment in the number of
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Table 4.1: Average time for solving the optimization problem

Control
Nc = 5 Nc = 10 Nc = 15 Nc = 20
Np = 75 Np = 80 Np = 85 Np = 90

MPC-QP
6.74 s 13.01 s 21.33 s 32.89 s

(Sedumi)
MPC-QP

0.28 s 0.31 s 0.53 s 0.76 s
(Quadprog)

MPC-SDP 3.91 s 5.77 s 8.09 s 11.2 s

Note: Nc and Np are the control and prediction horizons in samples.

constraints and optimization variables which would increase the complexity
of the optimization problem and therefore the time required to solve it.

Notice that in Test 3, the closed-loop response of the controlled system is
different than the predicted one. Also observe that the steady state profiles
of the reactor are far from the desired ones. None of these situations occurred
during Tests 1 and 2. All of this is mainly due to considerable differences
between the linear POD model used by the controllers and the observer, and
the nonlinear model of the process. We have to keep in mind that during
Test 3 the reactor is operating far away from the profiles (see Figure 3.4)
where the nonlinear model of the reactor was linearized. It is quite clear that
we have to incorporate the nonlinearities of the process into the POD model
used by the controllers if we want to improve the performance of the control
systems. Nevertheless this would lead to non-convex optimization problems
that would require more advanced solvers. For instance, the optimization
problems of the nonlinear MPC-QP and MPC-SDP controllers could be
addressed by Sequential Quadratic Programming (SQP) and sequential SDP
methods respectively.

Table 4.1 presents the average computation times (on a PC with an
Intel Dual Core of 3 Ghz and a RAM memory of 2 GB) for solving the
optimization problems of the MPC controllers during Test 3 for different
control and prediction horizons. In this table we also have included the time
of solving the optimization of the MPC-QP controller when a specialized QP
solver like Quadprog is used. Quadprog is part of the Optimization Toolbox
of Matlab [101] and it uses an active set method similar to that described
in [57]. From Table 4.1 it is clear that the optimization of the MPC-SDP
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Table 4.2: Number of variables, number of constraints and memory
requirements when Nc = 10 and Np = 80

Control
No. Opt. Number of Constraints Memory
Variables Ineq.a Equ.b SOCc LMId (MB)

MPC-QP
32 24061 - 1 - 6.2

(Sedumi)
MPC-QP

31 24061 - - - 6.02
(Quadprog)
MPC-SDP 7378 61 2065 2 80 0.67

aInequality constraints.
bEquality constraints.
cSecond Order Cone constraints.
dLinear Matrix Inequality constraints.

controller requires less time than the optimization of the MPC-QP controller
when we use the same solver (Sedumi) for both cases. However if we use
Quadprog (in general it is more efficient to solve a QP problem using a QP
solver like Quadprog than using a more general tool like Sedumi) for solving
the optimization of the MPC-QP controller, the time required is between
14 to 19 times shorter than the time needed to solve the optimization of the
MPC-SDP controller.

Table 4.2 shows the number of optimization variables (including auxiliary
variables), the number and kind of constraints and the memory requirements
of the predictive controllers. It is important to remark that the MPC-SDP
controller has been encoded using explicitly the primal representation in
Sedumi whereas the MPC-QP (Sedumi) controller has been implemented
using the dual formulation. Therefore, the values in Table 4.2 for these
controllers correspond to the number of optimization variables and con-
straints in the primal (MPC-SDP) and dual space (MPC-QP) respectively.
Notice that for the MPC-SDP case, the LMI constraints introduce a large
number of variables. This is the main drawback of our approach. However
in spite of this, the optimization problem for the MPC-SDP case requires
less time than the case when Sedumi is used to solve the optimization of
the MPC-QP controller. Nevertheless if we keep increasing the degree of
the polynomials used to approximate the temperature constraints, we will
reach a point where the time required for solving the optimization of the
MPC-SDP controller would be larger than the time needed to solve the
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optimization of MPC-QP with Sedumi.

Finally, from Table 4.2 we can see that the memory requirements (the
memory needed to store the matrices that are given to the solver) of the
MPC-SDP controller are significantly less than the memory demands of
the MPC-QP controller (it does not matter the solver used). The MPC-
SDP controller requires approximately 9 times less memory than the MPC-
QP controller. Although our approach has not led to a reduction in the
computational time (when the optimization of MPC-QP is performed with
Quadprog), it certainly has led to a remarkable saving of memory.

4.4 Greedy selection algorithm

It has been observed that the coefficients of consecutive temperature
constraints are quite similar. This is a consequence of the fact that the most
relevant columns of ΦT ∈ R

N×n (the part of the POD basis vectors that is
associated to the temperature profile) are smooth (they do not oscillate too
much). By taking into account these observations, we propose an algorithm
for selecting a reduced set of constraints from the full set. The output of
the algorithm would be a matrix ΦR ∈ R

sc×n and a vector TR ∈ R
sc which

define the new set of temperature constraints,

ΦRa(k) ≤ TR. (4.11)

Here Sc is the number of selected constraints and n is the order of the POD
model.

In this section we are going to adopt a different notation than the one used
in the previous section in order to properly describe the algorithm. This
notation is as follows:

• The ith row of the matrix ΦT and the ith entry of the vector T̄Δmax

are denoted by ΦT(i, :) and T̄Δmax(i) respectively,

• The entry of the matrix ΦT that lies in the ith row and the jth column
is written as ΦT(i, j),

• ΦR = [ΦR; ΦT(i, :)] indicates that ith row of ΦT is added at the
bottom of the matrix ΦR, and TR = [TR; T̄Δmax(i)] denotes that the
ith entry of the vector T̄Δmax is added at the bottom of the vector TR.
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Figure 4.12: Operation 1 - Dropping a constraint of a 2nd order POD
model. Here c1, c2 and c3 are temperature constraints defined as follows.
c1 : ΦT(1, 1)a1(k) + ΦT(1, 2)a2(k) ≤ T̄Δmax(1), c2 : ΦT(2, 1)a1(k) +
ΦT(2, 2)a2(k) ≤ T̄Δmax(2), and c3 : ΦT(3, 1)a1(k) + ΦT(3, 2)a2(k) ≤
T̄Δmax(3).
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Figure 4.13: Operation 2 - Reducing the area that does not belong to the
original feasible region after dropping a constraint.
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The main ideas of the proposed algorithm can be explained as follows. Let
us suppose that a 2nd order POD model has only 3 temperature constraints,

c1 : ΦT(1, 1)a1(k) + ΦT(1, 2)a2(k) ≤ T̄Δmax(1)

c2 : ΦT(2, 1)a1(k) + ΦT(2, 2)a2(k) ≤ T̄Δmax(2)

c3 : ΦT(3, 1)a1(k) + ΦT(3, 2)a2(k) ≤ T̄Δmax(3)

delimiting the feasible region shown in Figure 4.12. Furthermore, let us
define the following measure of distance

dC(p, i) =
1

n + 1

⎛
⎝ n∑

j=1

|ΦT(p, j) − ΦT(i, j)| + |T̄Δmax(p) − T̄Δmax(i)|
⎞
⎠

(4.12)
for determining how far or how close two constraints are. Here n is the
number of POD coefficients or the order of the POD model. The distance
dC(p, i) is nothing else than the mean absolute error between the coefficients
of the constraints that are being compared, in this case the pth and ith
constraints.

In the selection algorithm we can distinguish two operations, namely, the
dropping of a constraint and the reduction of the feasible region after
dropping a constraint. These operations are illustrated in Figures 4.12
and 4.13 respectively. In Figure 4.12 we compare c1 and c2, and then we
drop c2 given that the distance dC(1, 2) between c1 and c2 is smaller than
a predefined value. Notice that the new feasible region delimited by the
reduced set of constraints c1 and c3, contains a small area (dark gray area in
the figure) that was not part of the feasible region of the original problem.
So, in order to reduce the size of this dark gray region, we introduce the so-
called shrinking parameter γ to tighten nonconsecutive constraints leading
to a reduction of the feasible region as it is depicted in Figure 4.13. Although
we can reduce the size of this dark gray area or even get rid of it by selecting
a γ large enough, the drawback of this measure is that we would remove part
of the original feasible region. This is of course a conservative measure.

Our greedy selection algorithm is as follows:

1. Set p = 1, and select the first constraint: TR = T̄Δmax(1), ΦR =
ΦT(1, :).

2. For all i = 2, . . . , N − 1, perform:
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(a) Calculate the difference between the pth and ith constraints using
this formula:

dC(p, i) =
1

n + 1

⎛
⎝ n∑

j=1

|ΦT(p, j) − ΦT(i, j)| + |T̄Δmax(p) − T̄Δmax(i)|
⎞
⎠

(b) if dC(p, i) ≥ Sel then select the ith constraint:

• ΦR = [ΦR; ΦT(i, :)].
• if (i − p) > 1 then TR = [TR; T̄Δmax(i) − γ] else TR =

[TR; T̄Δmax(i)].
• Set p = i.

3. Select the last constraint: TR = [TR; T̄Δmax(N)], ΦR = [ΦR; ΦT(N, :)].

where N is the number of sections in which the reactor is divided and
therefore the number of temperature constraints, dC(p, i) is the mean
absolute error between the coefficients of the pth and ith constraints, Sel
is the minimum value of dC that is required for selecting a constraint, and
γ is the shrinking parameter used to tighten non consecutive constraints
((i − p) > 1).

Figures 4.14 and 4.15 show the feasible regions delimited by the constraints
selected by the algorithm when different values of Sel and γ were used. For
Sel = 0.08 and γ = 0.01 = 0.8 K/Tf (Tf = 80 K), the algorithm selected 7
constraints (see Figure 4.14) from 300. These 7 constraints provide a fair
approximation of the feasible region of the original problem. For Sel = 0.022
and γ = 0.01 (0.8 K), the algorithm chose 21 constraints (see Figure 4.15).
From Figure 4.15, it is remarkable how the feasible region delimited by
300 temperature constraints can be approximated accurately by only 21
constraints. Notice also that the feasible region delimited by the reduced
set of constraints is mostly inside the original feasible region. This is of
course a consequence of using the shrinking parameter γ.

It is important to remark that the algorithm does not guarantee that the
selected set of constraints is the optimal one, in the sense that it minimizes
the difference between the feasible regions delimited by the full and the
reduced set of constraints.

The formulation of the new MPC controller based on a reduced set of
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Figure 4.14: Feasible region delimited by the temperature constraints of a
2nd order POD model. Dashed line - Full set of constraints. Solid line - 7
constraints selected by the algorithm when Sel = 0.08 and γ = 0.01 (0.8 K).
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Figure 4.15: Feasible region delimited by the temperature constraints of a
2nd order POD model. Dashed line - Full set of constraints. Solid line - 21
constraints selected by the algorithm when Sel = 0.022 and γ = 0.01 (0.8K).

temperature constraints is given by

min
aNp ,ΔuNc ,dNp ,ξ

Np∑
i=1

‖aref(k + i) − a(k + i)‖2
Q+

Nc−1∑
i=0

‖Δu(k + i)‖2
R+ (4.13a)

+PQξ2 + PLξ

subject to

a(k + i + 1) = Ãa(k + i) + B̃u(k + i) + F̃d(k + i), i = 0, . . . , Np − 1,

d(k + i + 1) = d(k + i), i = 0, . . . , Np − 1,
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u(k + i) = u(k + i − 1) + Δu(k + i), i = 0, . . . , Nc − 1,

u(k + i) = u(k + i − 1), i = Nc, . . . , Np − 1,

umin ≤ u(k + i) ≤ umax, i = 0, . . . , Nc − 1,

ΦRa(k + i) ≤ T̄R + 1 · η(i)ξ, i = 1, . . . , Np, (4.13b)
ξ ≥ 0,

with

aNp = [a(k + 1); a(k + 2); . . . ; a(k + Np)]
dNp = [d(k + 1); d(k + 2); . . . ; d(k + Np)]

ΔuNc = [Δu(k); Δu(k + 1); . . . ; Δu(k + Nc − 1)]

η(i) = 1
/
ri−1
c , rc > 1.

Observe that the only difference of this formulation and the one of the
MPC-QP controller described by (4.1), is the definition of the temperature
constraints, where ΦT and T̄Δmax have been substituted by ΦR and TR in
(4.1b), and the vector of 1’s has been properly resized. From now on, this
new MPC with a reduced set of temperature constraints will be referred to
as MPC-QP-RS.

The MPC-QP-RS controller has the same tuning parameters as the MPC-
QP controller presented in Section 4.2, and it uses the same Kalman filter
(3.17) as described in Section 3.4.1. For this controller we have set Sel = 0.03
and γ = 0.00625 (0.5 K) in the algorithm, and it has selected Sc = 20
constraints.

Unlike the MPC-QP which deals with 24 000 temperature constraints, this
MPC has only Sc×Np = 20×80 = 1600 constraints. Hence, a large reduction
in the number of temperature constraints has been achieved thanks to the
greedy selection algorithm proposed in this section. As it is presented in
Table 4.3, this reduction leads to a big saving of memory, since the reduced
set of constraints (0.42 MB) require 14.33 times less memory than the
complete set (6.02 MB).

Finally, observe that the selection algorithm proposed in this section, allows
us to find a suitable set of points where we can impose the temperature
constraint in the MPC-PV controller (its formulation is in terms of physical
variables) described by (3.18) when γ = 0. Keep in mind that each selected
row of ΦT and T̄Δmax is associated to a specific point of the spatial domain of
the reactor. Now, if we want to include the effect of the shrinking parameter
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(γ > 0) in the formulation of MPC-PV and reduce the number of slack
variables, the following modifications should be done:

• In the cost function (3.18a) the term ξTPQξ+PT
Lξ should be replaced

by PQξ2 + PLξ, where PQ and PL are weighting factors (PQ > 0, PL >
0) and ξ is the slack variable (scalar quantity) that accounts for the
maximum violation of the temperature constraint along the reactor
and the prediction horizon.

• The set of inequality temperature constraints (3.18b) should be
substituted by ΦRa(k + i) ≤ T̄R + 1 · η(i)ξ, ∀i = 1, . . . , Np.

• The inequality (3.18c) should be replaced by ξ ≥ 0.

4.4.1 Simulation results

For the same reasons discussed in Section 4.3.4, the behavior of MPC-QP-RS
was quite similar to those of the MPC-NTC (see Section 3.5) and MPC-QP
controllers during Tests 1 and 2. Similarly, we use Test 3 to assess the ability
of the MPC-QP-RS controller of handling the temperature constraint of the
reactor. In this section the optimization problem of the MPC controllers
is solved by means of Quadprog and they have been implemented using the
condensed form of the MPC formulations presented previously. Figures 4.16,
4.17, 4.18, 4.19 and 4.20 show the simulation results during this test.

As it was the case for the MPC-SDP controller in Section 4.3.4, the steady
state profiles of the reactor when the MPC-QP-RS is used, overlap with
the profiles obtained with the MPC-QP and MPC-NTC controllers. This
can be observed in Figure 4.16. In Figure 4.17 we can see the evolution
in time of the temperature and concentration at the reactor outlet. Notice
that the differences between the MPC-QP-RS and MPC-QP controllers are
much smaller than the ones observed between MPC-SDP and MPC-QP (see
Figure 4.4). From here it is clear that the full set of temperature constraints
of MPC-QP is better approximated in the MPC-QP-RS case than in the
MPC-SDP case.

In Figure 4.18 we can see the plot of the maximal peak of the temperature
profile (hot spot), and in Figure 4.19 the plot of its position along Test 3. As
it was pointed out in Section 4.3.4, for the case of the MPC-NTC controller
the temperature constraint is temporary violated. This is not the case
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Figure 4.16: Steady-state temperature and concentration profiles of the
reactor for Test 3. Dotted line - Nominal profile (reference). Solid line -
MPC-QP. Dashed line - MPC-QP-RS. Dash-dotted line - MPC-NTC.
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Test 3. Solid line - MPC-QP. Dashed line - MPC-QP-RS. Dash-dotted line
- MPC-NTC.



4.4 Greedy selection algorithm 125

0 5 10 15 20 25 30 35
370

375

380

385

390

395

400

405

410

constraint

  t = 1.2 s

T
em

p
er

a
tu

re
[K

]

t [s]
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126 Constraint Handling

0 7 14 21 28 35
260

280

300

320

340

360

380

400

0 7 14 21 28 35
280

300

320

340

360

380

400

420

0 7 14 21 28 35
310

315

320

325

330

335

340

constraint

constraint

TJ1 TJ2 TJ3

t [s]t [s]t [s]

T
em

p
er

a
tu

re
[K

]

T
em

p
er

a
tu

re
[K

]

T
em

p
er

a
tu

re
[K

]

Figure 4.20: Control actions (jackets temperatures) of the MPC controllers
along Test 3. Solid line - MPC-QP. Dashed line - MPC-QP-RS. Dash-dotted
line - MPC-NTC.

for the MPC-QP and MPC-QP-RS controller that keep the temperature
profile below 400 K. Notice also, that it is hard to see any difference in their
responses.

Concerning the control actions of the MPC controllers, which are displayed
in Figure 4.20, they are all the time within the allowed limits.

Figure 4.21 shows the controllers’ predictions of the maximal peak of the
temperature profile at t = 1.2 s. From Figure 4.21 it is evident that the
temperature constraints of MPC-QP and MPC-QP-RS are active. Both
controllers keep the temperature below and on 400 K along the prediction
horizon, and the difference between their predictions are practically negligi-
ble. Note, however, that the predictions of the MPC-QP-RS controller are
slightly under the predictions of MPC-QP. This is the effect of the use of
the shrinking parameter γ in the greedy selection algorithm.

Table 4.3 presents the number of optimization variables, the number of
linear inequality constraints and the memory requirements of the predictive
controllers. In addition, this table shows the average computation times (on
a PC with an Intel Dual Core of 3 Ghz and a RAM memory of 2 GB) for
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Figure 4.21: Predictions of the maximal peak of the temperature profile at
t = 1.2 s. Solid line - MPC-QP. Dashed line - MPC-QP-RS. Dash-dotted
line - MPC-NTC.

Table 4.3: Number of variables, number of constraints and average time for
solving the optimization problem

Control
No. Opt. No. inequality Memory

toptVariables constraints (MB)

MPC-QP 31 24061 6.02 0.31 s

MPC-QP-RS 31 1661 0.42 0.023 s

topt = Average time for solving the optimization problem.

QP solver = Quadprog.

solving the optimization problems of the MPC controllers during Test 3.
These average times were 0.31 s and 0.023 s for the MPC-QP and MPC-QP-
RS cases respectively. The MPC-QP-RS controller requires 13.48 times less
time than the MPC-QP controller for solving the optimization. To sum up,
the reduction in the number of temperature constraints by means of the
algorithm proposed in this section, has not only conduced to a considerable
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saving of memory, but also it has led to a remarkable reduction in the
computational effort.

4.5 Conclusions

First of all in this chapter we have presented an extension of the MPC-NTC
controller proposed in Section 3.4, which takes into account the temperature
constraint of the reactor. We have shown that this extension has to handle a
very large number of temperature constraints which demands a considerable
amount of memory and computational power. In this chapter we have
proposed two methods to tackle this problem.

In the first method, part of the basis vectors derived with the POD
technique are approximated with univariate real polynomials. Afterwards,
the theory of positive polynomials is used for approximating the temperature
constraints by means of Linear Matrix Inequalities and linear equality
constraints. The method leads to a significant reduction in the number of
constraints which conduces to a considerable saving of the memory. However
the computational time needed for solving the optimization problem of the
predictive controller based on the polynomial approximations, is much larger
than the time required for solving the original problem. What mainly limits
the computational gain of this technique is the large number of variables
that are introduced by the LMI constraints. From this study it is clear that
with this positive polynomial approach the resulting optimization problem is
more complex than the original one. Nevertheless this approach guarantees
the fulfillment of the temperature constraint at every point of the reactor.

The predictive controller based on the polynomial approximation presented
a good behavior, and it was able to deal with the temperature constraints
quite well.

This approach, that we only applied to linear system models so far, can
in a straightforward way be generalized to the case of nonlinear MPC and
would then lead to the interesting problem class of nonlinear SDP problems
that can, e.g., be addressed by the sequential SDP methods proposed and
investigated in [42,50,55].

In the second method, we exploit the fact that the coefficients of consecutive
constraints are quite similar in order to select a reduced set of constraints
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from the complete set. This method leads to a significant reduction in the
number of constraints, which conduces to a considerable saving of memory,
and a substantial reduction in the computational time required for solving
the optimization of the MPC controller. Note however that unlike the
positive polynomial approach, in this method we do not have any command
on the temperature between the discretization points.

The predictive controller based on the reduced set of constraints presented a
good behavior and it was able to deal with the temperature constraints quite
well. Additionally, its behavior was practically identical to the behavior of
the predictive controller based on the complete set of constraints.

Future research is necessary in order to find out which of the techniques
proposed works best for which kind of applications.
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Chapter 5

Performance Improvement in
Model Simulation

5.1 Introduction

Several studies have reported that we can get a large model-order reduction
by using POD and Galerkin projection. Nevertheless the computation saving
offered by the reduced order models is small when nonlinear or Linear Time
Variant (LTV) systems are considered. The reason of this limitation lies in
the fact that we need the full spatial information from the original high-
dimensional systems in order to evaluate the reduced-order models.

In [10–12] a method known as Missing Point Estimation (MPE) is proposed
for tackling this problem. In this method the Galerkin projection is
conducted only on some pre-selected state variables instead of the entire
set. The remaining state variables are estimated by means of the POD
basis vectors. It has been reported that this technique can save considerable
computational effort.

In this chapter we present two alternative techniques for accelerating the
evaluation of nonlinear POD models.

In the first method a Multi-Layer Perceptron (MLP) neural network is used
to approximate the nonlinear vector function of the POD models [7]. Given
that the time for evaluating the trained MLP can be very short, we can
obtain a significant saving of computational time.

131
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The second method is mainly intended for accelerating nonlinear POD
models derived from input-affine high-dimensional systems with polynomial
nonlinearities [6]. It turns out that by exploiting their polynomial nature, we
can construct compact and efficient representations that can be evaluated
much faster. Besides, the computational gain can be increased even more,
if we use sequential feature selection algorithms for choosing the most
relevant monomials (suboptimal solution) of these representations. Notice
that this approach might also be applied to high-dimensional systems with
non-polynomial nonlinearities, provided that these nonlinearities can be
approximated by low degree polynomials.

Usually, the model reduction of a stable model by POD often results in a
reduced order model that is stable as well. However, this is generally not
guaranteed [119]. By using Lyapunov’s indirect method we can obtain an
eigenvalue constraint that can be used for guaranteeing the local stability of
a POD model with polynomial nonlinearities. Since this constraint leads
to a non-smooth optimization problem, which is difficult to solve in its
original form, in this chapter we also present two manners of dealing with this
constraint. In both cases, the local stability is guaranteed independently of
the data used, although the quality of the reduced-order model still depends
on the quality of the data.

This chapter is organized as follows. Section 5.2 presents a description
of the dynamical system that will be used to explain our techniques, the
nonlinear heat transfer problem in a one-dimensional bar. In Section 5.3
the derivation of a reduced order model for the bar by means of POD
and Galerkin projection is discussed. Section 5.4 explains our approach
for speeding up nonlinear POD models by using neural networks. In Section
5.5 we introduce our technique for accelerating the nonlinear POD model
found in Section 5.3 by exploiting its polynomial nature. Section 5.6 discuss
how the local stability of POD models with polynomial nonlinearities can
be guaranteed. In Section 5.7 we present some validation and simulation
results. Finally Section 5.8 presents some concluding remarks.
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5.2 Nonlinear heat transfer in a one-dimensional
bar

The system under study is the silicon bar shown in Figure 5.1. The bar
has attached an actuator which provides a uniformly distributed heat flux
u(t) between z = za and z = zb. Additionally, an external heat flux d(t)
is applied uniformly along the bar whose ends are kept at 25◦C (ambient
temperature) all the time.

If only temperature variations in the z-direction are considered, the
dynamics of the temperature T (z, t) of the bar can be modeled by the
following nonlinear PDE:

ρCp
∂T (z, t)

∂t
=

∂

∂z

(
κ (T (z, t))

∂T (z, t)
∂z

)
+ V (z, t) (5.1)

with the following initial and boundary conditions:

T (z, t = 0) = 25◦C
T (z = 0, t) = T (z = L, t) = 25◦C.

Here ρ is the material density in [kg · m−3], Cp is the heat capacity in
[J · kg−1 · K−1], κ (T ) is the temperature dependent heat conductivity in
[J · s−1 · m−1 · K−1], t is the time in [s], z is the spatial coordinate in [m]
and V (z, t) is the heat source applied to the bar at position z and time t in
[W · m−3]. V (z, t) is defined as follows:

V (z, t) =
{

d(t) + u(t), za ≤ z ≤ zb

d(t), elsewhere.

The relation between the temperature and the heat conductivity κ (T ) is
described by a polynomial of degree 3,

κ(T ) = κ0 + κ1T + κ2T
2 + κ3T

3 (5.2)

where κ0 = 36, κ1 = −0.1116, κ2 = 1.7298×10−4 and κ3 = −1.78746×10−7

are real coefficients in the appropriated units.

The length of the bar is L = 0.1 m and the remaining numerical values of
the model parameters are: ρ = 3970 kg · m−3, Cp = 766 J · kg−1 · K−1,
za = 0.005 m and zb = 0.04 m.
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The operating ranges in [W · m−3] of d(t) and u(t) are −500 · 103 ≤ d(t) ≤
500 · 103 and −1500 · 103 ≤ u(t) ≤ 1500 · 103 respectively. Some of the
previous numerical values were inspired on the values given in [156].

For simulation purposes, it is necessary to reduce the infinite dimensionality
of (5.1) by discretizing the spatial domain. To this end, the partial
derivatives with respect to space were replaced by backward (the inner
spatial derivative) and forward (the outer spatial derivative) difference
approximations. This is equivalent to replace the second partial derivative
with respect to space by a central difference approximation in the linear
version of the heat equation where κ is kept constant (see for example (2.23)
and (2.25)). The discretized model of the bar is given by the following set
of nonlinear ordinary differential equations:

dTi

dt
= c1

(
κ(Ti+1)Ti+1 −

(
κ(Ti+1) + κ(Ti)

)
Ti + κ(Ti)Ti−1

)
+ c2Vi (5.3a)

for i = 1, . . . , N − 1,

with

c1 =
1

ρCp (Δz)2
(5.3b)

c2 =
1

ρCp

T0 = TN = 25◦C

where N is the number of sections in which the bar is divided, Δz is the
length of each section, and Ti and Vi are the temperature and heat flux at
the point zi = iΔz.

If we define T(t) ∈ R
N−1 = [T1(t), T2(t), . . . , TN−1(t)]T as the vector

containing the temperature of the grid points from z1 till zN−1 every time
instant, we can write Equation (5.3) as follows:

Ṫ(t) = F (T(t)) + B1d(t) + B2u(t) (5.4)

where F (T(t)) : R
N−1 → R

N−1 is a vector-valued or vector function which
contains the nonlinear terms of the model and whose ith component function
is given by

Fi(T(t)) = c1

(
κ(Ti+1(t))Ti+1(t) − (κ(Ti+1(t)) + κ(Ti(t))

)
Ti(t)+
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Figure 5.1: Silicon bar.

+ κ(Ti(t))Ti−1(t)
)

,

and B1 and B2 are vectors defined as: B1 ∈ R
N−1 = [c2, c2, . . . , c2]T , B2 ∈

R
N−1 = [0, . . . , 0, c2, . . . , c2, 0, . . . , 0]T . The position of the nonzero elements

in B2 corresponds to the position of the grid points that are in contact with
the actuator.

The spatial domain was divided into N = 500 sections which means that
(5.4) has N − 1 = 499 states. With such amount of states the design of a
control system for the bar is not an easy task. In addition, the simulation of
(5.4) demands a considerable amount of computational resources. In order
to tackle this situation, in the next section a reduced order model (few
number of equations and states) of the bar will be obtained by means of
POD and Galerkin Projection.

5.3 Nonlinear POD model of the system

Given that the initial state of (5.4) does not provide information about the
system dynamics, we are going to work with the temperature deviations
with respect to the ambient temperature (25◦C). Consequently, the vector
T(t) is split as follows:

T(t) = TΔ(t) + T∗

where TΔ(t) ∈ R
N−1 is the vector containing the deviations of the

temperature profile and T∗ ∈ R
N−1 is a constant vector which contains

the initial temperature profile of the bar (ambient temperature).
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Figure 5.2: Pseudo random multilevel noise signals used in the generation
of the snapshot matrix Tsnap. Amplitudes in [W · m−3].

Similarly as it was done in Sections 2.4.3 and 3.3, the reduced order model
of (5.4) is derived in four steps as follows:

1. Generation of the Snapshot Matrix. The snapshot matrix
Tsnap ∈ R

499×2001 has been built by collecting the evolution of the
deviations of the temperature profile when Pseudo Random Multilevel
Noise Signals (PRMNS) were applied to the process inputs u(t) and
d(t),

Tsnap =
[
TΔ(t = 0),TΔ(t = Δt), . . . ,TΔ (t = (Nd − 1)Δt)

]
. (5.5)

Here, Nd = 2001 is the number of samples gathered using a sampling
time Δt of 1 s. The excitation signals can be observed in Figure
5.2. A commutation probability of 3% was set for the signals and the
amplitudes in [W ·m−3] of d(t) and u(t) were restricted to the intervals
[−500 · 103, 500 · 103] and [−1500 · 103, 1500 · 103] respectively.

2. Derivation of the POD basis vectors. We have found the POD
basis vectors Φ ∈ R

499×499 = [ϕ1,ϕ2, . . . ,ϕ499] by performing the
SVD (the POD basis vectors are the left singular vectors) of the
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snapshot matrix Tsnap,

Tsnap = ΦΣΨT

where Φ ∈ R
499×499 and Ψ ∈ R

2001×2001 are unitary matrices and
Σ ∈ R

499×2001 is a matrix containing the singular values in its main
diagonal.

3. Selection of the most relevant POD basis vectors. We have
chosen the n most relevant POD basis vectors based on the energy
criterion discussed in Section 2.2.1. Figure 5.3 shows the plot of 1− P̄n

(see Equation (2.7)) for the first 50 basis vectors. For this problem
we have selected the first n = 6 POD basis vectors based on their
truncation degree 1− P̄n = 3.194 ·10−7. The selected basis vectors can
be observed in Figure 5.4.

The 6th order approximation of TΔ(t) is then given by

TΔ
n (t) =

6∑
j=1

aj(t)ϕj = Φna(t) (5.6)

where Φn = [ϕ1,ϕ2, . . . ,ϕ6] and a(t) = [a1(t), a2(t), . . . , a6(t)]T .
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Figure 5.4: Selected POD basis vectors.

4. Construction of the model for the first n=6 POD coefficients.
The dynamic model for the POD coefficients is derived by performing
the Galerkin projection of the nonlinear model (5.4) on the space
spanned by the selected basis vectors Φn = [ϕ1,ϕ2, . . . ,ϕ6]. Thus,
if we replace T(t) by its nth order approximation Tn(t) = TΔ

n +T∗ =
Φna(t)+T∗ in Equation (5.4), and we apply the inner product criterion
to the resulting equation, we have that〈

Φnȧ(t),ϕj

〉
=
〈
F (Φna(t) + T∗) + B1d(t) + B2u(t),ϕj

〉
, (5.7)

∀j = 1, 2, . . . , n = 6.

By evaluating the inner product in (5.7),

ΦT
nΦnȧ(t) = ΦT

nF (Φna(t) + T∗) + ΦT
nB1d(t) + ΦT

nB2u(t)

ȧ(t) = ΦT
nF (Φna(t) + T∗) + ΦT

nB1d(t) + ΦT
nB2u(t) (5.8)



5.4 Acceleration of POD models by using neural networks 139

we get the model for the first n = 6 POD coefficients. Hence, the
reduced order model of the bar with only 6 states is given by,

ȧ(t) = ΦT
nF (Φna(t) + T∗) + B̃1d(t) + B̃2u(t) (5.9)

Tn(t) = Φna(t) + T∗

where B̃1 = ΦT
nB1 and B̃2 = ΦT

nB2. Finally if we define a new vector-
valued function f : R

6 → R
6 as f (a(t)) = ΦT

nF (Φna(t) + T∗), then
the reduced order model of the bar can be written more compactly as
follows:

ȧ(t) = f (a(t)) + B̃1d(t) + B̃2u(t) (5.10a)

Tn(t) = Φna(t) + T∗. (5.10b)

In general, it should be clear that we do not know the compact expression
of f(a(t)) in (5.10a). So, in order to simulate the reduced order model,
the ODE solver has to evaluate indirectly f(a(t)). Firstly, the solver has
to map the state of the reduced order model a(t) into the original high-
dimensional space by means of this linear transformation TΔ

n (t) = Φna(t).
Secondly it has to evaluate the resulting high-dimensional state vector TΔ

n (t)
in the vector function F(TΔ

n (t) + T∗) of (5.4), and finally it has to map the
results of this evaluation to the low dimensional space by pre-multiplying
them by ΦT

n . The evaluation of f(a(t)) is done as many times as it is
required by the ODE solver within each integration step. Hence the indirect
evaluation of f(a(t)) is the bottleneck that limits severely the computational
gain of the nonlinear POD model. In order to overcome this situation, in
the next sections we present two approaches for speeding up the evaluation
of nonlinear POD models like (5.10). In the first method we use feedforward
neural networks and in the second one we exploit the polynomial nature of
these POD models.

5.4 Acceleration of POD models by using neural
networks

In order to speed up the evaluation of (5.10a) we propose to approximate
the vector function f : R

6 → R
6 by using a multi-layer perceptron neural

network. In this way we eliminate the necessity of evaluating the vector
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function F : R
499 → R

499 of the full order model and we can save a
considerable amount of time.

As it is well-known, a multi-layer perceptron can learn any nonlinear input-
output mapping given an adequate number of hidden neurons (each one
with a nonlinear activation function) in its hidden layers [63]. In addition,
the time required for calculating the MLP output can be quite short since
only few matrix multiplications, vector additions and function evaluations
are necessary. Due to these characteristics, an MLP is a suitable choice for
approximating the vector function f in (5.10a).

In order to generate the input and output data required for training,
validating and testing the MLP, firstly the POD model (5.10) was excited
with PRMNS signals and the evolution of the state vector a(t) was collected.
From the test the following data sets were constructed:

U = {u(0), u(Δt), . . . , u(10000Δt)} ,

D = {d(0), d(Δt), . . . , d(10000Δt)} ,

A = {a(0),a(Δt), . . . ,a(10000Δt)} .

In the experiment 10001 samples were gathered with a sampling time Δt
equal to 1 s. The commutation probability of the PRMNS signals was set
to 3% and the amplitudes in [W · m−3] of d(t) and u(t) were restricted to
the intervals [−600 · 103, 600 · 103] and [−1800 · 103, 1800 · 103] respectively.
Notice that these intervals are 20% larger than the operating ranges defined
in Section 5.2. This enlarges the range of validity of our approximation with
the MLP.

If we define a vector y(t) ∈ R
6 as follows:

y(t) = ȧ(t) − B̃1d(t) − B̃2u(t), (5.11)

then (5.10a) can be cast as y(t) = f(a(t)). By using (5.10a) and the data
sets U ,D and A, we can easily calculate ȧ(t) at each sampling time and
afterwards y(t) by means of (5.11). The evolution in time of y(t) is then
compiled in the following data set

Y = {y(0),y(Δt), . . . ,y(10000Δt)} .

In order to make the training of the MLP more efficient, the input data A
and the target outputs Y were normalized for zero mean and unit variance
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Figure 5.5: Structure of the multi-layer perceptron. anor(t) ∈ R
6 and

ŷnor(t) ∈ R
6

by applying the normalization functions h : R
6 → R

6 and v : R
6 → R

6

to each element of the datasets A and Y respectively. The ith component
function of the vector functions h and v is defined as

anor
i (t) = hi (a(t)) =

ai(t) − āi

σai

, (5.12)

ynor
i (t) = vi (y(t)) =

yi(t) − ȳi

σyi

, (5.13)

where āi, ȳi and σai , σyi are the mean and the standard deviation of ai(t)
and yi(t) in A and Y respectively.

At the moment of using the MLP after training, the input data has to be
normalized by using (5.12) and the output of the neural network needs to be
restored using the inverse function of (5.13) whose ith component function
is defined as follows:

ŷi(t) = v−1
i (ŷnor(t)) = ŷnor

i (t)σyi + ȳi.

Here the “hat” on top of yi and ynor
i are used to stress that the output of the

MLP is just an approximation of the target output. The data sets containing
the normalized input data and output targets are denoted as Anor and Ynor

respectively.

The structure of the MLP neural network designed for this problem is
presented in Figure 5.5. The number of inputs and the number of output
neurons is determined by the number of POD coefficients. So, there are 6
inputs in the input layer and 6 neurons in the output layer. Regarding the
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number of hidden layers, the MLP has only one. It has been shown that
merely one hidden layer suffices for approximating any function given an
adequate number of hidden neurons with continuous nonlinear activation
functions [67]. The output of the MLP is given by the following expression:

ŷnor(t) = Wo · gh
(
Wh · anor(t) + bh

)
+ bo (5.14)

where Nhn is the number of hidden neurons, Wh ∈ R
Nhn×n is the matrix

of weights that links the input layer to the hidden layer, the entry W h
ji of

Wh corresponds to the connection weight from the ith input neuron to the
jth neuron in the hidden layer, bh ∈ R

Nhn is the vector containing the bias
weight of each neuron of the hidden layer, Wo ∈ R

n×Nhn is the matrix of
weights that links the hidden layer to the output layer, the entry W o

ji of
Wo is the connection weight from the ith hidden neuron to the jth neuron
in the output layer, bo ∈ R

n is the vector that contains the bias weight of
each neuron of the output layer, and gh(·) : R

Nhn → R
Nhn is a vector-valued

function whose component functions are the nonlinear activation functions
of the hidden neurons. The ith component function of gh(·) is a hyperbolic
tangent function which is defined by the following equation

gh
i (sh) =

e2sh
i − 1

e2sh
i + 1

,

where sh ∈ R
Nhn is the vector containing the weighted sum of each hidden

neuron.

The MLP was trained by using the Levenberg-Marquardt (LM) backprop-
agation algorithm [62] which is available in the Matlab Neural Network
Toolbox [102]. In general, this algorithm offers a good speed of convergence
and acceptable memory requirements when it is used for approximating
functions with networks that contain up to a few hundred weights. In order
to avoid the overfitting of the MLP, the early stopping method was used
during the training, and therefore the data (Anor and Ynor) was divided into
3 sets: the training set with 7001 data points, the validation set with 1500
data points and the test set with 1500 data points. The training set is used
by the training algorithm for updating the network weights and biases, the
validation set is used for detecting the overfitting during the training stage
and the test set is used for testing the generalization capabilities of the MLP.
The test set is never used during the training stage. The data was divided by
cycling samples (interleaved data division) between training set, validation
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Figure 5.6: Mean squared error and size of the trained MLP in function of
the number of hidden neurons.

set, and test set according to percentages. These percentages were 70%,
15% and 15% for the training, validation and test sets respectively.

Thus far, there is no theory that establishes the number of hidden units
that are needed to achieve some prescribed degree of accuracy in a function
approximation problem. Therefore, in order to find a suitable number of
hidden units, we increased one by one the number of neurons of the hidden
layer while checking the error in the approximation of the vector function
f . The Mean Squared Error (MSE) function was selected to measure the
performance of the neural network. The top plot of Figure 5.6 shows the
MSE between the target outputs and the MLP output in function of the
number of hidden neurons. Each value shown in the plot corresponds to
the smallest MSE found after 7 training sessions where the weights of the
net were randomly initialized. The bottom plot of Figure 5.6 presents the
number of weights of the network in function of the number of hidden units.
We chose the MLP with Nhn = 10 hidden neurons since it provides a good
trade-off between the accuracy of the function approximation and the size
of the network (136 weights), which determines how fast the MLP can be
evaluated and therefore the computational gain that can be obtained. The
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MSE of this MLP for the training set is 8.0662 × 10−7 and for the test set
is 8.0975 × 10−7. These errors were achieved after 6000 epochs of training.
Figure 5.7 shows the MLP output and the original data points (targets) for
y1(t) and y6(t) when the test set is used. The MLP output is practically
overlapping the data points, and it is really difficult to see any difference. It
is clear that the network has learned the nonlinear input-output mapping f
with a high degree of accuracy, and additionally the net has shown a good
generalization capability. One factor that contributes to have very small
MSE errors is the absence of noise in the data.

Finally, the equation of the POD model where the function f has been
approximated by an MLP is the following one:

ȧ(t) = f̂ (a(t)) + B̃1d(t) + B̃2u(t) (5.15)

Tn(t) = Φna(t) + T∗

with
f̂ (a(t)) = v−1

(
Wo · gh

(
Wh · h (a(t)) + bh

)
+ bo

)
.

From now on, this POD model will be referred to as Neural-POD model.
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5.5 Polynomial POD models

In this section we exploit the polynomial nature of the vector function f(a(t))
in (5.10a), in order to find an alternative representation of f(a(t)) that can
be evaluated much faster.

We start by noticing that the mth component function of f(a(t)) =
ΦT

nF(Tn(t)) can be written as

fm(a(t)) =
N−1∑
i=1

ϕi,mFi(Tn(t)) (5.16)

where ϕi,m is the ith entry of the basis vector ϕm, N = 500 is the number
of sections in which the bar was divided, n = 6 is the number of selected
basis vectors, Tn(t) is the nth order approximation of T(t) and Fi is the ith
component function of F(Tn(t)) defined as follows:

Fi(Tn(t)) = c1

(
κ(T̃i+1(t))T̃i+1(t) − (κ(T̃i+1(t)) + κ(T̃i(t))

)
T̃i(t)+ (5.17)

+ κ(T̃i(t))T̃i−1(t)
)

,

where c1 is a constant given by (5.3b), κ(T ) : R → R is the scalar polynomial
function defined in (5.2) and T̃i(t) is the ith entry of the vector Tn(t) that
is given by

T̃i(t) =
n∑

j=1

ϕi,jaj(t) + T ∗
i (5.18)

where ϕi,j is the ith entry of the basis vector ϕj , aj is the jth POD coefficient
and T ∗

i is the ith entry of T∗ which contains the initial temperature profile
of the bar. If we replace (5.18) in (5.17),

Fi (a(t)) = c1

⎛
⎝κ

⎛
⎝ n∑

j=1

ϕ(i+1),jaj(t) + T ∗
i+1

⎞
⎠
⎛
⎝ n∑

j=1

ϕ(i+1),jaj(t) + T ∗
i+1

⎞
⎠−

−
⎛
⎝κ

⎛
⎝ n∑

j=1

ϕ(i+1),jaj(t) + T ∗
i+1

⎞
⎠+ κ

⎛
⎝ n∑

j=1

ϕi,jaj(t) + T ∗
i

⎞
⎠
⎞
⎠×

×
⎛
⎝ n∑

j=1

ϕi,jaj(t) + T ∗
i

⎞
⎠+
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+κ

⎛
⎝ n∑

j=1

ϕi,jaj(t) + T ∗
i

⎞
⎠
⎛
⎝ n∑

j=1

ϕ(i−1),jaj(t) + T ∗
i−1

⎞
⎠
⎞
⎠ (5.19)

then we obtain the component function Fi in terms of the POD coefficients
aj(t) ∀j = 1, . . . , n associated to the selected basis vectors. Notice that this
function is a multivariate polynomial of degree dp = 4 in aj(t) ∀j = 1, . . . , n.
Since fm (a(t)) (see (5.16)) is a linear combination of the functions Fi(a(t))
∀i = 1, . . . , N−1, fm (a(t)) is also a multivariate polynomial of degree dp = 4
in aj(t) ∀j = 1, . . . , n.

After replacing (5.19) in (5.16) and simplifying the resulting expression, we
obtain the following general representation for fm(a(t)),

fm(a(t)) = wm,0 + wm,1a1(t) + · · · + wm,nan(t)+ (5.20)

+ wm,(n+1)a
2
1(t) + wm,(n+2)a1(t)a2(t) + · · · + wm,(r−1)a

dp
n (t)

where wm,i is the real coefficient of the ith monomial (i = 0, 1, 2, . . . , r−1) of
the function fm(a(t)), dp is the largest possible degree for each monomial and
r is the number of monomials which is given by the following formula [60]:

r =
dp∑

j=0

(
n + j − 1

j

)
=

dp∑
j=0

(n + j − 1)!
j! (n − 1)!

. (5.21)

For this particular problem, the number of monomials per component
function is equal to 210. The monomials (without coefficients) ai1ai2 · · · ais

of degree s (1 ≤ s ≤ dp) in (5.20) are built from the set C,

C =
{〈i1, i2, · · · , is〉 : 1 ≤ i1, i2, . . . , is ∈ Z

+ ≤ n, i1 ≤ i2 ≤ · · · ≤ is
}

which contains the possible combinations of the indexes i1, i2, . . . , is.

By using the general representation of f(a(t)) defined in (5.20) through its
component functions, we can recast the POD model (5.10) as follows:

ȧ(t) = f (a(t)) + B̃1d(t) + B̃2u(t) (5.22)

Tn(t) = Φna(t) + T∗

with

f (a(t)) = [f1 (a(t)) , . . . , fm (a(t)) , . . . , fn (a(t))]T
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fm(a(t)) = wm,0 + wm,1a1(t) + · · · + wm,nan(t)+

+ wm,(n+1)a
2
1(t) + wm,(n+2)a1(t)a2(t) + · · · + wm,(r−1)a

dp
n (t).

From now on, this compact representation of (5.10) will be referred to as
Polynomial POD model or P-POD model. Note that now the evaluation of f
does not require the use of the high-dimensional vector function F anymore,
and consequently we can expect to evaluate f much faster.

In general, if the discretized system used to approximate the PDE or PDEs
is input affine and its nonlinearity is of polynomial type, then the vector
function f(a(t)) can be represented efficiently by multivariate polynomials
in terms of the POD coefficients. Notice that we might generate polynomial
POD models from discretized systems with non-polynomial nonlinearities,
provided that these nonlinearities can be approximated by low degree
polynomials.

5.5.1 Calculation of the coefficients of the polynomials

In Section 5.4, we defined the vector y(t) ∈ R
n (see Equation (5.11)) as

y(t) = ȧ(t) − B̃1d(t) − B̃2u(t),

and we stated that (5.10a) can be cast as y(t) = f(a(t)).

The coefficients of the polynomials fm(a(t)) ∀m = 1, . . . , n in (5.22) are
computed in such a way that the fitting to the data generated by (5.11) at
the time instants t = kΔt, for k = 0, 1, 2, . . . , Nd−1,

yNd
∈ R

n·Nd = [y(0); y(1); . . . ; y(k) = y(t = kΔt); . . . ; y(Nd−1)]

is optimal in the least squares sense. The vector yNd
is built from the

data gathered during the snapshots experiment (see Section 5.3) where Nd

samples of the temperature profile were collected. This vector is assembled
as follows. From the snapshots experiment we know the values of u(k) =
u(t = kΔt) and d(k) = d(t = kΔt) for k = 0, 1, 2, . . . , Nd − 1, and from the
SVD of the snapshot matrix we have the evolution of a(k) = a(t = kΔt) for
k = 0, 1, 2, . . . , Nd−1 (obtained by taking the first n = 6 rows of ΣΨT ). By
using (5.10a) and the values of u(k), d(k) and a(k) for k = 0, 1, 2, . . . , Nd−1,
we calculate ȧ(k) = ȧ(kΔt) and afterwards y(k) = y(kΔt) by means of
(5.11) for the same time instants.
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Notice that the mth component function of f(a(t)) defined at the sampling
times t = kΔt (with k = 0, 1, 2, . . .) can be written as follows:

fm (a(k)) = fm (a(t = kΔt)) = α(k)w̃m (5.23)

where α(k) ∈ R
1×r is a row vector defined as

α(k) =
[
1, a1(k), a2(k), . . . , an(k), a2

1(k), a1(k)a2(k), . . . ,

a2
n(k), . . . , adp

1 (k), adp−1
1 (k)a2(k), . . . , adp

n (k)
]
,

and w̃m ∈ R
r

w̃m =
[
wm,0, wm,1, wm,2, . . . , wm,(r−1)

]T
is a vector containing the coefficients of the monomials. From here the vector
function f(a(k)) = f(a(t = kΔt)) can be compactly formulated in this way

f(a(k)) = Λ(k)w (5.24)

where

Λ(k) ∈ R
n×(r·n) =

⎡
⎢⎢⎢⎢⎣
α(k) 0 · · · 0

0 α(k)
. . .

...
...

. . . . . . 0
0 · · · 0 α(k)

⎤
⎥⎥⎥⎥⎦ ,

and
w ∈ R

r·n = [w̃1; w̃2; . . . ; w̃m; . . . ; w̃n]

is a vector containing all the coefficients that we want to find.

The predictions of (5.24) regarding y(k) for k = 0, 1, 2, . . . , Nd−1, are given
by the following expression

ŷNd
= Ωw (5.25)

where ŷNd
∈ R

n·Nd and Ω ∈ R
(n·Nd)×(r·n) are defined as

ŷNd
= [f(a(0)); f(a(1)); . . . ; f(a(k)); . . . ; f(a(Nd − 1))]

Ω = [Λ(0); Λ(1); . . . ; Λ(k); . . . ; Λ(Nd − 1)] .

As it was mentioned before, the coefficients w of the vector function f are
found by means of the least squares method in which the minimization
problem

min
w

J = (yNd
− ŷNd

)T (yNd
− ŷNd

) (5.26)
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is solved. We can obtain an equivalent optimization problem in terms of w
by substituting (5.25) in (5.26) and ignoring the resulting constant term,

min
w

1
2
wT
(
ΩTΩ

)
w − (yT

Nd
Ω
)
w. (5.27)

As it is well-known, the solution of this minimization problem can be found
by solving this equation:

(
ΩTΩ

)
w = ΩTyNd

. In this study this equation is
solved by using the QR (orthogonal, triangular) decomposition of ΩTΩ and
back substitution. This procedure is numerically more stable than inverting
the matrix product ΩTΩ.

Finally, it is important to remark that in the calculation of the monomial
coefficients the data (a(k), y(k), for k = 0, 1, 2, . . . , Nd − 1) was normalized
first (by dividing by the standard deviation) in order to avoid numerical
problems. Consequently, at the moment of evaluating the derivative of the
P-POD model we have to carry out the appropriated conversions. For the
sake of clarity and simplicity in our derivations, we did not include the
normalization part in the previous equations.

5.5.2 Reduction of the number of monomials

From (5.21) it is clear that the number of monomials of the P-POD model
can be very large. In fact, this number increases exponentially with the
number of POD coefficients, compromising the computational gain of the
P-POD model. We can tackle this situation by properly selecting a reduced
set of monomials whose combination provides a good approximation of the
vector function f(a(t)). To this end, in this section we propose the use of
the sequential feature selection methods [61, 81, 105, 152]. Here we will use
the term “features” for referring to as the “monomials” of f (a(t)).

Sequential feature selection methods have basically two components: the
objective function, called the criterion, which the method seeks to minimize
over all feasible feature subsets, and the sequential search algorithm. The
algorithm adds or removes features from a candidate subset while evaluating
the criterion. In general, an exhaustive evaluation of all possible feature
subsets is infeasible, since we have to deal with 2r = 2210 = 1.64 × 1063

candidates. This is why a suboptimal search strategy is necessary for
directing the feature selection process as it explores the space of all possible
combination of features. Representative examples of sequential search
algorithms include the Sequential Forward Selection (SFS), the Sequential
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Backward Selection (SBS), the Plus-L Minus-R Selection (LRS) and the
Bidirectional Search (BDS) among others [152]. The first two search
strategies, SFS and SBS, are the simplest greedy search algorithms that
we can use. In the sequential forward selection, the features are sequentially
added to an empty candidate set until a predetermined number of features
has been added. In contrast, in the sequential backward selection, the
features are sequentially removed from a full candidate set until a predefined
number of features has been eliminated.

Let us define the set S as the set containing the positions of the selected
features or monomials from vector α(k) at a certain moment. We will denote
the vector that contains these features as αS(k) and the matrix Ω (see
Section 5.5.1) constructed from αS(k) and the data points as ΩS . If we
designate the vector comprising the coefficients of the selected features as
wS , then the predictions ŷS

Nd
∈ R

n·Nd of the P-POD model with a reduced
set of monomials about y(k) for k = 0, 1, 2, . . . , Nd − 1, can be written as

ŷS
Nd

= ΩSwS . (5.28)

In this study, we use as objective function JS or criterion the Sum Squared
Error (SSE) between ŷS

Nd
and yNd

,

JS =
(
yNd

− ŷS
Nd

)T (
yNd

− ŷS
Nd

)
(5.29)

and as a search algorithm the sequential forward selection. We chose SFS
instead of SBS because SFS is computationally less demanding due to the
fact that the criterion function JS is evaluated over smaller subsets of
monomials.

For the evaluation of each candidate feature subset, a K-fold cross-validation
scheme is used by the feature selection algorithm. In K-fold cross-validation
the available data (the observations or data points are the rows of yNd

and
ΩS) is partitioned in K samples. Of the K samples, a single sample is
retained as the validation data for evaluating the candidate feature subset
and computing its corresponding SSE, and the remaining K − 1 samples
(training data) are used for calculating the coefficients of the monomials via
least squares. The cross-validation process is then repeated K times (the
folds), with each of the K samples used exactly once as the validation data.
In order to generate a single goodness-of-fit measure of the candidate, the
K SSEs are summed and the result divided by the number of observations
or data points. Once this goodness-of-fit measure has been calculated for
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all the candidate feature subsets, the algorithm picks the subset with the
smallest measure.

The advantage of using K-fold cross-validation is that all the observations
in the dataset are eventually used for both training and validation. For this
problem a 10-fold cross-validation scheme was used.

In the next section it will be shown that the local stability around the origin
of the P-POD models depends only on the linear terms, and consequently the
algorithm was properly configured to include these terms in the candidate
feature subsets.

After running the feature selection algorithm, Nsm = 25 features or
monomials were finally chosen (JS = 1.3727 · 10−4). These selected features
are pointed out by the set S∗, which contains the suboptimal solution
found by the algorithm. Once this set is established, the coefficients of
the monomials wS∗ ∈ R

Nsm·n are computed via least squares.

Lastly, the polynomial POD model with a reduced set of monomials, which
will be referred to as P-POD-RS model, has the following form,

ȧ(t) = fS
∗

(a(t)) + B̃1d(t) + B̃2u(t) (5.30)

Tn(t) = Φna(t) + T∗

with

fS
∗
(a(t)) = ΛS∗

(t)wS∗

ΛS∗
(t) ∈ R

n×(Nsm·n) =

⎡
⎢⎢⎢⎢⎣
αS∗

(t) 0 · · · 0

0 αS∗
(t)

. . .
...

...
. . . . . . 0

0 · · · 0 αS∗
(t)

⎤
⎥⎥⎥⎥⎦

where

αS∗
(t) =

[
a1(t), a2(t), a3(t), a4(t), a5(t), a6(t), a2

1(t), a1(t)a2(t), a1(t)a3(t),

a1(t)a4(t), a1(t)a5(t), a1(t)a6(t), a2
2(t), a2(t)a3(t), a2(t)a4(t),

a2(t)a5(t), a2(t)a6(t), a3(t)2, a3(t)a4(t), a3(t)a5(t), a3(t)a6(t),

a2
4(t), a1(t)2a2(t), a4

1(t), a2
1(t)a2(t)a6(t)

]
contains the 25 selected monomials.
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5.6 Polynomial POD models with stability guar-
antee

A property that is desirable to preserve in the model reduction process is
the stability of the original model. In this aspect, the model reduction of
an stable model by POD often results in a reduced model that is stable as
well. Nevertheless, this is generally not guaranteed. Eventually we can end
up with an unstable model, specially when the quality of the available data
is poor [119].

For explaining our methods, in this section we are going to use the
polynomial POD model with the full set of monomials described by (5.22).
However, these methods can be also applied in a very straightforward way
to the case of the polynomial POD model with a reduced set of monomials
(see (5.30)).

Since global stability of a nonlinear system is in most cases hard or even
impossible to prove, this study will be focused on the local stability of the
P-POD model (5.22) around the origin. The stability of (5.22) is analyzed
through its autonomous counterpart,

ȧ(t) = f̆(a(t)) = f(a(t))
∣∣
w1,0=w2,0=···=wn,0=0

. (5.31)

which is found by making u(t), d(t) and the constant terms w1,0, w2,0, . . . , wn,0

of the vector function f(a(t)) equal to zero. Notice that the constant
monomials can be seen as the entries of an additional vector B̃3 =
[w1,0, w2,0, . . . , wn,0]T multiplied by an extra input ue(t) equal to one.

We can derive a stability condition for the autonomous system (5.31) by
using the Lyapunov’s indirect method. According to this method, the
stability of the origin in (5.31) is inferred from the stability of the linearized
system,

δȧ(t) = Aδa(t). (5.32)

Here δa(t) ∈ R
n is the deviation variable and A ∈ R

n×n is the jacobian
matrix defined as follows:

A =
∂ f̆
∂a

∣∣∣∣∣
a=0

=

⎡
⎢⎢⎢⎢⎢⎣

∂f̆1

∂a1

∂f̆1

∂a2
· · · ∂f̆1

∂an

∂f̆2

∂a1

∂f̆2

∂a2
· · · ∂f̆2

∂an
...

...
. . .

...
∂f̆n

∂a1

∂f̆n

∂a2
· · · ∂f̆n

∂an

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣
a=0
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=

⎡
⎢⎢⎢⎣

w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n
...

...
. . .

...
wn,1 wn,2 · · · wn,n

⎤
⎥⎥⎥⎦ .

According to the Lyapunov’s indirect method, the origin is asymptotically
stable if A is Hurwitz, i.e., all the eigenvalues of A have a negative real part,
Re[λi(A)] < 0, ∀i = 1, . . . , n. Given that the jacobian matrix A is made of
the coefficients of the linear terms, it is clear that these coefficients are the
only ones that affect the stability of the P-POD model around the origin.
If we add the eigenvalue constraint Re[λi(A(w))] < 0 to the minimization
problem (5.27), then we end up with the following non-convex optimization
problem:

min
w

1
2
wT
(
ΩTΩ

)
w − (yT

Nd
Ω
)
w (5.33a)

subject to
Re[λi(A(w))] < 0, for i = 1, . . . , n. (5.33b)

The eigenvalue constraint makes problem (5.33) non-smooth [127], which in
general is difficult to solve in its current form [25]. In order to overcome
this situation, in this section we present two manners of dealing with this
constraint. In our first approach, we replace the eigenvalue constraint
by an LMI, which is a relaxation of the original constraint, providing a
sufficient condition for the local stability of the P-POD model. In our
second approach, the eigenvalue constraint is substituted by a nonlinear
matrix equality and an LMI. Unlike the first approach, these replacements
give sufficient and necessary conditions for the local stability of the reduced
order model. In both cases, the local stability is guaranteed independently of
data used. Nevertheless, the quality of the reduced-oder model still depends
on the data used in the model reduction process.

5.6.1 Semidefinite problem formulation

A relaxation of the eigenvalue constraint (5.33b) is given in the following
lemma:

Lemma 5.1 ( [119]). Let A be a square matrix. If the Hermitian part of
A, i.e., 1

2

(
A + AH

)
, is negative definite, then A is Hurwitz.
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Proof: See [119].

By using Lemma 5.1, we can modify the optimization problem (5.33) as
follows:

min
w

1
2
wT
(
ΩTΩ

)
w − (yT

Nd
Ω
)
w (5.34a)

subject to

− 1
2
(
A(w) + A(w)T

)− μI � 0 (5.34b)

where μ > 0 is a positive number used to guarantee the strictly positive
definiteness of −1

2

(
A(w) + A(w)T

)
. The inclusion of μ is necessary

given that most solvers do not work with strict positive/negative definite
constraints. The optimization problem (5.34) is nothing else than a SDP
problem that can be solved efficiently by interior point methods, such as the
one implemented in the Matlab Toolbox Sedumi [140].

It should be clear that not all the Hurwitz matrices have negative-definite
hermitian parts (the Lemma 5.1 only provides a sufficient condition for the
local stability of the model), and therefore the stability constraint (5.34b)
might be very conservative.

In the following subsection a non-conservative replacement of the eigenvalue
constraint (5.33b) will be discussed.

5.6.2 Nonlinear semidefinite problem formulation

Alternatively as it was done in the previous subsection, we can substitute the
eigenvalue constraint (5.33b) by the well-known Lyapunov ’s matrix equality
(this equality is derived from the application of the Lyapunov’s direct
method on linear time-invariant systems) presented in the next theorem.

Theorem 5.1. Given the autonomous system, δȧ(t) = Aδa(t), the origin
δa(t) = 0 is asymptotically stable if and only if, for any symmetric positive
definite matrix Q, there exists a symmetric positive definite matrix P such
that,

ATP + PA + Q = 0.

Theorem 5.1 gives a sufficient and necessary condition for the stability of
the P-POD model around the origin. By using this theorem we can adapt
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the minimization problem (5.33) in the following way,

min
w,P

1
2
wT
(
ΩTΩ

)
w − (yT

Nd
Ω
)
w (5.35a)

subject to

A(w)TP + PA(w) + Q = 0 (5.35b)
P − μ̃I � 0 (5.35c)

where Q ∈ S
n
++ is a given positive definite matrix, and μ̃ is a positive number

used to guarantee the strictly positive definiteness of P. Problem (5.35) is
a nonlinear SDP problem which in general is non-convex. More precisely,
we have an optimization problem that involves a Bilinear Matrix Inequality
(BMI), A(w)TP+PA(w) ≺ 0 or A(w)TP+PA(w)+ μ̃I � 0. We can solve
problem (5.35) by using the Matlab toolbox PENBMI, which implements
a general-purpose solver for BMI problems. The algorithm implemented in
PENBMI is described in [83] and it is based on the augmented Lagrangian
method. It can be viewed as a generalization to nonlinear semidefinite
problems of the penalty-barrier-multiplier method originally introduced in
[21] for convex optimization [65].

In order to get a feasible starting point (w0, P0) for the BMI solver,
and properly set the constraints (5.35b) and (5.35c), we can solve the
convex optimization problem stated in (5.34). Thus, the starting point and
constraints parameters might be fixed as follows:

• w0 is obtained directly by solving (5.34)

• P0 = 0.5 · I
• Q = −0.5

(
A0 + AT

0

)
, where A0 is constructed from w0

• 0 < μ̃ ≤ 0.5.

Unlike (5.34b), the stability constraint given by (5.35b) and (5.35c) is non-
conservative, but leads to a non-convex optimization problem.

5.6.3 Numerical example

Consider the following autonomous linear system (from [119]),

ẋ(t) = Ãx(t) (5.36)
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where

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2.3 0.5 0 0 2.3 −0.8
1.5 −2.5 0 0 −4.5 1.5

−22.8 −0.5 −25 0 −2.3 0.8
−33 −0.6 15.6 −25.8 −2.6 13.5
8.4 1.0 3.7 2.8 −0.5 −1.4
25 0.9 11.1 8.4 3.9 −6.0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The eigenvalues of Ã are −0.4704, −1.5865, −2.5335±1.5514i, −24.9998 and
−29.9763 and clearly the model is stable. In this example we are interested
in deriving a reduced order model (a P-POD model with only linear terms)
of (5.36) by using POD. To this end, we first built the snapshot matrix,

Xsnap =
[
x(0),x(t = Δt),x(t = 2Δt), . . . ,x(t = 480Δt)

]
, Δt = 0.025 s

from the evolution of the state vector x(t) starting from the initial condition
x(t = 0) = [−0.5, 1, 0.5, 1, 0.5, 1]T . Afterwards, we derived the POD basis
vectors,

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0401 0.3354 0.1237 −0.2280 0.5646 0.7070
0.0573 −0.7177 0.1541 0.3907 0.5525 0.0016
0.0402 −0.3364 −0.1234 0.2224 −0.5661 0.7072
0.4758 −0.3934 −0.2819 −0.7335 0.0370 −0.0031
0.3238 −0.0222 0.9099 −0.1388 −0.2180 −0.0010
0.8138 0.3225 −0.1959 0.4343 0.0820 0.0020

⎤
⎥⎥⎥⎥⎥⎥⎦

by computing the SVD of Xsnap. The singular values of Xsnap and their
associated 1 − P̄n (see Equation (2.7)) values are : σ1 = 12.7308 (1 − P̄1 =
5.21 · 10−2), σ2 = 2.9377 (1 − P̄2 = 1.6 · 10−3), σ3 = 0.4285 (1 − P̄3 =
5.49 · 10−4), σ4 = 0.3059 (1 − P̄4 = 1.858 · 10−6), σ5 = 0.0178 (1 − P̄5 =
4.878 · 10−11), and σ6 = 9.133 · 10−5 (1 − P̄6 = 0).

From the previous values, it is clear that the subspace spanned by the first 3
or 4 basis vectors contains most of the “energy” in the data. Therefore, we
derived POD models of orders 3 and 4 by solving the optimization problems
(5.27), (5.34) and (5.35). The POD model without stability constraint
obtained by solving (5.27) or by using Galerkin will be referred to as P-POD-
NC. The POD models that include the SDP and NSDP stability constraints
will be referred to as P-POD-SDP and P-POD-NSDP respectively.

Table 5.1 presents the eigenvalues of the state matrix of each POD model as
well as the cost function value at the solution of the associated optimization
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Table 5.1: Numerical Results

Model Order n = 3 Order n = 4
J λi J λi

P-POD-NC −81
−2.8236

−173.1056
−0.4729

−0.6355 −2.4805 ± 1.4922i
+0.1010 −29.1026

P-POD-SDP −80.0536
−3.0384

−168.9984
−0.5544

−2.0838 −4.0173 ± 1.2011i
−0.6233 −30.0831

P-POD-NSDP −80.9989
−2.8239

−173.1056
−0.4729

−0.6347 −2.4805 ± 1.4922i
−0.0046 −29.1026

J is the cost function value at the solution of the optimization problems (5.27),
(5.34) and (5.35).

λi are the eigenvalues of the state matrix of the P-POD model.

μ = μ̃ = 10−8.

problem. In addition, Figures 5.8 and 5.9 show the response of the
POD models of order 3 and 4 to the initial conditions x(t = 0) =
[−0.5, 1, 0.5, 1, 0.5, 1]T respectively. Note that for generating the time
response of the models we are using the same initial conditions than the
ones used in the generation of the snapshot matrix. It should be clear
that we could use different initial conditions, but in that case we can not
expect accurate predictions from the POD models since their derivation is
based on data that only consider the trajectory of the states when the initial
conditions are the mentioned ones (the data is not rich enough).

For the case of n = 3, only the P-POD-NC model is unstable due to its
eigenvalue at 0.1010 that is outside the stability region. By comparing
the eigenvalues of the P-POD-NC and P-POD-NSDP models, we can see
that the unstable pole 0.1010 of P-POD-NC is replaced by an stable one
(−0.0046) in the P-POD-NSDP case (the other eigenvalues are practically
the same). However, this pole makes the model dynamics very slow and this
condition could lead to a misinterpretation of Figure 5.8, since the steady
state values of the states in the P-POD-NSDP case (dash-dotted line), seem
to be different from zero. In reality the states go very slowly towards 0
in approximately 1000 s. Notice also that the cost function value in the
P-POD-NSDP case is smaller than in the POD-SDP case, but from Figure
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5.8 it is evident that the P-POD-SDP model offers a better approximation
of the original system. These observations might look contradictory, but we
have to bear in mind that the cost function value only indicates how well
the polynomials fit the data, and not how accurate the POD model will be.

From Table 5.1 it is clear that the cost function value in the P-POD-SDP
case is larger than in the P-POD-NC and P-POD-NSDP cases. Furthermore
from Figure 5.9 we can see some small differences in the responses of P-
POD-SDP and (5.36). These differences are not observed in the P-POD-NC
and P-POD-NSDP cases where the response of both these models and the
original system (5.36) are practically overlapping. All this is consequence of
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the conservative nature of the SDP constraint. Nevertheless, it is important
to keep in mind that this constraint is only imposed on the linear terms.
Therefore if we are dealing with higher degree P-POD models, the limitation
in the search space would be less significant, since the optimization algorithm
would have several unconstrained optimization variables to play with.

Although the NSDP constraint is non-conservative, its drawback is to lead
to a non-convex optimization where we have to deal with the local minima
problem. When n = 4 we can see that the P-POD-NSDP and P-POD-NC
models are identical. However, in general this is not always the case, and
we can end up with different models since the optimization with the NSDP
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constraint might be trapped in a local minimum.

The approaches considered in this section for guaranteeing the local
stability of polynomial POD models, demand much more computational
burden than the calculation of polynomial POD models by using least
squares. Particularly the calculation of the P-POD model with the NSDP
constraint is the most demanding case, and this fact might limit its practical
applicability when the number of monomials increases as a consequence of
augmenting either the number of selected POD basis vectors or the degree
of the polynomials.

5.7 Validation and simulation results

In this section we will validate and compare the reduced-order models of
the bar that were presented in Sections 5.3, 5.4 and 5.5, as well as a POD
model derived using the Missing Point Estimation (MPE) technique. This
technique, which is introduced in [11, 12], is used for accelerating nonlinear
and linear time variant POD models.

In the MPE method, the Galerkin projection is conducted only on some pre-
selected state variables or points of the spatial domain, instead of the entire
set. The remaining state variables are estimated by means of the POD basis
vectors. The fact of using a subset of points of the spatial domain leads
to a reduction of the time required for evaluating the POD model. In this
study, we found a POD model for the bar using this technique, and such
a model will be referred to as MPE-POD model. The selection of points
was done by using the second screening criterion and the greedy algorithm
described in [11,12]. Since the boundary conditions must be satisfied by the
reduced-order model, the points adjacent to them have to be included. A
total of 182 points from 499 were selected, including the 2 points adjacent
to the ends of the bar. This number of points offers a good compromise
between the accuracy of the model and its computational gain.

In order to validate and evaluate the different POD models of the bar, the
following tests were carried out:

• Test 1: A step of magnitude 1200 · 103 W · m−3 is applied to u(t) and
a step of magnitude 500 · 103 W · m−3 is applied to d(t).
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• Test 2: Steps of magnitude −1100 ·103 W ·m−3 and −400 ·103 W ·m−3

are applied to u(t) and d(t) respectively.

• Test 3: A step of magnitude 500 · 103 W · m−3 is applied to u(t) and
a step of magnitude −200 · 103 W · m−3 is applied to d(t).

• Test 4: Steps of magnitude −400 · 103 W · m−3 and 300 · 103 W · m−3

are applied to u(t) and d(t) respectively.

Given that the discretized model of the bar (5.4) consists of a set of stiff
differential equations, an ODE solver that can deal with this condition has to
be used. Hence, we used the function ode23tb of Matlab which implements
TR-BDF2, an implicit Runge-Kutta formula with a first stage that is a
trapezoidal rule step and a second stage that is a backward differentiation
formula of order two [132]. Along this work, not only (5.4) was solved with
ode23tb, but also the ODEs describing each of the reduced-order models.
The solver was configured with a variable integration step and with a relative
tolerance of 10−5 in all the cases. The initial conditions for the POD models
were given by a(0) = ΦT

nTΔ
n (0) = 0.

In Table 5.2 we present the computational gain of the POD models with
respect to the full order model (5.4), and we also include a measure of their
accuracy. In this table, ΔTmax is the largest temperature deviation (error)
of the POD models regarding the high-dimensional model (5.4) along the
entire test, and Gd and Gs quantify the computational gain of the POD
models with respect to the full order model. They are defined as follows:

Gd =
t̃fom

t̃pod
(5.37)

Gs =
tfom

tpod
(5.38)

where tfom and tpod are the times spent by the ODE solver for simulating
the full order model and the POD model respectively, and t̃fom and t̃pod are
the average times for calculating the derivatives along the test of the full
order model and the POD model respectively. The values of Gd and Gs in
Table 5.2 are average values found after 15000 and 1500 runs respectively.
All the simulations were carried out on a PC with an Intel dual core of 3
Ghz and a RAM memory of 2 GB.

Figures 5.10, 5.11, 5.12 and 5.13 show the maximum temperature deviation
of the different POD models with respect to the full order model along
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Figure 5.10: Maximum temperature deviation of the POD models with
respect to the full order model along Test 1.
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Figure 5.11: Maximum temperature deviation of the POD models with
respect to the full order model along Test 2.
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Figure 5.12: Maximum temperature deviation of the POD models with
respect to the full order model along Test 3.
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Figure 5.13: Maximum temperature deviation of the POD models with
respect to the full order model along Test 4.
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Figure 5.14: Temperature profile at different time steps during Test 1. Solid
line - Full order model (5.4). Dashed line - POD model and P-POD model.
Dotted line - Neural-POD model. The temperatures are relative to the
ambient temperature (25◦C).

the tests, and Figures 5.14 and 5.15 depict the evolution of the temperature
profile of the bar during Test 1, the most severe test. In general, the accuracy
of the POD models is good in spite of the big model-order reduction. Notice
however that the MPE-POD model tends to be the less accurate model. We
might select more points to improve its accuracy but this would compromise
its computational gain. From Figures 5.14 and 5.15 we can observe how the
temperature profiles of the POD models practically overlap each other.

From Table 5.2 we can notice that the derivatives of the P-POD model are
calculated about 5.7 times faster than in the POD case. This computational
gain has been achieved by exploiting the polynomial nature of the vector
function f(a(t)) of (5.10) that allow us to write f(a(t)) in an efficient and
compact form. This gain makes the simulation of the P-POD model about
2.4 times faster than the simulation of the POD model. Given that both
models are equivalent, they have the same accuracy. Regarding the P-POD-



166 Performance Improvement in Model Simulation

0 0.05 0.1
0

0.2

0.4

0.6

0.8

 

 

0 0.05 0.1
0

2

4

6

0 0.05 0.1
0

20

40

60

0 0.05 0.1
0

50

100

150

T
em

p
er

a
tu

re
[◦

C
]

T
em

p
er

a
tu

re
[◦

C
]

T
em

p
er

a
tu

re
[◦

C
]

T
em

p
er

a
tu

re
[◦

C
]

z [m]z [m]

z [m]z [m]

t = 2 s t = 10 s

t = 100 s t = 3000 s

Figure 5.15: Temperature profile at different time steps during Test 1. Solid
line - Full order model (5.4). Dashed line - P-POD-RS model. Dotted
line - MPE-POD model. The temperatures are relative to the ambient
temperature (25◦C).

RS model, the calculation of the derivatives is performed about 13.3 times
faster than in the POD case and 2.3 times faster than in the P-POD case.
This significant computational gain has been obtained by properly selecting
a subset of monomials of the P-POD model. The impact of this gain on the
simulation time is also remarkable. The simulation of P-POD-RS requires
about 3.6 times less time than the simulation of the POD model. In addition,
the difference in their responses is very small. The largest difference occurs
during Test 1, and this difference is only of 0.13◦C.

For the Neural-POD case, the derivatives are calculated around 9.7 times
faster than in the POD model. This considerable gain has been achieved
by approximating the vector function f(a(t)) with a multi-layer perceptron.
The impact of this gain on the simulation time is such that the simulation
of the Neural-POD model requires about 3.3 times less time than the
simulation of the POD model. Also notice that the difference between the
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POD model and the Neural-POD model is very small. The largest difference
in their responses arises in the course of Test 1, and this difference is merely
of 0.26◦C.

According to the results presented in Table 5.2, the P-POD-RS and Neural-
POD models are in that order the fastest reduced-order models of the bar.
Although the MPE-POD model was faster than the POD model, it was
neither as fast as the P-POD-RS, Neural-POD and P-POD models nor as
accurate as them. At this point it is important to emphasize that the
MPE method is a general technique that does not exploit the particular
characteristics of the kind of problems treated in this chapter, and therefore
the results obtained were expected. It is undoubted that the incorporation of
prior knowledge about a problem on a given algorithm improves the results.

5.8 Conclusions

In this chapter we have presented two methods for speeding up the
evaluation of nonlinear POD models. In the first method, the nonlinear
vector function of the POD models is approximated by a multi-layer
perceptron which in general can be evaluated much faster than the original
vector function. In this approach both the computational gain and the
capability of learning accurately complex nonlinear mappings are limited by
the size of the network. The larger the MLP, the lesser is the computational
gain but the better is the ability of learning complex nonlinear mappings and
vice versa. Therefore, the size of the net has to be chosen in such a way that
it provides a good trade-off between accuracy and computational gain. One
of the main difficulties of this approach is to find a suitable number of hidden
neurons for the MLP. Additionally, since the neural networks suffer of the
local minima problem, the training of the MLP has to be performed several
times starting from different initial conditions in order to make sure that the
network is not trapped in a local minimum. However, the convergence to
the global minimum can not be guaranteed. This problem gets worse as the
number of neurons with nonlinear activation functions increases. Another
aspect that we have to bear in mind, is that the approximation of the vector
function offered by the neural network is only valid within a specific range.
Beyond this range the approximation fails, and the Neural-POD model is
not reliable anymore.

The second method is mostly aimed for accelerating nonlinear POD
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models derived from input-affine high-dimensional systems with polynomial
nonlinearities. We have shown that by exploiting their polynomial nature,
we can generate compact and efficient representations (P-POD models)
which can be evaluated much faster than the POD models whose vector
functions require the full spatial information of the original model. In
addition, we have discussed how the sequential feature selection algorithms
can help us to accelerate even more these P-POD models by selecting their
most relevant monomials (suboptimal solution). Note that this approach
might be also employed in the case of input-affine high-dimensional systems
with non-polynomial nonlinearities, as long as these nonlinearities can be
approximated by low degree polynomials. This condition is advised in order
to keep the number of monomials as small as possible. A notable advantage
of this approach with respect to the first method is that we have to solve a
convex optimization problem. However its drawback is that the number of
monomials can be very large.

Furthermore in this chapter, we have discussed two ways of guaranteeing the
local stability of POD models with polynomial nonlinearities. In our first
approach we end up with an SDP optimization problem whose constraint
provides a sufficient condition for the local stability of the models. The
problem of this method is that the constraint can be very conservative. In
the second approach we finish up with an NSDP optimization problem whose
constraints unlike the first approach, give necessary and sufficient conditions
for the stability of the POD models. The drawback of this formulation is that
we have to deal with a non-convex optimization problem. In both methods
the local stability of the POD models is guaranteed independently of the
data used. However the quality of the reduced-order models still depends
on the quality of data employed in the model reduction process.

Among the POD models derived for the bar, the simulation results showed
that the largest computational gains were obtained with the P-POD-RS and
Neural-POD models. On one hand we have to point out that the success of
the polynomial POD models resides in the fact of taking advantage of the
polynomial nature of the problem. On the other hand in the neural network
approach, the nature of the problem is not exploited and consequently given
its general character, this method can be applied to a wider class of systems,
although with the difficulties mentioned before.

Further research is necessary in order to evaluate the approaches proposed
in this chapter on dynamic systems with harder nonlinearities.



Chapter 6

General Conclusions

6.1 Concluding remarks

This dissertation considers two main research subjects. First, it describes the
application of a set of techniques such as proper orthogonal decomposition,
Galerkin projection, model predictive control, Kalman filtering, and sum of
squares decomposition (from theory of positive polynomials), to the design of
advanced control schemes for tubular chemical reactors. Second, it discusses
how to improve the performance in model simulation of reduced-order
models derived by using proper orthogonal decomposition and Galerkin
projection from nonlinear high-dimensional systems, which are obtained
after discretizing the nonlinear partial differential equations that model
many processes.

Regarding the first research topic of this thesis, we have the following
concluding remarks:

• The design of the predictive control schemes for the tubular reactor
treated in this dissertation has been possible due to the significant
model order reduction (from 600 states to only 20 states) achieved by
means of the POD and Galerkin projection techniques.

• In spite of the linearization and discretization of the nonlinear PDEs
that model the reactor, and the dramatic model order reduction
obtained using POD for generating the model on which the control

169
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systems proposed are based, the control schemes performed very
well when typical disturbances were applied to the reactor (Tests
1 and 2 defined in Section 3.5). However, the performance of the
control schemes was compromised when the reactor was subjected
to large disturbances (Tests 3 and 4 described in Section 3.5). The
degradation in their performance is mainly due to the fact that under
large disturbances, the reactor operates far from the operating profiles
where the nonlinear model was linearized, and therefore the differences
between the nonlinear dynamics of the process and the linear POD
model on which the control schemes are based become considerable.

• Typically, POD-based predictive controllers are formulated in terms
of POD coefficients which have no physical meaning, and the control
of the variables of interest is achieved indirectly by controlling these
coefficients. However, we have shown that formulations in terms of
physical variables are suitable alternatives that make the tuning of
the predictive controllers more intuitive and the definition of their
control goals more flexible.

• In Chapter 4, we have shown that the theory of positive polynomials
provides a way of reducing the large number of state/output con-
straints (linear inequalities) that usually characterizes the POD-based
predictive controllers. In this approach the feasible region delimited
by the large set of inequality constraints is approximated by the one
delimited by a few linear matrix inequalities. It has been shown for
the case of the reactor that this methodology leads to a significant
reduction in the number of temperature constraints which conduces
to a considerable saving of memory. Nevertheless the computational
time needed for solving the optimization of the predictive controller
based on the LMI constraints, is much larger than the time required for
solving the original problem. The limitation comes from the fact that
the LMI constraints introduce a large number of variables. It is clear
that with this positive polynomial approach the resulting optimization
problem is more complex than the original one. However we want
to emphasize that this technique guarantees the fulfillment of the
temperature constraint at every point of the reactor.

• For reducing the large number of state/output constraints characteriz-
ing the POD-based predictive controllers, we also proposed in Chapter
4 a greedy algorithm which selects a reduced set of constraints from
the full set, by exploiting the similarities between the coefficients of
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consecutive constraints. This algorithm proved to be quite effective
at the moment of being applied to one of the predictive controllers
designed for the reactor. The number of temperature constraints was
reduced from 24 000 to only 1600, leading to a considerable saving
of memory, and a substantial reduction in the computational time
required for solving the optimization within the MPC controller. In
addition, the behavior of the controller based on the reduced set of
constraints was practically identical to the one based on the complete
set. Note however that unlike the positive polynomial approach, we do
not have any command on the temperature between the discretization
points.

Finally, we have the subsequent concluding remarks concerning the second
research subject of this dissertation:

• The use of a multilayer perceptron for approximating the nonlinear
vector function of the POD models, has demonstrated to be a possible
way of speeding up their evaluation. However, the local minima
problem in the training process of the network, can be a limiting factor
of the applicability of this approach in systems with a considerable
amount of POD coefficients.

• We have shown that the acceleration of POD models derived from
input-affine high-dimensional systems with polynomial nonlinearities,
can be achieved by taking advantage of the polynomial nature of the
models for generating compact and efficient formulations (polynomial
POD models). In addition, the use of the sequential feature selection
algorithms has proven to be quite useful for boosting the computa-
tional gain of these polynomial POD models. Although this approach
is mostly intended for systems with polynomial nonlinearities, it might
be applied to models with non-polynomial nonlinearities provided
that these nonlinearities can be approximated well enough by low
degree polynomials. In addition, it has been shown that by using
the Lyapunov’s theory, the local stability of the resulting POD models
with polynomial nonlinearities can be guaranteed.
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6.2 Future research

The research presented in this work can be further extended in several
directions.

• Along Chapters 3 and 4, it has been pointed out that the tuning of
the MPC controllers for the tubular reactor considered in this thesis,
has been done in a conservative way (for being able to handle large
disturbances). In addition, it has been observed how the performance
of the control systems is degraded when large disturbances are applied
to the process. These issues are the consequence of not taking into
account the nonlinear nature of the reactor in the design of the control
schemes. Therefore, a natural extension of the predictive control
systems proposed in this thesis, is the incorporation of the nonlinear
characteristics of the process into the POD model on which they are
based.

• It is clear that the quality of a POD model depends on the quality of
the data collected during the snapshot experiment, and this fact makes
of the construction of the snapshot matrix a key step in the model
reduction process by POD. Many people [8, 40, 58, 87] have addressed
several issues regarding the snapshots generation, but thus far, there
is not a definitive way to decide [13],

– How many snapshots are necessary for having good information
about the system,

– How long the simulations should be run to generate the snapshots,

– Which initial conditions should be used, or

– How to incorporate control information (in the case of control
problems).

Consequently the design of the snapshot experiment is still an open
problem that demands the attention of the researchers.

• Along this work we have not considered the dispersion/diffusion
phenomena and the dynamics of the heat exchangers in the jackets
of the reactor. The inclusion of these characteristics into the
reactor model would make it more realistic, and still not so specific
that it compromises the generality of the results and conceptual
contributions of the study. Therefore an extension of the presented
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work would be the application and pertinent adjustment of the
control strategies and algorithms proposed thus far, to the case where
the dispersion/diffusion phenomena and the dynamics of the heat
exchangers are considered in the reactor model.

• In this dissertation we have addressed the problem of speeding up the
evaluation of nonlinear POD models by using neural networks and
by exploiting the polynomial nature of some systems. In spite of the
good results obtained, we can not say that we have found a definitive
solution to this problem, and consequently more research is needed in
this direction.

• For the case when POD is applied to multidimensional systems, that
is, systems with more than one spatial coordinate, the columns of
the snapshot matrix are typically assembled by stacking the values
of the physical variable at every grid point. This stacking procedure
ignores any possible Cartesian structure that may be present, and
commonly produces a snapshot matrix with a large number of rows.
If the spatial domain has d coordinates and each of them has N grid
points, the number of rows of the snapshot matrix is equal to Nd. It
is clear that the number of rows is typically an exponential function
of d, and this fact may make the computation of the basis vectors
problematic when the number of grid points increases. In order to
tackle this situation, in [148, 153], an alternative spectral expansion
to the one used in this thesis (and in most of the studies regarding
POD) is proposed, which takes into account the multidimensional
nature of the spatial coordinates by using a tensor representation.
In this approach the basis vectors are computed using the Higher-
Order Singular Value Decomposition (HOSVD) [88]. Alternatively in
[149,150], a method known as tensor SVD is introduced for computing
the basis vectors. However, it should be clear that there is not
a straightforward generalization of the algebraic concept of singular
values and singular value decompositions to tensors or multi-way
arrays. Therefore more research regarding the derivation of optimal
basis vectors for multidimensional systems is required.
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l’Academie Sciences, Paris, 78:614–617, 1874.



Bibliography 181

[77] R. E. Kalman. A new approach to linear filtering and prediction problems.
Transactions ASME, Series D, Journal of basic engineering, 82:34–45, March
1960.

[78] G. M. Kepler, H. T. Tran, and H. T. Banks. Reduced order model
compensator control of species transport in a CVD reactor. Optimal Control
Application & Methods, 21(4):143–160, 2000.

[79] M. Kirby, J. P. Boris, and L. Sirovich. A proper orthogonal decomposition
of a simulated supersonic shear layer. Int. J. Numerical Methods Fluids,
10:411–428, 1990.

[80] M. Kirby and L. Sirovich. Application of the karhunen-loève procedure for
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