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Abstract

Since their introduction in 1957, hidden Markov models have been used in
several engineering applications (speech processing, computational biology).
However, many theoretical questions concerning hidden Markov models remain
open until this moment. Contributing to these theoretical questions forms the
first main objective of this thesis. When considering the theoretical problems,
we find inspiration in the analogy with the corresponding problems for linear
stochastic models. The solution to most of the problems concerning linear
stochastic models makes use of the singular value decomposition. For the
solution of the corresponding problems for hidden Markov models, it turns
out that modifications to the nonnegative matrix factorization are needed.
Investigating new nonnegative matrix factorization techniques forms the second
main objective of this thesis.

A first theoretical problem concerning hidden Markov models is the exact
positive realization problem. No procedure is known to solve this problem.
In this thesis, two relaxed versions of the problem are solved: the exact quasi
realization problem and the approximate positive realization problem. A second
problem is the identification problem for hidden Markov models. In this thesis
we propose an identification approach that estimates the state sequence directly
from the output data and subsequently computes the system matrices from
the obtained state sequence and the given output sequence. This approach
is analogous to subspace identification for linear stochastic models. A third
problem is the estimation problem for hidden Markov models. We show that it
suffices for several types of estimation problems to have a solution to the quasi
realization problem instead of a solution to the positive realization problem.
The techniques are applied to the detection of motifs in DNA sequences.

Concerning the second objective, we consider two modifications to the
nonnegative matrix factorization: the structured nonnegative matrix fac-
torization and the nonnegative matrix factorization without nonnegativity
constraints on the factors. It turns out that these factorizations are applicable
in engineering applications, apart from the hidden Markov research. The
structured nonnegative matrix factorization is applied to the clustering of data
points based on their distance matrix. The nonnegative matrix factorization
problem without nonnegativity constraints on the factors is applied to the
modeling of a database containing human faces.
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Korte inhoud

Sinds hun introductie in 1957 worden verborgen Markov modellen veelvuldig
gebruikt in ingenieurstoepassingen (spraakherkenning, biologie). Ondanks de
vele toepassingen blijven tot nu toe nog een heel aantal theoretische vragen
omtrent verborgen Markov modellen open. Bijdragen aan deze theoretische
problemen vormt de eerste doelstelling van deze thesis. Bij het oplossen van
problemen omtrent verborgen Markov modellen kan inspiratie gezocht worden
in de oplossing van de overeenkomstige problemen voor lineair stochastische
modellen. De oplossing van de meeste problemen betreffende lineair stochas-
tische modellen maakt gebruik van de singuliere-waardenontbinding. Voor de
problemen aangaande verborgen Markov modellen blijken varianten op de niet-
negatieve matrixontbinding nodig. Het onderzoek naar nieuwe niet-negatieve
matrixontbindingen is de tweede doelstelling van dit proefschrift.

Een eerste theoretisch probleem aangaande verborgen Markov modellen
is het exacte positieve realisatieprobleem. Er is geen procedure gekend
om dit probleem op te lossen. In deze thesis worden twee afgezwakte
versies van dit probleem opgelost: het exacte quasi-realisatieprobleem en
het benaderende positieve realisatieprobleem. Een tweede probleem is het
identificatieprobleem voor verborgen Markov modellen. In deze thesis stellen
we een identificatiemethode voor die de toestandssequentie rechtstreeks uit de
uitgangsdata schat en vervolgens de modelparameters berekent uit de bekomen
toestandssequentie en de gegeven uitgangssequentie. Deze aanpak is analoog
aan deelruimte-identificatie voor lineair stochastische modellen. Een derde
probleem is het schattingsprobleem voor verborgen Markov modellen. We
tonen aan dat het voor verschillende types van schattingsproblemen volstaat
om een oplossing te hebben voor het quasi-realisatieprobleem in plaats van een
oplossing voor het positieve realisatieprobleem. We passen de methodes toe op
het detecteren van motieven in DNA-sequenties.

Betreffende de tweede doelstelling, stellen we twee varianten op de niet-
negatieve matrix ontbinding voor: de gestructureerde niet-negatieve matrixont-
binding en de niet-negatieve ontbinding zonder niet-negativiteitsbeperkingen
op de factoren. Beide ontbindingen hebben nut op zich, los van het onderzoek
naar verborgen Markov modellen. We passen de gestructureerde niet-negatieve
matrixontbinding toe op het clusteren van datapunten. De ontbinding zonder
niet-negativiteitsbeperkingen op de factoren wordt gebruikt voor het modelleren
van menselijke aangezichten.

v





Glossary

Variables

a, b, c Vector variables
A,B,C Matrix variables
1m,n Matrix of size (m× n) with all elements equal to 1
em Column vector with all elements equal to 1,

if no confusion is possible, we use e instead of em

Im Identity matrix of size (m×m)

Sets

A,B,C Sets
|A| Cardinality of the set A

N Set of natural numbers {1, 2, . . .}
Z, Z+ Set of integers, nonnegative integers {0, 1, . . .}
R, R+ Set of real numbers, nonnegative real numbers
Rn, Rn

+ Set of n-dimensional vectors with elements from R, R+

Rm×n, Rm×n
+ Set of m× n matrices with elements from R, R+
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Matrix operations

A⊤ Transpose of matrix A
A−1 Inverse of matrix A
A† Moore-Penrose pseudo-inverse of A
Ai,j Element at the i-th row and j-th column of A
Ai,: i-th row of A
A:,j j-th column of A
Ai:j,k:l Submatrix of A bounded by the i-th and j-th row

and by the k-th and l-th column of A
A ≥ 0 Matrix A is elementwise nonnegative
A � 0 Matrix A is nonnegative definite
A⊗B Kronecker product of A and B
diag(a1, a2, . . .) Diagonal matrix with a1, a2, . . . on its diagonal
diag(a) Diagonal matrix with the vector a on its diagonal
vec(A) Row vector whose elements are row-wise scanned from A
∗ Element, subvector or submatrix of a matrix

of which the exact value is unimportant

Norms of and distances between matrices

||X || Norm of X
D(X,Y ) Distance between X and Y
||X ||F Frobenius norm of X
||X − Y ||F Frobenius distance between X and Y
DKL(X ||Y ) Kullback-Leibler divergence between matrix X and Y

Optimization

minẋ Function minimization over ẋ,
optimal function value is returned

argminẋ Function minimization over ẋ
optimal value of ẋ is returned

s.t. Subject to the constraints

Probability, expected value

P (x) Probability that the event x occurs
E(x) Expected value of the random vector x
E(x) Estimate of the random vector x
ML(x) Most likely estimate of the random vector x
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Miscelaneous

δ(k, l) Kronecker delta:

{

δ(k, l) = 1 if k = l
δ(k, l) = 0 if k 6= l

Finite valued strings

a, b, c Symbol from finite set A, B, C

a,b, c String taking values in a finite set
A,B, C Ordered sets of strings
ai i-th symbol of string a
|a| Length of string a
a(1)a(2) Concatenation of string a(1) and string a(2)

Fixed symbols

P(x) Probability of the string x
π(1) Initial state distribution of a HMM
ΠX State transition matrix of a HMM
Π Output and next state mapping of a Mealy HMM
β Output mapping of a Moore HMM

Acronyms

HMM Hidden Markov Model
LSM Linear Stochastic Model
SVD Singular Value Decomposition
NMF Nonnegative Matrix Factorization
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Nederlandse samenvatting

Realisatie, identificatie en
filtering voor verborgen
Markov modellen gebruik
makende van matrixontbin-
dingstechnieken

Hoofdstuk 1: Inleiding

Een systeem is een fysisch, economisch, biologisch, industrieel, technisch,
... fenomeen dat interageert met zijn omgeving. Het gedrag van systemen
wordt gewoonlijk onderzocht gebruik makende van wiskundige modellen. Een
wiskundig model beschrijft de relatie tussen verschillende in- en uitgangen
van het systeem als functie van de tijd. Een eerste grote doelstelling van
dit proefschrift is het bestuderen van een specifieke modelklasse: verborgen
Markov modellen (HMM). Hoewel deze modellen erg veel worden toegepast
voor het bestuderen van allerlei ingenieursproblemen, blijven een heel aantal
theoretische vragen aangaande verborgen Markov modellen onopgelost tot op
dit ogenblik. In Hoofdstuk 3 worden verborgen Markov modellen op een formele
manier gedefinieerd. Vervolgens worden een aantal theoretische problemen
over verborgen Markov modellen beschouwd: het quasi-realisatieprobleem
voor HMMs (Hoofdstuk 4), het positieve realisatieprobleem voor HMMs
(Hoofdstuk 5), het identificatieprobleem voor HMMs (Hoofdstuk 6) en het
schattingsprobleem voor HMMs (Hoofdstuk 7).

Verborgen Markov modellen zijn nauw verwant aan lineair stochastische
modellen waarvoor het theoretisch onderzoek een zekere graad van maturiteit
heeft bereikt. In Hoofdstuk 3 worden lineair stochastische modellen op een
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formele manier gedefinieerd. Bij het oplossen van problemen aangaande
verborgen Markov modellen maken we voortdurend gebruik van de kennis van de
oplossing van het overeenkomstige probleem voor lineair stochastische modellen.

De oplossing van de meeste theoretische problemen betreffende lineair
stochastische modellen maakt gebruik van de singuliere-waardenontbinding, een
populaire matrixontbindingstechniek. Het zal blijken dat er voor het oplossen
van de theoretische problemen aangaande verborgen Markov modellen, nood
is aan de niet-negatieve matrixontbinding en varianten op deze ontbinding.
Het ontwikkelen van varianten op de niet-negatieve matrixontbinding vormt
dan ook de tweede grote doelstelling van dit proefschrift. We bespreken
matrixontbindingtechnieken in Hoofdstuk 2.

Hoofdstuk 2: Matrixontbindingen

In dit hoofdstuk worden eerst twee bestaande matrixontbindingsmethodes
besproken: de singuliere-waardenontbinding en de niet-negatieve matrixontbin-
ding. Daarna worden twee aanpassingen aan de niet-negatieve matrixontbinding
voorgesteld, namelijk de gestructureerde niet-negatieve matrixontbinding en
de niet-negatieve matrixontbinding zonder niet-negativiteitsbeperkingen op de
factoren.

Singuliere-waardenontbinding

De singuliere-waardenontbinding (SVD) van een gegeven matrix M ∈ Rm1×m2

van rang r wordt gegeven door

M = UΣV ⊤

waarbij U ∈ Rm1×m1 en V ∈ Rm2×m2 unitaire matrices zijn en

Σ =

[

Σ(1) 0
0 0

]

met
Σ(1) := diag(σ1(M), σ2(M), . . . , σr(M)),

met
σ1(M) ≥ σ2(M) ≥ . . . ≥ σr(M) > 0.

De rang-k SVD-benadering van M (met k ≤ r) is gedefiniëerd als

Mk := U

[

Σk 0
0 0

]

V ⊤

waarbij Σk := diag(σ1(M), σ2(M), . . . , σk(M)). Men kan aantonen dat de rang-
k SVD-benadering van M aanleiding geeft tot een optimale rang-k benadering
van M in de Frobenius afstand. Bovendien is het zo dat als de zogenaamde
gapconditie σk(M) > σk+1(M) voldaan is, dat de rang-k SVD-benaderingMk de
unieke matix van rank k is dieM optimaal benadert in de Frobenius afstand. We
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hebben aangetoond dat, indien de gapconditie voldaan is, de rang-k benadering
van een matrix die voldoet aan de symmetrie M = PMQ, voldoet aan dezelfde
symmetrie, i.e. Mk = PMkQ.

Niet-negatieve matrixontbinding

Het niet-negatieve matrixontbindingsprobleem is gedefinieerd als volgt: gegeven
een matrix M ∈ R

m1×m2
+ , vind een ontbinding M = V H waarbij V ∈ R

m1×a
+

en H ∈ Ra×m2
+ , en met a zo klein mogelijk. De minimale innerdimensie van

een exacte positieve matrixontbinding wordt de positieve rang genoemd. Er
bestaat een eindig algoritme voor het berekenen van de positieve rang. Dit
tijdscomplexiteit van dit algoritme is echter niet-polynomiaal. Lee en Sueng
introduceerden daarom de benaderende niet-negatieve matrixontbinding [72].
Het idee bestaat erin dat men de inwendige dimensie a kiest en vervolgens niet-
negatieve matrices V en H zoekt, zodaning dat V H een optimale benadering
is voor M volgens een zeker criterium. The Kullback-Leibler divergentie is een
populaire afstandsmaat tussen niet-negatieve matrices en is gedefineerd als

DKL(A||B) :=
∑

ij

(Aij log
Aij

Bij

−Aij +Bij).

De benaderende niet-negatieve matixontbinding kan als volgt worden gedefini-
eerd

Problem 0.1. Gegeven M ∈ R
m1×m2
+ en gegeven a, minimaliseer DKL(M ||V H)

met betrekking tot V (van grootte m1 × a) en H (van grootte a×m2), zodaning
dat V ≥ 0, H ≥ 0.

Dit probleem is niet-convex in V en H samen en wordt daarom typisch
opgelost door alternerende iteratieve methodes waar eerst een update van V
wordt doorgevoerd, vervolgens een update van H , dan weer V enzovoort. In
[72, 73] worden iteratieve formules gegeven om Probleem 0.1 op te lossen.

Gestructureerde niet-negatieve matrixontbinding

De benaderende gestructureerde niet-negatieve matrixontbinding wordt gedefi-
nieerd als

Problem 0.2. Gegeven P ∈ R
p×p
+ en gegeven a, minimaliseer DKL(P ||V AV ⊤)

met betrekking tot V (van grootte p× a) en A (van grootte a× a), zodanig dat
V ≥ 0, H ≥ 0.

In dit proefschrift wordt aangetoond dat een stationair punt (A, V ) van de
kostfunctie DKL(P ||V AV ⊤) het gemiddelde van de rij- en kolomsom van P
behoudt, i.e.

∑

l Pkl + Plk

2
=

∑

l(V AV
⊤)kl + (V AV ⊤)lk

2
, k = 1, 2, . . . p.
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Als gevolg daarvan wordt de elementsom van P ook bewaard, i.e.

∑

kl

Pkl =
∑

kl

(V AV ⊤)kl.

Vervolgens stellen we iteratieve formules voor en tonen we aan dat de divergentie
DKL(P ||V AV ⊤) niet-stijgend is onder deze formules.

A
(t+1)
ij = A

(t)
ij

X

µν

VµiVνj
Pµν

(V A(t)V ⊤)µν

, (0.1)

V
(t+1)
ki

= V
(t)
ki

P

λν
Pkν

(V (t)A(V (t))⊤)kν
AiλV

(t)
νλ

+ Pνk

(V (t)A(V (t))⊤)νk
AλiV

(t)
νλ

P

λµν

Pµν

(V (t)A(V (t))⊤)µν
AiλV

(t)
νλ V

(t)
µi +

Pνµ

(V (t)A(V (t))⊤)νµ
AλiV

(t)
νλ V

(t)
µi

. (0.2)

Tenslotte tonen we aan dat de divergentie invariant is onder de aanpassingen
(0.1) en (0.2) als en slechts als (A, V ) een stationair punt is van de divergentie,
i.e.

{

A(t+1) = A(t),

V (t+1) = V (t),
⇔
{

A
(t)
ij

∂F
∂Aij

(A(t), V (t)) = 0, i = 1, 2, . . . a; j = 1, 2, . . . a,

V
(t)
ki

∂F
∂Vki

(A(t), V (t)) = 0, k = 1, 2, . . . p; i = 1, 2, . . . a.

We passen de gestructureerde niet-negatieve matrixontbinding toe op het
clustering probleem. In dat probleem zijn een aantal datapunten gegeven en is
het de bedoeling om clusters van punten te zoeken die dicht bij elkaar liggen.
Als data voor het probleem hebben we de afstandsmatrix tussen de verschillende
punten. Door de gestructureerde niet-negatieve matrixontbinding toe te passen
op deze afstandsmatrix, wordt een opdeling van de datapunten in a clusters
bekomen.

Niet-negatieve matrixontbinding zonder niet-negativiteitsbeperkingen
op de factoren

De niet-negatieve matrixontbinding zonder niet-negativiteitsbeperkingen op de
factoren wordt gedefinieerd als

Problem 0.3. Gegeven M ∈ R
m1×m2
+ en a ∈ N. Minimaliseer DKL(M ||VH)

met betrekking tot V (∈ Rm1×a) en H (∈ Ra×m2), zodanig dat V H ≥ 0.

Merk op dat er geen niet-negativiteitsbeperkingen zijn op de matrices V en
H zelf, maar enkel op het product V H . Het is intüıtief duidelijk dat de niet-
negatieve matrixontbinding zonder niet-negativiteitsbeperkingen op de factoren
typisch een betere benadering geeft van een matrix M dan de benadering
gevonden met de klassieke niet-negatieve matrix ontbinding. We stellen voor
om de niet-negatieve matrixontbinding zonder negativiteitsbeperkingen op de
factoren op te lossen met de optimalisatiemethode van Newton.

Vervolgens merken we op dat het vreemd is dat in de literatuur erg veel
aandacht besteed wordt aan de niet-negativiteitsbeperkingen (in essentie een
ondergrensbeperking) terwijl er geen aandacht wordt besteed aan bovengrenzen.
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De niet-negatieve matrixontbinding zonder niet-negativiteitsbeperkingen op de
factoren kan makkelijk worden aangepast zodat ze rekening houdt met onder-
en bovengrenzen in plaats van enkel met ondergrenzen.

De gëıntroduceerde ontbinding wordt toegepast op het comprimeren van
een databank van menselijke aangezichten. Het blijkt dat de niet-negatieve
matrixontbinding zonder niet-negativiteitsbeperkingen op de factoren betere
resultaten geeft dan andere matrixontbindingstechnieken.

Hoofdstuk 3: Verborgen Markov modellen - Lineair sto-
chastische modellen

In dit hoofdstuk introduceren we verborgen Markov modellen en lineair
stochastische modellen en beschouwen tevens het equivalentieprobleem voor
beide modelklassen.

Zowel verborgen Markov modellen als lineair stochastische modellen hebben
geen ingangen die door de gebruiker kunnen worden gecontroleerd. Ze hebben
enkel ruisingangen. Om het uitgangsproces elegant te modelleren maken
beide modelklassen gebruik van een onderliggend proces, het toestandsproces.
Bij verborgen Markov modellen nemen het uitgangs- en toestandsproces
waarden aan uit een eindige verzameling, terwijl beide processen voor lineair
stochastische modellen waarden aannemen met een continu bereik.

Verborgen Markov modellen

We maken een onderscheid tussen Mealy en Moore verborgen Markov modellen.
Een Mealy verborgen Markov Model is volledig beschreven door de parame-

ters (X,Y,Π, π(1)) waarbij X de toestandsverzameling is en Y de uitgangsver-
zameling. De vector π(1) bevat de kansverdeling voor de toestand op tijdstip
1

πi(1) = P (x(1) = i),

terwijl Π de kansen bevat om van de ene toestand naar de andere over te gaan
en ondertussen een zeker uitgangssymbool te genereren

Πij(y) = P (x(t+ 1) = j, y(t) = y|x(t) = i).

Bij een Moore verborgen Markov model is de overgang van de toestand op
tijdstip t naar de toestand op tijdstip t+ 1 onafhankelijk van het uitgangssym-
bool op tijdstip t. Een Moore verborgen Markov model wordt beschreven door
(X,Y,ΠX, β, π(1)) waarbij X en Y de toestands- en uitgangsverzamelingen zijn.
De matrix ΠX bevat de kansen om over te gaan van de ene toestand naar de
andere

(ΠX)ij = P (x(t + 1) = j|x(t) = i),

β bevat de kansen op het genereren van een bepaalde symbool in een bepaalde
toestand

βi(y) = P (y(t) = y|x(t) = i),
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en π(1) tenslotte is gedefinieerd op dezelfde manier dan bij Mealy verborgen
Markov modellen

πi(1) = P (x(1) = i).

De stringkansen gegenereerd door een Mealy verborgen Markov model
worden gegeven door

P(u) = π(1)Π(u)e, (0.3)

waarbij u = u1u2 . . . u|u| ∈ Y∗ en waarbij Π(u) := Π(u1)Π(u2) . . .Π(u|u|).
In het positieve realisatieprobleem voor verborgen Markov modellen zijn de

stringkansen van alle eindige uitgangsstrings gegeven en is het de bedoeling
om een verborgen Markov model te vinden dat deze string kansen genereert.
Dit probleem is erg moeilijk omwille van de niet-negativiteitsbeperkingen op
de systeemmatrices π(1) en Π(y), y ∈ Y. In dit proefschrift beschouwen
we twee afgezwakte versies van het realisatieprobleem: het benaderende
positieve realisatieprobleem (Hoofdstuk 5) en het quasi-realisatieprobleem
(Hoofdstuk 4). In het quasi-realisatieprobleem voor verborgen Markov modellen
wordt dezelfde probleemstelling beschouwd als in het realisatieprobleem, maar
zonder negativiteitsbeperkingen op de systeemmatrices. Een model waarbij de
systeemmatrices negatieve waarden kunnen aannemen wordt een quasi-HMM
genoemd. Een quasi-HMM wordt beschreven door (Q,Y, A, c, b). Op het
eerste zicht lijkt een quasi-HMM weinig nut te hebben omdat de kansen om
over te gaan van de ene toestand naar de andere en om uitgangssymbolen
te genereren negatieve waarden kunnen aannemen. We tonen echter aan dat
heel wat schattingsproblemen voor verborgen Markov modellen kunnen worden
opgelost gebruik makende van quasi-HMMs in plaats van positieve HMMs.

In de thesis beschrijven we een test om na te gaan of een quasi-Mealy
verborgen Markov model minimaal is (i.e. of er geen ander quasi-Mealy
HMM bestaat dat dezelfde stringkansen genereert, maar dat een kleiner aantal
toestanden heeft) en een procedure om een minimaal quasi-Mealy verborgen
Markov model te vinden dat equivalent is aan een gegeven niet-minimaal Mealy
HMM.

Equivalentie van verborgen Markov modellen

Voor een gegeven verborgen Markov model kan steeds een equivalent model
bekomen worden door een permutatie van de toestanden door te voeren. Typisch
zijn er echter heel wat meer equivalente modellen mogelijk. We bespreken
het equivalentieprobleem voor verborgen Markov modellen en maken daarbij
een onderscheid tussen positieve Mealy HMMs, quasi-Mealy HMMs en Moore
HMMs.

Voor een minimaal quasi-Mealy HMM (Q,Y, A, c, b), kan worden aangetoond
dat alle equivalente modellen gegeven worden door (Q,Y, TAT−1, cT−1, T b)
waarbij T een reguliere matrix is. Om na te kijken of twee minimale positieve
Mealy HMMs equivalent zijn, berekent men eerst voor elk van beide positieve
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HMMs een equivalent minimaal quasi-HMM. Indien beide quasi-HMMs nu
equivalent zijn, kan worden besloten dat de positieve HMMs equivalent zijn.

We tonen aan dat minimale Moore verborgen Markov modellen die minimaal
zijn als een quasi-Mealy HMM enkel triviale equivalenten hebben. Dit wil zeggen
dat men enkel een equivalent model kan bekomen door een permutatie van de
toestanden door te voeren. Minimale Moore modellen die niet-minimaal zijn als
een quasi-Mealy HMM, hebben wel equivalenten die niet bekomen worden door
permutatie van de toestanden.

Lineair stochastische modellen

Een Linear Stochastisch Model (LSM) (A,C, P,Q,R, S) wordt gedefinieerd door
de volgende differentievergelijkingen

x(t+ 1) = Ax(t) + w(t),

y(t) = Cx(t) + v(t),

waarbij het uitgangsproces y waarden aanneemt in de uitgangsruimte Rp en het
toestandsproces x in de toestandsruimte Rn waarbij n de orde van het model
wordt genoemd. De toevalsvariabelen w(t) en v(t) zijn witte-ruisvariabelen met
gemiddelde waarde gelijk aan 0 en met covariantiematrix

E(

[

w(p)
v(p)

]

[

w(q)⊤ v(q)⊤
]

) =

[

Q S
S⊤ R

]

δ(p, q).

Het toestandsproces wordt stationair verondersteld met als covariantie P :=
E(x(t)x(t)⊤).

De autocovariantiesequentie Λ(0),Λ(1),Λ(2), . . . gegenereerd door een lineair
stochastisch model (A,C, P,Q,R, S) worden gegeven door

Λ(0) = CPC⊤ +R,

Λ(t) = CAt−1G,

waarbij G gedefinieerd is als G := E(x(t + 1)y(t)⊤) en berekend als G =
APC⊤ + S. In het realisatieprobleem voor lineair stochastische modellen zijn
de autocovarianties gegeven en is het de bedoeling om een lineair stochastisch
model te vinden dat deze autocovarianties genereert.

Equivalentie van lineair stochastische modellen

Voor een gegeven lineair stochastisch model (A,C, P,Q,R, S) kan steeds
een equivalent model bekomen worden door een basistransformatie in de
toestandsruimte door te voeren. Het equivalente model wordt dan gegeven door
(TAT−1, CT−1, TPT⊤, TQT⊤, R, TS) waarbij T een reguliere matrix is. Deze
transformatie is het analoge van de permutatie van de toestanden die steeds
mogelijk is bij verborgen Markov modellen. Net zoals er bij verborgen Markov
modellen meer equivalenten mogelijk zijn, zo zijn er ook meer equivalenten
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mogelijk voor lineair stochastische modellen. Er werd aangetoond dat voor
gegeven A, C, G en Λ(0), iedere P = P⊤ � 0 die voldoet aan

[

P −APA⊤ G−APC⊤

G⊤ − CPA⊤ Λ(0) − CPC⊤

]

� 0,

waarbij X � 0 betekent dat X niet-negatief definiet is, aanleiding geeft tot een
equivalent model (A,C, P, P −APA⊤,Λ(0) − CPC⊤, G−APC⊤).

Voor een minimaal Moore lineair stochastisch model (i.e. een LSM waarbij
S = 0) dat minimaal is als een Mealy LSM, tonen we aan dat de enige mogelijke
equivalenten gevormd worden door een basisverandering in de toestandsruimte
door te voeren. Deze stelling is volledig analoog aan de stelling voor verborgen
Markov modellen. Indien het minimaal Moore LSM niet minimaal is als
een Mealy LSM, bestaan er equivalenten die niet bekomen worden door een
basisverandering door te voeren in de toestandsruimte.

Hoofdstuk 4: Quasi-realisatie voor verborgen Markov
modellen

In het realisatieprobleem voor verborgen Markov modellen zijn de stringkansen
van alle eindige uitgangsstrings gegeven en is het de bedoeling om een verborgen
Markov model te vinden dat deze string kansen genereert (Vergelijking (0.3)).
Dit is een erg moeilijk probleem omwille van het feit dat de systeemmatrices
π(1) en Π(y), y ∈ Y niet-negatief moeten zijn. In dit hoofdstuk beschouwen we
het quasi-realisatieprobleem, identiek hetzelfde probleem maar dan zonder de
niet-negativiteitsvereisten op de systeemmatrices.

In het exacte quasi-realisatieprobleem zijn een oneindig aantal exacte
stringkansen gegeven. In het partiële quasi-realisatieprobleem aan de andere
kant zijn slechts een eindig aantal exacte stringkansen gegeven en is het de
bedoeling een quasi-HMM te vinden dat deze stringkansen genereert. In
het benaderende quasi-realisatieprobleem zijn een eindig aantal benaderende
stringkansen gegeven en is het de bedoeling een quasi-model te vinden dat deze
stringkansen benaderend realiseert. We bespreken nu achtereenvolgens de drie
quasi-realisatieproblemen.

Exacte quasi-realisatie

Als eerste stap naar de oplossing van het exacte quasi-realisatieprobleem voor
verborgen Markov modellen wordt een dubbel oneindige matrix opgebouwd
die de gegeven stringkansen bevat. Deze matrix wordt de (veralgemeende)
Hankelmatrix genoemd en is gedefinieerd als

Hij := P(uivj).

Voor het geval waar Y = {0, 1}, ziet deze matrix eruit als
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H =





















1 P(0) P(1) P(00) P(01) P(10) P(11) . . .

P(0) P(00) P(01) P(000) P(001) P(010) P(011) . . .

P(1) P(10) P(11) P(100) P(101) P(110) P(111) . . .

P(00) P(000) P(001) P(0000) P(0001) P(0010) P(0011) . . .

P(10) P(100) P(101) P(1000) P(1001) P(1010) P(1011) . . .

P(01) P(010) P(011) P(0100) P(0101) P(0110) P(0111) . . .

P(11) P(110) P(111) P(1100) P(1101) P(1110) P(1111) . . .

...
...

...
...

...
...

...
. . .





















.

Er kan worden aangetoond dat de stringkansen representeerbaar zijn met een
quasi-HMM als en slechts als de rang van de veralgemeende Hankelmatrix eindig
is. De rang van de Hankelmatrix is gelijk aan de minimale orde van een quasi-
HMM. Aan de hand van een minimale ontbinding van de Hankelmatrix kan nu
een algoritme ontworpen worden dat een quasi-realisatie berekent horende bij
de gegeven stringkansen.

Partiële quasi-realisatie

In het partiële realisatieprobleem zijn stringkansen voor strings tot leng-
te t gegeven en is het de bedoeling een quasi-HMM te vinden dat deze
stringkansen genereert. Er kan worden aangetoond dat het partiële quasi-
realisatieprobleem steeds oplosbaar is. Indien de gegeven stringkansen aan
een bepaalde voorwaarde voldoen (de zogenaamde rangconditie), kan een
minimale partiële quasi-realisatie bekomen worden door het exacte quasi-
realisatie algoritme toe te passen. Onder diezelfde rangconditie is het zo dat
een oplossing voor het minimale partiële quasi-realisatieprobleem uniek is tot
op een equivalentietransformatie na.

Benaderende quasi-realisatie

In het benaderende quasi-realisatieprobleem zijn benaderende stringkansen
gegeven van strings tot lengte t. Indien we de stringkansen exact willen
realiseren zal typisch een model van hoge orde nodig zijn. Het is echter beter om
een goed lage orde model te maken, eerder dan de stringkansen exact proberen
te realiseren.

We stellen een eerste methode voor die een lage-rangbenadering maakt van
de blok in de Hankelmatrix die de strings van lengte t bevat. We houden
er ook rekening mee dat de benaderende stringkansen consistent en stationair
zijn. Op die manier stijgt de rang van de totale Hankelmatrix niet indien we
de blok die de strings van lengte t bevat, weer uitbreiden naar een volledige
Hankelmatrix. Voor de lage-rangbenadering maken we gebruik van de niet-
negatieve matrixontbinding zonder niet-negativiteitsbeperkingen op de factoren
(gëıntroduceerd in Hoofdstuk 2).

De tweede methode die we voorstellen berekent eerst een quasi-realisatie van
volle orde die gebalanceerd is. Doordat de quasi-realisatie gebalanceerd is kan
op een eenvoudige manier een quasi-realisatie van gereduceerde orde bekomen
worden.
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Hoofdstuk 5: Positieve realisatie voor verborgen Markov
modellen

Zoals reeds hoger vermeld is het exacte positieve realisatieprobleem voor
verborgen Markov modellen een erg moeilijk oplosbaar probleem. In Hoofdstuk
4 beschouwden we een eerste afgezwakte versie van het positieve realisatiepro-
bleem: het quasi-realisatieprobleem. Voor sommige toepassingen is het echter
noodzakelijk om toch over een positieve realisatie beschikken. Ook indien men
een fysische interpretatie wil geven aan de modelparameters is het noodzakelijk
om over een positieve realisatie te beschikken. In dit hoofdstuk wordt daarom
het benaderende partiële realisatieprobleem beschouwd.

We beschouwen eerst het speciale geval waar het de bedoeling is om een
Moore verborgen Markov model te bekomen voor gegeven stringkansen van
strings tot lengte twee. Om dit probleem op te lossen definiëren we de matrix
P als volgt

P =











P(y1y1) P(y1y2) . . . P(y1y|Y|)
P(y2y1) P(y2y2) . . . P(y2y|Y|)

...
...

. . .
...

P(y|Y|y1) P(y|Y|y2) . . . P(y|Y|y|Y|)











.

Indien de stringkansen afkomstig zijn van een Moore verborgen Markov model
(Y,X,ΠX, β, π(1)), dan geldt er dat

P = B⊤ diag(π(1))ΠXB,

waarbij B =
[

β(y1) β(y2) . . . β(y|Y|)
]

.
Het Moore realisatieprobleem voor stringkansen van strings tot lengte 2

bestaat er nu in om de gegeven matrix P te benaderen met een product van de
vormB⊤ diag(π(1))ΠXB. Dit probleem kan worden opgelost aan de hand van de
gestructureerde niet-negatieve matrixontbinding (gëıntroduceerd in Hoofdstuk
2).

Het algemene Moore realisatieprobleem of het algemene Mealy realisatie-
probleem kan worden aangepakt door de methode voor het Moore geval met
t = 2 te veralgemenen. Het is dan ook niet verwonderlijk dat de iteratieve
update formules die we afleiden om dit probleem op te lossen een veralgemening
zijn van de iteratieve formules die worden gebruikt voor het oplossen van de
gestructureerde niet-negatieve matrixontbinding.

Hoofdstuk 6: Identificatie voor verborgen Markov model-
len

Het identificatieprobleem bestaat erin een model te maken vanuit gegeven
uitgangsmetingen y1y2 . . . yT . Voor linear stochastische modellen kunnen de
identificatiemethodes in twee groepen worden opgedeeld. Enerzijds zijn er
de predictiefoutmethodes en anderzijds deelruimtemethodes. De eerste groep
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van methodes is gebaseerd op optimalisatie. De tweede groep van methodes
bepaalt, aan de hand van technieken uit de numerieke lineaire algebra, de
toestandssequentie rechtstreeks uit de uitgangsdata. Vervolgens worden de
systeemmatrices geschat vertrekkende van de uitgangssequentie en de bekomen
toestandssequentie.

Identificatie voor verborgen Markov modellen wordt tot op heden opge-
lost aan de hand van het Baum-Welch algoritme. Deze methode maakt
gebruik van optimalisatie en kan beschouwd worden als de tegenhanger van
de predictiefoutmethodes. In dit hoofdstuk beschrijven we een methode die
analoog is aan de deelruimtemethode voor lineair stochastische modellen. Deze
methode schat de toestandssequentie rechtstreeks uit de uitgangsdata en bepaalt
vervolgens de systeemmatrices uit de bekomen toestandssequentie en de gegeven
uitgangssequentie.

Om de door deelruimte gëıspireerde identificatiemethode voor verborgen
Markov modellen uit te leggen, is er eerst nood aan de definitie van twee ma-
trices: de toestandsverdelingsmatrix en de volgende-toestandsverdelingsmatrix.
De toestandsverdelingsmatrix X̃i1 ∈ [0, 1](T−i1)×|X| is gedefinieerd als

X̃i1 :=











x̃(i1 + 1)
x̃(i1 + 2)

...
x̃(T )











,

waarbij x̃i(t) := P (x(t) = i|y(t − i1, ..., t − 1) = yt−i1 ...yt−1). De volgende-
toestandsverdelingsmatrix X̃+

i1+1 ∈ [0, 1](T−i1)×|X| is gedefinieerd als

X̃+
i1+1 =











x̃+(i1 + 2)
x̃+(i1 + 3)

...
x̃+(T + 1)











,

waarbij x̃+
i (t+ 1) := P (x(t+ 1) = i|y(t− i1, ..., t− 1) = yt−i1 ...yt−1).

De toestandsverdelingsmatrix en de volgende-toestandsverdelingsmatrix voor
een gegeven uitgangssequentie y1y2 . . . yT kunnen berekend indien de matrices
H(i1+1,i2+1) en H(i1+2,i2+1) van het onderliggende HMM en een niet-negatieve
ontbinding van deze matrices in H(i1+1,i2+1) = V H en H(i1+2,i2+1) = WH
gegeven zijn. Vervolgens tonen we aan dat de matrices H(i1+1,i2+1) en
H(i1+2,i2+1) kunnen geschat worden uit de gegeven uitgangsstring en dat hun
niet-negatieve ontbinding kan benaderd worden aan de hand van de niet-
negatieve matrixontbinding (Hoofdstuk 2). Resulterend bekomen we een metho-
de om de toestandsverdelingsmatrix en de volgende-toestandsverdelingsmatrix
rechtstreeks uit de gegeven uitgangsstring te schatten.

We tonen aan dat de systeemmatrices Π(y), y ∈ Y, kunnen berekend worden
uit de toestandsverdelingsmatrix en de volgende-toestandsverdelingsmatrix door
het oplossen van een kleinste-kwadratenprobleem. De evenwichtstoestandver-
deling kan worden berekend als de linkereigenvector bij eigenwaarde 1 van de
matrix

∑

y∈Y Π(y).
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Hoofdstuk 7: Recursief schatten met quasi-HMMs

Eens een verborgen Markov model of een quasi-HMM bekomen is, kan men het
model gebruiken voor allerlei schattingsproblemen. We maken een onderscheid
tussen het toestandsschattingprobleem en het uitgangsschattingsprobleem. In
het toestandsschattingsprobleem zijn metingen van de uitgang gegeven tot op
tijdstip τ en is het de bedoeling om de toestand te schatten op tijdstip t. In
het uitgangsschattingsprobleem worden verborgen Markov modellen beschouwd
met twee uitgangsprocessen y en z. Metingen van de uitgang y zijn gegeven tot
op tijdstip τ en het is de bedoeling om de tweede uitgang te schatten op tijdstip
t. Indien t < τ spreken we van een smoothingprobleem, indien t = τ van een
filteringprobleem en indien t > τ van een predictieprobleem.

In dit hoofdstuk worden recursieve algoritmes ontwikkeld voor het oplossen
van de verschillende toestands- en uitgangsschattingsproblemen. We tonen
aan dat de formules voor het oplossen van deze problemen dezelfde blijven
indien een quasi-HMM gegeven is in plaats van een positief HMM. Deze
observatie heeft belangrijke gevolgen in praktische toepassingen. Indien men
een verborgen Markov model wil identificeren met als doel om het te gebruiken
voor schattingsproblemen, dan is het niet nodig om een positief verborgen
Markov model te bepalen, maar het volstaat om een quasi-HMM te vinden.
Dit heeft een aantal voordelen. Vooreerst is het bepalen van een quasi-HMM
een makkelijker probleem dan het bepalen van een positief verborgen Markov
model. Vervolgens is de orde van een quasi-HMM typisch kleiner dan de orde van
een equivalent positief HMM. Dit maakt dat de berekeningen voor het oplossen
van schattingsproblemen minder complex.

Een geschakeld HMM bestaat uit twee of meerdere verborgen Markov
modellen waartussen op zekere tijdstippen geschakeld wordt. Met behulp van de
schattingsmethodes uit dit hoofdstuk kan bepaald worden op welke tijdstippen
welk verborgen Markov model actief was. Deze methode kan worden toegepast
om motieven te zoeken in DNA sequenties. DNA is een nuclëınezuur dat
alle genetische instructies bevat die gebruikt worden voor het ontwikkelen en
functioneren van alle gekende levende organismen. DNA vormt een dubbele
helix van complementaire nucleotidesequenties. De nucleotidesequenties bestaan
uit een opeenvolging van 4 nucleotiden: adenine (A), cytosine (C), guanine (G)
en thymine (T). Bepaalde delen van het DNA reguleren de vorming van bepaalde
protëınes. En stap in het proces van DNA naar protëıne is de binding van een
zekere transcriptiefactor met het DNA. Er werd aangetoond dat er een zekere
complementariteit moet bestaan tussen de transcriptiefactor en een deel van
het DNA voordat de binding kan plaatsvinden. Een model voor een deel van
het DNA waar een binding met een transcriptiefactor kan plaatsvinden wordt
een motief genoemd. Indien we nu een verborgen Markov model van een motief
hebben en een verborgen Markov model van de achtergrond dan kunnen de
schattingsmethodes van dit hoofdstuk gebruikt worden voor het zoeken naar
motieven in DNA-sequenties.
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Hoofdstuk 8: Besluit

In dit proefschrift worden verborgen Markov modellen en lineair stochastische
modellen bestudeerd. Hoewel beide modelklassen erg gelijkaardig zijn, zijn er
voor verborgen Markov modellen nog een heel aantal theoretische problemen
onopgelost terwijl de overeenkomstige problemen voor lineair stochastische
modellen grotendeels opgelost zijn. De eerste grote doelstelling van dit doctoraat
is bijdragen leveren aan de open theoretische problemen over verborgen Markov
modellen. Bij het oplossen van deze problemen kan inspiratie worden gezocht
in de oplossing van de overeenkomstige problemen voor lineair stochastische
problemen. Bij het oplossen van problemen over lineair stochastische modellen
wordt gebruik gemaakt van de singuliere-waardenontbinding. Het blijkt
dat voor het oplossen van de overeenkomstige problemen over verborgen
Markov modellen nood is aan de niet-negatieve matrixontbinding en varianten
op deze ontbinding. Het ontwikkelen van varianten op de niet-negatieve
matrixontbinding vormt de tweede grote doelstelling van dit proefschrift.

In dit proefschrift wordt het gestructureerde niet-negatieve matrixfactori-
satieprobleem gëıntroduceerd en worden iteratieve formules voorgesteld om dit
probleem op te lossen. Ook wordt de niet-negatieve matrixontbinding zonder
niet-negativiteitsbeperkingen op de factoren voorgesteld en ook hier wordt een
algoritme gegeven om dit probleem op te lossen. Beide methodes werden
ontwikkeld om problemen over verborgen Markov modellen op te lossen, maar
hebben toepassingen op zichzelf, los van het onderzoek naar verborgen Markov
modellen.

Een belangrijk probleem aangaande verborgen Markov modellen is het reali-
satieprobleem: gegeven stringkansen, vind een bijhorend verborgen Markov mo-
del. Dit probleem is moeilijk oplosbaar omwille van niet-negativiteitsvereisten
op de systeemmatrices van een verborgen Markov model. In dit proef-
schrift worden twee afgezwakte versies van het realisatieprobleem besproken.
De eerste afgezwakte versie is het quasi-realisatieprobleem waar de niet-
negativiteitsbeperkingen op de systeemmatrices worden weggelaten. Het tweede
afgezwakte probleem is het benaderende positieve realisatieprobleem waar het
niet de bedoeling is om een HMM te bekomen dat de stringkansen exact
realiseert, maar waar het voldoende is dat het HMM de stringkansen benaderend
realiseert.

In het identificatieprobleem voor verborgen Markov modellen is een uit-
gangsstring gegeven en is het de bedoeling om een model van die string te
bepalen. Voor dit probleem is het Baum-Welch algoritme beschikbaar, een
identificatiemethode gebaseerd op optimalisatie. In dit proefschrift wordt
een methode voorgesteld die gëınspireerd is op deelruimte-identificatie voor
lineair stochastische modellen. In deze methode wordt de toestandssequentie
rechtstreeks uit de data geschat en vervolgens worden de systeemmatrices
bepaald uit de toestands- en uitgangssequenties.

Eens een verborgen Markov model gëıdentificeerd is, kan het gebruikt worden
voor het oplossen van schattingsproblemen. In toestandsschattingsproblemen
is de uitgang gegeven tot op een zeker tijdstip en is het de bedoeling de



xxviii Nederlandse samenvatting

toestand op een ander tijdstip te schatten. In uitgangsschattingsproblemen
beschouwt men verborgen Markov modellen met twee uitgangsprocessen. Men
veronderstelt dat de eerste uitgang gegeven is tot op een zeker tijdstip en het
is de bedoeling de tweede uitgang te schatten op een ander tijdstip. In dit
proefschrift werd aangetoond dat het voor uitgangsschattingsproblemen volstaat
om een quasi-HMM te hebben in plaats van een positief verborgen Markov
model. Deze observatie heeft een aantal voordelen: ten eerste kan een quasi-
HMM makkelijker bekomen worden uit data en ten tweede heeft een quasi-
HMM typisch een lagere orde dan een positief verborgen Markov model zodat
de schattingsberekeningen minder complex worden.



Chapter 1

Introduction

1.1 Motivation and objectives

A system is a physical, economical, biological, industrial, technical, ... phe-
nomenon that interacts with its environment. The behavior of systems is
usually analyzed on the basis of a mathematical model. A mathematical model
describes the relation between certain variables of the system as a function of
time. Typically, the variables are divided into inputs and outputs. Some of the
inputs can be controlled by the user, others not. The outputs are a consequence
of the inputs and can not be controlled directly. Figure 1.1 schematically shows
a mathematical model with control inputs u, disturbance inputs v, and outputs
y. Models are highly useful in situations where experimenting with the real
system is too expensive, too dangerous, or technically impossible.

v

u Model

y

Figure 1.1: A mathematical model with input u, disturbance input v and output
y. The user can control u, but not v.

The first main objective of this thesis is the detailed investigation of one
specific class of mathematical models: discrete time hidden Markov models.
Although hidden Markov models have been used in many applications (speech
processing [60, 86], computational biology, such as identifying the genes of an
organism from its DNA [31,68,90] and classifying proteins into a small number of
families [67]), many theoretical questions concerning the models are open until
now. Hidden Markov models are closely related to discrete time linear stochastic
models for which the theoretical research has attained a certain level of maturity.

1



2 Introduction

When solving theoretical problems concerning hidden Markov problem, we can
find inspiration in the solution of the corresponding problem for linear stochastic
systems.

The solution to most of the theoretical problems for linear stochastic
models, in one way or another, makes use of the singular value decomposition,
an important matrix factorization technique from linear algebra. To solve
the corresponding questions for hidden Markov models, it turns out that
we need another matrix factorization, the nonnegative matrix factorization.
Also modified versions of this matrix factorization technique will be needed.
Deriving modifications to the nonnegative matrix factorization forms the second
important objective of this thesis. We try to keep the modifications to the matrix
factorizations as general as possible such that they can be used on their own,
apart from the hidden Markov research.

We now describe the research objectives concerning hidden Markov models
(Section 1.1.1) and concerning matrix factorizations (Section 1.1.2) into more
detail.

1.1.1 Hidden Markov models - linear stochastic models

The first main objective of this thesis is to solve some open theoretical questions
concerning hidden Markov models. Hints for the solution can be found in the
solution of the corresponding problem for linear stochastic models. In Section
1.1.1.1, we introduce hidden Markov models and linear stochastic models.
Subsequently, in Section 1.1.1.2, Section 1.1.1.3 and Section 1.1.1.4, we describe
the different theoretical questions that will be considered.

1.1.1.1 Hidden Markov models - linear stochastic models

In this section we introduce hidden Markov models and linear stochastic
models and describe some theoretical questions for both model classes. These
theoretical questions are further explained in the next sections.

In this thesis we consider hidden Markov models and linear stochastic models
that do not have inputs that can be controlled by the user. To model the output
process effectively, both models make use of an internal process called the state
process. The state process may or may not have a clear physical meaning, but
is of conceptual relevance. The state and output processes of a hidden Markov
model take values in a finite set while the state and output process of linear
stochastic models take values with a continuous range of values.

A (positive) Hidden Markov Model1 (HMM) (X,Y,Π, π(1)) with state set
X of cardinality |X| and output set Y of cardinality |Y| is completely described
by the distribution of the initial state π(1), and Πij(y), the probability of going
from state i to state j and producing output symbol y from the output set

1When refering to a hidden Markov model, the word ”positive” may be added to make a
distinction with a ”quasi” hidden Markov model (defined further). If ”positive” or ”quasi” is
omitted, it should be clear from the context, which of both models is mentioned.
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Y. The cardinality of the state set |X| is called the order of the model. More

formally, π(1) is a vector in R
1×|X|
+ defined by

πi(1) = P (x(1) = i),

and Π is a mapping from the output space Y to matrices in R
|X|×|X|
+ defined as

Πij(y) = P (x(t+ 1) = j, y(t) = y|x(t) = i).

A graphical representation of a hidden Markov model with three states is given
in Figure 1.2.

1 2

3

Π1,1(y)

Π1,2(y)

Π1,3(y)

Figure 1.2: Graphical representation of a hidden Markov model with state set
{1, 2, 3}. The model starts in one of the three states according to the distribution
π(1), with πi(1) = P (x(1) = i). At every time instant, the model switches
between the states and produces an output symbol from the output set Y according
to Πij(y) = P (x(t+ 1) = j, y(t) = y|x(t) = i).

A Linear Stochastic Model (LSM) (A,C,Q,R, S) is defined by the following
set of difference equations

x(t+ 1) = Ax(t) + w(t),

y(t) = Cx(t) + v(t), (1.1)

where y is the output process taking values in the output space Rp and x is the
state process taking values in the state space Rn where n is called the order
of the model. The random variables w(t) and v(t) are zero mean, white vector
variables with covariance matrix

E(

[

w(p)
v(p)

]

[

w(q)⊤ v(q)⊤
]

) =

[

Q S
S⊤ R

]

δ(p, q),
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where
[

Q S
S⊤ R

]

� 0,

and δ(p, q) is the Kronecker delta. A graphical representation of the linear
stochastic model is given in Figure 1.3.

+ +

w(t)

v(t)

x(t+ 1) x(t)

∆

A

C

y(t)

Figure 1.3: Graphical representation of a linear stochastic model. The vector
signal y(t) represents the output, v(t) and w(t) are unknown disturbances. The
symbol ∆ represents a delay. Note the inherent feedback via the matrix A which
represents the dynamics.

For both hidden Markov models as well as linear stochastic models, one has
the theoretical questions below.

• Given a model, derive conditions under which a second model is equivalent
(i.e. has the same external behavior) to the given model. In addition,
describe the complete set of all equivalent models.

• Given an output sequence of the model, derive the underlying system order
and find the model parameters. This problem is called the identification
problem.

• Given an external description of the model (in terms of an autocovariance
sequence, string probabilities (see further)), find an internal description
(with states). This problem is called the realization problem2.

• Given the output sequence up to a certain time instant, predict the state
and/or output at the next time instants. Problems of this kind are called
estimation problems.

All questions above have been considered and ”solved”3 for linear stochastic
models. However for hidden Markov models, many questions remain unsolved

2In this thesis we consider the ”weak” realization problem. The weak realization problem
aims at modeling the statistics of a process (string probabilities, autocovariances). In the
remainder of the thesis, the word ”weak” is omitted when referring to the weak realization
problem.

3With ”solved” we mean that there exist algorithms to solve ”standard” versions of the
above problems. However, there exist special cases where the problems are unsolved and
where further research is needed.
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until now. This fact is amazing because of the very close relation between
hidden Markov models and linear stochastic models and because of the fact
that hidden Markov models have been used in many engineering applications.
The first important objective of this thesis is to contribute to the above questions
for hidden Markov models, starting from the knowledge of the corresponding
solution for linear stochastic models. In Section 1.1.1.2, Section 1.1.1.3 and
Section 1.1.1.4, we describe this objective into more detail.

1.1.1.2 Realization of hidden Markov models

The exact realization problem for linear stochastic models consists of finding a
state space model (Equation (1.1)) corresponding to a given autocovariance
sequence of the output process. This question consists of three different
parts. The first part is the realizability problem: under which conditions is an
autocovariance sequence representable by a finite-dimensional linear stochastic
model. The second part is the realization problem itself: given a realizable
autocovariance sequence, find a corresponding minimal state space model. The
last question is the equivalence problem: given a realizable autocovariance
sequence, derive all corresponding (minimal) state space models. These
questions have been considered in [3, 46, 51].

The exact realization problem for hidden Markov models consists of finding
a hidden Markov model (i.e. the order |X| and system matrices π(1) and Π)
corresponding to given string probabilities of all finite length output strings.
Again, the problem can be split up into three parts: the realizability problem,
the realization problem itself and the equivalence problem.

In Table 1.1, we schematically show the three steps of the realization problem
(both for linear stochastic models as well as for hidden Markov models).

The realization problem is nice from theoretical point of view. However, it
supposes an infinite amount of exact autocovariances/string probabilities to be
given. In practice however, only a finite amount of exact autocovariances/string
probabilities or a finite amount of approximate autocovariances/string probabil-
ities are given. The partial realization problem finds a model corresponding to
a finite number of external parameters and the approximate partial realization
problem to a finite number of approximate external parameters. In Table 1.2,
the difference between the exact, partial and approximate realization problem
is presented.

We now discuss the realization problem for hidden Markov models into
more detail, highlighting the open topics and indicating on which topics we
will work in this thesis. We explain the link with the realization problem for
linear stochastic models. In Table 1.3, we summarize the analogies between the
realization problem for linear stochastic models and for hidden Markov models.

The data for the exact linear stochastic realization problem are exact
autocovariances. An exact autocovariance sequence is positive real [78].
The data for the exact hidden Markov realization problem are exact string
probabilities. Exact string probabilities are positive and in addition fullfill some
consistency properties.
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Table 1.1: The realization problem (both for linear stochastic models as well
as for hidden Markov models) consists of three steps: the realizability problem,
the realization problem itself and the equivalence problem.

EXACT REALIZATION PROBLEM

Realizability problem
Given: Autocovariances/string probabilities
Find: Conditions for realizability by a LSM/HMM

Realization problem
Given: Realizable autocovariances/string probabilities
Find: LSM/HMM realizing the autocovariances/string probabilities

Equivalence problem
Given: Realizable autocovariances/string probabilities
Find: All LSM/HMM realizing the autocovariances/string probabilities

Table 1.2: Depending on whether a finite or infinite amount of exact or
approximate autocovariances/string probabilities are given, a distinction is made
between the exact realization problem, the partial realization problem and the
approximate realization problem.

EXACT, PARTIAL AND APPROXIMATE REALIZATION PROBLEMS

Exact realization problem
Given: Infinite amount of exact autocovariances/string probabilities

Partial realization problem
Given: Finite amount of exact autocovariances/string probabilities

Approximate realization problem
Given: Finite amount of approximate autocovariances/string probabilities

An important contraint in the linear stochastic realization problem is that
the covariance matrices Q and R of a model need to be positive definite. Only
linear stochastic models (A,C,Q,R, S) with Q and R positive definite have
physical relevance. For hidden Markov models on the other hand, the system
matices π(1) and Π need to be elementwise nonnegative. In the realization
problem for hidden Markov models only solutions (X,Y,Π, π(1)) with π(1) and
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Π elementwise nonnegative are allowed. It will turn out that these constraints
are very hard to work with in practice. A relaxed version of the problem,
the quasi realization problem is defined in the same way as the realization
problem but without the nonnegativity constraints on the matrices π(1) and
Π. A solution to the quasi realization problem is called a quasi hidden Markov
model. We show that in many practical applications it suffices to have a quasi
realization instead of a positive realization (see Section 1.1.1.4).

Concerning the realizability problem, it is shown that an autocovariance
sequence is realizable by a linear stochastic model if and only if a certain
doubly infinite matrix containing the autocovariances, the Hankel matrix of
autocovariances, has finite rank [3,51]. In that case it is possible to find a linear
stochastic model with Q and R positive definite. For hidden Markov models,
one also defines a doubly infinite matrix containing the string probabilities,
the Hankel matrix of string probabilities. It can be shown that the string
probabilities are representable by a hidden Markov model only if that matrix
has finite rank [20, 24, 52]. The rank condition is only a necessary condition
for the existence of a realization [39, 50]. Up to now it is an important open
problem to derive necessary and sufficient conditions for string probabilities to
be representable by a hidden Markov model. For quasi hidden Markov models,
it can be shown that the rank condition is a necessary and sufficient condition
for string probabilities to be realizable [52, 84].

The solution to the linear stochastic realization problem lies in the factor-
ization of the Hankel matrix containing the autocovariances [3, 51]. For hidden
Markov models it is an important open problem to find a hidden Markov model
corresponding to given string probabilities [4]. The quasi realization problem
for hidden Markov models on the other hand can be solved by decomposing the
Hankel matrix of the string probabilities [52, 84].

The equivalence problem for linear stochastic models has been considered
in [46]. First of all, an equivalence transformation applied on a given model
gives rise to an equivalent model. On the other hand, for a given model with a
certain state covariance there exists a convex set of state covariances that give
rise to equivalent models. For hidden Markov models, a permutation of the
states is the analogue of the equivalence transformation for linear stochastic
models. It is a research topic of this thesis to check whether there exist
more equivalents then only the ones obtained by permuting the states. For
a given quasi hidden Markov model, a permutation of the states gives rise to an
equivalent model. Moreover, it is shown in [113], that all equivalent models are
linked by a similarity transformation.

The partial realization problem for linear stochastic models has been
considered in [54, 63, 98]. The partial quasi realization problem for hidden
Markov models is a research topic of this thesis. The partial realization problem
for hidden Markov models has been considered in [114]. The approximate partial
realization problem for linear stochastic systems has been considered in [71].
The approximate partial quasi realization problem for hidden Markov models is
a research topic of this thesis. The approximate partial realization problem for
hidden Markov models has been investigated in [47] and is further investigated
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in this thesis.

Table 1.3: Analogies between the realization problem for linear stochastic
models and the realization problem for hidden Markov models.

LINEAR STOCHASTIC MODELS HIDDEN MARKOV MODELS

Autocovariance sequence String probabilities
positive real nonnegative/consistent

Linear stochastic model Hidden Markov model
Q, R, S positive definite π(1) and Π elementwise nonnegative

Quasi hidden Markov model
π(1) and Π can be negative

Realizability [3, 51] Quasi realizability [52, 84]
rank Hankel matrix <∞ rank Hankel matrix <∞

Realizability [20, 24, 39, 50, 52]
open problem

Realization [3, 51] Quasi realization [52, 84]
factorize Hankel matrix factorize Hankel matrix

Realization [4]
open problem

Equivalence problem [46] Quasi equivalence problem [113]
-equivalence transform -permutation of the states
-state covariance in convex set -equivalence transform

Equivalence problem
-permutation of states
-this thesis

Partial realization [54, 63, 98] Partial quasi realization
this thesis

Partial realization [114]

Approximate realization [71] Approximate quasi realization
this thesis

Approximate realization [47]
this thesis

We now summarize the engineering approach that we followed to tackle
the positive hidden Markov realization problem. The exact positive realization
problem for hidden Markov models is hard to solve. Therefore, we consider



1.1 Motivation and objectives 9

two relaxations of the exact positive realization problem (see Figure 1.4). The
first is the quasi realization problem where the nonnegativity constraint on the
system matrices is omitted. The second is the approximate positive realization
problem.

Exact positive
realization

this thesis

this thesis
hard to solve

Exact quasi
realization

Approximate
positive realization

Figure 1.4: We show the engineering approach that was followed to tackle the
positive realization problem. The exact positive relization problem is hard to
solve. In this thesis, we consider two relaxations of the exact positive realization
problem. The first is the quasi realization problem where the nonnegativity
constraint on the system matrices is omitted. The second is the approximate
positive realization approach.

The quasi realization procedure and the approximate positive realization
procedure are applied to the modeling of DNA sequences. Desoxyribonucleic
acid (DNA) is a nucleic acid that contains the genetic instructions used in the
development and functioning of all known living organisms. DNA forms a double
helix of two anti-parallel chains with complementary nucleotide sequences. In
Figure 4.3(a), the double DNA helix is schematically shown. The building blocks
of the nucleotide sequences are four nucleotides: adenine (A), cytosine (C),
guanine (G) and thymine (T). The human genome consists of approximately
3 billion nucleotide pairs. In Figure 4.3(b), an example of a part of a DNA
sequence is shown.

1.1.1.3 Identification of hidden Markov models

The identification problem consists of making a model starting from input
and output measurements. For linear stochastic models identification methods
can be subdivided into two classes. The first class are the prediction error
methods [75], optimization based methods that minimize the prediction error,
the difference between the observed output and the output predicted by the
identified model. The second class of methods are the subspace based methods
[78]. These methods first derive the state sequence directly from output data.
In a next step, the system matrices are estimated from the state and output
sequence by solving a least squares problem. Subspace based methods make
use of numerically stable operations from linear algebra as the singular value
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(a) (b)

Figure 1.5: Desoxyribonucleic acid (DNA) is a nucleic acid that contains
the genetic instructions used in the development and functioning of all known
living organisms. DNA forms a double helix of two anti-parallel chains with
complementary nucleotide sequences (Subfigure (a)) . The human genome
consists of approximately 3 billion nucleotide pairs. In Subfigure (b), an example
of a DNA sequence of length 384 is shown.

decomposition, oblique projections, least squares,... Subspace based methods
have the advantage over prediction error methods that they are numerically
stable and can be used for identification of MIMO (multiple input, multiple
output) models in an elegant way.

Identification for hidden Markov models is usually performed using the
Baum-Welch algorithm, an optimization based approach based on maximum
likelihood. In [10] results on consistency and asymptotic normality of the
maximum likelihood estimator are given, and the conditions for consistency
are weakened in [83]. Consistency and asymptotic normality properties of the
maximum likelihood estimator are further investigated in [18, 19]. The Baum-
Welch approach is based on optimization and we consider it therefore as the
analogue of the prediction error methods for linear stochastic systems.

In this thesis, we develop an identification method for hidden Markov models
inspired by the ideas of subspace identification. More precisely, the method first
estimates the state sequence from the given output sequence and subsequently
computes the system matrices from the given output sequence and the obtained
state sequence. In the identification method for hidden Markov models the
nonnegative matrix factorization plays the role that the SVD plays in subspace
identification. In Figure 1.6, we show the relation between the introduced
identification method and the existing methods for HMMs and LSMs. In Figure
1.7, we schematically show the difference between both identification methods
for hidden Markov models.

We use the subspace inspired identification method to model the changes
observed in the DNA of a highly mutating virus: the Human Immunodeficiency
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Figure 1.6: For linear stochastic models the system identification methods
can be subdivided into two classes. The first class contains the prediction
error methods. The second class of methods are formed by the subspace based
methods. Subspace methods have the advantage that they consist of numerically
stable operations (SVD, ...) and that they can be easily used for MIMO
identification. For hidden Markov models, up to this moment, identification is
performed using the Baum-Welch algorithm. This approach can be considered as
the analogue of the prediction error methods for linear stochastic systems. In this
thesis we propose an identification method for hidden Markov models inspired
by subspace identification of linear stochastic models. In this new identification
method, the nonnegative matrix factorization plays the role that the SVD plays
in subspace identification.

Virus (HIV). Mutations are changes to the nucleotide sequence of the genetic
material of an organism. Gene mutations take many forms and can result in the
loss of complete sections of genes, their duplications or inversions. New segments
of DNA can be integrated, or genes can be broken into parts and separated.
However, by far the most common type of mutations, called point mutations,
result from the replacement of a single nucleotides within a gene. In Figure
1.8(a) we illustrate the principle of a point mutation. Radiation, exposure to
certain chemicals, and some biological processes can induce mutations in genes.
But even in the absence of these influences the genes of all living organisms
are subject to mutations. This background mutation rate for cellular organisms
is low and consequently can only be observed in organisms that reproduce in
enormous numbers, like the HIV virus. In Figure 1.8(b) we schematically show
the HIV virus. It has been estimated that every possible single point mutation
in the HIV may occur more than 10,000 times a day in an affected person [27].
All these factors contribute to a larger number of random changes introduced
into the viral particles that eventually lead to structural modifications. It is
thus reasonable to assume that the HIV mutational processes are such that
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Figure 1.7: Identification methods aim at constructing models from output
data. The left hand side shows the classical approach: first obtain the system
matrices, then estimate the states if needed. The right hand side shows the
approach inspired by subspace identification for linear stochastic models: first the
states are estimated directly from data, then the system matrices are computed.

the sequences produced randomly traverse through the space of all possible
sequences. We use the subspace inspired identification method to obtain a
hidden Markov model of the HIV sequences. The quality of the model is assessed
on a test dataset. Finally, we explain how the model can be used to predict new
viral sequences.

1.1.1.4 Estimation techniques for hidden Markov models

Once a linear stochastic model is obtained, either by realization or by
identification, the model can be used for estimation. The most important
estimation problem is the one where an output sequence up to a certain time
instant t is given and the problem is to estimate the state and/or output at
time instant t + 1. However, many different types of estimation problems can
be defined. For linear stochastic systems, estimation problems are solved using
Kalman filtering techniques (for a review see [6]).

For hidden Markov models, some estimation techniques for positive hidden
Markov models have already been proposed in the literature. In this thesis,
it is shown that certain estimation problems can be solved using quasi hidden
Markov models instead of positive hidden Markov models. This observation is
nice for two reasons. First of all, quasi hidden Markov models are more easy
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Figure 1.8: Mutations are changes to the nucleotide sequence of the genetic
material of an organism. In Subfigure (a) we illustrate the principle of a point
mutation, where a single nucleotides within a gene is replaced (here the C-
nucleotide is replaced by the A-nucleotide). The background mutation rate for
cellular organisms is low and consequently can only be observed in organisms
that reproduce in enormous numbers, like the HIV virus. In Subfigure (b) we
schematically show the HIV virus. The core of the HIV virus is surrounded by
a matrix composed of a viral protein. This is, in turn, surrounded by the viral
envelope.

to obtain than positive hidden Markov models. In addition, the order of a
quasi hidden Markov model is typically smaller than the order of an equivalent
positive hidden Markov model.

The proposed estimation techniques for hidden Markov models are used to
detect ”important parts” in DNA sequences. Certain parts of the DNA (the
genes) regulate the formation of certain proteines. One step in the process from
DNA to proteine is the binding of a certain transcription factor with the DNA.
It has been shown [13], that there must exist a certain complementarity between
the transcription factor and a part of the DNA for a binding to take place. A
model for a part of the DNA where possibly a binding with a transcription factor
can take place is called a motif. In this thesis we use the estimation methods
for hidden Markov models to detect the positions of motifs in DNA sequences.

1.1.2 Matrix factorizations

The solutions to most of the problems (realization, identification, estimation)
concerning linear stochastic models make use of the singular value decom-
position. To solve the corresponding problems for hidden Markov models,
there is need for another matrix factorization technique, the nonnegative
matrix factorization, as well as certain modifications to this decomposition.
As explained before, the derivation of new nonnegative matrix factorization
techniques forms a second objective of this thesis. As a nice side effect, the
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matrix factorization algorithms developed in this thesis are useful on their
own, apart from the research on hidden Markov models. We introduce the
need for two modifications to the nonnegative matrix factorization in Section
1.1.2.1 and Section 1.1.2.2. We first recall the (approximate) nonnegative matrix
factorization problem, introduced by Lee and Sueng [72]:

Problem 1.1. Given M ∈ Rm1×m2
+ and given a ∈ N, minimize DKL(M ||VH)

with respect to V (of size m1 × a) and H (of size a × m2), subject to the
constraints V ≥ 0, H ≥ 0.

DKL(A||B) is the Kullback-Leibler divergence between two nonnegative
matrices and is defined as

DKL(A||B) =
∑

ij

(Aij log
Aij

Bij

−Aij +Bij).

Lee and Sueng propose iterative update formulas to solve Problem 1.1 and prove
interesting properties of the formulas.

1.1.2.1 Structured nonnegative matrix factorization with applica-
tion to object clustering

The (approximate) structured nonnegative matrix factorization problem can be
stated as

Problem 1.2. Given P ∈ R
p×p
+ and given a ∈ N, minimize DKL(P ||V AV ⊤)

with respect to V (of size p× a) and A (of size a× a), subject to the constraints
V ≥ 0, A ≥ 0.

In this thesis iterative update formulas to solve this factorization problem
will be derived.

The need for the structured nonnegative matrix factorization comes from
the theoretical research concerning hidden Markov models. However, it turns
out that the structured nonnegative matrix factorization has applications that
have nothing to do with hidden Markov models. One of these applications is
the problem of clustering data points based on their distance matrix. We start
with an intuitive motivation to the clustering problem.

In Figure 1.9, we show three types of iris flowers: the setosa type (Figure
1.9(a)), the versicolor type (Figure 1.9(b)) and the virginica type (Figure 1.9(c)).
The distinction between the different types can be made based on the size of the
sepals and the petals of the flowers (see Figure 1.9(d) for the definition of sepals
an petals). Now, suppose a set of flowers is given, as well as measurements of
the length and width of their sepals and petals (this data set is available in
the SOM-toolbox for Matlab as the file iris.mat). The objective is to divide
the set into three subsets corresponding to setosa flowers, versicolor flowers and
virginica flowers. The problem described here is a typical clustering problem.
In a clustering problem, one has a number of p objects (flowers) of which n
features (sepal length, sepal width, petal length and petal width) are given and
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Figure 1.9: We show three types of iris flowers: the setosa type (Subfigure
(a)), the versicolor type (Subfigure (b)) and the virginica type (Subfigure (c)).
The distinction between the different types can be made by based on the size of
the sepals and the petals of the flowers (Subfigure (d)). Suppose a set of flowers
is given, as well as measurements of the length and width of their sepals and
petals. The objective is to divide the set into three subsets corresponding to
setosa flowers, versicolor flowers and virginica flowers. The problem described
here is a typical clustering problem.

the objective is to find clusters of objects that have features values that are
close to each other.

Typically, the p objects with n features are represented as p points in Rn.
Now given a certain distance measure on Rn, the distance matrix P between
the p points can be calculated Pkl = D(yk, yl). Note that P is symmetric and
that the diagonal elements of P are equal to 0. In this thesis, it will be shown
that the clustering problem of p points with distance matrix P into a clusters,
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is equivalent to the following matrix factorization problem

minimize C(P, V AV ⊤)
subject to V ∈ {0, 1}p×a

V e = e,

where C(X,Y ) is a distance measure between the matrices X and Y . This
problem is hard to solve. However, the problem is close to the structured
nonnegative matrix factorization problem considered in this thesis. We show
that the structured nonnegative matrix factorization can be used for clustering
data points based on their distance matrix. In Figure 1.10, we show the results
of our clustering algorithm. Our algorithm finds three clusters of flowers of
which the features are ”close” to each other. Points that belong to cluster 1
are plotted with o, point belonging to cluster 2 are plotted with ∗, and points
belonging to cluster 3 are plotted with +. It turns out that cluster 1 corresponds
to versicolor flowers, cluster 2 to virginica flowers and cluster 3 to setosa flowers.
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Figure 1.10: Visualisation of the result of our clustering algorithm. Points that
belong to cluster 1 are plotted with o, point belonging to cluster 2 are plotted with
∗, and points belonging to cluster 3 are plotted with +. It turns out that cluster
1 corresponds to versicolor flowers, cluster 2 to virginica flowers and cluster 3
to setosa flowers.
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1.1.2.2 Nonnegative matrix factorization without nonnegativity con-
straints on the factors with application in image compression

The (approximate) nonnegative matrix factorization without nonnegativity
constraints on the factors can be stated as

Problem 1.3. Given M ∈ R
m1×m2
+ and a ∈ N, minimize DKL(M ||V H) with

respect to V (∈ Rm1×a) and H (∈ Ra×m2), subject to the constraint V H ≥ 0.

In this thesis iterative update formulas to solve this factorization problem
will be derived.

As explained before, the need for the nonnegative matrix factorization
without nonnegativity constraints on the factors comes from theoretical re-
search concerning hidden Markov models. However, the nonnegative matrix
factorization without nonnegativity constraints on the factors has applications
that have nothing to do with hidden Markov models. One of these applications
is modeling a database of similar images. We here give an introduction to this
problem.

In the original paper of Lee and Sueng [72], a database of facial images is
modeled using a nonnegative matrix factorization. Each face in the database is
represented by a nonnegative column vector, leading to a nonnegative matrix
M with the number of columns equal to the number of faces in the database.
Next, the matrix is factored as the product V H with the matrices V and H
nonnegative. The columns of V contain eigenfaces and the columns of H are
nonnegative weights that reconstruct the original faces as linear combinations
of the eigenfaces. By carrying out an approximation of M as V H with V
and H nonnegative, an efficient compression of the original database can be
obtained. A first argument for using the nonnegative matrix factorization
instead of the SVD or other matrix decompositions is that the reconstructed
images VH contain only nonnegative elements and are therefore interpretable as
facial images. A second argument is that the eigenfaces are typically sparse (i.e.
many zero elements) because of their nonnegativity, which makes that there
is a part-based interpretation of decomposition, i.e. each face is decomposed
into sum of a small number of parts (nose, eyes, ears, ...). In our opinion, the
first argument is always relevant, while the second is not important in certain
applications (for instance in the application where the decomposition is only
used for data compression). We therefore consider the decomposition of the
nonnegative matrix M into a nonnegative product V H , but where the factors
V and H themselves are allowed to contain negative values. In Figure 1.11,
we show two faces of the CBCL-database of human faces [1] as well as their
compressions using the nonnegative matrix factorization without nonnegativity
constraints on the factors (MF), the nonnegative matrix factorization (NMF)
and the singular value decomposition (SVD). All approximate factorizations
have inner dimension a = 20. It is visually clear that the nonnegative matrix
factorization without nonnegativity constraints on the factors gives the best
results. In the thesis we go into more detail.
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34

70
Original MF NMF SVD

Figure 1.11: Plot of the i-th face of the database, with i = 34, 70, and their
reconstructions using the nonnegative matrix factorization without nonnegativity
constraints on the factors (MF), the nonnegative matrix factorization (NMF)
and the singular value decomposition (SVD). All approximate factorizations
have inner dimension a = 20. Pixel values smaller than 0 are indicated with o

and pixel values higher than 1 are indicated with ×.

1.2 Chapter-by-chapter overview

Figure 1.12 shows the outline of this thesis. Chapter 3 formally introduces
hidden Markov models and linear stochastic models. In the next chapters, we
explain how to obtain a hidden Markov model from data, either by realization
(Chapter 4 and Chapter 5) of by identification (Chapter 6). Both methods make
use of matrix factorization techniques (Chapter 2). Once a model is obtained,
that model can be used for estimation problems (Chapter 7). A chapter-by-
chapter overview of this thesis is now given.

• Chapter 2 adresses matrix factorizations. We start with a review of the
singular value decomposition. We show the low rank SVD approximation
of matrices with a certain type of symmetry, has the same type of
symmetry. This property has applications in model reduction of linear
time-invariant systems. Subsequently, we review the nonnegative matrix
factorization problem and introduce two variants to this problem. The
first variant is the structured nonnegative matrix factorization problem.
We derive iterative update formulas to solve this problem and prove some
properties of the update formulas. We apply the structured nonnegative
matrix factorization to a clustering problem based on a distance matrix.
As a special case of the structured nonnegative matrix factorization, we
consider the symmetric nonnegative matrix factorization problem. The
second variant of the nonnegative matrix factorization is the nonnegative
matrix factorization without nonnegativity constraints on the factors. We
provide an algorithm to solve this problem and apply the factorization to
the modeling of a database of human faces.
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Figure 1.12: Outline of this thesis.

Publications related to this chapter: [103,104,108,109].

• Chapter 3 formally defines hidden Markov models. A distinction is
made between Mealy and Moore models and between positive and quasi
models. Next, minimality of hidden Markov models is considered and
a procedure is proposed to find a minimal quasi Mealy model that is
equivalent to a given (nonminimal) model. Subsequently, the equivalence
problem for hidden Markov models is considered. In fact, as explained
before, the equivalence problem is the third subproblem of the realization
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problem. However, it is discussed in this section apart from the realization
problem. Concerning the equivalence problem, we make a distinction
between Mealy models, quasi Mealy models and Moore models. Finally,
linear stochastic models are introduced and the equivalence problem for
linear stochastic models is reviewed. It turns out that the solution to the
equivalence problem for hidden Markov models is completely analogous to
the equivalence problem for linear stochastic models.
Publications related to this chapter: [102,107].

• Chapter 4 considers the quasi realization problem for hidden Markov
models. We review the exact quasi realization problem, where a model
has to be obtained from an infinite amount of exact string probabilities.
The partial quasi realization problem is considered, where the string
probabilities are still exact but only string probabilities of strings up to
a certain length t are given. The approximate quasi realization problem
builds a model from approximate string probabilities of strings up to a
certain length t. The approximate quasi realization problem is applied
to the problem of modeling a DNA sequence. Finally, the realization
problem for linear stochastic models is reviewed an it is shown that its
solution is analogous to the solution of the quasi realization problem for
hidden Markov models.
Publications related to this chapter: [106,110].

• Chapter 5 deals with the positive realization problem for hidden Markov
models. First, the exact positive realization problem is briefly reviewed.
Subsequently, the partial realization problem is reviewed where only
string probabilities of string up to length t are to be modeled by the
hidden Markov model. A well-known solution in terms of a t − 1-step
Markov model is discussed [114]. Next, we state the approximate partial
realization problem and derive iterative update formulas that solve the
problem approximately. We make a distinction between the Moore and
Mealy realization problem. Simulation examples show the effectiveness of
the proposed algorithms. Finally, the approximate realization procedure is
applied to the problem of modeling the output sequence of a coin flipping
experiment as well as to the problem of modeling DNA sequences.
Publications related to this chapter: [104,109].

• Chapter 6 considers the identification problem for hidden Markov
models. First the classical Baum-Welch approach is presented. This
approach uses the Expectation-Maximization algorithm to solve the
problem in Maximum-Likelihood sense. Next, a new method is proposed
based on the well-known subspace identification approach for linear
stochastic models. The methods first estimates the state sequence
from the given output sequence. Subsequently, the system matrices
are calculated from the given output sequence and the obtained state
sequence. A simulation example shows that the proposed methods works
well compared to the classical Baum-Welch approach. The subspace
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inspired identification procedure is applied to the modelling of DNA
sequences of the HIV genome.
Publications related to this chapter: [105].

• Chapter 7 deals with different estimation problems for hidden Markov
models. Both state as well as output estimation problems are considered.
The different estimation problems that are considered are filtering, esti-
mation and (fixed-point, fixed-lag and fixed-interval) smoothing problems.
We show that for the output filtering, output estimation and fixed-point
and fixed-lag output smoothing problems, it suffices to have a quasi hidden
Markov realization instead of a positive hidden Markov realization. This
observation is important for two reasons. First of all a quasi realization is
easier to obtain than a positive realization. Moreover, a quasi realization
typically has lower order than a positive realization which makes the
estimation problem less complex. Next, the Viterbi algorithm is reviewed
for the fixed interval state smoothing problem and we propose a method
for the fixed-interval smoothing problem. The methods of this section are
applied to a filtering problem related to the coin flipping experiment of
Chapter 5. Finally, a technique for determining the operation mode of a
switched hidden Markov model is proposed. This technique is applied to
the problem of finding motifs in DNA sequences.
Publications related to this chapter: [106,110].

1.3 Personal contributions

This section summarizes the personal contributions of this thesis.

1.3.1 Matrix factorizations

In this section we describe our contributions concerning matrix factorizations.

• Given a matix M that obeys M = PMQ where P and Q are unitary
matrices, we prove that the rank-k SVD truncation of the matrix M has
the same type of symmetry as M (Section 2.1.3). This theorem allows to
prove for instance that the rank-k SVD-truncation of a circulant matrix
is again circulant.
Publications related to this topic: [103].

• We introduce the structured nonnegative matrix factorization problem
(Section 2.3.1): calculate an approximation V AV ⊤ to a given matrix P
that is optimal with respect to the Kullback-Leibler divergence between
P and V AV ⊤. We first show that it holds for a stationary point of the
divergence that the element sum of P is equal to the element sum of the
approximation. We propose iterative formulas of which we prove that, if
they converge, they converge to a stationary point of the divergence. The
structured nonnegative matrix factorization problem is succesfully applied
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to the clustering of data points based on their distance matrix (Section
2.3.2). Finally, the symmetric nonnegative matrix factorization problem
is introduced and solved (Section 2.4).
Publications related to this topic: [104,109].

• We introduce the nonnegative matrix factorization problem without
nonnegativity constraints on the factors (Section 2.5). We propose
iterative formulas to solve this matrix factorization problem. Finally,
the nonnegative matrix factorization without nonnegativity constraints
is applied to the modeling of a database of facial images (Section 2.5.4).
Publications related to this topic: [108].

1.3.2 Realization of hidden Markov models

We contributed to the realization problem (both quasi and positive) and the
equivalence problem for hidden Markov models. We here present an overview.

• We develop a test for checking whether a given quasi Mealy model is
minimal and a procedure to find a minimal quasi Mealy model that is
equivalent to a given nonminimal Mealy model (Section 3.2.4). We provide
a test to check whether two positive Mealy hidden Markov models are
equivalent and give a description of the complete set of equivalent models
(Section 3.3.1.2). We prove that Moore models that are minimal as a
quasi Mealy model, under certain conditions, do not have non-trivial
equivalents. Moore models that are not minimal as a quasi model can
have equivalents. We provide a test for checking the equivalence of Moore
models and describe the complete set of equivalent models (Section 3.3.2).
Publications related to this topic: [102,107].

• We introduce the partial quasi realization problem. Given partial
string probabilities, we show that a quasi HMM that realizes these
string probabilities can always be found (Section 4.2.1). However, the
minimal partial realization problem is hard to solve. We introduce
and solve the pseudo realization problem, a relaxed version of the
partial quasi realization problem (Section 4.2.2). Next, we consider the
approximate pseudo realization problem and provide methods to solve it
(Section 4.3). The first methods make a low rank approximation of the
generalized Hankel matrix of string probabilities and subsequently apply
the realization algorithm. The last method builds a full order balanced
model and subsequently reduces this model to obtain an approximate quasi
realization. The approximate quasi realization algorithms are applied to
the problem of modeling DNA sequences (Section 4.4).
Publications related to this topic: [106,110].

• We consider the approximate partial realization problem for Moore and
for Mealy hidden Markov models where string probabilities are given for
strings up to length t. We show that the structured nonnegative matrix
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factorization (Section 5.3.1) can be used to solve the Moore realization
problem for t = 2. Further, we propose a solution to the Mealy realization
problem for string probabilities of strings up to length t (Section 5.3.2). We
perform simulation examples to show the quality of the proposed methods
(Section 5.4). The approximate realization algorithms are applied to the
problems of modeling the output sequence of a coin flipping experiment
(Section 5.5) and the problem of modeling DNA sequences (Section 5.6).
Publications related to this topic: [104,109].

1.3.3 Identification of hidden Markov models

We now describe our contributions to the identification problem for hidden
Markov models.

• We derive the Baum-Welch algorithm for Mealy hidden Markov models.
To the best of our knowledge Baum-Welch had only been considered for
Moore models.

• We propose a new method for the identification of hidden Markov models
(Section 6.3). The method first estimates string probabilities of strings up
to a certain length. These string probabilities are stacked in a matrix and
the nonnegative matrix factorization applied on this matrix yields a way
to estimate the state sequence corresponding to the given output sequence.
Next, the system matrices can be calculated from the obtained state
sequence and the given output sequence by solving a least squares problem.
In a simulation example (Section 6.4), it is shown that the proposed
method outperforms the existing Baum-Welch identification method. The
subspace inspired method is used to model DNA sequences of the HIV
genome.
Publications related to this topic: [105].

1.3.4 Estimation for hidden Markov models

Finally, we describe our contributions to the estimation problem for hidden
Markov models.

• We derive formulas for the recursive filtering, prediction and fixed-point
and fixed-lag smoothing problem (Section 7.2 and Section 7.3). We show
that for the recursive output filtering, output prediction and fixed-point
and fixed-lag output smoothing problem, it suffices to have a quasi hidden
Markov realization instead of a positive realization. We introduce and
solve the fixed-interval output smoothing problem (Section 7.4.2). We
apply the filtering techniques of this chapter to a problem concerning the
coin flipping experiment (Section 7.5). Finally, we propose a technique
for determining the operation mode of a switched HMM (Section 7.6) and
apply this technique to the problem of finding motifs in DNA sequences
(Section 7.7).
Publications related to this topic: [106,110].





Chapter 2

Matrix factorizations

Recent technological developments in sensor technology and computer hardware
have resulted in increasing quantities of data. Processing these large amounts
of data has created new concerns with respect to data representation and
dimensionality reduction. An important problem in dimensionality reduction
is the low rank matrix approximation problem.

The general low rank matrix approximation problem of an m1 × m2 real
matrix M with a product V H with inner dimension a (a < min{m1,m2})
consists of minimizing D(M,V H) over V and H , where D(X,Y ) is a distance
measure between X and Y . If there are no additional constraints on the
factors V and H , the singular value decomposition gives a decomposition that
is optimal in the Frobenius distance. For an early review in the singular value
decomposition, we refer to [95]. There exist efficient algorithms to compute the
singular value decomposition [55].

Often the data to be analyzed are nonnegative, and the low rank data are
required to be nonnegative too. Classical methods can not guarantee to maintain
the nonnegativity. Imposing a nonnegativity constraint on the factors of the
decomposition, however, makes the matrix factorization problem non convex
and difficult to solve. The exact nonnegative matrix factorization problem was
stated in [85, 100]. The minimal inner dimension of an exact decomposition is
called the positive rank. It is shown in [28] that there exists a finite algorithm
to compute the positive rank of a given matrix. However, the complexity
bounds on the number of arithmetic/boolean operations that this algorithm
requires, are non-polynomial. In [111], it is shown that the computation of the
positive rank is NP-hard. The approximate nonnegative matrix factorization
problem, where one looks for a local minimum of a particular cost function,
has been first introduced by Lee and Sueng [72]. Lee and Sueng also propose
multiplicative update formulas to solve the approximate factorization problem.
The convergence to a fixed point of the cost function is proven in [48, 73].

Since the introduction of the approximate nonnegative matrix factorization
problem, it received lots of interest, both theoretically, algorithmically as well
as in practical applications. Next to the multiplicative update algorithms, two

25
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other classes of algorithms have been considered in the literature: gradient
descent methods [92] and alternating least squares methods [79]. It has
been proven in [57] that the row and column sum of the approximation is
equal to the row and column sum of the original matrix when the Kullback-
Leibler divergence is used as cost function. In [21] weighted nonnegative
matrix factorization algorithms are presented that allow to emphasize parts
of the data matrix to be approximated better than orther parts. In [25] the
nonnegative matrix factorization for symmetric matrices has been considered.
The approximate nonnegative matrix factorization has been applied in image
compression, clustering, data analysis [16, 40, 74, 80].

Recently, extensions to the nonnegative matrix factorization problem have
been introduced. In [117] the nonnegative tensor factorization is considered and
in [41] tri-factorizations, factorizations in three factors are considered.

In this chapter we introduce two modifications to the approximate non-
negative matrix factorization. First of all, the structured nonnegative matrix
factorization is introduced. Here, a square matrix P has to be decomposed
as a product V AV ⊤ with V and A elementwise nonnegative. The second
modification is the nonnegative matrix factorization without nonnegativity
constraints on the factors. In that problem the matrix M has to be decomposed
into a product V H where V H is elementwise nonnegative, but where both V
and H are allowed to contain negative values.

List of own contributions

We here describe our contributions to matrix approximation problems.

• In Section 2.1.3 we consider matrices M that obey the symmetry:
M = PMQ where P and Q are unitary matrices. We show that the
optimal rank k approximation Mk calculated using the singular value
decomposition of this type of symmetric matrices, has the same type of
symmetry, i.e. Mk = PMkQ. We show that circulant matrices are one
example of matrices with this type of symmetry.

• In Section 2.3 we introduce the structured nonnegative matrix factoriza-
tion: approximate a square nonnegative matrix P by a product V AV ⊤

where V and A are elementwise nonnegative. We propose multiplicative
update formulas to solve this problem approximately in the Kullback-
Leibler divergence and prove that if the update formulas converge that
they converge to a fixed point of the divergence between P and its
approximation V AV ⊤. We apply the proposed technique to the problem
of clustering points based on their distance matrix.

• In Section 2.4 we introduce the symmetric nonnegative matrix factor-
ization problem: approximate a square nonnegative matrix P with a
product V V ⊤ where V is elementwise nonnegative. This problem can
be considered as a special case of the structured nonnegative matrix
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factorization problem. We again propose multiplicative update formulas
and prove their convergence.

• In Section 2.5 we introduce the nonnegative matrix factorization without
nonnegativity constraints on the factors. We explain the importance
of this problem for applications and derive update formulas to solve
the problem approximately. Subsequently, we note that it is surprising
that much attention has been paid to the nonnegativity constraint
on the elements of an approximation, which in essence is a lower
bound constraint, while in many applications upper bounds are as
important as lower bounds. The nonnegative matrix factorization without
nonnegativity constraints on the factors allows to deal with upper as well
as lower bounds on the elements of the approximation. Finally, we apply
the decomposition to the problem of compressing a database of facial
images.

Section-by-section overview

In Section 2.1 we review the singular value decomposition and in Section 2.2
we review the classical nonnegative matrix factorization problem. In Section
2.3 the structured nonnegative matrix factorization is introduced and solved
approximately. In Section 2.4 we consider the symmetric nonnegative matrix
factorization. In Section 2.5 finally, the nonnegative matrix factorization
problem without nonnegativity constraints on the factors is introduced.

2.1 Singular value decomposition

In this section we review the Singular Value Decomposition (SVD). In Section
2.1.1 we introduce the full and reduced singular value decomposition. In
Section 2.1.2 we explain how the SVD can be used for optimal low rank
matrix factorization problems. In Section 2.1.3 we show that the low rank
SVD approximation of a matrix with a certain type of symmetry, possesses the
same type of symmetry.

2.1.1 Main theorem

A square matrix P ∈ Rn×n is said to be unitary if P⊤P = I = PP⊤. Using
this definition, we are able to state the main theorem concerning the singular
value decomposition of a matrix M ∈ Rm1×m2 .

Theorem 2.1. Given a matrix M ∈ Rm1×m2 of rank r. Then there exists a
decomposition given by

M = UΣV ⊤

where U ∈ Rm1×m1 and V ∈ Rm2×m2 are unitary and

Σ =

[

Σ(1) 0
0 0

]
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with
Σ(1) := diag(σ1(M), σ2(M), . . . , σr(M)),

with
σ1(M) ≥ σ2(M) ≥ . . . ≥ σr(M) > 0.

This decomposition is called the Singular Value Decomposition (SVD) of M .

The elements σ1(M), σ2(M), . . . , σr(M) are called the singular values of M ,
the columns U:,1, U:,2, . . ., U:,m1 of U are called the left singular vectors of M
and the columns V:,1, V:,2, . . ., V:,m1 of V the right singular vectors of M .

From the SVD of M , we obtain its dyadic decomposition

M =
r
∑

i=1

σi(M)U:,iV
⊤
:,i

where U:,i and V:,i are the i-th columns of U and V respectively, which
correspond to the i-th singular value σi(M).

It is clear from Theorem 2.1 that the matrices involved in the SVD can be
reduced. The last m1 − r columns of U and the last m2 − r rows of V ⊤ are
multiplied with zeros from Σ. By leaving out these columns and rows, we obtain
the reduced SVD.

Theorem 2.2. Given a matrix M ∈ Rm1×m2 of rank r. Then it can be
decomposed as

M = U(1)Σ(1)V
⊤
(1),

where the columns of U(1) ∈ Rm1×r and V(1) ∈ Rm2×r are orthonormal,

i.e. U⊤
(1)U(1) = V ⊤

(1)V(1) = Ir and Σ(1) is defined as in Theorem 2.1. This

decomposition is called the reduced Singular Value Decomposition (reduced
SVD) of M .

2.1.2 Optimal rank k approximation

Define the rank k SVD-truncation of M with k ≤ r as

Mk := U(1)

[

Σk 0
0 0

]

V ⊤
(1)

with Σk := diag(σ1(M), σ2(M), . . . , σk(M)). It is well-known that, if the gap
condition

σk(M) > σk+1(M)

holds, then the rank k SVD-truncation of M is uniquely defined. Indeed,
while the σ(M)’s are always uniquely defined, U and V are never unique, but
nevertheless, if the gap condition holds, then the rank k SVD-truncation of M
is unique.

The norm ||·|| on Rm1×m2 is said to be unitarily invariant if (M ∈ Rm1×m2)∧
(P,Q unitary) ⇒ ||PMQ|| = ||M ||. An example of a unitarily invariant norm is
the Frobenius norm. The Frobenius norm of M = [Mij ] ∈ Rm1×m2 is defined as

||M ||F :=
√

∑m1

i=1

∑m2

j=1(Mij)2. Now, the following theorems are well-known.
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Theorem 2.3. The rank k SVD-truncation of M leads to an optimal rank k
approximation of M with respect to any unitarily invariant norm. In other
words

(|| · || unitarily invariant) ∧ (rankM ′ ≤ k) ⇒ ||M −M ′|| ≥ ||M −Mk||.

Theorem 2.4. If the gap condition σk(M) > σk+1(M) holds, then the rank k
SVD-truncation Mk is the unique matrix of rank k which approximates M
optimally in the Frobenius norm, i.e.

(

σk(M) > σk+1(M)
)

∧ (rankM ′
k ≤ k)

∧ (||M −M ′
k||F = ||M −Mk||F ) ⇒M ′

k = Mk

Proof: This theorem is well-known [44], but for the sake of completeness, we
give a proof in Appendix A.

Of course, it follows that if the gap condition σk(M) > σk+1(M) holds,
then the rank k SVD-truncation Mk is the unique matrix of rank k which
approximates M optimally, simultaneously for all unitarily invariant norms.
It is an interesting question to check for which unitarily invariant norms the
analogue of Theorem 2.4 holds.

2.1.3 Optimal rank k approximation of matrices with
symmetry

Using Theorem 2.4, we are able to prove the following theorem about the SVD
of a matrix with a certain type of symmetry.

Theorem 2.5. Assume that the matrix M ∈ Rm1×m2 has the following
symmetry

M = PMQ

with P and Q unitary matrices. Then, if σk(M) > σk+1(M), Mk, the rank k
approximation derived from truncating the SVD, has the same symmetry

Mk = PMkQ.

Proof: The Frobenius norm is unitarily invariant, so

||M −Mk||F = ||P (M −Mk)Q||F = ||M − PMkQ||F .

Hence PMkQ is an optimal rank k approximation of M with respect to the
Frobenius norm. By the uniqueness shown in Theorem 2.4, PMkQ = Mk.

We now provide some examples of matrices M ∈ Rm1×m2 for which M =
PMQ with P and Q unitary matrices.
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Matrices with equal rows/columns Let Pi,j be the m1 ×m1 permutation
matrix such that in Pi,jx the i-th and j-th elements of x are permuted. Then
in Pi,jM the i-th and j-th rows are permuted. Now M = Pi,jM means that
the i-th and the j-th rows of M are equal. Theorem 2.5 allows us to conclude
that if the gap condition holds, then Mk = Pi,jMk, i.e. the i-th and j-th rows
of Mk are also equal. A matrix M for which the symmetry M = Pi,jM holds
for many pairs of (i, j), corresponds to either a matrix with more than two
equal rows or a matrix with more than one group of rows which are identical.
If the gap condition holds, all these symmetries separately are retained after
SVD-truncation. Analogous results can be obtained for the columns of M .

Matrices with zero-rows/-columns To express that the i-th row of M is
zero, consider the matrix Pi = diag(1, . . . , 1,−1, 1, . . . , 1), with the −1 on the i-
th position, and express that M = PiM . If the gap condition holds, then for the
optimal rank k approximation of M holds that Mk = PiMk, i.e. the i-th row of
Mk is also equal to zero. If the symmetry M = PiM holds for different values of
i, then more than one row of M is equal to zero. All the symmetries separately
are retained after SVD-truncation if the gap condition holds. Analogous results
can be obtained for the columns of M .

Example 2.1. In this example we consider a matrix M with three differents
symmetries of the form M = PMQ where P and Q are unitary matrices. Using
Theorem 2.5, we show that the SVD-truncations of M have the same type of
symmetries.

The matrix M is given by

M =













4 2 5 9 2
1 2 3 5 2
4 2 5 9 2
2 6 4 7 6
0 0 0 0 0













.

The three symmetries are the following. First of all, the first and the third row
of M are equal to each other. Second, the fifth row of M is a zero-row. Finally,
the second and the fifth column of M are equal. The reduced SVD of M is given
by

M =

2

6

6

6

6

4

0.55 −0.42 0.16
0.32 0.05 −0.95
0.55 −0.42 0.16
0.54 0.80 0.23
0.00 0.00 0.00

3

7

7

7

7

5

2

4

20.39
5.23

0.91

3

5

2

4

0.28 0.30 0.42 0.75 0.30
−0.32 0.63 −0.15 −0.30 0.63

0.89 0.13 −0.34 −0.25 0.13

3

5 .

From σ1(M) > σ2(M)) > σ3(M) and Theorem 2.5, it follows that the low
rank SVD-truncations of M have the same three symmetries. Indeed, the rank
2 and the rank 1 SVD-truncations of M are given by
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M2 =













3.87 1.98 5.05 9.04 1.98
1.76 2.11 2.71 4.79 2.11
3.87 1.98 5.05 9.04 1.98
1.82 5.97 4.07 7.05 5.97
0.00 0.00 0.00 0.00 0.00













,

and

M1 =













3.18 3.35 4.73 8.39 3.35
1.85 1.94 2.75 4.87 1.94
3.18 3.35 4.73 8.39 3.35
3.15 3.32 4.69 8.31 3.32
0.00 0.00 0.00 0.00 0.00













.

Circulant matrices In this section we consider block matrices with n × n
blocks of size p×m. Define the special permutation matrix Π ∈ Rn×n

Π =

[

0 In−1

1 0

]

.

Let F = [ F⊤
1 . . . F⊤

n ]⊤ with Fi ∈ Rp×m, i = 1, . . . , n, then the block
matrix CF with n× n blocks of size p×m

CF :=
[

F (Π ⊗ Ip)F (Π ⊗ Ip)
2F · · · (Π ⊗ Ip)

n−1F
]

, (2.1)

is called the block circulant matrix generated by F [30]. Such a matrix looks like

CF =















F1 F2 . . . Fn−1 Fn

F2 F3 . . . Fn F1

...
...

...
...

Fn−1 Fn . . . Fn−3 Fn−2

Fn F1 . . . Fn−2 Fn−1















.

Observe the block Hankel structure of block circulant matrices. An equivalent
way of defining block circulant matrices is:

[M ∈ Rmp×mm is block circulant] ⇐⇒ [M = (Π ⊗ Ip)M(Π ⊗ Im)].

It follows from Theorem 2.5 that if M is block circulant and if the gap
condition holds, then the truncated SVD Mk is also block circulant. This
observation has applications in the domain of model reduction of linear time-
invariant systems with symmetries. It allows to prove that the finite-time
balanced reduced model of a given periodic system is periodic with the same
period as the full-order system [96,103]. It also allows to prove that the balanced
reduced model of a system with pointwise symmetries in the impulse response
has the same symmetries in its impulse response. In [103] we prove this Theorem
and provide an example of a system with pointwise symmetric impulse response,
inspired by the work of [101].
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Example 2.2. In this example we calculate the low rank SVD-truncation of
a circulant matrix M . We show that, if the gap condition holds, the low rank
SVD-truncation of M is again circulant (using Theorem 2.5).

The matrix M is given by

M =













1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4













.

Note that the blocksize of M is 1 × 1. The singular values of M are 15, 4.25,
4.25, 2.63 and 2.63. It follows from Theorem 2.5 that the rank 3 and rank 1
approximations of M are circulant. Indeed, M3 and M1 are given by

M3 =













2.00 1.38 3.00 4.62 4.00
1.38 3.00 4.62 4.00 2.00
3.00 4.62 4.00 2.00 1.38
4.62 4.00 2.00 1.38 3.00
4.00 2.00 1.38 3.00 4.62













(2.2)

and

M1 =













3 3 3 3 3
3 3 3 3 3
3 3 3 3 3
3 3 3 3 3
3 3 3 3 3













.

We know from Theorem 2.4 that if the gap condition holds, the rank k SVD-
truncation Mk is the unique matrix of rank k which approximates M optimally
in the Frobenius norm. As a consequence of this, the SVD-truncation Mk of a
block circulant matrix can very nicely be computed using the Discrete Fourier
Transform (DFT). We explain this only for the vector case. Consider

M =















m1 m2 . . . mn−1 mn

m2 m3 . . . mn m1

...
...

...
...

mn−1 mn . . . mn−3 mn−2

mn m1 . . . mn−2 mn−1















,

with mt ∈ Rp for t = 1, 2, . . . n. Let

m̃f :=

n
∑

t=1

mte
−if 2π

n
t, f = 0, 1, . . . , n− 1

be the DFT of the first block row of M : m1,m2, . . . ,mn, such that

mt =
1

n

n−1
∑

f=0

m̃fe
if 2π

n
t, t = 1, 2, . . . , n.
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It follows that the rank of M equals the cardinality of the set

{f ∈ {0, 1, · · · ,m− 1} | ||m̃f || 6= 0}.

It is also known that

1

n
||M ||2F =

n
∑

t=1

||mt||2 =
1

n

n−1
∑

f=0

||m̃f ||2.

Therefore, in order to obtain Mk, an optimal rank k approximation of M in the
Frobenius norm, we can proceed as follows. First calculate

m̂t =
1

n

∑

f∈Fk

m̃fe
if 2π

n
t, t = 1, 2, . . . , n,

with Fk the subset of {0, 1, . . . , n− 1} of cardinality k with the property

[(f ∈ Fk) ∧ (f ′ /∈ Fk)] ⇒ [||m̃f || ≥ || m̃f ′ ||].

Now, it is easy to see that Mk is equal to the block circulant matrix induced by

the vector
[

m̂⊤
1 m̂⊤

2 . . . m̂⊤
n

]⊤
(see Equation (2.1)). If for each f ∈ Fk

there exists a f ′ ∈ Fk such that m̃f ′ is the complex conjugate of m̃f , then Mk

is real. Note also that Mk is the unique optimal rank k approximation of M in
the Frobenius norm if

[(f ∈ Fk) ∧ (f ′ /∈ Fk)] ⇒ [||m̃f || > ||m̃f ′ ||].

Assume that both these conditions are satisfied. Then Mk approximates M
optimally in the Frobenius norm with a block circulant matrix of rank k and it is
the unique block circulant matrix that does so. Hence we derived an alternative
way to calculate the SVD-truncation Mk by making use of the DFT. Moreover,
since m̂t, t = 1, 2, . . . n− 1 may be computed using the Fast Fourier Transform
(FFT), it is numerically much more efficient to compute Mk by first computing
m̂t, t = 1, 2, . . . n−1 and then forming Mk, than it is to compute the SVD. This
observation is valid also when we look for an optimal rank k approximation of
M in another unitarily invariant norm than the Frobenius norm.

Example 2.3. We continue with the matrix M of Example 2.2 and show that
the low rank SVD-truncation of a circulant matrix can be obtained using the
DFT. We here consider the rank 3 case. Calculating the DFT of the first row of
M , truncating the smallest DFT values and subsequently calculating the inverse
discrete Fourier transform yields

[1, 2, 3, 4, 5]

↓ DFT

[15, −2.50 + 3.44i, −2.50 + 0.81i, −2.50 − 0.81i, −2.50− 3.44i]



34 Matrix factorizations

↓ truncating

[15, −2.50 + 3.44i, 0, 0, −2.50− 3.44i]

↓ inverse DFT

[2, 1.38, 3, 4.61, 4].

So, using the discrete Fourier transform, we find back the same rank 3
approximation of M as was obtained by truncating the SVD (Equation (2.2)).

2.2 Nonnegative matrix factorization

In this section we briefly review the classical nonnegative matrix factorization
problem as it forms the basis of several new nonnegative matrix factorizations
algorithms.

The exact nonnegative matrix factorization problem can be stated as follows:
given a matrix M ∈ R

m1×m2
+ , find a decomposition M = V H with V ∈ R

m1×a
+

and H ∈ Ra×m2
+ , and with a as small as possible. The minimal inner dimension

a for which a decomposition exists is called the positive rank (p−rank) of M .
There exist matrices with only trivial minimal decompositions M = DH and
M = VD, where D is a nonnegative diagonal matrix. In [33] these matrices
are called prime. From the definitions of the rank and the positive rank of a
matrix, it follows that 0 ≤ rankM ≤ p−rankM ≤ min{m1,m2}. It is shown
in [28] that there exists a finite algorithm to compute the positive rank of a given
matrix. However, the complexity bounds on the number of arithmetic/boolean
operations that this algorithm requires, are non-polynomial. Moreover, in [111],
it is shown that the computation of the positive rank is NP-hard. Recently, the
(approximate) nonnegative matrix factorization problem was introduced in [72].
The idea is that one chooses the inner dimension a and looks for nonnegative
matrices V andH such that V H approximatesM optimally in a certain distance
measure. The Kullback-Leibler divergence is a popular distance measure. The
Kullback-Leibler divergence between two nonnegative matrices of the same size
is defined as

DKL(A||B) :=
∑

ij

(Aij log
Aij

Bij

−Aij +Bij).

The (approximate) Nonnegative Matrix Factorization (NMF) problem can now
be stated as

Problem 2.1. Given M ∈ R
m1×m2
+ and given a, minimize DKL(M ||V H) with

respect to V (of size m1 × a) and H (of size a×m2), subject to the constraints
V ≥ 0, H ≥ 0.

In [72,73], Lee and Sueng propose iterative update formulas to solve Problem
2.1 and prove interesting properties of the formulas.
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Theorem 2.6. [72,73] Given random starting values V (0) ∈ R
m1×a
+ and H(0) ∈

R
a×m2
+ , then the divergence DKL(M ||V H) is nonincreasing under the update

rules

H
(t+1)
il = H

(t)
il

P

µ V
(t)

µi

Mµl

(V (t)H(t))µl
P

µ V
(t)

µi

, V
(t+1)
ki = V

(t)
ki

P

ν H
(t)
iν

Mkν

(V (t)H(t))kν
P

ν H
(t)
iν

The divergence is invariant under these updates if and only if V and H are
in a stationary point of the divergence.

The theorem states that fixed points of the update formulas are stationary
points of the cost function DKL(M ||V H). However, the theorem does not imply
convergence of the update formulas. By chosing nonnegative starting values for
V and H , it is garantueed that the obtained matrices V and H are nonnegative.

2.3 Structured nonnegative matrix factorization

In this section we introduce the structured nonnegative matrix factorization
problem. This matrix factorization is important as such, but is especially of
use to solve the approximate positive realization problem for hidden Markov
models (Section 5.3.1). In Section 2.3.1 we describe a solution to the structured
nonnegative matrix factorization problem and in Section 2.3.2 we apply the
decomposition to the clustering of data points based on their distance matrix.

2.3.1 Structured nonnegative matrix factorization

The exact structured nonnegative matrix factorization problem may be stated as
follows: given a square matrix P ∈ R

p×p
+ , find a decomposition P = V AV ⊤ with

V ∈ R
p×a
+ , A ∈ Ra×a

+ , and with a as small as possible. We define the structured
positive rank (sp−rank) of a square matrix P as the minimal dimension a for
which a decomposition P = V AV ⊤ exists. From the definition of the different
ranks, it is clear that 0 ≤ rankP ≤ p−rankP ≤ sp−rankP ≤ p. In a similar
way as in [28], it can be shown that there exists a finite algorithm to compute the
structured positive rank of a given matrix. However, the complexity bounds on
the number of arithmetic/boolean operations that this algorithm requires, are
non-polynomial. The (approximate) structured nonnegative matrix factorization
problem is now stated as follows.

Problem 2.2. Given P ∈ R
p×p
+ and given a, minimize DKL(P ||V AV ⊤) with

respect to V (of size p × a) and A (of size a × a), subject to the constraints
V ≥ 0, H ≥ 0.

The partial derivatives of F (A, V ) = DKL(P ||V AV ⊤) with respect to the
elements Aij and Vki of the matrices A and V can be calculated as

∂F

∂Aij

(A, V ) = −
∑

µν

VµiVνj

Pµν

(V AV ⊤)µν

+
∑

µν

VµiVνj , (2.3)
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∂F

∂Vki

(A, V ) = −
∑

λν

VνλAiλ

Pkν

(V AV ⊤)kν

−
∑

λν

VνλAλi

Pνk

(V AV ⊤)νk

+
∑

λν

VνλAiλ +
∑

λν

VνλAλi. (2.4)

The Karush-Kuhn-Tucker optimality conditions [65, 69] are

Vki ≥ 0, Aij ≥ 0, (2.5)

∂F

∂Aij

(A, V ) ≥ 0,
∂F

∂Vki

(A, V ) ≥ 0, (2.6)

Aij

∂F

∂Aij

(A, V ) = 0, Vki

∂F

∂Vki

(A, V ) = 0, (2.7)

for i = 1, 2, . . . , a, j = 1, 2, . . . , a, and k = 1, 2, . . . , p.
Now we prove the following theorem.

Theorem 2.7. Let P ∈ Rp×p. Every stationary point (A, V ) of the cost
function DKL(P ||V AV ⊤) preserves the mean of the row and column sum of
P , i.e.

∑

l Pkl + Plk

2
=

∑

l(V AV
⊤)kl + (V AV ⊤)lk

2
, k = 1, 2, . . . p. (2.8)

As a consequence the element sum of P is preserved, i.e.

∑

kl

Pkl =
∑

kl

(V AV ⊤)kl. (2.9)

Proof: Equation (2.7) gives, for k = 1, 2, . . . , p and i = 1, 2, . . . , a,

Vki

∂F

∂Vki

(A, V ) = 0.

From Equation (2.4), we obtain

Vki(
∑

λν

VνλAiλ

Pkν

(V AV ⊤)kν

+ VνλAλi

Pνk

(V AV ⊤)νk

) = Vki(
∑

λν

VνλAiλ + VνλAλi).

(2.10)
The sum over i of the left hand side of Equation (2.10) gives

∑

i

Vki(
∑

λν

VνλAiλ

Pkν

(V AV ⊤)kν

+ VνλAλi

Pνk

(V AV ⊤)νk

) =

∑

ν

(V AV ⊤)kν

Pkν

(V AV ⊤)kν

+ (V AV ⊤)νk

Pνk

(V AV ⊤)νk

=

∑

ν

Pkν + Pνk.
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On the other hand the sum over i of the right hand side of Equation (2.10) gives

∑

i

Vki(
∑

λν

VνλAiλ + VνλAλi) =

∑

ν

(V AV ⊤)kν + (V AV ⊤)νk.

This proves the first part of the theorem. The second part of the theorem follows
by summing the left and right hand side of (2.8) over k.

A point (Ã, Ṽ ) is called normalized if the matrix Ṽ is column stochastic,
i.e.

∑

k Ṽki = 1, i = 1, 2, . . . , a and Ã has the same element sum as P , i.e.
∑

ij Ãij =
∑

kl Pkl. As a consequence of Theorem 2.7, every stationary point

(A, V ) of the divergence can be written in an equivalent normalized form (Ã, Ṽ ),
such that V AV ⊤ = Ṽ ÃṼ ⊤. The matrices Ã and Ṽ are given as function of A
and V by

Ṽ = V (diag(e⊤V ))−1,

Ã = (diag(e⊤V )) A (diag(e⊤V )).

The fact that the matrices P and Ã have the same element sum follows from
e⊤Pe = e⊤Ṽ ÃṼ ⊤e = e⊤Ãe.

So, for a stationary point (A, V ) of the cost function DKL(P ||V AV ⊤),
there exists a normalized version (Ã, Ṽ ) which gives the same approximation
(and hence the same cost function value). Therefore, when minimizing
DKL(P ||V AV ⊤) over nonnegative V and A, it suffices to minimize over
nonnegative matrices A and V that are normalized. Minimizing over normalized
matrices can be done by choosing normalized initial values and by making sure
that the update formulas retain the normalization. Choosing normalized initial
values is no problem, and the fact that the proposed update formulas retain the
normalization is shown in the proof of Theorem 2.8. From now on, we assume
that V or A are normalized, without explicitly indicating it with a tilde.

Theorem 2.8. Assume that the starting values V (0) ∈ R
p×a
+ and A(0) ∈ Ra×a

+

are normalized, i.e.
∑

ij A
(0)
ij =

∑

kl Pkl and
∑

k V
(0)
ki = 1, i = 1, 2, . . . a. Then

the divergence DKL(P ||V AV ⊤) is nonincreasing under the update rules

A
(t+1)
ij = A

(t)
ij

X

µν

VµiVνj
Pµν

(V A(t)V ⊤)µν

, (2.11)

V
(t+1)
ki

= V
(t)
ki

P

λν
Pkν

(V (t)A(V (t))⊤)kν
AiλV

(t)
νλ + Pνk

(V (t)A(V (t))⊤)νk
AλiV

(t)
νλ

P

λµν

Pµν

(V (t)A(V (t))⊤)µν
AiλV

(t)
νλ

V
(t)
µi +

Pνµ

(V (t)A(V (t))⊤)νµ
AλiV

(t)
νλ

V
(t)
µi

. (2.12)

In addition, the updated values of A and V are also normalized.

Proof: First note that the update rule for A retains the normalization, since

∑

ij

A
(t)
ij

∑

µν

VµiVνj

Pµν

(V A(t)V ⊤)µν

=
∑

µν

(V A(t)V ⊤)µν

Pµν

(V A(t)V ⊤)µν

=
∑

µν

Pµν .
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Also the update rule for V retains the normalization, since for i = 1, 2, . . . a, it
holds that

∑

k

V
(t)
ki

∑

λν
Pkν

(V (t)A(V (t))⊤)kν
AiλV

(t)
νλ + Pνk

(V (t)A(V (t))⊤)νk
AλiV

(t)
νλ

∑

λµν
Pµν

(V (t)A(V (t))⊤)µν
AiλV

(t)
νλ V

(t)
µi +

Pνµ

(V (t)A(V (t))⊤)νµ
AλiV

(t)
νλ V

(t)
µi

= 1.

Next, we prove that the divergence DKL(P ||V AV ⊤) is nonincreasing under an
update for A. Note therefore that the cost function FA(A)

FA(A) = DKL(P ||V AV ⊤)

=
∑

µν

Pµν logPµν − Pµν + (V AV ⊤)µν − Pµν log(V AV ⊤)µν ,

can be approximated by the auxiliary function GA(A,A(t)) given by

GA(A,A(t)) =
∑

µν

Pµν logPµν − Pµν + (V AV ⊤)µν

−
∑

κλ

Pµν

VµκA
(t)
κλVνλ

(V A(t)V ⊤)µν

(

logVµκAκλVνλ − log
VµκA

(t)
κλVνλ

(V A(t)V ⊤)µν

)

.

Convexity of the − log function and Jensen’s inequality with
∑

κλ

VµκA
(t)
κλ

Vνλ

(V A(t)V ⊤)µν
=

1 gives GA(A,A(t)) ≥ FA(A). In addition GA(A(t), A(t)) = FA(A(t)). To obtain
an update formula, we put A(t+1) equal to the minimizer of GA(A,A(t)). From

∂GA

∂Aij

(A,A(t)) =
∑

µν

VµiVνk −
∑

µν

Pµν

VµiA
(t)
ij Vνj

(V A(t)V ⊤)µν

1

Aij

= 0,

we obtain

A
(t+1)
ij = A

(t)
ij

∑

µν VµiVνj
Pµν

(V A(t)V ⊤)µν
∑

µν VµiVνk

. (2.13)

The denominator is equal to (
∑

µ Vµi)(
∑

ν Vνk) = 1, and hence we obtain the
proposed update formula (2.11). From

FA(A(t+1)) ≤ GA(A(t+1), A(t)) = min
A
GA(A,A(t))

≤ GA(A(t), A(t)) = FA(A(t)),

it follows that the divergenceDKL(P ||V AV ⊤) is nonincreasing under an update
of A.

We now prove that the divergence DKL(P ||V AV ⊤) is also nonincreasing
under an update for V . In order to see this, note that the cost function FV (V )

FV (V ) = DKL(P ||V AV ⊤)
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=
∑

µν

Pµν logPµν − Pµν + (V AV ⊤)µν − Pµν log(V AV ⊤)µν ,

can be approximated by the auxiliary function GV (V, V (t))

GV (V, V (t)) =
X

µν

Pµν log Pµν − Pµν + (V Ā(V (t))⊤)µν + (V (t)ĀV ⊤)µν − (V (t)Ā(V (t))⊤)µν

−
X

κλ

Pµν

V
(t)
µκ AκλV

(t)
νλ

(V (t)A(V (t))⊤)µν

 

log VµκAκλVνλ − log
V

(t)
µκ AκλV

(t)
νλ

(V (t)A(V (t))⊤)µν

!

,

where Ā is chosen later on. At this moment it suffices to require that
∑

ij Āij =
∑

kl Pkl. From the fact that
∑

k Vki =
∑

k V
(t)
ki = 1 and

∑

ij Aij =
∑

ij Āij =
∑

kl Pkl, we have that

∑

µν

(V AV ⊤)µν =
∑

µν

(V Ā(V (t))⊤)µν + (V (t)ĀV ⊤)µν − (V (t)Ā(V (t))⊤)µν .

From this, the convexity of the − log function and Jensen’s inequality with
∑

κλ

V (t)
µκ AκλV

(t)
νλ

(V (t)A(V (t))⊤)µν
= 1, we obtain that GV (V, V (t)) ≥ FV (V ). In addition,

it holds that GV (V (t), V (t)) = FV (V (t)). To obtain an update formula, we put
V (t+1) equal to the minimizer of GV (V, V (t)). From

∂GV

∂Vki

(V, V (t)) =
∑

λν

ĀiλV
(t)
νλ + ĀλiV

(t)
νλ − Pkν

V
(t)
ki AiλV

(t)
νλ

(V (t)A(V (t))⊤)kν

1

Vki

−Pνk

V
(t)
νλ AλiV

(t)
ki

(V (t)A(V (t))⊤)νk

1

Vki

= 0,

we find that

V
(t+1)
ki =V

(t)
ki

∑

νλAiλV
(t)
νλ

Pkν

(V (t)A(V (t))⊤)kν
+AλiV

(t)
νλ

Pνk

(V (t)A(V (t))⊤)νk

∑

λν ĀiλV
(t)
νλ + ĀλiV

(t)
νλ

.(2.14)

One can easily see that the denominator is equal to
∑

λ Āiλ + Āλi. By taking

Āij = Aij

∑

µν

V
(t)
µi V

(t)
νj

Pµν

(V (t)A(V (t))⊤)µν

, (2.15)

we obtain the proposed update formula for V . From

FV (V (t+1)) ≤ GV (V (t+1), V (t)) = min
V

GV (V, V (t))

≤ GV (V (t), V (t)) = FV (V (t)).

it follows that the divergenceDKL(P ||V AV ⊤) is nonincreasing under an update
of V .
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We have proven that the divergence DKL(P ||V AV ⊤) is nonincreasing under
the update rules (2.11) and (2.12). We now consider the invariant points of the
update formulas and investigate their relation with the stationary points of the
divergence DKL(P ||V AV ⊤).

For fixed V (t) = V (0), the divergence F (A, V ) = DKL(P ||V AV ⊤) is
invariant under an update of A, i.e. A(t+1) = A(t), if and only if A(t) is a

stationary point of the divergence with fixed V (0), i.e. A
(t)
ij

∂F
∂Aij

(A(t), V (0)) = 0.

For fixed A(t) = A(0) on the other hand, the divergence is invariant under an
update for V , i.e. V (t+1) = V (t), if and only if

V
(t)
ki

(

∑

νλ

Ā
(0)
iλ + Ā

(0)
λi −A

(0)
iλ V

(t)
νλ

Pkν

(V (t)A(0)(V (t))⊤)kν

−A(0)
λi V

(t)
νλ

Pνk

(V (t)A(0)(V (t))⊤)νk

)

= 0.

Notice that this last condition is in general not equivalent to the condition
that V (t) is a stationary point of the divergence with fixed A(0). So for the case
where we take A fixed and update only V , it is possible that the formulas, if they
converge, converge to a point that is not a stationary point of the divergence
with fixed A(0).

However, if we use the update formulas for A and V alternatingly, i.e.

(A(0), V (0)) 7→ (A(1), V (0)) 7→ (A(1), V (1)) 7→ (A(2), V (1)) 7→ (A(2), V (2)) 7→ . . . ,

we have the following result.

Theorem 2.9. The divergence is invariant under updates (2.11) and (2.12) if
and only if (A, V ) is a stationary point of the divergence, i.e.

{

A(t+1) = A(t),

V (t+1) = V (t),
⇔
{

A
(t)
ij

∂F
∂Aij

(A(t), V (t)) = 0, i = 1, 2, . . . a; j = 1, 2, . . . a,

V
(t)
ki

∂F
∂Vki

(A(t), V (t)) = 0, k = 1, 2, . . . p; i = 1, 2, . . . a.

Proof: We first prove the ⇐ part. From the fact that A
(t)
ij

∂F
∂Aij

(A(t), V (t)) = 0

for i = 1, 2, . . . a; j = 1, 2, . . . a, it follows that for a certain i, j either A
(t)
ij = 0 or

∂F
∂Aij

(A(t), V (t)) = 0. In the first case, the updated value A
(t+1)
ij is also equal to

0 because the update is multiplicative. In the second case, the update factor for

Aij is equal to 1. So, in both cases, we have A
(t+1)
ij = A

(t)
ij . It also follows that

A
(t+1)
ij

∂F
∂Aij

(A(t+1), V (t)) = 0, from which we conclude that Ā
(t+1)
ij = A

(t+1)
ij .

Since V
(t)
ki

∂F
∂Vki

(A(t), V (t)) = 0 for i = 1, 2, . . . a; j = 1, 2, . . . a, we either have

V
(t)
ki = 0, or ∂F

∂Vki
(A(t+1), V (t)) = 0. In the first case the updated value V

(t+1)
ki

is also equal to 0. In the second case, one can see from Ā
(t+1)
ij = A

(t+1)
ij and

∂F
∂Vki

(A(t+1), V (t)) = 0, that the update factor for Vki is equal to 1. So in both

cases we have that V
(t+1)
ki = V

(t)
ki . This proves the first part of the theorem.
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Next, we prove the ⇒ part. From the fact that A(t+1) = A(t), we conclude

that either A
(t)
ij = 0 or the update factor for Aij is equal to 1. This implies that

A
(t)
ij

∂F
∂Aij

(A(t), V (t)) = 0. From A
(t+1)
ij

∂F
∂Aij

(A(t+1), V (t)) = 0, we obtain Ā
(t+1)
ij =

A
(t+1)
ij . From this and V (t+1) = V (t), we conclude that V

(t)
ki

∂F
∂Vki

(A(t+1), V (t)) =
0. This proves the second part of the theorem.

It follows that if the iterates converge, they converge to a stationary point
of the cost function in case A and V are updated alternatingly or in case V is
fixed and A is updated. However, when A is fixed and only V is updated, it is
only guarantueed that the divergence is nonincreasing. It is possible that the
formulas converge to a point that is not a stationary point of the divergence
with fixed A.

The algorithm below implements the same update formulas as in Theorem
2.8, but is better from computational point of view as the denominator of
Equation (2.12) does not have to be computed.

Algorithm 2.1. Choose arbitrary matrices A(0) ∈ Ra×a
+ and V (0) ∈ R

p×a
+ with

∑

ij A
(0)
ij =

∑

kl Pkl and
∑

k V
(0)
ki = 1, i = 1, 2, . . . a. Now, iterate the following

steps for t = 0, 1, ... until convergence:

1. A
(t+1)
ij = A

(t)
ij

∑

µν V
(t)
µi V

(t)
νj

Pµν

(V (t)A(t)(V (t))⊤)µν
,

2. V
(t+1)
ki = V

(t)
ki

∑

λν
Pkν

(V (t)A(t+1)(V (t))⊤)kν
A

(t+1)
iλ V

(t)
νλ

+ Pνk

(V (t)A(t+1)(V (t))⊤)νk
A

(t+1)
λi V

(t)
νλ ,

3. Normalize V (t+1) such that e⊤V (t+1) = e⊤.

In case P is symmetric, i.e. P = P⊤ and V AV ⊤ is an approximation of

P then one can easily see that V AV ⊤+(V AV ⊤)⊤

2 is a better (or equally good)
approximation of P . So if the matrix P is symmetric, we can restrict our
search to symmetric approximations. On the other hand, every symmetric
approximation V AV ⊤ can be transformed to a form where A is symmetric

by taking V (A+A⊤

2 )V ⊤. So in case P is symmetric, we can restrict our search
to approximations with A = A⊤. This restriction is easy to fulfill in practice
since the update formula for A (formula (2.11)) retains the symmetry. So by
starting with a symmetric A(0) = (A(0))⊤, we end up with a symmetric A.

2.3.2 Application to clustering based on distance matrices

In this section we show that problem where data points are to be clustered [59]
can be solved using the structured nonnegative matrix factorization. Given p
points y1, y2, . . . yp in Rn, the distance matrix P between the points is given
by Pkl = D(yk, yl) where D is a distance measure on Rn. Note that P is a
symmetric matrix and that the diagonal elements of P are equal to 0. Now the
clustering problem can be stated as: given the distance matrix P between the
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points y1, y2, . . . yp in Rn, find clusters of points which are close to each other
according to the distance measure D on Rn.

A clustering with a clusters {C1, C2, . . . , Ca} is a partition of the set
{y1, y2, . . . yp} into disjoint subsets. A clustering is completely described by
the matrix V ∈ {0, 1}p×a defined as

Vk,i =

{

1, if yk ∈ Ci,
0, if yk /∈ Ci.

Since every point of {y1, y2, . . . yp} belongs to exactly one cluster, we have V e =
e.

Define the mean distance Aij between the clusters Ci and Cj as the mean of
the distances between every possible combination of a point of Ci and a point
of Cj .

Aij =

∑

yk∈Ci

∑

yl∈Cj
D(yk, yl)

∑

yk∈Ci

∑

yl∈Cj
1

.

It follows that the matrix A with Aij as i, j-th element can be calculated as

A = V †PV †⊤,

where V † = (diag(e⊤V ))−1V ⊤ is the left inverse of V . Notice that the diagonal
elements Aii are equal to the mean distance of the points inside cluster Ci.
These elements are hence not necessarily equal to zero.

As a result of the clustering, the distance Pkl between two points yk and
yl is approximated by the mean distance P̃kl between the clusters to which the
points yk and yl belong. The complete matrix P̃ can be written as

P̃ = V AV ⊤.

From the above, we conclude that the clustering of p points with distance
matrix P into a clusters, can be expressed as the following matrix factorization
problem

minimize C(P, V V † P (V V †)⊤)
subject to V ∈ {0, 1}p×a

V e = e,

where C(X,Y ) is a divergence/distance measure between the matrices X and
Y . As this problem is hard to solve for arbitrary C, we propose the following
relaxed version

minimize DKL(P ||V AV ⊤)

subject to V ∈ R
p×a
+ , A = A⊤ ∈ Ra×a

+ .

This problem can be solved with the methods proposed in Section 2.3.1. A
point yk is assigned to cluster i where i = argmaxt Vkt. By using this relaxed
version of the problem, we have two additional advantages. First of all the
quality of the clustering can be measured by the ratio between the diagonal and
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off-diagonal elements of A. The smaller the diagonal elements of A compared
to the off-diagonal elements of A, the better the clustering. In addition, one has
a measure for how strong a certain point belongs to its cluster. We say that yk

belongs to cluster i if Vki is the biggest element of row Vk,:. If all other elements
of the row Vk,: are much smaller than Vki, one can say that the point yk strongly
belongs to cluster i. If there are elements in the row Vk,: that are of the same
order of magnitude as Vki, we conclude that the point weakly belongs to cluster
i.

We now apply this algorithm to a data set of iris flowers (this data set is
available in the SOM-toolbox for Matlab as the file iris.mat). The data set
contains 150 data points y1, . . . y150. Each point contains 4 measurements of an
iris flower. The 4 measurements are the petal width, petal length, sepal width
and sepal length of the flower. In the data set three different types of flowers
are present, the first 50 samples are Setosa flowers, the next 50 are Versicolor
flowers and the last 50 are Virginica flowers. As a first step we make a distance
matrix P of size 150×150 with Pkl = ||yk−yl||2. Next we decompose the matrix
P into a product V AV ⊤. As we do not know the number of clusters in advance,
we make decompositions with inner dimensions 2 to 6. In Figure 2.1 we show
the distance between the original matrix P and its approximation V AV ⊤ as a
function of the structured positive rank of the approximation. One sees that
the divergence does not decrease much by taking the structured positive rank
higher than 3. For that reason, we conclude to work with 3 clusters.

.
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Figure 2.1: Kullback-Leibler divergence between the true distance matrix P and
its optimal (w.r.t. the Kullback-Leibler divergence) approximation of structured
positive rank 2, 3, . . . , 6 computed with the iterative algorithm of Section 2.3.1.

The A-matrix of the decomposition is given by

A =





0, 00000000001 4975, 78659538 9668, 80064875
4975, 78659538 0, 00000032641 13768, 5062877
9668, 80064875 13768, 5062877 27, 0549877873



 .
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Notice that the diagonal elements of A are small compared to the off-diagonal
elements of A, which is an indication that we have a good clustering. In addition,
the diagonal elements give a measure of the density of the clusters. We conclude
that the first cluster is the densest while the third cluster is the least dense. The
off-diagonal elements ofA give an idea of the mean distance between the clusters.

As explained before, the largest element of the k-th row of the matrix V
allows to conclude to which cluster point k belongs. Using this approach 136
of the 150 iris flowers are clustered correctly (i.e. Versicolor flowers in cluster
1, Virginica flowers in cluster 2 and Setosa flowers in cluster 3). Moreover,
the elements of Vk,: also give a measure of the strength with which the point
belong to its cluster. In Table 2.1, we show the k-th row of the matrix V for
k = 14, 53, 58, 130. For instance for point y14 we conclude from our algorithm
that it strongly belongs to cluster 3 (as 0.196 ≫ 0.017 and 0.196 ≫ 0.012). This
makes sense as the true cluster of that point is indeed cluster 3. On the other
hand, point y53 (which is one of the miss-clustered points) was connected to
cluster 2 but the connection is not strong, its affinity with cluster 1 is almost as
high as its affinity with cluster 2. This again makes sense as the true cluster of
this point was cluster 1. In Figure 2.2, we visualize the result of the clustering
algorithm. Points that belong to cluster 1 are plotted with o, point belonging
to cluster 2 are plotted with ∗, and points belonging to cluster 3 are plotted
with +.

Table 2.1: Clustering result for the points y14, y53, y58 and y130.

Point yk True cluster V (k, 1) V (k, 2) V (k, 3) Estimated cluster
14 3 0.017 0.012 0.196 3
53 1 0.080 0.115 0.001 2
58 1 0.123 0.000 0.071 1
130 2 0.002 0.201 0.015 2

2.4 Symmetric nonnegative matrix factorization

In the exact symmetric nonnegative matrix factorization problem, we are given
a square, symmetric, nonnegative definite matrix P ∈ R

p×p
+ , and are looking

for a decomposition P = V V ⊤ with V ∈ R
p×a
+ . The completely positive

rank (cp−rank) [9, 14, 15] of the matrix P is the minimal inner dimension for
which a decomposition P = V V ⊤ exists. In contrast to the nonnegative matrix
factorization and the structured nonnegative matrix factorization, a symmetric
nonnegative factorization with a finite inner dimension does not always exist.
In case the symmetric decomposition does not exist, we say that the completely
positive rank is infinite. Again, from the definition of the different ranks, it
follows that 0 ≤ rankP ≤ p−rankP ≤ sp−rankP ≤ cp−rankP . It is shown
in [14] that there exists a finite algorithm to compute the completely positive
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Figure 2.2: Visualisation of the result of our clustering algorithm. Points that
belong to cluster 1 are plotted with o, point belonging to cluster 2 are plotted
with ∗, and points belonging to cluster 3 are plotted with +.

rank. However, the complexity bounds of this algorithm are non-polynomial.
Therefore (approximate) symmetric nonnegative matrix factorization problem
has been introduced.

Problem 2.3. Given a symmetric matrix P ∈ R
p×p
+ and given a, minimize

DKL(P ||V V ⊤) with respect to V (of size p×a), subject to the constraint V ≥ 0.

Analogous to the decomposition V AV ⊤, one can prove that the row (or
column) sum of P is equal to the row (or column) sum of V V ⊤, where V is a
stationary point of the divergenceDKL(P ||V V ⊤). As a consequence the element
sum of P is equal to the element sum of V V ⊤ with V a stationary point of the
divergence.

Theorem 2.10. Given a nonnegative matrix P ∈ Rp×p. Then every stationary
point V of the cost function DKL(P ||V V ⊤) preserves the element sum of P , i.e.

∑

kl

Pkl =
∑

kl

(V V ⊤)kl.
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As a consequence of this theorem, we see that for every stationary point V
of the divergence DKL(P ||V V ⊤), there exists a matrix Ṽ and a diagonal matrix
D such that V V ⊤ = Ṽ DṼ ⊤, where Ṽ is column stochastic, i.e.

∑

k Ṽki =
1, i = 1, 2, . . . , a and the element sum of P equals the element sum of D, i.e.
∑

kl Pkl =
∑

iDii.

Our approach for Problem 2.3 is to look for a decomposition P ≃ Ṽ DṼ ⊤,
with Ṽ column stochastic and D diagonal with sum of its elements equal to
the element sum of P such that the divergence F (D, Ṽ ) = DKL(P ||Ṽ DṼ ⊤) is
minimized. This leads to updates which make the divergence decrease, and are
invariant if and only if we have reached a stationary point of the divergence
DKL(P ||Ṽ DṼ ⊤). Once an approximation P ≃ Ṽ DṼ ⊤ is found, we obtain a
decomposition of the form V V ⊤, by calculating V as

V = Ṽ
√
D.

The next theorem proposes update formulas for the decomposition P = Ṽ DṼ ⊤.

Theorem 2.11. Under the condition that the starting values Ṽ (0) and D(0)

are normalized, i.e.
∑

iD
(0)
ii =

∑

kl Pkl and
∑

k Ṽ
(0)
ki = 1, i = 1, 2, . . . a, the

divergence DKL(P ||Ṽ DṼ ⊤) is nonincreasing under the update rules

D
(t+1)
ii = D

(t)
ii

∑

µν

ṼµiṼνi

Pµν

(Ṽ D(t)Ṽ ⊤)µν

, (2.16)

Ṽ
(t+1)
ki = Ṽ

(t)
ki

∑

ν
Pkν

(Ṽ (t)D(Ṽ (t))⊤)kν
DiiṼ

(t)
νi + Pνk

(Ṽ (t)D(Ṽ (t))⊤)νk
DiiṼ

(t)
νi

∑

µν
Pµν

(Ṽ (t)D(Ṽ (t))⊤)µν
DiiṼ

(t)
νi Ṽ

(t)
µi +

Pνµ

(Ṽ (t)D(Ṽ (t))⊤)νµ
DiiṼ

(t)
νi Ṽ

(t)
µi

.

(2.17)

In addition, the updated values of D and Ṽ are also normalized.

Proof: The proof is analogous to the proof of Theorem 2.8.

If we use the update formulas for D and Ṽ alternatingly, i.e.

(D(0), Ṽ (0)) 7→ (D(1), Ṽ (0)) 7→ (D(1), Ṽ (1)) 7→ (D(2), Ṽ (1)) 7→ (D(2), Ṽ (2)) 7→ . . . ,

we can prove the following theorem.

Theorem 2.12. The divergence is invariant under updates (2.16) and (2.17)
if and only if (D, Ṽ ) is a stationary point of the divergence, i.e.

{

D(t+1) = D(t),

Ṽ (t+1) = Ṽ (t),
⇔
{

D
(t)
ii

∂F
∂Dii

(D(t), Ṽ (t)) = 0, i = 1, 2, . . . a,

Ṽ
(t)
ki

∂F

∂Ṽki
(D(t), Ṽ (t)) = 0, k = 1, 2, . . . , p; i = 1, 2, . . . a.

Proof: The proof is analogous to the proof of Theorem 2.9.



2.5 Nonnegative matrix factorization without nonnegativity constraints on the

factors 47

2.5 Nonnegative matrix factorization without

nonnegativity constraints on the factors

In this section we introduce and solve the nonnegative matrix factorization
problem without nonnegativity constraints on the factors. This matrix
factorization is studied because of its importance for the approximate quasi
realization problem for HMMs (Section 4.3). However we show that the
factorization has applications apart from hidden Markov models.

In Section 2.5.1 we give an intuitive motivation to the problem. In Section
2.5.2 we formally introduce the factorization problem and provide an algorithm
to solve it. In Section 2.5.3 we show that the approach allows to impose upper
bounds on the elements of the low rank approximation instead of only lower
bounds. In Section 2.5.4 finally, we apply the method to an image compression
example.

2.5.1 Intuitive motivation

In the paper of Lee and Sueng [72] the nonnegative matrix factorization is
used to model a database of facial images. Each face in the database is
represented by a nonnegative column vector, leading to a nonnegative matrix
with the number of columns equal to the number of faces in the database.
Subsequently, the matrix is factored as a product V H with the matrices V and
H nonnegative. The columns of V are called eigenfaces and the columns ofH are
nonnegative weights that reconstruct the original faces as linear combinations
of the eigenfaces. By carrying out an approximation of M as V H with V
and H nonnegative, an efficient compression of the original database can be
obtained. A first argument for using the nonnegative matrix factorization
instead of the SVD or other matrix decompositions is that the reconstructed
images V H contain only nonnegative elements and are therefore interpretable
as facial images. A second argument is that the eigenfaces are typically sparse
(i.e. many elements are zero) because of the nonnegativity of the weights in
H , which makes that there is a part-based interpretation of decomposition, i.e.
each face is decomposed into a sum of a small number of parts (nose, eyes, ears,
...). In our opinion, the first argument is always relevant, while the second is
not important in certain applications (for instance in the application where the
decomposition is only used for data compression). We therefore consider the
decomposition of a nonnegative matrix M into a nonnegative product V H , but
where the factors V and H themselves are allowed to contain negative values.
In this section we give an intuitive example motivating our approach.

Suppose one wants to model moustaches and beards of a database of human
faces with 4 parameters. The first parameter represents the top of the moustache
(closest to the nose) and the second the bottom of the moustache. The third
parameters is used for the top of the beard (closest to the mouth) and the fourth
for the bottom of the beard (see Figure 2.3(a)). The values for the parameters
range from 0 (no moustache/beard) over 0.5 (light-coloured moustache/beard)
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to 1 (dark moustache/beard). In Figure 2.3 (b)-(e), we show faces with four
different possible combinations of dark beards and moustaches.

1
2

3
4

(a) (b) (c) (d) (e)

Figure 2.3: (a) Interpretation of the 4 parameters used to model human
moustaches and beards, (b)-(e) Four different examples of combinations of beard
and moustaches.

The matrix M , which contains in its i-th column the 4 parameters of face i
is given by

M =









0 1 1 0
1 0 1 0
1 0 0 1
0 1 0 1









.

This matrix M has rank 3, but positive rank 4 (see [33]). This means that
there exists an exact decomposition of inner dimension 3 if negative factors V
and H are allowed, but that the smallest inner dimension for a decomposition
with nonnegative factors is equal to 4, i.e.









0 1 1 0
1 0 1 0
1 0 0 1
0 1 0 1









=









1
2

1
2

1
2

1
2

1
2 − 1

2
1
2 − 1

2 − 1
2

1
2 − 1

2
1
2









.





1 1 1 1
0 0 1 −1

−1 1 0 0





=









0 1 1 0
1 0 1 0
1 0 0 1
0 1 0 1









.









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

Of course, one can also build an approximate decomposition of inner
dimension 3 with nonnegative factors,









0 1 1 0
1 0 1 0
1 0 0 1
0 1 0 1









≃









0 1
3

1
2

0 2
3 0

2
3 0 0
1
3 0 1

2









.





1 0 0 2
1 0 2 0
0 2 0 0



 =









1
3 1 2

3 0
2
3 0 4

3 0
2
3 0 0 4

3
1
3 1 0 2

3









.
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With this academic example, we show that by allowing negative elements in
the factors of the decomposition, we can find an exact decomposition of lower
rank than the decomposition that is found when only nonnegative factors are
allowed. Here it is clear that the decomposition with negative factors gives rise
to a nonnegative product V H as the decomposition is exact.

In Section 2.5.2 we propose a decomposition method for which V H is
nonnegative (but V and H not) even if the decomposition is not exact. It
is expected that this decomposition finds an approximation of the same quality
as the NMF with a smaller inner dimension (so a larger data reduction) or finds
a better approximation if the same inner dimension is used as for the NMF.

In Section 2.5.4 we illustrate that the effects illustrated in this intuitive
example extend to larger matrix decomposition problems.

2.5.2 Nonnegative matrix factorization without nonnega-
tivity constraints on the factors

The approximate nonnegative matrix factorization without nonnegativity con-
straints on the factors can be stated as

Problem 2.4. Given M ∈ R
m1×m2
+ and a ∈ N, minimize DKL(M ||V H) with

respect to V (∈ Rm1×a) and H (∈ Ra×m2), subject to the constraint V H ≥ 0.

Notice that the solution of Problem 2.4 is not unique. If (V,H) is a solution
the problem, then (V T, T−1H), with T a nonsingular matrix in Ra×a is also
a solution. Next, it turns out that the constraint V H ≥ 0 is automatically
fullfilled by using the Kullback-Leibler divergence as distance criterion. Indeed,
the Kullback-Leibler divergence DKL(M ||V H) goes to infinity if an element of
V H goes to 0, while the corresponding element of M is not equal to 0, and the
divergence is undefined if an element of V H is negative.

The partial derivatives of F (V,H) = DKL(M ||V H) with respect to the
elements Vki and Hil are

∂F

∂Vki

(V,H) = −
∑

ν

Hiν

Mkν

(V H)kν

+
∑

ν

Hiν , (2.18)

∂F

∂Hil

(V,H) = −
∑

µ

Vµi

Mµl

(V H)µl

+
∑

µ

Vµi, (2.19)

Hence the conditions for stationarity of (V,H) with respect to DKL(M ||V H)
are

∂F

∂Vki

(V,H) = 0,
∂F

∂Hil

(V,H) = 0, (2.20)

for i = 1, 2, . . . , a, k = 1, 2, . . . ,m1 and l = 1, 2, . . . ,m2.
In the case a = 1, the global optimal solution to Problem 2.4 can be obtained

analytically. Moreover, the global optimal solution (V1, H1) is equal to the global
optimal solution of Problem 2.1 with a = 1 and is given by
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(V1)k1 =
Me√
e⊤Me

, (H1)1l =
e⊤M√
e⊤Me

. (2.21)

For the case a > 1, we propose below an iterative algorithm that converges
to a stationary point of F . First, we establish some interesting properties of
the stationary points of Problem 2.4. The first property is analogous to the
property of the classical nonnegative matrix factorization proven in [57]. It says
that the row and column sum of the matrix M is equal to the row and column
sum of its optimal approximation.

Proposition 2.1. Let M ∈ Rm1×m2 . Every stationary point (V,H) of the cost
function DKL(M ||V H) preserves the row and column sum of M , i.e.

Me = (V H)e (2.22)

e⊤M = e⊤(V H) (2.23)

As a consequence the element sum of M is preserved, i.e. e⊤Me = e⊤(V H)e.

Proof: Equation (2.20) gives, for k = 1, 2, . . . ,m1 and i = 1, 2, . . . , a,

∑

ν

Hiν

Mkν

(V H)kν

=
∑

ν

Hiν .

Multiplying with Vki and summing over i proves Equation (2.22). The proof of
Equation (2.23) is analogous.

We now prove a second property of stationary points.

Proposition 2.2. Let M ∈ Rm1×m2 . Given a stationary point (V,H) of the
cost function DKL(M ||V H), there exists a nonsingular matrix T ∈ Ra×a such
that Ṽ = V T and H̃ = T−1H satisfy

Ṽ:,1 =
Me√
e⊤Me

, (2.24)

H̃1,: =
e⊤M√
e⊤Me

. (2.25)

Proof: Define

V ′ = V R,

H ′ = R−1H,

with R =
[

He√
e⊤Me

R′
]

where R′ is such that R is nonsingular. Since He 6= 0

such a matrix R′ always exists. Then

V ′
:,1 = V

He√
e⊤Me

=
Me√
e⊤Me
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Calculate now

Ṽ = V ′S−1

H̃ = SH ′

with S =

[

e⊤V ′
√

e⊤Me

0 S′

]

, where S′ is such that S is nonsingular. Since

e⊤V ′
√

e⊤Me
(1) = 1, such a matrix S′ always exists. Hence

H̃1,: =
e⊤V ′

√
e⊤Me

H ′ =
e⊤M√
e⊤Me

.

From S1,1 =
√

e⊤Me√
e⊤Me

= 1, we obtain that the first column of S−1 is equal to

[ 1 0 0 . . . 0]⊤, and hence

Ṽ:,1 =
Me√
e⊤Me

.

A third property of the matrix factorization is related to the nesting property
of the singular value decomposition. The nesting property of the SVD says
that the optimal rank b (with b < a) approximation of the optimal rank a
approximation of a given matrixM is equal to the optimal rank b approximation
of the original matrix M . In addition the optimal rank a SVD-approximation
can be written in a formMa = ṼaH̃a such that the optimal rank b approximation
is equal to Mb = VbHb, where Vb = (Ṽa):,1:b and Hb = (H̃a)1:b,:. For the
proposed matrix factorization, we have the same property for b = 1. Indeed,
from Proposition 2.1 and Equation (2.21), we know that the optimal rank 1
approximation M1 = V1H1 of an optimal rank a approximation VaHa of a
matrix M is equal to the optimal rank 1 approximation of the original matrix
M . In addition, Proposition 2.2 says that the optimal approximation of rank a
can be written in a form Ma = ṼaH̃a such that (Ṽa):,1 = V1 and (H̃a)1,: = H1.

We now provide an algorithm to solve the nonnegative matrix factorization
problem without nonnegativity constraints on the factors. Analogously to the
nonnegative matrix factorization problem, the matrix factorization problem
(Problem 2.4) is convex in V and H separately, but is not convex in V
and H jointly. Therefore, we use an approach where V and H are updated
alternatingly. In the proposed algorithm, these updates are performed using one
step of the damped Newton method. In a step of the damped Newton method,
one first builds a quadratic approximation of the cost function in the current
value for the optimization variable. Next, one makes a step in the direction
of the minimum of this quadratic function. The step size is determined by
a backtracking approach. Formally, a Newton step to optimize the function
f : Rn 7→ R is given by

x(t+1) = x(t) − µ

[

∂2f

∂xi∂xj

(x(t))

]−1 [
∂f

∂xi

(x(t))

]

,
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where
[

∂f
∂xi

]

is the gradient,
[

∂2f
∂xi∂xj

]

the Hessian of f , and µ is the stepsize.

We first discuss the updating of H . The optimization problem with cost
F (V,H) = DKL(M ||V H) splits into m2 independent problems related to each
column ofH . We therefore consider the partial cost for a single column ofM and
H which we denote by M:,l and H:,l. The gradient ∈ R1×a of the cost function
F (V,H:,l) = DKL(M:,l||V H:,l) is given by (2.19) and the Hessian ∈ Ra×a is
given by

∂2F

∂Hil∂Hjl

(V,H) =
∑

µ

VµiVµj

Mµl

((V H)µl)2
.

The update rule for H:,l becomes

H
(t+1)
:,l = H

(t)
:,l − µ

[

∂2F

∂Hil∂Hjl

(V,H(t))

]−1 [
∂F

∂Hil

(V,H(t))

]

.

The updating rule for V is completely analogous. The Hessian of the cost
function F (Vk,:, H) = DKL(Mk,:||Vk,:H) is given by

∂2F

∂Vki∂Vkj

(V,H) =
∑

ν

HiνHjν

Mkν

((V H)kν)2
.

A formal statement of the complete algorithm is given in Algorithm 2.2. The
parameter α needs to be smaller than 1 and can be chosen by the user.

Algorithm 2.2. Take α ∈]0, 1[. Choose arbitrary matrices V (0) ∈ R
m1×a
+

and H(0) ∈ R
a×m2
+ . Now, iterate the following steps for t = 0, 1, . . . until

convergence:

1. Set µ(1) = 1. Perform the following steps for p = 1, . . . until V (t+1)H(t)

is nonnegative:

(a) H
(t+1)
:,l = H

(t)
:,l − µ(p)

[

∂2F
∂Hil∂Hjl

(V (t), H(t))
]−1 [

∂F
∂Hil

(V (t), H(t))
]

,

(l = 1, 2, . . .m2),

(b) µ(p+1) = αµ(p).

2. Set ν(1) = 1. Perform the following steps for q = 1, . . . until V (t+1)H(t+1)

is nonnegative:

(a) V
(t+1)
k,: = V

(t)
k,: − ν(q)

[

∂2F
∂Vki∂Vkj

(V (t), H(t+1))
]−1 [

∂F
∂Vki

(V (t+1), H(t))
]

,

(k = 1, 2, . . .m1),
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(b) ν(q+1) = αν(q).

In the algorithm the inverse of the Hessian has to be computed. This
computation can give rise to two different kind of problems. We describe both
problems and shortly discuss a possible solution. The first possible problem is
that the Hessian can become singular such that its inverse can not be computed.
A solution therefore is to add λI to the Hessian before inverting it, where λ is
a to be chosen constant and I is the unit matrix of appropriate size. This
approach is known as the Levenberg-Marquardt method. A second problem
is that the computation and storage of the Hessian becomes very expensive
when decomposing a large-scale matrix. A solution therefore is to use other
optimization methods that do not need the Hessian for computing an update,
such as gradient or conjugate gradient methods. We do not go into detail about
these algorithms.

There exist applications where the nonnegativity of V as well as the
nonnegativity of the product V H are important, but where the nonnegativity
of H is not important. In that case, one can easily combine the update formula
for V of the nonnegative matrix factorization with the update formulas for H of
the matrix factorization of this section. A similar construction holds, of course,
if H and V H are required to be nonnegative, but not V .

2.5.3 Imposing upper bounds

The nonnegative matrix factorization is used in many applications where
the variables are constrained to be nonnegative from physical point of view.
However, in many applications, the variables are not only bounded from below,
but are also bounded from above. For instance, the greyscale value of an image
is usually a number between 0 and 1. Therefore in this application, it is odd
to impose the lower bound 0, while not imposing the upper bound 1. The
algorithm given in Section 2.5.2 can easily deal with upper bounds. Introduce
the modified Kullback-Leibler divergence between the matrices X ∈ Rx1×x2 and
Y ∈ Rx1×x2

DMKL(X ||Y ) := DKL(X ||Y ) +DKL(1x1,x2 −X ||1x1,x2 − Y )

=
∑

ij

Xij log
Xij

Yij

+
∑

ij

(1 −Xij) log
1 −Xij

1 − Yij

.

Now consider the following problem

Problem 2.5. Given M ∈ Rm1×m2
+ and a ∈ N, minimize G(V,H) =

DMKL(M ||V H) with respect to V (∈ Rm1×a) and H (∈ Ra×m2), subject to
the constraints 0 ≤ (V H)kl ≤ 1.

The constraints 0 ≤ (V H)kl ≤ 1 are automatically fullfilled by using the
modified version of the Kullback-Leibler divergence. Indeed, the modified
Kullback-Leibler divergence is undefined if VH is negative or larger than 1,
and in addition, the modified divergence DMKL(M ||V H) goes to infinity if an
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element of V H goes to 0 or to 1, while the corresponding element of M is not
equal to 0 or 1.

The approximate matrix factorization algorithm (Algorithm 2.2) can be
easily adapted to deal with Problem 2.5 by using the following expressions for
the gradient and Hessian.

∂G

∂Vki

(V,H) = −
∑

ν

Hiν

Mkν

(V H)kν

+Hiν

1 −Mkν

1 − (V H)kν

,

∂G

∂Hil

(V,H) = −
∑

µ

Vµi

Mµl

(V H)µl

+ Vµi

1 −Mµl

1 − (V H)µl

,

∂2G

∂Vki∂Vkj

(V,H) =
∑

ν

HiνHjν

Mkν

((V H)kν)2
+HiνHjν

1 −Mkν

(1 − (V H)kν)2
,

∂2G

∂Hil∂Hjl

(V,H) =
∑

µ

VµiVµj

Mµl

((V H)µl)2
+ VµiVµj

1 −Mµl

(1 − (V H)µl)2
.

2.5.4 Application to image compression

In this application, we use data from the CBCL-database of human faces [1].
This database contains 2429 facial greyscale images of size 19 × 19. We use
the first 100 images, vectorize and stack them in the columns of the matrix M
as is done in [72]. We then approximate the matrix M with a product V H
with inner dimension a = 20 with four different procedures: nonnegative matrix
factorization (NMF), the singular value decomposition (SVD), the nonnegative
matrix factorization without nonnegativity constraints on the factors (MF), and
the nonnegative matrix factorization without nonnegativity constraints on the
factors with upper bound 1 on the elements of V H (UBMF). The NMF, MF,
UBMF algorithms converged using less than 50 iteration steps, but the results
shown are after 100 iterations.

Table 2.2 shows that MF and UBMF give the best results, illustrated by
the Kullback-Leibler and the modified Kullback-Leibler divergence between M
and the approximation V H computed with the four different methods. For all
methods, pixel values of the reconstruction that are ≤ 0 or ≥ 1, are truncated
to the values 0.0001 and 0.9999 respectively. We do not truncate these values
to 0 and 1, as this operation makes the distances indicated with (*) equal to
infinity which makes comparison between the methods impossible.

In Figure 2.4, we plot face 34 and 70 and their reconstructions using the 4
different methods. Pixel values smaller than 0 are indicated with o and pixel
values higher than 1 are indicated with ×. From Table 2.2 and from Figure 2.4,
we conclude that the matrix factorization (MF) and the upper bounded matrix
factorization (UBMF) give the best results.



2.6 Conclusions 55

Table 2.2: Kullback-Leibler divergence and modified Kullback-Leibler
divergence between M and the decomposition V H for the 4 different
decomposition methods.

MF UBMF NMF SVD
KL-divergence 339 383 564 460 (*)

MKL-divergence 1104 (*) 806 1470 (*) 989 (*)

34

70
Original MF UBMF NMF SVD

Figure 2.4: Plot of the i-th face of the database, with i = 34, 70, and their
reconstructions using the nonnegative matrix factorization without nonnegativity
constraints on the factors (MF), the nonnegative matrix factorization without
nonnegativity constraints on the factors with upper bounds on the elements
of V H (UBMF), the nonnegative matrix factorization (NMF) and the
singular value decomposition (SVD). All approximate factorizations have inner
dimension a = 20. Pixel values smaller than 0 are indicated with o and pixel
values higher than 1 are indicated with ×.

2.6 Conclusions

This chapter dealt with low rank approximations of matrices. We reviewed the
singular value decomposition and proved a small property of the SVD-truncation
of matrices with symmetries. The rank k SVD-truncation of a matrix M that
obeys M = PMQ with P and Q unitary, has the same type of symmetry, i.e.
Mk = PMkQ.

The approximate nonnegative matrix factorization was reviewed. Subse-
quently, the approximate structured nonnegative matrix factorization problem
was introduced. We proposed iterative update formulas for this problem and
proved their convergence properties. The factorization has been applied to a
clustering problem where data points are to be clustered based on their distance
matrix. The symmetric nonnegative matrix factorization problem is considered
as a special case of the structured nonnegative matrix factorization problem.

Finally, the nonnegative matrix factorization without nonnegativity con-
straints on the factors was introduced. The importance of this problem was
explained and update formulas for this problem were derived. The factorization
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has been applied to the problem of compressing a database of facial images.



Chapter 3

Hidden Markov models -
Linear stochastic models

Hidden Markov models have been introduced in the literature in three different-
looking forms. The first form is the HMM of the deterministic function of
a Markov chain type and was introduced in [20, 52]. The second form is the
HMM of the Moore type and was introduced in the literature in [10]. The third
form is the HMM of the Mealy type and was introduced in [84]. It has been
shown in [112,113] that although the three types of models look quite different,
they are all equivalent from the viewpoint of their ”expressive power”, meaning
that a process is representable by a HMM of a certain form if and only if it is
representable by a HMM of another form.

The realization and quasi realization problem for hidden Markov models
have been posed for the first time in [20]. The realization problem for hidden
Markov models consists in finding a hidden Markov model with given string
probabilities of all finite length output strings. This question can be split up
into three different parts. The first part is the realizability question: under
which conditions are given output string probabilities representable by a hidden
Markov model. The second part is the realization problem itself: given realizable
string probabilities, find a corresponding minimal hidden Markov model. The
last question is the equivalence problem: given relizable string probabilities,
derive all corresponding hidden Markov models.

Linear time-invariant stochastic models in state-space form on the other
hand have been introduced into the literature in [42, 43]. However, it was
undoubtedly Kalman who brought the state-space point of view into center
stage in system theory [61,62,64]. The realization problem for linear stochastic
models was studied in [3, 46, 51]. The realization problem consists of finding
a linear stochastic model corresponding to a given autocovariance sequence.
Again, the realization problem consists of three parts: the realizability question,
the realization problem itself and the equivalence problem.

In this chapter, we formally introduce hidden Markov models and linear

57
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stochastic models. We also consider the equivalence problem for Moore and
Mealy hidden Markov models. The equivalence problem for hidden Markov
models of the deterministic function of a Markov chain type has already been
considered in [58]. The equivalence problem for hidden Markov models is
compared with the equivalence problem for linear stochastic models. The other
subproblems of the realization problem are considered in the next two chapters.

List of own contributions

We here describe our contributions to the equivalence problem for hidden
Markov models.

• In Section 3.2.4.1 we describe a procedure to test whether a given quasi
Mealy hidden Markov model is minimal and in Section 3.2.4.2 we describe
a procedure to find a minimal quasi Mealy model that is equivalent to a
given nonminimal quasi or positive hidden Markov model.

• In Section 3.3 we consider the equivalence problem for hidden Markov
models. We make a distinction between Moore and Mealy hidden Markov
models. In Section 3.3.1.2 we provide a test to check whether two positive
Mealy hidden Markov models are equivalent and give a description of
the complete set of equivalent models. We make a distinction between
positive Mealy models that are minimal as a quasi model and positive
Mealy models that are not minimal as a quasi Mealy model. Subsequently,
we prove that Moore models that are minimal as a quasi Mealy model,
under certain conditions, do not have non-trivial equivalents. We show
that Moore models that are not minimal as a quasi model can have non-
trivial equivalents. In Section 3.3.2 we provide a test for checking the
equivalence of Moore models and give a description of the complete set of
equivalent models.

• In Section 3.5 we prove that a Moore linear stochastic model which is
minimal as a Mealy model, under certain conditions, has only trivial
equivalents. We show that the equivalence problem for hidden Markov
models is completely analogous to the equivalence problem for linear
stochastic models.

Section-by-section overview

In Section 3.1 we introduce finite-valued processes. In Section 3.2 we introduce
two types of hidden Markov models that can be used to model finite-valued
processes: Moore and Mealy hidden Markov models. We also describe the
conversion between both types of models and minimality of the models. In
Section 3.3 we consider the equivalence problem for hidden Markov models. We
make a distinction between Mealy and Moore models. In Section 3.4 we formally
define linear stochastic models and in Section 3.5 we consider the equivalence
problem for linear stochastic models.
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3.1 Finite valued processes

A (finite valued) process y is defined on the time axis N and takes values in a
finite set Y. The set Y with |Y| <∞ is called the output set.

Denote by Yt the set of all strings of length t with symbols from the set Y,
and by Y∗ the set of all finite length strings including the empty string φ. With
u = u1u2 . . . u|u| we denote a string from Y∗, where |u| is the length of u.

The process y is called stationary if

P (y(t) = u1, y(t+ 1) = u2, . . . , y(t+ |u| − 1) = u|u|),

is independent of t for all u ∈ Y∗.
The process y is completely described by its string probabilities Py : Y∗ 7→

[0, 1], defined by

Py(u) := P (y(1) = u1, y(2) = u2, . . . , y(|u|) = u|u|). (3.1)

String probabilities Py satisfy the following consistency conditions

Py(φ) = 1,
∑

y∈Y

Py(uy) = Py(u), ∀ u ∈ Y∗,

∑

u∈Yk

Py(u) = 1, ∀ k ∈ N.

If the process y is stationary, then in addition,

∑

y∈Y

Py(yu) = Py(u), ∀ u ∈ Y∗,

so that we have for stationary processes that
∑

y∈Y P(uy) =
∑

y∈Y P(yu), for
all u ∈ Y∗.

Suppose y : N 7→ Y is a realization of the process y. Then the sample string
probabilities Ry : Y∗ 7→ [0, 1] of the realization y are defined as

Ry(u) := lim
N→∞

1

N

N
∑

k=1

δ (y(k)y(k + 1) . . .y(|u| + k − 1),u) , (3.2)

where δ(·, ·) is the Kronecker delta. The string probabilities (3.1) are defined
as an ensemble average, but the sample string probabilities (3.2) are defined as a
time average. In data analysis applications, we deal with the sample of a process,
generated from a particular experiment rather than an ensemble. Hence, in data
analysis applications, definition (3.2) is preferable over definition (3.1). However
for ergodic processes, it holds that Py = Ry. An ergodic process is a stationary
process whose statistical properties are determined from its sample process. In
this thesis, we only consider ergodic processes.
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However, data analysis problems of ergodic processes typically involve a
sequence y(T ) of length T with T < ∞ instead of an infinite sample process y.

Therefore, only approximate string probabilities P̃(t)
y : {u ∈ Y∗ : |u| ≤ t} 7→ [0, 1]

with t ≤ T can be calculated

P̃(t)
y (u) :=

1

T − |u| + 1

T−|u|+1
∑

k=1

δ (y(k)y(k + 1) . . .y(|u| + k − 1),u) , |u| = t,

P̃(t)
y (u) :=

∑

y∈Y

P̃(t)
y (uy), |u| < t.

(3.3)

Approximate string probabilities P̃(t)
y (u) of a sample process y satisfy the

following consistency conditions

P̃(t)
y (φ) = 1,

∑

y∈Y

P̃(t)
y (uy) = P̃(t)

y (u), ∀ u ∈ Y∗, |u| ≤ t− 1,

∑

u∈Yk

P̃(t)
y (u) = 1, ∀ k ∈ N, k ≤ t.

Approximate string probabilities P̃(t)
y (u) of a sample process y are called

stationary if they satisfy

∑

y∈Y

P̃(t)
y (yu) = P̃(t)

y (u), ∀ u ∈ Y∗, |u| ≤ t− 1. (3.4)

If the approximate string probabilities are stationary, it holds that
∑

y∈Y P̃(t)
y (uy) =

∑

y∈Y P̃(t)
y (yu), for all u ∈ Y∗, |u| ≤ t− 1.

Example 3.1. Consider a sequence y(T ) with length T = 20 taking values in
Y = {0, 1}

y(T ) = 01010100110011010001.

The approximate string probabilities P̃(3)
y of strings of length 3 can be

obtained by counting the number of occurences of a certain string in the sequence
y(T ) divided by the number of times that the string could have occured:

P̃(3)
y (000) =

1

18
, P̃(3)

y (100) =
3

18
,

P̃(3)
y (001) =

3

18
, P̃(3)

y (101) =
3

18
,

P̃(3)
y (010) =

4

18
, P̃(3)

y (110) =
2

18
,

P̃(3)
y (011) =

2

18
, P̃(3)

y (111) = 0,
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The approximate string probabilities P̃(3)
y of strings of length smaller than 3,

can be obtained from the string probabilities of strings of length 3:

P̃(3)
y (00) = P̃(3)

y (000) + P̃(3)
y (001) = 4

18 ,

P̃(3)
y (01) = P̃(3)

y (010) + P̃(3)
y (011) = 6

18 ,

P̃(3)
y (10) = P̃(3)

y (100) + P̃(3)
y (101) = 6

18 ,

P̃(3)
y (11) = P̃(3)

y (110) + P̃(3)
y (111) = 2

18 ,

and

P̃(3)
y (0) = P̃(3)

y (00) + P̃(3)
y (01) = 10

18 ,

P̃(3)
y (1) = P̃(3)

y (10) + P̃(3)
y (11) = 8

18 ,

and

P̃(3)
y (φ) = P̃(3)

y (0) + P̃(3)
y (1) = 1.

The approximate string probabilities are consistent (by construction). How-
ever, it is easy to verify that condition (3.4) does not hold for all u ∈ Y∗, |u| ≤ 2.
We hence conclude that the approximate string probabilities are not stationary.

In the rest of the thesis, we use P , R and P̃(t) instead of Py, Ry and P̃(t)
y ,

when the process or sample process to which the string probabilities belong is
clear from the context.

3.2 Hidden Markov models

In the previous section we defined finite valued processes. In this section we
describe two types of hidden Markov models that can be used to model this
kind of processes.

In Section 3.2.1 we describe Mealy hidden Markov models and in Section
3.2.2 Moore hidden Markov models. In Section 3.2.3 we explain how to convert
a Mealy in a Moore model and vice versa. Section 3.2.4 deals with the minimality
of hidden Markov models.
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3.2.1 Mealy hidden Markov models

The finite-valued process y taking values in Y with |Y| < ∞, is said to be
representable by a Mealy hidden Markov model (Mealy HMM) if there exists a
finite-valued process x taking values in X with |X| <∞ such that

P

(

x(pm) = x(pm), . . . , x(p1) = x(p1), x(f1) = x(f1), . . . , x(fn) = x(fn)

y(pm) = y(pm), . . . , y(p1) = y(p1), y(f1) = y(f1), . . . , y(fn) = y(fn) x(f0)

)

= P

(

x(pm) = x(pm), . . . , x(p1) = x(p1)

y(pm) = y(pm), . . . , y(p1) = y(p1) x(f0)

)

·

P

(

x(f1) = x(f1), . . . , x(fn) = x(fn)

y(f1) = y(f1), . . . , y(fn) = y(fn) x(f0)

)

, (3.5)

for all p1, . . . , pm, f0, . . . , fn ∈ N with pm ≤ . . . ≤ p1 ≤ f0 ≤ . . . ≤ fn, for all
x(pm), . . . , x(p1), x(f0), . . . , x(fn) ∈ X and for all y(pm), . . . , y(p1), y(f0), . . . , y(fn) ∈
Y. The process x is called the state process with X the state set and the process
y is called the output process with Y the output set. Without loss of generality,

we identify X = {1, 2, . . . , |X|}. In words, (3.5) says that the past of

[

x
y

]

is

independent of its present and future given the present state. So, to compute
the future of a process from the past of a process it is enough to have the
present state. This is an important property of the state: it summarizes all the
important information of the past needed to compute the future.

It follows from (3.5) that x is a Markov process, i.e.

P (x(f1) = x(f1), . . . , x(fn) = x(fn)|x(pm), . . . , x(p1), x(f0)) =

P (x(f1) = x(f1), . . . , x(fn) = x(fn)|x(f0)),

and that y is a probabilistic function of the Markov process x, which means that

P

(

y(f0) = y(f0), . . . , y(fn) = y(fn) x(pm), . . . , x(p1), x(f0)
y(pm), . . . , y(p2), y(p1)

)

=

P (y(f0) = y(f0), . . . , y(fn) = y(fn)|x(f0)).

If P (x(t + 1), y(t)|x(t)) is independent of t (i.e. the joint process

[

x
y

]

is

time-homogeneous), then the process is representable by a time-homogeneous
(positive) Mealy hidden Markov model1 defined as (X,Y,Π, π(1)) where:

• Π is a mapping from Y to R
|X|×|X|
+ , with ΠX :=

∑

y∈Y Π(y) a stochastic

matrix, i.e. ΠXe = e. The element Πij(y) is P (x(t+1) = j, y(t) = y|x(t) =
i), that is, the probability of going from state i to state j while generating
output symbol y. The matrix ΠX is called the state transition matrix of
the HMM.

1When refering to a Mealy hidden Markov model, the word ”positive” may be added to
make a distinction with a ”quasi” hidden Markov model (defined further). If ”positive” or
”quasi” is omitted, it should be clear from the context, which one of both models is mentioned.
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• π(1) is a vector in R
1×|X|
+ for which π(1)e = 1. It is called the initial state

distribution. The element πi(1) is P (x(1) = i), that is the probability that
the initial state is i.

In the remainder of the thesis, we consider only hidden Markov models that
are time-homogeneous. So we omit the word ”time-homogeneous” when refering
to a time-homogeneous (positive) Mealy hidden Markov model.

The number of states |X| is called the order of the HMM. The conditions
π(1)e = 1 and ΠXe = e are called consistency conditions of the HMM. If
the initial state distribution vector is a left eigenvector of the state transition
matrix corresponding to the eigenvalue 1: π(1)ΠX = π(1), the state process is
stationary. As a consequence the output process y is also stationary and the
HMM is called stationary. The string probabilities generated by a Mealy HMM
(X,Y,Π, π(1)) are given by

P(u) = π(1)Π(u)e,

where u = u1u2 . . . u|u| ∈ Y∗ and where Π(u) := Π(u1)Π(u2) . . .Π(u|u|).

Example 3.2. Consider the Mealy model (X,Y,Π, π(1)) with X = {1, 2, 3, 4},
Y = {a, b, c, d},

Π(a) =

2

6

6

4

0 0.09 0 0
0 0.09 0 0
0 0 0.01 0
0 0 0.01 0

3

7

7

5

, Π(b) =

2

6

6

4

0 0.01 0 0
0 0.01 0 0.81
0 0 0 0
0 0 0 0.81

3

7

7

5

,

Π(c) =

2

6

6

4

0.81 0 0 0
0 0 0 0.09

0.81 0 0 0
0 0 0 0.09

3

7

7

5

, Π(d) =

2

6

6

4

0.09 0 0 0
0 0 0 0

0.09 0 0.09 0
0 0 0.09 0

3

7

7

5

,

and
π(1) =

ˆ

0.45 0.05 0.05 0.45
˜

.

All elements in the matrices Π(a), Π(b), Π(c), Π(d) and π(1) represent
probabilities. For instance, Π1,2(a) = 0.09 means

Π1,2(a) = P (y(t) = a, x(t+ 1) = 2|x(t) = 1) = 0.09,

and π2(1) = 0.05 means

π2(1) = P (x(1) = 2) = 0.05.

Note that the model is stationary as π(1) is a left eigenvector of
∑

y∈Y Π(y).
We now calculate the string probabilities generated by the hidden Markov

model for the string ”aba” and the string ”dd”:

P(aba) = π(1)Π(a)Π(b)Π(a)e = 0.000405,

P(dd) = π(1)Π(d)Π(d)e = 0.0121.
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We can now formulate the Mealy realization problem and the minimal Mealy
realization problem2.

Problem 3.1 (Mealy realization problem). Given output string probabilities
P : Y∗ 7→ [0, 1]. Find a Mealy HMM (X,Y,Π, π(1)) that generates P.

Problem 3.2 (minimal Mealy realization problem). Given output string
probabilities P : Y∗ 7→ [0, 1]. Find a Mealy HMM (X,Y,Π, π(1)), with |X|
as small as possible, that generates P.

It is clear that the minimal realization problem is the most interesting. An
implicit subproblem of the Mealy realization problem is the Mealy realizability
question: derive conditions for string probabilities P to be representable by a
Mealy HMM of finite order. A solution to the Mealy realization problem is
called a realization of the string probabilities P . The realization problem is
hard because of the positivity contraints on π(1) and Π. For that reason, we
consider a relaxed version of the problem called the quasi realization problem.
The quasi realization problem is the same problem as the realization problem
but without the positivity contraints. The quasi model which is found from the
quasi realization procedure retains important properties of a positive model.
In several applications it suffices to have a quasi instead of a positive hidden
Markov model (see Chapter 7).

Note that the word ”realization” has two different meanings. As explained
before, a realization y of a process y is one sample sequence of the process. On
the other hand, a realization of the string probabilities P is a solution to the
realization problem. In the rest of the text, it should be clear from the context
which one is mentioned.

A quasi (Mealy) HMM is defined by (Q,Y, A, c, b), where Q is the quasi
state set and Y is the output set. The number of states |Q| is called the order
of the quasi HMM. b is a column vector in R|Q|, A is a mapping from Y to
R|Q|×|Q|, where AQ :=

∑

y∈Y A(y) is a quasi stochastic matrix, i.e. AQb = b.

The matrices A, c, b are such that cA(u)b ∈ [0, 1] for all u = u1u2 . . . u|u| ∈ Y∗,
where A(u) := A(u1)A(u2) . . . A(u|u|). The matrix AQ is called the quasi state

transition matrix. c is a vector in R1×|Q| called the quasi initial state distribution
for which cb = 1. The conditions cb = 1 and AQb = b are called consistency
conditions of the quasi HMM. The quasi HMM is called stationary if the quasi
initial state distribution vector is a left eigenvector of the quasi state transition
matrix corresponding to the eigenvalue 1: cA = c. Notice that A, c and b of a
quasi Mealy model (Q,Y, A, c, b) are the analogues of Π, π(1) and e of a positive
Mealy model (X,Y,Π, π(1)).

The string probabilities P : Y∗ 7→ [0, 1] generated by a quasi Mealy HMM
(Q,Y, A, c, b) are given by

P(u) = cA(u)b,

2In this thesis, we consider the ”weak realization problem”. The weak realization problem
aims at modeling the statistics of a process (string probabilities, autocovariances). In the
remainder of the thesis, the word ”weak” is omitted when referring to the weak realization
problem.
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where u = u1u2 . . . u|u| ∈ Y∗ and where A(u) := A(u1)A(u2) . . . A(u|u|). Notice
that a Mealy HMM is also a quasi Mealy HMM, but a quasi Mealy HMM is not
necessary a Mealy HMM.

We now formulate the quasi Mealy realization problem.

Problem 3.3 (quasi Mealy realization problem). Given output string probabil-
ities P : Y∗ 7→ [0, 1]. Find a quasi Mealy HMM (Q,Y, A, c, b) that generates
P.

Problem 3.4 (minimal quasi Mealy realization problem). Given output string
probabilities P : Y∗ 7→ [0, 1]. Find a quasi Mealy HMM (Q,Y, A, c, b), with |Q|
as small as possible, that generates P.

Again, an implicit subproblem of the quasi Mealy realization problem is the
quasi Mealy realizability question: derive conditions for string probabilities P to
be representable by a quasi Mealy HMM of finite order. A solution to the quasi
Mealy realization problem is called a quasi realization of the string probabilities
P . We now define equivalence and minimality of hidden Markov models.

Definition 3.1. Two Mealy HMMs (either both positive, both quasi or one
positive and one quasi) with string probabilities P and P ′ respectively, are said
to be equivalent if P = P ′.

Definition 3.2. A Mealy HMM (X,Y,Π, π(1)) is called minimal if for any
other equivalent Mealy model (X′,Y,Π′, π′(1)) it holds that |X| ≤ |X′|.
Definition 3.3. A quasi Mealy model (Q,Y, A, c, b) is called minimal if for any
other equivalent quasi Mealy model (Q′,Y, A′, c′, b′) it holds that |Q| ≤ |Q′|.
Definition 3.4. A Mealy HMM (X,Y,Π, π(1)) is called minimal as a quasi
Mealy model if for any other equivalent quasi Mealy model (Q′,Y, A′, c′, b′) it
holds that |X| ≤ |Q′|.

It is clear that the order of a minimal quasi HMM is smaller than or equal to
the order of a minimal equivalent positive HMM. It follows from the definitions
above that a solution to the minimal Mealy realization problem is always a
minimal Mealy model. Also, a solution to the minimal quasi Mealy models is
a minimal quasi Mealy model. On the other hand, a solution of the minimal
Mealy realization problem can be obtained by first calculating a solution to the
Mealy realization problem and subsequently computing an equivalent minimal
Mealy model. The same holds for the minimal quasi Mealy realization problem.

Example 3.3. Consider the quasi Mealy model given by (Q,Y, A, c, b) with
Q = {1, 2, 3}, Y = {a, b, c, d},

A(a) =

2

4

0.000 0.000 0.000
−0.050 0.050 −0.040

0.040 −0.040 0.050

3

5 , A(b) =

2

4

0.405 0.405 0.405
−0.005 0.005 −0.005

0.410 0.400 0.410

3

5 ,

A(c) =

2

4

0.450 0.450 −0.360
0.000 0.000 0.000

−0.360 −0.360 0.450

3

5 , A(d) =

2

4

0.045 0.045 −0.045
−0.045 0.045 0.045
−0.090 0.000 0.060

3

5 ,

c =
ˆ

0.000 0.000 −0.500
˜

,
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b =
ˆ

0.000 0.000 2.000
˜⊤

.

Some of the elements in the matrices A(a), A(b), A(c) and A(d) are negative
and hence the elements of A do not represent probabilities. However, the
string probabilities generated by the hidden Markov models are nonnegative. We
compute the string probabilities generated by the quasi hidden Markov model for
the string ”aba” and the string ”dd”:

P(aba) = cA(a)A(b)A(a)b = 0.000405,

P(dd) = cA(d)A(d)b = 0.0121.

The string probabilities for the strings ”aba” and ”dd” generated by the quasi
Mealy model (Q,Y, A, c, b) are exactly equal to the string probabilities generated
by the positive Mealy model (X,Y,Π, π(1)) of Example 3.2. It can be shown
that this equality holds for all strings, from which we conclude that the quasi
Mealy model (Q,Y, A, c, b) and the Mealy model (X,Y,Π, π(1)) are equivalent
(see Example 3.4). Moreover, both the quasi model (Q,Y, A, c, b) as the positive
model (X,Y,Π, π(1)) are minimal. In this example, the order of a minimal quasi
HMM is smaller than the order of a minimal equivalent positive HMM.

3.2.2 Moore hidden Markov models

The process y taking values in Y with |Y| < ∞, is said to be representable by
a Moore hidden Markov model (Moore HMM) if there exists another process x
taking values in X with |X| <∞ such that (3.5) holds and such that

P (x(t+ 1), y(t)|x(t)) = P (x(t + 1)|x(t)) · P (y(t)|x(t)),

for all t ∈ N. The process x is called the state process and the process y is called
the output process. Without loss of generality, we identify X = {1, 2, . . . , |X|}.
It follows from (3.5) that x is a Markov process, and that y is a probabilistic
function of the Markov process x.

If P (x(t + 1), y(t)|x(t)) is independent of t (i.e. the joint process

[

x
y

]

is

time-homogeneous), then the process is representable by a time-homogeneous
Moore hidden Markov model defined as (X,Y,ΠX, β, π(1)) where X and Y are
the state and output sets and where

• ΠX ∈ R
|X|×|X|
+ with ΠXe = e is the state transition matrix, defined as

(ΠX)ij = P (x(t+ 1) = j|x(t) = i).

• β is a mapping from Y to R
|X|
+ , defined as βi(y) = P (y(t) = y|x(t) = i)

and is called the output map. It is required that
∑

y
β(y) = e.

• π(1) is a vector in R
1×|X|
+ defined as πi(1) = P (x(1) = i) for which π(1)e =

1. It is called the initial state distribution.
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In the remainder of the thesis, we consider only hidden Markov models that
are time-homogeneous such that we omit the word ”time-homogeneous” when
refering to a time-homogeneous Moore hidden Markov model.

The number of states |X| is the order of the Moore model. Suppose we have
an ordering (yk, k = 1, 2, . . . , |Y|) of the symbols of the output set Y, then the
output map β can be represented by a matrix, called the output matrix B defined
as B :=

[

β(y1) . . . β(y|Y|)
]

, with Be = e. An equivalent description of the
Moore HMM is therefore given by (X,Y,ΠX, B, π(1)). The conditions ΠXe = e,
∑

y
β(y) = e or Be = e and π(1)e = 1 are called consistency conditions of the

HMM. A Moore HMM is called stationary if π(1)ΠX = π(1). String probabilities
generated by a Moore HMM (X,Y,ΠX, β, π(1)) are given by

P(y) = π(1) diag(β(y1))ΠX . . . diag(β(y|y|))ΠXe,

where y = y1y2 . . . y|y| ∈ Y∗.
We can now formulate the Moore realization problem and the minimal Moore

realization problem.

Problem 3.5 (Moore realization problem). Given output string probabilities
P : Y∗ 7→ [0, 1]. Find a Moore HMM (X,Y,ΠX, β, π(1)) that generates P.

Problem 3.6 (minimal Moore realization problem). Given output string
probabilities P : Y∗ 7→ [0, 1]. Find a minimal Moore HMM (X,Y,ΠX, β, π(1)),
with |X| as small as possible, that generates P.

An implicit subproblem of the Moore realization problem is the Moore realiz-
ability question: derive conditions for string probabilities P to be representable
by a Moore HMM of finite order. A solution to the Moore realization problem
is called a Moore realization of the string probabilities P . Analogous to the
situation for Mealy hidden Markov models, one could define quasi Moore models
and the corresponding quasi Moore realization problem. However, working with
quasi Moore models does not give much advantage. For that reason, we do not
go into detail about quasi Moore models.

We now give the most complete definition of equivalence of hidden Markov
models.

Definition 3.5. Two HMMs (both either positive Mealy, either quasi Mealy or
Moore) with string probabilities P and P ′ respectively, are said to be equivalent
if P = P ′.

As for quasi Mealy HMMs, we define two types of minimality for Moore
HMMs.

Definition 3.6. A Moore HMM (X,Y,ΠX, β, π(1)) is called minimal if for any
other equivalent Moore model (X′,Y,Π′

X, β
′, π′(1)) it holds that |X| ≤ |X′|.

Definition 3.7. A Moore HMM (X,Y,ΠX, β, π(1)) is called minimal as a quasi
Mealy model if for any other equivalent quasi Mealy model (Q′,Y, A′, c′, b′) it
holds that |X| ≤ |Q′|.
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It follows from the definitions above that a solution to the minimal Moore
realization problem is always a minimal Moore model. On the other hand,
a solution of the minimal Moore realization problem can be obtained by
first calculating a solution to the Moore realization problem and subsequently
calculating a minimal equivalent Moore model.

3.2.3 Mealy versus Moore HMMs

Mealy and Moore hidden Markov models are different models. The difference
is due to the way output symbols are generated. For a Mealy model the
event of producing an output symbol at the present time instant given the
present state and the event of going to a next state given the present state are
dependent. For a Moore model these events are independent. In Figure 3.1, the
difference between Mealy and Moore hidden Markov models is schematically
shown. However, it can be shown that the ”expressive power” of Moore HMMs
and Mealy HMMs is the same [112, 113], meaning that the Mealy realization
problem of string probabilities P has a solution if and only if the Moore
realization problem of the same string probabilities P has a solution. It is
clear that for given string probabilities the order of a minimal Mealy model of
string probabilities does not exceed the order of a minimal Moore model.

i j

y

i j

y

(a) (b)

Figure 3.1: For a Mealy model (Subfigure (a)) the event of producing an output
symbol and the event of going to a next state are dependent. For a Moore model
(Subfigure (b)) these events are independent.

Converting a Moore hidden Markov model (X,Y,ΠX, β, π(1)) into a Mealy
hidden Markov model (X,Y,Π, π(1)) is always possible, using

Π(y) = diag(β(y))ΠX.

The obtained Mealy model can be nonminimal, even if the Moore model is
minimal.

Converting a Mealy model in a Moore model is also always possible. A Mealy
model is described by an output distribution for every state transition, while a
Moore model is described by an output distribution for every state. Now, given
a Mealy model, one can construct a Moore model by connecting a state of the
Moore model to every state transition of the Mealy model, and then calculating
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the state transition probabilities and output probabilities in the appropriate
way. Typically, this approach leads to a highly nonminimal Moore model even
if the Mealy model is minimal.

3.2.4 Minimality of HMMs

For positive HMMs, to the best of our knowledge, there does not exist any test
for minimality and no procedure to obtain a minimal model equivalent to a
given nonminimal model (open problem on p. 54 of [81]). In this section we
consider minimality of quasi Mealy models.

In Section 3.2.4.1 we explain a test for checking whether a quasi Mealy model
is minimal. In Section 3.2.4.2 subsequently, we describe a procedure to find a
minimal quasi Mealy model that is equivalent to a positive Mealy model or to
a nonminimal quasi Mealy model.

3.2.4.1 Test for minimality of quasi Mealy HMMs

An ordered set of strings M := (mk, k = 1, 2, . . .) is said to be in first
lexicographical ordering if the strings are ordered lexicographically from right to
left, and such that the length of the strings |mk| increases monotonically with
k. In the remainder of the thesis, the symbol U := (uk, k = 1, 2, . . .) is reserved
for the ordered set of all strings of Y∗ in first lexicographical ordering. The first
element of U is hence equal to φ. For Y = {0, 1}, the ordering U is given by
(φ, 0, 1, 00, 10, 01, 11, 000, 100, . . .). On the other hand, an ordered set of strings
N := (nk, k = 1, 2, . . .) is said to be in last lexicographical ordering if the strings
are ordered lexicographically from left to right, and such that the length of the
strings |nk| increases monotonically with k. The symbol V := (vk, k = 1, 2, . . .)
is reserved for the ordered set of all strings of Y∗ in last lexicographical ordering.
This gives (φ, 0, 1, 00, 01, 10, 11, 000, 001, . . .) for Y = {0, 1}.

Now, define the O(c, A)-matrix in R∞×|Q| and the C(A, b)-matrix in R|Q|×∞

of a quasi Mealy HMM (Q,Y, A, c, b) as

Oi,:(c, A) := cA(ui), (3.6)

C:,j(A, b) := A(vj)b, (3.7)

where ui is the i-th element of the set of strings from Y∗ in first lexicographical
ordering U and vj is the j-th element of the set of strings from Y∗ in last
lexicographical ordering V . In the case where Y = {0, 1} the matrices O(c, A)
and C(A, b) are

O(c, A) =

2

6

6

6

6

6

6

6

4

c

cA(0)
cA(1)
cA(00)
cA(10)

.

..

3

7

7

7

7

7

7

7

5

, C(A, b) =
ˆ

b A(0)b A(1)b A(00)b A(01)b . . .
˜

.
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Let O(t)(c, A) and O(1:t)(c, A) for t ∈ Z+ be submatrices of O(c, A) defined
as

O(t)(c, A) = [cA(ui)], with |ui| = t− 1,

O(1:t)(c, A) = [cA(ui)], with |ui| ≤ t− 1.

Analogously, we define the following submatices of C(A, b)

C(t)(A, b) = [A(vi)b], with |vi| = t− 1,

C(1:t)(A, b) = [A(vi)b], with |vi| ≤ t− 1.

We now prove a proposition that allows us to work with finite versions of
the matrices O(c, A) and C(A, b).

Proposition 3.1. Given a quasi Mealy HMM (Q,Y, A, c, b). Suppose there
exists a scalar k ∈ Z+ such that

rankO(1:k)(c, A) = rankO(1:k+1)(c, A),

then for l = 0, 1, 2, . . . it holds

rankO(c, A) = rankO(1:k+l)(c, A),

Proof: It follows from rankO(1:k)(c, A) = rankO(1:k+1)(c, A) that there
exists a matrix K such that KO(1:k)(c, A) = O(k+1)(c, A). It follows that
KO(1:k)(c, A)A(y) = O(k+1)(c, A)A(y) for each y ∈ Y, from which we conclude
that rankO(1:k+1)(c, A) = rankO(1:k+2)(c, A). By continuing in this way, we
find that rankO(1:k+1)(c, A) = rankO(1:k+2)(c, A) = rankO(1:k+3)(c, A) = . . .,
which proves the proposition.
As the rank of O(c, A) is at most equal to |Q|, the condition of Proposition 3.1
is fullfilled for k ≥ |Q|. However, it is possible that there exist a smaller k such
that the condition is fullfilled. Thus rankO(c, A) = rankO(1:|Q|)(c, A), which is
the reason why we frequently use the finite matrix O(1:|Q|)(c, A) instead of the
infinite matrix O(c, A). Analogous properties hold for C(A, b).

We now prove the following theorem, which provides a way to decide about
the minimality of a quasi Mealy model.

Theorem 3.1. The quasi Mealy HMM (Q,Y, A, c, b) is minimal if and only if
the matrices C(1:|Q|)(A, b) and O(1:|Q|)(c, A) have full row and full column rank
respectively.

Proof: Suppose (Q,Y, A, c, b) is not minimal, then there exists a minimal HMM
(Q′,Y, A′, c′, b′) with |Q′| < |Q| such that

O(1:|Q|)(c, A) C(1:|Q|)(A, b) = O(1:|Q|)(c
′, A′) C(1:|Q|)(A

′, b′).

Hence the rank of O(1:|Q|)(c, A) C(1:|Q|)(A, b) is equal to |Q′|, such that it follows
from Sylvester’s inequality3 that rankO(1:|Q|)(c, A)+rankC(1:|Q|)(A, b) ≤ |Q′|+

3Given matrices A ∈ Ra×n and B ∈ Rn×b, then Sylvester’s inequality states that
rank AB ≤ rank A + rank B − n.
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|Q|. It follows that at least one of the matrices C(1:|Q|)(A, b) and O(1:|Q|)(c, A)
is not of full (row or column) rank.

Now suppose that C(1:|Q|)(A, b) is not of full row rank and/or O(1:|Q|)(c, A)
is not of full column rank. It follows that rankO(1:|Q|)(c, A)C(1:|Q|)(A, b) < |Q|.
Therefore, from Theorem 4.2, there exists a realization of order smaller than
|Q|. Hence (Q,Y, A, c, b) is not minimal.

3.2.4.2 Conversion from positive Mealy to minimal quasi Mealy
model

In this section we describe a method to reduce a nonminimal quasi Mealy model.
Because a positive Mealy model is typically nonminimal as a quasi Mealy model,
the method can also be used to find a minimal quasi Mealy model which is
equivalent to a given (minimal or nonminimal) positive Mealy model.

Given a nonminimal quasi Mealy model (Q,Y, A, c, b), finding an equivalent
minimal Mealy model can be done in two steps. The first step is to find an
equivalent quasi Mealy model (Qc,Y, Ac, cc, bc) for which C(1:|Q|)(Ac, bc) has full
row rank and in the second step one determines an equivalent quasi model
(Qco,Y, Aco, cco, bco) for which C(1:|Q|)(A

co, bco) and O(1:|Q|)(c
co, Aco) have full

row and full column rank respectively. We now describe both steps.
It is clear that for a quasi Mealy model (Q,Y, A, c, b) every nonsingular

matrix T ∈ R|Q|×|Q| gives rise to an equivalent model (Q,Y, TAT−1, cT−1, T b).
Now let (Q,Y, A, c, b) be such that

rank C(1:|Q|)(A, b) = r < |Q|.

Now there exists a nonsingular matrix R such that the equivalent Mealy model
(Q,Y, A′ = RAR−1, c′ = cR−1, b′ = Rb) has the form

A′(y) =

|Q|−r r

[

∗ 0
∗ Ac(y)

]

|Q|−r

r
, ∀y ∈ Y,

b′ =

[

0
bc

]

|Q|−r

r
, c′ =

|Q|−r r

[

∗ cc
]

.

Any realization of this form has the property that the r-th order subsystem
(Qc,Y, Ac, cc, bc) is equivalent to the system (Q,Y, A, c, b) and that C(1:r)(A

c, bc)
has full row rank.

Notice that

RC(1:|Q|)(A, b) = C(1:|Q|)(A
′, b′) =

[

0 0
C(1:r)(A

c, bc) ∗

]

|Q|−r

r
,

which suggests a procedure to compute the transformation R. Indeed, R is such
that RC(1:|Q|)(A, b) has its first |Q| − r rows equal to 0. Such a transformation
R can be found using the SVD.
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We now describe an algorithm, inspired by [89], to find the transformation R
directly from the system matrices without computing the C-matrix. Therefore,
we first define the matrix P (A, b) for the model (Q,Y, A, c, b) as

P (A, b) := [ A:,1(y(1)) . . . A:,1(y(|Y|)) . . . A:,|Q|(y
(1)) . . . A:,|Q|(y

(|Y|)) b ] .

Algorithm 3.1. Given the quasi model (Q,Y, A, c, b) with the corresponding
matrix P (A, b). Run the following steps.

1. Set (Q′,Y, A′, c′, b′) = (Q,Y, A, c, b), P ′ = P , i = |X| · |Y|+1 and j = |Q|.

2. If every element of P ′
1:j,i is equal to 0 then goto step 5.

3. Find a transformation Ri =

[

R′
i 0

I|Q|−j

]

such that the vector RiP:,i

is of the form
[

0 . . . 0 ∗ . . . ∗
]⊤

where the number of 0’s is
equal to j − 1 and the number of scalars ∗ is equal to |Q| − j +
1. Transform (Q′,Y, A′, c′, b′) into (Q′,Y, RiA

′R−1
i , c′R−1

i , Rib
′) and

recalculate the matrix P ′.

4. Decrease i by 1, and decrease j by 1. If j = 0 goto step 6. If j > 0, go to
step 2.

5. Increase i by 1. Goto step 2.

6. Calculate R as R = RiRi−1 . . . R2R1.

So far we described a method to find, for a given nonminimal Mealy model
(Q,Y, A, c, b), an equivalent quasi Mealy model (Qc,Y, Ac, cc, bc) for which
C(1:|Qc|)(cc, Ac) has full row rank. We now give a procedure to determine an
equivalent quasi model (Qco,Y, Aco, cco, bco) for which C(1:|Qco|)(A

co, bco) and
O(1:|Qco|)(cco, Aco) have full row and full column rank respectively. For this
second step, suppose that

rank O(1:|Qc|)(c
c, Ac) = s < |Qc| = r,

for (Qc,Y, Ac, cc, bc). Then it can be shown that there exists a nonsingular
matrix S such that the equivalent Mealy model (Qc,Y, Ac′ = SAcS−1, cc′ =
ccS−1, bc′ = Sb) has the form

Ac′(y) =

r−s s

[ ∗ ∗
0 Aco(y)

]

r−s

s
, ∀y ∈ Y,

bc′ =

[

∗
bc

]

r−s

s
, cc′ =

r−s s

[

0 cc
]

.
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It holds for this realization that the s-th order subsystem (Qco,Y, Aco, cco, bco)
is equivalent with the system (Q,Y, A, c, b) and that C(Aco, bco) has full
row rank and that O(cco, Aco) has full column rank, i.e. the subsystem
(Qco,Y, Aco, cco, bco) is minimal. The procedure to find the transformation S is
dual to the procedure to find the transformation R as decribed before.

By combining both steps, we have that for every nonminimal Mealy model
(Q,Y, A, c, b) there exists a transformation T such that

TA(y)T−1 =

|Q|−r r−s s





∗ 0 0
∗ ∗ ∗
∗ 0 Aco(y)





|Q|−r

r−s

s

, ∀y ∈ Y,

T b =





0
∗
bco





|Q|−r

r−s

s

, cT−1 =

|Q|−r r−s s

[

∗ 0 cco
]

.

(3.8)

The transformation T can be computed from R and S by

T =

[

I 0
0 S

]

R.

Example 3.4. Given the Mealy model (X,Y,Π, π(1)) of Example 3.2, Algorithm
3.1 yields a transformation T such that

TΠ(a)T
−1

=

2

6

6

4

0.000 0 0 0

0.000 0.000 0.000 0.000
0.040 −0.050 0.050 −0.040
0.050 0.040 −0.040 0.050

3

7

7

5

,

TΠ(b)T
−1

=

2

6

6

4

0.000 0 0 0

0.405 0.405 0.405 0.405
0.005 −0.005 0.005 −0.005
0.400 0.410 0.400 0.410

3

7

7

5

,

TΠ(c)T
−1

=

2

6

6

4

0.000 0 0 0

−0.360 0.450 0.450 −0.360
0.000 0.000 0.000 0.000
0.450 −0.360 −0.360 0.450

3

7

7

5

,

TΠ(d)T
−1

=

2

6

6

4

0.000 0 0 0

−0.045 0.045 0.045 −0.045
−0.045 −0.045 0.045 0.045

0.000 −0.090 0.000 0.060

3

7

7

5

,

π(1)T
−1

=
ˆ

−0.400 0.000 0.000 −0.500
˜

,

T e =
ˆ

0 0.000 0.000 2.000
˜⊤

.

Hence a minimal quasi Mealy model equivalent to the given positive Mealy
model is given by (Q,Y, A, c, b) where X = {1, 2, 3} and

A(a) =

2

4

0.000 0.000 0.000
−0.050 0.050 −0.040

0.040 −0.040 0.050

3

5 , A(b) =

2

4

0.405 0.405 0.405
−0.005 0.005 −0.005

0.410 0.400 0.410

3

5 ,

A(c) =

2

4

0.450 0.450 −0.360
0.000 0.000 0.000

−0.360 −0.360 0.450

3

5 , A(d) =

2

4

0.045 0.045 −0.045
−0.045 0.045 0.045
−0.090 0.000 0.060

3

5 ,

c =
ˆ

0.000 0.000 −0.500
˜

,

b =
ˆ

0.000 0.000 2.000
˜⊤

.

We have shown that the model of Example 3.3 is a minimal quasi HMM
equivalent to the positive HMM of Example 3.2.
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3.3 Equivalence of HMMs

In this section we consider the equivalence problem for hidden Markov models:
given a minimal HMM, under which conditions is another Mealy model
equivalent to it and how is the set of all equivalent HMMs characterized.
The situation is analogous to the situation for linear stochastic models (see
Figure 3.2). Given a hidden Markov model (Mealy, quasi Mealy or Moore), an
equivalent model can be obtained by permuting the states. This is the analogue
of the equivalence transformation for linear stochastic models. However, as
decribed in this section, much more equivalents are possible. These equivalents
are the analogue of the fact that a convex set of state covariance matrices gives
rise to equivalent linear stochastic models.

Linear
Stochastic
Models

Hidden
Markov
Models

Equivalence
transformation

Permutation
of states

State covariance
in convex set

Prp. 3.2 - 3.5,
Th. 3.3

Figure 3.2: The equivalence problem for the different types of hidden Markov
models (Mealy, quasi Mealy and Moore hidden Markov models) is analogous to
the equivalence problem for linear stochastic models. Given a hidden Markov
model, an equivalent model can be obtained by permuting the states. This is
the analogue of the equivalence transformation for linear stochastic models.
However, much more equivalents are possible: see Proposition 3.2, Proposition
3.3, Proposition 3.4, Theorem 3.3 and Proposition 3.5. These equivalents are
the analogue of the fact that a convex set of state covariance matrices gives rise
to equivalent linear stochastic models.

In Section 3.3.1 we consider the equivalence problem for Mealy HMMs and
in Section 3.3.2 for Moore HMMs. In Section 3.3.3 we give a summary of the
equivalence problem for hidden Markov models.

3.3.1 Equivalence of Mealy HMMs

In this section we investigate the equivalence problem both for the quasi Mealy
case (Section 3.3.1.1) as for the positive Mealy case (Section 3.3.1.2).
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3.3.1.1 Equivalence of quasi Mealy HMMs

Given a certain quasi Mealy model, one can always obtain an equivalent model
by permuting the states. However, there are many more equivalent models than
only the ones obtained by permuting states (Figure 3.2). For quasi Mealy HMMs
the equivalence of realizations is described by the following proposition [112,113].

Proposition 3.2. Consider a minimal quasi Mealy model (Q,Y, A, c, b). The
quasi Mealy model (Q, Y, A′, c′, b′) is an equivalent model if and only if there
exists a nonsingular matrix T , such that

∀y ∈ Y : A′(y) = TA(y)T−1,
c′ = cT−1,
b′ = Tb.

(3.9)

It can be proven that the set of all quasi Mealy models equivalent to a given
quasi Mealy model forms a semi-algebraic set (see Appendix B). This set can
be constructed (see Appendix B), which means that the set can be described as
a finite union of subsets.

3.3.1.2 Equivalence of positive Mealy HMMs

Again, given a certain positive Mealy model, one can always obtain an equivalent
model by permuting the states. However, there are many more equivalent
models than only the ones obtained by permuting states (Figure 3.2). In this
section we describe the complete equivalence sets for positive Mealy models.
We first deal with a special situation where the Mealy model is minimal as a
quasi Mealy model. Next, we consider the most general case, where the order
of the minimal Mealy model is larger than or equal to the order of a minimal
equivalent quasi Mealy model.

For the situation where the Mealy model is minimal as a quasi Mealy model,
we prove the following proposition.

Proposition 3.3. Given a minimal Mealy model (X,Y,Π, π(1)) which is
also minimal as a quasi Mealy model. Then the model (X,Y,Π′, π′(1)) is
an equivalent Mealy model if and only if there exists a nonsingular matrix
T ∈ R|X|×|X| such that

∀y ∈ Y : Π′(y) = TΠ(y)T−1,
π′(1) = π(1)T−1,
T e = e,
∀y ∈ Y : Π′(y) ≥ 0,
π′(1) ≥ 0.

(3.10)

Proof: The proposition basically follows from Proposition 3.2. For the ⇐
part, it remains to be proven that (X,Y,Π′, π′(1)) fullfilling (3.10) satisfies the
consistency conditions of Mealy models. To see this, first note that π′(1)e =
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π(1)T−1e = π(1)e = 1. Next, from

∑

y∈Y

Π′(y)e =
∑

y∈Y

TΠ(y)T−1e = T





∑

y∈Y

Π(y)



 e = Te = e,

it follows that
∑

y∈Y Π′(y) is a stochastic matrix.
In the same way as in the proof of the above proposition, it can be

proven that if (X,Y,Π, π(1)) is stationary (i.e. π(1)
∑

y∈Y Π(y) = π(1)), then

(X,Y,Π′, π′(1)) is also stationary.
It can be proven that the set of all positive Mealy models equivalent to a

given positive Mealy model, that is minimal as a quasi model, forms a semi-
algebraic set (see Appendix B). This set can be constructed (see Appendix B),
which means that the set can be described as a finite union of subsets.

For the most general situation, when the order of the minimal Mealy model
is larger than or equal to the minimal quasi Mealy order, we prove the following
proposition.

Proposition 3.4. Given a minimal Mealy model (X,Y,Π, π(1)). Then the
model (X,Y,Π′, π′(1)) is an equivalent Mealy model if and only if there exist
positive scalars r, r′ and s, nonsingular matrices T and T ′ ∈ R|X|×|X|, and a
minimal quasi Mealy model ({1, . . . , s},Y, Aco, cco, bco) such that

∀y ∈ Y : TΠ(y)T−1 =

|X|−r r−s s





∗ 0 0
∗ ∗ ∗
∗ 0 Aco(y)





|X|−r

r−s

s

,

∀y ∈ Y : T ′Π′(y)T ′−1 =

|X|−r′ r′−s s





A(1,1)(y) 0 0
A(2,1)(y) A(2,2)(y) A(2,3)(y)
A(3,1)(y) 0 Aco(y)





|X|−r′

r′−s

s

,

π(1)T−1 =

|X|−r r−s s

[

∗ 0 cco
]

, T e =





0
∗
bco





|X|−r

r−s

s

,

π′(1)T ′−1 =

|X|−r′ r′−s s

[

c(1) 0 cco
]

, T ′e =





0
b(2)
bco





|Q|−r′

r′−s

s

,

∀y ∈ Y : Π′(y) ≥ 0,
π′(1) ≥ 0,
∑

y

[

A(2,2)(y) A(2,3)(y)
]

[

b(2)
bco

]

= b(2).

(3.11)

Proof: The proof follows from the procedure for obtaining a minimal quasi
Mealy model from a positive Mealy model described in Section 3.2.4.2. For the
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⇐ part, it remains to be proven that (X,Y,Π′, π′(1)) fullfilling (3.11) satisfies the
consistency conditions of Mealy models. To prove that π′(1) has element sum
equal to 1, one can see that π′(1)e = ccobco = π(1)e = 1. Next,

∑

y
Π′(y)e = e

if and only if

∑

y





A(1,1)(y) 0 0
A(2,1)(y) A(2,2)(y) A(2,3)(y)
A(3,1)(y) 0 Aco(y)









0
b(2)
bco



 =





0
b(2)
bco



 . (3.12)

This condition is true if
∑

y
Aco(y)bco = bco, which is true because

∑

y
Π(y)e = e.

If the original model is stationary (i.e. π(1)
∑

y∈Y Π(y) = π(1)), then an
equivalent model is not necessary stationary. By adding the condition

[

c(1) cco
]

∑

y

[

A(1,1)(y)
A(3,1)(y)

]

= c(1). (3.13)

to (3.11), a stationary model will give rise to an equivalent stationary model.

To check whether two (positive or quasi) Mealy models are equivalent,
one can use Proposition 3.4 as follows. First find for both Mealy models an
equivalent minimal quasi Mealy model using the procedure of Section 3.2.4.2.
Next check whether there exists a transformation that transforms the first quasi
model into the second quasi model. If such a transformation exists, the original
models are equivalent, otherwise, they are not equivalent.

Example 3.5. Suppose we are given the positive Mealy model (X,Y,Π, π(1))
of Example 3.3, and the quasi Mealy model (Q,Y, A, c, b) defined below. The
question is to check whether both models are equivalent or not.

A(a) =

2

4

0.050 −0.018 0.005
0.082 −0.047 0.012
0.662 −0.378 0.097

3

5 , A(b) =

2

4

0.410 −0.189 −0.001
−0.870 0.400 0.004

0.092 −0.042 0.010

3

5 ,

A(c) =

2

4

0.450 0.166 0.001
0.783 0.451 0.003

−0.021 −0.011 −0.000

3

5 , A(d) =

2

4

0.090 0.041 −0.005
0.006 0.002 0.011

−0.747 −0.343 0.087

3

5 ,

c =
ˆ

−1.1759 0.001 0.000
˜

,

b =
ˆ

−0.850 0.001 0.014
˜⊤

.

Using the procedure of Section 3.2.4.2, one can compute a minimal quasi HMM
(Q,Y, A(co), c(co), b(co)) equivalent to the positive model (X,Y,Π, π(1)) (see
Example 3.4). Subsequently, it is easy to verify that there exists a transformation
T between (Q,Y, A(co), c(co), b(co)) and (Q,Y, A, c, b). We conclude that the given
positive and quasi HMMs are equivalent.

Again, it can be proven that the set of all positive Mealy models equivalent
to a given positive Mealy model forms a semi-algebraic set (see Appendix B)
which can be constructed (see Appendix B).
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3.3.2 Equivalence of Moore HMMs

In this section we investigate the set of equivalent Moore HMMs. Clearly, we
obtain a model equivalent to a given positive Moore model by permuting the
states of the original model. However, other equivalent models are possible
(Figure 3.2). In this section we describe the complete set of equivalent models
to a Moore model. We first deal with the case where the Moore model is minimal
as a quasi Mealy model. Next we consider the general case, where the order
of the minimal Moore model is larger than or equal to the order of a minimal
equivalent quasi Mealy model.

Consider a Moore model that is minimal as a quasi Mealy model. We show
that under certain conditions every equivalent Moore model corresponds to a
permutation of the states of the given model.

Theorem 3.2. Let (X,Y,ΠX, B, π(1)) be a Moore HMM, which is minimal as
a quasi Mealy model. Suppose the state transition matrix ΠX has full rank and
all states of the Moore model have a different output distribution (i.e. no two
rows of B are equal to each other). Then every minimal Moore model that is
equivalent to the given Moore model is obtained by permuting the states of the
original model.

Proof: Suppose that (X,Y,Π′
X, B

′, π′(1)) is equivalent to and of the same order
as (X,Y,ΠX, B, π(1)). Then from Proposition 3.2, there exists a nonsingular
matrix T such that

∀y ∈ Y : diag(β′(y))Π′
X = T diag(β(y))ΠXT

−1, (3.14)

π′(1) = π(1)T−1,

e = Te.

Since ΠX has full rank, it follows that Π′
X has full rank. So it follows from (3.14)

that there exist nonsingular matrices T and S such that

∀y ∈ Y : diag(β′(y)) = T diag(β(y))S−1,
Π′

X = SΠXT
−1.

For the model (X,Y,Π′
X, B

′, π′(1)), it must hold that
∑

y∈Y T diag(β(y))S−1 =
I, which gives T = S. It follows that

∀y ∈ Y : diag(β′(y)) = T diag(β(y))T−1. (3.15)

Together with Te = e and with the fact that all states of the Moore model have
a different output distribution, this allows to conclude that T can only be equal
to a permutation matrix.

If there exist states with the same output distribution, and if all the other
conditions of Theorem 3.2 are fulfilled, then there exists a set of equivalent
Moore models (apart from the models obtained by permuting the states).

Theorem 3.3. Let (X,Y,ΠX, B, π(1)) be a Moore HMM, which is minimal as
a quasi Mealy model. Suppose the state transition matrix ΠX has full rank and
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the first r states have the same output distribution (i.e. the first r rows of B
are equal to each other). Then the model (X′,Y,Π′

X, B
′, π′(1)) is an equivalent

Moore model if and only if there exists a permutation matrix P ∈ R|Q|×|Q| and
a nonsingular matrix T ∈ Rr×r such that

Π′
X = P

[

T 0
0 I

]

ΠX

[

T−1 0
0 I

]

P⊤,

B′ = PB,

π′(1) = π(1)

[

T−1 0
0 I

]

P⊤,

T e = e,
Π′

X, B
′, π′(1) ≥ 0.

Proof: The theorem follows from Equation (3.15) and from the fact that first
r states have the same output distribution.

Of course, an extended version of Theorem 3.3 holds, in case there are
different sets of states with the same output distribution.

Example 3.6. Consider the Moore model (X,Y,ΠX, B, π(1)) with

ΠX =





0.8 0.1 0.1
0.3 0.3 0.4
0.2 0.2 0.6



 , B =





0.3 0.3 0.4
0.1 0.1 0.8
0.2 0.6 0.2



 ,

π(1) =
[

0.5405 0.1622 0.2973
]

.

It can be shown4 that the order of a minimal equivalent quasi Mealy model
equals 3. Hence the Moore model is minimal as a quasi Mealy model. In addition
all rows of B are different and ΠX has full rank. We conclude from Theorem
3.2 that the only way to obtain a minimal Moore equivalent to the given model
is by permuting the states.

We now consider the general case where the order of the Moore model is
larger than or equal to the order of a minimal equivalent quasi Mealy model.

Proposition 3.5. Consider a minimal Moore model (X,Y,ΠX, B, π(1)). The
Moore model (X,Y,Π′

X, B
′, π′(1)) is an equivalent model if and only if there exist

positive scalars r, r′ and s, nonsingular matrices T and T ′ ∈ R|X|×|X|, and a

4By computing a Mealy model (X, Y,Π, π(1)) equivalent to the Moore model and by
subsequently applying the test for minimality of Mealy models (explained in Section 3.2.4.1).
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minimal quasi Mealy model ({1, . . . , s},Y, Aco, cco, bco) such that

∀y ∈ Y : T diag(β(y))ΠXT
−1 =

|X|−r r−s s




∗ 0 0
∗ ∗ ∗
∗ 0 Aco(y)





|X|−r

r−s

s

,

∀y ∈ Y : T ′ diag(β′(y))Π′
XT

′−1 =

|X|−r′ r′−s s




A(1,1)(y) 0 0
A(2,1)(y) A(2,2)(y) A(2,3)(y)
A(3,1)(y) 0 Aco(y)





|X|−r′

r′−s

s

,

π(1)T−1 =
|X|−r r−s s
[

∗ 0 cco
]

, T e =





0
∗
bco





|X|−r

r−s

s

,

π′(1)T ′−1 =
|X|−r′ r′−s s

[

c(1) 0 cco
]

, T ′e =





0
b(2)
bco





|X|−r′

r′−s

s

,

Π′
X, B

′, π′(1) ≥ 0,
B′e = e,
∑

y

[

A(2,2)(y) A(2,3)(y)
]

[

b(2)
bco

]

= b(2).

(3.16)

Proof: The proof is analogous to the proof of Proposition 3.3.
The same remark concerning stationarity holds as for Proposition 3.4.

The set of all positive Moore models equivalent to a given positive Moore
model forms a semi-algebraic set which can be constructed (see Appendix B).

3.3.3 Summary of equivalence of HMMs

We now summarize the results concerning the equivalence sets of quasi and
positive Mealy HMMs and of Moore HMMs.

In Figure 3.3, we consider the relation between the sets of quasi and positive
Mealy HMMs. From Proposition 3.2, it follows that there exists a set of
equivalent quasi Mealy models. The order of an equivalent minimal positive
Mealy model is either equal to the order of the minimal quasi Mealy model
(Figure 3.3(a)), or larger than the order of the minimal quasi Mealy model
(Figure 3.3(b)). In the first case the set of equivalent positive Mealy models is
described by Proposition 3.3, while in the second case the set is described by
Proposition 3.4.

In Figure 3.4, we consider the relation between the sets of quasi Mealy and
positive Moore HMMs. First of all, as described by Proposition 3.2 there exists a
set of equivalent quasi Mealy models. The order of a minimal equivalent Moore
model is either equal to the order of the minimal quasi Mealy model (Figure
3.4(a)-(b)), or larger than the order of the minimal quasi Mealy model (Figure
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3.4(c)). If in the first case, every state of the Moore model has a different output
distribution and the transition matrix has full rank, then the Moore model is
unique (up to a permutation of the states) by Theorem 3.2 (Figure 3.4(a)).
Otherwise if some states have the same output distribution, there exists a set of
equivalent Moore models described by Theorem 3.3 (Figure 3.4(b)). If the order
of a minimal equivalent Moore model is larger than the order of the quasi Mealy
model, then there exists a class of Moore models described by Proposition 3.5.

minimal quasi Mealy models

minimal
Mealy models

minimal quasi
Mealy models

minimal
Mealy models

(a) (b)

Figure 3.3: This figure summarizes the equivalence classes for Mealy HMMs.
There exists a set of equivalent quasi Mealy models. The order of an equivalent
minimal positive Mealy model is either equal to the order of the minimal quasi
Mealy model (Subfigure (a)), or larger than the order of the minimal quasi Mealy
model (Subfigure (b)). In the first case the set of equivalent positive Mealy models
is described by Proposition 3.3, while in the second case the set is described by
Proposition 3.4.

minimal quasi Mealy models

unique minimal
Moore model

minimal quasi Mealy models

minimal
Moore models

minimal quasi
Mealy models

minimal
Moore models

(a) (b) (c)

Figure 3.4: This figure summarizes the equivalence classes of quasi Mealy and
positive Moore models. There exists a set of equivalent quasi Mealy models. The
order of a minimal equivalent Moore model is either equal to the order of the
minimal quasi Mealy model (Subfigure (a)-(b)), or larger than the order of the
minimal quasi Mealy model (Subfigure (c)). If in the first case, every state of
the Moore model has a different output distribution and the transition matrix
has full rank, then the Moore model is unique (up to a permutation of the states)
by Theorem 3.2 (Subfigure (a)). Otherwise if some states have the same output
distribution, there exists a set of equivalent Moore models described by Theorem
3.3 (Subfigure (b)). If the order of a minimal equivalent Moore model is larger
than the order of the quasi Mealy model, then there exists a class of Moore
models described by Proposition 3.5 (Subfigure (c)).
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3.4 Linear stochastic models

Hidden Markov models are closely related to linear stochastic models. We will
return to the close relation between hidden Markov models and linear stochastic
models in many of the following chapters. In this section we introduce linear
stochastic models.

A (time-homogeneous) linear stochastic model is defined as

x(t+ 1) = Ax(t) + w(t),

y(t) = Cx(t) + v(t),

where y is the output process taking values in the output space Rp and x is the
state process taking values in the state space Rn. The random variables w(t)
and v(t) are zero mean, white Gaussian vector variables with covariance matrix

E(

[

w(p)
v(p)

]

[

w(q)⊤ v(q)⊤
]

) =

[

Q S
S⊤ R

]

δ(p, q),

where
[

Q S
S⊤ R

]

� 0,

δ(p, q) is the Kronecker delta and x(0) is a zero mean random variable,
independent of w and v, with covariance E(x(0)x(0)⊤) = P . It is clear that
P , Q and R need to be positive definite. The dimension of the state space n is
called the order of the linear stochastic model. Throughout the thesis, we only
consider linear stochastic models for which the process x is stationary, i.e.

E(x(t)) = 0,

E(x(t)x(t)⊤) =: P,

where the state covariance matrix P is independent of the time t. This implies
that all eigenvalues of A are strictly inside the unit circle. It can be shown for
stationary models that

P = APA⊤ +Q.

From the fact that x is stationary, it follows that y is also stationary. A
stationary linear stochastic model is denoted as (A,C, P,Q,R, S).

First notice that a linear stochastic model as defined above is the analogue of
a Mealy HMM since the generation of the next state given the present state and
the generation of the output given the present state are dependent events. A
linear stochastic model with S = 0 is the analogue of a Moore HMM. Analogous
to the quasi HMM case, one could call (A,C, P (q), Q(q), R(q), S(q)), with P (q),
Q(q) and R(q) not necessary positive definite, a quasi linear stochastic model.
However, working with quasi linear stochastic models does not yield much
advantage as we will show in Section 4.5 that the positive definiteness of P ,
Q and R comes for free in the linear stochastic realization algorithm. This is a
difference between linear stochastic models and hidden Markov models.
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Let Λ : Z+ 7→ Rp×p be the autocovariances of y, defined as Λ(t) =
E(y(τ + t)y(τ)⊤). The autocovariances generated by the linear stochastic model
(A,C, P,Q,R, S) are given by

Λ(0) = CPC⊤ +R,

Λ(t) = CAt−1G,

where G is defined as G := E(x(t+1)y(t)⊤)) and calculated as G = APC⊤+S.
We can now formulate the linear stochastic realization problem and the

minimal linear stochastic realization problem. Notice that we only consider a
Mealy version of the realization problem, in contrast to realization for HMMs
where we made a distinction between the Moore and Mealy realization problem.

Problem 3.7 (linear stochastic realization problem). Given autocovariances
Λ : Z+ 7→ Rp×p. Find a linear stochastic model (A,C, P,Q,R, S) that generates
Λ.

Problem 3.8 (minimal linear stochastic realization problem). Given autoco-
variances Λ : Z+ 7→ Rp×p. Find a linear stochastic model (A,C, P,Q,R, S),
with A as small as possible, that generates Λ.

An implicit subproblem of the linear stochastic realization problem is the
linear stochastic realizability question: derive conditions for autocovariances Λ
to be representable by a linear stochastic model of finite order. A solution to the
linear stochastic realization problem is called a realization of the autocovariances
Λ. We now define equivalence and minimality of linear stochastic models.

Definition 3.8. Two linear stochastic models with autocovariances Λ and Λ′

respectively, are said to be equivalent if Λ = Λ′.

Definition 3.9. A linear stochastic model (A,C, P,Q,R, S) of order n is called
minimal if for any other equivalent linear stochastic model (A′, C′, P ′, Q′, R′, S′)
of order n′ it holds that n ≤ n′.

Definition 3.10. A Moore linear stochastic model (A,C, P,Q,R, 0) of order n
is called minimal as a Mealy model if for any equivalent Mealy linear stochastic
model (A′, C′, P ′, Q′, R′, S′) of order n′ it holds that n ≤ n′.

3.5 Equivalence of linear stochastic models

One can easily see that for Mealy as well as for Moore linear stochastic
models, an equivalent model is obtained by changing the basis in the state
space as x 7→ Tx, with T nonsingular. The equivalent model is then given
by (TAT−1, CT−1, TPT⊤, TQT⊤, R, TS). This state transformation is the
analogue of the permutation of the states which is always possible for HMMs.

However, again analogous to the quasi hidden Markov case, there are more
equivalent models for Mealy linear stochastic models than only those obtained
by applying a similarity transformation (Figure 3.2). Indeed, it can be proven
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[46] that for a given A, C, G and Λ(0), i.e. for a given autocovariance sequence
and given state space basis, every P = P⊤ � 0 which fullfills

[

P −APA⊤ G−APC⊤

G⊤ − CPA⊤ Λ(0) − CPC⊤

]

� 0,

where X � 0 means that X is nonnegative definite, gives rise to an equivalent
model (A,C, P, P −APA⊤,Λ(0)−CPC⊤, G−APC⊤). This observation is the
analogue of the fact that for Mealy HMMs one has equivalent models which are
not obtained by permuting states.

For Moore HMMs on the other hand, under certain conditions, there exist
only trivial equivalent models (Theorem 3.2). We here prove the analogous
theorem for linear stochastic models.

Theorem 3.4. Let (A,C,Q, P,R, 0) be a Moore linear stochastic model which is
minimal as a Mealy model. Suppose that A has full rank and C has full column
rank. Then every Moore model that is equivalent to the given Moore model is
obtained by performing a change of basis in the state space.

Proof: From the fact that S = 0 we find that G − APC⊤ = 0, and from the
fact that C has full column rank and A full rank, we find that P = A−1G(C⊤)†.
So for a given state space basis there is only one possible choice of P , which
proves the theorem.

The condition that C has full column rank (condition of Theorem 3.4) is
analogous to the condition that a different state at two time instants gives
a different output distribution at these time instants. This corresponds to
the condition for HMMs which requires every state to have a different output
distribution (Theorem 3.2). The fact that A needs to have full rank is the
analogue of the fact that for HMMs ΠX needs to have full rank. We conclude
that Theorem 3.4 is the linear stochastic equivalent of Theorem 3.2.

If C is not of full column rank, but all other conditions of Theorem 3.4 are
fulfilled, then there exists a set of equivalent Moore models (apart from the
models obtained by performing a base change in the state space).

Theorem 3.5. Let (A,C, P,Q,R, 0) be a minimal Moore linear stochastic model
which is minimal as a Mealy model, with G = APC⊤ and Λ(0) = CPC⊤ +R.
Suppose that A has full rank and C is not of full column rank. Then the model
(A,C, P ′, Q′, R′, 0) is an equivalent Moore model if and only if

G = AP ′C⊤,
Q′ = P ′ −AP ′A⊤,
R′ = Λ(0) − CP ′C⊤.

Proof: The theorem follows from the proof of Theorem 3.4.
Notice that Theorem 3.5 is the linear stochastic equivalent of Theorem

3.3. In case the Moore model is not minimal as a Mealy model model, then
again analogous to the HMM case (cfr. Proposition 3.5), a complete set of
equivalent models exists. We conclude that for linear stochastic model, we have
a completely analogous situation as is described in Figure 3.4 for HMMs.
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3.6 Conclusions

In this chapter we formally introduced hidden Markov models and linear
stochastic models. Concerning hidden Markov models, we provide a test to
check whether a quasi Mealy hidden Markov model is minimal and describe
a procedure to obtain a minimal quasi Mealy model equivalent to a given
nonminimal quasi or positive hidden Markov model.

We also consider the equivalence problem for hidden Markov models. We
provide a test to check whether two positive Mealy hidden Markov models
are equivalent and give a description of the complete set of equivalent models.
Subsequently, we prove that Moore models that are minimal as a quasi Mealy
models, under certain conditions, have only trivial equivalents. Moore models
that are not minimal as a quasi model on the other hand can have equivalent
models. We provide a test for checking the equivalence of Moore models and
describe the complete set of equivalent models.

Finally, the equivalence problem for linear stochastic models is considered.
It turns out that the situation for linear stochastic models is analogous to the
situation for hidden Markov models.





Chapter 4

Quasi realization of hidden
Markov models

The quasi realization problem for hidden Markov models consists in finding a
quasi hidden Markov model corresponding to given string probabilities of all
finite length output strings. The quasi realization problem was first stated
in [52, 84]. The quasi realization question consists of three subquestions. The
first question is the realizability question: under which conditions are string
probabilities representable by a hidden Markov model. The solution to the
realizability question lies in the construction of a doubly infinite Hankel matrix
containing the string probabilities. It can be shown that string probabilities are
realizable by a quasi hidden Markov model if and only if the associated Hankel
matrix of string probabilities has finite rank [52, 84]. The second question is
the realization question itself. In [4, 112, 113] algorithms are provided to solve
the quasi realization problem for hidden Markov models. The starting point
of these algorithms is the factorization of the Hankel matrix containing the
string probabilities. The third question is the equivalence question find all quasi
hidden Markov models that realize given string probabilities. The equivalence
problem for quasi hidden Markov models has been considered in [112,113].

Altough the exact quasi realization problem is nice from a theoretical point
of view, it can not be used in practical applications. The reason therefore
is twofold: first of all in practical applications only a finite amount of string
probabilities are given instead of string probabilities of all finite length strings
(i.e. an infinite amount of string probabilities) and second the given string
probabilities may not be exact but only estimated. We introduce the partial
quasi realization problem that builds a quasi HMM corresponding to a finite
amount of exact string probabilities and the approximate partial quasi realization
problem that assumes a finite amount of approximate string probabilities to be
given. To the best of our knowledge the partial and approximate partial quasi
realization problems have not been considered before.

The system matrices of a quasi realization do not have an interpretation in
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terms of probabilities, nevertheless quasi realizations do have their importance
in practical applications. It will be shown in Chapter 7, that for several output
estimation problems it suffices to have a quasi instead of a positive realization.
The advantage of this is twofold. First of all a quasi realization can be obtained
more easily as compared to a positive realization. In addition, the order of a
quasi realization is typically smaller than the order of an equivalent positive
realization which makes the estimation problem less complex.

The quasi realization problem for hidden Markov models is closely related
to the realization problem of formal power series [17, 70, 82], which is itself
a generalization of realization theory for linear time-invariant deterministic
systems [56, 71, 93, 118]. For this last class of systems the partial realization
problem has been considered in [54, 63, 98] and the approximate partial
realization problem in [71].

List of own contributions

We here describe our contributions to the quasi realization problem for hidden
Markov models.

• In Section 4.1.1 we prove that the rank of the finite generalized Hankel
matrix of string probabilities is equal to the rank of its last block
column (Proposition 4.1) and that the rank of the finite Hankel matrix of
stationary string probabilities is equal to the rank of its largest subblock
(Proposition 4.2). In Proposition 4.3 we prove that the rank of the Hankel
matrix of string probabilities generated by a quasi HMM of order |Q| is
contained in the leading submatrix of blocksize |Q| × |Q|.

• In Theorem 4.1 we show that the finite rank property of the generalized
Hankel matrix is equivalent to the existence of a recursion between the
string probabilities. Algorithm 4.1 provides a way to compute a quasi
realization corresponding to given string probabilities. We show further
that a quasi realization of consistent string probabilities is consistent and
a quasi realization of consistent stationary string probabilities is consistent
and stationary.

• In Section 4.2.1 we introduce the partial quasi realization problem, we
prove that it always has a solution and provide an algorithm to find the
solution. However, the minimal partial realization problem is hard in
practice. We introduce the minimal partial pseudo realization problem.
We prove that, if a certain rank condition holds, the minimal pseudo
realization algorithm can be solved using the same algorithm as was used
for the complete quasi realization problem. In addition under the same
rank condition, we prove that a solution to the partial pseudo realization
problem is unique up to a similarity transformation. We also give some
hints for the solution to the partial pseudo relization in case the rank
condition does not hold.
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• In Section 4.3 we introduce the approximate partial pseudo realization
problem for hidden Markov models. Different methods are presented
to solve this problem. The first methods aim at finding a low rank
approximation of the finite Hankel matrix either by projecting the string
probabilities contained in the Hankel matrix on the consistency and/or
stationarity constraints or by using low rank matrix approximation
techniques or by a combination of both. The last method aims at obtaining
a full-order balanced realization of the approximate string probabilities
and subsequently reduces the balanced realization to find an approximate
pseudo realization of the approximate string probabilities.

• In Section 4.4 the approximate partial quasi realization algorithm is
succesfully applied to the problem of modeling DNA sequences. Therefore,
first strings probabilities are estimated from the sequences and subse-
quently the approximate quasi realization algorithm is applied to find a
model of the sequences.

Section-by-section overview

In Section 4.1 the exact quasi realization problem is reviewed. In Section
4.2 we consider the partial quasi realization problem and in Section 4.2 the
approximate partial quasi realization problem. In Section 4.4 the approximate
quasi realization algorithm is applied to the modeling of DNA sequences. In
Section 4.5 we compare the quasi realization problem with the realization
problem for linear stochastic models.

4.1 Exact quasi realization

In this section we consider the exact minimal quasi realization problem for Mealy
hidden Markov models (Problem 3.4). In this problem we are given exact string
probabilities of a finite-valued process and the problem is to find a quasi Mealy
HMM that realizes these string probabilities.

In Section 4.1.1 we introduce the generalized Hankel matrix associated with
the string probabilities. This matrix plays a crucial role in the realization
problem. In Section 4.1.2 we solve the realizability question and provide an
algorithm to find a quasi realization of given string probabilities. In Section 4.1.3
finally, we prove some interesting properties of the obtained quasi realization
and relate these properties to properties of the string probabilities.

4.1.1 Generalized Hankel matrix

Define the (generalized) Hankel matrix HP of string probabilities P as a doubly
infinite matrix with

(HP)ij := P(uivj),

where ui is the i-th element of the set of strings from Y∗ in first lexicographical
ordering U and vj is the j-th element of the set of strings from Y∗ in last
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lexicographical ordering V . We use ”H” instead of ”HP” whenever the string
probabilities P that define the Hankel matrix are clear from the context. For
refering to the i-th row of H, we use ”the row of H indexed by ui” and for
refering to the j-th column of H, we use ”the column of H indexed by vj”. In
the case where Y = {0, 1} the (generalized) Hankel matrix is given by

H =





















1 P(0) P(1) P(00) P(01) P(10) P(11) . . .

P(0) P(00) P(01) P(000) P(001) P(010) P(011) . . .

P(1) P(10) P(11) P(100) P(101) P(110) P(111) . . .

P(00) P(000) P(001) P(0000) P(0001) P(0010) P(0011) . . .

P(10) P(100) P(101) P(1000) P(1001) P(1010) P(1011) . . .

P(01) P(010) P(011) P(0100) P(0101) P(0110) P(0111) . . .

P(11) P(110) P(111) P(1100) P(1101) P(1110) P(1111) . . .

.

..
.
..

.

..
.
..

.

..
.
..

.

..
. . .





















.

The matrix H(t1,t2) is defined as the subblock of H given by

H(t1,t2) := [P(uivj)], with |ui| = t1 − 1, |vj | = t2 − 1.

The name ”generalized Hankel” matrix comes from the analogy with the
block Hankel matrix that is frequently used in system theory of linear time-
invariant systems. In a block Hankel matrix, the blocks along the anti-diagonals
are equal to each other. The generalized Hankel matrix is not of the block Hankel
structure. However, it has similar properties. First of all, the blocks along
every anti-diagonal contain string probabilities of strings of the same length.
For instance, the blocks H(3,1), H(2,2) and H(1,3) all contain string probabilities
of strings of length 2. Moreover, the blocks along a certain anti-diagonal can be
constructed from each other. We explain this for the case where |Y| = 2. Given
the block H(1,3), cut it in the middle and put the right hand part below the left
hand part. This gives the block H(2,2). To find the block H(3,1), the procedure
is similar: cut the block H(2,2) in the middle and put the right hand part below
the left hand part. This gives H(3,1).

The finite Hankel matrix H(1:t1,1:t2) is defined as the top-left corner of the
Hankel matrix H

H(1:t1,1:t2) := [P(uivj)], with |ui| ≤ t1 − 1, |vj | ≤ t2 − 1,

=











H(1,1) H(1,2) . . . H(1,t2)

H(2,1) H(2,2) . . . H(2,t2)

...
...

. . .
...

H(t1,1) H(t1,2) . . . H(t1,t2)











.

Suppose M = (m1,m2, . . . ,mm) is an ordered subset of strings from Y∗ in
first lexicographical ordering and N = (n1,n2, . . . ,nn) in last lexicographical
ordering. Then the matrix H(M,N ) is defined as the submatrix of H given by

(H(M,N ))ij = P(minj).
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We now prove that the rank of the finite Hankel matrix H(1:t1,1:t2) is equal to
the rank of its last block-column. In case the string probabilities are stationary,
the rank of the finite Hankel matrix H(1:t1,1:t2) is equal to the rank of the largest
subblock.

Proposition 4.1. Consider the finite Hankel matrix H(1:t1,1:t2) of string
probabilities P. There holds

rankH(1:t1,1:t2) = rankH(1:t1,t2).

Proof: We first prove that rankH(1:t1,t2−1:t2) = rankH(1:t1,t2). This can be
seen from the fact that the column of H(1:t1,t2−1) indexed by a string u is equal
to the sum of the |Y| columns of H(1:t1,t2) indexed by uy, y ∈ Y. This follows
immediately from the consistency of the string probabilities:

∑

y∈Y P(vy) =

P(v). By induction, it can be proven that rankH(1:t1,t2) = rankH(1:t1,t2−1:t2) =
rankH(1:t1,t2−2:t2) = . . . = rankH(1:t1,1:t2), which proves the proposition.

Proposition 4.2. Consider the finite Hankel matrix H(1:t1,1:t2) of stationary
string probabilities P. There holds

rankH(1:t1,1:t2) = rankH(t1,t2).

Proof: The proof is like the proof of Proposition 4.1.
If the strings probabilities P are generated by the quasi model (Q,Y, A, c, b),

then the corresponding Hankel matrix can be factorized as

H = O(c, A)C(A, b).

This can be seen from

H =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

cb cA(0)b cA(1)b cA(00)b cA(01)b cA(10)b cA(11)b . . .

cA(0)b cA(00)b cA(01)b cA(000)b cA(001)b cA(010)b cA(011)b . . .

cA(1)b cA(10)b cA(11)b cA(100)b cA(101)b cA(110)b cA(111)b . . .

cA(00)b cA(000)b cA(001)b cA(0000)b cA(0001)b cA(0010)b cA(0011)b . . .

cA(10)b cA(100)b cA(101)b cA(1000)b cA(1001)b cA(1010)b cA(1011)b . . .

cA(01)b cA(010)b cA(011)b cA(0100)b cA(0101)b cA(0110)b cA(0111)b . . .

cA(11)b cA(110)b cA(111)b cA(1100)b cA(1101)b cA(1110)b cA(1111)b . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
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7
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7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

c

cA(0)
cA(1)

cA(00)
cA(10)
cA(01)
cA(11)

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ˆ

b A(0)b A(1)b A(00)b A(01)b A(10)b A(11)b . . .
˜

.

Now, we can prove the following proposition.

Proposition 4.3. Consider a Hankel matrix H of string probabilities generated
by a quasi Mealy model of order |Q|. There holds

rankH = rankH(1:|Q|+l,1:|Q|+m), l = 0, 1, 2, . . . ;m = 0, 1, 2, . . . (4.1)
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Proof: Define r as the rank of H(1:|Q|,1:|Q|). Note that r ≤ |Q|. The
matrix H(1:|Q|,1:|Q|) can now be decomposed as O(1:|Q|)(c, A)C(1:|Q|)(A, b) where
O(1:|Q|)(c, A) and C(1:|Q|)(A, b) have rank r. Now it follows from Proposition
3.1 that rankO(1:|Q|+l)(c, A) = rankO(c, A) for l = 0, 1, 2, . . . and that
rankC(1:|Q|+m)(A, b) = rankC(A, b) for m = 0, 1, 2, . . ., which proves the
proposition.

It is possible that there exists a k < |Q| so that rankH = rankH(1:k+l,1:k+m),
for l = 0, 1, 2, . . . and m = 0, 1, 2, . . .. However, we do not go into detail about
this.

Equation (4.1) can be rewritten as rankH = rankH(1:|Q|+l,|Q|+m), for l =
0, 1, 2, . . . and m = 0, 1, 2, . . ., because of Proposition 4.1. In case the string
probabilities are stationary, Proposition 4.2 allows to rewrite (4.1) as rankH =
rankH(|Q|+l,|Q|+m), for l = 0, 1, 2, . . . and m = 0, 1, 2, . . ..

4.1.2 Exact quasi realization

In this section we consider the exact quasi realization problem and the minimal
exact quasi realization problem (Problem 3.3 and Problem 3.4). We first present
an answer to the quasi Mealy realizability question: under which conditions are
string probabilities P representable by a quasi Mealy HMM of finite order. Next,
we describe how to find the minimal order of a realization of string probabilities
and finally, we present a quasi realization algorithm.

The quasi Mealy realizability question is solved by the following theorem.

Theorem 4.1. The following are equivalent

(1) String probabilities P are realizable by a quasi Mealy HMM (Q,Y, A, c, b)
with |Q| <∞.

(2) The rank of the generalized Hankel matrix H of string probabilities P is
finite.

(3) There exist a k ∈ N and constants αv,u ∈ R,u ∈ Yk,v ∈ Yk−1 such that
the string probabilities P satisfy

P(wu) =
∑

v∈Yk−1

αv,uP(wv), (4.2)

for all u ∈ Yk and for all w ∈ Y∗.

(4) There exist a l ∈ N and constants βv,u ∈ R,u ∈ Yl,v ∈ Y∗, |v| < l such
that the string probabilities P satisfy

P(uw) =
∑

v∈Y∗,|v|<l

βv,uP(vw), (4.3)

for all u ∈ Yl and for all w ∈ Y∗.
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Proof: The equivalence of (1) and (2) is proven in [4, 112, 113]. We here first
prove the equivalence of (1)-(2) and (3).

From (4.2) it follows that rankH(1:∞,1:k) = rankH(1:∞,1:k+1). Now by
taking w = mn with |n| = 1, it follows from (4.2) that rankH(1:∞,1:k+1) =
rankH(1:∞,1:k+2). By continuing with |n| = 2, 3, . . ., it is proven that
rankH(1:∞,1:∞) = rankH(1:∞,1:k) = rankH(1:∞,k), where the last equality
follows from Proposition 4.1. It follows that rankH(1:∞,1:∞) is finite.

On the other hand from the existence of a realization of order |Q| < ∞
and from Proposition 4.3, it follows that rankH = rankH(1:|Q|+l,|Q|+m), l =
0, 1, 2, . . . ;m = 0, 1, 2, . . .. Hence for k = |Q|, there exist constants αv,u,u ∈
Yk,v ∈ Yk−1 such that (4.2) holds.

The equivalence of (1)-(2) and (4) is proven in a analogous way with the
only difference that for nonstationary string probabilities, we do not have that
rankH(1:l,1:∞) = rankH(l,1:∞). For that reason, we sum over v ∈ Y∗, |v| < l in

(4.3) instead of over v ∈ Yl−1.
The following theorem provides a way to find the minimal order of a quasi

realization of string probabilities P [4, 112,113].

Theorem 4.2. The order of a minimal quasi realization of string probabilities
P is equal to the rank of the Hankel matrix HP .

Any two solutions to the minimal quasi realization problem are connected
by a similarity transformation as described in Proposition 3.2.

In [4], an algorithm is presented to find a minimal quasi realization for a
given finite rank Hankel matrix. We here present a more general algorithm to
solve the minimal quasi realization problem. In Proposition 4.4, we prove the
correctness of the algorithm.

Algorithm 4.1. Given a rank r Hankel matrix H (r <∞) of string probabilities
P of a process taking values in the finite set Y. Perform the following steps.

1. Choose M = (m1,m2, . . . ,mm) as an ordered subset of strings from
Y∗ in first lexicographical ordering and N = (n1,n2, . . . ,nn) in last
lexicographical ordering such that rankM = rankH where M := H(M,N ).

2. Define R := H(φ,N ) and K := H(M,φ), where φ is the empty string. For
each y ∈ Y define σyM as H(σyM,N ), where σyM := (m1y,m2y, . . . ,mmy).
Equivalently, by the Hankel structure, σyM can be defined as H(M,σyN ),
where σyN := (yn1, yn2, . . . , ynn).

3. Find P ∈ Rr×m and Q ∈ Rn×r such that PMQ = Ir .

4. A minimal quasi realization (Q,Y, A, c, b) is now obtained as follows:

Q = {1, 2, . . . , r},
A(y) = PσyMQ, ∀ y ∈ Y,

c = RQ,

b = PK.
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In Figure 4.1, we illustrate the definition of the different matrices of
Algorithm 4.1 for the case where Y = {0, 1} and r = 3. We suppose
that M := H((1,00,10),(1,00,01)) has rank 3. Then σ0M is given by σ0M =
H((10,000,100),(1,00,01)) as indicated in the figure. The matrix σ1M is defined
analogously.

...

...

...

...

...

...

...

...

...

.................. ... ...

... ...

...

φ

0

1

00

10

01

11

000

100

φ 0 1 00 01 10 11 000 001

MK

σ0M

R

Figure 4.1: Definition of the different matrices of Algorithm 4.1 for the case
where Y = {0, 1} and r = 3.

We now prove the correctness of Algorithm 4.1.

Proposition 4.4. Algorithm 4.1 yields a solution to the minimal quasi
realization problem of string probabilities P.

Proof: Define the infinite selector matrices

SR =











s′1
s′2
...
s′m











,

SK =
[

s′′1 s′′2 . . . s′′n
]

,
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where s′i = [0, . . . , 0, 1, 0, . . .] where the 1 is at the ri-th position where ri is
the position of string mi in the first lexicographical ordering U and where s′′i =
[0, . . . , 0, 1, 0, . . .]⊤ where the 1 is at the ki-th position where ki is the position
of string ni in the last lexicographical ordering V . Then M = SRHSK , σyM =
SRσyHSK , R = SRH:,1, K = H1,:SK . It follows that

PSRHSKQ = Ir,

PSRσyHSKQ = A(y),

SRH:,1Q = c,

PH1,:SK = b.

Now assume that (Q̄,Y, Ā, c̄, b̄) is a minimal quasi realization of the string
probabilities contained in H. Then

H =

2
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6

6

6

6

6

6

6

6

6

6

6

6

4

c̄

c̄Ā(0)
c̄Ā(1)

c̄Ā(00)
c̄Ā(10)
c̄Ā(01)
c̄Ā(11)

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ˆ

b̄ Ā(0)b̄ Ā(1)b̄ Ā(00)b̄ Ā(01)b̄ Ā(10)b̄ Ā(11)b̄ . . .
˜

.

Define

T := PSR



























c̄
c̄Ā(0)
c̄Ā(1)
c̄Ā(00)
c̄Ā(10)
c̄Ā(01)
c̄Ā(11)

...



























.

Then PSRHSKQ = Ir implies that
[

b̄ Ā(0)b̄ Ā(1)b̄ Ā(00)b̄ Ā(01)b̄ Ā(10)b̄ Ā(11)b̄ . . .
]

SKQ = T−1.

Now it can be easily verified that

PSRσyHSKQ = A(y) ⇒ T ĀT−1 = A,

SRH:,1Q = c ⇒ c̄T−1 = c,

PH1,:SK = b ⇒ T b̄ = b.

From Proposition 3.2, it follows that (Q,Y, A, c, b) is a minimal quasi
realization of the string probabilities, which proves the proposition.

The solution to the minimal quasi realization problem is not unique. It
can be proven that any two different solutions are connected by a similarity
transformation. We here do not go into detail about this equivalence question,
as it was already considered in the previous chapter (Proposition 3.2).
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4.1.3 Properties of the obtained quasi realization

In this section we prove some interesting properties of quasi realizations of
string probabilities and relate them to properties of the corresponding string
probabilities.

Proposition 4.5. Consider a quasi realization (Q,Y, A, c, b) of consistent string
probabilities P. If C(c, A) has full column rank, then (Q,Y, A, c, b) is consistent
(i.e.

∑

y∈Y Π(y)b = b and cb = 1).

Proof: For stationary string probabilities it holds that
∑

y∈Y P(uy) =

P(u), ∀u ∈ Y∗. It follows that cA(u)
∑

y∈Y A(y)b = cA(u)b, ∀u ∈ Y∗. Since

C(c, A) has full column rank, it follows that
∑

y∈Y A(y)b = b. On the other

hand, from
∑

u∈Yt P(u) = 1, it follows that c(
∑

y∈YA(y))tb = 1. Combining
both results gives cb = 1.

Proposition 4.6. Consider a quasi realization (Q,Y, A, c, b) of stationary
string probabilities P. If O(A, b) has full row rank, then (Q,Y, A, c, b) is
stationary (i.e. c

∑

y∈Y Π(y) = c).

Proof: For stationary string probabilities it holds that
∑

y∈Y P(yu) =

P(u), ∀u ∈ Y∗. It follows that c
∑

y∈Y A(y)A(u)b = cA(u)b, ∀u ∈ Y∗. Since

O(A, b) has full row rank, it follows that c
∑

y∈Y A(y) = c.

In [4, 112, 113] it is proven that a process with a certain type of long-term
independence gives rise to a quasi hidden Markov model with spectral radius one.
In words, long term independence means that two parts in the process that are
far away from each other, can be considered independent. String probabilities
of a process with long-term independence, are called alpha-mixing. We now
formally review these results.

Definition 4.1. Stationary string probabilities P are called alpha-mixing if it
holds for every u ∈ Y∗ and v ∈ Y∗ that

∑

w∈Yk

P(uwv) → P(u)P(v) as k → ∞. (4.4)

Proposition 4.7. Consider a quasi realization (Q,Y, A, c, b) of alpha-mixing
string probabilities P. Then AQ :=

∑

y∈Y A(y) has a spectral radius one and the

eigenvalue 1 is simple. In addition it holds that Ak
Q → bc as k → ∞.

4.2 Partial quasi realization

The quasi realization problem as solved in the previous section is interesting
from a theoretical point of view. However, it supposes that an infinite number
of string probabilities is given, which is not feasible in practical applications.
In this section we consider a more realistic situation, where the exact string
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probabilities are given for all strings up to a certain length t, and the problem
is to find a quasi realization. This problem can be compared to the partial
realization problem for linear time-invariant systems as solved in [98].

In Section 4.2.1 we show that the partial quasi realization problem always
has a solution and provide a way to obtain it. However, we show that the
minimal partial realization problem is hard to solve. In Section 4.2.2 we define
pseudo realizations of partial string probabilities and solve the minimal partial
pseudo realization problem.

4.2.1 Partial quasi realization

We define t-partial string probabilities of a process y as P(t) : {u ∈ Y∗, |u| ≤
t} 7→ [0, 1] as

P(t)(u) := P (y(1) = u1, y(2) = u2, . . . , y(|u|) = u|u|).

In what follows, we use ”partial string probabilities” instead of ”t-partial
string probabilities”, if the horizon t is clear from the context. An extension
of partial string probabilities P(t) up to length T is defined as a mapping

P(T )
(t) : {u ∈ Y∗, t < |u| ≤ T } 7→ [0, 1]. Given partial string probabilities

P(t) and an extension P(T )
(t) , the total string probabilities of P(t) and P(T )

(t) are

defined as P(t,T ) : {u ∈ Y∗, |u| ≤ T } 7→ [0, 1] where

P(t,T )(u) =

{

P(t)(u), |u| ≤ t,

P(T )
(t) (u), t < |u| ≤ T.

We now formulate the partial quasi Mealy realization problem and the
minimal partial quasi Mealy realization problem.

Problem 4.1 (partial quasi Mealy realization problem). Given partial string
probabilities P(t) : {u ∈ Y∗, |u| ≤ t} 7→ [0, 1]. Find a quasi Mealy HMM
(Q,Y, A, c, b) that generates P(t).

Problem 4.2 (minimal partial quasi Mealy realization problem). Given partial
string probabilities P(t) : {u ∈ Y∗, |u| ≤ t} 7→ [0, 1]. Find a quasi Mealy HMM
(Q,Y, A, c, b), with |Q| as small as possible, that generates P(t).

A solution to the partial quasi Mealy realization problem with partial string
probabilities P(t) is called a partial realization of P(t). A solution to the minimal
partial quasi Mealy realization problem with partial string probabilities P(t) is
called a minimal partial realization of P(t).

We first ask the question whether it is always possible to generate an

extension P(∞)
(t) to the partial string probabilities P(t) such that the total string

probabilities P(t,∞) are representable by a quasi Mealy model (Q,Y, A, c, b).
One might think that chosing arbitrary αv,u ∈ R,u ∈ Yt+1,v ∈ Yt and

calculating the extension P(∞)
(t) using (4.2) with k = t+1, provides the solution.

However, the αv,u’s need to be such that
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• The total string probabilities P(t,∞) are consistent.

• The extension P(∞)
(t) has range [0, 1].

The consistency constraint can be written as
∑

y∈Y P(wuy) = P(wu) for all

w ∈ Y∗ and u ∈ Yt. Using (4.2), the consistency constraint can be written as
a constraint on the constants αv,uy,u ∈ Yt,v ∈ Yt

∑

y∈Y

∑

v∈Yt

αv,uyP(wv) = P(wu), ∀w ∈ Y∗, ∀u ∈ Yt. (4.5)

By taking
∑

y∈Y

αv,uy =

{

1, u = v,
0, u 6= v,

(4.6)

(4.5) is fullfilled. Moreover, if H(1:∞,t+1) has full column rank, then (4.6) is the
unique solution such that (4.5) is fullfilled.

The constraint that the extension P(∞)
(t) has range [0, 1] can be written as

0 ≤ P(wu) ≤ 1,w ∈ Y∗,u ∈ Yt+1. Using (4.2), this constraint can be rewritten
as a constraint on the constants αv,u,u ∈ Yt+1,v ∈ Yt

0 ≤
∑

v∈Yt

αv,uP(wv) ≤ 1, w ∈ Y∗,u ∈ Yt+1. (4.7)

It is hard to check whether a certain choice of αv,u,u ∈ Yt+1,v ∈ Yt fullfills
(4.7) or not. However, we can prove the following proposition.

Proposition 4.8. Partial string probabilities P(t) can be extended with P(∞)
(t) :

{u ∈ Y∗, |u| > t} 7→ [0, 1] such that the total strings probabilities P(t,∞) are
representable by a minimal quasi realization (Q,Y, A, c, b) with |Q| <∞.

Proof: Take αv,u,u ∈ Yt+1,v ∈ Yt that fullfill (4.6) and that are in addition
nonnegative such that the extension of the string probabilities is in the interval
[0, 1]. Such choice of αv,uy is always possible. Now the extension of the string

probabilities P(∞)
(t) can be calculated using Equation (4.2) with k = t+ 1. The

Hankel matrix associated with the string probabilities has finite rank, and hence
the string probabilities are representable by a minimal quasi HMM (for instance
obtained by Algorithm 4.1).

This result proves that a partial quasi realization that is minimal in the
sense of Theorem 3.1 always exists. However, it has not yet been shown that
a minimal partial quasi realization (a solution to Problem 4.2) always exists.
Intuitively, the existence of a minimal partial quasi realization is obvious. Since
there always exist partial quasi realizations (Proposition 4.8), there exists at
least one which has a smallest dimension.

The minimal partial quasi realization problem is hard to solve in practice.
For (Q,Y, A, c, b) to be a partial realization of the partial string probabilities
P(t), it is needed that
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• P(t)(u) = cA(u)b, u = u1u2 . . . u|u| ∈ Y∗, |u| ≤ t.

• P(∞)
(t) (u) := cA(u)b, |u| > t has range [0, 1].

• P(t,∞) are consistent string probabilities.

The first and the last constraint are easy to meet. The second constraint
however is hard, but not necessary in some applications (see Chapter 7). In the
next section we solve the minimal partial pseudo realization problem, i.e. the
minimal partial quasi realization problem without the second constraint.

4.2.2 Partial pseudo realization

In this section we consider the minimal partial pseudo realization problem,
a relaxed version of the minimal partial quasi realization problem. We first
define pseudo realizations and the minimal partial pseudo realization problem.
We show further that if a certain rank condition holds, a solution to the
minimal partial pseudo realization problem can be obtained using Algorithm
4.1. Furthermore, if the rank condition holds, any two solutions to the minimal
partial pseudo realization problem are connected by a similarity transformation.
In case the rank condition does not hold, the situation is more complicated. We
do not go into full detail about this last situation.

Define a t-pseudo Mealy HMM as (Q̄,Y, Ā, c̄, b̄), where Q̄ is the pseudo state
set and Y is the output set. The number of states |Q̄| is called the order of the
pseudo HMM. b̄ is a column vector in R|Q̄|, Ā is a mapping from Y to R|Q̄|×|Q̄|,
where ĀQ̄ :=

∑

y∈Y Ā(y) is a quasi stochastic matrix, i.e. ĀQb̄ = b̄. The matrices

Ā, c̄, b̄ are such that c̄Ā(u)b̄ ∈ [0, 1] for all u = u1u2 . . . u|u| ∈ Y∗, |u| ≤ t, where
Ā(u) := Ā(u1)Ā(u2) . . . Ā(u|u|). We use ”pseudo Mealy HMM” instead of ”t-
pseudo Mealy HMM” whenever the horizon t is clear from the context. The
matrix ĀQ̄ is called the pseudo state transition matrix. c̄ is a vector in R1×|Q̄|

called the pseudo initial state distribution for which c̄b̄ = 1. The conditions
c̄b̄ = 1 and ĀQ̄b̄ = b̄ are called consistency conditions of the pseudo HMM. The
pseudo HMM is called stationary if the pseudo initial state distribution vector
is a left eigenvector of the quasi state transition matrix corresponding to the
eigenvalue 1: c̄Ā = c̄.

The pseudo string probabilities P̄ : Y∗ 7→ R generated by a t-pseudo Mealy
HMM

(

Q̄,Y, Ā, c̄, b̄
)

are given by

P̄(u) = c̄Ā(u)b̄,

where u = u1u2 . . . u|u| ∈ Y∗ and where Ā(u) := Ā(u1)Ā(u2) . . . Ā(u|u|). Notice
that the string probabilities generated by a t-pseudo Mealy HMM take values
in [0, 1] if the string length is smaller than or equal to t and in R if the string
length is larger than t. We now formulate the partial pseudo Mealy realization
problem and the partial minimal pseudo Mealy realization problem.
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Problem 4.3 (partial pseudo Mealy realization problem). Given partial string
probabilities P(t) : {u ∈ Y∗, |u| ≤ t} 7→ [0, 1]. Find a t-pseudo Mealy HMM
(Q̄,Y, Ā, c̄, b̄) that generates P(t).

Problem 4.4 (minimal partial pseudo Mealy realization problem). Given
partial string probabilities P(t) : {u ∈ Y∗, |u| ≤ t} 7→ [0, 1]. Find a t-pseudo
Mealy HMM (Q̄,Y, Ā, c̄, b̄), with |Q̄| as small as possible, that generates P(t).

As a consequence of Proposition 4.8, a partial pseudo realization always
exists. However, it has not yet been shown that a minimal partial pseudo
realization (a solution to Problem 4.4) always exists. Intuitively, since there
always exist partial pseudo realizations, there exists at least one which has a
smaller dimension than the others. We now prove that under some conditions,
Algorithm 4.1 can be applied to solve the minimal partial pseudo realization
problem.

Proposition 4.9. The minimal partial pseudo realization problem of string
probabilities P(t) can be solved using Algorithm 4.1 if there exist integers t1 and
t2 with t1 + t2 = t+ 1 such that

rankH(1:t1,1:t2) = rankH(1:t1+1,1:t2) = rankH(1:t1,1:t2+1). (4.8)

Proof: Algorithm 4.1 can be employed with

r = rankH(1:t1,1:t2),

M = H(1:t1,1:t2),

R = H(1,1:t2),

K = H(1:t1,1).

The resulting partial pseudo realization is clearly minimal.
Condition (4.8) is called the rank condition. We now ask the question

whether two solutions to the minimal partial pseudo realization problem are
connected by a similarity transformation (as in Proposition 3.2). Assume
σ = (Q̄,Y, Ā, c̄, b̄) is a solution to the minimal partial pseudo realization
problem of the partial probabilities P(t). Any other solution is connected by
a similarity transformation as in Proposition 3.2, if the pseudo extension of

the string probabilities P̄(∞)
(t) defined by P̄(∞)

(t) (u) = c̄Ā(u)b̄, |u| > t, is the

unique extension that yields a Hankel matrix of rank |Q̄|. In other words,

if there exist two different pseudo extensions P̄(∞)
(t) and P̄ ′(∞)

(t) , which give us

the minimal partial realizations σ and σ′ with Algorithm 4.1, then σ and σ′

are not necessarily connected by a similarity transformation as in Proposition
3.2. We show that if the rank condition (4.8) holds, there exists only one pseudo
extension of the string probabilities that yields a Hankel matrix with rank equal
to rankH(1:t1,1:t2).

Lemma 4.1. Given matrices A ∈ Ra1×a2 , B ∈ Ra1×b2 and C ∈ Rc1×a2 such
that

rankA = rank
[

A B
]

= rank

[

A
C

]

.
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If there exists a matrix D ∈ Rc1×b2 for which

rank

[

A B
C D

]

= rank
[

A B
]

= rank

[

A
C

]

= rankA,

then the matrix D is unique.

Proof: The proof of this lemma is given in [98].
Using Lemma 4.1, we prove the following proposition.

Proposition 4.10. Given partial string probabilities P(t) satisfying

rankH(1:t1,1:t2) = rankH(1:t1+1,1:t2) = rankH(1:t1,1:t2+1),

for some t1, t2 with t1 + t2 = t + 1. Then the pseudo extension of the partial

string probabilities P̄(∞)
(t) to P̄(t,∞), for which

rankH(1:t1+l,1:t2+m) = rankH(1:t1,1:t2),

for l = 0, 1, 2, . . . and m = 0, 1, 2, . . ., is unique.

Proof: By applying Lemma 4.1 with A = H(1:t1,1:t2), B = H(1:t1,t2+1), C =
H(t1+1,1:t2), we conclude that there exists at most one matrix D = H(t1+1,t2+1)

such that rankH(1:t1+1,1:t2+1) = rankH(1:t1+1,1:t2) = rankH(1:t1,1:t2+1) =
rankH(1:t1,1:t2).

Proceed by recursion. Suppose rankH(1:t1,1:t2+k) = rankH(1:t1+1,1:t2+k) =
rankH(1:t1,1:t2+k+1) = rankH(1:t1+1,1:t2+k+1), for an integer k. It follows from
the Hankel structure that rankH(1:t1,1:t2+k+1) = rankH(1:t1,1:t2+k+2), such that
we have that rankH(1:t1,1:t2+k+1) = rankH(1:t1,1:t2+k+2) = rankH(1:t1+1,1:t2+k+1).
Now from Lemma 4.1 with A = H(1:t1,1:t2+k+1), B = H(1:t1,t2+k+2), C =
H(t1+1,1:t2), we conclude that there exists at most one matrixD = H(t1+1,t2+k+2)

such that rankH(1:t1+1,1:t2+k+2) = rankH(1:t1,1:t2+k+1) = rankH(1:t1,1:t2+k+2) =
rankH(1:t1+1,1:t2+k+1).

We finally prove that any two minimal pseudo realizations of string
probabilities P(t) are connected by a similarity transformation.

Proposition 4.11. If the rank condition (4.8) holds, then any two minimal
partial pseudo realizations of string probabilities P(t) are connected by a
similarity transformation.

Proof: Let (Q̄,Y, Ā, c̄, b̄) be the pseudo realization of P(t) found using

Algorithm 4.1. The pseudo extension of the string probabilities P̄(∞)
(t) defined

by P̄(∞)
(t) (u) = c̄Ā(u)b̄, |u| > t is such that

rankH(1:t1+l,1:t2+m) = rankH(1:t1,1:t2),

for l = 0, 1, 2, . . . and m = 0, 1, 2, . . .. By Proposition 4.10, this extension is
unique, which proves the proposition.
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Up to now, we have solved the partial pseudo realization problem under
the condition that the rank condition (4.8) holds. We now give some hints
for the partial pseudo realization problem if the rank condition does not hold,
however, we do not go into detail. In order to use Algorithm 4.1, a pseudo

extension P̄(T )
(t) must be specified until rankH(1:T1,1:T2) = rankH(1:T1+1,1:T2) =

rankH(1:T1,1:T2+1), where T1 + T2 = T + 1. However, these matrices are
partially arbitrary, which proves that, in case the rank condition does not hold,
minimal partial pseudo realizations are not necessarily connected by a similarity
transformation. In order to get an idea of the minimal dimension of a partial
realization of the string probabilities P(t), we consider the incomplete Hankel

matrix H
(t)
(1:t,1:t) associated with the partial string probabilities P(t),

H
(t)
(1:t,1:t) =















































H(1,1) H(1,2) H(1,3) . . . H(1,t−3) H(1,t−2) H(1,t−1)

H(2,1) H(2,2) H(2,3) . . . H(2,t−3) H(2,t−2) ∗

H(3,1) H(3,2) H(3,3) . . . H(3,t−3) ∗ ∗

...
...

...
...

...
...

H(t−3,1) H(t−3,2) H(t−3,3) . . . ∗ ∗ ∗

H(t−2,1) H(t−2,2) ∗ . . . ∗ ∗ ∗

H(t−1,1) ∗ ∗ . . . ∗ ∗ ∗















































where the positions indicated by ∗ are left blanc since no data is available. A
lower bound for the dimension of a minimal partial realization of P(t) can be

obtained by counting the number of linear independent rows already in H
(t)
(1:t,1:t).

This number can only increase when the ∗’s are filled in.

4.3 Approximate partial pseudo realization

In the previous section we considered the partial realization problem where exact
string probabilities of strings up to a certain length t are given. In practice
however, usually only approximate string probabilities of strings up to length t
are available (e.g. estimated from an output string using (3.3)). Because the
string probabilities are not exact, the Hankel matrix generically has high rank
which implies that it is not possible to find a low order pseudo HMM that exactly
matches the string probabilities up to length t. Therefore, it may be more useful
to make a good low order approximate realization of the string probabilities
rather than to try to match them exactly. In this section we describe four
different methods to solve the approximate partial pseudo realization problem.

The first three methods approximate the Hankel matrix (HP̃)(1:t1,1:t2)
of

approximate string probabilities with a low rank Hankel matrix (HP)(1:t1,1:t2)
.
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In case the rank condition (4.8) holds for the low rank matrix (HP)(1:t1,1:t2)
,

Algorithm 4.1 can be applied to find an approximate partial pseudo realization.
In case the rank condition does not hold, one needs to make first an extension
of the string probabilities such that the rank condition holds, and subsequently
apply Algorithm 4.1.

In Section 4.3.1 the rank of the Hankel matrix is reduced by projecting
the approximate string probabilities on the consistency and/or stationarity
constraints. In Section 4.3.2 the rank of the Hankel matrix is reduced by using
optimal low rank matrix approximation techniques. In Section 4.3.3 the Hankel
matrix (HP̃)(1:t1,1:t2)

is approximated by a low rank Hankel matrix of string

probabilities that are both consistent and stationary. Clearly, this last method
is a combination of the previous two methods.

In Section 4.3.4 finally, the fourth method is presented. The method
aims at obtaining a full-order balanced realization of the approximate string
probabilities and subsequently reduces the balanced realization to find an
approximate pseudo realization of the approximate string probabilities.

4.3.1 Projecting on the consistency and/or stationarity
constraints

The Hankel matrix (HP̃)(1:t1,1:t2)
with t1 + t2 = t + 2 of approximate string

probabilities P̃(t) typically has high rank. One of the reasons is that approximate
string probabilities are not necessary consistent such that Proposition 4.1 does
not hold. To reduce the rank of the Hankel matrix, we propose to project the
approximate string probabilities P̃(t) on the consistency constraints to find P(t).
The rank of the Hankel matrix associated with the consistent string probabilities
(HP)(1:t1,1:t2)

is then smaller than or equal to the rank of (HP̃)(1:t1,1:t2)
.

Projecting the string probabilities P̃(t) on the consistency condition to obtain
P(t) can be done by rescaling the string probabilities of strings of length t such
that

∑

u∈Yt P(t)(u) = 1 and then calculating the string probabilities of strings
of length smaller than t from the string probabilities of strings of length t, using
∑

y∈Y P(uy) = P(u). Using Proposition 4.1, it is easily seen that the rank of

the Hankel matrix (HP)(t1,t2)
is bounded above by min{1 + |Y|1 + |Y|2 + . . .+

|Y|t1−1, |Y|t2−1}.
Another projection method to reduce the rank of the Hankel matrix, consists

of projecting the string probabilities P̃(t) on the stationarity and consistency
constraints to obtain P(t). It is clear from Proposition 4.2 that the rank of the
Hankel matrix associated with the stationary and consistent string probabilities
(HP)(1:t1,1:t2)

is smaller than or equal to the rank of (HP̃)(1:t1,1:t2).

The projection on the stationarity and consistency constraints consists of
two steps. In a first step the string probabilities of length t are projected on the
stationarity and consistency constraints for strings of length t. In a second step,
the string probabilities of strings of length smaller than t are calculated from the
string probabilities of length t using

∑

y∈Y P(uy) = P(u). From Proposition 4.2,
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the rank of the Hankel matrix associated with the consistent string probabilities
(HP)(1:t1,1:t2)

is bounded above by min{|Y|t1−1, |Y|t2−1}.
We now explain how projection on the stationarity and consistency con-

straints can be carried out. Stationary and consistent string probabilities of
length t obey the following constraints

∑

u∈Yt−|v|

P(uv) =
∑

u∈Yt−|v|

P(vu), ∀ v ∈ Y∗, |v| ≤ t, (4.9)

∑

u∈Yt

P(u) = 1. (4.10)

For t = 3 and Y = {0, 1}, the constraints (4.9) can be written explicitly as
(in front of each equation, we give the values of v)

0
1
00
01
10
11

















0 1 0 1 −1 0 −1 0
0 −1 0 −1 1 0 1 0
0 1 0 0 −1 0 0 0
0 −1 1 1 0 −1 0 0
0 0 −1 0 1 1 −1 0
0 0 0 −1 0 0 1 0









































P(000)
P(001)
P(010)
P(011)
P(100)
P(101)
P(110)
P(111)

























= 0.

For general t, the constraint (4.9) becomes

Sp(t) = 0,

where p(t) = H⊤
(1,t+1) denotes the vector of lexicographically ordered string

probabilities of strings of length t and

S =











S(1)
S(2)

...
S(t− 2)











,

S(i) = I|Y|i ⊗ 11×|Y|t−i − 11×|Y|t−i ⊗ I|Y|i .

The problem is to find a vector of consistent and stationary string probabilities
p(t) that is close to the given vector of approximate string probabilities p̃(t), i.e.
to solve

p(t) = argminṗ(t)
D(p̃(t), ṗ(t))

such that Sṗ(t) = 0,

or, equivalently

p(t) = kerS argminẋ D( ˜p(t), kerSẋ),
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where ker(X) denotes the kernel of the matrix X . By taking D(X,Y ) to be the
square of the Frobenius distance between X and Y , i.e. D(X,Y ) = ||X − Y ||2F ,
the problem becomes a least squares problem, such that the solution is given
by p(t) = kerS(kerS)†p̃(t).

Up to now, we described a method to project approximate string proba-
bilities of strings of length t on the stationarity constraints. To make sure
that the consistency constraints hold, it suffices to rescale them such that
∑

u∈Yt P(u) = 1. The string probabilities of length smaller than t can be
calculated from the string probabilities of length t as before. In this way the
string probabilities P(t) are consistent and stationary, and can be stacked in the
Hankel matrix (HP)(1:t1,1:t2)

.

4.3.2 Low rank approximation of largest Hankel block

Another approach to build a low rank Hankel matrix that is close to a
Hankel matrix of approximate string probabilities (HP̃)(1:t1,1:t2)

, is by computing

(HP)(t1,t2)
as a rank a approximation of the largest block (HP̃)

(t1,t2)
of the

Hankel matrix (HP̃)(1:t1,1:t2)
. This is equivalent to taking (HP)(t1,t2)

= VH

where V and H are computed from

(V,H) = argminV̇ ,Ḣ D((HP̃)(t1,t2)
, V̇ Ḣ), (4.11)

where the inner dimension of the approximation V̇ Ḣ is equal to a. In a second
step, all other string probabilities of (HP)(1:t1,1:t2)

are calculated from the string

probabilities in (HP)(t1,t2). The rank of the resulting Hankel matrix is bounded

above by min{1 + |Y|1 + |Y|2 + . . .+ |Y|t1−1 + a, |Y|t2}.
For the low rank approximation of the largest Hankel block, the nonnegative

matrix factorization without nonnegativity constraints on the factors (see
Section 2.5) is used. This method approximates a nonnegative matrix with a
low rank product V H in an optimal way (with respect to the Kullback-Leibler
divergence), subject to the constraint that VH is elementwise nonnegative, but
without nonnegativity constraints on V and H separetely. This method is well-
suited for the problem at hand as it guarantees that the approximate string
probabilities are nonnegative. In addition, from Property 2.1 it follows that a
consistent Hankel block, i.e. a Hankel block with element sum equal to 1, is
approximated by a low rank consistent Hankel block.

4.3.3 Structured low rank approximation of largest Han-
kel block

So far we described two methods for obtaining a low rank approximation
(HP)(1:t1,1:t2)

of the Hankel matrix (HP̃)(1:t1,1:t2)
. Both methods first approxi-

mate the largest Hankel block and subsequently compute the complete Hankel
matrix from the largest block. The first method makes sure that the string
probabilities in the largest Hankel block are consistent and stationary. In this
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way, the rank of the Hankel matrix is equal to the rank of the largest Hankel
block. This gives a rank reduction, but it is possible that the rank is still high.
The second method makes a low rank approximation of the largest Hankel block
where the rank can be chosen by the user. However, because this approximation
is not necessary stationary, the rank of the total Hankel matrix can be larger
than the rank of the largest block. In this section we propose a method that
combines the advantages of both methods by approximating the largest block
of string proabilities of the Hankel matrix with a rank a matrix that contains
stationary string probabilities. By doing so the rank of the total Hankel matrix
is equal to a, and is completely user-defined.

The matrix approximation problem for the Hankel block (HP̃)
(t1,t2)

, can be
written as

minV̇ ,Ḣ D((HP̃)(t1,t2)
, V̇ Ḣ),

such that Sṗt = 0,
(4.12)

where the inner dimension a of the approximation V̇ Ḣ can be chosen by the
user and where ṗt is the vector of lexicographically ordered approximate length-
t string probabilities stacked in the largest Hankel block V̇ Ḣ . We use the
method of [26] to solve this problem in the Frobenius distance. That method
approximates a matrix P with a low rank matrix that obeys linear structural
constraints. The method supposes that the set of all rank a matrices forms
a surface R(a) and the set Ω comprising matrices with the specified structure
forms another surface (see Figure 4.2). Then any point on the intersection of
these two geometric entities, forms a solution to problem (4.12). The approach
of [26] is a linearly convergent method that finds points of this intersection. The
approach is to alternate projections on the set of rank a matrices and on the set
of matrices that fulfill the structural constraints while reducing the distance in
between both kind of projections. Below, we decribe the algorithm of [26] (see
Figure 4.2).

Algorithm 4.1. Start with A(0) = P , iterate the following two steps for t =
0, 1, ... until convergence:

1. Calculate the rank a matrix B(t) in R(k) that is nearest to A(t) in
Frobenius distance.

2. Compute the projection A(t+1) of B(t) onto the subspace Ω.

It is clear that in the algorithm described above, the matricesA(0), A(1), A(2), ...
will not necessarily have the desired rank a. However, it is clear that

||A(t+1) −B(t+1)|| ≤ ||A(t+1) −B(t)|| ≤ ||A(t) −B(t)||.

So Algorithm 4.1 is a descent method. In our problem the first step of
the algorithm can be carried out by use of the truncated singular value
decomposition and the second step is a least squares problem as explained in
Section 4.3.1. In case the element sum of the obtained structured low rank
approximation differs from 1, a rescaling can be performed to overcome this
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problem. As a result, we have a method to approximate the largest Hankel block
(HP̃)

(t1,t2)
with a rank a block (HP)(t1,t2)

of consistent and stationary string

probabilities. The complete Hankel matrix, built from (HP)(t1,t2)
as before, is

of rank a.

A(0)

B(0)

A(1)

B(1)

R(a)

Ω

Figure 4.2: Visualisation of R(a), the set of all rank a matrices and Ω, the
set comprising matrices with a specified structure. Algorithm 4.1 converges to a
point of the intersection of R(k) and Ω.

4.3.4 Balanced approximate quasi realization

In this section we present a new exact quasi realization algorithm (Algorithm
4.2) which is a special case of Algorithm 4.1. We show that a quasi realization
obtained with Algorithm 4.2 has an interesting property: it is balanced (see
further). A balanced quasi realization can be easily reduced to a lower order
quasi realization. The exact quasi realization algorithm followed by a model
reduction step, gives rise to another approximate realization algorithm.

We start with Algorithm 4.2, which is a special case of Algorithm 4.1.

Algorithm 4.2. Consider a rank r Hankel matrix H (r < ∞) of string
probabilities P of a process taking values in the finite set Y. Perform the
following steps.

1. For each y ∈ Y define σyH as H(σyU ,V), where σyU is the set of all strings
uy, u ∈ Y∗ in first lexicographical ordering and where V is the set of all
strings of Y∗ in last lexicographical ordering. Equivalently, by the Hankel
structure, σyH can be defined as H(U ,σyV), where U is the set of all strings
of Y∗ in first lexicographical ordering and where σyV is the set of all strings
yu, u ∈ Y∗ in last lexicographical ordering.

2. Compute the reduced SVD H = UΣV ⊤ = U
√

Σ
√

ΣV ⊤, with Σ =
diag (σ1, σ2, . . . , σr) .
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3. A minimal quasi realization (Q,Y, A, c, b) is now obtained as follows:

Q = {1, 2, . . . , r},
A(y) =

√
Σ−1U⊤σyHV

√
Σ−1, ∀ y ∈ Y,

c = H(1,1:∞)V
√

Σ−1,

b =
√

Σ−1U⊤H(1:∞,1).

We now define the notion of balanced quasi realizations. Therefore, for a
quasi HMM (Q,Y, A, c, b), define the matrices W (A, b) and M(c, A) as:

W (A, b) :=
∑

y∈Y∗

A(y)bb⊤A(y)⊤ = C(A, b)C(A, b)⊤,

M(c, A) :=
∑

y∈Y∗

A(y)⊤c⊤cA(y) = O(c, A)⊤O(c, A).

Note that W (A, b) and M(c, A) are the analogues of the controllability and
observability Gramians of linear time-invariant systems. Obviously, W (A, b) =
W (A, b)⊤ ≥ 0 and M(c, A) = M(c, A)⊤ ≥ 0. Moreover, if C(A, b) has full
row rank and O(c, A) has full column rank (as is the case for minimal quasi-
realizations), then the strict inequality holds.

We assume that the infinite sums in the definitions above, are finite. It
is an intersting point of further research to check under which conditions on
A(y), y ∈ Y this assumption is fulfilled.

If the matrices W (A, b) and M(c, A) are finite, then it is easy to verify that
they are solutions to the Lyapunov equations:

∑

y∈Y

A(y)W (A, b)A(y)⊤ −W (A, b) = −bb⊤, (4.13)

∑

y∈Y

A(y)⊤M(c, A)A(y) −M(c, A) = −c⊤c. (4.14)

Now, a quasi hidden Markov model is called balanced if the matrices W (A, b)
and M(c, A) are diagonal and equal to each other. It can be shown that for
every quasi realization, there exists an equivalent balanced quasi realization.
We now first show that the quasi realization obtained with Algorithm 4.2 is
balanced. Subsequently, we show that a balanced quasi realization of order r
can be reduced to a quasi realization of order s with s < r.

Proposition 4.12. The quasi realization (Q,Y, A, c, b) obtained using Algo-
rithm 4.2 is balanced.

Proof: We first prove that

O(c, A)1,: = H(1,1:∞)V
√

Σ−1,

= (H(1:∞,1:∞)V
√

Σ−1)1,:,
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= (U
√

Σ)1,:,

and

O(c, A)2,: = H(1,1:∞)V
√

Σ−1
√

Σ−1U⊤σy1HV
√

Σ−1,

= (σy1HV
√

Σ−1)1,:,

= (HV
√

Σ−1)2,:,

= (U
√

Σ)2,:.

By continuing in this way, it follows that O(c, A) = U
√

Σ. Analogously, it can
be proven that C(A, b) =

√
ΣV ⊤. It follows that

W (A, b) = C(A, b)C(A, b)⊤ =
√

ΣV ⊤
(√

ΣV ⊤
)⊤

= Σ,

M(c, A) = O(c, A)⊤O(c, A) =
(

U
√

Σ
)⊤

U
√

Σ = Σ,

which proves the proposition.
A balanced reduced realization of order s < r is now given by (Q,Y, A, c, b)

where

Q = {1, 2, . . . , s},

A(y) =
√

Σ−1
(1)U

⊤
(1)σyHV(1)

√

Σ−1
(1), ∀ y ∈ Y,

c = H(1,1:∞)V(1)

√

Σ−1
(1),

b =
√

Σ−1
(1)U

⊤
(1)H(1:∞,1).

(4.15)

where the reduced SVD of H is given by

H =
[

U(1) U(2)

]

[

Σ(1) 0
0 Σ(2)

]

[

V(1) V(2)

]⊤
, (4.16)

with Σ(1) = diag (σ1, σ2, . . . , σs) and Σ(2) = diag (σs+1, σs+2, . . . , σr), with σ1 ≥
σ2 ≥ . . . σs ≫ σs+1 ≥ . . . σr > 0.

If only string probabilities of strings up to length t are given (the approximate
partial realization problem), then Algorithm 4.2 that uses H(1:t1,1:t2) with t1 +
t2 = t+ 2 instead of H yields a realization that is almost balanced. We say that
a realization is almost balanced if the diagonal elements of W (A, b) and M(c, A)
are large compared to the off-diagonal elements and in addition W (A, b) is close
to M(c, A). As a heuristic method for approximate partial realization, formulas
(4.15) can be used.

4.4 Modeling DNA sequences

In this section we apply the approximate partial quasi realization algorithms to
the modeling of DNA sequences.
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Desoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic
instructions used in the development and functioning of all known living
organisms. DNA forms a double helix of two anti-parallel chains with
complementary nucleotide sequences. In Figure 4.3(a), the double DNA helix
is schematically shown. The building blocks of the nucleotide sequences are the
following four nucleotides: adenine (A), cytosine (C), guanine (G) and thymine
(T). The human genome consists of approximately 3 billion nucleotide pairs.
In Figure 4.3(b), an example of a part of a DNA sequence is shown. In some
applications, it is important to have a quasi or positive hidden Markov model
of a DNA sequence (for instance motif detection, explained in Section 7.7).

(a) (b)

Figure 4.3: Desoxyribonucleic acid (DNA) is a nucleic acid that contains
the genetic instructions used in the development and functioning of all known
living organisms. DNA forms a double helix of two anti-parallel chains with
complementary nucleotide sequences (Subfigure (a)) . The human genome
consists of approximately 3 billion nucleotide pairs. In Subfigure (b), an example
of a DNA sequence of length 384 is shown.

In this example we build a quasi hidden Markov model of the 40 sequences
u1, . . .u40 of length 200 from http://www.stat.ucla.edu/∼zhou/CisModule/

[119]. These sequences are the background sequences used in Section 7.7. The
goal of this section is to make one quasi model of the 40 sequences. So the
40 sequences have to be considered as 40 different output sequences from one
unknown (quasi) hidden Markov model.

For making a quasi HMM representation of the sequences, we calculate an
estimate of the string probabilities P̃ui

of string up to length 4 for ui, i =
1, 2, . . . , 40 by using Equation 3.3. Subsequently, the mean string probabilities
are calculated as P̃ =

∑40
i=1 P̃ui

. In Table 4.1, we show the string probabilities
of a selection of the strings of length 4 (the strings starting with A or C).
The string probabilities of length smaller than 4 are computed from the string
probabilities of length 4.
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Table 4.1: The approximate quasi realization algorithm is used to model 40
DNA sequences with symbols from Y = {A,C,G, T}. Therefore the string
probabilities of strings up to length 4 are calculated. We here show the string
probabilities of a selection of the 256 strings of length 4 (the strings starting
with A or C). The number at position i, j in the table is the probability of the
string formed by concatenating the string that indexes row i with the symbol
that indexes row j.

A C G T
AAA 0.0045 0.0031 0.0051 0.0027
CAA 0.0035 0.0030 0.0050 0.0024
ACA 0.0030 0.0028 0.0043 0.0020
CCA 0.0040 0.0059 0.0066 0.0041
AGA 0.0065 0.0035 0.0065 0.0018
CGA 0.0013 0.0016 0.0036 0.0011
ATA 0.0020 0.0007 0.0015 0.0017
CTA 0.0022 0.0017 0.0013 0.0011
AAC 0.0048 0.0050 0.0061 0.0044
CAC 0.0053 0.0074 0.0086 0.0026
ACC 0.0007 0.0023 0.0020 0.0016
CCC 0.0037 0.0072 0.0083 0.0020
AGC 0.0060 0.0070 0.0089 0.0050
CGC 0.0049 0.0076 0.0069 0.0023
ATC 0.0027 0.0032 0.0028 0.0020
CTC 0.0039 0.0085 0.0082 0.0048
AAG 0.0033 0.0022 0.0010 0.0026
CAG 0.0039 0.0062 0.0029 0.0028
ACG 0.0034 0.0038 0.0026 0.0034
CCG 0.0075 0.0126 0.0071 0.0078
AGG 0.0049 0.0064 0.0051 0.0035
CGG 0.0034 0.0065 0.0053 0.0028
ATG 0.0025 0.0032 0.0006 0.0024
CTG 0.0043 0.0088 0.0020 0.0051
AAT 0.0027 0.0024 0.0021 0.0017
CAT 0.0014 0.0031 0.0039 0.0033
ACT 0.0013 0.0020 0.0023 0.0035
CCT 0.0017 0.0088 0.0094 0.0038
AGT 0.0015 0.0035 0.0030 0.0042
CGT 0.0009 0.0033 0.0026 0.0008
ATT 0.0010 0.0022 0.0031 0.0040
CTT 0.0013 0.0053 0.0034 0.0048

Now the string probabilities of strings up to length 4 are stacked in the
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Hankel matrix (HP̃ )(1:3,1:3). The Hankel matrix has dimensions 21 × 21. The
singular values of (HP̃)(1:3,1:3) are plotted in Figure 4.4. The first four singular
values are more dominant compared to the others. For that reason it can be
expected that a fourth order model gives a good trade-off between accuracy and
model complexity.
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Figure 4.4: Plot of the singular values of (HP̃)(1:3,1:3). The first 4 singular
values are dominant as compared to the others. For that reason it can be expected
that a quasi hidden Markov model of order 4 gives a good trade-off between
accuracy and complexity.

Using the approximate quasi realization algorithm of Section 4.3.3, we build
a quasi Mealy model of order 1 to 7. The Kullback-Leibler divergence between
the Hankel block (HP̃)(3,3) and the corresponding block of the Hankel matrix
generated by the obtained model is given in Table 4.2. It follows that the fourth
order model gives the best trade-off between accuracy and complexity.

Table 4.2: Kullback-Leibler divergence between the Hankel block (HP̃ )(3,3) and
the corresponding block of the Hankel matrix generated by the obtained quasi
Mealy hidden Markov model of order 1 to 7.

order 1 2 3 4 5 6 7

KL-divergence 0.1109 0.0653 0.0449 0.0263 0.0220 0.0211 0.0210

To get some intuition about the size of the Kullback-Leibler divergences, we
plot a histogram of the Kullback-Leibler divergence between (HP̃)(3,3) and 10000
random matrices with element sum equal to 1 (Figure 4.5). It is clear that the
values for the Kullback-Leibler divergence in Table 4.2 are much smaller than
the values of Figure 4.5. This is a first indication that the quasi modeling gives
good results.

The obtained fourth order quasi model is given by (Q,Y, A, c, b) with
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Figure 4.5: We plot a histogram of the Kullback-Leibler divergence between
(HP̃)(3,3) and 10000 random matrices with element sum equal to 1. It is clear
that the values for the Kullback-Leibler divergence in Table 4.2 are much smaller
than the values in this histogram. This is a first indication that the quasi
modeling gives good results.

A(A) =









0.2052 0.0213 0.0053 −0.0064
0.0183 0.0794 0.0560 −0.0641
0.8611 0.3508 −0.0258 0.1431

−0.4867 0.1467 −0.0397 0.2249









,

A(C) =









0.2896 −0.0314 0.0052 −0.0014
−0.5948 0.0711 0.0523 −0.0512

0.1144 0.3067 0.0088 0.0977
0.7779 0.1010 −0.0118 0.3361









,

A(G) =









0.3014 0.0110 0.0062 0.0082
0.8803 0.0432 0.0740 −0.0982

−0.2215 0.0522 0.1024 0.0639
0.2938 −0.0543 0.1503 0.2376









,

A(T ) =









0.2039 0.0012 −0.0176 0.0005
−0.3538 −0.0564 0.0657 −0.0878
−0.6877 0.2149 0.1001 0.1110
−0.5732 0.1030 0.0670 0.2628









,

c =
[

−1.1218 −0.0015 0.0010 0.0006
]

,

b =
[

−0.8914 0.0255 −0.0090 0.0677
]⊤
.

To check the quality of the quasi model, we compute the string probabilities
generated by (Q,Y, A, c, b) for strings of length 4. A selection of these string
probabilities (strings starting with A or C) is shown in Table 4.3. By comparing
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these probabilities to the probabilities of Table 4.1, we conclude that the
modeling works well.

Table 4.3: We show the string probabilities (for strings starting with A or
C) generated by the quasi hidden Markov model (Q,Y, A, c, b) of order 4 that
is obtained by the quasi realization algorithm. By comparing these probabilities
to the original string probabilities in Table 4.1, we conclude that the modeling
works well.

A C G T
AAA 0.0043 0.0022 0.0057 0.0023
CAA 0.0035 0.0023 0.0051 0.0019
ACA 0.0029 0.0027 0.0044 0.0023
CCA 0.0038 0.0052 0.0075 0.0034
AGA 0.0050 0.0035 0.0076 0.0029
CGA 0.0016 0.0019 0.0046 0.0007
ATA 0.0023 0.0014 0.0011 0.0019
CTA 0.0022 0.0015 0.0014 0.0016
AAC 0.0030 0.0020 0.0014 0.0022
CAC 0.0039 0.0055 0.0031 0.0036
ACC 0.0030 0.0041 0.0024 0.0034
CCC 0.0069 0.0135 0.0077 0.0082
AGC 0.0048 0.0060 0.0038 0.0044
CGC 0.0033 0.0068 0.0047 0.0029
ATC 0.0023 0.0027 0.0000 0.0029
CTC 0.0043 0.0079 0.0025 0.0049
AAG 0.0052 0.0045 0.0067 0.0039
CAG 0.0057 0.0066 0.0079 0.0039
ACG 0.0014 0.0018 0.0031 0.0015
CCG 0.0036 0.0073 0.0079 0.0028
AGG 0.0060 0.0066 0.0087 0.0044
CGG 0.0048 0.0070 0.0068 0.0024
ATG 0.0019 0.0019 0.0032 0.0025
CTG 0.0055 0.0076 0.0079 0.0044
AAT 0.0019 0.0014 0.0020 0.0026
CAT 0.0017 0.0031 0.0032 0.0030
ACT 0.0014 0.0025 0.0037 0.0028
CCT 0.0021 0.0072 0.0087 0.0054
AGT 0.0023 0.0034 0.0044 0.0038
CGT 0.0006 0.0029 0.0031 0.0011
ATT 0.0018 0.0026 0.0023 0.0037
CTT 0.0020 0.0051 0.0038 0.0047
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4.5 The linear stochastic case

In this section we present a solution to the minimal linear stochastic realization
problem (Problem 3.8). We only consider the exact linear stochastic realization
problem, not the partial nor the partial approximate linear stochastic realization
problem. We first present an answer to the realizability question. Subsequently,
we describe how to find the minimal order of a linear stochastic realization and
finally, we present a linear stochastic realization algorithm. It will become clear
that the hidden Markov realization theory is very similar to the linear stochastic
realization theory.

Define the Hankel matrix HΛ of autocovariances Λ as a doubly infinite matrix
with

(HΛ)ij := Λ(i+ j − 1).

It is clear that the Hankel matrix looks like

HΛ =











Λ(1) Λ(2) Λ(3) . . .
Λ(2) Λ(3) Λ(4) . . .
Λ(3) Λ(4) Λ(5) . . .

...
...

...
. . .











.

The linear stochastic realizability question is solved by the following theorem.

Theorem 4.3. An autocovariance sequence Λ is realizable by a linear stochastic
model (A,C, P,Q,R, S) where A ∈ Rn×n with n <∞, if and only if the rank of
the Hankel matrix HΛ is finite.

Note that Theorem 4.3 is the equivalent of Theorem 4.1 for hidden Markov
models. The following theorem provides a way to find the minimal order of a
linear stochastic realization of a given autocovariance sequence.

Theorem 4.4. The order of a minimal linear stochastic realization of Λ is equal
to the rank of the Hankel matrix HΛ.

Theorem 4.4 is the linear stochastic equivalent of Theorem 4.2 for hidden
Markov models. We now present a realization algorithm for linear stochastic
models. It turns out that the positive definiteness of the matrices P , Q and R
comes for free in the realization algorithm. As explained before, this is the reason
why we do not make a distinction between quasi linear stochastic realization and
positive linear stochastic realization as we did for hidden Markov models.

Algorithm 4.3. Given a rank r Hankel matrix HΛ (r <∞) of autocovariances
Λ of a process over Z+ taking values in Rp. Perform the following steps.

1. Find a submatrix M of HΛ with rankM = rankHΛ. Suppose M is formed
by the elements in the rows r1, r2, . . . , rm and columns c1, c2, . . . , cn.

2. Define R as the submatrix of HΛ formed by the elements in the first p rows
and columns c1, c2, . . . , cn and K as the submatrix of HΛ formed by the
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elements in the first p columns and rows r1, r2, . . . , rm. Finally, define σM
as the submatrix of HΛ with elements of rows r1, r2, . . . , rm and columns
c1 +p, c2 +p, . . . , cn +p. Equivalently, by the Hankel structure, σM can be
defined as the submatrix of HΛ with elements of rows r1+p, r2+p, . . . , rm+
p and columns c1, c2, . . . , cn.

3. Find U ∈ Rr×m and V ∈ Rn×r such that UMV = Ir.

4. Now determine A, C and G as follows:

A = UσMV,

C = RV,

G = UK.

5. Find a matrix P = P⊤ � 0 such that

[

P −APA⊤ G−APC⊤

G⊤ − CPA⊤ Λ(0) − CPC⊤

]

� 0, (4.17)

6. Now a linear stochastic realization of the given autocovariances is given
by (A,C, P,Q,R, S) where

Q = P −APA⊤,

R = Λ(0) − CPC⊤,

S = G−APC⊤.

Notice that Algorithm 4.3 is the linear stochastic equivalent of Algorithm
4.1. It can be proven that there always exists a matrix P that fullfills condition
(4.17), hence Algorithm 4.3 always yields a solution to the linear stochastic
realization problem.

Proposition 4.13. Algorithm 4.3 yields a solution to the minimal linear
stochastic realization problem of autocovariances Λ.

As already explained in Section 3.5, for a fixed choice of basis for A, C
and G, all solutions to the linear stochastic realization problem are obtained by
computing all matrices P that fullfill condition (4.17).

We conclude that the realization problem for linear stochastic models is
completely analogous to the realization problem for hidden Markov models.

4.6 Conclusions

In this chapter we considered different versions of the quasi realization problem
for hidden Markov models: first the exact quasi realization problem, second the
partial quasi realization problem and finally the approximate partial realization
problem.
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The generalized Hankel matrix of string probabilities is introduced. Some
interesting rank properties of the Hankel matrix are proven. We review the
realizability question for quasi HMMs. Next, an algorithm is provided to
solve the exact quasi realization problem. Several interesting properties of the
obtained quasi realization are proven.

We introduce the partial pseudo realization problem. We prove that,
if a certain rank condition holds, the minimal pseudo realization algorithm
can be solved using the same algorithm as is used for the complete quasi
realization problem. In addition under the same rank condition, we prove that
a solution to the partial pseudo realization problem is unique up to a similarity
transformation. We also give some hints for the solution to the partial pseudo
realization problem in case the rank condition does not hold.

The approximate partial pseudo realization problem for hidden Markov
models is considered. We propose four different methods to solve this problem.
The first three methods aim at obtaining a low rank approximation of the Hankel
matrix while the fourth method first builds a full-order balanced realization and
subsequently reduces this realization to find an approximate pseudo realization
of the string probabilities. We succesfully apply the approximate realization
algorithms to the problem of modeling DNA sequences.





Chapter 5

Positive realization of
hidden Markov models

The positive realization problem for hidden Markov models was first stated
in [20, 52]. The positive realization problem consists in finding a hidden
Markov model corresponding to given string probabilities. Analogously to the
quasi realization problem, the positive realization problem consists of three
subproblems: the first is the realizability problem, the second is the realization
problem itself and the third is the equivalence problem. The first two problems
are discussed in this chapter and the third problem was considered in Chapter
3.

The positive realization problem is nice from a theoretical point of view.
However, in practical applications it is not directly useful because in practise
only a finite amount of string probabilities are given and in addition these string
probabilities may be estimated instead of exact. The partial realization problem
aims at modeling exact string probabilities of strings up to length t. The
approximate partial realization problem models approximate string probabilities
of strings up to length t.

The positive realization problem for hidden Markov models is closely
related to the positive realization problem for linear time-invariant deterministic
systems with positive impulse response [5, 29, 99]. The minimal positive
realization problem for linear systems has no solution yet. See [12] for a current
state of the art of the positive realization problem.

List of own contributions

We here describe our contributions to the positive realization problem for hidden
Markov models.

• In Section 5.3.1 we show that the approximate partial Moore realization
problem for string probabilities of strings up to length two, can be

119
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solved using the structured nonnegative matrix factorization introduced
in Section 2.3.

• In Section 5.3.2 the approximate partial Mealy realization problem for
string probabilities of strings up to length t is solved by generalizing
the Moore realization approach for strings up to length two. Simulation
examples show that the methods perform well (Section 5.4).

• In Section 5.5 we apply the approximate realization algorithm to the
modeling of the outcome of a coin flipping experiment. Therefore, first
strings probabilities are estimated from the sequence and subsequently
the approximate realization algorithm is applied to find a model of the
sequence.

• In Section 5.6 we apply the approximate realization algorithm to the mod-
eling of DNA sequences. Again, strings probabilities are estimated from
the sequences and subsequently the approximate realization algorithm is
applied to find a model of the sequences.

Section-by-section overview

In Section 5.1 we review the exact positive realization problem and more
precisely the realizability problem and the realization problem itself. In Section
5.2 we review the partial realization problem. In Section 5.3 we consider the
approximate partial realization problem. We make a distinction between the
Moore and Mealy realization problem. In Section 5.4 we consider two simulation
examples showing the effectiveness of the proposed methods. In Section 5.5
we apply the approximate realization algorithm to the problem of modeling
the outcome of a coin flipping experiment and in Section 5.6 we apply the
approximate realization algorithm to the problem of modeling DNA sequences.

5.1 Exact realization

In this section we give the current status of the exact positive realization problem
for Mealy hidden Markov models. First the realizability problem is considered
(Section 5.1.1) and subsequently, the realization problem itself (Section 5.1.2)
is considered. The results of this section are based on [4, 112,113].

5.1.1 Realizability problem

The realizability problem is the following: given string probabilities P for
all strings of finite length, derive conditions for the string probabilities to be
representable by a positive hidden Markov model. The following theorem [20,
24,52] contains a necessary condition for string probabilities to be representable
by a Mealy hidden Markov model.
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Theorem 5.1. If string probabilities P are realizable by a Mealy HMM
(X,Y,Π, π(1)) with |X| < ∞, then the rank of the generalized Hankel matrix
H of string probabilities P is finite.

It was conjectured in [52] that the condition of Theorem 5.1 is also a sufficient
condition for string probabilities to be representable by a Mealy hidden Markov
model. However, this conjecture was disproven by showing that there exist
examples where the condition holds but where the non-existence of a Mealy
hidden Markov realization can be proven [39, 50].

So, what in addition to the condition of Theorem 5.1 is needed to ensure
realizability? Several attempts were made to obtain necessary and sufficient
conditions for string probabilities to be representable by a Mealy hidden Markov
model [34–38]. The most noticable result is the definition of a ”cone condition”.
It is proven that if the process satisfies the cone condition and the associated
Hankel matrix has finite rank, then there exists a Mealy hidden Markov
realization of the process. However, the cone condition is in essence merely
a restatement of the realizability question rather than a solution to it.

In more recent work, Anderson [4] starts with the assumption that the
string probabilities have a hidden Markov realization. Hence no conditions for
realizability are given in terms of properties of the output process. In [112,113]
sufficient conditions for the realizability of string probabilities are proven.
Before being able to recall this sufficient condition we need some definitions
from [112,113].

Definition 5.1. Consider stationary string probabilities P of which the asso-
ciated Hankel matrix H has finite rank. Define k as the smallest integer for
which

rankH(k+1,k+1) = rankH.

Then the string probabilities are called ultra-mixing if there exists a sequence
d(l) that goes to 0 as l goes to infinity such that

∣

∣

∣

∣

P(uv)

P(v)
− P(uvw)

P(vw)

∣

∣

∣

∣

≤ d(l), u ∈ Yk,v ∈ Yl,w ∈ Y∗.

Now, it is proven in [112, 113], that string probabilities P are realizable by
a Mealy HMM (X,Y,Π, π(1)) with |X| <∞ if

1. The Hankel matrix associated with the string probabilities has finite rank.

2. The string probabilities are alpha-mixing (Definition 4.1).

3. The string probabilities are ultra-mixing (Definition 5.1).

4. A technical condition on the string probabilities is fullfilled (see [112,113],
Theorem 7.2)

On the other hand it is proven in [4] that a Mealy HMM that satisfies another
technical condition, generates string probabilities that have finite Hankel rank,
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are alpha-mixing and are ultra-mixing. Taken together these two results, we
have that, modulo two technical conditions, the finite Hankel rank condition,
alpha-mixing and ultra-mixing are ”almost” necessary and sufficient conditions
for string probabilities to be representable by a Mealy hidden Markov model.

5.1.2 Realization problem

The second subproblem of the realization problem for hidden Markov models is
the realization problem itself: derive an algorithm that finds a hidden Markov
representation of given realizable string probabilities. Up to this moment this
problem did not gain much attention in the literature. One of the reasons is
probably because the realizability problem has not been solved completely yet.
Anderson [4] starts with the assumption that the given string probabilities have
a HMM realization and then provides a procedure for constructing a HMM
realization. However, there is no guarantee that the HMM constructed using
this procedure has the same number of states as the HMM that generated the
string probabilities under study.

5.2 Partial realization

The realization problem for hidden Markov models is interesting from theoretical
point of view. It supposes that the exact string probabilities of all string of finite
length are given. In practical applications however, only a finite number of
string probabilities are given. The partial realization problem aims at building
a hidden Markov model that models string probabilities of string up to a certain
length t. In contradiction to the complete realization problem, the partial
realization problem always has a solution. A well-known solution to the partial
realization problem is to model the string probabilities with a (t−1)-step Markov
process. In [114], it is shown that this solution is the only solution that satisfies
the conditions:

• The string probabilities for all strings of Y∗ generated by the obtained
HMM are consistent.

• The string probabilities for all strings of Y∗ generated by the obtained
HMM are nonnegative.

Note that both conditions are trivially fullfilled for string probabilities of strings
up to length t. In other words it is proven in [114] that the (t− 1)-step Markov
process is such that the extension of the string probabilities is nonnegative and
such that the total string probabilities are consistent.

5.3 Approximate partial realization

In this section we consider the approximate partial realization problem for
hidden Markov models. This problem has been considered already in [48]. In
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the approximate partial realization problem, approximate string probabilities
of strings up to length t are given. As the string probabilities are not exact,
the solution obtained by the exact partial realization algorithm will typically
be of high order. Therefore, it may be more useful to make a good low order
approximate realization of the string probabilities rather than to try to match
them exactly.

Suppose there is an ordering (y1, y2, . . . , y|Y|) on the symbols from the output

set Y, then the approximate string probabilities P̃(t) of string of length t can be
stacked in the t-dimensional tensor P , defined as

P (n1, n2, . . . , nt) = P̃(t)(yn1
yn2

. . . ynt
).

Notice that the element sum of P is equal to 1. As the string probabilities of
strings of length smaller than t can be calculated from the string probabilities
of strings of length t, the tensor P contains all data for the approximate partial
realization problem. From now, we make a distinction between the approximate
Moore (Section 5.3.1) and approximate Mealy realization problem (Section
5.3.2).

5.3.1 Moore realization

The approximate t-partial Moore realization problem consists of finding for
a given model order, a Moore HMM that approximately generates the string
probabilities P̃(t). Mathematically, using the tensor P , the approximate partial
Moore realization problem becomes:

Problem 5.1 (approximate partial Moore realization problem). Given the

tensor P ∈ R
|Y|×|Y|×...×|Y|
+ of string probabilities of strings of length t, and

given the model order |X|, determine ΠX, β and π(1) of a Moore HMM
(Y,X,ΠX, β, π(1)), such that DKL(P, P̃ (ΠX, β, π(1))) is minimized with respect
to ΠX, β and π(1), where P̃ (ΠX, β, π(1)) is defined as

P̃ (ΠX, β, π(1))(y(1), y(2), . . . , y(t)) = π(1) diag(β(y(1)))ΠX . . . diag(β(y(t)))ΠXe.

In case t = 2, Problem 5.1 allows a gentle solution using the structured
nonnegative matrix factorization introduced in Section 2.3. The Moore
realization problem for general t can be solved by extending the techniques
of the t = 2 case.

In case t = 2, the tensor P becomes a matrix of size |Y| × |Y| given by

P =













P̃(2)(y1y1) P̃(2)(y1y2) . . . P̃(2)(y1y|Y|)

P̃(2)(y2y1) P̃(2)(y2y2) . . . P̃(2)(y2y|Y|)
...

...
. . .

...

P̃(2)(y|Y|y1) P̃(2)(y|Y|y2) . . . P̃(2)(y|Y|y|Y|)













.

On the other hand, for a Moore HMM (Y,X,ΠX, β, π(1)), it follows from

P (y(1) = yk, y(2) = yl) =
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∑

ij

P (y(1) = yk, y(2) = yl|x(1) = i, x(2) = j)P (x(1) = i, x(2) = j) =

∑

ij

P (y(1) = yk|x(1) = i)P (y(2) = yl|x(1) = i)P (x(1) = i, x(2) = j) =

(B⊤ diag(π(1))ΠXB)kl,

that
P̃ (ΠX, β, π(1)) = B⊤ diag(π(1))ΠXB,

where B =
[

β(y1) β(y2) . . . β(y|Y|)
]

.
The problem of finding a Moore HMM of a given order |X| that approxi-

mately realizes string probabilities of strings of length two, is hence equivalent

to the problem of finding, for a given P ∈ R
|Y|×|Y|
+ with e⊤Pe = 1, matrices

B ∈ R
|X|×|Y|
+ , with Be = e, and ΠX ∈ R

|X|×|X|
+ , with ΠXe = e, and a vector

π(1) ∈ R
|X|
+ with π(1)e = 1, such that B⊤ diag(π(1))ΠXB approximates P

optimally with respect to a certain criterion.
In Section 2.3 we developed a method to (approximately) decompose a

matrix P into a product V AV ⊤, with V and A positive, V column stochastic
and with the element sum of A equal to the element sum of P . It is easy to see
that this method allows us to solve the approximate partial Moore realization
problem for strings of length 2. Indeed, from an approximate decomposition
P ≃ V AV ⊤, one can find ΠX, B and π(1) as follows

B = V ⊤,

ΠX = (diag(Ae))−1A,

π(1) = (Ae)⊤.

This defines a Moore HMM that approximately models string probabilities of
strings up to length two.

If y = (y(1), y(2)) is stationary, i.e. Pe = P⊤e, and the decomposition is
exact, i.e. P = B⊤AB, and B has full row rank, then x = (x(1), x(2)) is also
stationary, i.e. Ae = A⊤e. Indeed, from Pe = P⊤e or B⊤ABe = B⊤A⊤Be, we
find that Ae = A⊤e if B has full row rank. Note that π(1) is a left eigenvector
of ΠX corresponding to the eigenvalue 1, as is expected for stationary models

π(1)ΠX = (Ae)⊤(diag(Ae))−1A

= e⊤A = (Ae)⊤

= π(1).

So far, we considered the approximate Moore realization problem for string
probabilities of strings up to length 2. Two extensions to this problem are
possible. The first extension is the Moore realization problem for general string
probabilities and the second is the Mealy realization problem for general string
probabilities. The approach for both problems is similar. In the next section we
concentrate on the most general problem: the approximate Mealy realization
problem for general string probabilities.
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5.3.2 Mealy realization

In this section we consider the approximate t-partial realization problem for
Mealy HMMs. Mathematically, the approximate partial realization problem is
defined as floows.

Problem 5.2 (approximate partial realization problem). Given a tensor P ∈
R

|Y|×|Y|×...×|Y|
+ of string probabilities of strings of length t, and given the model

order |X|, determine Π and π(1) of a Mealy HMM (Y,X,Π, π(1)), such that
DKL(P, P̃ (Π, π(1))) is minimized with respect to Π and π(1), where P̃ (Π, π(1))
is defined as

P̃ (Π, π(1))(y(1), y(2), . . . , y(t)) = π(1)Π(y(1))Π(y(2)) . . .Π(y(t))e.

We solve the Mealy realization problem by generalizing the solution to the
Moore realization problem for t = 2. It is therefore of no coincidence that the
theorems of this section are analogous to theorems of Section 2.3 where the
structured nonnegative matrix factorization is solved, which is the basis for the
Moore realization problem for t = 2.

We start with the analogue of Theorem 2.7.

Theorem 5.2. Let P ∈ R
|Y|×|Y|×...×|Y|
+ . Then every stationary point (Π, π(1))

of the cost function DKL(P, P̃ (Π, π(1))) satisfies

∑

y2,y3,...yt

P (y, y2, y3, . . . , yt)+

∑

y1,y3,y4...yt

P (y1, y, y3, y4, . . . , yt) + . . .+

∑

y1,y2,...yt−1

P (y1, y2, . . . , yt−1, y) =

∑

y2,y3,...yt

P̃ (Π, π(1))(y, y2, y3, . . . , yt)+

∑

y1,y3,y4...yt

P̃ (Π, π(1))(y1, y, y3, y4, . . . , yt) + . . .+

∑

y1,y2,...yt−1

P̃ (Π, π(1))(y1, y2, . . . , yt−1, y), y ∈ Y.

As a consequence the total sum of P and P̃ are equal

∑

y1,y2,...yt

P (y1, y2, . . . , yt) =
∑

y1,y2,...yt

P̃ (Π, π(1))(y1, y2, . . . , yt).

Proof: The proof is analogous to the proof of Theorem 2.7.
We call a stationary point of the divergence D(P, P̃ (Π, π(1))) normalized, if

it holds that π(1)e = 1 and
∑

y
Π(y)e = e. Only normalized points give rise

to consistent hidden Markov models, so we restrict the search for an optimal
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solution to Problem 5.2 to the space of normalized points. Restricting the
search to normalized points can be done by chosing normalized initial values
and by making sure that the update formulas retain the normalization. Chosing
normalized initial values is no problem. The point is to find update formulas
that retain the normalization. The following theorem is the analogue of Theorem
2.8.

Theorem 5.3. Assume that the starting values Π(0) and π(0)(1) are nor-
malized, i.e. π(0)(1)e = 1 and

∑

y
Π(0)(y)e = e. Then the divergence

DKL(P ||P̃ (Π, π(1))) is nonincreasing under the update rules

π
(k+1)
i (1) = π

(k)
i (1)

∑

y1,y2,...,yt

P (y1, . . . , yt)

P̃ (Π, π(k)(1))(y1, . . . , yt)
Πi,:(y1)Π(y2) . . .Π(yt)e

(5.1)

Π
(k+1)
ij (y) = Π

(k)
ij (y)

A+B + . . .+ C

D + E + . . .+ F
, (5.2)

where

A =
∑

y2y3...yt

P (y, y2, . . . , yt)

P̃ (Π(k), π(1))(y, y2, . . . , yt)
.

πi(1)Π
(k)
j,: (y2)Π

(k)(y3) . . .Π
(k)(yt)e,

B =
∑

y1y3y4...yt

P (y1, y, y3, . . . , yt)

P̃ (Π(k), π(1))(y1, y, y3, . . . , yt)
.

π(1)Π
(k)
:,i (y1)Π

(k)
j,: (y3)Π

(k)(y4) . . .Π
(k)(yt)e,

C =
∑

y1y2...yt−1

P (y1, . . . , yt−1, y)

P̃ (Π(k), π(1))(y1, . . . , yt−1, y)
.

π(1)Π(k)(y1) . . .Π
(k)(yt−2)Π

(k)
:,i (yt−1),

D =
∑

y1y2...yt

P (y1, y2, . . . , yt)

P̃ (Π(k), π(1))(y1, y2, . . . , yt)
.

πi(1)Π
(k)
i,: (y1)Π

(k)(y2) . . .Π
(k)(yt)e,

E =
∑

y1y2...yt

P (y1, y2, . . . , yt)

P̃ (Π(k), π(1))(y1, y2, . . . , yt)
.

π(1)Π
(k)
:,i (y1)Π

(k)
i,: (y2)Π

(k)(y3) . . .Π
(k)(yt)e,

F =
∑

y1y2...yt

P (y1, y2, . . . , yt)

P̃ (Π(k), π(1))(y1, y2, . . . , yt)
.

π(1)Π(k)(y1) . . .Π
(k)
:,i (yt−1)Π

(k)
i,: (yt)e. (5.3)

In addition, the updated values of Π and π(1) are also normalized.
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Proof: The proof is analogous to the proof of Theorem 2.8.
For fixed Π(k) = Π(0), the divergence F (Π, π(1)) = DKL(P ||P̃ (Π, π(1))

is invariant under an update of π(1), i.e. π(k+1)(1) = π(k)(1), if and only
if π(k)(1) is a stationary point of the divergence with fixed Π = Π(0), i.e.

π
(k)
i (1) ∂F

∂πi(1)
(π(k)(1),Π(0)) = 0. For fixed π(k)(1) = π(0)(1) on the other hand,

the divergence is invariant under an update for Π, i.e. Π(k+1) = Π(k), if and
only if

Π(y)
(k)
ij (D + E + F −A−B − C) = 0,

where A, B, C, D, E, F are defined in (5.3). Notice that this last condition is
in general not equivalent to the condition that Π(k) is a stationary point of the
divergence with fixed π(1) = π(0)(1). So for the case where we take π(1) fixed
and update only Π, it is possible that the formulas, if they converge, converge
to a point that is not a stationary point of the divergence with fixed π(1).

However, if we use the update formulas for π(1) and Π alternatingly, i.e.

(π(0)(1),Π(0)) 7→ (π(1)(1),Π(0)) 7→ (π(1)(1),Π(1)) 7→ (π(2)(1),Π(1)) 7→ . . . ,

we have the following result analogous to Theorem 2.9.

Theorem 5.4. The divergence is invariant under updates (5.1) and (5.2) if
and only if (Π, π(1)) is a stationary point of the divergence, i.e.

{

π(k+1)(1) = π(k)(1),

Π(k+1) = Π(k),

⇔
{

π
(k)
i (1) ∂F

∂πi
(Π(k), π(k)(1)) = 0, i = 1, 2, . . . |X|,

Π
(k)
ij (y) ∂F

∂Πij(y) (Π
(k), π(k)(1)) = 0, i, j = 1, 2, . . . |X|, y ∈ Y.

Proof: The proof is analogous to the proof of Theorem 2.9.
It follows that if the update formulas converge, that they converge to a

stationary point of the cost function in case π(1) and Π are updated alternatingly
or in case Π is fixed and π(1) is updated. However, when π(1) is fixed and only
Π is updated, it is only guarantueed that the divergence is nonincreasing. It is
possible that the formulas converge to a point that is not a stationary point of
the divergence with fixed π(1).

The algorithm below implements the same update formulas as in Theorem
5.3, but is better from computational point of view as the denominator of
Equation (5.2) does not have to be computed

Algorithm 5.1. Start with random nonnegative π(0)(1) and Π(0) with π0(1)e =
1 and

∑

y
Π(0)(y)e = e, iterate the following steps for k = 0, 1, ... until

convergence:

1. π
(k+1)
i (1) = π

(k)
i (1)

∑

y1,y2,...,yt

P (y1,...,yt)

P̃ (Π,π(k)(1))(y1,...,yt)
Πi,:(y1)Π(y2) . . .Π(yt)e
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2. Π
(k+1)
ij (y) = Π

(k)
ij (y)(A+B + . . .+ C) with

A =
∑

y2y3...yt

P (y, y2, . . . , yt)

P̃ (Π(k), π(1))(y, y2, . . . , yt)
.

πi(1)Π
(k)
j,: (y2)Π

(k)(y3) . . .Π
(k)(yt)e,

B =
∑

y1y3y4...yt

P (y1, y, y3, . . . , yt)

P̃ (Π(k), π(1))(y1, y, y3, . . . , yt)
.

π(1)Π
(k)
:,i (y1)Π

(k)
j,: (y3)Π

(k)(y4) . . .Π
(k)(yt)e,

C =
∑

y1y2...yt−1

P (y1, . . . , yt−1, y)

P̃ (Π(k), π(1))(y1, . . . , yt−1, y)
.

π(1)Π(k)(y1) . . .Π
(k)(yt−2)Π

(k)
:,i (yt−1).

3. Normalize Π(k+1) such that
∑

y
Π(k+1)(y)e = e.

5.4 Simulation example

In this section we describe two simulation examples to show the effectiveness
of the proposed methods. The first simulation example builds a Moore model
for string probabilities of strings up to length 2 (Section 5.4.1) and the second
simulation example builds a Mealy model for string probabilities of strings up
to length 3 (Section 5.4.2).

5.4.1 Moore realization, t = 2

Suppose we are given the probabilities of strings of length two of a Moore
HMM with Y = {a, b, . . . , j}. The objective is to find the system matrices
of the underlying Moore HMM. Suppose there is an ordering (y1 = a, y2 =
b, . . . , y10 = j) on the output set Y. Now the string probabilities can be stacked
in the matrix P as described before, i.e. Pkl = P(ykyl).

In our simulation example P is given by

P =

































396 193 149 116 113 94 98 161 128 454
182 128 87 85 77 67 70 120 84 191
150 87 69 60 58 52 53 77 63 150
111 84 60 61 55 51 52 80 57 112
112 75 58 55 51 47 48 70 54 105
92 67 50 51 46 45 45 63 47 93
97 69 52 52 47 46 46 65 49 96
149 118 78 80 72 63 65 114 78 148
126 81 64 58 55 49 51 75 60 113
488 189 152 105 100 86 90 141 111 415

































10−4.
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This matrix P was generated as P = B⊤ diag(π(1))ΠXB where B, ΠX and
π(1) are the system matrices of a stationary Moore HMM (X,Y,ΠX, B, π(1))
with X = {1, 2, . . . , 5} and

ΠX =













0.80 0.00 0.10 0.10 0.00
0.20 0.20 0.20 0.20 0.20
0.40 0.10 0.30 0.20 0.00
0.15 0.05 0.10 0.35 0.35
0.05 0.05 0.05 0.55 0.30













,

π(1) =
[

0.4850 0.0375 0.1218 0.2300 0.1257
]

,

B =













0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.15 0.00 0.25 0.00 0.20 0.00 0.05 0.00 0.35 0.00
0.30 0.30 0.00 0.10 0.00 0.00 0.00 0.30 0.00 0.00
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55
0.70 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.10













.

In the simulation example, this model is unknown, but we give it here to
check the performance of the algorithms.

We use the iterative update algorithm of Theorem 2.8 to compute optimal
approximations with respect to the Kullback-Leibler divergence with system
order equal to 1, 2, . . . , 10. As initial values for the iterative algorithm we
use randomly chosen nonnegative matrices. As stopping rule, we use the
Kullback-Leibler divergence between the approximation at iteration step t and
the approximation at step t+1. The algorithm stops if this divergence is smaller
than 10−8. In Table 5.1 we show the number of steps until convergence for the
different system orders.

On Figure 5.1, we plot the Kullback-Leibler divergence between the original
matrix P and its optimal approximation with respect to the Kullback-Leibler
divergence as a function of the system order.

Table 5.1: Number of iterations for the multiplicative update method
minimizing the Kullback-Leibler divergence.

sp-rank 1 2 3 4 5 6 7 8 9 10
number of iterations 1 272 1439 1431 2137 3656 2157 2320 1786 1806

Notice that the divergence is almost equal to 0 for system order 5 to 10.
This makes sense as the matrix P was generated using an underlying hidden
Markov model of order 5. To show further the quality of the approximations, we
give in Table 5.2 the true output probabilities of a selection of strings of length
2 and compare them with the probabilities found with the Kullback-Leibler
minimalisation method of order 5, 4, . . .1. We conclude that the modeling of
string probabilities of strings of length 2 with a hidden Markov model works
well.
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Figure 5.1: Kullback-Leibler divergence between the true matrix P and its
optimal (w.r.t. the Kullback-Leibler divergence) approximation for system order
1, 2, . . . , 10 computed with the iterative algorithm of Theorem 2.8.

Table 5.2: String probabilities for strings of length 2.
Sequence Exact Order 5 Order 4 Order 3 Order 2 Order 1

aa 0.0396 0.0397 0.0396 0.0397 0.0333 0.0362
ab 0.0193 0.0192 0.0192 0.0190 0.0204 0.0207
ac 0.0149 0.0149 0.0149 0.0150 0.0153 0.0156
ad 0.0116 0.0116 0.0116 0.0116 0.0137 0.0137
ae 0.0113 0.0113 0.0113 0.0114 0.0131 0.0128
af 0.0094 0.0094 0.0094 0.0095 0.0113 0.0114
ag 0.0098 0.0098 0.0099 0.0100 0.0118 0.0118
ah 0.0161 0.0161 0.0161 0.0158 0.0185 0.0184
ai 0.0128 0.0128 0.0127 0.0127 0.0144 0.0139
aj 0.0454 0.0454 0.0454 0.0454 0.0384 0.0357

5.4.2 Mealy realization, t = 3

Suppose we are given the probabilities of strings of length three of a process
with Y = {a, b, c, d} generated by an unknown Mealy hidden Markov model with
|X| = 3 . The objective is to find an approximate Mealy HMM corresponding
to the string probabilities. Suppose there is an ordering (y1 = a, y2 = b, y2 =
c, y2 = d) on the output set Y. Now the string probabilities can be stacked in
the tensor P as described before, i.e. P (k, l,m) = P(ykylym). In this simulation
example, the tensor P is given by



5.4 Simulation example 131

P (:, :, 1) =









0.0372 0.0093 0.0118 0.0015
0.0083 0.0020 0.0070 0.0023
0.0188 0.0047 0.0325 0.0015
0.0072 0.0013 0.0158 0.0096









,

P (:, :, 2) =









0.0170 0.0045 0.0056 0.0009
0.0038 0.0015 0.0033 0.0043
0.0087 0.0036 0.0161 0.0021
0.0033 0.0027 0.0073 0.0192









,

P (:, :, 3) =









0.0164 0.0173 0.0382 0.0108
0.0051 0.0037 0.0229 0.0061
0.0344 0.0088 0.2368 0.0062
0.0031 0.0027 0.0173 0.0192









,

P (:, :, 4) =









0.0072 0.0045 0.0036 0.0028
0.0017 0.0057 0.0022 0.0317
0.0047 0.0148 0.0153 0.0141
0.0014 0.0199 0.0035 0.1437









.

Using Algorithm 5.1, we build a Mealy model of order 1,2,3,4 and 5. The
Kullback-Leibler divergence between P and P̃ (Π, π(1)) for the different models
is given in Table 5.4.

Table 5.3: Kullback-Leibler divergence between the tensors P and P̃ (Π, π(1))
for a Mealy hidden Markov model of order 1,2,3,4 and 5.

order 1 2 3 4 5
KL-divergence 0.5390 0.1216 0.0038 0.0036 0.0035

It is clear that order 3 gives the best trade-off between accuracy and
complexity of the model. The model of order three obtained by to algorithm is
given by (X,X,Π, π(1)), with X = {1, 2, 3} and

Π(a) =





0.4801 0.0106 0.0013
0.0102 0.0699 0.0000
0.0190 0.0001 0.0002



 ,

Π(b) =





0.1021 0.0933 0.0234
0.0019 0.0008 0.0382
0.0011 0.0001 0.0934



 ,

Π(c) =





0.0716 0.1258 0.0056
0.0746 0.7598 0.0120
0.0808 0.0001 0.0040



 ,
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Π(d) =





0.0134 0.0573 0.0155
0.0005 0.0034 0.0287
0.0437 0.0124 0.7451



 ,

π(1) =
[

0.3049 0.3968 0.2983
]

.

The tensor P̃ (Π, π(1)) is given by

P̃ (Π, π(1))(:, :, 1) =









0.0374 0.0091 0.0101 0.0018
0.0084 0.0020 0.0063 0.0022
0.0216 0.0050 0.0370 0.0015
0.0066 0.0016 0.0125 0.0090









,

P̃ (Π, π(1))(:, :, 2) =









0.0167 0.0046 0.0048 0.0012
0.0038 0.0015 0.0030 0.0043
0.0097 0.0036 0.0182 0.0021
0.0029 0.0028 0.0058 0.0194









,

P̃ (Π, π(1))(:, :, 3) =









0.0185 0.0160 0.0394 0.0084
0.0054 0.0038 0.0237 0.0060
0.0289 0.0092 0.2334 0.0065
0.0042 0.0038 0.0210 0.0207









,

P̃ (Π, π(1))(:, :, 4) =









0.0068 0.0058 0.0036 0.0034
0.0016 0.0056 0.0022 0.0313
0.0043 0.0133 0.0151 0.0136
0.0012 0.0191 0.0036 0.1440









.

The tensor P̃ (Π, π(1)) is not exactly equal to P as the decomposition algo-
rithm converges only to a local optimum of the cost functionDKL(P, P̃ (Π, π(1))).
However, P̃ (Π, π(1)) is close to P , from which we conclude that the modeling
works well.

5.5 Modeling a coin flipping sequence

In this section we apply the positive realization method to a coin flipping
experiment. The setup is the following: Person A and Person B are flipping
coins. If the result is a head, the score of person A is increased with one. If the
result is a tail, the score of Person B is increased with one. After a sequence
of 100 experiments, the person with the highest score wins the game. Person A
does the tossing, however, he does not play the game fairly. He starts tossing
with a fair coin with the following probabilities

Pfair(head) = 1
2 , Pfair(tail) = 1

2 .

However, when Person B is earning too much, Person A switches to a false coin
with probabilities

Pfalse(head) = 5
6 , Pfalse(tail) = 1

6 .
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More precisely, Person A switches to the false coin if the outcome of the two last
experiments was tail. To make sure that Person B does not become suspicious,
Person A switches back to the fair coin after two consecutive heads. Person C
notices that Person A is not playing fair but does not know the ”rule” that
Person A uses to switch from the one coin to the other. Person C is able to
write down the outcomes of a sequence of 100 flipping experiments as well as
the coin (fair or false) that was used for each of the experiments. For a
second sequence of experiments, Person C is only able to see the outcomes of
the experiments, but he can not determine which coin was used. He wants to
find out at which time instants the fair coin was used and at which time instants
the false coin was used. Therefore, he first builds a model of the sequence and
subsequently applies estimation techniques to find out which coin was used. In
this section we describe how to build the model and in Section 7.5 we explain
how to find out which coin was used in the second sequence of experiments.

.
Experiment number

O
u
tc

o
m

e

Head

Tail

0 10 20 30 40 50 60 70 80 90 100

(a)

.
Experiment number

C
o
in

Fair

False

0 10 20 30 40 50 60 70 80 90 100

(b)

Figure 5.2: In Subfigure (a), we show the outcomes of the given sequence of
coin flipping experiments. In Subfigure (b), we show which coin was used for
each of the experiments.

In Figure 5.2(a), we show the outcomes of the first sequence of experiments
and in Figure 5.2(b), we show the coin that was used for each experiment.
We want to make a joint model of both sequences, the first taking values in
Y = {head, tail} and the second in Z = {fair, false}. We first need to define
hidden Markov models with two output processes. A Mealy HMM with output
processes y and z is defined as (X,Y × Z,Π, π(1)). Notice that the output
alphabet of the process z is denoted by Z (not to be confused with the set of

integers). Notice that Π is hence a mapping of the form Π : Y×Z 7→ R
|X|×|X|
+ . A
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hidden Markov model with two output processes can be converted into a hidden
Markov model with one output process (X,W,Π, π(1)) by taking W = Y × Z.
By doing so, all methods developped for HMMs with one output process, can
be used for HMMs with two output processes. In this example we use W =
{a, b, c, d} with

a = head, fair,

b = tail, fair,

c = head, false,

d = tail, false.

Now the string probabilities of strings of length 3 are estimated using Equation
(3.3) and subsequently the positive realization procedure proposed in this
chapter is applied to obtain a model. The estimated string probabilities of
strings up to length 3, stacked in the tensor P , are given by

P (:, :, 1) =









0.0888 0.0867 0 0
0.0577 0 0 0
0.0303 0.0302 0.0573 0
0 0 0 0









,

P (:, :, 2) =









0.0880 0.0875 0 0
0.0591 0 0 0
0.0270 0.0269 0.0571 0
0 0 0 0









,

P (:, :, 3) =









0 0 0 0
0 0.0957 0.0784 0.0155
0 0 0 0.0196
0 0 0.0360 0.0073









,

P (:, :, 4) =









0 0 0 0
0 0.0187 0.0173 0.0032
0 0 0 0.0041
0 0 0.0064 0.0009









.

Using Algorithm 5.1, we build a Mealy model of order 1,2,3,4, 5 and 6. The
Kullback-Leibler divergence between P and P̃ for the different models is given
in Table 5.4.

Table 5.4: Kullback-Leibler divergence between the tensors P and P̃ (Π, π(1))
for a Mealy hidden Markov model of order 1,2,3,4, 5 and 6.

order 1 2 3 4 5 6
KL-divergence 0.8133 0.3977 0.1760 0.0060 0.0058 0.0058

It is clear that order 4 gives the best trade-off between accuracy and
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complexity of the model. The model of order 4 obtained by the algorithm
is given by (X,Y × Z,Π, π(1)), with X = {1, 2, 3, 4} and

Π(head, fair) =









0.0001 0.4781 0.0001 0.0000
0.0001 0.4913 0.0003 0.0002
0.0000 0.0002 0.0001 0.0001
0.0000 0.0000 0.0006 0.0007









,

Π(tail, fair) =









0.0018 0.0000 0.0003 0.5168
0.4934 0.0140 0.0000 0.0000
0.0005 0.0000 0.0000 0.0000
0.0007 0.0000 0.0000 0.0001









,

Π(head, false) =









0.0000 0.0000 0.0021 0.0000
0.0000 0.0000 0.0000 0.0000
0.0055 0.8314 0.0006 0.0000
0.0000 0.0017 0.8232 0.0057









,

Π(tail, false) =









0.0000 0.0000 0.0000 0.0007
0.0005 0.0000 0.0000 0.0002
0.0002 0.0000 0.0003 0.1611
0.0016 0.0000 0.0008 0.1649









,

π(1) =
[

0.2305 0.4558 0.1426 0.1712
]

.

The tensor P̃ (Π, π(1)) corresponding to (X,Y × Z,Π, π(1)) is given by

P̃ (Π, π(1))(:, :, 1) =









0.0808 0.0812 0.0001 0.0001
0.0546 0.0019 0.0002 0.0001
0.0289 0.0289 0.0582 0.0001
0.0001 0.0000 0.0001 0.0001









,

P̃ (Π, π(1))(:, :, 2) =









0.0833 0.0879 0.0001 0.0001
0.0563 0.0020 0.0002 0.0001
0.0298 0.0313 0.0601 0.0001
0.0001 0.0000 0.0001 0.0000









,

P̃ (Π, π(1))(:, :, 3) =









0.0001 0.0004 0.0002 0.0001
0.0001 0.0969 0.0831 0.0165
0.0001 0.0005 0.0008 0.0191
0.0001 0.0002 0.0357 0.0071









,

P̃ (Π, π(1))(:, :, 4) =









0.0001 0.0001 0.0000 0.0000
0.0001 0.0195 0.0160 0.0033
0.0001 0.0001 0.0002 0.0039
0.0000 0.0000 0.0069 0.0014









.

It is clear that P̃ (Π, π(1)) is a good approximation for P . In Section 7.5, the
model obtained in this section is used for finding out which coin was used in a
sequence of flipping experiments. The goods results of that section are another
proof that the model is of high quality.
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5.6 Modeling DNA sequences

In this section we apply the approximate partial realization algorithm to the
modeling of DNA sequences. We consider the same problem setting as in Section
4.4, but now we compute a positive hidden Markov model instead of a quasi
hidden Markov model of the given output sequences.

In Section 4.4 we were given 40 DNA sequences u1, . . . ,u40 of length 200 and
the goal was to find a quasi hidden Markov model of the 40 strings. Therefore, we
first calculated the string probabilities of strings up to length 4 and subsequently,
we applied the approximate partial quasi realization algorithm of Section 4.3.3
to find an approximate quasi hidden Markov model. In this section we make use
of the string probabilities of strings of length 4, but now we use Algorithm 5.1 to
build a positive instead of a quasi hidden Markov model. Analogous to Section
4.4 we build models of order 1, 2, 3, 4, 5 and 6. The algorithms converged
(change in KL-divergence is smaller than 0.00001) after 20 steps approximately.
The Kullback-Leibler divergence between the Hankel block (HP̃)(3,3) and the
corresponding block of the Hankel matrix generated by the obtained model is
given in Table 5.5. We also repeat the corresponding distances for quasi models
(see Table 5.5).

Table 5.5: Kullback-Leibler divergence between the Hankel block (HP̃ )(3,3) and
the corresponding block of the Hankel matrix generated by the obtained Mealy
hidden Markov model of order 1,2,3,4, 5 and 6 obtained using the approximate
quasi realization procedure and the approximate positive realization procedure.

order 1 2 3 4 5 6 7

quasi HMM 0.1109 0.0653 0.0449 0.0263 0.0220 0.0211 0.0210

positive HMM 0.3065 0.1575 0.0690 0.0411 0.0374 0.0373 0.0371

It is clear from Table 5.5 that the Kullback-Leibler divergence of a quasi
model of a certain order is smaller than the Kullback-Leibler divergence of the
positive hidden Markov model of the same order. This observation makes sense.
Consider a minimal positive hidden Markov model as well as an equivalent
minimal quasi hidden Markov model. As explained before, the order of the
quasi hidden Markov model is smaller than or equal to the order of the positive
hidden Markov model. On the other hand, when building a quasi hidden Markov
model and a positive hidden Markov model of the same order, it is expected
that the quasi hidden Markov model performs better than the positive model. It
depends on the application which model is best to use. If one needs a physical
interpretation of the model, a positive model is needed. However in certain
estimation applications, both a positive as a quasi model are fine (see Section
7). In that last case a quasi model is prefered as it gives a better modeling
quality for the same order or allows to use a lower order for the same model
quality.

It follows from Table 5.5 that the fourth order positive model gives the best
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trade-off between accuracy and complexity. The obtained model is given by
(X,Y,Π, π(1)) with

Π(A) =













0.0314 0.0075 0.0135 0.0193 0.0007
0.0221 0.0136 0.0516 0.0684 0.0089
0.0613 0.0005 0.0668 0.0764 0.0133
0.1570 0.0737 0.1742 0.1057 0.0006
0.0493 0.0104 0.0063 0.0427 0.0037













,

Π(C) =













0.0011 0.0008 0.0059 0.0413 0.0585
0.0092 0.1469 0.0714 0.0034 0.2340
0.0157 0.0467 0.0281 0.0824 0.0662
0.0054 0.0731 0.0082 0.0376 0.0362
0.0092 0.1207 0.0541 0.1418 0.1044













,

Π(G) =













0.0487 0.1389 0.1522 0.1252 0.0747
0.0552 0.0297 0.0974 0.0177 0.0112
0.0503 0.1292 0.1951 0.0419 0.0560
0.0423 0.0532 0.0679 0.0182 0.0145
0.0044 0.0172 0.0288 0.0073 0.0052













,

Π(T ) =













0.0891 0.0532 0.0327 0.0037 0.1015
0.0683 0.0571 0.0106 0.0002 0.0232
0.0246 0.0134 0.0045 0.0098 0.0179
0.0640 0.0353 0.0261 0.0032 0.0035
0.1457 0.0202 0.0501 0.0082 0.1703













,

π(1) =
[

0.1937 0.2237 0.2164 0.1703 0.1959
]

.

To check the quality of the positive hidden Markov model, we compute
the string probabilities generated by (X,Y,Π, π(1)) for strings of length 4. A
selection of these string probabilities (strings starting with A or C) is shown
in Table 5.6. By comparing these probabilities to the original probabilities of
Table 4.1, we conclude that the modeling works well.

Table 5.6: We show the string probabilities (for strings starting with A or
C) generated by the fifth order hidden Markov model that is obtained by the
approximate realization algorithm. By comparing these probabilities to the
original string probabilities in Table 4.1, we conclude that the modeling works
well.

A C G T
AAA 0.0032 0.0026 0.0049 0.0021
CAA 0.0040 0.0034 0.0063 0.0027
ACA 0.0025 0.0021 0.0037 0.0017
CCA 0.0057 0.0046 0.0083 0.0037
AGA 0.0044 0.0034 0.0062 0.0028
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CGA 0.0030 0.0023 0.0042 0.0019
ATA 0.0012 0.0009 0.0017 0.0008
CTA 0.0022 0.0016 0.0031 0.0015
AAC 0.0025 0.0037 0.0021 0.0025
CAC 0.0031 0.0045 0.0025 0.0031
ACC 0.0032 0.0051 0.0028 0.0032
CCC 0.0078 0.0127 0.0071 0.0081
AGC 0.0049 0.0080 0.0044 0.0053
CGC 0.0035 0.0054 0.0031 0.0037
ATC 0.0022 0.0034 0.0019 0.0023
CTC 0.0045 0.0063 0.0036 0.0043
AAG 0.0044 0.0060 0.0066 0.0034
CAG 0.0052 0.0070 0.0077 0.0040
ACG 0.0017 0.0023 0.0029 0.0013
CCG 0.0040 0.0056 0.0073 0.0032
AGG 0.0052 0.0072 0.0085 0.0041
CGG 0.0043 0.0059 0.0068 0.0033
ATG 0.0026 0.0033 0.0036 0.0019
CTG 0.0050 0.0063 0.0068 0.0036
AAT 0.0012 0.0025 0.0029 0.0022
CAT 0.0014 0.0031 0.0035 0.0027
ACT 0.0012 0.0027 0.0032 0.0026
CCT 0.0029 0.0064 0.0074 0.0061
AGT 0.0017 0.0037 0.0042 0.0033
CGT 0.0012 0.0026 0.0029 0.0024
ATT 0.0011 0.0026 0.0027 0.0024
CTT 0.0023 0.0053 0.0055 0.0050

5.7 Conclusions

In this chapter we considered the positive realization problem for hidden Markov
models. First the current state of the art concerning the exact complete
realization problem and the exact partial realization problem is reviewed.
Subsequently, the approximate partial realization problem is introduced. It
is shown that the approximate Moore realization problem of string probabilities
of strings up to length two can be solved using the structured nonnegative
matrix factorization. The approximate Mealy partial realization problem of
string probabilities of strings up to length t can be solved by generalizing the
approach for the Moore realization problem of strings of length two. Simulation
examples show that the methods perform well. The methods are applied to the
problem of modeling a coin flipping sequence and to the problem of modeling
DNA sequences.



Chapter 6

Identification of hidden
Markov models

In the identification problem for hidden Markov models, one is given an output
string and the problem is to find a hidden Markov model that models the string
as well as possible. The classical approach to solve this problem is by use of
the Baum-Welch algorithm [10,11,87], an optimization based approach based on
maximum likelihood. In [10] results on consistency and asymptotic normality of
the maximum likelihood estimator are given, and the conditions for consistency
are weakened in [83]. Consistency and asymptotic normality properties of
the maximum likelihood estimator are further investigated in [18, 19]. This
maximum likelihood approach has very tractable properties. However, the
computational complexity of the method is high. In addition, the likelihood
surface is multi-modal and the numerical methods may converge only to a local
maximum of the objective function.

Identification methods for linear stochastic models on the other hand can
be subdivided in two main classes. The first class of identification methods
are optimization-based methods such as prediction error methods [75]. In the
eighties, subspace identification methods have been introduced in the literature
[78]. Subspace identification methods make use of numerically stable operations
from linear algebra (SVD, projections, ...). These methods first estimate the
state sequence directly from the output data. Subsequently the system matrices
are estimated using the obtained state sequence and the given output sequence.

By fitting hidden Markov models in a state space framework [45], an iden-
tification procedure can be derived that is analogous to subspace identification
of linear stochastic models [7, 8]. However, the models obtained using this
method are quasi hidden Markov models. So the procedure of [7, 8] is a quasi
identification procedure and not a positive identification procedure. To solve
several recursive output estimation problems it suffices to have a quasi hidden
Markov model (see Chapter 7). However, in other applications a positive hidden
Markov model may be needed. It is wrongly stated in [8] that obtaining a

139
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positive hidden Markov model from the obtained quasi model is only a matter
of finding a correct similarity transformation.

In this chapter we propose a positive identification approach. The approach
is conceptually related to subspace identification of linear stochastic models.
The proposed method first estimates the state sequence directly from the output
data and subsequenly estimates the system matrices from the obtained state
sequence and the given output sequence.

List of own contributions

We here describe our contributions to the identification problem for hidden
Markov models.

• In Section 6.2 we derive the Baum-Welch algorithm for hidden Markov
models of Mealy type. To the best of our knowledge, up to this moment,
the Baum-Welch formulas have only been considered for Moore hidden
Markov models.

• In Section 6.3 we introduce a new approach for the identification of hidden
Markov models. The method first estimates the state sequence, and
subsequently the system matrices are calculated by solving a least squares
problem. In a simulation example we show that the popular Baum-Welch
method is outperformed by the proposed method.

• In Section 6.5 we apply the subspace inpired method as well as the Baum-
Welch method to the modeling of sequences of the HIV genome. Again the
Baum-Welch method is outperformed by the subspace inspired method.

Section-by-section overview

In Section 6.1 we formally state the identification problem. In Section 6.2
we discuss the Mealy Baum-Welch identification procedure for hidden Markov
models. In Section 6.3 we introduce a new approach for the identification of
hidden Markov inspired by subspace identification for linear stochastic models.
In Section 6.4 we perform a simulation example showing that our method
outperforms the existing Baum-Welch method. In Section 6.5 we apply the
subspace inspired method and the Baum-Welch method to the modeling of HIV
sequences. In Section 6.6 finally, we compare the proposed method with the
identification of linear stochastic models.

6.1 Introduction

The Mealy identification problem for hidden Markov models can be stated as

Problem 6.1 (Mealy identification problem). Given an output string y1y2 . . . yT

of length T . Find a Mealy HMM (X,Y,Π, π(1)) that models the output string
approximately.
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In this chapter we introduce two approaches to the identification of Mealy
hidden Markov models. The first approach is based on classical Baum-Welch
identification for Moore HMMs. In this approach, the system matrices are
estimated directly from the output string. The second approach is inspired
by subspace identification for linear stochastic systems [78]. In the last
approach, the state sequence is estimated directly from the output sequence
and subsequently, the system matrices are calculated from the state and output
sequence. In Figure 6.1, we schematically show the differences between both
approaches.

output data

Baum-Welch subspace inspired

state sequence

system matrices

system matrices

filtering
techniques

state sequence

Figure 6.1: Identification methods aim at constructing models from output
data. The left hand side shows the classical approach: first obtain the system
matrices, then estimate the state sequence if needed. The right hand side shows
the approach inspired by subspace identification for linear stochastic models:
first the states are estimated directly from data, then the system matrices can be
obtained.

6.2 Baum-Welch identification

In this section we extend the Baum-Welch algorithm to the identification of
Mealy HMMs. To the best of our knowledge, in the literature, Baum-Welch has
only been considered for Moore HMMs. Baum-Welch is a Maximum Likelihood
(ML) method which means that the system matrices Π(y), y ∈ Y and π(1)
are estimated such that the likelihood of the observed string is maximized,
where the likelihood is defined as P (y(1, 2, . . . , T ) = y1y2 . . . yT | λ) where
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λ denotes the set of model parameters. The maximum likelihood problem is
solved using Expectation-Maximization, i.e. starting with an initial guess for
the model parameters λ and updating them iteratively such that the likelihood is
nondecreasing in each step. We review the Expectation-Maximization approach
in Appendix C.

We now apply the Expectation-Maximization approach to the identification
of hidden Markov models. Consider y = y1y2 . . . yT to be the observed data and
the underlying state sequence x = x1x2 . . . xT+1 to be hidden or unobserved.
The model parameters are given by λ = (X,Y,Π, π(1)). The function Q(λ, λ(k))
(Equation (C.3)) now becomes

Q(λ, λ(k)) =
∑

x∈XT+1

P (x,y|λ(k)) logP (x,y|λ)

where λ(k) = (X,Y,Π(k), π(k)(1)) is the previous estimate of the parameters.
Given a particular state sequence x, representing P (x,y|λ) is quite easy, i.e.

P (x,y|λ) = πx1(1)

T
∏

t=1

Πxt,xt+1(yt).

The function Q(λ, λ(k)) then becomes

Q(λ, λ(k)) =
∑

x∈XT+1

log πx1(1)P (y,x|λ(k))

+
∑

x∈XT+1

(

T
∑

t=1

log Πxt,xt+1(yt)

)

P (y,x|λ(k)). (6.1)

Since the parameters we wish to optimize are now independently split into the
two terms in the sum, we can optimize each term individually. One can easily
see that the first term in (6.1) can be rewritten as

∑

x∈XT+1

log πx1(1)P (y,x|λ(k)) =

|X|
∑

i=1

log πi(1)P (y, x1 = i|λ(k)).

Adding the Lagrange multiplier γ, using the constraint that
∑

i πi(1) = 1, and
setting the derivative equal to zero, we get

∂

∂πi





|X|
∑

i=1

log πi(1)P (y, x1 = i|λ(k)) + γ(

|X|
∑

i=1

πi(1) − 1)



 = 0.

We get

π
(k+1)
i (1) =

P (y, x1 = i|λ(k))

P (y|λ(k))
. (6.2)

The second term in (6.1) can be rewritten as
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∑

x∈XT+1

(

T
∑

t=1

log Πxt,xt+1(yt)

)

P (y,x|λ(k)) =

|X|
∑

i=1

|X|
∑

j=1

(

T
∑

t=1

log Πij(yt)

)

P (y, xt = i, xt+1 = j|λ(k)).

In a similar way, we can use Lagrange multipliers with the constraints
∑|X|

j=1

∑

y∈Y Πij(y) = 1, i = 1, . . . , |X| to get

Π
(k+1)
ij (y) =

∑T
t=1 P (y, xt = i, xt+1 = j|λ(k))δ(yt, y)

∑T
t=1 P (y, xt = i|λ(k))

. (6.3)

Define the variables γ
(k)
i (t) and ξ

(k)
ij (t) as

γ
(k)
i (t) := P (x(t) = i|y(1, . . . , T ) = y1 . . . yT , λ

(k)),

ξ
(k)
ij (t) := P (x(t) = i, x(t+ 1) = j|y(1, . . . , T ) = y1 . . . yT , λ

(k)),

then (6.2) and (6.3) become

π
(k+1)
i (1) = γ

(k)
i (1),

Π
(k+1)
ij (y) =

∑T
t=1 δ(yt, y)ξ

(k)
ij (t)

∑T
t=1 γ

(k)
i (t)

.

The variables γ
(k)
i (t) and ξ

(k)
ij (t) can be calculated as

γ
(k)
i (t) =

α
(k)
i (t− 1)β

(k)
i (t)

α(k)(t− 1)β(k)(t)
,

ξ
(k)
ij (t) =

α
(k)
i (t− 1)β

(k)
j (t+ 1)Π

(k)
ij (yt)

α(k)(t− 1)β(k)(t)
,

where α(k)(t) ∈ R1×|X| are the forward variables and β(k)(t) ∈ R|X|×1 the
backward variables defined as

α
(k)
i (t) := P (x(t+ 1) = i, y(1, . . . , t) = y1 . . . yt|λ(k))

β
(k)
i (t) := P (y(t, . . . , T ) = yt . . . yT | x(t) = i, λ(k)).

The forward variables can be calculated inductively as

α(k)(0) = π(k),

α(k)(t+ 1) = α(k)(t)Π(k)(yt+1),

while the backward variables can be calculated as

β(k)(T + 1) = e,

β(k)(t) = Π(k)(yt)β
(k)(t+ 1).

Below we summarize the Baum-Welch algorithm for Mealy HMMs.



144 Identification of hidden Markov models

Algorithm 6.1. Given an output sequence y = y1y2 . . . yT , and an initial guess
of the model λ(0) = (X,Y,Π(0), π(0)(1)) with state dimension |X|. Iterate the
following steps for k = 0, 1, 2, . . . until convergence:

1. Compute the forward and backward variables for the given output sequence
y and model λ(k).

2. Calculate the variables γ
(k)
i (t) and ξ

(k)
ij (t) from the forward and the

backward variables.

3. Obtain an updated model λ(k+1) = (X,Y,Π(k+1), π(k+1)(1)) using

π
(k+1)
i (1) = γ

(k)
i (1),

Π
(k+1)
ij (y) =

∑T−1
t=1 δ(yt, y)ξ

(k)
ij (t)

∑T−1
t=1 γ

(k)
i (t)

.

6.3 Subspace inspired identification

In this section we explain a new approach to the identification problem of
stationary hidden Markov models. The approach consists of two steps. In
the first step (Section 6.3.2) the underlying state process is estimated directly
from the given output string. In the second step (Section 6.3.3) the system
matrices are calculated from the obtained state sequence and the given output
sequence. We start with introducing some notation (Section 6.3.1).

6.3.1 Notation

System related matrices Consider a Mealy HMM (X,Y,Π, π(1)), then for
given i1 ∈ Z+ and i2 ∈ Z+ the matrix H(i1+1,i2+1) is defined as

(

H(i1+1,i2+1)

)

kl
:= P(ukvl),

where uk is the k-th element of the set of strings from Yi1 in first lexicographical
ordering U(i1) and vl is the l-th element of the set of strings from Yi2 in last
lexicographical ordering V(i2). The matrix H(i1+1,i2+1) can be decomposed as

H(i1+1,i2+1) = V H, (6.4)

with

V =











π(1)Π(u1)
π(1)Π(u2)

...
π(1)Π(u|Y|i1 )











,

H =
[

Π(v1)e Π(v2)e . . . Π(v|Y|i2 )e
]

,
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where V ∈ R
|Y|i1×|X|
+ and H ∈ R

|X|×|Y|i2
+ . The elements of V are equal to

Vki = P (y(1, 2, . . . , i1) = uk, x(i1 + 1) = i),

while the elements of H are equal to

Hil = P (y(i1 + 1, i1 + 2, . . . , i1 + i2) = vl|x(i1 + 1) = i).

The matrix H(i1+2,i2+1) on the other hand, can be decomposed as

H(i1+2,i2+1) = WH, (6.5)

with H as before and

W =





















π(1)Π(y1u1)
...

π(1)Π(y|Y|u1)

π(1)Π(y1u2)
...

π(1)Π(y|Y|u|Y|i1 )





















.

State distribution matrices The state distribution matrix X̃i1 ∈ [0, 1](T−i1)×|X|

is defined as

X̃i1 :=











x̃(i1 + 1)
x̃(i1 + 2)

...
x̃(T )











,

where x̃(t) is a row vector in R1×|X| defined as

x̃i(t) := P (x(t) = i|y(t− i1, ..., t− 1) = yt−i1 ...yt−1).

The next-state distribution matrix X̃+
i1+1 ∈ [0, 1](T−i1)×|X| is defined as

X̃+
i1+1 =











x̃+(i1 + 2)
x̃+(i1 + 3)

...
x̃+(T + 1)











,

where x̃+(t+ 1) is a row vector in R1×|X| defined as

x̃+
i (t+ 1) := P (x(t+ 1) = i|y(t− i1, ..., t− 1) = yt−i1 ...yt−1).

The next-state-output distribution matrix X̃
y

i1+1 ∈ [0, 1](T−i1)×|X| is defined
as

X̃y

i1+1 =











x̃y(i1 + 2)
x̃y(i1 + 3)

...
x̃y(T + 1)











,
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where x̃y(t+ 1) is a row vector in R1×|X| defined as

x̃
y

i (t+ 1) := P (x(t+ 1) = i, y(t) = y|y(t− i1, ..., t− 1) = yt−i1 ...yt−1).

The next-state-output distribution matrix can be calculated from the next-
state distribution matrix using

x̃y(t+ 1) =

{

x̃+(t+ 1) if yt = y,
[

0 0 . . . 0
]

else.

6.3.2 Estimating the state distribution matrices

In this section we explain how the state distribution matrix and the next-state
distribution matrix can be estimated directly from output data. In a first step
we describe a method to find the state distribution matrix and the next-state
distribution matrix for a given output sequence y1y2 . . . yT under the assumption
that the matrices H(i1+1,i2+1) and H(i1+2,i2+1) of the underlying HMM are
given for certain choices of i1 and i2 as well as the nonnegative decompositions
H(i1+1,i2+1) = V H and H(i1+2,i2+1) = WH . In a second step we explain how
the matrices H(i1+1,i2+1) and H(i1+2,i2+1) can be estimated from output data.
Moreover, we show that the nonnegative decomposition of these matrices can
be estimated using approximate nonnegative matrix factorization techniques of
Section 2.2. By combining both steps we have a method to find the estimated
state distribution matrices directly from output data.

Estimating the state distribution matrices given H(i1+1,i2+1) = V H and
H(i1+2,i2+1) = WH

Define Ṽ as
Ṽ := (diag(V e|X|))

−1V,

with V defined as in Section 6.3.1. Note that it holds, due to stationarity, that

Ṽki = P (x(t) = i|y(t− i1, . . . , t− 1) = uk),

where uk is the k-th element of the set of strings from Yi1 in first lexicographical
ordering U(i1). Now the state distribution matrix X̃i1 can be calculated using

x̃(t) = Ṽκ,:,

with κ the position of the string yt−i1 . . . yt−1 in the first lexicographical ordering
U(i1) of the strings of length i1. Note that the state distribution matrix X̃i1

is obtained by running a bank of state predictors (Algorithm 7.1). Figure
6.2 illustrates this concept. The bank of state predictors runs in horizontal
direction (over the rows). It should be noted that the state estimators only
use partial output information. For instance the q-th row of X̃i1 is equal to
x̃(i1 + q) and is based on the measurements yqyq+1 . . . yi1+q−1 instead of all
output measurements up until time i1 + q − 1 (as would be expected).
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y2 yi1+1

yT−i1 yT−1

X̃0 X̃i1

x̃(i1 + 1)

x̃(i1 + 2)

x̃(T )

π(1)

π(1)

π(1)

y

Figure 6.2: The state distribution matrix X̃i1 is obtained by running a bank
of state predictors. The bank of state predictors runs in horizontal direction
(over the rows). The state estimators use only partial output information. For
instance the q-th row of X̃i1 is equal to x̃(i1+q) and is based on the measurements
yqyq+1 . . . yi1+q−1.

The next-state distribution matrix can be calculated from W using

W̄ =













e⊤|Y|
e⊤|Y|

. . .

e⊤|Y|













W,

W̃ = (diag(W̄ e|X|))
−1W̄ ,

x̃+(t+ 1) = W̃κ,:

where κ is the position of the string yt−i1 . . . yt−1 in the first lexicographical
ordering of the strings of length i1.

We now state that the predicted state distributions stacked in the state
distribution matrix converge to the true predicted state distributions (calculated
using Algorithm 7.1) as i1 goes to infinity.

Theorem 6.1. The probabilities x̃(t) = P (x(t)|y(t− i1, ..., t−1) = yt−i1 ...yt−1)
stacked in the state distribution matrix X̃i1 converge to the predicted state dis-
tributions π(t|y1, y2, ..., yt−1) = P (x(t)|y(1, 2, ..., t−1) = y1y2...yt−1) (calculated
using Algorithm 7.1) as i1 goes to infinity.

An analogous property can be given for the predicted next-state distributions
stacked in the next-state distribution matrix.
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Estimating H(i1+1,i2+1) and H(i1+2,i2+1) and their nonnegative decom-
position from data

So far we described a method to estimate the state distribution matrix and the
next-state distribution matrix corresponding to the given output sequence. The
method supposes that for certain choices of i1 and i2 the matrices H(i1+1,i2+1)

and H(i1+2,i2+1) containing string probabilities are given. Moreover it is
supposed that the nonnegative decompositions (6.4) and (6.5) of these matrices
are given. We now show that the matrices H(i1+1,i2+1) and H(i1+2,i2+1) can be
estimated from data and that the nonnegative decomposition of these matrices
can be estimated using the approximate nonnegative matrix factorization
technique. As a result the complete procedure to find the state distribution
matrices works directly from the given output data.

The matrices H(i1+1,i2+1) and H(i1+2,i2+1) contain string probabilities of
strings of length i1 + i2 and i1 + i2 + 1. It is possible to estimate these string
probabilities directly from the output sequence (using Equation (3.3)). The
estimated matrices are denoted by H̃(i1+1,i2+1) and H̃(i1+2,i2+1).

The nonnegative decomposition of the matrices H̃(i1+1,i2+1) and H̃(i1+2,i2+1)

can be obtained by applying the nonnegative matrix factorization (Theorem
2.6) to find an approximate decomposition of the form

[

H̃(i1+1,i2+1)

H̃(i1+2,i2+1)

]

≃
[

V est

W est

]

Hest.

As there does not exist a practical useful procedure to determine the minimum
inner dimension for which such a decomposition exists, we need to chose the
inner dimension. Notice that the choice of the inner dimension is important
as it is the state dimension of the obtained model. So, as usual in system
identification, the proposed identification method provides a model for a user-
defined model order.

6.3.3 Calculating the system matrices

In this section we explain how the system matrices can be obtained from the
state distribution matrix and the next-state-output distribution matrix.

It holds for t = i1 + 1, . . . , T and for y ∈ Y that

x̃y(t+ 1) = x̃(t)Π(y). (6.6)

Equation (6.6) can be rewritten as

[

X̃
y1
i1+1 X̃

y2
i1+1 . . . X̃

y|Y|

i1+1

]

= X̃i1

[

Π(y1) Π(y2) . . . Π(y|Y|)
]

. (6.7)

Solving Equation (6.7) for
[

Π(y1) Π(y2) . . . Π(y|Y|)
]

does not necessarily
yield nonnegative estimates for Π(y), y ∈ Y and hence does not give a solution
to the identification problem. As will be shown in Theorem 6.2, the solution
to the identification problem lies in the use of the state sequence matrix, the
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next-state sequence matrix and the next-state-output sequence matrix, defined
below.

The state sequence matrix X̂i1 ∈ {0, 1}(T−i1)×|X| is defined as

X̂i1 =











x̂(i1 + 1)
x̂(i1 + 2)

...
x̂(T )











,

where x̂(t) ∈ R1×|X| is defined as

x̂i(t) =

{

1 if i = ML(x(t)|y(t− i1, ..., t− 1) = yt−i1 ...yt−1),
0 else.

Notice that x̂(t) is a row vector of size |X| with all elements equal to zero except
for the element at position i which is equal to 1, where i is the most likely
estimate for x(t) given the past i1 observations.

The next-state sequence matrix X̂+
i1+1 ∈ [0, 1](T−i1)×|X| is defined as

X̂+
i1+1 =











x̂+(i1 + 2)
x̂+(i1 + 3)

...
x̂+(T + 1)











,

where x̂+(t+ 1) ∈ R1×|X| is equal to

x̂+
i (t+ 1) =

{

1 if i = ML(x(t + 1)|y(t− i1, ..., t− 1) = yt−i1 ...yt−1),
0 else.

The next-state-output sequence matrix X̂
y

i1+1 ∈ {0, 1}(T−i1)×|X| is defined as

X̂
y

i1+1 =











x̂y(i1 + 2)
x̂y(i1 + 3)

...
x̂y(T + 1)











,

where x̂y(t+ 1) ∈ R1×|X| is equal to

x̂
y

i (t+1) =







1 if i = ML(x(t + 1), y(t) = y|y(t− i1, ..., t− 1) = yt−i1 ...yt−1)
and y(t) = y

0 else.

Notice that the state sequence matrix and the next-state sequence matrix can
be calculated from the state distribution matrix and the next-state distribution
matrix using

x̂i(t) =

{

1 i = argmaxk x̃k(t),
0 else,
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x̂+
i (t) =

{

1 i = argmaxk x̃
+
k (t),

0 else.

The next-state-output sequence matrix can be calculated from the next-state
sequence matrix using

x̂y(t+ 1) =

{

x̂+(t+ 1) if yt = y,
[

0 0 . . . 0
]

else.

Now the ”most likely version” of Equation (6.7) becomes
[

X̂
y1

i1+1 X̂
y2

i1+1 . . . X̂
y|Y|

i1+1

]

= X̂i1

[

Π(y1) Π(y2) . . . Π(y|Y|)
]

. (6.8)

By solving (6.8) for Π(y), y ∈ Y in least squares sense, we find
[

Π(y1) Π(y2) . . . Π(y|Y|)
]

= (X̂i1 )
†
[

X̂
y1

i1+1 X̂
y2

i1+1 . . . X̂
y|Y|

i1+1

]

(6.9)
where (X̂i1)

† = (diag(e⊤X̂i1))
−1(X̂i1)

⊤ is the Moore-Penrose pseudo-inverse of
X̂i1 . We are now able to prove the following theorem.

Theorem 6.2. The matrices Π(y1),Π(y2), . . . ,Π(y|Y|) calculated using Equa-
tion (6.9) are elementwise nonnegative and fullfill

(

∑

y

Π(y)

)

e = e.

Proof: One can easily see that (X̂i1)
† = (diag(e⊤X̂i1))

−1(X̂i1 )
⊤ is elementwise

nonnegative. Hence,
[

Π(y1) Π(y2) . . . Π(y|Y|)
]

is the product of two
nonnegative matrices and is itself nonnegative. From Equation (6.9) it follows
that

∑

y

Π(y) = (X̂i1)
†X̂+

i1+1.

Multiplying both sides with e at the right hand side yields after some calculation
(

∑

y

Π(y)

)

e = (X̂i1)
†e = e.

The initial state distribution π(1) can be calculated as the normalised left
eigenvector of

∑

y
Π(y) corresponding to the eigenvalue 1.

We end this section with some comments on the choice of the parameters i1
and i2. On the one hand the parameters i1 and i2 need to be large such that
the positive rank of the matrices H(i1+1,i2+1) and H(i1+1,i2+2) is larger than or
equal to the desired system order |X| and such that the state estimates in the
state sequence matrix are as good as possible. On the other hand, the larger
i1 and i2, the smaller the accuracy of the estimates of the string probabilities
stacked in the matrices H(i1+1,i2+1) and H(i1+1,i2+2). Also, the larger i1 and i2,
the higher the computational complexity to compute the matrices H(i1+1,i2+1)

and H(i1+1,i2+1) and to compute the state distribution matrix. As a rule of
thumb, we take i1 ≃ i2 ≃ |X|.
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6.3.4 Summary of the algorithm

In this section we summarize the identification algorithm that was described in
the previous sections.

Algorithm 6.1. Given an output sequence y1, y2, . . . yT , a state set X =
{1, 2, . . . , |X|}, and integers i1 and i2. Perform the following steps to find a
Mealy model (X,Y,Π, π(1)) of the output sequence.

1. Estimate the matrices H(i1+1,i2+1) and H(i1+2,i2+1) from the output data
using Equation (3.3).

2. Calculate the simultaneous nonnegative decomposition using the nonnega-
tive matrix factorization

H(i1+1,i2+1) = V H,

H(i1+2,i2+1) = WH.

3. Calculate the state distribution matrix X̃i1 and the next-state-output
distribution matrices X̃

y

i1
(Section 6.3.2).

4. Calculate the state sequence matrix X̂i1 and the next-state-output sequence
matrices X̂

y

i1
(Section 6.3.3).

5. Calculate the matrices Π(y), y ∈ Y as

[

Π(y1) Π(y2) . . . Π(y|Y|)
]

= (X̂i1)
†
[

X̂
y1

i1+1 X̂
y2

i1+1 . . . X̂
y|Y|

i1+1

]

.

6. Calculate the initial state distribution π(1) as the normalised left eigen-
vector of

∑

y
Π(y) corresponding to the eigenvalue 1.

6.4 Simulation example

In this simulation example we are given an output string y1 . . . y1000 generated
by λtrue = ({1, 2}, {1, 2},Πtrue, πtrue(1)) where

Πtrue(1) =

[

0.20 0.40
0.00 0.20

]

,

Πtrue(2) =

[

0.10 0.30
0.80 0.00

]

,

πtrue(1) =
[

0.53 0.47
]

.

In fact this model is unknown, but we give it here the check the performance
of our algorithm. We now use the modified Baum-Welch algorithm as
well as the method that first estimates the state sequence and then the
system matrices to find a Mealy hidden Markov model of order |X| = 2.
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The model found with Baum-Welch (after convergence) is given by λBW =
({1, 2}, {1, 2},ΠBW, πBW(1)) where

ΠBW(1) =

[

0.0736 0.0986
0.5311 0.1415

]

,

ΠBW(2) =

[

0.0751 0.7526
0.2424 0.0850

]

,

πBW(1) =
[

0 1
]

,

while the model found with the subspace inspired method with i1 = i2 = 3 is
given by λSS = ({1, 2}, {1, 2},ΠSS, πSS(1)) with

ΠSS(1) =

[

0.0699 0.2574
0.5651 0.0000

]

,

ΠSS(2) =

[

0.1342 0.5386
0.4349 0.0000

]

,

πSS(1) =
[

0.5568 0.4432
]

.

The system matrices of a Mealy HMM are not uniquely determined (Section
3.3.1.2), so it is not possible to decide which model is best by comparing the
system matrices. The check the quality of both estimated models, we define
a divergence measure between the estimated model and the true model. A
popular divergence measure between λtrue and its approximation λapprox is the
Kullback-Leibler divergence defined as

DKL(λtrue||λapprox) :=
∑

y∈Y∗

P(y|λtrue) log
P(y|λtrue)

P(y|λapprox)
,

where P(y|λ) denotes the probability of the string y for the model λ. To be
able to calculate this distance in practice, we take only strings up to a certain
length t instead of all strings of finite length. As strings probabilities of strings
of length smaller than t can be calculated from strings probabilities of strings of
length t, we do not take them into account for the calculation of the divergence
between the models. As a practical divergence between two hidden Markov
models, we use

D
(t)
KL(λtrue||λapprox) =

∑

y∈Yt

P(y|λtrue) log
P(y|λtrue)

P(y|λapprox)
. (6.10)

We take t = 6 and find

D
(6)
KL(λtrue||λSS) = 0.0803,

D
(6)
KL(λtrue||λBW) = 0.2069.

We conclude that the subspace inspired method performs better than the
Baum-Welch approach when comparing the Kullback-Leibler divergence. As a
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second performance measure, we compare the likelihood of a output sequence
given the true model with the likelihoods of the output sequence given the
obtained models. The likelihood of a sequence y1y1 . . . yT given a model λ, is
defined as

l(λ) := P (y(1, 2, . . . , T ) = y1y1 . . . yT |λ).
It is clear that the likelihood computed for a long sequence is typically a very
small number. Therefore, we define another version of the likelihood that is
better from numerical point of view

l(t)(λ) :=

∑T−t+1
i=1 P (y(i, i+ 1, . . . , i+ t− 1) = yiyi+1 . . . yi+t−1|λ)

T − t+ 1
. (6.11)

We take t = 15 and find

l(15)(λtrue) = 7.6487 10−5,

l(15)(λSS) = 6.7196 10−5,

l(15)(λBW) = 7.3213 10−5.

The likelihood for Baum-Welch is closest to the likelihood computed with
the true model. However, the likelihood for the subspace inspired approach is
also high and close to the likelihood computed with the true model. So the
subspace inspired method performs better in the Kullback-Leibler divergence
between the models (Equation 6.10) and the Baum-Welch approach performs
better using the likelihood performance measure (Equation 6.11). However, to
our opinion, the subspace inspired method gives a good trade-off between the
long-term modeling (measured by the likelihood) and the short-term modeling
(measured by the Kullback-Leibler divergence) which is more important than
only a good long-term modeling capacity (as was the case for Baum-Welch).

6.5 Modeling sequences from the HIV genome

In this section we use the subspace inspired identification method proposed in
this chapter to model the changes observed in the DNA of a highly mutating
virus: the Human Immunodeficiency Virus (HIV). Similar results were obtained
in [94] using the Baum-Welch identification method. We first describe in short
the mechanism behind mutations. We then describe the data and divide the
data in training data and test data. Subsequently, we use the subspace inspired
identification method to obtain a model of the trainings data. We check the
quality of the model on test data. Finally, we explain how the model can be
used to predict new viral sequences.

Mutations are changes to the nucleotide sequence of the genetic material
of an organism. Gene mutations take many forms and can result in the loss
of complete sections of genes, their duplications or inversions. New segments
of DNA can be integrated, or genes can be broken into parts and separated.
However, by far the most common type of mutations, called point mutations,
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result from the replacement of a single nucleotides within a gene. In Figure
6.3(a) we illustrate the principle of a point mutation. Radiation, exposure to
certain chemicals, and some biological processes can induce mutations in genes.
But even in the absence of these influences the genes of all living organisms
are subject to mutations. This background mutation rate for cellular organisms
is low and consequently can only be observed in organisms that reproduce in
enormous numbers, like the HIV virus. In Figure 6.3(b) we schematically show
the HIV virus. It had been estimated that every possible single point mutation
in the HIV may occur more than 10,000 times a day in an affected person [27].
All these factors contribute to a larger number of random changes introduced
into the viral particles that eventually lead to structural modifications. It is
thus reasonable to assume that the HIV mutational processes are such that
the sequences produced randomly traverse through the space of all possible
sequences. In this section we therefore use hidden Markov models to model
HIV sequences.

envelope

corematrix

(a) (b)

Figure 6.3: Mutations are changes to the nucleotide sequence of the genetic
material of an organism. In Subfigure (a) we illustrate the principle of a point
mutation, where a single nucleotides within a gene is replaced (here the C-
nucleotide is replaced by the A-nucleotide). The background mutation rate for
cellular organisms is low and consequently can only be observed in organisms
that reproduce in enormous numbers, like the HIV virus. In Subfigure (b) we
schematically show the HIV virus. The core of the HIV virus is surrounded by
a matrix composed of a viral protein. This is, in turn, surrounded by the viral
envelope.

In this section we consider 30 mutated sequence from the part of the HIV1
genome that codes for the envelope protein. The sequences have a length of
222 nucleotides. In the rest of this section we refer to these sequences with
u1, . . .u30. The data was selected from the National Center for Biotechnology
Information (NCBI) database (available at www.ncbi.nlm.nih.gov).

We take the first 20 sequences u1, . . .u20 as training sequences and the last
10 sequences as u21, . . .u30 as test sequences. We now use Baum-Welch as well
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as the subspace inspired identification method proposed in this chapter to find
models of the first 20 sequences of order 1, 2, 3, 4 and 5. For the subspace
inspired identification method, we use i1 = i2 = 4.

To check the quality of the models, we compute the mean1 Kullback-Leibler
divergence between the Hankel block H(3,3) estimated from the data and the
corresponding Hankel block generated by the obtained Mealy models. We show
these divergences in Table 6.1. As a second performance measure, we compute
the mean2 likelihood of the given sequences (using Equation (6.11) with t = 10)
and show these values in Table 6.2.

Table 6.1: Mean Kullback-Leibler divergence between the Hankel block H(3,3)

estimated from the trainings data and the corresponding Hankel block generated
by the models of order 1,2,3,4 and 5 obtained by Baum-Welch identification and
by the subspace inspired identification method proposed in this chapter.

order 1 2 3 4 5
Baum-Welch 3.15 4.65 8.27 21.02 22.93

subspace 3.15 2.14 1.13 1.08 1.10

Table 6.2: Mean likelihood of the sequences u1, . . .u20 for the models of
order 1,2,3,4 and 5 obtained by Baum-Welch identification and by the subspace
inspired identification proposed in this chapter.

order 1 2 3 4 5
Baum-Welch 8.13 10−5 9.03 10−5 1.40 10−4 1.45 10−4 1.50 10−4

subspace 8.14 10−5 8.84 10−5 9.84 10−5 9.60 10−5 9.83 10−5

We prefer to work with the model of order 3 obtained with the subspace
inspired identification procedure. It is clear from Table 6.1 and Table 6.2 that
none of both performance measures improves by using an order higher than 3.
Next to that, we prefer the subspace inspired approach over the Baum-Welch
approach as the subspace inspired approach gives a better trade-off between
long-term modeling and short-term modeling. The Baum-Welch approach only
makes a long-term model.

Using this third order model, we compute the likelihoods of the 10 sequences
in the test set. The likelihoods are of the same order of magnitude as the
likelihoods in Table 6.2. This last observation allows us to conclude that a good
model for the HIV sequences is obtained.

Now using this model a lot of new viral sequences can be generated. These
sequences can be checked biologically.

1The Kullback-Leibler divergence for each of the 20 training sequences is computed and
subsequently the mean of these divergences is calculated.

2The likelihood for each of the 20 training sequences is computed and subsequently the
mean of these likelihoods is calculated.
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Table 6.3: Likelihood (calculated using Equation (6.11) with t = 10) of the
given test sequences for the model of order 3 obtained by the subspace inspired
approach proposed in this chapter. The likelihoods are of the same order of
magnitude as the likelihoods in Table 6.2.

test sequence u21 u22 u23 u24 u25

likelihood 9.18 10−5 9.15 10−5 9.26 10−5 8.82 10−5 9.15 10−5

test sequence u26 u27 u28 u29 u30

likelihood 8.82 10−5 7.93 10−5 9.01 10−5 8.79 10−5 9.15 10−5

We expect that even better models for the HIV sequences can be obtained,
if prior knowledge about the structure of the sequences is incorporated into
the models. In this thesis we do not go into detail about incorporating prior
knowledge (see section on further research (Section 8.2)).

6.6 The linear stochastic case

In this section we compare identification for hidden Markov models with
identification of linear stochastic models. There are two different types of
identification methods for linear stochastic models. The first type are the
optimization based methods such as prediction error methods [75], and the
second type are the subspace based methods [78]. The optimization based
methods are the analogue of the Baum-Welch identification for hidden Markov
model, and the subspace based methods are the analogue of the method for
HMMs where first the state sequence is estimated and subsequently the system
matrices. In this section we review a subspace based identifcation method for
linear stochastic systems.

The identification problem for linear stochastic systems can be stated as:

Problem 6.2 (linear stochastic identification problem). Given an output
sequence y1y2 . . . yT of length T . Find a linear stochastic model (A,C, P,Q,R, S)
that models the output sequence approximately.

Before we describe subspace based identification, we need some definitions.
The Kalman filter state sequence of length j is defined as

X̂i =
[

x̂i x̂i+1 . . . x̂i+j−1

]

,

where the Kalman filter estimates use only partial output information. For
instance, the (q + 1)-th column of X̂i only uses i output measurements
yq . . . yi+q−1, instead of all output measurements up until time i + q − 1 (as
would be expected).

Now the core idea of subspace identification, is that for a given model order
n, the matrix X̂i can be estimated from the output data y1y2 . . . yT only. For
details, we refer to [78].
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In a next step the system matrices A and C can be calculated from the
following least squares problem

[

X̂i+1

Yi|i

]

=

[

A
C

]

X̂i,

where Yi|i =
[

yi yi+1 . . . yi+j−1

]

. The system matrices Q, R and S can be
calculated from the residuals of the least squares problem. It should be clear
that the identification approach for hidden Markov models of Section 6.3, is
analogous to the subspace approach for linear stochastic systems.

6.7 Conclusions

In this chapter the identification problem for hidden Markov models is
considered. First, the Baum-Welch algorithm is derived for hidden Markov
models of Mealy type. Subsequently, a new identification method for hidden
Markov models is proposed. It is inspired by subspace identification for linear
stochastic models. The method first estimates the state sequence directly from
the output sequence and subsequently the system matrices are estimated from
the obtained state sequence and the given output sequence. The subspace
inspired method is applied to the modeling of sequences from the HIV genome.





Chapter 7

Recursive estimation using
quasi hidden Markov
models

The state estimation problem for hidden Markov models can be stated as: given
output measurements up to a certain time instant τ , estimate the state at
time instant t. Depending on whether τ > t, τ = t or τ < t, the estimation
problem is a smoothing, filtering or prediction problem. Estimation problems
are often used in real time applications, and therefore it is often important to
have recursive solutions to the estimation problems. The recursive state filtering
and prediction problems for hidden Markov models have been considered in [87].
For the smoothing problem only a non-recursive method has been considered
in literature [49]. In this chapter we present a solution to the recursive state
smoothing problem for hidden Markov models.

In the output smoothing problem for hidden Markov models with two output
processes, measurements of the first output are given up to a certain time instant
τ and the goal is to estimate the second output at time instant t. As with
state estimation problems a distinction is made between the output smoothing
problem, the output filtering problem and the output prediction problem. In this
chapter we give solutions to the different output estimation problems. We also
prove that for the output estimation problems it suffices to have a quasi hidden
Markov model instead of a positive hidden Markov model. This observation
gives much advantage in practical applications: first of all, it should be clear
from the previous chapters that a quasi HMM can be obtained more easily
than a positive HMM. Next, the order of a quasi realization is typically smaller
than the order of an equivalent positive realization which makes the estimation
calculations less complex.

Estimation problems for linear stochastic models have been considered in [6]
and a more recent overview of the current state-of-the-art is given in [53].

159
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List of own contributions

We here describe our contributions to the estimation problem for hidden Markov
models.

• In Section 7.2.2 we show that it suffices for the output filtering and
prediction problem to have a quasi hidden Markov model instead of a
positive hidden Markov model.

• In Section 7.3.2 we derive formulas for the recursive fixed-point and the
recursive fixed-lag state smoothing problem. In Section 7.3.1 we show that
it suffices for the fixed-point and the fixed-lag output smoothing problem
to have a quasi hidden Markov model instead of a positive hidden Markov
model.

• In Section 7.4.2 we present a technique to solve the fixed-interval output
smoothing problem.

• In Section 7.5 we apply the methods of this chapter to the coin flipping
problem of Section 5.5. Given an output sequence of coin flipping
experiments generated with a fair and a false coin alternatingly, we find
out at which experiments the fair or the false coin was used.

• In Section 7.6 we introduce switched hidden Markov models and provide
a method to determine the operation mode of a switched hidden Markov
model based on the estimation methods described in this chapter.

• In Section 7.7 we apply the method to determine the operation mode in
an output sequence of a switched HMM to the problem of finding motifs
in DNA sequences.

Section-by-section overview

In Section 7.1 we formally introduce the different state and output estimation
problems and we also define some notation. In Section 7.2 the output and state
filtering and prediction problems are discussed. Subsequently, in Section 7.3 we
consider the fixed-point and fixed-lag output and state smoothing problems.
In Section 7.4 the fixed interval state and output smoothing problems are
considered. In Section 7.5 we apply the estimation techniques to a coin flipping
experiment. In Section 7.6 we consider the problem of separating the output
sequence of a switched hidden Markov model and apply it to the problem of
finding motifs in DNA sequences (Section 7.7). In Section 7.8 we briefly review
the filtering problem for linear stochastic models and compare this with the
situation for hidden Markov models.

7.1 Introduction

In this section we introduce the two types of estimation problems considered in
this chapter: the state estimation problem and the output estimation problem.
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More particularly, we define the filtering, prediction and smoothing problems.

Definition 7.1. Given a Mealy HMM (X,Y,Π, π(1)) and measurements y =
y1y2 . . . of the output. The state estimation problem consists in computing the
probability distribution of the state at time instant t based on the measurements
y1y2 . . . yτ up to time instant τ . In case t < τ , the estimation problem is called
a (state) smoothing problem. If t = τ , it is called a (state) filtering problem.
If t > τ , it is called a (state) prediction problem. If t = τ + 1, we speak about
a one step ahead (state) prediction problem.
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Figure 7.1: Filtering, smoothing, prediction: the index t denotes the time at
which the state/output is estimated.

The filtering, prediction and smoothing problems are shown schematically
in Figure 7.1. The filtering problem is frequently employed in real-time
applications. At a certain time instant, measurements y1y2 . . . yt are available
and the problem is to estimate the distribution of the state at time t. At the
next time instant, the measurement yt+1 becomes available and the problem is to
estimate the next distribution of the state at time t+1. An analogous situation
holds for the prediction problem. The smoothing problem on the other hand
can be used either real-time or offline. For the real-time smoothing problem,
we distinguish between fixed-point smoothing and fixed-lag smoothing. In the
fixed-point smoothing problem, at a certain time instant, one estimates the
distribution of the state at time τ based on measurements up to time t, τ < t.
At the next time instant, one estimates again the distribution of the state at
time τ but now based on measurements up to time t + 1. In the fixed-lag
smoothing problem, one estimates the distribution of the state at time t based
on measurements up to time t + N . At the next time instant, one estimates
the distribution of the state at time t + 1 based on measurements up to time
t+N+1. We also consider an offline smoothing problem called the fixed-interval
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smoothing problem. In this problem measurements y = y1y2 . . . yt up to time t
are available, and the goal is to compute the distribution of the state sequence
x(1), x(2), . . . x(t). This problem is computational expensive, hence one usually
concentrates on calculating the most probable state sequence x̂.

For the definition of the output estimation problem, we first need to define
a Mealy HMM with two output processes. This definition was already given in
Chapter 5, but we recall it here. A Mealy HMM with output processes y and z
is defined as (X,Y×Z,Π, π(1)). Notice that the output alphabet of the process
z is denoted by Z (not to be confused with the set of integers). Notice that Π

is a mapping of the form Π : Y × Z 7→ R
|X|×|X|
+ .

Definition 7.2. Given a Mealy HMM with two output processes (X,Y ×
Z,Π, π(1)) and measurements y = y1, y2, . . . of the y-output. The output
estimation problem consists in computing the probability distribution of the
output z at time instant t based on the measurements y1y2 . . . yτ up to time
instant τ . In case t < τ , the estimation problem is called an (output) smoothing
problem. If t = τ , it is called an (output) filtering problem. If t > τ , it is called
an (output) prediction problem. If t = τ + 1, we call this problem a one step
ahead (output) prediction problem.

The same remarks concerning the real-time or offline application of the state
estimation problems hold for output estimation problems. In the remainder of
this section, we introduce some notation that is needed in the next sections of
this chapter.

First of all, π̃(τ1; y1, y2, ..., yτ2) and π(τ1|y1, y2, ..., yτ2) are row vectors in R|X|

where

π̃i(τ1; y1, y2, ..., yτ2) := P (x(τ1) = i, y(1) = y1, y(2) = y2, ..., y(τ2) = yτ2),

πi(τ1|y1, y2, ..., yτ2) := P (x(τ1) = i|y(1) = y1, y(2) = y2, ..., y(τ2) = yτ2),

and ω̃(τ1; y1, y2, ..., yτ2) and ω(τ1|y1, y2, ..., yτ2) are mappings from the output
space Z to R+ where

ω̃(τ1; y1, y2, ..., yτ2)(z) := P (z(τ1) = z, y(1) = y1, y(2) = y2, ..., y(τ2) = yτ2),

ω(τ1|y1, y2, ..., yτ2)(z) := P (z(τ1) = z|y(1) = y1, y(2) = y2, ..., y(τ2) = yτ2).

Next, Π(y(1), y(2), ..., y(τ)) and Π([y(1)z(1)]⊤, y(2), ..., y(τ)) are matrices in
R|X|×|X| defined as

Πij

“

y
(1), y(2), ..., y(τ)

”

:=

P
“

x(t + τ) = j, y(t) = y
(1), y(t + 1) = y

(2), ..., y(t + τ − 1) = y
(τ)|x(t) = i

”

,

Πij

„»

y
(1)

z
(1)

–

, y(2), ..., y(τ)

«

:=

P

„

x(t + τ) = j,

»

y(t)
z(t)

–

=

»

y
(1)

z
(1)

–

, y(t + 1) = y
(2), ..., y(t + τ − 1) = y

(τ)|x(t) = i

«

.
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Finally, we need some derived system matrices. Given a Mealy HMM
(X,Y,Π, π(1)), define β as a mapping from Y to R|X|, where βi(y) = P (y(t) =
y|x(t) = i). Clearly β(y) = Π(y)e. Given a Mealy HMM (X,Y × Z,Π, π(1))
with output processes y and z, define

• β(y) as a mapping from Y to R|X|, where β
(y)
i (y) = P (y(t) = y|x(t) = i).

This can be calculated as β(y)(y) =
∑

z
Π(y, z)e. The mappings β(z) and

β(y,z) are defined analogously.

• Π(y) as a mapping from Y to R|X|×|X|, where Π
(y)
ij (y) := P (x(t + 1) =

j, y(t) = y|x(t) = i). This can be calculated as Π(y)(y) =
∑

z
Π(y, z).

7.2 Filtering and prediction

In this section we give a solution to the recursive filtering and prediction
problem. We make a distinction between state filtering/prediction (Section
7.2.1) and output filtering/prediction (Section 7.2.2). It is shown that for the
output estimation case, it suffices to have a quasi HMM instead of a positive
HMM.

7.2.1 State filtering and state prediction

The algorithm below gives a solution to the recursive state filtering and
prediction problem for HMMs.

Algorithm 7.1. Given a Mealy HMM (X,Y,Π, π(1)). The following equations
define a recursive algorithm to compute π(t|y1, y2, ..., yt−1) and π(t|y1, y2, ..., yt):

π̃(1) = π(1),

π̃(t+ 1; y1, y2, ..., yt) = π̃(t; y1, y2, ..., yt−1)Π(yt),

π(t|y1, y2, ..., yt−1) =
π̃(t; y1, y2, ..., yt−1)

π̃(t; y1, y2, ..., yt−1)e

π(t|y1, y2, ..., yt) =
π̃(t; y1, y2, ..., yt−1) diag(β(y)(yt))

π̃(t; y1, y2, ..., yt−1)β(y)(yt)

The proof of the algorithm follows immediately from calculation with
probabilities. The details are omitted. For a Moore HMM (X,Y,ΠX, β, π(1)),
the computation of π̃(t+1; y1, y2, ..., yt) from π̃(t; y1, y2, ..., yt−1) can be split up
in two steps: a measurement update step (7.1) and a time update step (7.2).

π̃(t; y1, y2, ..., yt) = π̃(t; y1, y2, ..., yt−1) diag(β(yt)), (7.1)

π̃(t+ 1; y1, y2, ..., yt) = π̃(t; y1, y2, ..., yt)ΠX. (7.2)

The computation of π̃(t + 1; y1, y2, ..., yt) from π̃(t; y1, y2, ..., yt−1) for a Mealy
HMM can also be split up into two steps. However, in both steps the
measurement yt is needed, hence the splitting does not yield any advantage.
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7.2.2 Output filtering and output prediction

In Algorithm 7.2 we describe a recursive algorithm to solve both the output
filtering and the output prediction problem. In Proposition 7.1 we show that
a similar algorithm can be used when a quasi hidden Markov model is given
instead of a positive hidden Markov model.

Algorithm 7.2. Given is a hidden Markov model (X,Y×Z,Π, π(1)). The fol-
lowing equations define a recursive algorithm that computes ω(t|y1, y2, ..., yt−1)
and ω(t|y1, y2, ..., yt):

π̃(1) = π(1),

π̃(t+ 1; y1, y2, ..., yt) = π̃(t; y1, y2, ..., yt−1)Π
(y)(yt),

ω(t|y1, y2, ..., yt−1)(z) =
π̃(t; y1, y2, ..., yt−1)β

(z)(z)

π̃(t; y1, y2, ..., yt−1)e

ω(t|y1, y2, ..., yt)(z) =
π̃(t; y1, y2, ..., yt−1)β

(y,z)(yt, z)

π̃(t; y1, y2, ..., yt−1)β(y)(yt)

The proof of the algorithm follows from calculation with probabilities and is
omitted. However, we prove an interesting property of the algorithm.

Proposition 7.1. Given a quasi hidden Markov model (Q,Y × Z, A, c, b).
The recursive output filtering and prediction problem is solved using Algorithm
7.2, where the system matrices are replaced by quasi system matrices, i.e.
(Π, π(1), e) → (A, c, b), and the derived system matrices are replaced by quasi
derived system matrices, i.e. (β(y), β(z), β(y,z),Π(y)) → (λ(y), λ(z), λ(y,z), A(y)).
Quasi derived system matrices are computed from the quasi system matrices
in the same way as the derived system matrices are computed from the system
matrices.

Proof: For the filtering case, this can be seen from

ω(t|y1, y2, ..., yt)(z) =
P (y(1) = y1, y(2) = y2, ..., y(t) = yt, z(t) = z)

P (y(1) = y1, y(2) = y2, ..., y(t) = yt)

=
c̃(t; y1, y2, ..., yt−1)λ

(z)(z)

c̃(t; y1, y2, ..., yt−1)b
,

where c̃(t; y1, y2, ..., yt−1) is the quasi equivalent of π̃(t; y1, y2, ..., yt−1). The
proof for the prediction case is analogous.

When the filter is used with a positive realization, the intermediate variable
π̃(t+ 1|y1, y2, ..., yt) has an interpretation. It is proportional to the probability
distribution of the state at time instant t + 1 given output measurements
up to time instant t (see Algorithm 7.1). When using a quasi realization,
the intermediate variable c̃(t + 1|y1, y2, ..., yt) does not have an interpretation
anylonger. However, working with a quasi realization has important advantages.
A quasi realization is easy to compute and in addition a quasi realization
typically has lower order than a positive realization which makes the estimator
less complex.
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7.3 Fixed-point and fixed-lag smoothing

In this section we consider the recursive fixed-point and fixed-lag smoothing
problem. We make a distinction between state smoothing (Section 7.3.1) and
output smoothing (Section 7.3.2). Again, it can be shown that for the output
smoothing case, it suffices to have a quasi HMM instead of a positive HMM.

7.3.1 Fixed-point and fixed-lag state smoothing

The algorithm below provides a solution to the recursive filtering and prediction
problem for HMMs.

Algorithm 7.3. Given a hidden Markov model (X,Y,Π, π(1)). Then the
following equations define a recursive algorithm that computes π(t|y1, y2, ..., yτ )
and π(t|y1, y2, ..., yt+N):

π̃(1) = π(1),

π̃(t+ 1; y1, y2, ..., yt) = π̃(t; y1, y2, ..., yt−1)Π(yt),

Π(yt) = Π(yt),

Π(yt, yt+1, ..., yk) = Π(yt, yt+1, ..., yk−1)Π(yk),

π̃(t; y1, y2, ..., yτ ) = π̃(t; y1, y2, ..., yt−1) diag(Π(yt, yt+1, ..., yτ )e),

π(t|y1, y2, ..., yτ ) =
π̃(t; y1, y2, ..., yτ )

π̃(t; y1, y2, ..., yτ )e
,

π̃(t; y1, y2, ..., yt+N ) = π̃(t; y1, y2, ..., yt−1) diag(Π(yt, yt+1, ..., yt+N)e),

π(t|y1, y2, ..., yt+N ) =
π̃(t; y1, y2, ..., yt+N )

π̃(t; y1, y2, ..., yt+N )e
.

The proof of the algorithm follows from calculation with probabilities and is
omitted.

7.3.2 Fixed-point and fixed-lag output smoothing

In Algorithm 7.4 we describe a recursive algorithm to solve both the recursive
fixed-point and the fixed-lag output smoothing problem. In Proposition 7.2 we
show that a similar algorithm can be used when a quasi hidden Markov model
is given instead of a positive hidden Markov model.

Algorithm 7.4. Given a hidden Markov model (X,Y × Z,Π, π(1)). Then the
following equations define a recursive algorithm that computes ω(t|y1, y2, ..., yτ )
and ω(t|y1, y2, ..., yt+N ):

π̃(1) = π(1),

π̃(t+ 1; y1, y2, ..., yt) = π̃(t; y1, y2, ..., yt−1)Π
(y)(yt),

Π([yt, z]
⊤) = Π(yt, z),

Π([yt, z]
⊤, yt+1, ..., yk) = Π([yt, z]

⊤, yt+1, ..., yk−1)Π
(y)(yk),
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ω̃(t; y1, y2, ..., yτ )(z) = π̃(t; y1, y2, ..., yt−1)Π([yt, z]
⊤, yt+1, ..., yτ )e,

ω(t|y1, y2, ..., yτ )(z) =
ω̃(t; y1, y2, ..., yτ )(z)

∑

z
ω̃(t; y1, y2, ..., yτ )(z)

,

ω̃(t; y1, y2, ..., yt+N )(z) = π̃(t; y1, y2, ..., yt−1)Π([yt, z]
⊤, yt+1, ..., yt+N )e,

ω(t; y1, y2, ..., yt+N )(z) =
ω̃(t; y1, y2, ..., yt+N )(z)

∑

z
ω̃(t; y1, y2, ..., yt+N )(z)

.

We omit the proof the Algorithm 7.4, but prove an interesting property of
the algorithm.

Proposition 7.2. Given a quasi hidden Markov model (Q,Y × Z, A, c, b). The
recursive fixed-point and fixed-lag smoothing problem is solved using Algorithm
7.4, where the system matrices are replaced by quasi system matrices and the
derived system matrices are replaced by quasi derived system matrices.

Proof: The proof is analogous to the proof of Proposition 7.1.

7.4 Fixed-interval smoothing

In this section we consider the fixed-interval smoothing problem. We make
a distinction between state smoothing (Section 7.4.1) and output smoothing
(Section 7.4.2).

7.4.1 Fixed-interval state smoothing

In the fixed interval smoothing problem, the goal is to estimate the distribution
of the state x(1), x(2), . . . , x(t) from measurements y1y2 . . . yt of y up to time t.

Define π(1, 2, . . . , t|y1, y2, . . . , yt) as a tensor in [0, 1]|X|t with

π(1, 2, . . . , t|y1, y2, . . . , yt)i1,i2,...,it
=

P

(

y(1) = y1, . . . , y(t) = yt

x(1) = i1, . . . , x(t) = it

)

P(y1y2...yt)
. (7.3)

Calculating the complete distribution of x(1), x(2), . . . , x(t) is computational
expensive. However, in many applications, one is not interested in knowing the
complete distribution of the state sequence x, buth rather in the most probable
state sequence x̂. The Viterbi algorithm [49, 115] computes the most probable
sequence x̂ without computing (7.3) for every possible i1i2 . . . it ∈ Xt. We briefly
review the Viterbi algorithm. The goal is to find x̂ as

x̂ = argmax
i1i2...it ∈ Xt

π(1, 2, ..., t|y1, y2, ..., yt)i1,i2,...,it
,

or equivalently

x̂ = argmax
i1i2...it ∈ Xt

P

(

y(1) = y1, . . . , y(t) = yt

x(1) = i1, . . . , x(t) = it

)

,
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= argmax
i1i2...it ∈ Xt

πi1(1)Πi1,i2(y1)Πi2,i3(y2) . . .Πit,:(yt)e.

Now define

U(i1, i2, . . . , it) = − log (πi1 (1)Πi1,i2(y1)Πi2,i3(y2) . . .Πit,:(yt)e) ,

= −
(

log(πi1(1)) +

t−1
∑

k=1

log(Πik,ik+1
(yk)) + log(Πit,:(yt)e)

)

,

then

x̂ = argmin
i1i2...it ∈ Xt

U(i1, i2, . . . , it).

This reformulation enables us to view terms like log(Πik,ik+1
(yk)) as the cost

associated in going from state ik to ik+1 at time k. On the other hand log(πi1 (1))
is the cost of starting in the state i1 at time instant 1, while log(Πit,:(yt)e) is
the cost of ending in the state it at time instant t. In addition, the cost for
going over a sequence of states is equal to the sum of the individual costs for
going from one state to another. Now finding the optimal state path is merely
a matter of finding a path (i.e. sequence of states x̂) of minimum cost through
which the observation sequence y1y2 . . . yt occurs. The Viterbi algorithm is a
dynamic programming approach for finding the path of minimal cost. Below we
give the Viterbi algorithm for Mealy HMMs. In literature the Viterbi algorithm
is usually presented for Moore models.

Algorithm 7.5. Given measurements y1y2 . . . yt of the process y up to time
instant t. Perform the following steps.

1. Initialization

δ1(i) = − log(πi(1)), i ∈ X,

ψ1(i) = 0.

2. Recursive computation

δk(j) = min
i∈X

δk−1(i) − log(Πij(yk−1)), 1 < k ≤ t; j ∈ X,

ψk(j) = argmin
i∈X

δk−1(i) − log(Πij(yk−1)), 1 < k ≤ t; j ∈ X.

3. Termination

x̂t = argmin
i∈X

δt(i) − log(Πi,:(yt)e).

4. Tracing back the optimal state sequence (k = t− 1, t− 2, . . . , 1)

x̂k = ψk+1(x̂k+1).
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7.4.2 Fixed-interval output smoothing

In the fixed interval smoothing problem for estimating output z from output
y, the goal is to estimate the distribution of the output z(1), z(2), ..., z(t)
from measurements y1y2...yt of y up to time instant t. One can compute
ω(1, 2, ..., t|y1, y2, ..., yt)(z

(1), z(2), ..., z(t)) as

ω(1, 2, ..., t|y1, y2, ..., yt)(z
(1), z(2), ..., z(t)) =

P
(

y1 y2 . . . yt

z(1) z(2) . . . z(t)

)

P(y1y2...yt)
. (7.4)

Computing the complete distribution (7.4) is computationaly expensive. How-
ever, in many applications one is not interested in knowing the complete
distribution of z(1), z(2), ..., z(t), but only in the most probable output sequence
ẑ = ẑ1ẑ2 . . . ẑt.

One might think that the most probable output sequence ẑ from measure-
ments of the output sequence up to time t can be computed using the following
two step procedure. In the first step, one uses the Viterbi algorithm to compute
the most probable state sequence from the observed output sequence, and in
the second step, one determines ẑk as the most probable symbol from the set

Z corresponding to the state x̂k, i.e. ẑk = argmax
z
β

(z)
x̂k

(z). However one can
easily see that this approach does not give rise to the most probable sequence
ẑ as desired.

We now explain how the sequence ẑ can be computed without computing
(7.4) for every possible z(1)z(2)...z(t) ∈ Zt. The goal is to solve

ẑ = argmax
z(1)z(2)...z(t) ∈ Zt

ω(1, 2, ..., t|y1, y2, ..., yt)(z
(1), z(2), ..., z(t)), (7.5)

or equivalently

ẑ = argmax
z(1)z(2)...z(t) ∈ Zt

P
(

y1 y2 . . . yt

z(1) z(2) . . . z(t)

)

.

The method computes P
(

y1 y2 . . . yt

z(1) z(2) . . . z(t)

)

for z(1)z(2) . . . z(t) ∈ Zt in a

structured way which makes it possible to discover in advance that certain
sequences can impossibly be the most probable output sequence ẑ. These
sequences do not have to be considered anymore. The technique builds a tree
as in Figure 7.2. The tree has t+ 1 levels: the root level (level 0); t− 1 internal
levels (level 1 to level t− 1) and the leaf level (level t). Every node of the three

has |Z| children. In every node of the three, a label of R
1×|X|
+ is stored. For

the root node, the label is equal to π(1) and the label for the other nodes are
computed from the label of their parent node. The label of the j-th child of a
node at level i is equal to the label of the parent node multiplied by Π(yi+1, zj),
where zj is the j-th symbol from Z with respect to a certain ordering of the
symbols of Z. It is clear that for every leaf node, there exists a unique path
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. .
 .

. .
 .

. .
 .

. .
 .

π(1)

π(1)Π(y1 , z1)

π(1)Π(y1 , z2)

π(1)Π(y1 , z|Z|)

π(1)Π(y1 , z1)Π(y2, z1)

π(1)Π(y1 , z1)Π(y2, z2)

π(1)Π(y1 , z1)Π(y2, z|Z|)

π(1)Π(y1 , z2)Π(y2, z1)

π(1)Π(y1 , z2)Π(y2, z2)

π(1)Π(y1 , z2)Π(y2, z|Z|)

π(1)Π(y1 , z|Z|)Π(y2, z1)

π(1)Π(y1 , z|Z|)Π(y2, z2)

π(1)Π(y1 , z|Z|)Π(y2, z|Z|)

Figure 7.2: Part of the tree that needs to be built for Algorithm 7.6 to compute
the most probable sequence ẑ for given measurements y1y2 . . . yt.

starting in the root and ending in that leaf node. In addition, every path from
the root to a leaf node symbolizes a z(1)z(2)...z(t)-path, such that every leaf
node symbolizes a possible z(1)z(2)...z(t)-path. Now by construction, the label

of a leaf node multiplied with e is equal to the probability P
(

y1 y2 . . . yt

z(1) z(2) . . . z(t)

)

of the z(1)z(2)...z(t)-path symbolized by that leaf node.
To find the most probable path through the tree, it is not necessary to

compute the probabilities at all nodes of the tree. If at a certain level of the
tree, there is a node n1 for which the label is elementwise smaller than or equal
to the label of another node n2 of the same level, then that node (and all its
children, grandchildren,...) does not have to be considered anymore. Indeed,
node n1 can never be part of the most probable path as there will always be
a path through node n2 with a higher or equal probability. Below, we give an
algorithm that computes ẑ.

Algorithm 7.6. Given measurements of y up to time instant t, put i = 0 and
set T equal to a tree with only a root node. The root node has a label equal to
π(1) and an indicator equal to 1. Now, perform the following steps.

1. Add |Z| children to every node of level i for which the indicator is equal
to 1.

2. Calculate the label for every node at level i + 1 as the label of its parent
multiplied by Π(yi+1, zj), with zj the j-th symbol from Z where the
considered node of level i+ 1 is the j-th child of the parent at level i.

3. Put the indicator of a node at level i + 1 equal to 0 if there is a node at
the same level with a label which is elementwise higher than or equal to
the label of the considered node, and equal to 1 otherwise.

4. Increase i by 1. If i = t then goto step 5. If i < t goto step 1.
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5. Find the leaf node n∗ for which the label multiplied by e is highest.

6. The most probable sequence ẑ is the z
(1)

z
(2)...z(t)-path symbolized by the

leaf node n∗.

In case a quasi realization is given, the pruning method described above
does not work. One possible method to find the most probable path ẑ is by
computing the whole tree. An interesting open problem is to investigate whether
it is possible to compute the most probable path in an efficient way in case a
quasi HMM is given.

7.5 Filtering for the coin flipping experiment

In this section we continue the example of Section 5.5. In Section 5.5 coin
flipping experiments with alternatingly a fair and a false coin are considered.
Given the output sequence of the experiments as well as the knowledge which
coin was used at which experiment, we have built a model for the coin flipping
process. In this section we consider the problem where the model is given as
well as the output sequence of a series of flipping experiments. The goal is to
find out which coin was used in which experiment.

This problem is a typical output prediction problem. The first output
sequence is given (the outcome of the flipping experiments) and the goal is to
find the second output sequence indicating which coin was used. To solve this
problem, we use a modified version of the output prediction method presented in
Section 7.2.2. In the method of Section 7.2.2 the prediction of the second output
at time instant t is carried out based on measurements of the first output up to
time instant t− 1. The predictor used to solve the problem at hand estimates
the z-output at time instant t based on measurements of y at time instants
t−N, t−N+1, . . . , t−1 with N = 5. The formulas for this predictor can easily
be obtained using the same approach as in Section 7.2.2.

In Figure 7.3, we show the probability (with solid line), computed with
the prediction techniques, that the coin used at experiment t is the false one.
Knowing the rule that Person A uses to switch between the coins, the true
sequence that indicates which coin is used, can be calculated. To check the
quality of the filtering algorithm, we also plot this sequence (with ∗). One can
easily see that the probability that the false coin was used is high at moments
where indeed the fase coin was used. We conclude that the combination of
modeling and prediction works well.

7.6 Determining the operation mode of a switched

HMM

In this section we show that the methods of this chapter can be used to determine
the operation mode of a switched HMM. In Section 7.7 we apply these techniques
to the bioinformatics problem of finding motifs in DNA sequences.
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Figure 7.3: We show the probability (with solid line), computed with the
prediction techniques, that the coin used at experiment t is the false one.
Knowing the rule that Person A uses to switch between the coins, the true
sequence that indicates which coin is used, can be calculated. To check the quality
of the filtering algorithm, we also plot this sequence (with ∗). One can easily
see that the probability that the false coin was used is high at moments where
indeed the fase coin was used. We conclude that the combination of modeling
and prediction works well.

We first define switched HMMs and subsequently we explain how an output
sequence of a switched HMM can be separated using the filtering techniques
explained in the previous sections of this chapter.

A switched HMM is a HMM that consists of two individual HMMs. At
certain time instants, the switched HMM switches from the one HMM to the
other (see Figure 7.4). Analogously, a switched quasi HMM is a quasi HMM
that consists of two quasi HMMs. At certain time instants, it switches from
the one quasi HMM to the other. We explain the notations for switched quasi
HMMs. As a switched HMM is also a switched quasi HMM, the results are also
valid for switched HMMs. We suppose that a switched HMM has, next to the
output y, an additional output z taking values in Z = {1, 2} indicating which
of the individual HMMs is active.

σ(1) σ(2)

Π
(c)
1,2

Π
(c)
2,1

Π
(c)
1,1 Π

(c)
2,2

π
(c)
1 π

(c)
2

Figure 7.4: Switched hidden Markov model.

Consider two individual quasi HMMs σ(1) = (Y,X(1), A(1), c(1), b(1)) and
σ(2) = (Y,X(2), A(2), c(2), b(2)) and assume, without loss of generality1, that

1A quasi Mealy HMM (Y, X, A, c, b) can be transformed into the equivalent HMM
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b(1) = e and b(2) = e. Then the switched HMM determined by the individual
HMMs σ(1) and σ(2) is given by (Y × Z,X(1) ∪ X(2), A, c, e) where

A(y, 1) =

[

Π
(c)
1,1A

(1)(y) Π
(c)
1,2A

(1)(y)ec(2)

0 0

]

, ∀y ∈ Y,

A(y, 2) =

[

0 0

Π
(c)
2,1A

(2)(y)ec(1) Π
(c)
2,2A

(2)(y)

]

, ∀y ∈ Y, (7.6)

c =
[

π
(c)
1 c(1) π

(c)
2 c(2)

]

,

where π
(c)
i , i = 1, 2 is the probability that the initial model is σ(i) and Π

(c)
ij , i =

1, 2, j = 1, 2 is the probability to switch from σ(i) to σ(j).

Proposition 7.3. The switched quasi HMM (Y×Z,X(1) ∪X(2), A, c, e) defined
by (7.6) is consistent.

Proof: The proposition follows from

ce = π
(c)
1 c(1)e+ π

(c)
2 c(2)e = 1,

∑

y∈Y,z∈Z

A(y, z)e =

[

Π
(c)
1,1A

(1)
Q Π

(c)
1,2ec

(2)

Π
(c)
2,1ec

(1) Π
(c)
2,2A

(2)
Q

]

e

=

[

Π
(c)
1,1e+ Π

(c)
1,2e

Π
(c)
2,1e+ Π

(c)
2,2e

]

e = e.

Now in case a switched quasi HMM determined by the individual HMMs
σ(1) and σ(2) is given, as well as measurements of the output y, then the output
z can be determined using the techniques of Section 7.2.2 and Section 7.3.2. In
case a switched positive HMM is given, the technique of Section 7.4.2 can also
be used. Hence the techniques of this chapter allow to determine the operation
mode of a switched HMM.

7.7 Motif detection in DNA sequences

In this section we apply the methods to determine the operation mode of
a switched hidden Markov model to a problem from bioinformatics. More
precisely the problem of finding motifs in DNA sequences is considered.

As already explained in Section 4.4, desoxyribonucleic acid (DNA) is a
nucleic acid that contains the genetic instructions used in the development and
functioning of all living organisms. DNA forms a double helix of two anti-
parallel chains with complementary nucleotide sequences. The building blocks
of the nucleotide sequences are the following four nucleotides: adenine (A),
cytosine (C), guanine (G) and thymine (T). Certain parts of the DNA (the

(Y, X, TAT−1, cT−1, T b). Moreover, T can be chosen such that Tb = e.
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genes) regulate the formation of certain proteins. One step in the process from
DNA to protein is the binding of a certain transcription factor with the DNA. It
has been shown [13], that there must exist a certain complementarity between
the transcription factor and a part of the DNA for a binding to take place.
A model for a part of the DNA where possibly a binding with a transcription
factor can take place is called a motif. The parts of the DNA in between the
motifs are called the background. An important topic in bio-informatics is the
search for motifs in DNA sequences. In this section we consider this problem
where the motif is specified by a position weight matrix.

We first define a position weight matrix of a motif. Subsequently, we explain
how to build a hidden Markov model of the motif and the background separately.
Next, we describe how the switched hidden Markov model of the motif and
background together is built. Subsequently the methods are applied to the
specific example of detecting motifs in muscle-specific genes.

A Position Weight Matrix (PWM) of a motif of length w is given by

P =









PA,1 PA,2 . . . PA,w

PC,1 PC,2 . . . PC,w

PG,1 PG,2 . . . PG,w

PT,1 PT,2 . . . PT,w









(7.7)

where PX,k is the probability to find the nucleotide X at position k of the
motif. Notice that this model is a time-inhomogeneous static model. The model
is static because the event of observing a certain nucleotide at position i is
independent of the nucleotide at position j for i 6= j, i ≤ w and j ≤ w. The
model is time-inhomogeneous because the probability of observing a certain
symbol differs from position to position. One could think of using a dynamic
(either time-homogeneous or time-inhomogeneous) model instead of the PWM
model. Although useful, this would need more training data than is usually
available and it has been shown to give only slightly better results [77]. For
that reason, one typically works with PWM models for modeling motifs.

A HMM representation of a PWM model is of the form presented in Figure
7.5. Note that such HMM produces a string of length w <∞. This in contrast
with the HMMs defined before that produce an output string of infinite length.
However, we show that by combining this finite length HMM with the quasi
HMM of the background, we obtain a switched quasi HMM of the classical
sense, i.e. producing an infinite output sequence. The finite length Moore

HMM of the PWM of Equation (7.7), is given by (X(m),Y,Π
(m)
X , β(m), π(m)(1)),

where X(m) = {1, 2, . . . , w}, Y = {A,C,G, T}, π(m)(1) = [1 0 . . . 0] and

Π
(m)
X =















0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1
1 0 0 0 0















,

β(m)(A) = (P1,:)
⊤,
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β(m)(C) = (P2,:)
⊤,

β(m)(G) = (P3,:)
⊤,

β(m)(T ) = (P4,:)
⊤.

Note that a finite length HMM is represented here with a classical HMM that
continuously repeats the finite length sequence. After combination with the
quasi model of the background, we will be able to get rid of this continuous
repetition. The Mealy equivalent of the motif model is given by σ(m) :=
(X(m),Y,Π(m), π(m)(1)) where

Π(m)(y) = β(y)ΠX, y ∈ {A,C,G, T}. (7.8)

. . .1 2 |X| − 1 |X|

P (y(t) = A|x(t) = 1)
P (y(t) = C|x(t) = 1)
P (y(t) = G|x(t) = 1)
P (y(t) = T |x(t) = 1)

P (y(t) = A|x(t) = 2)
P (y(t) = C|x(t) = 2)
P (y(t) = G|x(t) = 2)
P (y(t) = T |x(t) = 2)

P(y(t) = A|x(t) = |X| − 1)
P(y(t) = C|x(t) = |X| − 1)
P(y(t) = G|x(t) = |X| − 1)
P(y(t) = T |x(t) = |X| − 1)

P(y(t) = A|x(t) = |X|)
P(y(t) = C|x(t) = |X|)
P(y(t) = G|x(t) = |X|)
P(y(t) = T |x(t) = |X|)

Figure 7.5: We here give an example of a fixed length hidden Markov model.
This kind of hidden Markov models is used to model motifs based on their
position weight matrix.

To model the background, one is typically given a long sequence of which
it is known that no motifs are present. One can either make a positive hidden
Markov model or a quasi hidden Markov model of the background. We explained
in the previous parts of this section that the output filtering, estimation, and
smoothing methods work both with quasi as well as with positive hidden Markov
models. We therefore decide to work with a quasi model of the background, as
it gives a better model for the same system order.

A quasi model of the background is given by σ(b) := (Q(b),Y, A(b), c(b), b(b)).
It can be obtained by estimating the string probabilities of strings up to a certain
length from the given background DNA string and subsequently applying an
approximate realization method of Section 4.3.3. We suppose without loss of
generality that b(b) = e.

Finally, denote the probability to go from background to motif by Πb,m, and
the probability to go from background to background by Πb,b = 1 − Πb,m.

Now the switched quasi HMM consisting of the individual HMMs σ(m) and
σ(b) is given by (Y × Z,X(m) ∪ X(b), A(m,b), c(m,b), e) where Z = {m, b} and

A(m,b)(y,m) =







Π
(m)

1:|X(m)|−1,:
(y) 0

0 Π
(m)

|X(m)|,1(y)c
(b)

0 0






, ∀y ∈ Y,

A(m,b)(y, b) =

[

0 0

Πb,mA(b)(y)e 0 Πb,bA
(b)(y)

]

, ∀y ∈ Y, (7.9)
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c(m,b) =
[

Πb,m 0 Πb,bc
b
]

.

We now apply the described method to the problem of detecting known mo-
tifs in human muscle-specific genes [116]. The data for this problem is available
at http://www.stat.ucla.edu/∼zhou/CisModule/ [119] and consists of

• 29 sequences y1, . . .y29 of length 200 with instances of motifs Mef-2 (length
12), Myf (length 12), Sp-1 (length 11), SRF (length 13) and TEF (length
12),

• 40 background u1, . . .u40 sequences of length 200 without motifs,

• PWM models of the motifs Mef-2, Myf, Sp-1, SRF and TEF.

The goal is to find the location of motif instances of the 5 different types in the
sequences y1, . . .y29.

P (Mef−2) =

2
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0.4525 0.0045 0.4072 0.1357
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.

A motif HMM representation σ(m) = (X(m),Y,Π
(m)
X , β(m), π(m)(1)) is built

for the 5 different motifs using Equation (7.8).
In Section 4.4 we already explained how to build a quasi model σ(b) =

(Q(b),Y, A(b), c(b), b(b)) of order 4 of the background sequences.
The probability to go from background to motif is taken equal to Πb,m =

0.02. Now, the switched quasi HMMs for the different motifs combined with the
background, calculated using Equation (7.9), are given by σ(m,b) = (Y×Z,X(m)∪
X(b), A(m,b), c(m,b), e), where Z = {m, b} and m = Mef − 2,Myf, Sp − 1, SRF,TEF.

For the estimation step, we use the recursive fixed lag smoothing procedure
with N equal to the length of the motif. As explained in Section 7.3.2, it
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suffices for this method to have a quasi HMM instead of a positive HMM. The
method calculates for a given output sequence y, using the switched quasi HMM
σ(m,b) of the background and a motif m, the quantities ω(t−N ; y1, y2, ..., yt)(m)
for t = N + 1, . . . , 200. In Figures 7.6, 7.7 and 7.8, we show the results for
y = y2,y11,y27 and m = Mef − 2,Myf, Sp − 1, SRF,TEF.

The results are compared to the results obtained using Motifscanner [2]
applied with a third order background model and default parameters except for
”strand = single (s=0)”. It is clear that all motifs found by Motifscanner are
also detected by our method. However, our method calculates a probability
of occurence for each motif over the complete sequence. Hence additional
regions where motifs might be present are detected. It might be interesting
to investigate these regions biologically. Another advantage is that our method
provides a way to determine the needed order of the background model and
allows that the background model is a quasi model instead of a positive hidden
Markov model.

We conclude that the fixed-lag smoothing method is well suited to detect
known motifs in nucleotide sequences. The method works with a quasi model
of the background. There are many advantages of working with quasi models.
First of all there is no need to calculate a positive HMM representation of the
background, which is a computational expensive task. Second, the order of
a quasi realization is typically lower than the order of a positive realization
which makes the estimation less expensive. In addition, by looking at the
singular values of the hankel matrix, the needed order of the quasi model can
be determined.

7.8 The linear stochastic case

In this section we consider state filtering for linear stochastic models. We show
that also for this problem it suffices to have a quasi model. This is in analogy
with the output filtering problem for hidden Markov models. We do not go into
detail about prediction and smoothing for linear stochastic models.

First define

x̂(t) := E(x(t)|y(1) = y1, y(2) = y2, ..., y(t− 1) = yt−1).

Now the Kalman filter algorithm below provides a solution to the recursive state
filtering problem for linear stochastic models.

Algorithm 7.7. Given a linear stochastic model (A,C, P,Q,R, S), then the
following equations define a recursive algorithm to compute x̂(t)

x̂(t) = Ax̂(t− 1) +K(y(t− 1) − Cx̂(t− 1)), (7.10)

with

K = (AP̃C⊤ + S)(CP̃C⊤ +R)−1,

P̃ = AP̃A⊤ +Q− (AP̃C⊤ + S)(CP̃C⊤ +R)−1(AP̃C⊤ + S)⊤,
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Figure 7.6: The probability ω(t − N ; y1, y2, ..., yt)(m) for t = N + 1, . . . , 200
is shown for y = y2 and m = Mef − 2,Myf, Sp − 1, SRF,TEF (Subfigure (a)).
The results are compared with the method proposed in [2] (Subfigure (b)).

where P̃ is the error covariance matrix defined as

P̃ = E[(x(t) − x̂(t))(x(t) − x̂(t))⊤].

The matrix K is called the Kalman gain. It can be shown that the Kalman
gain can be calculated in an alternative way using

K = (G−AP̂C⊤)(Λ(0) − CP̂C⊤)−1,

P̂ = AP̂A⊤ + (G−AP̂C⊤)(Λ(0) − CP̂C⊤)−1(G−AP̂C⊤)⊤,

where P̂ = E[x̂(t)x̂(t)⊤].
This last form depends only on A, C, G and Λ(0). This indicates that

the Kalman filter works with a quasi model (A,C, P (q), Q(q), R(q), S(q)) where
P (q), Q(q) and R(q) are not necessarily positive definite as well as with a
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Figure 7.7: The probability ω(t − N ; y1, y2, ..., yt)(m) for t = N + 1, . . . , 200
is shown for y = y11 and m = Mef − 2,Myf, Sp − 1, SRF,TEF (Subfigure (a)).
The results are compared with the method proposed in [2] (Subfigure (b)).

linear stochastic model where P , Q and R are positive definite. Note that
this observation is analogous to the observation that for output filtering of
hidden Markov models, it suffices to have a quasi realization instead of a positive
realization.

7.9 Conclusions

In this chapter we considered estimation problems for hidden Markov models.

First, the recursive state filtering and prediction problem are reviewed.
Subsequently, it is shown that for the output filtering and prediction problem,
it suffices to have a quasi hidden Markov model instead of a positive hidden
Markov model.
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Figure 7.8: The probability ω(t − N ; y1, y2, ..., yt)(m) for t = N + 1, . . . , 200
is shown for y = y27 and m = Mef − 2,Myf, Sp − 1, SRF,TEF (Subfigure (a)).
The results are compared with the method proposed in [2] (Subfigure (b)).

Subsequently, the recursive fixed-point and fixed-lag state smoothing prob-
lem are introduced and solved. Again, we prove that for the fixed-point and
fixed-lag output smoothing problem, it suffices to have a quasi hidden Markov
model instead of a positive hidden Markov model.

Next, the fixed interval state smoothing problem using the Viterbi algorithm
is reviewed. The method is adapted to solve the fixed-interval output smoothing
problem for hidden Markov models.

Finally, switched hidden Markov models were defined and a method was
presented to determine the operation mode of a switched hidden Markov model.
This method is succesfully applied on the problem of finding motifs in DNA
sequences.





Chapter 8

Conclusions and directions
for further research

This chapter summarizes the most important results obtained in this thesis and
suggests some directions for further research.

8.1 Conclusions

Hidden Markov models are models with a finite-valued state space that are
used to model finite-valued output processes. Linear stochastic models on the
other hand have a finite-dimensional state space and are used to model finite-
dimensional output processes. Conceptually, there is a close link between hidden
Markov and linear stochastic models. However, many theoretical questions that
are ”solved” for linear stochastic models (realization, identification, filtering,...),
are still open for hidden Markov models. These theoretical questions are the
first main objective of this thesis.

The solution to most of the theoretical questions concerning linear stochastic
models makes use of the singular value decomposition. To solve the correspond-
ing problems for hidden Markov models, there is need for the nonnegative matrix
factorization as well as variants to this factorization. The derivation of variants
on the nonnegative matrix factorization is the second objective of this thesis. We
aim at keeping the variants on the nonnegative matrix factorization as general
as possible such that they are not only useful in the domain of hidden Markov
models, but can be used in other applications too.

We now summarize our contributions to matrix factorizations (Section 8.1.1)
and hidden Markov models (Section 8.1.2).

8.1.1 Matrix factorizations

In recent years, the approximate nonnegative matrix factorization problem has
gained lots of interest both from theoretical as from algorithmical point of view
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as well as in applications. It consists of decomposing a nonnegative matrix M
into a low rank product V H with V and H nonnegative. We introduce two
variants on the nonnegative matrix factorization.

The first variant is the structured nonnegative matrix factorization. It
consists of approximating a square nonnegative matrix P with a product V AV ⊤

where the dimension of A is small. When using the Kullback-Leibler divergence
as performance criterion, we prove that an optimal approximation V AV ⊤ has
the same element sum as the original matrix P . Next, we propose update
formulas of which we proved that, if they converge, they converge to a stationary
point of the divergence. We show that the structured nonnegative matrix
approximation can be used to cluster points based on their distance matrix.

The second introduced variant is the nonnegative matrix factorization
without nonnegativity constraints on the factors. The purpose there is to
decompose a matrix M into a low rank product V H where V and H can
contain negative values, but the approximation V H is constrained to be
nonnegative. By allowing the factors V and H to contain negative elements a
better approximation can be obtained with the same inner dimension compared
to the case where the factors V and H are constrained to be nonnegative. We
apply this decomposition to the problem of compressing a database containing
facial images. It turns out that the proposed method outperforms existing
methods.

8.1.2 Hidden Markov models

Severeral types of hidden Markov models have been considered in the literature:
quasi Mealy models, positive Mealy models and positive Moore models. In
this thesis, the importance of quasi Mealy models is explained. For instance,
several estimation problems for hidden Markov models can be solved using quasi
HMMs (see Chapter 7). Nevertheless, for some applications a quasi model is not
sufficient and it is important to have a positive model instead of a quasi model.
For that reason, we concentrated both on methods to obtain quasi models from
data as well as on methods to obtain positive models from data.

Quasi-realization for hidden Markov models

In the literature only the exact quasi realization problem for hidden Markov
models has been considered. In this thesis, we consider the partial quasi
realization problem and the approximate partial quasi realization problem for
hidden Markov models. These problems are more important from practical
point of view. Concerning the partial realization problem, we prove that, under
a certain rank condition, the problem can be solved using the same algorithm
as for the quasi realization problem. In addition it is proven that, again under
the rank condition, the obtained model is the unique minimal solution to the
partial quasi realization problem. Subsequently, we provide methods to solve
the approximate partial realization problem. The first methods aim at finding a
low rank approximation of the generalized Hankel matrix containing the string
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probabilities and subsequently apply the quasi realization algorithm. The last
method builds a full-order balanced model and then reduces the model to obtain
a low order approximate model. The approximate quasi realization procedure
is applied to the modeling of DNA sequences.

Realization for hidden Markov models

We considered the approximate partial realization problem for positive hidden
Markov models. We prove that the approximate Moore realization problem for
string probabilities of strings up to length two can be solved using the structured
nonnegative matrix factorization. By generalizing this method, we obtain a
method to solve the approximate partial Mealy realization problem for string
probabilities of strings up to arbitrary length t.

We also consider the equivalence problem for positive Moore and Mealy
hidden Markov models. We show that, under certain conditions, a positive
Moore model has only trivial equivalents obtained by permuting the states. In
case these conditions do no hold there exists a whole class of equivalent models.
We provide a procedure to check whether two Moore models are equivalent and
give a description of the complete set of equivalent Moore models. We also
provide a test to check whether two Mealy models are equivalent and give a
description of the complete set of equivalent Mealy models. We have applied
the approximate realization procedure to the modeling of DNA sequences.

Identification for hidden Markov models

We provide a new identification procedure for hidden Markov models. Clas-
sically, identification is solved using Baum-Welch, a maximum likelihood
approach. We propose a method that is inspired by subspace identification for
linear stochastic models. For a given model order, the method first estimates
the state sequence directly from the output data. Subsequently, the system
matrices are estimated from the obtained state sequence and the given output
sequence. In a simulation example, we show that the method outperforms the
Baum-Welch algorithm. The subspace inspired identification method has been
used to model sequences from the HIV genome.

Estimation for hidden Markov models

We provide a method to solve the recursive fixed-point and fixed-lag state and
output smoothing problem. We show that for the output filtering, output
prediction, fixed-point and fixed-lag output smoothing problem, it suffices to
have a quasi hidden Markov model instead of a positive hidden Markov model.
We propose a technique for determining the operation mode of a switched hidden
Markov model and apply this technique to the problem of finding motifs in DNA
sequences.
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8.2 Directions for further research

In this section we give some directions for further research. In Section 8.2.2
we consider directions concerning matrix factorizations and in Section 8.2.2
concerning hidden Markov models.

8.2.1 Matrix factorizations

We here discuss some open question concerning nonnegative matrix factorization
techniques.

• The singular value decomposition has a nesting property. This means that
the optimal rank l SVD-truncation of the optimal rank k SVD-truncation
(with l < k) of a matrix M is equal to the optimal rank l SVD-truncation
of the matrix M . It would be interesting to have a nonnegative matrix
factorization with a similar type of nesting property.

• The nonnegative matrix factorization without nonnegativity constraints
on the factors, proposed in this thesis, elegantly allows to deal with
upper as well as lower bounds (nonnegativity) on the elements of the
approximation. It would be interesting to derive update formulas for all
types of nonnegative matrix factorization problems where upper bounds
can be imposed next to lower bounds.

8.2.2 Hidden Markov models

We here discuss some open question concerning hidden Markov models.

• In the approximate positive realization problem for hidden Markov models
one could use a weighted Kullback-Leibler divergence (as defined in [21])
instead of a uniform divergence and try to define update formulas using
this new distance measure. The following applications illustrates the use
of this kind of realization algorithms. Suppose the output symbols of the
HMM are measured in the presence of noise, which means that certains
symbols can be flipped. In that case some output string probabilities
can be determined more precisely than others. In that case a weighted
realization approach can be helpfull.

• The derivation of necessary and sufficient conditions for string probabil-
ities to be representable by a positive Mealy HMM is still an interesting
open research problem. In addition, it would be nice to determine
beforehand the order of a minimal positive realization of the string
probabilities. It is also an open problem to derive an exact minimal
positive realization algorithm for hidden Markov models.

• All methods to obtain a model developed in this thesis (quasi realization,
positive realization and identification) build a model in which no prior
knowledge is incorparated. However, in some practical applications, prior
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knowledge on the structure of the underlying Markov chain is available.
For example a linear structured hidden Markov chain (see Figure 8.1), or a
hidden Markov model in which some transitions are not allowed. It would
be interesting to have realization and identification methods that allow to
deal with this kind of prior knowledge. Incorporating prior knowledge will
allow to obtain even better models.

. . .1 2 |X|

Figure 8.1: In some practical applications of hidden Markov models, prior
knowledge on the structure of the underlying Markov chain is available. We here
give an example of a linear structured Markov chain. It would be interesting to
have modeling methods that allow to deal with this kind of prior knowledge.

• It is an interesting open problem to check whether it is possible to
define canonical forms of hidden Markov models and whether these forms
can help in developping better identification procedures. For linear
stochastic models several canonical forms do exist (forward innovation
form, backward innovation form) and these forms do have importance in
several identification procedures.

• An interesting open problem is model reduction for hidden Markov models:
given a high order hidden Markov model, find a hidden Markov model
of a given order that approximates the high order model optimally in a
certain sense. In [66], a model reduction method for quasi hidden Markov
models is proposed. Using a heuristic trick this model reduction method
is also used for positive hidden Markov models. It would be interesting to
investigate the model reduction problem into more detail.

• In this thesis, we considered hidden Markov models without external
inputs. It would be interesting to define hidden Markov models with
an input that can be controlled by the user. A possible description of a
Mealy model could be (X,Y,U,Π, π(1)), where X and Y are the state and
output alphabeth as before and U is the input alphabeth with cardinality

|U|. Π is a mapping from Y × U to R
|X|×|X|
+ defined as

Πij(y, u) = P (y(t) = y, x(t+ 1) = j|x(t) = i, u(t) = u)

and π(1) is defined as before as πi(1) = P (x(1) = i). It could be
investigated whether the developped quasi realization theory, realization
theory, identification and estimation methods could be extended to hidden
Markov models with inputs.
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• In control problems one is given a desired output sequence and the problem
is to design the input sequence such that the actual output approximates
the desired output optimally in a to be defined sense. To the best of our
knowledge, the control problem for hidden Markov models has not been
considered yet. In order to be able to say whether an output sequence
approximates the desired output better than onother output sequence, we
need to define a distance measure between finite-valued output sequences.
If a distance measure d(y(1), y(2)) between the output symbols y(1) and y(2)

is given, the distance between output sequences y(1) and y(2) of length T
can be defined as

D(y(1),y(2)) =

T
∑

i=1

d(y
(1)
i , y

(2)
i ).



Appendix A

Proof of Theorem 2.4

To prove that Mk is the unique optimal approximation of M in the Frobenius
norm, we suppose that M ′

k is another optimal approximation and want to prove
that M ′

k = Mk. Let

M ′
k = U ′

[

Σ′
k 0

0 0

]

V ′⊤

with Σ′
k ∈ Rk×k, be an SVD of M ′

k. Then

[

Σ′
k 0

0 0

]

is an optimal rank k

approximation in the Frobenius norm of N := (U ′)⊤MV ′. Partition

N =

[

N11 N12

N21 N22

]

conformal with the partition

[

Σ′
k 0

0 0

]

.

Observe that, since

rank(

[

Σ′
k N12

0 0

]

≤ k

and

[N12 6= 0] ⇒ [||N −
[

Σ′
k N12

0 0

]

||F < ||N −
[

Σ′
k 0

0 0

]

||F ],

we obtain N12 = 0. Similarly, N21 = 0. Therefore N =

[

N11 0
0 N22

]

. Observe

also that, since

rank(

[

Σ′
k −N11 0

0 0

]

≤ k

and

[N11 6= Σ′
k] ⇒ [||N −

[

N11 0
0 0

]

||F < ||N −
[

Σ′
k 0

0 0

]

||F ],
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we obtain N11 = Σ′
k. Therefore N =

[

Σ′
k 0

0 N22

]

. Next, let N22 = U22Σ
′′

kV
⊤
22

be an SVD of N22, and note that

N ′ :=

[

I 0
0 U⊤

22

]

N

[

I 0
0 V22

]

=

[

I 0
0 U⊤

22

]

(U ′)⊤MV ′
[

I 0
0 V22

]

is diagonal: N ′ =

[

Σ′
k 0

0 Σ
′′

k

]

, and has

[

Σ′
k 0

0 0

]

as an optimal rank k

approximation. This obviously implies that the smallest diagonal element of Σ′
k

is larger than the largest diagonal element of Σ
′′

k . It follows that

M = U ′
[

I 0
0 U22

] [

Σ′
k 0

0 Σ
′′

k

] [

I 0
0 V ⊤

22

]

V ′⊤

is an SVD of M and that

M ′
k = U ′

[

Σ′
k 0

0 0

]

V ′⊤ = U ′
[

I 0
0 U22

] [

Σ′
k 0

0 0

] [

I 0
0 V ⊤

22

]

V ′⊤

is a rank k SVD-truncation of M .
Now, if the gap condition σk(M) > σk+1(M) holds, then the rank k SVD-

truncation is unique. Hence M ′
k = Mk. Conclude that Mk is then the unique

optimal rank k approximation in the Frobenius norm of M .



Appendix B

Semialgebraic sets -
Tarski-Seidenberg quantifier
elimination

In this appendix, we summarize the principle of Tarski-Seidenberg and the
relation to semialgebraic sets. This summary is based on [22].

A semialgebraic subset of Rn is a subset of Rn satisfying a boolean
combination of polynomial equations and inequalities with real coefficients. In
other words, the semialgebraic subsets of Rn form the smallest class SAn of
subsets of Rn such that:

• If g is a polynomial in n variables, then {x ∈ Rn : g(x) = 0} ∈ SAn and
{x ∈ Rn : g(x) > 0} ∈ SAn.

• If A ∈ SAn and B ∈ SAn, then A ∪B, A ∩B and A \B are in SAn.

As a consequence of the Tarski-Seidenberg principle [91, 97], the class of
semialgebraic sets is closed under projection.

Theorem B.1. Let A be a semialgebraic subset of Rn and P : Rn 7→ Rp, the
projection on the first p coordinates. Then P (A) is a semialgebraic subset of
Rp.

Now consider a first order formula over the reals having the form

(Q1x
(1) ∈ Rn1) . . . (Qlx

(l) ∈ Rnl)P (y, x(1), . . . , x(l)), (B.1)

where Qλ, λ = 1, . . . , l is a quantifier: either ∃ (”there exists”) or ∀ (”for all”),
where y = [y1, . . . , yn0 ]

⊤ are free variables and where P (y, x(1), . . . , x(l)) is a
quantifier-free Boolean formula, i.e. a combination of atomic predicates. The
atomic predicates are supposed to be of the form gκ(y, x(1), . . . , x(l))∆κ0, κ =

1, . . . , k, where gκ :
∏l

λ=0 Rnλ 7→ R is a polynomial of degree at most d ≥ 2 and
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∆i is one of the following relations ≥, >, =, 6=, ≤ and <. P (y, x(1), . . . , x(l))
is determined by a Boolean function P : {0, 1}k 7→ {0, 1} and a function B :
∏l

λ=0 Rnλ 7→ {0, 1}k, where P := P ◦B, and for κ = 1, . . . , k

B(y, x(1), . . . , x(l))κ =

{

1 if gκ(y, x(1), . . . , x(l))∆κ0,
0 otherwise.

It is clear that the solution set in Rn0 of (B.1) is a semialgebraic set as it is the

projection of a semialgebraic set in
∏l

λ=0 Rnλ . It can now be shown [88,91,97],
that the semialgebraic set can be constructed, i.e. the first order formula (B.1)
can be written in an equivalent form without quantifiers. The operations that
are needed to eliminate the quantifiers are restricted to additions, subtractions,
multiplications, divisions, comparisions and the evaluation of Boolean functions.
In [88], an algorithm for quantifier elimination is described that requires at most

(kd)2
O(l) Q

λ nλ multiplications and additions, and at most (kd)O(
P

λ nλ) calls to
P. The method requires no divisions. The quantifier elimination algorithm
constructs a quantifier-free formula of the following form

m
∨

µ=1

nµ
∧

ν=1

hµν(y)∆µν0,

where m ≤ (kd)2
O(l) Q

λ nλ , where nµ ≤ (kd)2
O(l) Q

λ nλ , for µ = 1, . . .m, where

the degree of each of the polynomials hµν is at most (kd)2
O(l) Q

λ nλ and where
each ∆µν is one of the following relations ≥, >, =, 6=, ≤ and <.



Appendix C

The
Expectation-Maximization
algorithm

The Expectation-Maximization algorithm [32] (EM algorithm) is an iterative
procedure to compute the Maximum Likelihood (ML) estimate in the presence
of missing or hidden data. We here give a short review of the algorithm based
on the tutorial [23]. In ML estimation, we wish to estimate the model parameter
for which the observed data are most likely. Each iteration of the EM algorithm
consists of two steps: The Expectation step and the Maximization step. In the
Expectation step, the missing data are estimated given the observed data and
current estimate of the model parameters. This is achieved using the conditional
expectation, explaining the choice of terminology. In the Maximization step, the
likelihood function is maximized under the assumption that the missing data
are known. The estimate of the missing data from the Expectation step are
used instead of the missing data. The algorithm is guaranteed to increase the
likelihood at each iteration.

Let y be random vector which results from a parametrized family. We wish
to find λ such that P (y|λ) is a maximum. This is known as the maximum
likelihood estimate for λ. In order to estimate λ, it is typical to introduce the
log likelihood function defined as

L(λ) = logP (y|λ).

Since log is a strictly increasing function, the value of λ which maximizes
P (y|λ) also maximizes L(λ). The EM algorithm is an iterative procedure for
maximizing L(λ). Assume that after the t-th iteration, the current estimate for
λ is given by λ(t). Since the objective is to maximize L(λ), we wish to compute
an updated estimate λ such that

L(λ) > L(λ(t))
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Equivalently, we want to maximize the difference

L(λ) − L(λ(t)) = logP (y|λ) − logP (y|λ(t)). (C.1)

By introducing hidden variables x, Equation (C.1) becomes

L(λ) − L(λ(t)) = log
∑

x

P (y|x, λ)P (x|λ) − logP (y|λ(t)).

Now using Jensen’s inequality, it can be shown that

L(λ) − L(λ(t)) ≥ ∆(λ|λ(t))

where

∆(λ|λ(t)) :=
∑

x

P (x|y, λ(t)) log
P (y|x, λ)P (x|λ)

P (x|y, λ(t))P (y|λ(t))
.

Now define l(λ|λ(t)) := L(λ(t)) + ∆(λ|λ(t)), such that

L(λ) ≥ l(λ|λ(t)).

So l(λ|λ(t)) is bounded above by the likelihood function L(λ). Additionally, it
can be shown that l(λ|λ(t)) = L(λ(t)).

The objective is to chose a value of λ such that L(λ) is maximized. We have
shown that the function l(λ|λ(t)) is bounded above by the likelihood function
L(λ) and that the value of the functions l(λ|λ(t)) and L(λ) are equal at the
current estimate for λ = λ(t). Therefore, any λ which increases l(λ|λ(t)) in turn
increases L(λ). In order to achieve the greatest possible increase in the value of
L(λ), the EM algorithm selects λ such that l(λ|λ(t)) is maximized. We denote
the updated value as λ(t+1). This process is illustrated in Figure C.1.

Formally, we have after some calculation

λ(t+1) := argmax
λ

l(λ|λ(t))

= argmax
λ

Q(λ|λ(t)), (C.2)

where
Q(λ|λ(t)) =

∑

x

P (x,y|λ(t)) logP (x,y|λ). (C.3)

In Equation (C.2) the Expectation and Maximization steps are apparent. The
EM algorithm thus consists of iterating the:

1. E-step: Determine the conditional expectation

∑

x

P (x,y|λ(t)) logP (x,y|λ),

2. M-step: Maximize this expression with respect to λ.
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λ(t) λ(t+1)

l(λ|λ(t))L(λ)

λ

L(λ)
l(λ, λ(t))

l(λ(t+1)|λ(t))

L(λ(t)) = l(λ(t)|λ(t))

Figure C.1: Graphical interpretation of a single iteration of the EM algorithm:
The function l(λ|λ(t)) is upper-bounded by the likelihood function L(λ). The
functions are equal at λ = λ(t). The EM algorithm chooses λ(t+1) as the value of
λ for which l(λ|λ(t)) is a maximum. Since L(λ) ≥ l(λ|λ(t)), increasing l(λ|λ(t))
ensures that the values of the likelihood function L(λ) is increased at each step.

At this point, it is fair to ask what had been gained given that we have
simply traded the maximization of L(λ) for the maximization of l(λ|λ(t)). The
answer lies in the fact that l(λ|λ(t)) takes into account the unobserved or missing
data x. In the case where we wish to estimate these variables the EM algorithm
provides a framework for doing so. Also, in other situations the maximization
of l(λ|λ(t)) is easier as compared with a direct maximization of L(λ).

The convergence properties of the EM algorithm are discussed in detail
in [76]. Since λ(t+1) is chosen to maximize ∆(λ|λ(t)), we then have that
∆(λ(t+1)|λ(t)) ≥ ∆(λ(t)|λ(t)) = 0, so for each iteration the likelihood L(λ) is
nondecreasing. When the algorithm reaches a fixed point for some λ(t) the value
λ(t) maximizes l(λ). Since L and l are equal at λ(t), λ(t) must be a stationary
point of L. The stationary point need not, however, be a local maximum. In [76]
it is shown that it is possible for the algorithm to converge to local minima or
saddle points in unusual cases.
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