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Dankwoord

Het lijkt wel gisteren dat ik op ESAT begonnen ben. Die ’eerste dag’ was
meteen ook de eerste dag van de grote vakantie met prachtig weer en ik kwam
bijgevolg aan op een nagenoeg lege derde verdieping. Kathleen, de efficiëntie
zelve, zei toen ’Okee, begin maar hé!’ en daarmee was het startschot gegeven.
U ziet, de start van een doctoraat hoeft niet altijd moeilijk te zijn, dat komt
vanzelf wel nadien.

Op elke publicatie staat steeds een uitgebreide auteurslijst maar vreemd ge-
noeg staat op een doctoraat slechts één naam (geachte promotoren en juryle-
den, mijn excuses voor deze dichterlijke vrijheid). Nochthans is een doctoraat
nooit mogelijk zonder de intense samenwerking van een heleboel mensen.

Allereerst wens ik daarom mijn promotoren prof. Bart De Moor en prof.
Kathleen Marchal te bedanken, het is in de eerste plaats dankzij hen dat ik hier
de afgelopen jaren heb mogen en kunnen werken.

Bart, dank voor je niet aflatende steun zowel voor als achter de schermen en
dit zowel binnen als buiten mijn doctoraat. Als ik iets meedraag van ESAT
dan is het wel dat hier alles mogelijk is als je er maar hard genoeg voor werkt.
Kathleen, jouw niet aflatend enthousiasme en werkkracht zijn steeds een bron
van inspiratie geweest. Het is dan ook met heel veel respect en bewondering
dat ik de afgelopen jaren met je heb mogen samenwerken. Op ’den chat’ was er
altijd tijd om een probleem aan te kaarten maar ook om de laatste nieuwtjes uit
te wisselen. Er bleek zelfs een heuse 24/7 permanentie te zijn, want wanneer
ik ook inlogde, jij was altijd aan het werk. Bedankt om me zoveel richting en
tegelijkertijd zoveel vrijheid te geven, ik had het niet beter kunnen wensen!

Hui and Lore, I can safely say that I couldn’t have done this without you. ’Thank
you!’ by far doesn’t cover how I feel and neither do the chocolates cover for
all the help you gave. Hui, half a word was always enough to understand the
problem. Strange enough, an ’Ok, I get it, next.’ was often heard halfway an
explanation, an indication that you understood things better than I did. Since I
know how much you appreciate Vienna-by-night tours, we’ll definitely do that
again someday. I wish you all the best with your baby-to-come!

Koen, één van de fijnste periodes van mijn doctoraat heeft zich ongetwijfeld
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’in Antwerpen’ afgespeeld. De beste koffie - het spijt me, dit wordt even pijn-
lijk voor sommige Leuvense lezers - werd in Antwerpen geserveerd, inclusief
koekjes. Koen, je enthousiasme werkte ongelooflijk aanstekelijk en je scherpe
inzicht was vaak verbluffend. Van newbie heb je je opgewerkt tot een echte
linux-guru en voor jou was het motto vaak: hoe moeilijker de opdracht, hoe
plezanter de uitdaging. Ons gezamelijk project heeft geleid tot een hechte
vriendschap en vele fijne momenten, de nachtelijke opsluiting in het gebouw
reken ik daar gemakshalve ook bij. Bart en Piet, ik heb de no-nonsens mental-
iteit op ISLab steeds geapprecieerd en jullie nuchtere kijk op ons werk leverde
vaak de nodige brandstof om de juiste experimenten te doen. Kris, Kim en
Hai, onze paden hebben elkaar op ISLab slechts kort gekruist maar de fijne
babbels op congres hebben op dat vlak veel goedgemaakt.

Olivier, Thomas en Peter, de koffie is nooit het belangrijkste element geweest
van onze koffiepauzes denk ik. Veel ideeën, goede inzichten en wereldred-
dende filosofieën hebben hier hun oorsprong gevonden en al even vaak ook
hun einde. Olivier, alle interacties zullen spijtig genoeg virtueel worden het
komende jaar, ik wens je veel succes in Stanford! Wout en Thomas, de verhalen
over onze thesisstudenten zullen nog wel een paar kampvuren meegaan. Het
was fijn om een eiland te mogen delen met jullie! Er werd hard gewerkt, maar
er was altijd tijd voor hulp bij kleine en grote problemen. Daarnaast hebben
we er ook veel leute gehad. De ’pop’, de ’shrimp-in-a-tube’ en de kartonnen
torens verschenen altijd als het net iets té stil werd. Sonia, Jiqiu and Sylvain,
you are the fine new inhabitants of our little island, protect it at all costs against
’the others’! It was and still is a pleasure to have such nice and clever colleagues
right next to me.

Nothing ever stayed the same at the third floor and I had the pleasure of
sharing office with so many people over the years. Kristof, Ruth, Pieter,
Anneleen, Ernesto, Lieven, Peter, Shi, Tunde, Daniela, Leon, Joke, Cynthia,
Karen, Liesbeth, Olivier, Frank, Gert, Yves, Thomas, Wout, Sonia, Jiqiu and
Sylvain, you each gave your own personal touch to our floor. Thanks for all
the nice shared moments! Dear colleagues in Ghent and BioFrame members,
it was a pleasure working with all of you and I hope we can further collaborate
(and ski!) in the future.

Onder het motto ’Goed werk wordt nooit geleverd op een lege maag.’ waren we
jaren vaste klant in de ViaVia. Naast de harde kern Karen, Raf, Olivier, Pe-
ter en Thomas waren er regelmatig ook ’invited guests’ zoals Francesca, al
is de befaamde Via-spaghetti bij haar nooit echt in de smaak gevallen. De
game evenings zijn ondertussen ook een vast fenomeen geworden en leren
Weerwolven staat nu geloof ik vast in het programma van eerstejaars docto-
raatsstudenten.

Op de vierde verdieping zijn de meest luidruchtige collega’s wijselijk op twee
aparte eilandjes geplaatst achter een lange reeks kasten. Tom, Bert, Raf, Niels,
Nathalie, Frizo, Bert and Steven, het was altijd plezant om eens langs te komen!
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Daar waren ook ’onze’ IT mensen gestationeerd en zij speelden steeds snel in
op elk nieuw probleem: Edwin, Maarten en Kris, bedankt! Ida, Ilse en Mimi
jullie regelden achter de schermen voor ons alle zaken. Bedankt daarvoor en
voor het geduld telkens er een documentje te weinig of teveel was ingevuld.

While being stationed at ESAT, I had the fortune of actually be part of two
bioinformatics groups. My fine colleagues at agriculture, I couldn’t have
wished for nicer colleagues than you. The wonderful international mix was
always food for passionate conversations and yet we bind together as such a
strong team. Kathleen, Kristof, Inge, Sigrid, Carolina, Valerie, Marleen, Fu,
Alejandro, Lyn, Abeer, Riet, Lore, Karen, Hui, Sunny, Peyman, Ivan, Jo, Pieter
and los Cubanos Aminael and Roldan!

Kristof, the sometimes animated microarray normalization discussions re-
sulted in both great insights and usually even more questions, especially those
at 5am during our brainstorms. Aminael, it is amazing how quickly we con-
nected in Vienna and how much common interests we shared there! Peyman,
I am still curious about your ’updated’ Werewolves strategy and Fu, your en-
ergy is as amazing as the speed at which you can fall asleep after lunch. Thanks
to the Arabian nights that Abeer organized, I will always remember Arabian
coffee as something very special. And Valerie, how you combine such a warm
personality with your passion for work is something I can only admire. Car-
olina, I don’t think I ever saw you not smiling! Thank you all for the cold skiing
trips, the warm friendships and the sleep-depriving brainstorms! Working at
agriculture has always felt like being in one big international family where
’mama’ Kathleen took great care of her youngsters.

Mams en paps, hoe kan ik in enkele zinnetjes samenvatten wat jullie al een
leven lang doen voor me? Jullie hebben me alle kansen gegeven om me te ont-
plooien. Jullie stonden altijd klaar, soms aan de zijlijn en soms vooraan, om bij
te staan met raad en daad waar nodig en tegelijk ook zonder dwang, zodat we
elk zelf op ontdekkingsreis konden gaan in het leven. Zonder de intellectuele
bagage van thuis en ’Zijt gij nu weeral beneden?’ tijdens de examentijd, zou dit
doctoraat er nooit geweest zijn. Bedankt voor alles! Stijn en Bram, we hebben
elkaar in de drukte van de laatste tijd wat minder gezien en gehoord, maar we
gaan de schade terug inhalen nu!

Dank ook aan de juryleden voor de inzichtelijke vragen. Ik ben ervan overtuigd
dat de tekst dankzij deze opmerkingen consistenter en duidelijker geworden
is. De tekst zou niet zo foutloos geweest zijn zonder het grondige naleeswerk
van mams, Frederika en Stijn. Bedankt voor jullie tijd!

E.H. M. Ghijs, je bent er niet meer maar ik ben er van overtuigd dat je dit
ergens wel zal lezen. Bedankt voor de fijne jaren in Cantate Domino. De cul-
turele rijkdom die ik daar meegekregen heb via de muziek en de concertreizen
hebben een blijvende impact gehad op niet alleen mijn leven maar ook dat van
honderden anderen. Je was een man met een missie en je bent ongetwijfeld de
meest begeesterde persoon die ik ooit heb gekend.
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Mémé, je staat aan de bron van een hele generatie kinderen, kleinkinderen en
ondertussen ook achterkleinkinderen. Van jongsaf heb je ieder met de paplepel
’Hard werken en goed studeren!’ meegegeven. Ondanks je gezegende leeftijd, zit
je zelf nog steeds geen vijf minuten stil, want er is altijd nog wel iets te doen
om te helpen. Ik ben terecht trots om jou mijn mémé te mogen noemen!

Lieve schat, de laatste maanden zijn de termen PhD-widow en PhD-orphans een
bekend begrip geworden bij ons, bedankt om me in alle rust aan mijn doctoraat
te laten werken! Ik heb het nooit moeten vragen, je wás er gewoon steeds waar
nodig. Je hebt een rustige vakantie veel meer verdiend dan mij en daar gaan
we de komende weken dan ook samen ten volle van genieten!

En mijn twee kleine lieve schatten Joren en Anaïs, bedankt om steeds de dag
te beginnen en te eindigen met een zonnetje! Jullie waren er nog niet toen ik
begonnen ben met dit doctoraat en kijk nu eens! Joren, wat ben je al een flink
kereltje geworden. Wij gaan binnenkort samen eens kamperen, in de bomen
klauteren en marshmallows smelten op het kampvuur. Anaïs, mijn kleine
meid, ik weet niet hoe het komt, maar als jij lacht, is heel de wereld blij.

en nu . . .

op naar de volgende uitdaging!

Tim.
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It is better to know some of the questions
than all of the answers.

- James Thurber.
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Abstract

Inferring comprehensive regulatory networks from high-throughput data is
one of the foremost challenges of modern computational biology. As high-
throughput expression profiling experiments have gained common ground
in many laboratories, different techniques have been proposed to infer tran-
scriptional regulatory networks from them and much effort goes to the de-
velopment of algorithms that infer the structure of transcriptional regulatory
networks from this data. In this thesis, the large scale application of simulated
gene expression data on network inference algorithms is evaluated and also
a novel biclustering model is proposed within the framework of Probabilistic
Relational Models.

In the first part of this thesis, a model, called SynTReN, is proposed for generat-
ing simulated regulatory networks and associated simulated microarray. This
model addresses some of the limitations of previous implementations. Instead
of using random graph models, topologies are generated based on previously
described transcriptional networks, thereby allowing a better approximation
of the statistical properties of real biological networks. The computational
performance of our simulation procedure is linear in function of the number
of genes, making simulation of large networks possible. The results show the
added value of synthetic data in revealing operational characteristics of infer-
ence algorithms which are unlikely to be discovered by means of biological
micro-array data alone.

The second part of the thesis focuses on the description of an abstracted model
of transcriptional regulation, namely by means of a biclustering model. We
propose a probabilistic approach to identify overlapping regulatory modules,
called ProBic, based on the framework of Probabilistic Relational Models. The
model naturally deals with missing values and noise and thereby leads to a
robust identification of biclusters. Both global and query-driven biclustering
are combined within a single model-based approach that allows simultane-
ous identification of multiple and potentially overlapping biclusters. The
powerful combination of Probabilistic Relational Models with an Expectation-
Maximization approach allows ProBic to be easily extended to incorporate
additional data sources, ultimately leading to the identification of regulatory
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modules with associated condition annotation, regulatory motifs and tran-
scription factors.
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Korte Inhoud

De identificatie van uitgebreide regulatorische netwerken op basis van hoge-
doorvoer data is een van de belangrijkste uitdagingen van de moderne com-
putationele biologie. In vele laboratoria worden grote hoeveelheden micro-
rooster gegevens gegenereerd en verschillende technieken zijn op basis hi-
ervan ontwikkeld voor het identificeren van regulatorische netwerken. In
dit proefschrift wordt de grootschalige toepassing van gesimuleerde genex-
pressie gegevens voor het karakteriseren van netwerkinferentie-algoritmen
beoordeeld en wordt tevens een nieuw biclustering model voorgesteld binnen
het kader van Probabilistische Relationele Modellen.

In het eerste deel van dit proefschrift wordt een simulator beschreven, genaamd
SynTReN, voor het genereren van gesimuleerde regulatorische netwerken en
de bijhorende gesimuleerde microrooster data. Deze simulator vermijdt enkele
van de beperkingen van eerdere implementaties. In plaats van random graaf
modellen, worden de netwerktopologieën gegenereerd op basis van eerder
beschreven transcriptionele netwerken, waardoor een betere benadering van
de statistische eigenschappen van echte biologische netwerken wordt verkre-
gen. Ten tweede, schaalt de computationele kost van onze simulator lineair
in functie van het aantal genen, waardoor simulatie van grote netwerken met
duizenden genen mogelijk wordt. De resultaten wijzen op de toegevoegde
waarde van het gebruik van gesimuleerde gegevens voor het identificeren
van operationele kenmerken van inferentie-algoritmen die hoogstwaarschijn-
lijk niet ontdekt zouden zijn door middel van biologische microrooster data
alleen.

Het tweede deel van dit proefschrift richt zich op de beschrijving van een
abstract model voor transcriptionele regulatorische netwerken, namelijk door
middel van een biclustering model. Dit model, genaamd ProBic, is ontwikkeld
binnen het kader van Probabilistische Relationele Modellen en richt zich op het
simultaan identificeren van meerdere overlappende regulatorische modules.
Het model behandelt ontbrekende waarden en ruis op een natuurlijke manier
en leidt daarmee tot een robuuste identificatie van biclusters. Zowel globale
als query-gedreven biclustering worden gecombineerd binnen één enkel mod-
elgebaseerde aanpak die ook de gelijktijdige identificatie van meervoudige en
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mogelijke overlappende biclusters mogelijk maakt. De krachtige combinatie
van Probabilistische Relationele Modellen met een Expectation-Maximazation
algoritme laten ook toe dat ProBic gemakkelijk kan worden uitgebreid met
betrekking tot aanvullende gegevensbronnen, uiteindelijk leidend tot de iden-
tificatie van regulatorische modules met bijbehorende conditie-annotatie, re-
gulatorische motieven en transcriptiefactoren.
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Notation
Acronyms

AB network Albert-Barabási network
BN Bayesian network
CC biclustering Cheng and Church biclustering model
cDNA complementary DNA
CGH comparative genomic hybridization
CPD conditional probability distribution
DAG directed acyclic graph
DAPER model directed acyclic probabilistic entity-relationship model
DNA deoxyribonucleic acid
DSF network directed scale-free network
EM Expectation-Maximization
ER network Erdös-Rényi network
GBN ground Bayesian network
GEM generalized Expectation-Maximization
GEO Gene Expression Omnibus
GO gene ontology
HMM hidden Markov model
ILP inductive logic programming
IQRN inter-quartile range normalization
ISA iterative signature algorithm
JPD joint probability distribution
MAP solution maximum a posteriori solution
MCMC Monte-Carlo Markov Chain
ML machine learning
MM Michaelis-Menten
ORF open reading frame
PCR polymerase chain reaction
PER model probabilistic entity-relationship model
PM perfect match (for probes of a single-channel microarray)
pre-mRNA precursor mRNA
PRM probabilistic relational model
PSSM position specific scoring matrix
QDB query-driven biclustering
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RNA ribonucleic acid
SF network scale-free network
SMD Stanford Microarray Database
SRL statistical relational learning
SRM statistical relational model
SQRN smallest quartile range normalization
SVD singular value decomposition
SW network small-world network
TF transcription factor
TRN transcriptional regulatory network

Mathematics

#X the number of elements in a set: if X = {X1, . . . ,XN}, then #X = N
unq(X) The set of unique values Xi in a vector X = X1, . . . ,XN
iset(B) assuming that B is a binary vector with elements Bi ∈ {0, 1},

iset(B) is the set of vector indices of B
for which the vector element is equal to 1

Bayesian networks

Xi a variable
X the set of variables {X1, . . . ,Xn}

Pa(Xi) the set of parents for a variable Xi
MB(Xi) the Markov blanket of a variable Xi in a Bayesian network.

Probabilistic relational models

C a class
c a specific object of class C
A an attribute
ρ a reference slot
ρ̄ = (ρ1, ..., ρn) a slot chain, which is a chain of reference slots
Σ a relational schema
σr a relational skeleton for a relational schema Σ
R[C] the set of reference slots for a class C in a relational schema
Val(C.A) the domain of values for an attribute A of a class C
A[C] the set of attributes of a class C
Dom[C.ρ] the domain type of reference slot ρ, namely the class C
Range[C.ρ] the range type of the reference slot ρ, which is the class that ρ is referring to
Pa(C.A) the set of parents in a PRM model for an attribute A of a class C
S the dependency structure of a PRM model
θS the parameters associated with a dependency structure S
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ProBic model

a a single array object
A the set of all array objects
x.B a vector with binary elements x.Bi, each element x.Bi indicates the presence (1)

or absence (0) of the bicluster i for the entity x (x can be a gene g or an array a)
e a single expression object
E the set of all expression objects
g a single gene object
G the set of all gene objects
Bi

e the dot product of the binary vectors e.gene.B and e.array.B where e represents
an expression object. By consequence, iset(Bi

e) is the set of bicluster-indices
in the intersection of e.gene.B and e.array.B, or formally:
iset(Bi

e) = iset(e.gene.B)
⋂

iset(e.array.B).
#iset(Bi

e) is the number of elements in this set.
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Robuuste algoritmes voor de
inferentie van regulatorische
netwerken op basis van
expressiemetingen en
biologische prior informatie.

Hoofdstuk 1: Inleiding

Met de introductie van microroostertechnologie [95, 140] startte een nieuw
tijdperk in de moleculaire biologie: hoge-doorvoer experimenten kunnen nu
de expressiewaarden van duizenden genen meten in één enkel experiment.
De ontwikkeling van microroosters heeft op zijn beurt geleid tot een groot
aantal andere hoge doorvoer databronnen, algemeen bekend als omics data
zoals transcriptomics, metabolomics, lipidomics en glycomics.

Met de komst van deze hoge-doorvoer technieken en meer computerkracht,
is de studie mogelijk geworden van de complexe interacties tussen verschil-
lende biologische entiteiten, zoals genen, eiwitten en metabolieten. Dit domein
heet systeembiologie. Het gedrag van zo een biologisch systeem kan men niet
uitsluitend beschrijven als de som van regels die de individuele componen-
ten beschrijven. Het zijn vooral de interacties tussen deze onderdelen die
van cruciaal belang zijn om het gedrag van het volledige systeem te kunnen
begrijpen. Genen, eiwitten, metabolieten en andere bestanddelen zijn de ele-
mentaire componenten in dergelijk ingewikkeld netwerk van interacties. Het
cellulaire gedrag wordt bepaald door dit onderliggend regulatorische netwerk.
Vanwege deze holistische benadering is systeembiologie een sterk interdisci-
plinair gebied dat ligt op de intersectie van verschillende andere domeinen
zoals biologie, ingenieurswetenschappen en machineleren.

xxiii
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Hoofdstuk 2: Data integratie

In dit hoofdstuk wordt eerst een overzicht gegeven van studies die de recon-
structie van regulatorische netwerken doen uitsluitend op basis van mRNA
expressiegegevens. Traditionele methoden voor netwerkinferentie van gen-
expressie gegevens beschouwen ieder gen als een individuele node in het
netwerk en hun doel is om alle individuele interacties tussen deze genen
te modelleren. Door ieder gen als een afzonderlijke node te beschouwen,
creëert men echter een zeer grote zoekruimte van potentiële netwerken. De
meeste van deze methoden hebben daarom uitgebreide vereisten wat betreft
de grootte van de benodigde dataset en vereisen vaak postprocessing van
de resultaten om bijvoorbeeld een ensemble te genereren van alle mogelijke
oplossingen. Echter, voor een bioloog ligt het primaire belang niet zozeer
in de reconstructie van de interacties tussen alle genen, maar vooral in de
reconstructie van de interacties tussen de belangrijkste componenten van de
signaaltransductie, namelijk tussen de regulatoren en doelwit-genen. Door
deze conceptuele vereenvoudiging wordt de complexiteit van het inferen-
tieprobleem drastisch gereduceerd [159].

Historisch gezien is een eerste categorie van technieken die abstractie van het
onderliggende regulatorische netwerk maken, gericht op de identificatie van
genen die aanzienlijke over- of onder-expressie vertonen onder de geteste ex-
perimentele condities [10]. Een tweede categorie van technieken is gericht
op het clusteren van genen die een vergelijkbaar expressieprofiel vertonen
onder alle geteste condities. In 2001 hebben Cheng en Church voor het eerst
de term biclustering gebruikt voor het gelijktijdig clusteren van zowel genen
als condities in genexpressie data [29]. Sindsdien zijn verschillende bicluster-
ing algoritmes ontwikkeld (zie o.a. [110]) met elk hun eigen focus voor de
identificatie van specifieke types biclusters.

Daarnaast is ook een groeiende interesse gekomen in de modulaire beschri-
jving van regulatorische netwerken [79]. Genen die coexpressed zijn voor
een subset van de condities en die gelijkaardige interacties vertonen binnen
het regulatorische netwerk, kunnen worden gegroepeerd in een regulatorische
module [79]. Naast een gelijkaardig expressieprofiel hebben deze genen ook
een aantal andere eigenschappen gemeen, zoals een gemeenschappelijke set
van regulatoren of een gemeenschappelijk gen-ontologie annotatie.

Door middel van een een modulaire representatie, kunnen alle genen binnen
eenzelfde module beschreven worden met dezelfde set van parameters in
plaats van met een afzonderlijke set van parameters per gen. Deze reductie
van het aantal parameters is niet alleen interessant voor het terugdringen van
de complexiteit van het model, maar het biedt ook nieuwe inzichten in de
structuur en organisatie van de regulatorische interacties tussen de genen.

Met de beschikbaarheid van heterogene omics gegevens, wordt de complexi-
teit van het probleem van netwerk- of module-inferentie mogelijk sterk gere-
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duceerd. Verschillende omics data ontsluieren verschillende en vaak comple-
mentaire aspecten van regulatorische netwerken en de integratie van al deze
data levert een vollediger inzicht op in het onderliggende netwerk. Hier zullen
we ons richten op hoe goed de verschillende computationele methoden voor
inferentie van transcriptionele netwerken kunnen omgaan met de specifieke
biologische kenmerken van hoge-doorvoer gegevens. Opgemerkt moet wor-
den dat de methoden beschreven in dit hoofdstuk niet organisme-specifiek
zijn hoewel de meeste van hen getest op Saccharomyces cerevisiae, het meest
uitgebreid bestudeerd modelorganisme [28].

Hoofdstuk 3: Een synthetisch model van transcrip-
tionele regulatie: SynTReN

De inferentie van complexe regulatorische netwerken op basis van hoge-
doorvoer data is één van de belangrijkste uitdagingen binnen computationele
biologie. Verschillende technieken zijn reeds voorgesteld voor het identifi-
ceren van transcriptioneel regulatorische netwerken op basis van deze data.
In dit hoofdstuk wordt een model, genaamd SynTReN, voorgesteld voor het
genereren van gesimuleerde regulatorische netwerken en bijbehorende gesi-
muleerde microrooster gegevens. Dit model vermijdt enkele van de beper-
kingen van eerdere simulatoren o.a. met betrekking tot de maximale grootte
van de gesimuleerde netwerken en het opstellen van gesimuleerde exper-
imenten op grote schaal. In plaats random graaf-modellen te gebruiken,
worden netwerktopologieën in SynTReN gegenereerd op basis van eerder
beschreven transcriptionele netwerken waardoor een betere benadering van de
statistische eigenschappen van echte biologische netwerken wordt bekomen.
Daarnaast schaalt de rekenkundige kost van de simulatie lineair in functie van
het aantal genen waardoor simulatie van grote netwerken mogelijk wordt.

De operationele kenmerken van drie bekende netwerkinferentie-algoritmen
worden bepaald, namelijk van ARACNE, Genomica en SAMBA, die elk een
verschillende gedrag vertonen in functie van de verschillende parameters van
de gesimuleerde gegevens. De geteste parameters waren netwerkgrootte,
netwerktopologie, het type en de hoeveelheid ruis, de hoeveelheid beschikbare
data en de interactietypes tussen soorten genen.

Experimenten hebben aangetoond dat de onderliggende netwerktopologie
een sterke invloed heeft op de prestaties van inferentie-algoritmen, een con-
clusie waarbij rekening moet worden gehouden bij de evaluatie van inferentie-
algoritmes aan de hand van gesimuleerde datasets. Voor twee van de geteste
algoritmen, Genomica en ARACNE, zijn de inferentieresultaten beter voor
(sub)netwerken op basis van biologische netwerken. Dit geeft aan dat er nog
ontbrekende karakteristieken zijn van biologische netwerken die niet door
random graaf-modellen worden gemodelleerd.
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De bekomen resultaten wijzen op de toegevoegde waarde die gesimuleerde
data kan bieden in het bepalen van de operationele kenmerken van inferentie-
algoritmen aangezien deze kenmerken hoogstwaarschijnlijk niet geïdenti-
ficeerd kunnen worden door middel van biologische microrooster data alleen.
Deze resultaten ondersteunen in het algemeen het gebruik van computermo-
dellen binnen het onderzoek in systeembiologie.

Hoofdstuk 4: Probabilistische Relationele Modellen

Met de verhoogde opslag- en verwerkingscapaciteit van de huidige computers
en de opkomst van grote online databases met relationele informatie, heeft zich
een explosie van beschikbare gegevens voorgedaan. Veel van deze datasets
worden opgeslagen in complexe relationele databases, maar de meest ge-
kende algoritmes voor machineleren zoals bvb. Bayesiaanse netwerken [126],
k-means clusteren [106], beslissingsbomen [132] of neurale netwerken [22]
kunnen niet rechtstreeks worden toegepast op deze relationele datasets om-
dat ze geleerd worden op basis van gegevens uit een enkelvoudige tabel, ook
genaamd attribuut-waarde gegevens.

Meer expressieve technieken voor machineleren die zowel variabelen als de re-
laties tussen deze variabelen kunnen leren, heten relationele data mining metho-
den. Een hernieuwde interesse in relationele data mining heeft in de afgelopen
jaren geleid tot een nieuw onderzoeksdomein rond statistische relationele model-
len. Dit domein ligt op de doorsnede van machineleren, kennisrepresentatie
en probabilistische modellen. In dit hoofdstuk richten we ons vooral op een
bepaalde klasse van zogenaamde statistisch relationele modellen, namelijk op
probabilistische relationele modellen [55, 61, 94]. PRM’s zijn toegepast op een
verscheidenheid van relationele machine learning problemen [34, 62, 122] en
verschillende toepassingen werden ontwikkeld door E. Segal op het gebied
van bioinformatica [144, 145, 146, 147]. PRM’s bieden een elegante manier
voor het beschrijven van een biclustering model dat is makkelijk uitbreidbaar
naar de integratie van aanvullende gegevensbronnen zoals nader besproken
wordt in Hoofdstuk 5.

In dit hoofdstuk wordt verder een korte introductie gegeven met betrekking
tot Bayesiaanse netwerken en over hoe deze netwerken kan leren in geval
van complete en incomplete data. Twee vaak gebruikte voorwaardelijke
kansverdelingen (VKV), namelijk tabel VKV’s en Gaussiaanse VKV’s, wer-
den gedefinieerd waarmee zowel discrete als continue data kunnen worden
gemodelleerd. In het belangrijkste deel van dit hoofdstuk wordt de defini-
tie van PRM’s en hun relatie tot Bayesiaanse netwerken uitgelegd. Een fictief
voorbeeld over Influenza infecties en een set patiënten die verschillende behan-
delingen krijgen, geven aan hoe PRM’s gebruikt kunnen worden om concepten
binnen dit relationele domein in een probabilistisch model te gieten. Het
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leren van PRM’s in geval van complete en incomplete data wordt gerelateerd
met de eerder geïntroduceerde concepten voor Bayesiaanse netwerken. Het
Expectation-Maximization algoritme werd specifiek belicht als een interessante
leertechniek voor PRM’s in geval van incomplete data.

Hoofdstuk 5: ProBic model

Het tweede grote luik van dit proefschrift richt zich op de beschrijving van een
geabstraheerd model van transcriptionele netwerken, namelijk door middel
van een biclustering model. Een probabilistisch model, genaamd ProBic, werd
voorgesteld voor het simultaan identificeren van overlappende regulatorische
modules binnen het framework van Probabilistische Relationele Modellen.

De identificatie van transcriptioneel regulatorische netwerken op basis van
genexpressie gegevens is een zeer actief gebied van onderzoek. Het is echter
ook een ondergedetermineerd probleem omdat het aantal mogelijke interac-
ties en hun geassocieerde parameters veel groter zijn dan de dimensionaliteit
van de beschikbare gegevens. Bovendien bevatten de huidige microrooster
gegevens inherent veel ruis. Veel technieken zijn daarom ontwikkeld om
robuuste representaties van het onderliggende netwerk te genereren door een
reductie van het aantal parameters, vaak gerealiseerd door groepering van
genen en/of condities in regulatorische modules.

Door het gebruik van een probabilistisch kader voor ProBic, worden ontbre-
kende waarden en ruis op een natuurlijke manier gemodelleerd, wat leidt tot
een robuuste identificatie van biclusters onder verschillende instellingen van
ruis en de ontbrekende waarden. Zowel globale als query-gedreven biclus-
tering worden gecombineerd binnen één enkel model-gebaseerde biclustering
methode. Een reeks van experimenten op een compendium van Escherichia
coli microrooster gegevens [102] hebben aangetoond dat de query-gedreven
biclustering in staat is gebruik te maken van queries met enkelvoudige genen,
een eigenschap die niet wordt gedeeld door alle query-gedreven biclustering
algoritmes. Een tweede reeks experimenten op het E. coli compendium hebben
bovendien aangetoond dat ProBic robuust is met betrekking tot outlier genen
binnen een set van query-genen.

Tot slot laat de krachtige combinatie van Probabilistische Relationele Model-
len met een Expectation-Maximization strategie toe dat ProBic gemakkelijk
kan worden uitgebreid met additionele gegevensbronnen, uiteindelijk leidend
tot de identificatie van regulatorische modules met bijbehorende conditie-
annotatie, transcriptiefactoren en de geassocieerde regulatorische motieven.
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Hoofdstuk 6: Conclusie en toekomstperspectieven

Dit hoofdstuk vat de belangrijkste onderzoeksresultaten samen en stelt ook
een aantal uitbreidingen voor wat betreft toekomstig onderzoek binnen dit
domein.

Deel I:
• Een netwerk-generator en simulator werd ontworpen die in staat is

grote regulatorische netwerken met duizenden genen te simuleren. De
huidige state-of-the-art dynamische simulatoren simuleren netwerken
slechts tot maximaal een paar honderd genen. Door uitsluitend steady-
state oplossingen te beschouwen, kan de simulatie van een netwerk met
duizenden genen computationeel berekenbaar gemaakt worden.

• Terwijl inferentie-algoritmen vaak worden getest op gesimuleerde data,
wordt de topologie van het onderliggende netwerk vaak niet als belan-
grijke factor in rekening gebracht. Onze resultaten tonen echter aan dat
de keuze van netwerk topologie voor de gesimuleerde data een grote
impact heeft op de kwaliteit van de inferentie voor de geteste inferentie-
algoritmen.

• Verschillende inferentie-algoritmen werden toegepast op gesimuleerde
datasets met elk verschillende kenmerken. De resultaten tonen een kwal-
itatief zeer verschillende respons van de algoritmen met betrekking tot de
parameters van de gesimuleerde data zoals hoeveelheid ruis, de hoeveel-
heid gegevens en de types interacties tussen de genen. Deze resultaten
tonen aan dat gesimuleerde data inzicht in de operationele kenmerken
van een algoritme oplevert die complementair zijn aan de inzichten op
basis van biologische gegevens alleen.

Deel II:
• Een efficiënt biclusteringsalgoritme, genaamd ProBic, is ontwikkeld in

het kader van probabilistische relationele modellen, dat geen vooraf-
gaande discretizatie vereist van de expressiemetingen.

• Het biclusteringsmodel behandelt door zijn probabilistische aard ontbre-
kende waarden en ruis op een natuurlijke manier, leidend tot een robu-
uste identificatie van biclusters onder verschillende instellingen van ruis
en de ontbrekende waarden.

• Zowel globaal als query-gedreven biclusteren kunnen gecombineerd
worden binnen één enkele modelgebaseerde aanpak. De query-gedreven
aanpak is ook robuust gebleken met betrekking tot zogenaamde ’outliers’
in de set van query genen.
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• ProBic identificeert tegelijkertijd meerdere overlappende biclusters en
een uitbreiding van ProBic laat ook toe om zowel gecorreleerde als anti-
gecorreleerde genen te groeperen binnen één enkele bicluster.

• De krachtige combinatie van PRM’s met een Expectation-Maximization
algoritme, laten toe om ProBic op een eenvoudige manier uit te brei-
den om additionele databronnen te incorporeren, ultiem leidend tot de
identificatie van regulatorische modules met een geassocieerde conditie
annotatie, regulatorische motieven en transcriptiefactoren.

Naar de toekomst toe zien we twee belangrijke uitdagingen. Enerzijds is er met
de beschikbaarheid van steeds meer heterogene omics data en de ontwikke-
ling van de integratieve algoritmen die dergelijke datasets combineren, een
behoefte aan meer volledige gesimuleerde modellen die naast transcriptionele
regulatie ook alle andere interacties tussen DNA, RNA, eiwitten en metaboli-
eten modelleren. Anderzijds is ProBic ontworpen om te worden uitgebreid
naar de identificatie van cis-regulatory modules. De voorgestelde uitbrei-
dingen uit Hoofdstuk 5 zijn dan ook een interessant startpunt voor verder
onderzoek.





Chapter 1

Introduction

1.1 History

Figure 1.1: Gregor Mendel.

In 1866, only seven years after the publication of On The Origin of Species
by C. Darwin [35], the foundations of genetics and the rules that govern its
transmission were laid by G. Mendel [15] (Figure 1.1) in an almost completely
ignored publication about breeding experiments on Pisum sativum (garden
pea). From the results of these experiments, Mendel derived two basic rules
that governed the inheritance of different traits of the garden pea. It was only
well after his death that the importance of his work was recognized. Three

1
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years after the publication of Mendel’s experiments, F. Miescher discovered
deoxyribonucleic acid (DNA) [117] . Its biological function however, remained
unknown for decades.

Despite these major developments in the 19th century, no significant break-
throughs were made in the domain of genetics for almost a century. It was
only in 1944 that Avery, MacLeod and McCarty identified DNA as the sub-
stance responsible for genetic transformations in a milestone experiment [7]. In
1953, the work of Franklin [8] led to the discovery of the double helix structure
of DNA by J. Watson and F. Crick [165]. This groundbreaking discovery sug-
gested how DNA replication occurred, how hereditary traits are inherited and
how they would undergo mutations. In the years that followed, further exper-
iments unraveled the exact mechanisms by which these processes occurred.
These two discoveries sparked the start of molecular biology as a new field in
science. It also led to the formulation of what is known as the central dogma1

(1958) of molecular biology: the information flow in an organism is carried
out from DNA to ribonucleic acid (RNA) to protein (see also Section 1.2).

With the introduction of microarray technology [95, 140] in the ’90s, a new
era started in molecular biology. For the first time in history, high throughput
experiments measured the expression levels of thousands of genes simultane-
ously in a single experiment. Microarrays quickly gained interest of a large
community of scientists ranging from biologists to physicians. The explosion
of data in molecular biology led to the introduction of a new domain that
uses advanced computational methods to deal with these datasets, namely
computational biology.

Microarrays were the first members of a large number of high throughput
techniques that generated data in a wide variety of domains. These domains
and the type of data that are linked to them, are now commonly known
as omics and include transcriptomics, metabolomics, lipidomics, glycomics,
spliceomics, pharmacogenomics and many others. Vast amounts of heteroge-
nous data have since been gathered in public databases all over the world
(for example: Entrez, GenBank, UniProt, Ensembl, TRANSFAC, KEGG, Ar-
rayExpress, GEO, . . . ) and the first efforts for combining these data emerged
[27, 68, 79, 80]. The introduction of these high throughput omics data again
led to a new research field, called systems biology, that studies the interactions
between different entities in biological systems and how these interactions lead
to the functioning of the complete system rather than studying the individual
components in isolation from their environment (see Section 1.4).

1This central dogma proved to be an oversimplification of biology. It was restated accordingly by
Crick in 1970 and included information transfer from DNA to DNA, RNA to RNA, RNA to DNA
and DNA to protein [33]. The discovery of other regulation mechanisms like RNA interference, of
epigenetic phenomena such as DNA methylation and many other mechanisms have added even
more complexity and exceptions to these rules.
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1.2 Molecular biology

In this section, we introduce the basic concepts of molecular biology. One of
the key molecules for all living organisms is DNA, as it is the carrier of its
genetic information. The DNA molecule is composed out of two complemen-
tary strands and forms a double helix structure (see Figure 1.2) and each of
the strands is a chain of nucleotides. Four types of nucleotides exist in all
living organisms on this planet and each nucleotide has the same chemical
structure: it consists of a sugar, a phosphate group, deoxyribose and one of
the following four bases: adenine (A), cytosine (C), guanine (G) and thymine (T).
Because of their molecular structure, these bases only bind in pairs by means
of a hydrogen bond: cytosine only binds to guanine and adenine only binds
to thymine, a process called complementary base pairing [67]. This base pairing
holds the two complementary DNA strands together. Each of the complemen-
tary DNA strands has a specific direction due to the molecular asymmetry in
the nucleotides. The two ends of a DNA strand are labeled with 5’ and 3’
labels. Note that, by convention, the DNA code is represented from 5’ to 3’.

Deoxyribonucleic Acid (DNA)
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Figure 1.2: Illustration of DNA structure and nucleotide base pairing. (a) DNA double
helix structure. (b) Detail of the DNA double helix structure and complementary base pairing.
The four nucleotides only bind in pairs: guanine (G) pairs with cytosine (C) and thymine (T)
pairs with adenine (A). [figures from http://www.genome.gov/glossary.cfm]

1.2.1 Central dogma in molecular biology

In biological systems, proteins are the workhorses that perform a wide range
of functions such as catalysation of biochemical reactions, gene regulation,
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cell signaling and immune responses, as well as providing structural and
transportation functions. The central dogma (see Figure 1.3) describes how
proteins are formed, starting from DNA.

DNA DNADNA

DNA

DNA

DNA

DNA

DNADNA

mRNA tRNA rRNA

ribosome

protein

transcription

translation

Figure 1.3: Illustration of the central dogma in molecular biology. The central dogma
states that information in biological systems is passed from DNA to RNA (transcription) and
from RNA to proteins (translation).

The first step in protein synthesis is the transcription of a specific part of the
DNA that lies between a start and a stop codon to a messenger RNA (mRNA).
A codon is a set of three nucleotides that either encode for a specific amino
acid or indicate the beginning (start codon) and ending (stop codon) of an
open reading frame (ORF). The two DNA strands are separated at the ORF
starting point and one of the strands is used as a template from which the
precursor mRNA (pre-mRNA) is transcribed. This pre-mRNA is optionally2

spliced, during which introns are removed from the pre-mRNA and exons are
joined to form the mature mRNA as illustrated in Figure 1.4.

In the second step, called translation, the resulting mRNA is translated by
means of the ribosomes into a peptide chain consisting of a series of amino
acids. The mRNA is scanned per codon. There is a large redundancy in the
genetic code, since each possible combination of three nucleotides leads to
64 combinations, but only 20 possible amino acids are encoded with these
combinations (actually only 62 combinations are available as the start and
stop codon require two encodings). One of the beneficial consequences of
the redundancy in the genetic code is the increased fault-tolerance for point

2Introns do not exist in prokaryotic genomes, so splicing only occurs in eukaryotes.
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exon exon exon

intron intron5’ UTR 3’ UTR
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pre-mRNA
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Figure 1.4: Splicing of precursor mRNA into mature mRNA. The pre-mRNA consists of
a number of introns and exons between the 5’ and 3’ UTRs. The introns are spliced out of the
pre-mRNA and the remaining exons are joined and form the resulting mRNA together with the
5’ and 3’ UTRs.

mutations. A graphical illustration of the transcription and translation steps
is given in Figure 1.5.

Gene Expression

National Human Genome Research InstituteNational 
Institutes 
of Health Division of Intramural Research
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Figure 1.5: Transcription and translation in eukaryote cells. In the nucleus, DNA
is transcribed into mRNA (optionally by means of an intermediate step where pre-mRNA
is spliced to form mRNA). This mRNA is transported outside the nucleus into the cyto-
plasm where it is processed by the ribosomes (translation step). The ribosomes translate each
set of three nucleotides into an amino acid by means of tRNA (transfer RNA) and attach
it to a growing peptide chain which will subsequently fold into a protein. [figure from
http://www.genome.gov/glossary.cfm]

During and after the translation step, the peptide chain folds into the resulting
protein during the protein folding step. The protein can be changed further, e.g.
through post-translational modifications like phosphorylation, to obtain its final
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physicochemical structure.

Some proteins, called transcription factors (TFs), regulate the rate at which
genes produce mRNA by binding to specific target sites in the genome. These
target sites are short sequences of nucleotides and are mainly located in the
promotor region or the cis-regulatory region of the gene, which is illustrated
graphically in Figure 1.6. Target sites of genes that are regulated by a common
TF, often have common characteristics and can be represented by a regulatory
motif . This is a probabilistic description of the common nucleotide structure of
different target sites. The complete set of transcriptional interactions between
all genes and their transcription factors can be visualized as a network and is
called a transcriptional regulatory network [9, 101, 109, 149].

Figure 1.6: Illustration of transcriptional gene regulation mechanisms.

Transcriptional regulation is considered the predominant factor for the con-
trol of gene expression [72] and is therefore an important component of the
complete cellular signaling and regulation network. Other mechanisms that
directly or indirectly affect gene regulation have also been identified and in-
clude for example RNA interference [100], post-translational modifications,
epigenetic factors such as DNA methylation [21, 104], protein-protein interac-
tions and metabolic interactions.

1.3 High-throughput techniques

With the introduction of microarrays [95, 140], a new era started in molecu-
lar biology: high throughput experiments could now measure the expression
levels of thousands of genes in a single experiment. By performing experi-
ments under different conditions or at different time points, biologists can now
monitor the transcriptional behavior of all these genes simultaneously. The
introduction of microarrays has led to the development of a large number of
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other high throughput data types, commonly known as omics data (e.g. tran-
scriptomics, metabolomics, lipidomics, glycomics, etc.). We will only discuss
DNA microarrays (single channel and dual channel) here, as this forms the
historical basis of all other techniques.

Microarray technology is widely used in many different research areas such
as comparative genomic hybridization (CGH) [129], gene expression analysis
[140], transcription factor binding [136, 170] and DNA methylation [141].

A DNA microarray (or DNA chip) is a collection of microscopic spots on a solid
surface that are organized in a matrix structure. On each spot, single stranded
DNA strains with a specific sequence are attached and selectively bind to their
complementary DNA strains. These DNA strains are called probes and when
the microarray is exposed to a biological sample during an experiment, these
probes will therefore selectively bind particular complementary DNA (cDNA)
strands from the sample. The cDNA material in the sample is labeled with one
or more fluorescent dyes and after the experiment, one or more images of the
microarray are taken under laser light of different wavelengths. An example
of the resulting image is shown in Figure 1.7.

Figure 1.7: Example of a two-channel microarray image.

Two main technologies exist for fabrication of DNA microarrays, namely cDNA
microarrays and oligonucleotide microarrays. In cDNA microarrays, probes are
‘spotted’ onto a glass substrate using an array of fine needles. The probes
are either long (100-1000 bases) complementary DNA strains that bind to
particular DNA sequences of interest or presynthesized long oligonucleotide
probes, which are typically 50-80 bases. In oligonucleotide microarrays, the
probes are short oligonucleotides (10-30 bases), which are typically synthesized
using polymerization techniques. DNA microarrays can also be divided into
two categories based on the number of channels or dyes that are used: single-
channel and two-channel microarrays. Single-channel arrays use one single
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dye for labeling biological samples and each sample is hybridized onto a
different microarray. Two-channel arrays use two different dyes (one per
sample) and these differently labeled samples are then hybridized onto the
same microarray. Both categories are outlined in the sections below.

1.3.1 Two-channel microarrays

Two-channel microarrays use two dyes to color the genetic material. In two-
channel arrays, both cDNA or long oligonucleotides can be used for the probe
design. cDNA microarrays were often used in academia due to their lower
cost. However, the technique has some major disadvantages and is often
replaced now by long oligonucleotide arrays. The typical length of these
long oligonucleotides is 60 nucleotides, leading both to a sufficient degree of
hybridization and a high sensitivity and specificity [75].

We will outline the procedure for gene expression profiling using two-channel
microarrays here using long oligonucleotide microarrays. The procedure,
outlined in Figure 1.8, is very similar to the cDNA microarray procedure since
both techniques are based on two-channel arrays. For oligonucleotide arrays,
a specific set of probes is designed in which each probe targets a specific gene
of interest and for cDNA arrays, these probes are derived from biological
samples.

In the first step, two biological samples are prepared. Often these samples are
a reference sample and a sample of interest (for example normal tissue versus
cancer tissue). However more complex experiment designs can be set up such
as loop designs or saturated designs, depending on the type of experiment and
the desired analysis. After the preparation of the samples, mRNA is extracted,
purified and amplified from both these samples. Optionally, the less stable
mRNA can be reverse transcribed into more stable cDNA.

In the next step the cDNA(RNA) is labeled with a different fluorescent dye for
each of the biological samples. Typically the dyes Cy3 and Cy5 are used, which
light up green and red respectively under specific wavelengths of light. The
two differently labeled samples are then joined in a single solution and the mi-
croarray is covered with this solution. The cDNA(RNA) hybridizes selectively
with the probes on the microarray that have a complementary sequence as the
cDNA(RNA). After washing away the non-hybridized material, laser light of
specific wavelengths is used to illuminate the fluorescent dyes and an image
is taken of the microarray.

This image contains spots of essentially four colors: black, green, red and
yellow. A spot will be black, green, red or yellow in this image if binding
occurred respectively with either none of the samples, only sample 1, only
sample 2 or both samples. For each spot, the spot’s shape and size together with
the intensity distribution for both dyes in the spot are then measured together
with the background intensity of the image. These raw data are subsequently
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Figure 1.8: Gene expression profiling process overview using two-channel microarrays.
(a) mRNA is extracted from two samples. (b) Optionally the mRNA is reverse transcribed into
cDNA, which is more stable than mRNA. (c) The cDNA(RNA) in each of the samples is labeled
with a different fluorescent dye, typically Cy3 and Cy5 dyes are used which light up green and
red respectively under specific wavelengths of (laser) light. (d) Both cDNA(RNA) extracts of the
samples are hybridized with the probes on the microarray. (e) Laser light of specific wavelengths
is shone on the microarray, illuminating the fluorescent dyes. In the resulting image, a spot will
be black, green, red or yellow if binding occurred respectively with none of the samples, only
sample 1, only sample 2 or both samples.

processed in sometimes complex preprocessing and normalization steps in
order to reduce noise and artifacts from each of the steps in the experiment.

Preprocessing involves the elimination of systematic noise sources such as
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array effects, plate effects and pin effects for cDNA microarrays so that the
remaining variation in the data is maximally correlated with the underlying
biological effects. The main steps involve a quality assessment step which is
often performed visually and a background correction step. A normalization
procedure is then applied to calibrate the microarray data by correcting for
dye effects and probe effects. This results in a set of probe intensity values are
for both dyes. For gene expression profiling, probes need to be linked with
genes. The cDNA microarrays are often designed to have an almost one-to-one
mapping between probes and genes.

1.3.2 Single-channel microarrays

The second class of DNA microarrays is the short oligonucleotide array. This
type of microarray is always single-channel (i.e. it uses one dye). The plat-
form of Affymetrix (http://www.affymetrix.com) is the most widely used short
oligonucleotide platform and we will discuss single-channel microarrays by
means of this platform. An illustration of an Affymetrix single-channel mi-
croarray is given in Figure 1.9.

Figure 1.9: Example of an Affymetrix GeneChip. The GeneChip Human Genome U133
contains more than 54,000 probe sets and 1,300,000 distinct spots, covering the expression level
of virtually all human genes.

Short oligonucleotides are synthesized on a substrate (also called chip or slide)
using a similar technique as for the production of integrated circuits, namely
through photolithography. The process is outlined in Figure 1.10. The chip is
initially covered with linker molecules. When such a linker molecule is exposed
to light, it is activated and it will bind a nucleotide. An iterative procedure is
now applied in which part of the chip is covered with a photoresistant mask.
When light is shone on the unprotected sites, the linker molecules are activated.
The chip is then covered with a solution containing a single oligonucleotide
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which will bind to the unprotected sites. The solution is washed away and the
mask is removed, after which the whole procedure is repeated for a different
mask and nucleotide solution. The result of this procedure is a chip with on
each site a probe of a specific length (typically 20-25 bases).

Figure 1.10: Photolithographic procedure for manufacturing of Affymetrix GeneChip.
(a) the chip surface is coated with ‘linker’ molecules. (b) a photoresistant mask is applied to shield
part of the linker molecules and ultraviolet light is shone over the mask. (c) the unshielded linker
molecules are activated. (d) a solution containing a single oligonucleotide covers the surface of
the chip and the nucleotide attaches to the activated areas on the chip. (e)-(g) the procedure (2)-(4)
is repeated with different nucleotide solutions until the probes reach their desired length (usually
20-25 bases). (h) this leads to a completed GeneChip with unique probes on each spot. [image
from Affymetrix http://www.affymetrix.com/technology/manufacturing/index.affx]

Due to their shorter length, these probes are not as specific as for the two-
channel arrays. A gene is now not represented by a single probe, but rather
by a probe set, typically consisting of 10-20 probe pairs. For each probe pair,
one probe matches with a part of the sequence of the gene, called a perfect
match and another probe has the same sequence except for one nucleotide in
the middle of the probe. The latter probe is called the mismatch. The difference
in binding between these two probes is a measure for the degree of binding of
the gene of interest. For a single-channel array, each of the biological samples
are now colored with the same dye and each of the samples is hybridized on
a different array.

Single-channel microarrays require completely different preprocessing and
normalization steps. The two most widely used techniques are Microarray
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Suite 5.0 (MAS 5.0) and Robust Multi-array Average (RMA). For an overview
of these techniques, we refer to the Microarray Suite User Guide [1] and [82]
respectively. The two main differences between single- and two-channel arrays
are the absence of a dye effect in single-channel arrays, avoiding a bias in the
results due to the different dye intensity and saturation effects. Secondly, the
smaller probe length and the specific probe design in single-channel arrays,
requires specific normalization techniques.

1.4 Self-organization and systems biology

Dynamic systems in physics and in other domains can exhibit complex, chaotic
and self-organizing behavior. Such complex behavior can emerge from simple
interacting physical elements. An analogy that is often used to describe these
systems is by means of an ant colony whose complexity emerges from the
interaction between its ’simple’ constituents, the ants. The isolated behavior of
an ant can in principle be described through a set of simple rules like ’if near food,
then lift food’ or ’if smell pheromone then walk to pheromone source’. However, the
interaction between many of these individual ants results in a highly complex
system, namely the ant colony, that emerges from the simple isolated behavior
of the ants. This emergent behavior can often not be predicted from the isolated
behavior of the single ants in the system, a property called strong emergence [96].
Examples of such higher levels of organization are for example the complex
maze of tunnels with air-conditioning pipes that is built by the worker ants
and the organized food foraging and storage system.

Analogous to an ant colony, a biological cell also exhibits emergent behavior.
The individual entities are genes, proteins, metabolites and many other entities
whose interactions are described with relatively simple rules, e.g. ’gene A is
active if transcription factor X is bound’. The behavior of the complete system is
not merely the sum of the rules that govern its constituents. The interactions
between these constituents are in fact crucial to understand the behavior of
the system. The analogy with an ant colony also illustrates that studying the
isolated behavior of each individual component does not always reveal the
higher level organization of the system.

With the advent of high throughput techniques and more computational
power, the study of complex interactions between biological entities, such
as genes, proteins and metabolites, has become possible and is called systems
biology. Rather than using a traditional reductionist approach where individual
entities and small biological pathways are studies in isolation, systems biol-
ogy adopts a holistic approach that studies the biological system as a whole.
Genes, proteins, metabolites and other constituents are the basic entities in this
complicated network of interactions. The cellular behavior is mediated by this
underlying regulatory network. Because of this holistic approach, systems
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biology is a highly interdisciplinary field that lies at the intersection of several
other domains like engineering, biology and data mining.

Since systems biology aims at obtaining a global insight into the biological
system, the integration of different high-throughput data sources is important
in the top-down systems biology approach. Heterogeneous data sources de-
scribe the same biological system from a different point of view and combining
these data can as such help obtaining a holistic view on the system.

Focussing on the engineering aspects of systems biology, researchers are now
approaching biological systems directly from an engineering perspective: ar-
tificial gene regulatory circuits have been built with specific functions like
toggles [57] or oscillators [50], much like electronic circuits are being designed
by engineers. Recently, even more ambitious links between engineering and
biology are explored: in synthetic biology [18] complex biological systems are
being built using standard, interchangeable parts, called devices. These devices
consist of one or more biochemical reactions like transcription or translation.
A growing number of these devices are stored in a central repository at MIT
(http://parts.mit.edu). These basic parts are then combined to perform a com-
plex engineered behavior.

While the analogies between engineering and synthetic biology are more clear,
there are some fundamental differences in how systems biology approaches
the investigation of a complex system. Engineers use a highly structured
approach to construct or investigate for example a radio. A power unit is
connected to an electronic circuit and an antenna is used to receive incoming
signals. Some buttons and a display provide the interface with the outside
world by which the radio is controlled. Each of these high-level components
further consists of a number of subcomponents with a specific function and this
process continues until we reach some components with basic functionality
like a transistor. The engineer has a complete knowledge and insight in the
system’s behavior at every abstraction level.

In contrast to the engineer’s radio, the ’radio’ system is not constructed but
a given in systems biology, namely a biological cell. To understand its inner
mechanics, the biological system needs to be examined by means of a series
of experiments. In analogy to a radio system, such experiments would be
similar to breaking the radio in pieces and cataloguing the pieces or selectively
damaging a single component and checking the resulting effect on the system.
A nice analogy is described in [97] between the engineer’s and the biologist’s
approach for fixing a broken radio.

The number of required experiments to gain complete insight in the underly-
ing system is extremely high. To illustrate the complexity of the problem: a
single human cell contains about 20,000-25,000 genes [81]. About 500 million
interactions could potentially exist between each pairs of genes. If a systems
biologist desires to infer both the presence and the strength of each interaction,
a huge amount of data is required for each of these interactions. Even with our
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current basic understanding of the inner workings of a cell, it is computation-
ally infeasible to derive the complete interaction network from the available
data.

Moreover, only 1.5% of our entire genome is transcribed into proteins and the
function of the other 98.5% DNA is considered unknown at this moment. This
DNA used to be called ’junk DNA’, however a substantial fraction of this non-
genic DNA is in fact transcribed into (non-coding) RNA [31]. There are clear
indications that at least some of this non-coding RNA also has a regulatory
function, thus adding even more to the complexity of the regulatory system.

1.5 From biology to modeling

A living organism is a tremendously complex piece of machinery. Each cell
in an organism exchanges information with its neighboring cells and adapts
its behavior accordingly. Within each cell, there are different entities such as
genes, proteins, metabolites and RNA that interact with one another, form
complexes and catalyze reactions. Figure 1.11 gives a schematic overview of
the interactions within a biological cell and a number on different views on this
set of interactions. Each of the views corresponds to a specific biological entity
for which data can be collected using a number of high-throughput techniques
and it is associated with an omics domain such as genomics, transcriptomics,
proteomics or metabolomics.

The mere collection of these large datasets does not provide us with insight in
the underlying mechanisms that generated the data. To extract useful knowl-
edge from these datasets, models need to be built that provide an abstracted
view on the object that is being investigated. Models focus only on the as-
pects of interest to the scientist and hide all other aspects which are deemed
irrelevant at that moment. For example, biology is in fact as a whole an ab-
straction of the underlying physical model of biology that could in principle be
completely described by means of quantum mechanics [115]. Even a human
being could be perfectly described by the quantum mechanical movement of
all its atoms. Yet, even if such a detailed quantum mechanical model could be
computed, it would not provide answers to higher-level questions like ’How
can we cure a person who suffers from cystic fibrosis?’3. However, an abstracted
biological model that only incorporates the relevant aspects involved in cystic
fibrosis, does provide insight in for example which genes are important in this
disease.

A second reason for modeling is that an abstraction of reality often leads to
less complex models with less variables to be determined. This means fewer
data requirements to uniquely determine the value of each of the variables.

3Cystic fibrosis or mucoviscidosis is a hereditary disease that affects mainly the lungs and digestive
system.
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Figure 1.11: Different views on the regulatory mechanisms in a biological cell. (a)
Image of a eucaryotic cell. (b) Schematic diagram of the interactions between the different
entities (DNA, RNA, proteins, metabolites, ...) in a cell. (c) These regulatory interactions can
be viewed from a number of complementary angles and each of these angles has a number of
different technologies for performing measurements on the entities it describes. For example:
DNA sequencing using polymerase chain reaction (PCR) at the DNA level; gene expression
microarrays at the RNA level; 2D gel electrophoresis and mass spectrometry at the protein level;
and chromatography, nuclear magnetic resonance at the metabolome level.

Moreover, the process of determining these values for a model is more likely
to be computationally tractable for less complex models.

Once such a model is obtained from the available data, there is a need for
model validation by comparing the model with the real object. In domains like
molecular biology the real object, for example the gene regulatory network of
an organism, is at best only partially known. In such circumstances, it becomes
useful to validate a model using simulated data from a known computational
model rather than using measured data on the real but unknown organism.

In the first part of this thesis, a novel model is proposed to simulate large gene
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regulatory networks and to generate simulated gene expression data from
it. We will show in Chapter 3 that such simulated models of transcriptional
regulation reveal properties of inference algorithms that are difficult or even
impossible to infer using biological data only. The second part of the thesis
focuses on the description of an abstracted model of transcriptional regulation,
namely by means of a biclustering model. We propose a probabilistic approach
to identify overlapping regulatory modules using the Probabilistic Relational
Model framework [55, 61, 94].

1.6 Organization of the thesis

An overview of the thesis structure is given in Figure 1.12. In this Chapter,
an introduction was given to the domain of molecular biology. The main mi-
croarray techniques were discussed and how the introduction of these high
throughput techniques has led to the domain of systems biology. In Chapter 2,
a broad overview is given of the current state of the art regulatory network in-
ference methods. Chapter 2 helps in understanding the need for an integrative
modeling approach to combine the heterogeneous omics data in an abstracted
model of a cell.

The next chapters of this thesis are divided into two parts, each highlighting
an aspect of the needs that are formulated in Chapter 2. The first part, Chap-
ter 3, discusses the benefits of using proper synthetic benchmarking data to
assess network inference algorithms by introducing SynTReN, a framework
for generating data from synthetic transcriptional regulatory networks. The
operational characteristics of three well known network inference algorithms
are determined. The results show that synthetic data provides additional in-
formation about the operational characteristics of inference algorithms that is
difficult or impossible to obtain by means of biological data only.

The second part, Chapters 4 and 5, focuses on relational data mining and more
specifically on the ProBic biclustering model for the identification of transcrip-
tional regulatory modules. Chapter 4 provides a brief overview of relational
data mining and introduces Probabilistic Relational Models (PRMs). The the-
ory and notation of PRMs is explained by means of a fictitious illustrative
example on a hospital database containing data of Influenza infections.

Chapter 5 introduces a novel biclustering model, ProBic, that is based on this
PRM framework. The model choices and the algorithmic strategies to make
the model computationally tractable are explained in detail. An evaluation
on both synthetic and biological data illustrates the strengths of the model in
identifying overlapping biclusters in both synthetic and real biological data.

Finally, Chapter 6 summarizes the main research results of our work and
proposes an outlook for future research in this domain.
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1.7 Achievements

Part I:

• We designed a gene network generator and simulator that is able to sim-
ulate large regulatory networks with thousands of genes. Current state-
of-the-art dynamic simulators that simulate networks up to maximally a
few hundred genes. By reducing the data generation to only steady-state
solutions, the simulation of a network comprising thousands of genes
becomes computationally tractable.

• Our results show that the choice of network topology for the simulated
data can profoundly influence the quality of the results of some inference
algorithms. While inference algorithms are often tested on simulated
data, the topology of the underlying network is usually not considered
as key factor. Disregarding this aspect leads to biased and possibly faulty
conclusions based on the results on simulated data.

• Different inference algorithms were applied to simulated datasets with
various characteristics. The results show a qualitatively very different
response of the algorithms with respect to parameters of the simulated
data such as noise, amount of data and interaction types. These results
also prove that simulated data is useful to provide more insights in the
operational characteristics of an algorithm that are complementary to
the insights gained from experiments on real biological data and that are
unlikely to be discovered by means of biological data only.

Part II:

• An efficient biclustering algorithm, called ProBic, has been developed
within the framework of probabilistic relational models, requiring no
prior discretization of the gene expression data.

• The biclustering model naturally deals with missing values and noise
due to its probabilistic nature. This leads to robust identification of
biclusters under various settings of noise and missing values.

• Both global and query-driven biclustering can be combined within a
single model-based approach and the query-driven biclustering has been
proven robust with respect to outlier genes in the set of seed genes.

• ProBic simultaneously identifies multiple overlapping biclusters and an
extension to ProBic allows to group both correlated and anticorrelated
genes within a single bicluster.

• The powerful combination of PRMs with an Expectation-Maximization
approach allows ProBic to be easily extended to incorporate additional
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data sources, ultimately leading to the identification of regulatory mod-
ules with associated condition annotation, regulatory motifs and tran-
scription factors.
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Figure 1.12: Organization of the thesis.





Chapter 2

Integrating omics data: state
of the art and challenges

2.1 Introduction

With the introduction of microarray technology [95, 140] experiments, a num-
ber of new techniques were introduced to analyze gene expression data ob-
tained from these experiments. In this chapter, we first give an overview of
studies that describe the reconstruction of transcriptional networks solely from
mRNA expression data. Traditional methods for network inference from gene
expression data consider every gene as an individual node in the network,
and their goal is to infer all interactions between these nodes (Figure 2.1a).
Because of the large search space when treating all genes as individual nodes,
most of these methods have extensive data requirements obviating their prac-
tical usage. Many of these methods generate an ensemble of possible solutions
and further postprocessing of these results is often required. However, for a
biologist, the primary interest does not lie so much in reconstructing interac-
tions between all genes but in recovering the interactions between the main
mediators of the signal transduction, being the regulators and their target
genes. Conceptual simplifications that reduce the complexity of the inference
problem are therefore possible [159].

Historically, a first category of techniques that made abstraction of the under-
lying regulatory network was focused on the identification of genes that are
significantly over- or under-expressed under the tested experimental condi-
tion(s) [10]. A second category of techniques focused on clustering genes that
exhibited a similar expression profile over all the conditions. Gene clustering
approaches are until today still one of the main methods used by biologists to
gain insight in which genes are correlated to their genes and/or pathways of

21
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interest. In 2001, Cheng and Church introduced biclustering: the simultaneous
clustering of both genes and conditions in gene expression data analysis [29].
Since then a variety of different biclustering algorithms have been developed
(see [110]) with different measures for identifying good biclusters.

Recently, there is also a growing interest in the modular description of regu-
latory networks [70, 79]. Genes that are coexpressed in a subset of conditions
and that perform similar interactions within the regulatory network, can be
grouped into a regulatory module [79]. The genes in such a regulatory module
share a similar expression profile for either a subset or the complete set of
conditions and also have a number of other properties in common such as a
common set of regulators or a common GO annotation.

Using a module representation, all genes within a module can be described
by the same set of parameters instead of using an individual set of parameters
per gene (illustrated in Figure 2.1b). This reduction in number of parameters
is not only useful for reducing the model complexity but it also provides addi-
tional insights in the structure and organization of the regulatory interactions
between the genes. We will discuss network reconstruction methods that are
based on this simplified network representation in Section 2.3.

With the availability of heterogeneous omics data, the problem of network or
module inference becomes even more tractable. Different omics data unveil
distinct and often complementary aspects of regulatory networks and their in-
tegration allows a more complete insight into the regulatory networks. Here,
we will focus on how well distinct computational methods for inference of
transcriptional networks can deal with the specific biological features of rel-
evant high-throughput data. It should be noted that the methods described
throughout this Chapter are not organism specific although most of them have
been field-tested on S. cerevisiae, being the most extensively studied model or-
ganism [28].

2.2 Reconstruction of transcriptional networks us-
ing gene expression data

Gene expression data used for network inference can either be static or dy-
namic. Static experiments measure gene expression after the cell has adapted
to its new environment, for instance if the cell or pathway under study has
reached a steady state. Dynamic experiments on the other hand profile the
changes in expression level during cellular adaptation. While dynamic exper-
iments inherently contain much more information on the causal interactions
between the genes, we will however focus on algorithms that rely on static ex-
pression data: most publicly available microarray data is static and moreover,
static algorithms can often also deal with dynamic expression data by treating
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Figure 2.1: Graphical representation of networks. (a) A complete network: each node
corresponds to a single gene and is represented by a colored oval. The arrows correspond to
the interactions between the genes. For each gene, a unique set of parameters (indicated by
hexagons and a Greek letter) describes how the expression of that gene depends on the expression
levels of its parents. (b) A module network: each node corresponds to a single gene, denoted as
black ovals. The arrows correspond to the interactions between the genes. Genes that depend on
the same parents are grouped into modules. For each module, the module parameters (indicated
by Greek letters) describe how the expression of all genes within the module depends on the
module’s parents. A single set of parameters is thus shared by all genes in the module (groups
indicated by squares).
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it as static.

An important and often underestimated issue is the preprocessing of the gene
expression data prior to the inference of networks. Although microarray tech-
nology produces continuous data, many methods require data discretization
prior to further analysis. Data discretization implicitly assumes that in a large
compendium of microarrays the complete dynamic range of expression val-
ues was observed for each gene. This complete range can then for example
be subdivided into discrete levels such as high, basal, or low expression level.
This discretization step is critical due to the potential loss of information. Also
interpreting discretization levels as over-, basal and under-expression should
be treated with caution, because observing the complete dynamic range of
a gene can never be guaranteed unless a large compendium of data is used.
This problem is exacerbated as expression values are often expressed relative
to a reference (i.e. when using two-color based array techniques [103]). Large
compendia consist of a concatenation of separately performed array experi-
ments that rarely use the same reference [59]. Interpretation of what is over-
or under-expressed should always be related to the proper reference.

The classical approaches for network reconstruction from gene expression
data aimed at inferring the interactions between all genes. Methods based
on Boolean models, Bayesian networks, differential equations and hybrids of
those have been described (for exhaustive overviews we refer to D’Haeseleer
et al. [45], van Someren et al. [163] and de Jong et al. [38]). Although
some of these methods have lead to biologically relevant findings, in general
the size of the currently available gene expression data sets does not meet
the extensive data requirements for most of these methods. The number of
experimental data points is still much smaller than the number of parameters
to be estimated. This problem of under-determination is aggravated by the
low signal to noise level of microarray data [167] and the inherent stochasticity
of biological systems [51, 133]. Therefore, inferring transcriptional networks
using the methods described below is usually restricted to small networks or
to situations where much data is available.

2.3 From networks to modules

However, there is recently a major interest in the identification of module
networks. Reformulating the problem of inferring networks as a problem of
inferring module networks can greatly simplify the complexity of the problem.
We adopt the terminology introduced by Segal et al. [145] for modules and reg-
ulatory programs: a set of genes, coexpressed under all or under a particular
set of conditions, is assumed to undergo similar interactions within the net-
work. Such a gene set is called a module. A regulatory program is defined as the
set of regulators of which the concerted action is responsible for the condition
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dependent expression of the genes in the corresponding module. The module
network inference problem consists of two subtasks, namely identification of
the modules and identification of the regulatory programs.

As module networks are a conceptual abstraction of the real networks, some
biological considerations have to be made. Module networks are condition
dependent by definition, meaning that the genes of a module are only co-
regulated under a specific subset of conditions (i.e. tissues, time points, en-
vironmental conditions, etc.). In order to grasp this context specificity of a
module, searching for modules in a large compendium of gene expression
data not only implies identifying sets of coexpressed genes, but also selecting
the conditions in which the genes exhibit a correlated behavior. This context
specificity is reflected in the combinatorial composition of the regulatory pro-
gram. Due to the combined action of regulators, genes of a module behave
similar in a condition dependent way [105]. This is illustrated by a hypotheti-
cal example in Figure 2.2 (the hypothetical example is a generalization of our
own observations and those described by Ihmels et al. [78]).

A gene expression dataset can therefore be subdivided in several overlapping
context dependent modules. Modules comprising many conditions can be
expected to contain few genes (called hereafter seed genes) with a potentially
highly related function. Indeed, the more conditions genes appear to be co-
expressed in, the more similar their regulatory program tends to be and the
more connected their role in the pathway becomes. In a module, the num-
ber of genes will usually increase with a decreasing number of conditions.
Obviously, there will be more genes that only share part of their regulatory
program, i.e. the part that is active under the tested set of conditions. The
fewer the number of conditions included in the module one considers, the less
stringent the requirements on the overlap in the regulatory program becomes
(Figure 2.2). Although these considerations seem trivial from a biological point
of view, these properties of modules and programs make inferring modules
and their corresponding regulatory program a non-straightforward task.

2.4 Identification of modules using gene expression
data

Biclustering algorithms are well suited to identify these regulatory modules.
They assign genes to condition dependent and potentially overlapping regula-
tory units, i.e. modules. In contrast to classical two-way clustering approaches
[26], these biclustering algorithms do not group genes and conditions indepen-
dently, but simultaneously, thereby identifying subsets of genes that are each
correlated under a subset of conditions [79]. For the purpose of clustering,
microarray experiments are usually organized in an expression matrix, where
the rows correspond to genes and the columns correspond to different condi-
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Figure 2.2: Hypothetical example of higher order module organization. (a) C1, C2 and
C3 represent three unrelated condition sets. the Ri represent different regulators active in the
respective condition dependent regulatory programs: R1, R2 are active in C1; R1, R3 are active
in C3; R4 is active in C2. Distinct partially overlapping modules exist. Modules consisting of
a few genes, tightly coexpressed in many conditions can be hypothesized to be associated with
a highly specific function (horizontal middle panel). They consist of genes that respond to the
same regulatory program and are coexpressed under all conditions. As modules are extended
with more genes, the number of conditions can be expected to decrease. Genes within such
extended modules only share part of the regulatory program, i.e. the one that is active under
the selected conditions (top and bottom panel). Which of these overlapping modules will be
detected by biclustering depends on the specificities of the algorithm and the parameter choices
when applying the algorithm. (b) Hypothetical ChIP-chip result for the respective regulators
obtained from a ChIP-chip compendium measured in C1 only. +: binding between target gene
and regulator is observed; /: no binding is observed. Since only ChIP-chip data of condition
C1 exists, the data contains much missing and conflicting information when extrapolating
it to other conditions. Therefore, such information should be interpreted with caution for
data-integration.
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tions. Biclustering algorithms can be grouped according to different criteria
such as whether they are based on probabilistic methods or not, whether they
allow for overlapping modules or not, whether they search for all modules at
once or try to identify the modules separately in subsequent runs, whether the
obtained modules are self-consistent or not, and whether they use seeds as a
starting point for module identification or not. From a biological perspective,
having an algorithm that allows for overlapping modules is desirable (see Fig-
ure 2.2 and the considerations made above). From an algorithmic perspective,
self-consistency of the module (a criterion introduced by Ihmels et al. [78])
allows for generating optimal and potentially overlapping modules instead of
optimizing the global data partitioning. The use of seeds, defined as initial
sets of genes around which a module is formed, leads to a straightforward
extension for data integration (see further). The different module inference
algorithms together with their most important properties are summarized in
Table 2.1 and a comparison table of the main biclustering algorithms is shown
in Table 5.1.

2.5 Simultaneous identification of modules and their
regulatory program

Biologists are not only interested in inferring the module composition but also
in reconstructing the regulatory program. Because the regulatory program de-
termines the behavior of the genes in the module and the presence of a module
reveals which programs are active, it does make sense to simultaneously in-
fer the active programs and to partition the genes into modules. A first step
into this direction is the module networks method developed by Segal et al.
[145], which is inspired by the probabilistic relational model (PRM) framework
[55, 61, 62, 94] (see Figure 2.2).

While Friedman et al. [54], in the initial applications of probabilistic models
for network inference, assigned each gene as a separate node with its own
parameters to the Bayesian network, Segal et al. [145] grouped genes into
modules, where genes belonging to the same module share the same parame-
ters and have the same set of regulators. This considerably reduces the number
of model parameters to be estimated and at the same time increases the num-
ber of data points available for estimating each parameter. For each module,
the effect of the set of regulators on the expression profile of the genes in the
module is modeled as a transcriptional program by using a regression tree.
The iterative procedure uses an Expectation-Maximization (EM) algorithm to
search the optimal regulatory program for each module (M-step, using a re-
gression tree for the regulatory program) and to subsequently reassign each
gene to the module of which the program best predicts its behavior (E-step,
using the model score). Although very innovative, the approach still has some
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shortcomings, mainly since it uses only gene expression data to construct the
regulatory program.

In the original setup of Segal et al. [145], a large set of candidate regulators
is selected based on their annotation, while the regulatory program of each
module is composed of the subset of candidate regulators for which the expres-
sion profiles best explains the expression profile of the genes in the module.
This criterion complicates distinguishing between regulators that are actually
causing the modules behavior (and thus belong to the regulatory program)
and those for which the observed expression behavior is a consequence of the
action of the program (and thus belongs to the module). Moreover, constitu-
tively expressed regulators activated post-transcriptionally, will never be part
of the regulatory program because their expression profile will not correlate
with the genes in the module. The number of regulators for which the ex-
pression profile correlates well with the profiles of its target genes, is limited
anyhow as Herrgard et al. [72] showed that in yeast over 80% of the tested
pairs of expression profiles between regulators and targets were not signifi-
cantly correlated. In the method of Segal et al. [145], context specificity of
the modules is not explicitly taken into account (no conceptual biclustering)
because genes belonging to a module are required to be coexpressed over all
conditions tested. By definition, a gene can only belong to a single module and
overlapping modules are therefore not possible. Segal et al. [145] applied their
method to the Gash et al. dataset [59], a large scale microarray experiment
(173 arrays) assessing expression changes under various stress conditions in
the yeast S. cerevisiae, and identified 50 modules involved in various processes.
They proved the biological potential of their method by experimentally vali-
dating three of the hypotheses that followed from their predictions.

The model of Segal et al. has been further extended by Michoel et al. [116] who
describe an alternative and faster approach for learning regulatory programs.
In Joshi et al. [85], an ensemble method is used to identify more coherent
modules which further improved the module learning approach.

2.6 Network inference using data integration

Among the approaches developed to infer complete networks, in particular
probabilistic approaches have been extended to integrate heterogeneous data
sources. Additional data is used to supplement the expression data for exam-
ple by using ChIP-chip data or protein interaction data as priors for Bayesian
networks [20, 69, 68, 80, 99, 153]. Biclustering algorithms that start from a set
of seed genes to define biclusters (see Table 2.1) can, to some extent, integrate
heterogeneous data: the seeds can be defined by using other data sources and
can thus be considered as prior information to the biclustering algorithm [79].

An example of a deterministic method for data-integration is the MA-networker
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algorithm for integrative modeling of expression and ChIP-chip data [56].
This algorithm uses multivariate regression of mRNA expression levels on
the genome-wide binding profiles of a large number of transcriptional factors
(ChIP-chip data) to explain to what extent each transcription factor is respon-
sible for the observed changes in mRNA expression in a single microarray
experiment. When performing the regression procedure in parallel on a com-
pendium of multiple microarray experiments, a transcriptional factor activity
profile is obtained that implicitly expresses the conditional dependence of a
specific regulator on the tested experimental conditions, indicating whether
the regulator is responsible for the expression changes per experimental condi-
tion. For the identification of additional target genes of a specific regulator, the
method of Gao et al. [56] is original in that, in contrast to most other studies, it
does not search for genes of which the expression profile is highly correlated
with the one of the regulator but for genes with an expression profile highly
correlated with the activity profile of the regulator (defined as the coupling
strength). Although the method searches for the condition dependent activa-
tion of a gene by one regulator it does not yet use this information to determine
the concerted action of more regulators, i.e. to compile complete regulatory
programs [56]. MA-networker was applied to the yeast ChIP-chip data of
Lee et al. [101] and a compendium of 750 microarray experiments covering
different physiological conditions. They found that 58% of the genes whose
promoter was bound by a regulator were true targets and that a set of target
genes of which the expression profile exhibits a large coupling strength with
the activity profile of a specific regulator was significantly enriched for specific
functional categories.

The following methods aim at identifying modules and regulatory programs.
Similar to Gao et al. [56], they treat additional data sources with equal impor-
tance compared to gene expression data (contrary to other approaches where
additional data sources are treated as prior).

Wang et al. [164] propose a heuristic semi-integrative, semi-sequential method
to combine motif- and gene expression data in order to search for target genes of
a particular transcription factor, the context specificity of the transcription fac-
tor, and the combinatorial control between different regulators. Their method
is based on the assumption that if a transcription factor is activated under a
particular condition, its target genes should have similar responses as those
observed in a perturbation experiment of that transcription factor. Regulatory
motifs recognized by a particular transcription factor, and their corresponding
targets, are identified with the REDUCER algorithm [52] in an experiment
where the particular transcription factor is perturbed (e.g. overexpressed,
mutated). Based on this information, a score vector for the perturbation exper-
iment is constructed which consists, for each potential target gene, of a value
that increases with the ratio of overexpression of that gene in the prevailing
experiment and with the number of motifs for the transcription factor of inter-
est. Besides for the perturbation experiment, this vector is also calculated for
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different other microarray experiments. From the correlation between these
calculated score vectors, the conditional activity of the transcription factor is
derived. Since in some microarray experiments more regulators can be active
simultaneously, the overlap in their target genes is used to derive combinatorial
action of different transcription factors. Based on a microarray compendium
(which comprised the Gash et al. [59] and Spellman et al. [152] datasets), for 28
transcription factors of which a perturbation experiment was available (from
the Rosetta compendium [76]), Wang et al. [164] identified the corresponding
target genes, motifs and relevant conditions.

Harbison et al. [66] and Kato et al. [86] use a heuristic approach that is partially
integrative. For each regulator, they first compile reliable lists of target genes,
based on the integrated knowledge from literature [101, 66], ChIP-chip [66, 86],
and comparative genomics data [66]. Subsequently, the search for statistically
overrepresented motifs in the promoter regions of these target genes results
in the identification of the motif tags characteristic for each of the regulators.
Kato et al. [86] go one step further in reconstructing the modules and programs
by searching for statistically overrepresented motif combinations. Genes of
which the promoters contain a particular motif combination and that share
a similar expression profile over time comprise a module. In a final step,
regulatory programs are identified based on the ChIP-chip data by determining
the identities of the regulators that are statistically overrepresented in the genes
of the respective modules. When applying their method to the ChIP-chip data
of Lee et al. [101], they specifically focused on the cell cycle and could identify
most of the previously described cell cycle transcriptional complexes.

A conceptual extension to the previously mentioned heuristic methods is pro-
posed by Bar-Joseph et al. [12] and De Bie et al. [37]. Regulatory programs and
module seeds are defined in a joint learning step based on ChIP-chip and gene
expression data [12], or based on ChIP-chip data, gene expression data, and
motif data [37]. In the former approach (GRAM), seeds are defined by iden-
tifying sets of genes with a common set of transcription factors and having a
highly correlated expression profile (determined by microarray analysis). In
the latter approach (ReMoDiscovery), module seeds are maximal gene sets of
which the expression profiles are highly similar and that have a minimal set
of regulators and motifs in common [37]. The shared set of seed regulators
and motifs corresponds to the regulatory program determining the observed
coexpressed behavior of the module seed genes. Searching for maximal gene
sets that meet these requirements on all three datasets translates into a com-
binatorial problem, which is solved by a modification of the Apriori algorithm
[37]. Because the initial seed discovery in both approaches relies on stringent
criteria (information in all datasets has to be mutually consistent), the seed
modules are likely to underestimate the true module size. For this reason,
both algorithms use a second module extension step. Bar-Joseph et al. [12]
extend the module seeds by first identifying candidate genes with an expres-
sion profile sufficiently similar to the seed profile and with a sufficiently low
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p-value for the binding of each of the individual regulators of the module seed.
A combined P-value based on the individual p-values for all module regulators
is calculated for each of the candidate genes passing these requirements and
the gene is added to the module if the combined P-value is sufficiently low.
ReMoDiscovery contains a second module extension step where additional
genes are identified for which the expression profile is highly correlated with
that of the seed genes. The optimal size in number of genes of the module is
determined by the correlation coefficient resulting in a module with the largest
enrichment in seed motifs and regulators. The regulatory modules detected
by both approaches can be used as input sets for motif detection tools. Note
that both approaches [12, 37] yield few false positive modules, but they fail
to identify modules if not all data sources separately confirm the presence of
a seed module. Neither Bar-Joseph et al. [12] nor De Bie et al. [37] in its
original implementation explicitly take into account the conditional nature of
the regulatory program. De Bie et al. [37] solve the problem by grouping
microarray experiments performed in the same experimental condition and
applying the algorithm to each group of microarrays separately. Only when
the regulatory program is active in the specific dataset, the seed module can
be extended. Both methods were applied to the yeast ChIP-chip compendia
and various microarray experiments in yeast. Although using slightly differ-
ent datasets, both groups identified a similar number of modules, involving a
comparable number of regulators. By performing gene specific ChIP-chip ex-
periments, Bar-Joseph et al. [12] experimentally validated a random selection
of predictions proving the potential of their approach.

Lemmens et al. [102] further extend the module discovery approach of Re-
MoDiscovery by not only searching for sets of highly co-expressed genes that
share controlling regulators, but by also selecting the experimental conditions
for which the selected genes are coexpressed. In this algorithm, called DIS-
TILLER, genes are no longer required to be co-expressed over all conditions.
The framework applies advanced itemset mining approaches to efficiently
search the complete space of possible modules.

Xu et al. [172] extended the module networks framework of Segal et al.
[145] (see higher), by incorporating ChIP-chip data. For identifying the most
likely candidates of a regulatory program, they select regulators for which the
expression profile shows a high mutual information with the one of the module
genes (comparable to the approach of Segal et al. [145]) and regulators with
high binding probabilities based on ChIP-chip data. The binding probability
between a regulator and its target genes is also regarded as a structure prior to
the Bayesian score, which scores the inferred module networks. As a result, the
score of the resulting network is increased both when there is a high correlation
between the expression profile of the regulator and the module genes (when
calculating the regression tree that derives the regulatory program) and when
the binding probability between a regulator and its targets is high (in the form
of a structure prior). This joint scoring allows different weaker indications
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from separate data sources to be joined to a significant indication, to indicate
for example that a gene is part of a module. It also allows constitutively
expressed regulators with low location probability to be part of the regulatory
program. As with the method of Segal et al. [145], conditional dependence
of the regulatory programs is not taken into account. Using the ChIP-chip
compendium of Lee et al. [101] and the microarray experiments of Gash et al.
[59] and Spellman et al. [152], Xu et al. [172] identified 50 modules involving
86 regulators covering a wide range of cellular/physiological processes.

Another method for module detection is SAMBA, developed by Tanay et al.
[154], which uses a bipartite graph based representation of the data where one
subset of nodes represents genes and the other subset represents the prop-
erties derived from the distinct heterogeneous data. An edge represents the
assignment of a property to a gene with the weight of the edge being indica-
tive of the statistical strength of the assignment. The problem is then reduced
to finding ’heavy’ subgraphs in a weighted bipartite graph. A graph-based
biclustering algorithm [155] is used to identify modules (i.e. a set of genes that
show similarities only in a subset of properties). Like for other biclustering
algorithms, overlapping modules are allowed. This method thus fully exploits
all data sources, allows dependency of the program, not only conditioned on
the expression data but also on the other data sources. This is important,
considering that ChIP-chip or protein interaction data, assessed under specific
conditions might not be supported by, for instance, expression data measured
under different conditions. One drawback of this method, from a biological
point of view, is that while the uniform representation of the heterogeneous
data allows the automatic identification of modules, the compilation of the
regulatory programs is not automatically derived from the analyses. It is also
unclear how the different sets of properties of the genes should be weighted
compared to one another, while this will have a profound impact on the iden-
tified modules. Integration of additional data sources is straightforward as
long as the data can be described as gene properties. Tanay et al. [156] identi-
fied 1200 significant modules in a large yeast compendium of heterogeneous
datasets. 86% of the modules were based on more than one dataset and for the
construction of 68% of the modules at least three different data sources were
used, indicating the importance of using complementary information.

Besides the data integration methods mentioned above, there are many other
methods that focus on different aspects of regulation, such as the combined
identification of regulatory motifs and coexpressed genes (e.g. [27]).
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2.7 Assessment and validation of inference algo-
rithms

A thorough validation of the results of network inference algorithms can be
challenging. One of the main validation strategies is to compare the predicted
interactions with those that have been previously described in literature and
which were independently verified by means of wet-lab experiments. Even for
model organisms such as Escherichia coli and Saccharomyces cerevisiae, the set of
interactions is only partially known. And since not all interactions are known, a
dataset with known non-interactions is not available. Therefore, this validation
strategy does not take into account false positives: interactions that are predicted
by the algorithm but that are not described in literature. Such predictions can
either be novel interactions or wrong predictions of the algorithm. To address
this problem, some authors have artificially constructed datasets with ’known
non-interactions’, e.g. by assuming that proteins that are expressed in different
cellular locations do not interact or by assuming that genes with different gene
ontology categories are unlikely to interact. While these datasets provide a
partial answer to the stated problem, the dataset with ’known non-interactions’
is highly biased towards a particular set of interactions. The results of an
assessment using such negative datasets should therefore be interpreted with
caution. A second widely used validation strategy is to indirectly measure the
quality of the results using enrichment scores, e.g. functional enrichment using
gene ontology (GO) annotation. The underlying assumption in this approach is
that interacting genes are more likely to have the same GO annotation than non-
interacting genes. This approach is mostly used for clustering and partitioning
algorithms. While this approach uses independent datasets, it is only an
indirect indication of the quality of the results. Finally, wet lab experiments
provide the most reliable validation of predicted regulatory interactions. The
main disadvantages of wet lab experiments are its expensiveness in terms of
price and time.

Apart from validating the results of inference algorithms, researchers are also
interested in gaining statistical knowledge on their algorithm: ’What is the per-
formance for increasingly noisy data?’, ’What is the most optimal parameter setting?’,
’How robust are the results?’, etc. This requires repeatedly testing them on large,
high-quality data sets obtained from many experimental conditions. Unfortu-
nately, such experimental datasets are usually not available and moreover, the
true underlying network of interactions is at best only partially known. Due
to these limitations of real experimental data, the use of simulated data as an
additional tool for benchmarking structure learning algorithms is gaining in-
terest [11, 36, 107, 139, 175]. Several models have already been proposed for this
purpose, including Boolean [4, 134], continuous [77, 114, 176] and probabilistic
[114] approaches. Most current network simulators [77, 92, 114, 151, 176] use
a set of ordinary differential equations (ODE’s). The choice of a numerical so-
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lution method, which depends on the desired precision and the specific form
of the set of ODE’s, can lead to scalability problems. The time complexity of
numerically solving a set of ODE’s for a given time period, in function of the
number of genes, varies between linear and cubic complexity, which makes
simulation of large networks computationally difficult.

2.8 Summary

In this Chapter, an overview was given of different network inference al-
gorithms for the reconstruction of transcriptional regulatory networks. An
overview is given of inference algorithms that are based purely on gene ex-
pression data. The classical approaches for network reconstruction from gene
expression data aimed at inferring the interactions between all genes using
Boolean models, Bayesian networks and differential equations. Because the
number of experimental data points is still much smaller than the number
of parameters to be estimated in these methods, the resulting solutions are
underdetermined. As a result, there is a growing interest in methods for
the identification of module networks, as the number of required parameters
is usually much smaller. An overview of these methods was given. Since
gene expression data does not provide a complete angle on all aspects of gene
regulation, data integration methods have been proposed that infer regulatory
networks or module networks using additional data sources such as ChIP-chip
or sequence data.

A thorough validation and assessment of the different types of network in-
ference algorithms is difficult due to a lack of large high-quality datasets and
the fact that the underlying interactions for these datasets are only partially
known at best. The use of simulated data offers an interesting complementary
mechanism for gaining statistical knowledge on different characteristics of in-
ference algorithms. As we will see in Chapter 3, this knowledge is unlikely to
be discovered by means of biological microarray data only.





Chapter 3

A synthetic model of
transcriptional regulation:
SynTReN

The results in this Chapter were developed in cooperation with ISLab (Universiteit Antwerpen).

3.1 Background

Developing reliable data analysis methods that infer the complex network
of interactions between the various constituents of a living system based on
high throughput data, is a major issue in current bioinformatics research [153].
Because data on transcriptional regulation are most accessible, much effort
goes to the development of algorithms that infer the structure of transcriptional
regulatory networks (TRNs) from this data [45, 48, 54, 119, 127, 146, 157].

Gaining statistical knowledge about the performance of these algorithms, re-
quires repeatedly testing them on large, high-quality data sets obtained from
many experimental conditions and derived from different well-characterized
networks. Unfortunately, experimental data sets of the appropriate size and
design are usually not available. Moreover, knowledge about the underlying
biological TRN is often incomplete or unavailable.

As a consequence, validation strategies applied to experimentally obtained
data are often limited to confirming previously known interactions in the
reconstructed network. However, using such an approach, false positive in-
teractions are for example not penalized. Indeed, assessing the relevance of
predicted interactions that have not been experimentally confirmed, is infeasi-
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ble. Secondly, the algorithm can usually only be applied to data from a single
network, which complicates algorithm design and validation. Due to these
limitations of real experimental data, the use of simulated data as an addi-
tional tool for benchmarking structure learning algorithms is gaining interest
[11, 36, 107, 139, 175].

Throughout this chapter, the term network generator is used to denote a system
that generates synthetic TRNs and the simulated gene expression data that is
derived from these networks. A synthetic TRN consists both of a topology
that determines the structure of the network and an interaction model for each
of the regulatory interactions between the genes.

Different approaches have been used to create network topologies. The gen-
eration of small networks is often based on detailed handcrafted topologies
[77, 151, 176]. For producing topologies of large networks comprising thou-
sands of nodes, random graph models have been used [92, 114]. The latter
models create graphs that share one or more statistical properties, such as scale-
free [166] and small-world [5] properties, with known regulatory networks, in
an attempt to approximate biological reality.

For simulation of the regulatory network, the interactions between the genes
need to be quantitatively modeled. Several models have been proposed for this
purpose, including Boolean [4, 134], continuous [77, 114, 176] and probabilistic
[114] approaches. Most current network simulators [77, 92, 114, 151, 176] use
a set of ordinary differential equations (ODE’s). The choice of a numerical
solution method, which depends on the desired precision and the specific
form of the set of ODE’s, can lead to scalability problems. The time complexity
of numerically solving a set of ODE’s for a given time period, in function of the
number of genes, varies between linear and cubic complexity, which makes
simulation of large networks computationally difficult.

We propose SynTReN (Synthetic Transcriptional Regulatory Networks), a
network generator that copes with some of the limitations of previous imple-
mentations. Instead of using random graph models, topologies are generated
based on previously described source networks, allowing better approxima-
tion of the statistical properties of biological networks. The computational
cost of our simulation procedure is linear in function of the number of genes,
making simulation of large networks possible.

3.2 Model overview

The SynTReN network and data generation process comprises of three es-
sential steps. Figure 3.1 shows the complete execution flow of the process,
the shaded area indicates the data generation steps which are executed in
SynTReN. The process starts by selecting a network topology that is generated
using either a random graph model or by deriving it from a known (biological)
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source network. The latter approach is performed by means of two subnet-
work selection strategies which will be explained in detail in Section 3.3.3. In
the networks that are generated by SynTReN, the nodes represent the genes
and the edges correspond to the regulatory interactions at transcriptional level
between the genes. In the second step, transition functions and their param-
eters are assigned to the edges in the network (Section 3.4). In the third step,
mRNA expression levels for the genes in the network are simulated under
different conditions. After optionally adding noise, a gene expression data set
is obtained that represents normalized and scaled microarray measurements.

Evaluation Sampling

Selected 
subnetwork Set interactions Add noise 

function

Micorarray-like 
dataset

True
network

Choose sampling 
strategy

Choose 
parameters

Structure 
learning 
algorithm

Sample data

Set external 
conditions

Compare

Source 
network

Learned
network

Figure 3.1: Overview of the synthetic transcriptional network generator. The shaded
area highlights the data generation steps and the dashed arrows show how the output fits in a
validation strategy for a network inference algorithm.
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In order to evaluate to what extent our approach compares to previous ap-
proaches in generating networks with topological characteristics of true TRNs,
we used well established deterministic and informative measures that can be
subdivided in two distinct categories, each of which addresses different as-
pects of the network structure: high-level (global) measures and low-level
(local) measures. The high-level measures, like average clustering coefficient
and average path length, depend on knowledge of the complete network struc-
ture while the low level measures are derived from local network properties
such as for instance the marginal degree distributions [5, 177].

Biological TRNs have specific common structural properties: the small world
property [166], indicating a short average path length between any two nodes
and the scale-free property [5], indicating the degree distribution of the nodes
of the network follows a power law. True biological TRNs also contain specific
structural motifs that are statistically overrepresented as compared to random
graphs of the same in- and outdegree [118, 149] (e.g. feed forward loop). Syn-
thetic TRNs have been generated using different types of random graph mod-
els [92, 114], such as Erdös-Rényi [52], Albert-Barabási [5] and Watts-Strogatz
[166] models. These models generate graphs with one or more topological
properties observed in biological TRNs. Unlike previous approaches, we gen-
erate network topologies by selecting subgraphs from a previously described
biological source network (E. coli [108, 149] or S. cerevisiae [65]).

3.3 Network topology selection

The first step in our setup is to select a network topology of the synthetic
transcriptional network. This section provides an overview of the available
techniques in SynTReN. We will show that the SynTReN subnetwork selection
methods result in topologies that better approximate the characteristics of real
biological networks. We will also show that inferring networks from expres-
sion data generated with the subnetwork selection methods generally leads
to higher quality network inference. Results will be shown that indicate the
importance of the network topology choice for a proper assessment of an infer-
ence algorithm (Section 3.8.4). In the next sections we will first describe some
commonly used random graph models and the SynTReN subnetwork selec-
tion methods and then compare the topological characteristics of the networks
generated with both approaches.

3.3.1 Random graph models

In [92, 114], different types of random graph models are used to generate a
network topology: Erdös-Rényi [52], Albert-Barabási [6] and Watts-Strogatz
[166] random graph models. These models and the directed scale free (DSF)
model of Bollobás [24] will be briefly described. A more in-depth description
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can be found in [6] and [52].

Random graph model (Erdös-Rényi)

An Erdös-Rényi model is one of the most straightforward random graph mod-
els. As described in [6], a network that is generated using an Erdös-Rényi
model can be defined by a binomial model. The network has a predefined
number of nodes N and between every pair of nodes an edge is defined with
probability p. Figure 3.2 shows a series of 6-node networks with different
p values.

p=0 p=1p=0.47

Figure 3.2: Erdös-Rényi random networks with 6 nodes, generated with p-values 0, 0.47
and 1.

Small-world model (Watts-Strogatz)

The small-world model of Watts and Strogatz interpolates between an ordered
lattice and a random graph according to the following algorithm (after [6]):

1. Start with a ring lattice with N nodes, where every node is connected to
its K nearest neighbors.

2. Randomly rewire each edge with probability p, but avoid self-edges and
duplicate edges.

This process introduces long-range connections among the initial short-range
connections (see Figures 3.3a and 3.3b), connecting nodes that otherwise would
be part of different neighborhoods. These networks have a small-world prop-
erty: the shortest path between any two nodes is small on average.

Scale-free model (Albert-Barabási)

The model of Albert and Barabási is based on two basic principles: growth and
preferential attachment. The graph starts with a small number (m0) of nodes,
and for a series of time steps, a new node is added each time with a number
of edges according to the following rules:
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Initial graph p=0.15 p=0.30

(a) Watts-Strogatz random network with 6 nodes, generated with rewiring prob-
abilities 0 (=initial ring lattice), 0.15 and 0.30 and starting from a ring lattice with
two neighbors.

p=0 p=0.09p=0.03
(b) Watts-Strogatz random network with 16 nodes, generated with rewiring prob-
abilities 0 (=initial ring lattice), 0.03 and 0.09 and starting from a ring lattice with
four neighbors.

Figure 3.3: Example networks, generated using the Watts-Strogatz random graph
model.

1. Growth: at every time step, we add a new node with m (< m0) edges that
link the new node to m different nodes already present in the system.

2. Preferential attachment: the probability p that a new node will be con-
nected to an existing node is proportional to the degree of that node.

Based on these rules, it can be proven that the probability that a node has k
edges follows a power law [6, 23].

Directed scale-free model (Bollobás)

Bollobás et al. [23] present an extension of the Albert-Barabási model [6] for
directed graphs. Following the same basic principles, these graphs grow with
preferential attachment depending on in- and out-degrees. The resulting in-
and out-degree distributions are again power laws, possibly with different
exponents.
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The model has five parameters (α, β, γ, δin and δout) and starts with any fixed
initial directed graph Go. At each time step:

• With probability α, add a new vertex v together with an edge from v
to an existing vertex w, where w is chosen according to the probability
distribution din(w) + δin where din(w) is the in-degree of w.

• With probability β, add an edge from an existing vertex v to an existing
vertex w, where v and w are chosen independently, v according to dout(v)+
δout, and w according to din(w) + δin.

• With probability γ, add a new vertex w and add an edge from an existing
vertex v to w, where v is chosen according to dout(v) + δout.

The following equations hold: α + γ > 0 and α + β + γ = 1.

3.3.2 Biological subnetwork selection methods

To generate a network topology that resembles a true TRN as closely as possi-
ble, network structures are sampled from previously described biological net-
works. The topologies of the well-described model organisms E. coli [108, 149]
and S. cerevisiae [65] are used as source graphs. Two different strategies to
select a connected subgraph from a source graph are implemented.

In a first strategy, called neighbor addition, a randomly selected node is chosen
as initial seed. Subsequent nodes are added in an iterative process. Only
randomly selected nodes that have at least one connection to the current graph,
are retained.

In a second strategy, called cluster addition, a randomly selected node and all
of its neighbors are selected as initial graph. In each iteration, a randomly
selected node and all of its neighbors are added to the graph. Similarly, only
nodes that have at least one connection to the current graph are retained.
Because of their presence in the original source network, cycles (e.g. feedback
loops) can also be encountered in the generated topology.

As larger subnetworks are sampled from biological networks, the tendency to
select similar subnetworks increases. In the extreme case that the subnetwork
contains an equal amount of genes as the original network, the same (origi-
nal) network would always be sampled. Therefore an additional background
network is added to the network to increase the variation in the selected sub-
networks. For a real biological microarray experiment it is generally assumed
that only part of the genes on the chip are triggered by the conditions applied
[174]. To take this fact into account, a background network is added that mimics
pathways not elicited by the simulated experimental conditions. These back-
ground genes increase the dimension of the data set but are not themselves
part of the network to be inferred. Their expression values are assumed to be
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constitutive but change in a correlated way as a result of the biological noise
modeled in the transition functions.

The topology of the combined network consisting of the foreground and the
background network shows therefore more sampling variation than a single
subnetwork of the same size would exhibit, while simulating some of the
essential characteristics of real microarray data, namely a small set of genes
that are triggered by the applied external conditions and a large set of genes
that is constitutively expressed.

3.3.3 Characteristics of network topology generation methods

As will be shown in Section 3.8.2, the subnetwork selection method generates
networks that more closely approximate the topological properties of biologi-
cal networks than the tested random graphs do. Secondly, the cluster addition
method generates networks that are closer to the source network than the
networks generated with the neighbor addition method.

To evaluate the change in topological characteristics in function of the number
of nodes in the subnetwork, networks of different sizes were selected using
both methods (see Figure 3.4). The cluster addition method (Figure 3.4a) shows
less variation for the median indegree compared to the neighbor addition
method (Figure 3.4b). This is not surprising since adding a node and all of
its children, as is done in the cluster addition method, better preserves the
median indegree than adding a single node.

3.4 Transition functions

After generating the topology, transition functions representing the regula-
tory interactions between a transcription factor and the regulated genes are
assigned to the edges in the network. In previous work, non-linear equations
based on Michaelis-Menten and Hill kinetics have been used to model different
types of local interactions between a gene and its parents [53, 74, 114].

Steady-state solutions of these equations are derived in order to define the
transition functions between the genes. Biological noise is superposed on
the kinetic equations, corresponding to stochastic variations in gene expres-
sion that are unrelated to the applied experimental procedures. By using the
steady-state solutions, the generation of expression data scales linearly with
the number of genes and therefore allows fast simulation of large networks
comprising thousands of genes. However, by using a steady state solution
rather than using the dynamic equations, the generation of dynamic expres-
sion data such as time series experiments, is excluded.
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Figure 3.4: Topological characteristics of the resulting networks of the two subnetwork
selection methods in function of the number of nodes. (a) Cluster addition method; (b)
Neighbor addition method.

3.4.1 Interaction types

This Section provides a detailed description of the Michaelis-Menten and Hill
kinetic equations that are used to model the regulatory interactions. An illus-
trative example is shown in Figure 3.5, illustrates the main concepts by means
of one gene with a single activating regulator. The activator A binds to the
promoter region P of its target gene. The transcription rate of the gene (v) is
determined by the amount of activator that is bound to the promoter region,
which is represented by the concentration (PA). The transcription results in a
certain quantity of mRNA, represented as r. This mRNA also degrades at a cer-
tain rate kd, which depends on the specific sequence of the mRNA transcripts,
the concentration of specific digestion enzymes and several other factors.

Independent of the specific activation or inhibition pattern, the mRNA tran-
scription rate is given by the following equation:

d[r]
dt

= v − kd[r] (3.1)

where v is the mRNA production rate, [r] is the concentration of the pro-
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gene

activator (A)

promoter (P)

mRNA

v

[r]

kd [r]

Figure 3.5: Illustration of an interaction between an activator and its target gene. An
activator A binds to the promoter region P of its target gene. The amount of activator that is
bound to the promoter (concentration (PA)), determines the transcription rate v of the gene.
The mRNA is digested by the cell at a certain rate kd.

duced mRNA and kd is the degradation constant of the mRNA. In steady-state
conditions, d[r]

dt is 0 and therefore [r] = v
kd

.

In our example, the chemical equilibrium diagram for the binding of the acti-
vator to the promoter is given by (with dissociation constant KA):

(P) (PA)
v0 v1

KA

KA =
[P][A]
[PA]

(3.2)

The resulting mRNA production rate is given by Equation 3.3 where [P] and
[PA] represent the concentration of unbound and bound promotor P with the
activator A:

v = v0.[P] + v1.[PA] (3.3)

Combining Equations 3.2 and 3.3 leads to the following expression for the
mRNA production rate:

v =
v∗0 + v∗1.A/KA

1 + A/KA
(3.4)

where v∗0 and v∗1 denote v0/KA and v1/KA respectively. Concentrations such
as [A] and [P] are replaced by their variable names A and P for notational
convenience.

Various cases of transcriptional regulation exist and equations such as Equa-
tion 3.4 can be derived for (combinations of) each of these cases:

• inhibitory: the regulator is inhibitory (I) instead of activating (A).
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• cooperative: a regulator is called cooperative when its binding affinity
changes with the amount of regulator already bound (this is modeled
with Hill equations).

• competitive: when regulators compete for the same binding place(s) on
the promoter, they are called competitive.

• synergistic: two regulators are called synergistic when in case both reg-
ulators bind, the mRNA production rate is higher than the sum of the
mRNA productions for the cases where only one of the regulators is
bound.

• antagonistic: similar to the case of synergistic regulators, but the mRNA
production rate is lower than expected in case both regulators are bound.

The mRNA production rates are given below for some examples of the above
cases with two regulators:
One activator and one repressor, competitive:

v =
v∗0 + v∗1 ·

A
Ka

1 + I
Ki

+ A
Ka

(3.5)

One activator and one repressor, non-competitive:

v =
v∗0 + v∗1 ·

A
Ka

(1 + I
Ki

) · (1 + A
Ka

)
(3.6)

Two activators, synergism:

v∗3 = β · (v∗1 + v∗2)

v =
v∗0 +

v∗1·A1

K1a
+

v∗2·A2

K2a
+

v∗3·A1·A2

K1a·K2a

1 + A1
K1a

+ A2
K2a

+ A1·A2
K1a·K2a

(3.7)

where β denotes the degree of synergism between the two activators.

A general equation can be derived for cooperative binding with N TFs (similar
to [114]), covering all possible combinations of the above cases. Note that
competitivity, synergism and antagonism are not modeled in this equation.
The general steady-state equation for N regulators (P activators, Q inhibitors)
is given by:

v =
V0,max +

∑P
i=1( Ai

Ki
)nact

i ·
∏P,i

j=1(1 + ( A j

K j
)nact

i ) · Vi,max∏P
i=1(1 + ( Ai

Ki
)nact

i ) ·
∏Q

j=1(1 + ( I j

K j
)ninh

j )
(3.8)

The exponents nact
i and ninh

j are the Hill constants for each of the activators and

inhibitors. Hill constants are integer and nact
i ≥ 1, ninh

j ≥ 1,∀i, j.
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In summary, for a transcriptional network with N genes, the following set of
steady-state solutions for the mRNA concentration of each gene i is obtained:

[r(i)] =
v(i)

k(i)
d

(3.9)

where either the general Equation 3.8 is used for v(i) or one of the Equations
such as 3.4, 3.5, 3.6 or 3.7 is used to describe a specialized interaction between
a set of regulators and its target gene i.

Since the mRNA concentration for each gene [r(i)] depends only on the mRNA
concentrations of its regulators, the determination of the individual concentra-
tion levels starts from the external inputs and percolates through the network
from top to bottom. The computational cost for determining all the values
therefore scales linearly in the number of genes in the network.

In the case of cyclic networks, an approximation is used where unknown cyclic
inputs are initially given a random value and the above procedure is iterated
where the concentration of each gene’s mRNA level is determined given its
regulators concentrations until convergence to a stationary regime. For cyclic
networks, the computational cost is proportional to the number of genes in
the network and to the number of iterations required for convergence. The
number of iterations indirectly depends on the number of genes, the topology
of the underlying network and the length of the cycles in the network. Typical
values for the tested biological networks range between 100 and 1000. Note
that oscillations can occur in this stationary regime and only one of the possible
concentration values for each gene is sampled in those cases.

Choosing realistic parameter settings of these equations is a nontrivial task.
Except for a few well characterized networks, no data about the parameters
for the Michaelis-Menten and Hill functions is available. Therefore, the value
of each parameter is chosen from a distribution that allows a large variation of
interaction kinetics likely to occur in true networks (including linear activation
functions, sigmoid functions, . . . ), while avoiding very steep transition func-
tions. An example of the possible interactions is given in Figure 3.6 for a gene
which is regulated by a single activator. In realistic networks, often more com-
plex situations occur with multiple regulators that exhibit inhibitory and/or
activating regulation and possibly competitive or co-operative behavior.

3.5 Sampling data

In this section we describe how a gene expression data set is obtained by
simulating the synthetic network under different simulated experimental con-
ditions.
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Figure 3.6: Interaction functions for one activator. Examples of interaction functions that
describe the influence of one activator on the expression level of the regulated gene for different
combinations of the kinetic parameters K and nHill. Parameter tuples (K,nHill) are (0.05,1);
(0.15,1); (0.5,1); (10,2); (10,5); (100,1); (0.5,5); (100,10) for functions 1 to 8 in ascending order.

3.5.1 Generating gene expression data

When generating data, we assume that the expression of the genes depends on
how changes in external conditions trigger the network. External conditions
are modeled by choosing a gene set without regulatory inputs and setting
their expression level to a value different for each experiment, in a simulated
response to changing experimental conditions. Remaining genes without reg-
ulatory inputs are assigned a random constitutive expression level.

The expression levels of the genes in the network are subsequently calculated,
as specified by their transition functions, starting from the input genes. For
genes involved in cycles, it is possible that not all inputs of their transition
function are known during propagation of the values through the network. To
model these loops, an approximation compatible with the steady-state transi-
tion functions was chosen: each edge in a cycle is modeled as a regular steady-
state interaction. In each simulated experiment, genes that have an undefined
input are initially assigned an arbitrary expression value and calculations for
the entire network are repeated until transient effects have disappeared before
generating the output expression values. In case of oscillatory behavior, the
expression data is taken from an arbitrary point in the period, mimicking the
situation in a real microarray experiment.
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3.5.2 Adding noise

After sampling from the network, a data set with mRNA expression levels for
all genes is obtained for different simulated conditions. All gene expression
values are normalized between 0 and 1, where 0 indicates that no transcription
occurred and 1 refers to a maximal level of transcription. Besides the biological
noise, microarrays are subject to random experimental noise. This experimen-
tal noise is added to the simulated microarray data and is approximated by
a log-normal distribution [138]. Consistent sources of variation (dye effects,
array effects, . . . ) are not explicitly modeled as they can be removed in real
data by an adequate preprocessing step.

3.5.3 Simulated expression data

Figure 3.7 gives a representative example of a network topology of 50 genes
obtained by selection from the E. coli source network [108] using the cluster
addition method. From this network, gene expression data was generated for
100 simulated microarray experiments.

Figure 3.7: Randomly chosen example network with 50 nodes. The cluster addition method
was used for subnetwork selection from the E. coli network. Dashed edges indicate activation,
full edges indicate repression.

Three input genes were defined (g1,g2, g3) for which setting the expression
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values corresponds to changing external conditions in a microarray experi-
ment. Distinct external conditions were thus mimicked by randomly choosing
the expression values between 0 and 1 for each experiment.

In Figure 3.8, part of the simulation results of the example network are shown.
The selected part of the example network is shown in Figure 3.8a and is also
indicated by the shaded nodes in Figure 3.7. Figures 3.8b-d show how each of
the input genes affects its direct children. For example, g1 has a strong effect
on both g4 and g5, but a less pronounced effect on the expression level of g7
since g7 has a repressor feedback loop and is also stimulated by another input
gene g2. In Figure 3.8d, the expression levels of g2 are also added to illustrate
the relation between two independent genes like g3 and g2.

Figure 3.8: Simulation results for a subset of genes of the example network (labeled
g1 to g7). This subnetwork has three input genes and contains a repressor feedback loop for
g7. The X-axes shows the different conducted experiments, which are sorted according to the
expression value of each of the input genes. The Y-axes shows the normalized expression values
for the genes directly regulated by the input genes, except for (d) where the expression value for
g2 is also shown.

3.5.4 Generator parameters

To benchmark an algorithm, having access to data sets of an increasing level
of difficulty is useful. Experience shows that in real data, the difficulty of the
structure learning task of an inference problem is influenced to a large extent
by the topology of the network to be inferred and by the type of the regulatory
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interactions present. For example, more data is required to resolve interactions
that are not fully exercised [151].

Initial performance testing of an algorithm can be done on rather easy problems
(e.g. small, noiseless networks without synergism or cooperativity between
regulators). Increasingly difficult data sets can then be generated to further
optimize the inference method.

The following parameters controlling the gene network generation and sam-
pling process are user-definable:

• The size of the network in number of nodes.

• The number of background nodes.

• The number of available experiments and samples for each condition.

• The level of stochastic and experimental noise.

• The fraction of complex interactions.

3.6 Inference algorithms: ARACNE, SAMBA, Ge-
nomica

In Section 3.8, three different network inference algorithms are characterized
using simulated datasets generated with SynTReN. A brief overview of these
methods is given below.

Genomica

Genomica [147] uses expression data to construct a network of interacting mod-
ules, each consisting of co-regulated genes, their regulators, and the conditions
under which regulation takes place (i.e. the regulatory program). The method
is based on probabilistic relational models [94, 146], a relational extension to
Bayesian networks.

SAMBA

SAMBA [154] is a bi-clustering algorithm that groups genes by means of a
clustering of similar expression patterns in the input data over a subset of
input conditions. The algorithm is based on a graph theoretic approach and
statistical modeling of the data. The subsets of genes that jointly respond to
specific conditions can be interpreted to form a module network.
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ARACNE

ARACNE [14] explicitly infers a gene interaction network from microarray
expression profiles on the basis of mutual information [124] between the genes.
Two parameters control the pruning of candidate interactions. The mutual
information (MI) threshold eliminates edges that have low mutual information
and thus removes edges between genes that have a nonzero MI solely due to
random sampling of the data samples. The data processing inequality (DPI) is
used to eliminate the least strong interaction of a triplet of interactions and
thus for example eliminates transitive interactions between two genes if the
interaction is indirectly through a third gene.

All inference algorithms were run at their default parameter settings. The
only exception to this rule was ARACNE, which requires the specification
of the DPI threshold parameter. The authors suggest a DPI threshold level
between 0 and 0.15. In our experimental setup, a DPI level of 0.10 was used as
a typical threshold and a DPI level of 0 was used for comparison (all indirect
interactions are retained).

3.7 Performance evaluation criteria

In this section we discuss the score metrics that were used to indicate the
quality of the inferred gene interaction networks. The optimal solution to
the inference problem is a reconstruction of the complete interaction network
with its topology and causal relations between genes. In reality exact recon-
struction of the causal relations in the network is impossible, since generators
like SynTReN produce steady state data. To infer causality additional infor-
mation is required such as time-course gene expression data, perturbation
experiments with gene knockouts or other types of data sources such as lo-
cation data and motif data. As a consequence, the input network topology
has to be transformed to an undirected network to allow comparison with the
reconstructed networks. Additionally, both Genomica and SAMBA generate
module networks, which are a partitioning of the genes in subsets that belong
together. This modular output has to be translated into a corresponding gene
regulatory network to allow comparison with the original interaction network,
which does not explicitly contain the concept of modules. To this end both the
known network topology and all of the reconstructed networks are converted
into a gene-by-gene binary adjacency matrix for further analysis.

For the original SynTReN network, this matrix is constructed by calculating
the shortest undirected path length between every pair of genes in the original
network, and comparing this distance to a threshold. If the distance is below
the threshold the corresponding two entries (due to symmetry) in the adjacency
matrix are set to 1. If a threshold ’1’ is used this procedure results in a matrix
representing an undirected version of the original network. However, because
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of the way the adjacency matrix is constructed for the module networks, it
is necessary to use a higher threshold to allow meaningful comparison. By
default a threshold ’2’ was used, in effect grouping genes that are linked by at
most one intermediary gene into a ‘module’.

For the module networks, the adjacency matrix is constructed as follows:
starting from the gene-by-gene identity matrix M, the entries Mi j and M ji are
assigned a value of 1 if at least one module is present that contains both genes
i and j. A regulatory module therefore corresponds to a clique in the graph,
with a connection between every pair of genes in the module. In this way, the
modules will probably contain many indirect interactions. If genes a and b
share a common regulator c and all three genes are members of the module X,
the adjacency matrix will contain non-zero entries for the indirect interaction
between a and b. Apart from a set of modules, Genomica also generates a
regulatory program for each of the modules. While this is information is
certainly valuable, it was not used in the presented analyses primarily to
preserve a common evaluation ground between the different algorithms.

Because ARACNE directly infers an interaction network, rather than a module
network, the above procedure to construct the adjacency matrix for the orig-
inal network actually rewards the algorithm for finding indirect interactions.
However, ARACNE is capable of efficiently pruning these indirect interac-
tions based on the MI between each pair of genes. By lowering the path length
threshold to a value of 1 when constructing the adjacency matrix from the
original network, it is possible to evaluate this ability, and effectively require
ARACNE to infer the exact – but undirected – original network topology.
ARACNE’s output can be transformed into an adjacency matrix in a straight-
forward way because it already contains a single p-value for each selected pair
of genes that share a regulatory interaction in the inferred network. Genes
that are not connected according to ARACNE do not appear in its output.
Therefore, the selected gene pairs correspond exactly to the 1’s in the adja-
cency matrix, while all other entries are 0, except for those on the diagonal, as
mentioned before.

Comparison between the resulting adjacency matrices was performed by
counting the corresponding and conflicting entries in both matrices and calcu-
lating sensitivity (also known as recall), specificity, and precision (also known as
positive predictive value). As a summary metric, the F-measure was used, which
is the harmonic mean of precision and recall. We refer to Appendix A.2 for a
more detailed analysis of the performance metrics.
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3.8 Results

3.8.1 Experimental setup

The main goal of the presented analyses is to demonstrate how the use of syn-
thetic data can provide substantial insight into the performance of a network
inference algorithm and its relationship to properties of the input data. The
experimental setup that will be used, is shown in Figure 3.9: in a first step,
a synthetic gene interaction network is generated based on a chosen network
topology and interaction type. Next, expression data is generated that corre-
sponds to the gene interactions dictated by the network. This involves setting
various levels of noise and structuring the resulting dataset in experiments and
samples per experiment. An experiment in this context involves the selection
of a set of external conditions which are subsequently perturbed and fed into
the transcriptional gene network. For each experiment, SynTReN produces a
number of microarray datasets, referred to as samples. The resulting dataset
is then used as input to a number of different network inference algorithms,
which produce a candidate network of genes or gene modules. In a final step,
both the original network topology and the inferred candidate are compared
through a derived adjacency matrix, and the calculated performance metrics
are summarized by means of plots and discussed in the following sections.

The resulting performance metrics are used only as a relative score to differen-
tiate across different experimental settings. For several reasons, they were not
intended to quantitatively assess the performance of the inference algorithms
or to compare algorithms with each other. First of all only default settings were
used when running the inference algorithms. These settings are most likely
not the most optimal parameter settings for every experiment. Second, the
metrics only assess the presence and absence of edges in the inferred network.
A more sophisticated or in-depth evaluation of the inferred networks could
give more insight in the performance of an algorithm for a specific experiment,
but it less suitable for the high-throughput nature of this study.

With the setup described above, we aim at investigating the following ques-
tions related to several parameters of the expression data that will be supplied
to the inference algorithms:

Network size: how trustworthy are inference results of ever larger interaction
networks, given abundant expression data? This is important since it relates
to the applicability of inference methods for large networks, and links to
the discussion of the need of heterogeneous data sources to infer truly large
networks.

Graph topology: to what extent does the quality of inferred networks depend
on the statistical nature of the topology of interaction networks? Several previ-
ous studies [112, 114] have reported the use of synthetic expression data from
random graph models to validate network inference. However, previous work
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Figure 3.9: Overview of the experimental setup used. A synthetic interaction network
is generated and expression is data derived, which is used as input to several inference algo-
rithms. The inferred networks are then compared to the original by means of calculations on
corresponding adjacency matrices. Parameters to be defined are shown on the outer edge of the
diagram.

has shown that these random graph models do not resemble real biological
networks in every respect [160]. This raises the question of the performance
of algorithms that have been designed with only random network topologies
as a benchmark. To what extent does good performance on a specific class of
networks generalize to other classes? Can increasing knowledge of topologi-
cal properties interaction networks substantially increase the ability to design
better inference algorithms?

Noise type and amount: what is the effect of various types and amounts of
noise in expression data on the quality of inference results? The experiments
give an indication to the added value of a reduction of noise in high-throughput
experiments. Other experiments try to answer the relation between the esti-
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mate of biological noise in datasets and the confidence expressed in inference
results.

Amount of expression data: what is the marginal gain in inference quality
by spending resources on obtaining extra datasets of microarray experiments?
Do inference algorithms reach a maximum inference quality, after which sup-
plying more expression data becomes pointless? The reported experiments
investigate this issue in relation to the amount of noise present in the expres-
sion data provided.

Interaction type: what is the impact of different interaction types between
genes? More specifically: to what extent do highly non-linear interactions
act as a buffer to mask the activity of downstream genes in an interaction
cascade? Should such a buffering effect occur, it can be expected that inference
results downstream of such genes are of lower quality, which can be taken into
account when validating results on real-world data.

3.8.2 Validation of biological subnetwork selection methods

To validate our approach, a series of synthetic networks is generated both
by using different types of random graph models (Erdös-Rényi (ER), Watts-
Strogatz or small-world (SW), Albert-Barabási (AB) and directed scale free (DSF)
random graph models) and by selecting subgraphs according to the methods
described in Section Network topology. To obtain representative sets of net-
works for the given models, a sweep was done across a large range of possible
parameter settings for the tested models. The topological properties of each of
these networks are compared to these of the complete E. coli and S. cerevisiae
networks.

In Figure 3.10 and 3.11, the average indegree is plotted versus the average
directed path length to illustrate the different characteristics of the random
graph models, the previously described TRNs and the selected subnetworks.

Figure 3.10 shows that it is not possible to choose the parameters for Erdös-
Rényi and Albert-Barabási random graph models such that both the average
directed path length and average indegree are simultaneously close to the
values of biological TRNs, although they can resemble biological networks
for a single topological measure. Similar results are obtained for evaluated
topological characteristics other than average indegree and average directed
path length, such as average clustering coefficient, average out-degree and
average undirected path length (results not shown).

From Figure 3.11, a similar conclusion can be drawn for SW networks. They
can resemble biological networks for a single topological measure, but not
for several measures simultaneously. DSF graphs [24] can however resemble
biological networks with respect to both average directed path length and
average indegree for well-chosen parameter settings. Again, similar results
are obtained for other topological characteristics (results not shown).
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Figure 3.10: Topological properties of ER and AB random graphs, for subselected
networks of 300 nodes and for the complete biological networks. Average indegree
versus average directed path length for ER and AB random graphs of 300 nodes and for
biological networks. Biological networks are the complete E. coli (both networks described
[149] and [108]) and S. cerevisiae network, indicated by the suffix ‘-complete’. Subnetworks
containing 300 nodes were created by both the neighbor- and cluster-addition method, indicated
by the suffixes ‘-neighbor’ and ‘-cluster’ respectively. The region of the biological networks is
enlarged in the upper right corner of the figure. ER and AB random graphs exhibit a phase
transition [23, 44]. For low connectivity, often no path exists between several pairs of nodes and
many path lengths are therefore infinity. These are not considered for calculating the average
path length, which therefore appears small because it is calculated from the few short paths
that are present. When increasing the p-value (the probability of having an edge), the paths
are increasingly made up of more edges until a point is reached where the graph starts forming
one giant network. Adding more edges then increases the density of the graph connections,
resulting in a decrease of the average path length. ER: Erdös-Rényi, AB: Albert-Barabási.

3.8.3 The effect of network size

To assess the influence of network size on inference performance, subnetworks
of different sizes were selected from the E. coli source network [149], according
to the cluster selection method. The size of the selected subnetworks varied
from 50 to 300 edges in intervals of size 10 and linear interaction functions
were assigned to all edges in the network. All topnodes acted as external
input genes. A large expression dataset with a low noise level (1000 experi-
mental conditions, 1 sample each, 0.05 experimental noise) was generated for
each of the networks. For each algorithm the F-measure was plotted in func-
tion of increasing network size. All three algorithms show clearly different
quantitative behavior when faced with larger networks.
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Figure 3.11: Topological properties of DSF and SW random graphs of 300 nodes and
the complete biological networks. Average indegree versus average directed path length for
DSF and SW graphs of 300 nodes and biological networks. Biological networks are the complete
E. coli (both networks described by [149] and [108]) and S. cerevisiae network [65]. SW: Small
world (Watts-Strogatz [166]), DSF: Directed scale free (Bollobás [24]).

As illustrated in Figure 3.12a, SAMBA’s overall performance as indicated by
the F-measure, stays the same regardless of size, although there is clearly
a larger variation for smaller networks. Its precision, however, decreases
with increasing network size (see Figure 3.12b). Genomica produces lower
F-measure scores as the networks to infer grow, but levels out eventually
(Figure 3.12c). Genomica did not output results for many of the larger networks
at the settings that were used, even after relatively long running times. In cases
where the running time exceeded 12 hours, the experiments were stopped and
these data points are missing from the analysis. ARACNE’s performance also
decreases for larger networks, but does not seem to level out within the tested
range (Figure 3.12d).

For each of the three algorithms, we observe that the variance on the F-measure
decreases with increasing network size (Figure 3.12). The reason is that for
larger subnetworks from the E. coli network, more often similar parts are
selected in the subnetwork selection methods. The cluster addition method
which was used in these experiments is more sensitive to this effect than the
neighbor addition method since it adds a complete hub of genes (a gene and
all its targets) rather than a single gene during the network generation. For
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large subnetworks this inevitably leads to the selection of the same large hubs
for the different networks.

In summary, inference performance drops as network size increases, even if
enormous amounts of data are available. This decay however is not as drastic
as what might be expected, especially for ARACNE which shows no sign of
substantially reaching the end of its application scope for larger networks. In
order to infer larger networks with high confidence, it seems that comple-
mentary approaches such as adding additional data sources or incorporating
domain knowledge are needed.
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Figure 3.12: Impact of network size on the performance (F-measure and precision) of
ARACNE, Genomica and SAMBA.

3.8.4 The effect of network topology

In the following series of experiments smaller networks of approximately 50
genes were used. The effect of graph topology on the performance of the
inference algorithms was studied by creating gene networks with a topology
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derived from different random graph models that are known to approximate
biological networks. The studies models are the Erdös-Rényi [52] (ER) ran-
dom graph model, the Albert-Barabási [5] (AB) scale-free network model, the
Watts-Strogatz [166] (WS) small-world model and the directed scale free (DSF)
model as described by Bollobás [24]. Apart from these random models, a set of
topologies was also generated by selecting subnetworks from the previously
described E. coli [149] and S. cerevisiae [65] transcriptional network, as de-
scribed in [160]. These latter graphs more closely approximate the topological
properties of known transcriptional networks [160].

For each random graph model a small number (approximately 10) of repre-
sentative graphs topologies was created by sweeping the model parameters
across a range of values. The parameter values were varied around a default
set of values that was chosen to produce graphs whose properties are close to
the E. coli network (this was investigated in a previous study [160]). For every
generated graph topology, a series of 10 experimental runs was performed.
In each run several distinct synthetic gene networks with the same network
topology were created by assigning linear interaction functions to the edges in
the graph (see also Section 3.2) and synthetic gene expression data was gen-
erated for each of the resulting gene networks. Each dataset consisted of 100
simulated experimental conditions, with bionoise set at 0.05, and no exper-
imental or inputnoise. For every inference algorithm about 5600 expression
datasets were supplied for inference, covering 92 different network topologies.

Figure 3.13a indicates that SAMBA’s performance does not differ markedly
between any of the graph classes with regard to sensitivity or specificity.
Sensitivity is low across graph classes, because few true positive interactions
are found.

Both Genomica and ARACNE (Figures 3.13b-c) achieve very similar sensitivity
and specificity values for both AB and WS graphs, causing these graph models
to be largely co-located on both the plots (upper left). Other random graphs,
like the ER and DSF graphs, cover a much wider range of sensitivity/specificity
combinations. The S. cerevisiae and E. coli subnetworks also show significant
overlap with each other but clearly cover a different sensitivity/specificity than
the AB and WS graphs.

For both Genomica and ARACNE it is interesting to note that some of the E. coli
and S. cerevisiae subnetworks show a specificity of zero at high sensitivity. This
is due to the fact that the particular network topologies involved – which were
in all cases subnetworks selected with the cluster addition method – are in fact
one big star-like structure, with a single regulator regulating a large number of
genes. Since all gene-pairs are separated by at most two edges, the adjacency
matrix for a path length threshold of two is an all-one matrix. As a consequence,
the number of true negative interactions will always be zero and thus result in
a specificity value of zero.

Summarized, the topology of the network can have a strong impact on the
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performance of an inference algorithm. This should be taken into account
when evaluating inference algorithms using synthetic datasets. It is encour-
aging to note that for two of the algorithms tested here, namely Genomica and
ARACNE, the inference results on topologies that are known to be biologically
more plausible, are better.
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Figure 3.13: Impact of network topology on sensitivity and specificity for ARACNE,
Genomica and SAMBA.

3.8.5 The effect of various noise types

The impact of noise was investigated by generating expression data from the
same network under a variety of noise conditions. The network topology that
was used to generate data, was a subnetwork selected from E. coli [149] with
50 genes and 76 edges in which 5 genes acted as external inputs. In each of the
20 experimental runs, linear interaction functions were assigned to the edges
in the network and expression data was sampled for a range of noise levels.
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The tested range varied from 0.0 to 1.0 in intervals of 0.05 for each of the noise
types (bionoise, experimental noise and inputnoise). The nominal dataset
consisted of 100 experimental conditions, represented by 200 array datasets (2
samples per condition). In the next paragraphs, not all figures are shown. As
a guideline for the discussion, note that for a linear interaction sampled at a
1.0 noise level, the correlation between the regulator and the regulated gene
is still quite high (approximately 0.7), if the expression data sufficiently spans
the range of possible regulator values. This means that at a noise level of 1.0,
the data is still quite correlated compared to genuinely random data.

Since the effect of inputnoise only manifests itself as a difference between mul-
tiple samples measured under the same external conditions, its effect is very
small under the given experimental conditions for each of the three algorithms.
A smaller number of experimental conditions and a larger number of samples
can possibly provides more insight, but was not adopted in the experiments
to limit the computational costs.

In the results for SAMBA, the F-measure linearly decreases with increasing lev-
els of bionoise. A similar decrease in F-measure is observed with increasing
experimental noise. Detailed analysis shows a gradual increase in precision to
a level of 1 – the level at which all inferred interactions are correct – reflecting
the fact that SAMBA outputs module networks with very small or even empty
modules at high noise levels. In that case the only non-zero entries left in the
adjacency matrix are those on the diagonal which results in a high precision.
The sensitivity however drops to zero at high noise, globally resulting in de-
creasing F-measure as discussed. The effect of inputnoise on the performance
is much less pronounced as discussed.

In Genomica’s case, the F-measure shows a very small decrease across the
tested range of bionoise and experimental noise levels. Precision (Figure 3.14a)
decreases linearly with increasing bio- or experimental noise, while sensitivity
remains at an almost constant level (Figure 3.14b). The highest F-measure
values are not achieved with zero noise, but with a low amount of noise.
A possible explanation for this observation is the fact that Genomica uses a
correlation based clustering as an initial step to infer the module network. In
zero noise conditions such a correlation based approach has the tendency to
overconnect the network, because indirectly interacting genes will show as
strong a correlation as those that are directly interacting. Similar behavior was
observed when testing other correlation based methods, the data of which is
not included in this study.

For ARACNE, the effect of noise on the quality of the inferred output net-
work depends strongly on the scoring procedure. When using the default
procedure (see Section 3.7), the F-measure shows a reverse-S-shaped decrease
in F-measure with increasing levels of bionoise (Figure 3.15a). This decrease
is much more linear for experimental noise (Figure 3.15c). For ARACNE as
well, inputnoise has a less pronounced effect (value around 0.7) although the
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Figure 3.14: Impact of bionoise on performance metrics of Genomica.

F-measure scores show a very small decrease at high noise levels. On the other
hand, as explained in Section 3.7, it is possible to require ARACNE to precisely
infer the original network and evaluate its ability to remove indirect interac-
tions. In this set-up, the algorithm’s DPI-threshold was set to 0.00 for most
strict pruning of indirect interactions. In this case the F-measure (Figure 3.15b)
shows a very different behavior compared to the settings used above. The per-
formance metrics, which are at a low level when little or no bionoise is present,
show a steep increase with rising levels of noise to a plateau from which they
then decline very slowly. A possible explanation for this behavior is that when
almost no noise is present the mutual information (MI) between indirectly
connected genes is almost equal to that of the direct interactions, while the
propagating bionoise will tend to decrease the MI between indirectly con-
nected genes relative to those that are directly connected, resulting in more
efficient pruning. In this setting the effect of experimental and inputnoise is
also quite different: the F-measure remains unchanged and at a low level (see
Figure 3.15d), with an increase in precision offset by a decrease in sensitivity.
Possibly, ARACNE can not prune the indirect interactions efficiently in this
case, because these types of noise do not propagate through the network and
tend to decrease both the MI of the direct and that of the indirect interactions
in equal amounts.

ARACNE is quite robust in the face of increasing bionoise. When no bionoise is
present, the performance is high if the algorithm is not penalized for indirect
interactions (Figure 3.15a). With much bionoise, the performance remains
high – and in a way becoming even better – because indirect interactions are
effectively removed. For experimental noise on the other hand, performance
degrades gradually under the first scoring regime (Figure 3.15c). However,
this is not due to the removal of indirect interactions as with bionoise, since
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performance is low across the entire noise range for the second scoring regime
(Figure 3.15d).
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(a) Impact of bionoise, default scoring
regime.
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(b) Impact of bionoise, second scoring
regime.
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(c) Impact of experimental noise, default
scoring regime.
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(d) Impact of experimental noise, second
scoring regime.

Figure 3.15: Impact of different noise types on performance measures for ARACNE A
definition of the scoring regimes is given in Section A.2.

In summary, a clear effect of bionoise and experimental noise on the inference
performance of all algorithms is observed, with inputnoise having the smallest
influence. This illustrates that noise is an important, and sometimes required
factor for network inference. All three noise types available in the SynTReN
generator provoked a qualitatively different inference behavior, which sup-
ports their adoption in generators for synthetic data in general.
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3.8.6 The effect of available expression data

This series of experiments aims at showing the impact of available expression
data on inference results. The E. coli subnetwork with cluster addition of size
50 genes was chosen as the source network topology and 20 experimental
runs were done by assigning linear interaction functions to the edges and
subsequently sampling data from the network. Datasets varied in size form
5 simulated experimental conditions to 200 with a step size of 5. To evaluate
the dependency between the number of arrays that are needed to infer the
network, and the amount of noise in the dataset, the simulated expression
data contains ranging experimental noise levels from 0 to 1 with step size 0.2.
All other parameters were kept constant during the experiments.

A selection of Figures is shown to guide the discussion. Figures 3.16a-d show
the F-measures for SAMBA, Genomica and ARACNE, and the precision for
Genomica respectively. Error bars were calculated but are not shown on the
plots to improve visibility. The relative size of the error bars was comparable
to those of the preceding Figures such as Figure 3.15.

The behavior of the tested algorithms to increasing data and noise differs
substantially, so we start by splitting up the discussion per algorithm. As
shown in Figure 3.16a, SAMBA’s F-measure scores increase gradually when
the algorithm is presented with increasing amounts of expression data to infer
the network. No performance plateau was reached within 200 experiments,
and this behavior is consistent across noise levels. A more detailed analysis
(plots not included) shows that precision gets lower with an increasing amount
of data, but is offset by an increase in sensitivity, leading to the increasing F-
measure on Figure 3.16a. This implies that more interactions are found, of
which an ever increasing ratio are false (precision drops) but this is countered
by an increasing ratio of correctly inferred interactions (sensitivity increases)
leading to the overall better performance of the F-measure. The higher the
noise level, the consistently lower the inference quality.

For Genomica however (Figure 3.16b), a similar increase in F-measure is noted
for increasing input data, but a plateau a reached after which further addition
of expression data does not result in significant changes in performance. With
increases in experimental noise this behavior is generally maintained, only
the maximum score achieved is slightly lower. An interesting effect occurs
however when examining the score for zero noise: as shown in Figure 3.16b
the highest F-measure values are reached for a noise level of 0.2, not in absence
of noise as might be expected. This is due to a significantly lower sensitivity
at a noise level of 0 than at small positive noise (plot not shown). Precision
values on the other hand are ranked according to noise level as expected, with
the highest values for 0 noise, as shown in Figure 3.16d.

The results for ARACNE in Figure 3.16c show that it performs quite well
even with relatively small datasets, reaching maximum plateau performance
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quickly. When noise is introduced however, performance behaves qualita-
tively different, requiring larger amounts of data to climb across the entire
tested range without reaching a plateau.

The conclusion for this experiment is that there is a substantial but decreasing
benefit of supplying more expression datasets when trying to infer interaction
networks. The algorithms tested behave differently, sometimes reaching a
maximum performance such as ARACNE in noiseless datasets or Genomica
although the achieved score was lower than ARACNE’s. Taking the special
case of ARACNE inferring from noiseless data apart, reaching the inference
plateau takes enormous amounts of data, given the fact that the target network
aimed for here consists of only 50 genes.
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Figure 3.16: Impact of available expression data on performance measures for ARACNE,
Genomica and SAMBA.
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3.8.7 The effect of different interaction types

This section describes an experiment to assess the impact of different interac-
tion types between genes. The extent to which a highly non-linear interaction
can act as a buffer to mask the activity of downstream genes in an interaction
cascade was examined. Should such a buffering effect occur, it can be expected
that inference results downstream of such genes are of lower quality, which can
be taken into account when validating results on real-world data. In order to
observe this effect, a specific experimental setup was designed: chain topolo-
gies of varying length (8, 15 and 25 genes) were created, with only the first
node of the chain acting as an external input. Only the results for chain-length
25 are shown. Two types of experiments were performed:

1. In the first experiment linear interactions were assigned to all edges in
the network except for one, which was assigned a steep interaction. A
steep interaction acts as a kind of threshold, with regulated nodes having
a nearly constant expression value for most of the expression range of
the regulator, and showing a large change in expression value for a
small range of input values. It was hypothesized that this would have
a negative effect on the ability to infer the presence of this interaction,
because the correlated changes will only be observed in a relatively small
number of sampled experiments.

2. In the second type of experiment, an increasing number of edges in the
chain were assigned steep interaction functions, starting with the first
edge in the chain and continuing down the chain for each additional
steep interaction. For every combination that was tested, 50 runs were
performed with a biological noise level of 0.05.

The particular experimental setup requires the performance measures of the
different algorithms to be adapted. For SAMBA and Genomica, that aim at
inferring modules and module networks, the scoring mechanism was altered
such that the algorithms were required to assign all the genes to one large
module to obtain a high score. In practice, this means that the adjacency
matrix related to the original network was set to a matrix containing only
non-zero entries. ARACNE, on the other hand, was scored on its ability to
precisely infer the chain topology.

The F-measure for SAMBA is low overall (around 0.1), independent of the
number or position of steep interactions (see Figures 3.17b and 3.18b). For
the experiment with one steep interaction, Genomica achieves the highest F-
measure scores when the steep interaction is at the beginning or at the end
of the chain (see Figure 3.17a). A possible explanation is that a steep inter-
action in the middle of the chain will tend to lower the correlation between
the genes upstream of the interaction and the downstream genes. In this case,
Genomica often breaks up the network in more than one module, with the
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Figure 3.17: Impact of a single steep interaction in a linear chain on the performance
of ARACNE, SAMBA and Genomica. Impact on the performance (F-measure) of ARACNE,
SAMBA and Genomica of one single steep interaction at different positions in a linear chain of
25 single-input single-output genes with linear interactions. The plot shows a series of boxplots
for each position in the chain where a linear interaction was replaced by a steep interaction.
Each of the boxplots is the summary of 50 independent runs with the same network but with a
different randomization due to biological noise (0.05).
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Figure 3.18: Impact of a multiple steep interactions in a linear chain on the performance
of ARACNE, SAMBA and Genomica. Impact on the performance (F-measure) of ARACNE,
SAMBA Genomica of multiple steep interactions in a linear chain of 25 single-input single-
output genes with linear interactions. The plot shows a series of boxplots for each position in
the chain in which all linear interactions until that position are replaced by steep interactions.
Each of the boxplots is the summary of 50 independent runs with the same network but with a
different randomization due to biological noise (0.05).

genes upstream of the steep interaction tending to be grouped together, as
well as the downstream genes. On the other hand, when the steep interaction
is close to the ends of the chain generally one big module is found. When mul-
tiple steep interactions are present, the F-measure decreases with an increasing
number of steep interactions (Figure 3.18a) and saturates around 0.6. It be-
comes increasingly difficult to detect the relationship between all the genes in
the chain.
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When only linear interactions are present, ARACNE nearly always infers the
chain topology perfectly, but shows a very steep decrease in F-measure with
multiple steep interactions in the beginning of the chain (Figures 3.17c and
3.18c). The variation in F-measure is large for a nonzero number of steep
interactions and decreases as number of steep interactions increases. A pos-
sible reason is that the mutual information between two genes downstream
of the steep interactions on average decreases for a higher number of steep
interactions.

This experiment shows that highly non-linear interactions do act as a buffer,
masking the activity of downstream genes. The effect of this masking is highly
dependent on the type of algorithm and the output that it generates. The high
variation in performance may be due to sampling effects.

3.9 Summary

We have shown that the application of synthetic data on inference algorithms
provides insight into the relation between different properties of the simu-
lated model and the quality of the inferred network. Three different types of
inference algorithms were tested, each of which exhibited different behavior
to varying parameters of the synthetic data. The properties that were tested
were network size, network topology, type and degree of noise, availability of
expression data and interaction types between genes.

Experiments show that inference performance drops as network size increases,
even if enormous amounts of data are available. This decay however is not
as drastic as what might be expected. In order to infer larger networks with
high confidence it seems that complementary approaches are needed such
as adding additional data sources or incorporating domain knowledge. The
topology of the network can have a strong impact on the performance of
an inference algorithm, which should be taken into account when evaluating
inference algorithms using synthetic datasets. It is encouraging to note that for
two of the algorithms tested in this experiment, Genomica and ARACNE, the
inference results of topologies that are known to be biologically more plausible,
are better.

A clear effect of different types of noise on the inference performance of all
algorithms is observed. Experiments show that noise is an important, and
sometimes even a required factor during inference. All three noise types avail-
able in the SynTReN generator provoked a qualitatively different inference
behavior, which supports their adoption in generators for synthetic data in
general. We observed a substantial but decreasing benefit of supplying more
expression datasets when trying to infer interaction networks. The algorithms
tested behave differently, sometimes reaching a maximum performance where
adding more arrays becomes pointless. Reaching the inference quality plateau
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requires enormous amounts of data relative to the size of the inferred network.

The results show the added value of synthetic data in revealing operational
characteristics of inference algorithms which are unlikely to be discovered
by means of biological micro-array data, and thereby make a strong case for
computer models of biological systems in leveraging systems biology research.





Chapter 4

Probabilistic Relational
Models

4.1 Introduction

With the increased storage and processing capacity of current computers and
the advent of huge online databases with interlinked information, an explosion
in available data has occurred. Many of these datasets are stored in complex
relational databases and most machine learning algorithms such as Bayesian
networks [126], k-means clustering [106], decision trees [132] or neural net-
works [22] cannot be applied directly to such relational datasets since they are
learned from data that is represented by a single table, called attribute-value
data.

More expressive machine learning techniques that can represent both the vari-
ables and the relations that hold between them are called relational data mining
methods. Some of the basic concepts of relational data mining were already
outlined in 1970 by Plotkin [130] in the context of logical learning and the
inductive logic programming community (ILP) has focussed on learning de-
terministic rules from relational data with successful applications in e.g. drug
design and analysis of chemical databases. While relational data mining meth-
ods exist already for several decades, most machine applications are currently
still applied to attribute-value data.

In the past 10 years a renewed interest in relational data mining methods has
emerged with the availability of large relational datasets that, together with
the increase in computer power, enabled efficient learning of models for these
datasets. The domains of machine learning and ILP begun to incorporate the
respective complementary aspects of the other domain, namely probabilis-
tic representations to ILP [40] and relational extensions to machine learning

73
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[55, 121]. The domain that now covers these two communities is called sta-
tistical relational learning (SRL) [39, 60], sometimes also referred as probabilistic
logic learning or probabilistic inductive logic programming, and its research area
focuses on learning in relational data with a strong probabilistic structure.
SRL lies at the intersection of machine learning, knowledge representation
and uncertainty reasoning.

4.2 Statistical relational learning

The two most common formalisms for representing SRL systems are based
on either logic or frame-based formalisms and the probabilistic aspects are
usually based on graphical models [84] or stochastic grammars. Many SRL
approaches are defined on graphical models and often on directed models such
as Bayesian networks (BN) [83, 126] or Probabilistic Relational Models (PRMs)
[55, 61, 94]. However there is recently a growing interest in the application of
undirected models such as Markov networks (MNs).

Graphical models are a widely used technique that have been applied to a
variety of machine learning problems. They provide an intuitive way of rep-
resenting complex models as a composition of simple relations between its
constituents. One of the most important and widely known types of graphical
models is a Bayesian network. Bayesian networks have been applied in vari-
ous research areas, ranging from forecasting and classification to diagnostics
and computer vision applications. Despite their elegance and widespread ap-
plication, Bayesian networks have one major limitation which is that they can
only be applied to attribute-value data and therefore not directly to relational
datasets. Other types of graphical models include for example Markov models
and Kalman filters.

From both SRL subfields, different approaches are proposed to bridge the
gaps between the different techniques. A first class of models for density
estimation in relational data sets are probabilistic relational models (PRMs) [55,
61, 94]. PRMs extend Bayesian networks to the relational domain and similarly
relational Markov networks (RMNs) are the relational extension to undirected
Markov networks. Contrary to PRMs, RMNs are not limited by any acyclicity
constraints and can therefore represent arbitrary relations between variables,
for example autocorrelation. Models for datasets with many autocorrelation
dependencies can often not be structured in an acyclic manner and thus PRMs
cannot be applied directly. However, the higher representational capabilities
of RMNs usually come with an increase in computational cost for learning
cyclic models which becomes prohibitively high for large cyclic graphs.

Another variant of this class of models are relational dependency networks (RDNs)
that combine some of the advantages of both PRMs and RMNs. They have
both the ability to represent and learn cyclic dependencies and to employ
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efficient learning techniques. The main difference between RDNs and other
probabilistic models such as directed PRMs and relational Markov networks
is that RDNs do not specify a single joint distribution but rather a set of
conditional probability distributions that are learned independently. This
implies that the learned model is only an approximation of the true joint
probability distribution. However, in some practical applications, RDNs have
proven to approximate the true joint probability distribution quite well.

A second class of models for density estimation extend logic programming
towards probabilistic reasoning. This class of models is called probabilistic
logic models (PLMs). PLMs specify a probability distribution over all possible
truth assignments to the groundings of the first-order formulae and include for
example Bayesian logic programs (BLPs) that augment the power of Bayesian
networks with logic programs [39, 88], Markov logic networks (MLNs) [137]
and stochastic logic programs (for an overview of these techniques, see [41]).

For some undirected models such as Markov models and hidden Markov
models, inference can be performed efficiently. The extensions of Markov
models to use relations and logic, have led to relational Markov models and
logical hidden Markov models. While less expressive than some more general
approaches, these techniques are in principle more efficient and the existing
learning algorithms for their non-relational counterparts can be applied almost
directly.

In this Chapter, we will focus on one particular class of these SRL models,
namely Probabilistic Relational Models [55, 61, 94]. PRMs have been applied
to a variety of relational machine learning problems [34, 62, 122] and several
applications [144, 145, 146, 147] were developed by E. Segal in the domain of
bioinformatics. PRMs offer an elegant way for describing a biclustering model
that is easily extensible towards integrating additional data sources as will be
discussed in Chapter 5.

As more complex models will be developed, PRMs may at some point prove
to be too constrained by the acyclicity constraints and the limitation to only
directed graphs. More expressive models such as Bayesian logic programming
[88], Markov logic [137] or the application of undirected models such as RMNs
may provide interesting research tracks in these cases.

4.3 Bayesian networks

As mentioned above, a Bayesian network [83, 126] is one of the most commonly
used types of graphical models. We will present an overview of the main
concepts of Bayesian networks and highlight some properties that will be
important when we introduce PRMs in Section 4.4.

Consider a set of n random variables X = {X1, . . . ,Xn}. An element x ∈ X
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specifies a point in the space that is defined by the Cartesian product of all
variables Xi. A joint probability distribution (JPD) can now be defined over
all points x by assigning a probability to each of these points. The most
straightforward approach to accomplish this is by means of a table that lists
all individual points and that assigns a probability to each of them. However,
the size of such a table is exponential in the number of variables n. In practice,
there are often independencies and conditional independencies between many
of the variables Xi. Taking these into account leads to a much more compact
representation of the JPD. One of the most often used techniques to accomplish
such a compact representation is by means of a Bayesian network.

A Bayesian network describes the probabilistic relationships that exist between
the random variables Xi and consists of two parts: (1) a directed acyclic graph
(DAG) representing the independency relations between the random variables
Xi where each random variable Xi corresponds to a node in the graph and a
directed arc in the DAG represents a parent-to-child relationship between
two variables; (2) the second component is a conditional probability distribution
(CPD) for each of the variables. Together these components describe the joint
probability distribution (JPD) P(X1, ...,Xn|θ,SDAG) over all the variables of the
Bayesian network. The CPDs are parameterized by a set of parameters θ and
the DAG structure is represented by SDAG.

Two sets of variables X and Y in this graph are said to be conditionally inde-
pendent given a third variable Z if P(X,Y|Z) = P(X|Z)P(Y|Z). Each node Xi
in the graph is conditionally independent of any subset A of nodes that are
non-descendants of Xi given a joint state of the parents Pa(Xi) of Xi, namely:
P(Xi|A,Pa(Xi)) = P(Xi|Pa(Xi)). This allows us to write the JPD as a product of
conditional probability distributions:

P(X1, ...,Xn|θ,SDAG) =

n∏
i=1

P(Xi|Pa(Xi), θ,SDAG) (4.1)

Figure 4.1 illustrates a classical example of a Bayesian network. This example
contains three variables Rain, Sprinkler and GrassWet that represent if it is
raining, if the sprinklers are on and if the grass is wet respectively. The model
assumes that Sprinkler depends on Rain and that GrassWet depends on both
Sprinkler and Rain. The JPD that describes these dependencies is:

P(G,R,S) = P(G|R,S).P(S|R).P(R) (4.2)

where the explicit dependency on the parameters θ and the dependency struc-
ture SDAG have been omitted for notational convenience.

Usually, each conditional probability distribution P(Xi|Pa(Xi), θ,SDAG) depends
on its own set of parameters θi, such that θ can be written as θ = {θ1, . . . , θn}.
This is also the case in Figure 4.1, where each variable has an associated table
CPD with its own parameters. Assuming this independence between CPD
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0.60.4false
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falsetrueRain

Figure 4.1: A simple Bayesian network, illustrating the basic concepts of Bayesian
networks. The network has three variables Rain, Sprinkler and GrassWet. The dependency
arcs indicate that GrassWet depends on the state of Rain and Sprinklers and that Sprinklers
depends on Rain.

parameter sets, Equation 4.1 can be written as:

P(X1, ...,Xn|θ,SDAG) =

n∏
i=1

P(Xi|Pa(Xi), θi,SDAG) (4.3)

where P(Xi|Pa(Xi), θi,SDAG) is now a local distribution function for Xi.

The Markov blanket (MB) of a variable Xi is the set of variables that effec-
tively shield off this variable from the rest of the network: given the values of
variables in MB(Xi), the probability distribution of Xi is conditionally indepen-
dent of all other variables in the network. More formally: P(Xi|MB(Xi),Y) =
P(Xi|MB(Xi)) for every set of variables Y = {Y1, . . . ,Yn}. One can prove that the
Markov blanket of a variable Xi is the set of variables consisting of the parents
of Xi, the children of Xi and the parents of the children of Xi.

4.3.1 Bayes theorem

In its most general form, Bayes’ theorem defines the rule for updating belief
in a certain hypothesis H given (additional) evidence E through the follow-
ing equation, in which the explicit dependence on background knowledge is



78 CHAPTER 4. PROBABILISTIC RELATIONAL MODELS

omitted:

P(H|E) =
P(H).P(E|H)

P(E)
(4.4)

P(H|E) is called the posterior probability, P(H) is the prior probability of the
hypothesis H and P(E|H) is called the likelihood, it gives the probability of the
evidence assuming the hypothesis H is true. The denominator P(E) can be
regarded as a normalizing constant since it is independent of the hypothesis
H.

In Bayesian modeling, the hypothesis is often defined as the set of parameters
θ of a particular model and the additional evidence E is often the dataset that
has been collected (represented by the random variable X). Redefining Bayes’
theorem in function of these variables leads to Equation 4.5 with likelihood
L(θ|X) and prior P(θ).

P(θ|X) =
P(X|θ).P(θ)

P(X)
(4.5)

∝ P(X|θ).P(θ) (4.6)
∝ L(θ|X).P(θ) (4.7)

4.3.2 Learning Bayesian networks

The parameters of a Bayesian network can be learned from an attribute-value
dataset. When the structure of the network is known, two cases can be dis-
tinguished: learning from complete data and learning from incomplete data.
If the structure of the network is unknown, structure learning approaches
[30, 32, 71] are used to derive the dependency structure from the available
data. For the models presented in this thesis, we assume a known structure
and focus on the methods for parameter learning in case of complete and
incomplete data.

Complete data

The goal of the learning procedure is to identify the set of parameters θ that
maximize some scoring function. When no prior information is available
for the parameters, the likelihood function is often used as a scoring function.
However, the likelihood function is known to overfit the training data and in
cases where prior information is available for the parameters in the form of
a distribution P(θ), the posterior distribution can be used as a scoring func-
tion. The parameters associated with the maxima of these functions are called
the maximum likelihood (ML) and maximum a posteriori (MAP) solutions
respectively.

θ̂ML(x) = argmaxθP(X|θ,S) (4.8)
θ̂MAP(x) = argmaxθP(X|θ,S).P(θ) (4.9)
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The identification of the maximum likelihood solution for the CPDs can be
performed very efficiently [120], since Equation 4.8 decomposes into a set of n
separate optimizations for each parameter set θi:

θ̂ML(x) = argmaxθP(X|θ,S) (4.10)

= argmaxθ
n∏

i=1

P(Xi|Pa(Xi), θi,S) (4.11)

Usually, the prior distribution P(θ) is chosen such that a similar decomposition
applies to the prior (see Section 4.3.3). The MAP optimization problem is then
reduced analogously to a set of n independent optimization problems.

Incomplete data

In case of incomplete data, the scoring function is maximized over all possible
completions of the hidden variables H (where H ⊂ X). This leads to the
following equation for the maximum likelihood solution:

θ̂ML(x) = argmaxθ
∑
h∈H

P(X|θ,S,H = h)P(H = h|θ,S) (4.12)

In case of incomplete data there is no longer an analogous decomposition of
the scoring function similar to Equation 4.10 and identifying a global maxi-
mum is now a hard problem. Several approaches can be used to identify a local
optimum of the scoring function, such as gradient descent algorithms, simu-
lated annealing or MCMC strategies. An approach that has been specifically
designed for optimizing likelihood functions, is the Expectation-Maximization
algorithm [43]. In Section 4.4.5, the Expectation-Maximization algorithm will
be introduced together with an illustrative example for probabilistic relational
models.

4.3.3 Prior distributions

The prior distribution P(θ) often adheres to two assumptions that allow the
posterior distribution to be decomposed in a set of factors that each can inde-
pendently be optimized. These assumptions therefore often lead to significant
decreases in computational cost for both inference and parameter learning
tasks. The global parameter independence is a standard assumption on the form
of the prior that is commonly used in Bayesian networks learning [71]. The
assumption states that the prior over the parameters for the different attributes
are independent. A second assumption that is often used is the local parameter
independence, stating that the prior distribution in a particular node is indepen-
dent from the different parent values of that node.

In Bayesian probability theory, conjugate priors are frequently used as particular
form of prior. A probability distribution P(θ) is said to be conjugate to a
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likelihood function P(X|θ) if their resulting posterior distribution is again a
distribution from the same family as the prior. For example, the exponential
family (of which the Gaussian distribution is a member) is conjugate to itself.
Combining a Gaussian likelihood function with a Gaussian prior results again
in a Gaussian posterior. Conjugate priors allow compact algebraic notations
for the posterior and are therefore a convenient way to define prior knowledge.
However, despite their algebraic convenience, conjugate priors do not always
optimally reflect prior domain knowledge and sometimes more complex prior
distributions are required.

4.3.4 Conditional probability distributions
Table CPD

CPDs can be represented in many different ways. One of the most straight-
forward CPDs is a table CPD which describes the relation between a discrete
variable and its discrete parents. In a table CPD, a separate parameter for each
combination of parent values u, describes the probability P(Xi|Pa(Xi) = u). For
example, in the case of two parents each with binary values, a table CPD for a
binary variable is defined by 22 = 4 parameters. An example of a table CPD
for a binary node with two binary parents is given in Table 4.1.

x y P(Z = 0|X = x,Y = y)
0 0 θ00
0 1 θ01
1 0 θ10
1 1 θ11

Table 4.1: Example of a table CPD for a binary node Z with 2 binary parents X and Y. This
table CPD has four parameters θi, j. Note that P(Z = 1|X = x,Y = y) is defined implicitly by
the relation P(Z = 0|X = x,Y = y) + P(Z = 1|X = x,Y = y) = 1.

Gaussian CPD

One of the most commonly used CPD for continuous data is a Gaussian or
Normal distribution. Many variables are approximately normal or log-normal
distributed in the biological domain, making a Normal distribution a straight-
forward choice in such cases. If the underlying variable is not normally dis-
tributed, alternative choices such as Poisson, Gamma or uniform distributions
can be used depending on the case. A Normal CPD for a single variable X is
defined as:

P(X = x|µ, σ) =
1

σ
√

2π
exp[−

(x − µ)2

2σ2 ] (4.13)

where the parameters µ and σ are the mean and standard deviation of the
Normal distribution.
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4.4 Probabilistic Relational Models

4.4.1 Introduction

Probabilistic Relational Models (PRMs) [55, 61, 94] were recently developed
as an extension of Bayesian networks to the relational domain. PRMs have
since been successfully applied in wide range of settings such as hypertext
classification [62], collaborative filtering [122], ecosystem analysis [34] and
genomics [144, 145, 146, 147]. In this Chapter we introduce PRMs with an
illustrative example. The key language concepts and a notation are defined,
which will be used consistently throughout this dissertation.

4.4.2 Definitions and notation

A PRM specifies a probability distribution over a relational dataset and consists
of two main parts: (1) a relational component that describes the relations in
our domain and (2) a probabilistic component that describes the probabilistic
dependencies between the different entities in the domain. Given a particular
dataset instance, a PRM specifies a joint probability distribution over this
particular instance. The notation used in this thesis is largely consistent with
the notation as defined in Segal [143], with some minor deviations to reduce
notational overhead.

Figure 4.2 shows a fictitious example that will be used throughout the remain-
der of this Chapter to illustrate various aspects of PRMs. The PRM models
a patient/treatment dataset containing the results of some (fictitious) Influenza
infections. In the proposed model in Figure 4.2, we see that the patient’s degree
of illness depends on the type of virus and its pandemic severity index, on the
drug class of the administered drug and on the patient’s age.

For each PRM, a relational schema Σ exists, that defines a set of classes C =
C1, ...,Cn and the relations that hold between these classes. If we draw an anal-
ogy between PRM concepts and relational database concepts, then a relational
schema relates to the database structure and a class relates to PRMs much like
a table relates to a relational database. Table 4.2 shows all related concepts
between PRM language and relational database language. In our example, the
PRM classes are Patient, Drug and Influenza virus.

Each of these classes has a set of descriptive attributes, an attribute A of a
class C is denoted as C.A and the set of attributes of a class C is A[C]. Each
attribute can take a particular value from a predefined value space Val(C.A),
which can be a discrete set or a continuous range of values. For example, the
Influenza_virus class has five attributes: type, subtype, host, and pandemic SI. The
value space for type is for example: Val(In f luenza.type) = {A,B,C}.

In addition to a set of attributes, each class can have a number of reference slots,
which indicate the relations between the different classes. We use the notation
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Influenza virusInfluenza virus
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Patient
infected by

drug treatment
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4
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H3N2
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name
Zanamivir
Oseltamivir
Peramivir
Amantadine
Rimantadine

Figure 4.2: Relational dataset and PRM model of a fictitious Influenza infection
dataset, illustrating the key concepts of PRMs. A patient/treatment model is shown,
in which the impact of both the Influenza virus type and the type of drug treatment are linked
to the degree of illness of the patient. The class Influenza virus contains the following at-
tributes: type and subtype: define the type of Influenza strain; host: the host organism that
the virus uses to replicate; pandemic SI: the pandemic severity index, ’1’ indicates low severity
and ’5’ high severity. The class Drug has attributes name and drug class referring to the name
of the drug and the classification of the drug. Finally, the class Patient contains attributes sex,
age and illness. Next to the attributes, Patient also has two reference slots infected by and
drug treatment that refer to a particular Influenza virus object and Drug object respectively.

C.ρ to indicate a reference slot ρ of class C and the complete set of reference
slots for a particular class C is denoted as R[C]. Two concepts are associated
with a reference slot C.ρ: the domain type Dom[ρ] which is the class C and
the range type Range[ρ] which is the class to which C.ρ refers to. Applied to
our example, the class Patient has two reference slots: Patient.infected_with and
Patient.treatment which respectively relate Patient to the classes Influenza_virus
and Drug. So the domain type for in f ected_by is Dom[in f ected_by] = Patient
and the range type is Range[in f ected_by] = In f luenza_virus.

Reference slots can be linked together to form a slot chain. This is formally as a
sequence of reference slots ρ̄ = (ρ1, ..., ρn) for which: Range[ρi] = Dom[ρi+1],∀i.
For example, Patient.in f ected_by.In f luenza_virus indicates the (set of) virus(es)
with which the patient was infected with.

Once a relational schema is defined, a specific instance I can be created of that
schema. An instance defines the set of objects c for each class C: I[C] and for
each object c it defines a value for each attribute c.a (I[c.a]) and also a value
for each reference slot c.ρ of that object. Figure 4.3 shows an example of an
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PRM concept relational database concept
relational schema database scheme
class table
attribute column
reference slot foreign key
instance database instance with values for each item
skeleton database filled (with all null values)

Table 4.2: Relationships between PRM concepts and their counterparts in relational database
modeling.

instance (Figure 4.3b) for a particular schema (Figure 4.3a).

Patient

infected by
drug treatment
sex
age
illness

Patient

infected by
drug treatment
sex
age
illness

Avian influenza (H5N1)
type: A
subtype: H5N1
host: avian
RNA: ACCUG…GAAC
pandemic SI: 2

Avian influenza (H5N1)
type: A
subtype: H5N1
host: avian
RNA: ACCUG…GAAC
pandemic SI: 2

John Doe
sex: male
age: 41
illness: severe

John Doe
sex: male
age: 41
illness: severe

Zanamivir
name: zanamivir
type: neuraminidase inhibitor

Zanamivir
name: zanamivir
type: neuraminidase inhibitor

Mary Major
sex: female
age: 24
illness: mild

Mary Major
sex: female
age: 24
illness: mild

Jane Doe
sex: female
age: 33
illness: death

Jane Doe
sex: female
age: 33
illness: death

Spanish flu (H1N1)
type: A
subtype: H1N1
host: human
RNA: GUUCU…CUCG
pandemic SI: 5

Spanish flu (H1N1)
type: A
subtype: H1N1
host: human
RNA: GUUCU…CUCG
pandemic SI: 5

Amantadine
name: amantadine
type: M2 inhibitor

Amantadine
name: amantadine
type: M2 inhibitor

Influenza virus

type
subtype
host
RNA
pandemic SI

Influenza virus

type
subtype
host
RNA
pandemic SI

Drug

name
type

Drug

name
type

a) b)

Figure 4.3: Relational schema and example instance of a relational schema. (a) Rela-
tional schema for the example in Figure 4.2. Rectangles are the classes, dashed lines are the
relations between the classes. (b) Example instance for the relational schema in (a). Rectangles
are objects of a specific class and dashed lines indicate the relation between two specific objects.

We can now define a relational skeleton σr of a relational schema as a partial
instantiation of an instance: the set of objects and their relations are defined
by the skeleton, but the values of the attributes remain unspecified.

Finally, the set of parents of an attribute C.A is defined as Pa(C.A) = {U1, . . . ,Up},
where Ui is either of the form C.B or Cy.ρ̄.B (where B is the parent attribute
and ρ̄ is a slot chain). The parents of a class attribute Pa(C.A) are formal
parents: each object c of a class C has a different instantiation of parents,
depending on the instance I. A parent can be a direct parent of the form c.B.
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For example Patient.age is a direct parent of Patient.illness in our example of
Figure 4.2. Parents can also be indirect by means of a slot chain. For example,
Patient.treatment.type is an indirect parent of Patient.illness.

Having introduced the key concepts in PRM language, a PRM can now be
defined as a model that specifies a probability distribution over all possible
completions I of the skeleton σr. More formally:

Definition 1 (Probabilistic Relational Model (PRM) Π) For a given relational
schema Σ, for each class C ∈ C and for each attribute A ∈ A[C], a PRM defines a
valid conditional probability distribution (CPD) P( C.A |Pa(C.A) ).

4.4.3 Joint probability distribution

Definition 2 (ground Bayesian network (GBN)) A ground Bayesian network is
defined by a relational skeleton σr together with a PRM Π, in the following way:

• For every attribute A of every object c of each class C in σr, there is a corre-
sponding node c.A in the ground Bayesian network.

• Each node c.A depends probabilistically on its parents Pa(c.A) according to the
conditional probability distribution P( C.A |Pa(C.A) )

Figure 4.4 shows the ground Bayesian network for our running example. Sim-
ilarly to the chain rule in Bayesian networks, the joint probability distribution
of the ground Bayesian network is defined as the product over all conditional
probabilities P( x |Pa(x) ) of each node x in the GBN. This means taking the
product over all classes C, over all objects c of each class and over all attributes
A of each object of the probability P( c.A |Pa(c.A) ). Like Bayesian networks, the
ground Bayesian network is also required to be acyclic. A sufficient condition
to achieve this is that the dependency relations in the PRM are acyclic. The
ProBic model in Chapter 5 adheres to this condition.

Definition 3 (Joint probability distribution (JPD)) :
For a given instance I, the joint probability distribution of the ground Bayesian
network associated with the instance I and the relational skeleton σr, is given by:

P(I|σr,S, θS) =
∏
C∈C

∏
A∈Attr(C)

∏
c∈σr(C)

P(I[c.A] |I[Pa(c.A)] ) (4.14)

where S represents the dependency structure of a PRM model and θS the
parameters associated with that particular dependency structure S. The JPD
associates a probability to all possible instances that are a completion of the
relational skeleton σr.
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v1.subtype v1.host

v1.RNA

v2.subtype v2.host

v2.RNA_seq v2.pathogenicity

p1.illness

drug2.name

Avian influenza (H5N1) Spanish flu (H1N1)

John Doe Mary Major Jane Doe

Amantadine Zanamivir
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v2.type

p1.sex

p1.age

p2.sex p2.illness

p2.age

p3.sex p3.illness

p3.age

drug1.name drug1.type drug2.type

Figure 4.4: Ground Bayesian network for the example in Figure 4.2.

4.4.4 Inference

The JPD associates a probability to all possible instances that are a completion
of the relational skeleton σr. One of the main questions to be answered is what
the most likely model is that best explains the collected data. This question
can be addressed using the ML or MAP principles that identify the model with
the highest likelihood (or posterior) given the data: argmaxMP(M|D)

Various other questions can also be formulated as a Bayesian inference prob-
lem. Applied to our running example (Figure 4.2), we can for example ask the
following kinds of questions:

• What is the probability that a patient who is infected with Influenza
subtype H5N1 and is being treated with an M2 inhibitor, will die?

• Do age and sex of the patient influence its clinical outcome? If so, is this
true for all the drugs and virus strains?

• Is there a difference in clinical outcome between the two drug classes
neuraminidase inhibitor and M2 inhibitor?

• Can different groups of patients be identified for which the treatment
works differently (personalized medicine)?

Most of these questions can be equally well addressed in separate models
using various other techniques. However, PRMs offer a single unified model
of the complete domain where each of these questions can be answered in a
probabilistic way.
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4.4.5 Learning PRMs

In order to answer these inference questions for the PRM, first a model needs
to be learned based on the available data. In the most straightforward way, this
involves learning the parameters of the model, given that we have complete
data. Most biologically interesting problems however lead to a model with
hidden attributes, and therefore lead to learning problems with incomplete
data. For example, our Influenza example in Figure 4.5, the Patient.group
attribute is initially unknown and will be learned from the data.

In principle any general learning technique that is applicable to Bayesian
networks can also be applied to PRMs as a PRM implicitly describes a Bayesian
network. However, the underlying Bayesian network is often impractically
large, leading to intractable calculations. For most classical Bayesian inference
approaches, a modified procedure can be applied to PRMs that takes into
account the specific relational structure which is present in the PRM. Structured
exact inference [93, 128, 94] is such a method, but it leads however to intractable
calculations for most biological applications.

Approximate inference methods are better suited to biological problems. For
example, Markov chain Monte Carlo (MCMC) approaches and more specifi-
cally Metropolis-Hastings and Gibbs sampling strategies have been applied in
the context of PRMs [158]. While the Gibbs sampling method is guaranteed to
converge (for an infinite number of samples) to the full distribution if certain
conditions are met, in practice a finite number of samples are often collected
around one or more local optima. Alternative approaches such as variational
approaches [73] and blocked Gibbs sampling have been used to address this
problem, but with varying degrees of success. One of the standard approaches
for parameter estimation in the case of hidden (or latent) variables is Expectation-
Maximization (EM) [43]. This technique exists in many different shapes: soft
assignment and hard assignment EM [87], generalized EM approaches,. . . As we
will show in Chapter 5, EM leads to excellent decomposition and fairly good
convergence properties for PRMs if certain conditions are met.

In the following sections we will briefly summarize the general parameter
learning approaches outlined in [55, 61] for the complete data case and for the
extension towards incomplete data [143]. Structure learning involves learning
the structure itself of the dependency network in PRMs and it is not covered
in this thesis. We refer to [55, 61, 143] for description of structure learning
techniques in PRMs.

Parameter learning

Similar to parameter learning in Bayesian networks, a full Bayesian approach
to parameter learning for PRMs involves finding the joint probability distribu-
tion over all possible combinations of parameters values. For most biological
problems of interest, such a full Bayesian approach is computationally in-
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tractable. Fortunately, bioinformaticians are usually not interested in the full
distribution, but rather in the maximum likelihood solution(s). In almost all prac-
tical situations, the search for such a ML or MAP solution can be performed
with a significantly reduced computational cost.

Maximum likelihood parameter estimation in case of complete data
Parameter learning in the complete data case is relatively straightforward.
The structure S of the PRM is fixed in this setting and there are no unknown
attribute values. Our starting point for PRMs is the likelihood function of the
parameter set θS:

l(θS|I, σ,S) = P(I|σ,S, θS) (4.15)

=
∏
C∈C

∏
A∈Attr(C)

∏
c∈σr(C)

P(I[c.A] |I[Pa(c.A)] ) (4.16)

This function is in fact the likelihood function of the ground Bayesian network
that is associated with the PRM. The difference of the PRM log-likelihood
function compared to that of Bayesian networks, is that the parameters of nodes
in the ground Bayesian network that are associated with the same attribute,
are shared, meaning they are forced to be identical.

The goal of maximum likelihood parameter estimation is to find the set of
parameters θS that maximize the likelihood function, given I, σ and S. Sim-
ilar to parameter learning in Bayesian networks [71], the maximum likeli-
hood solution for PRMs can also be independently calculated for the CPD
of each attribute. Analogously to parameter learning in Bayesian networks
(Section 4.3.2), prior distributions can be defined over the parameters and the
posterior is maximized instead of the likelihood function.

Maximum likelihood parameter estimation in case of incomplete data
To illustrate parameter estimation for the incomplete data case, we extend
the Influenza example of Figure 4.2 with an additional categoric attribute
Patient.group whose value is initially unknown for each of the patients (i.e.
it is a hidden attribute). The attribute Patient.group clusters patients in mutu-
ally exclusive groups and indicates how each patient responds to a treatment
given his/her underlying genetic background. It is conditionally dependent
on the value of another attribute Patient.genome, containing (part of) the DNA
sequence of that patient’s genome. The dependency relation is not further
specified in this fictitious example, but one could for example use a multino-
mial model indicating the presence or absence of some particular genes that
are associated with the treatment response. By assigning patients to a particu-
lar group that is linked to a genotypic profile, the model thus identifies patient
groups with a similar genotypic profile that respond similarly to a particular
treatment. Figure 4.5 illustrates this extended model.

In this extended example we need to learn both the model parameters and the
hidden attribute values. The set of attributes with missing values is denoted
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Figure 4.5: An extension of the patient/treatment model with an additional hidden
attribute Patient.group. The attribute indicates the difference in response that each patient
will have for a treatment due to his/her genetic background, by grouping patients together with
the same genotypic profile and which respond similar under similar conditions of infection and
treatment.

H. To obtain the complete likelihood function, a value needs to be calculated
for every possible completion of missing attributes H. The distribution over
all possible completions is then used to estimate the model parameters, as
illustrated in Equation 4.17.

l(θS|I, σ,S) =
∑
h∈H

P(I|σ,S, θS,H = h) · P(H = h|σ,S, θS) (4.17)

Contrary to the complete data case, the likelihood function does not decompose
into independent contributions in case of missing attributes. This type of
inference is generally intractable, so we resort to optimization procedures that
identify local maxima of this likelihood function. Several approaches can be
applied to perform local function optimization such as Monte Carlo methods,
Gaussian approximation and gradient-based approaches. See also Heckerman
and Geiger [71] for a more detailed overview of learning methods for Bayesian
networks.

One particularly interesting approach for PRMs is to use Expectation-Maximization
(EM) [43] in case of incomplete data. EM is guaranteed to identify a local maxi-
mum of the likelihood function by applying the following procedure. Starting
with an initial set of parameters values θS = θ(0)

S (which can be randomly cho-
sen or derived through other methods), an Expectation step and a Maximization
step are iterated until convergence.
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In the Expectation-step, the full posterior distribution over the hidden attributes
is computed, given the observed attributes and the current set of parameters
θ(t)

S : P(H|I, σ,S, θ(t)
S ). This computation can be done by performing inference in

the ground Bayesian network.

In the Maximization-step, we maximize the log-likelihood function with re-
spect to the parameter set θ given the computed distribution over the hidden
attributes in the E-step. This step is similar to the maximum likelihood param-
eter estimation in case of complete data. Whereas in the complete data case
the single value for that attribute would be used, now a distribution over the
possible values of the hidden attribute is used.

The above approach is called soft assignment EM. Another variant is hard assign-
ment EM where not the full distribution over all values of the hidden attribute
is calculated in the E-step, but rather the maximum likelihood assignment is
calculated:

h∗ = argmaxh∈HP(H = h|I, σ,S, θ(t)
S ) (4.18)

The hard assignment variant can in some situations significantly reduce the
computational cost, as we will see in Chapter 5. This hard assignment EM is
guaranteed to converge to a local maximum of the likelihood of the completed
data, P(I,H = h|σ,S, θS), where h represents a complete assignment to the
missing attributes H.

4.5 Summary

We summarize the main concepts that were introduced in this Chapter and
their relation to the rest of this dissertation.

• A brief introduction was given, relating Probabilistic Relational Models
to graphical models and relational data mining.

• We introduced Bayesian networks and how Bayesian networks are learned
in case of complete data and incomplete data. Two often used conditional
probability distributions, namely table CPDs and Gaussian CPDs, were
defined, allowing modeling of both discrete and continuous data.

• The larger part of this Chapter was concerned with the definition of
PRMs and their relation to Bayesian networks. We defined a fictitious
relational dataset regarding Influenza infections with a set of patients
receiving different treatments and we showed how PRMs can be used
to model such a relational domain in a probabilistic model. Learning
PRMs in case of complete and incomplete data was related to learning in
Bayesian networks and more specifically, the Expectation-Maximization
algorithm was highlighted as an interesting learning technique for PRMs
in case of incomplete data.





Chapter 5

ProBic model

Results in this Chapter were developed in collaboration with Hui Zhao (KULeuven).

5.1 Introduction

The identification of gene regulatory networks based on gene expression data
is a highly active field of research [14, 54, 99, 145]. It is also an underconstrained
problem as the number of possible interactions and the parameters governing
their relations far exceeds the dimensionality of the available data. Moreover,
current microarray gene expression data is inherently noisy, further obscuring
a detailed view on the regulatory interactions.

Many techniques have therefore been developed to obtain robust representa-
tions of the underlying network by reducing the parameter space, often by
grouping genes into regulatory modules. An overview of such techniques is
given in Chapter 2. Most module learning methods have focused on the iden-
tification of a global set of modules, aiming to identify the high level modular
structure of transcriptional regulation.

From a biologist perspective however, a highly focused local analysis around
a specific pathway is often more interesting. A large number of bottom-up
methods exist that allow a more detailed reconstruction of pathways, typically
containing 5-100 genes. However, usually highly specific types of data need
to be gathered by means of low throughput and time-consuming experiments
to determine the individual interaction parameters in the pathway. The appli-
cation of such methods on a genome wide scale is either infeasible or leads to
models with large parameter uncertainties and/or multiple possible solutions.

In between these global and local module identification methods, there is also
a need for methods that combine the advantages of both approaches. Such

91
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method should have few requirements on the type and quality of the provided
data. It should be able to perform locally directed module identification on
specific genes or pathways of interest while also incorporating the knowledge
derived from global module identification. Few algorithms bridge this gap,
usually by allowing directed searches in gene expression data, namely ISA
[19], GEMS [169], Gene Recommender [123] and QDB [47].

5.2 Biclustering

The term biclustering was first introduced by Cheng and Church [29] in the
context of gene expression data. Biclustering algorithms perform simultaneous
clustering in both the gene and the condition dimension. The result is a set of
biclusters that each contain a subset of genes and conditions. Starting from a
m by n data matrix E, with a set of rows R = r1, . . . , rm and a set of columns
C = c1, . . . , cn, a bicluster (I, J) can be defined as a subset of rows I = i1, . . . , ir
and a subset of columns J = j1, . . . , js of E, such that the bicluster satisfies some
specific measure of homogeneity [110].

An excellent survey of the different classes of biclustering algorithms is given
in Madeira and Oliveira [110], where biclusters are subdivided in a num-
ber of different categories: constant biclusters, biclusters of constant rows or
constant columns, biclusters of additive coherent values, biclusters of multi-
plicative values, biclusters of coherent evolutions and biclusters of coherent
sign changes. According to this categorization, ProBic aims to find biclusters
with constant columns. An example of such biclusters is given in Figure 5.1.
From a biological perspective, a bicluster with a constant columns model rep-
resents a set of genes that have a similar expression level (per condition) for a
subset of conditions.

5.2.1 State of the art biclustering algorithms

In the domain of gene expression data analysis, a number of different bicluster-
ing algorithms have been developed since the first publication of Cheng and
Church (CC) [29] in 2000. CC-biclustering aims to find biclusters with min-
imal mean squared residue, which is obtained if for example the bicluster has
constant values or if the genes (conditions) in the bicluster are identical up to
a constant row (column) term per bicluster. Yang et al. [173] further improved
this algorithm and allowed for missing values in the expression matrix.

Plaid models, proposed by Lazzeroni et al. [98], are a statistical model in which
the expression value in a bicluster is represented as the sum of the main effect,
the gene effect, the condition effect, and a normally distributed noise term. An
expression value in the overlap region of two biclusters is modeled as the sum
of the individual bicluster contributions. Plaid models use a greedy strategy
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Figure 5.1: Illustration of two overlapping biclusters with constant columns. The rows
of the matrix represent genes and the columns represent conditions under which these genes
were measured.

where errors can accumulate and the biclusters tend to overlap easily, thereby
creating large and biologically meaningless overlaps [64].

Ben-Dor et al. [17] attempted to identify order-preserving sub matrices (OPSMs).
The method identifies biclusters in which the expression levels of the genes
have an identical ordering for the subset of bicluster conditions. The main
drawbacks of this method are the computational requirements for realistic
datasets and the inability to accommodate for noise in the data (the method
requires a perfect ordering for all genes).

Segal et al. [144] propose a gene clustering approach based on PRMs where
the gene clusters can overlap. There is no clustering of the conditions in this
model and the expression value in the overlap region is modeled as the sum
of the individual cluster contributions.

The Iterative Signature Algorithm (ISA) [19] identifies single biclusters using
an approach that is related to singular value decomposition (SVD). It tends
to select strong biclusters many times (requiring masking of previously found
biclusters to identify new biclusters) and it is sensitive to its parameter values.
Variants of this algorithm have been published such as PISA [90] and USA
[89].

Tanay et al. introduced SAMBA [154], a statistical approach to biclustering
using a bipartite graph representation. SAMBA has a high specificity but
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lower sensitivity for recovering biclusters [162] and has no explicit concept of
overlapping biclusters.

Dhollander et al. applied a Bayesian approach to biclustering, QDB (query-
driven biclustering [47]) that allows identification of specific biclusters of in-
terest by using a set of seed genes that is a priori known or expected to be part
of a bicluster. By means of a resolution sweep, the authors identify biclusters at
different resolutions of interest.

Gu and Liu [64] also proposed a Bayesian approach to biclustering and com-
pared their method to several other methods. While their model supports
either genes or conditions to be part of multiple biclusters, a simultaneous
overlap for both genes and conditions is not allowed.

5.2.2 Comparison ProBic vs. state of the art

Table 5.1 summarizes and compares the characteristics of ProBic with respect
to the current state of the art algorithms. The ProBic biclustering model builds
upon the expertise of previous work and extends the current generation of
biclustering methods in the following areas:

• Many biclustering algorithms have no explicit model for the identifica-
tion of multiple biclusters [17, 19, 29, 47, 173]. Heuristic approaches such
as masking and the use of well chosen initializations, are often applied
to identify more than one bicluster. ProBic accommodates for this and
uses a model-based approach for identifying multiple and potentially
overlapping biclusters simultaneously.

• Current methods, that allow to model multiple biclusters simultane-
ously [16, 98, 144], all have an additive model for overlapping biclusters.
Computational tractability is assumedly the main reason for using an ad-
ditive overlap model. ProBic can use different overlap models that still
retain computational tractability. One specific implementation is given
in Section 5.3.

• ProBic can be used both in a global mode as in a query-driven mode.
Biclusters can thus both be identified by incorporating prior knowledge
where applicable (in the form of a set of seed genes) and by using a global
biclustering approach.

• ProBic allows for diametrical biclustering: genes with both correlated and
anticorrelated profiles are grouped within the same bicluster. The ex-
plicit extension of one-dimensional diametrical clustering methods [46]
towards the biclustering domain has to the authors knowledge not been
previously published for non-constant biclusters1.

1Wolf et al. [168] have published a biclustering method that identifies a constant bicluster that
also includes the negative set of genes with the same but negated constant value.
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• ProBic performs the biclustering efficiently by well-chosen decomposi-
tions of the posterior distribution (see Section 5.5). No prior discretiza-
tion of the gene expression data is required and ProBic is able to remove
seed genes from the resulting bicluster if that gene has no matching ex-
pression profile with the bicluster. This feature is important in practice
as biologists often have a list of potential seed genes rather than a list of
definite seed genes.

Name GBCL MULT OVL PRB NMR QD DB
BBC [64] + + - + + - -
ccc-biclustering [111] + + - - - - -
cMonkey [135] + +/-1 - + + - -
DISTILLER [102] + + - - +/-2 - -
GEMS [169] + - - + + - -
ISA [19] + - - - + + -
OPSM [17] + + - - - - -
Plaid models [98] + + + - - - +
ProBic + + + + + + +
QDB [47] - - - + + + -
ReMoDiscovery [37] + + - - +/-2 - -
SAMBA [154] + + - - + - -
SBK [16] +/-3 + + + + - -

1 cMonkey also tends to repeatedly find the same biclusters from different seeds, they have however integrated
a prior in their model that preferably includes each gene in two biclusters.
2 ReMoDiscovery is two-phased. In the first phase of the algorithm, seed modules are identified by means of a
non-robust Apriori-based search step. In the second phase these modules are expanded using a noise robust
expansion step.
3 The SBK algorithm is in between a gene clustering and a biclustering algorithm. It identifies gene clusters
with an associated regulatory program that clusters all the conditions for that gene cluster.

Table 5.1: Qualitative comparison table of biclustering algorithms for gene expression data. Each
of the following columns highlights a separate aspect: GBCL (global biclustering): indicates
if the algorithm performs a global biclustering; MULT (multiple biclusters): indicates if the
model can identify multiple biclusters simultaneously (without masking or other heuristics);
OVL (overlap): indicates if overlapping biclusters are modeled with an explicit overlap model;
PRB (probabilistic): indicates if the algorithm is based on a probabilistic framework such as
Bayesian networks; NMR (noise and missing value robustness): is the algorithm robust
w.r.t. noise and missing values; QD (query-driven): can the algorithm be used in a query-
driven mode; DB (diametrical biclustering): indicates if the model explicitly groups genes
with both correlated and anticorrelated profiles within the same bicluster.
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5.3 ProBic model overview

An overview of the ProBic model is shown in Figure 5.2. The model contains
three classes: Gene, Array and Expression. For each class, a set of specific gene,
array and expression objects exist that are denoted by lowercase letters g, a
and e respectively. The complete set of genes, arrays and expression objects are
indicated by uppercase letters G, A and E. Each object g (a) in the Gene (Array)
class, has a number of binary attributes Bb that indicate for each gene (array)
object if it is part of a bicluster b or not. The Array class has an additional
attribute ID that uniquely identifies each individual array object a. Finally,
each object e of the class Expression has a single numeric attribute e.level that
contains the individual expression level value for a specific gene and array.
These gene and array objects are specified by two reference slots (comparable
to foreign keys in a database) e.gene and e.array that point to these specific gene
and array objects.

The gene-bicluster g.Bb attributes (over all biclusters b) and the array-bicluster
attributes a.Bb are initially unknown and thus hidden variables of the model.
The conditional probability distribution P(e.level|e.gene.B, e.array.B, e.array.ID)
and the prior distributions P(µa,b, σa,b), P(a.B) and P(g.B) will be defined in
Section 5.4. The model is parameterized with a number of Normal distri-
bution parameters: one set of parameters (µa,b; σa,b) for each array-bicluster
combination (a, b) (see Section 5.4.1).

As described in Section 4.4, for a given gene expression dataset instance, the
ProBic model specifies a joint probability distribution over this particular in-
stance by implicitly defining a ground Bayesian network. Figure 5.3 illustrates
how the dataset instance and the ProBic model implicitly generate a ground
Bayesian network (GBN).

The JPD for the ProBic model is shown in Equation 5.1. For notational conve-
nience, the dependency on the model parameters θS is not explicitly written
in the CPDs.

likelihood = P(E.L,G.B,A.B,A.ID)
= P(E.L|G.B,A.B,A.ID) · P(A.B) · P(G.B) · P(A.ID)

=
∏
e∈E

P(e.L|e.gene.B, e.array.B, e.array.ID) ·∏
a∈A

∏
k∈K

P(a.Bk) ·
∏
a∈A

P(a.ID) ·
∏
g∈G

P(g.B) (5.1)

Biclusters in ProBic are modeled with only a condition-effect and no gene-
effect, leading to biclusters with constant columns as defined in Madeira et al.
[110]. The biological reason behind this choice is that we are searching for a
set of genes with a similar expression pattern across a subset of conditions as
these genes are expected to have a common (set of) regulators that are active
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Figure 5.2: Schematic overview of the ProBic model and the conditional probability
distributions of each of the attributes. The three classes of the PRM are Gene, Array
and Expression. Expression has one attribute level that contains the expression level and it
contains two reference slots gene and array that indicate the gene and the array for which
the expression level is measured. Gene and Array each have a number of boolean attributes
Bb that represent the presence or absence of respectively a gene or array in a bicluster b. For
notational convenience, these attributes are grouped in a vector B = {B1,B2, ...,Bk}. The class
Array has an additional attribute ID that uniquely identifies each array. The conditional
probability distribution P(e.level|e.gene.B, e.array.B, e.array.ID) is modeled as a set of Normal
distributions, one for each array-bicluster combination. A number of prior distributions P(a.Bb),
P(g.Bb) and P(g.B) allow expert knowledge to be introduced in the model.

under that subset of conditions and thereby regulate the genes in the set. The
subset of genes and conditions specify a bicluster. As we will see in Section 5.6,
the model is easily extended to also incorporate such genes with anticorrelated
profiles.

Other biclustering methods such as plaid models [98] also include a gene effect
in the model. There are good biological reasons for modeling this gene effect:
most microarray data is represented as a log-ratio between a test condition
and a reference. Because each gene has a different expression value in the ref-
erence condition there is a reference-dependent effect per gene, and one could
eliminate this dependency by modeling this gene-effect explicitly. However,
gene expression datasets usually have thousands of genes and the addition
of a gene effect therefore introduces a huge number of additional parameters
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Figure 5.3: Schematic overview of the construction of the ground Bayesian network for
the ProBic model. In the upper left corner, an example dataset instance is shown with two
genes, two arrays and three expression values. Applying the ProBic model (upper right corner)
to this dataset instance, results in the ground Bayesian network shown in the bottom figure.

to the model. Due to noise, random correlations will more frequently lead
to spurious biclusters in such models with many parameters. Moreover, in
microarray compendia that combine multiple series of experiments such as in
Lemmens et al. [102], multiple references are used for the different experiment
blocks. This would imply an additional layer of parameters where the gene
effects are also dependent on the experiment blocks.

In the ProBic model only condition effects and no gene effects are modeled,
thereby avoiding the above problems with over-parametrization of the model.
Because of this choice, ProBic identifies biclusters containing genes that have
an expression profile that is differentially expressed compared to their respective
references. For most microarray experiments, the choice of reference condi-
tion reflects a ’good’ reference from a biological point of view. For example,
heat-shock experiments usually use the undisturbed condition as a reference,
experiments where nutrients or chemical compounds are added usually use
the nutrient/compound-free condition as reference, etc. The genes with a sim-
ilar pattern of up- and down-regulation relative to the reference will therefore
be biclustered in ProBic.
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5.4 The conditional and prior probability distribu-
tions

A detailed overview is given in the following Sections of all probability distri-
butions of the ProBic model and their associated model parameters.

5.4.1 Expression level CPD P(e.level | e.gene.B, e.array.B, e.array.ID)

This is the main CPD for the biclustering model and it consists of two individ-
ual factors:

P(e.level|e.gene.B, e.array.B, e.array.ID) =

f1(e.level|e.gene.B, e.array.B, e.array.ID).
f2(e.level|e.gene.B, e.array.B, e.array.ID) (5.2)

The first factor f1(. . .) describes the main conditional probability of the expres-
sion level given the gene- and array-bicluster attributes. The second factor
f2(. . .) models a penalty factor that reduces the model complexity by decreas-
ing the probability for adding an expression level to a bicluster compared to
adding it to the background. In the following sections, each of these factors is
explained in detail.

CPD factor 1: f1(e.level|e.gene.B, e.array.B, e.array.ID)

For conveniently defining the CPD f1(. . .), three separate cases are identified
and a separate definition is given for each of these cases: one for the back-
ground distributions, one for bicluster regions without overlap and one for
overlapping biclusters. After these three separate definitions, f1(. . .) is re-
defined with a single definition that covers all three cases.

Case 1: background distributions
Let us first evaluate how f1(. . .) is modeled in the case where an expression
level is part of no bicluster (e.gene.B

⋂
e.array.B = ∅), i.e. the expression level

is part of the background distributions. In this case, the probability f1(. . .) is
modeled as a Normal distribution for each array a, each with a separate set
of parameters (µbgr

a , σbgr
a ). The parameters of the background distributions are

fixed and derived a priori from the dataset using a robust estimation of the
background distribution.

For example, two methods can be used for a robust estimation of the back-
ground distribution that are based on the interquartile range normalization
(IQRN) and smallest quartile range normalization (SQRN) published by Gu et
al. [64]. Both methods assume normally distributed expression values with
heavy tails that contain the over- and under-expressed values. These tails are
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removed and the mean and variance are estimated based on the truncated dis-
tribution which is now assumed to be a truncated Normal distribution. The
standard deviation is corrected for removing the α/2 tails of the distribution
by applying an EM approach that re-estimates the percentage of removed val-
ues from the tails that were part of the background and the resulting corrected
variance until convergence. In IQRN, one first sorts the data in each column,
trims off α/2% of the data from each tail, and computes the trimmed mean
and standard deviation. In SQRN, instead of using the middle (100 − α)% of
the data, one first finds for each column the shortest interval that contains a
certain percentage (e.g., 50%) of the data. If distributions of the data in each
column are symmetric and unimodal, then SQRN is equivalent to IQRN. For
skewed distributions, SQRN gives better results [64].

There are a number of reasons why estimating the parameters for the back-
ground distribution directly within the model rather than using the robust
estimation upfront leads to less optimal results. Initially, the model has not
identified any biclusters and therefore uses all expression values of an array
as an estimate for the background, including the heavy tails, and thus biases
the background estimates towards larger variances. Secondly, some of the EM
variants are initialized with the complete dataset as initial bicluster. In this
case, no ’background’ expression values can be defined as all expression values
are part of the initial bicluster. Thirdly, in most practical settings and especially
for query-driven biclustering, not all biclusters are identified. The expression
values in those unidentified biclusters remain part of the background and
therefore contribute to the background estimate.

Case 2: bicluster without overlap
Since there is no overlap between different biclusters in this case, every ex-
pression level is part of exactly one bicluster. The probability f1(. . .) is again
modeled using Normal distributions with parameters (µ, σ) that indirectly de-
pend on the gene- and array-bicluster assignments (g.B, a.B) and on the unique
array identifier a.ID. So a (µ, σ) value has to be defined for every possible com-
bination of g.B, a.B, a.ID.

Since we consider here the case of an expression level that belongs to exactly
one bicluster, the combination g.B, a.B, a.ID is uniquely determined by the
array a and the bicluster b to which the expression level belongs. As we will
see in Section 5.5, this kind of parametrization leads to large computational
advantages during the optimizations of the EM algorithm. Formally, the
probability for an expression level which is only part of a single bicluster, is
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defined as:

f1(e.level|e.gene.B, e.array.B, e.array.ID)
= f ∗1 (e.level|e.array = a, e.biclusters = {b})
= f ∗1 (e.level|µa,b, σa,b)

=
1

σa,b
√

2π
exp[−

(e.level − µa,b)2

2σ2
a,b

] (5.3)

We introduced the factor f ∗1 (e.level|e.array = a, e.biclusters = {b}) as the prob-
ability that an expression level belongs to a single bicluster. The attribute
e.biclusters does not formally exist in the model, but it is implicitly defined as
the set of bicluster indices to which the expression level belongs, namely the
intersection e.array.B ∩ e.gene.B. In this case, the expression level belongs to
exactly one bicluster b.

Taking the logarithm of this expression leads to:

log f ∗1 (e.level|µa,b, σa,b) = −log(σa,b) −
(e.level − µa,b)2

2σ2
a,b

+ constant (5.4)

Case 3: overlapping biclusters
The probability f1(. . .) in case of overlap can in principle be defined in many
different ways. For example, the overlap probability could be modeled as
having a high probability for expression values which are close to the sum,
the average, the weighted sum, the minimum, the maximum, etc. of the
individual bicluster means. It could also be modeled with a distribution that
has a separate set of parameters (µ, σ). In this section we will propose a model
with some desired properties on both a biological and computational level.
Similar to case 2, a probability f1(. . .) has to be associated with every possible
combination of g.B, a.B, a.ID.

Defining a separate set of parameters (µ, σ) for each of the overlap combinations
would result in an overfitted model. For example, in case of two overlapping
biclusters α and β with a single gene goverlap in the overlap region, a separate
parameter set (µα,βa , σ

α,β
a ) would be defined for each condition of the overlap

region. Such over-parametrization of the model leads to overfitting and needs
to be avoided. A better parametrization would be not to introduce new sets of
parameters (µ, σ) for the overlap, but rather to model the overlap region using
the parameter sets that were already defined in case 2 (one per array-bicluster
combination).

Different overlap models can each be useful from biological perspective and the
choice for a particular overlap model depends on the specific research question
and the way the gene expression data is normalized. Here we will focus on
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the regulatory model as proposed in Chapter 2 and more specifically on the
model shown in Figure 2.2. A set consisting of a few genes that are tightly
coexpressed in many conditions can be hypothesized to be associated with a
highly specific function (second group in Figure 2.2). They consist of genes
that respond to the same regulatory program and are coexpressed under many
conditions, thereby defining a bicluster with few genes and many conditions.
As the bicluster is extended with more genes, the number of conditions under
which these genes are coexpressed is expected to decrease. Genes within such
extended biclusters only share part of the regulatory program, namely the one
that is active under the selected conditions.

In order to model this type of overlap, a slightly more general model is pro-
posed for the overlap than Figure 2.2 depicts. We will define the probability
of an expression level in the overlap region here as the geometric mean of the
separate bicluster probabilities. In Section 5.5, the mathematical implications
of this choice for the EM algorithm are further discussed. Formally, f1(. . .) is
defined as:

f1(e.level|e.gene.B, e.array.B, e.array.ID)

=
1

Z1

∏
b∈

{iset(e.gene.B)
∩

iset(e.array.B)}

f ∗1 (e.level|a, b)1/#{iset(e.gene.B)∩iset(e.array.B)}

=
1

Z1

∏
b∈

iset(Bi
e)

f ∗1 (e.level|µa,b, σa,b)1/#iset(Bi
e) (5.5)

where the following notation was introduced: iset(X), denoting the set of
indices i for which the vector elements Xi of binary vector X are 1. Bi

e is de-
fined as the dot product of e.gene.B and e.array.B. Therefore, iset(Bi

e) is the set
of bicluster-indices in the intersection of e.gene.B and e.array.B, or formally:
iset(Bi

e) = iset(e.gene.B)
⋂

iset(e.array.B). Finally, #iset(Bi
e) is the number of el-

ements in this set. Note that the product in Equation 5.5 is only over the
biclusters b which the expression level is part of.

Let us now more closely examine the denominator Z which is the normaliza-
tion function:

Z1 =

∫ +∞

−∞

∏
b∈

iset(Bi
e)

f ∗1 (e.level|µa,b, σa,b)1/#iset(Bi
e)de (5.6)

In the most general case, Z1 is not constant and depends on the values of the
parameters µa,b and σa,b that determine the individual bicluster distributions
in the overlap. It can however be proven that Z1 ' 1 under the assumptions
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that the overlap is limited to two biclusters and that the standard deviations of
the distributions of the overlapping biclusters are almost identical. In reality,
this assumption on the standard deviations only holds approximately and
might even be violated in some cases. We will assume in the remainder of this
Chapter that this assumption holds and that Z1 can therefore be considered
constant. Other types of overlap could be defined where these assumptions
are not necessary.

This type of overlap will assign a high probability to overlapping biclusters
where the expression values in the overlap are likely to be in each of the
distributions of the individual biclusters. This includes therefore the case
where both these distributions are identical (as in Figure 2.2). In cases where
the individual bicluster distributions are not identical, the geometric mean of
these probabilities will be lower and thus lead to a lower posterior for such
models. Nevertheless the model could still identify such overlap cases if the
overall probability of the model, including the non-overlapping parts of the
bicluster, is sufficiently high.

General case (covering case 1, 2 and 3)
For notational convenience, we will describe a general notation covering all
cases 1, 2 and 3:

f1(e.level|e.gene.B, e.array.B, e.array.ID)

=
∏

b∈
iset(Bi

e)

f ∗1 (e.level|µa,b, σa,b)1/#iset(Bi
e) (5.7)

Case 2 is implicitly covered in the notation of case 3 as it can be formulated
as a special case of ’overlap’ with only one bicluster. For including case 1 in
this definition, we introduce a virtual bicluster with index -1 that describes
the background as a special kind of bicluster. The parameters (µa,b=−1, σa,b=−1)
of this background bicluster are defined a priori based on the expression data
and do not change during optimization. This background bicluster can by
definition not overlap with any other biclusters.

The definition of the set iset(Bi
e) also slightly changes as

∏
b∈iset(Bi

e) now covers
two cases:

• Bi
e empty: background distribution, the product is over the set b ∈ [−1]

so iset(Bi
e) = [−1].

• Bi
e not empty: bicluster distribution, the product is over the set of biclus-

ters in the intersection and never includes b = −1 by definition.

CPD factor 2: f2(e.level|e.gene.B, e.array.B, e.array.ID)

The reduction of model complexity in Bayesian networks is usually done by
including additional terms in the log-likelihood or log-posterior distributions
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such as the Bayesian information criterion (BIC) [142] or the Akaike informa-
tion criterion (AIC) [3] and these criteria could equally be applied to PRMs.
However, the application of these classical techniques for model complex-
ity reduction to the ProBic model lead to computational intractability if an
Expectation-Maximization algorithm is used to find the MAP solution. The
reason is that in the substeps of the EM algorithm (Section 5.5), independent
optimizations per gene or per condition are not possible anymore if one of the
above criteria is included in the model.

Therefore, an alternative strategy is used to reduce model complexity by in-
troducing a ’penalty’ factor f2(. . .). Without such a penalty factor, the MAP
solution for ProBic would include a very large number of biclusters since
each additional bicluster also introduces additional degrees of freedom to the
model, thus leading to a higher posterior probability for models with many bi-
clusters. The additional penalty factor f2(. . .) is defined such that it only allows
a set of expression values to be included in a bicluster if they are on average N
times more likely to be in their respective bicluster distributions than in their
background distributions. The factor f2(. . .) decomposes similarly to f1(. . .),
leading to the following expression:

f2(e.level|e.gene.B, e.array.B, e.array.ID) =
1

Z2

∏
b∈isetB(e)

f ∗2 (e.level|b)
1

#isetB (e) (5.8)

where f ∗2 (e.level|b) = πbgr if the expression level is in the background (b = −1)
and f ∗2 (e.level|b) = πbicl if it is in a bicluster (b , −1). The normalization constant
Z2 is either equal to πbgr (expression level part of background) or to πbicl in all
other cases and is thus constant (contrary to Equation 5.6).

This implies that a subset of expression values Es for a particular array a (or
analogously for a gene g), will be assigned to a bicluster q if Equation 5.9 holds:

∏
e∈Es

f ∗1 (e|a, b = q).
∏

e∈Es
πbicl >

∏
e∈Es

f ∗1 (e|a, b = −1).
∏

e∈Es
πbgr

⇔∏
e∈Es

πbicl
πbgr

>
∏

e∈Es

f ∗1 (e|a,b=−1)
f ∗1 (e|a,b=q) (5.9)

The user-defined ratio πbicl
πbgr

indicates how many times more likely it must be on
average that an expression value is part of the bicluster distribution compared
to being part of the background distribution before such a set of expression
values Es is actually added to the bicluster.
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Note that using Equations 5.7 and 5.8, we can write Equation 5.10 as:

P(e.level|e.gene.B, e.array.B, e.array.ID)

=
1

Z1Z2

∏
b∈isetB(e)

[ f ∗1 (e.level|µa,b, σa,b). f ∗2 (e.level|b)]
1

#isetB (e) (5.10)

=
1
Z

∏
b∈isetB(e)

f ∗(e.level|µa,b, σa,b, b)
1

#isetB (e) (5.11)

(5.12)

where f ∗(e.level|µa,b, σa,b, b) is defined as f ∗1 (e.level|µa,b, σa,b). f ∗2 (e.level|b).

5.4.2 Prior probability for gene to bicluster assignment P(g.B)

This prior is also defined as a combination of two factors that each define a
separate aspect of the prior. One part of the prior reflects prior knowledge on
specific gene to bicluster assignments and the other part reflects general prior
knowledge on gene to bicluster assignments. The prior is defined as follows:

P(g.B) = g1(g.B) ·
∏
b∈B

g2(g.Bb) (5.13)

Specific gene-bicluster assignment prior g2(g.Bb)

We first discuss the specific gene to bicluster assignment prior: g2(g.Bb = 1) is
the prior probability for a particular gene g to belong to a particular bicluster b
and it is parameterized as:

g2(g.Bb = 1) = ηg,b (5.14)

This definition implies that for every gene-bicluster combination a specific
prior probability can be specified. This prior can for example be used to
introduce expert knowledge in the model specifying which genes are highly
likely to be in a specific bicluster. In cases where a researcher expects a set of
genes to be coregulated, e.g. based on a common set of motifs or based on
ChIP-chip binding experiments, these genes can be preferentially assigned to
a specific bicluster b by increasing the ηg,b values for each coregulated gene
g. The opposite case could also occur where a researcher knows/expects that
some genes should not be part of a particular bicluster. By decreasing the ηg,b
values for those genes g, this prior knowledge can be expressed in the model.

While this prior could theoretically also be used for query-driven biclustering,
there are a number of practical reasons why such prior is not well suited. The
prior’s effect on the JPD is highly ’local’ and creates peaks of high probability
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in the posterior distribution that are ’hidden’ in adjacent2 low probability
regions of the posterior. Any approximate method that iteratively samples
points in this distribution to find the MAP solution and where subsequent
points are ’near’ to one another in the posterior landscape, tend to be trapped
in other local optima with a far lower posterior than the global optimum. In
Section 5.4.5, a set of distribution priors will be introduced that do not suffer
from this problem and are therefore more suitable for query-driven biclustering
as will be discussed in Section 5.5.4.

General gene-bicluster assignment prior g1(g.B)

The other factor g1(g.B) is the prior probability that a gene is part of a bicluster.
This prior indirectly has an effect on the average number of genes in a biclus-
ter. The motivation for this prior is biological in nature: biologists are often
interested in information concerning specific pathways, typically containing
between 5 and 100 genes. By penalizing the addition of genes to a bicluster, the
average number of genes in a bicluster can be reduced, keeping only the best
fitting genes in the bicluster profile. g1(g.B) is parameterized in the following
way:

g1(g.B) =

{
1 − β, if sum(g.B) = 0
β, if sum(g.B) , 0 (5.15)

where a value β < 0.5 introduces a penalty for a gene belonging to one or more
biclusters.

One might expect that this type of penalization could also be achieved using
the g2(g.Bb) prior distributions, by setting g2(g.Bb = 1) to a lower probability
for all genes g than g2(g.Bb = 0). This kind of use of the g2(g.Bb) prior has
however an undesired side-effect. When a gene is assigned to more than one
bicluster (N biclusters), the prior probability g2(g.Bb = 1) is counted N times in
Equation 5.1. For large penalty values, meaning low P(g.Bb = 1) probabilities,
assigning genes to more than one bicluster becomes highly unlikely as a result.

5.4.3 Prior probability for array to bicluster assignment P(a.Bb)

Similar to the prior on gene to bicluster assignments in Section 5.4.2, P(a.Bb) is
the prior probability for a specific array a to belong to a specific bicluster b:

P(a.Bb = 1) =

{
ζ, if a.Bb = 0
1 − ζ, else (5.16)

While this prior has not been explicitly used in any of the presented results
in Section 5.7, it could in principle be used in a similar way as the g1(g.B)

2’Adjacent’ is defined with respect to having small differences in g.B or a.B assignments. Any
algorithm that walks through the solution space jumps from a point to one of these adjacent points
during optimization.
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prior, namely to increase or reduce the average number of conditions in the
biclusters. However, in most practical settings the ratio πbicl

πbgr
is the parameter

that has most effect on the number of arrays in a bicluster.

5.4.4 Prior for the array identifiers P(a.ID)

Each array is given a unique identifier a.ID and in principle a prior distribution
can be defined over these arrays. However, the use of such prior is very limited
and for the ProBic model this prior distribution is therefore chosen uniform.
As a consequence this prior does not contribute to any of the optimization
steps and is also not explicitly written in the equations.

5.4.5 Prior for the model parameters P(θ)

The ProBic model is parameterized by a set of parameters ( ¯̄µ, ¯̄σ), one set (µab, σab)
per array a and per bicluster b. Biological and expert knowledge can be in-
troduced in the model through proper prior distributions. As we will see in
Section 5.7, these prior distributions are well-suited for query-driven biclus-
tering.

A straightforward decomposition of the prior is to assume a similar structure
as the expression level CPD, leading to Equation 5.17. Similar to Equation 5.7,
the product

∏
b∈B ranges over all the biclusters including the background dis-

tribution. Based on this decomposition, the individual distributions P(µa,b, σa,b)
can now be chosen such that they are conjugate to the expression level CPD of
Equation 5.7.

P(θ) = P( ¯̄µ, ¯̄σ)

=
∏
a∈A

∏
b∈B

P(µa,b, σa,b) (5.17)

Any member of the exponential family is a conjugate prior distribution to
Equation 5.17, e.g. the Normal, scaled inverse χ2, Gamma, Inverse Gamma
and Normal-Gamma distributions are all conjugate to the Normal distribution.
In Appendix A.3, the main properties of some interesting priors are listed.

While the interpretation is slightly more difficult than is the case for a Normal
distribution, we will highlight the use of a Normal-Inverse-χ2 distribution here
as it is a particularly useful type of prior for the biological problems of interest.
It defines a prior distribution directly for the mean and standard deviation and
is parameterized by the set of hyperparameters (µ0, κ0, ν0, σ2

0). The mean and
standard deviation are distributed in the following way:

σ2 Inv − χ2(ν0, σ
2
0) (5.18)

µ|σ2 N(µ0, σ
2/κ0) (5.19)
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Using this prior distribution, a researcher can for example perform query-
driven biclustering by requiring the means of the distributions for a particular
bicluster to be centered around the means of the query genes (see Section 5.5.4
for more details). Secondly, the prior can also be used to select biclusters
with distributions that are more tightly co-expressed than the background
distributions by specifying a prior on the variance through σ0 and ν0 (see
Appendix A.3). For example, the results for query-driven biclustering in
Section 5.7.5 apply this prior distribution with the default parameter settings
for query-driven biclustering as specified in Section 5.5.4.

5.4.6 Posterior distribution P(M|D)

The following log(posterior) distribution is obtained by combining the prior
(Equation 5.17) and the likelihood function (Equation 5.1):

log(posterior) =
∑
a∈A

∑
b∈B

logP(µa,b, σa,b) +

∑
e∈E

∑
b∈Bi

e

log[ f ∗(e.level|µa,b, σa,b)]

#iset(Bi
e)

+

∑
b∈B

∑
a∈A

logP(a.Bb) +
∑
a∈A

logP(a.ID) +∑
b∈B

∑
g∈G

log[g2(g.Bb)] +
∑
g∈G

log[g1(g.B)] + C (5.20)

where C is a constant.

The hidden variables in Equation 5.20 are the gene to bicluster assignments
g.Bb and the array to bicluster assignments a.Bb. The model parameters are the
Gaussian distribution parameters ( ¯̄µ, ¯̄σ), with one set of (µa,b, σa,b) values per
array a and bicluster b.

The calculation of the full posterior distribution over all possible assignments
of hidden variables is exponential in both the number of genes and arrays and
thus computationally intractable. However, the computational cost can be
drastically reduced by only deriving the MAP solution of this function w.r.t.
the model parameters and the hidden variables. For the ProBic model, we will
outline an Expectation-Maximization strategy in Section 5.5 and a detailed
discussion will be given about the advantages and some disadvantages of
using EM for the ProBic model and for PRMs in general.



5.5. LEARNING THE MODEL: EM ALGORITHM 109

5.5 Learning the model: Expectation-Maximization
(EM) algorithm

An attractive approach that is specifically tailored to optimizing likelihood
functions in case of missing values, is Expectation-Maximization. It deals with
missing or hidden values by replacing them by an estimated value or by an
estimated distribution over all values given the current model parameters and
then it recalculates the model parameters given these estimated values. This
process is repeated until the values converge. The EM procedure is guaranteed
to converge to a local optimum under fairly general conditions [43, 171].

We will apply a hard assignment Expectation-Maximization (EM) approach.
Hard assignment means that a single value is assigned to the hidden variables
during the expectation step rather than a distribution over all possible values
as is the case in soft assignment EM.

Within the PRM framework, EM has some additional advantages. Firstly,
due to the design of the model, the log-posterior decomposes into a number
of independent terms either per gene or per array in every substep of the
EM algorithm. The independent optimization of these terms greatly reduces
the computational cost. Secondly, the model was designed such that when
extending the model with additional data sources, most of the EM steps remain
unchanged if some model design constraints are met (see Section 5.8). Thirdly,
while EM only guarantees a local optimum of the posterior, our results on
artificial data indicate that under fairly general conditions the global optimum
or near-optimum is usually found in practice.

Other methods such as Gibbs sampling have also been successfully applied
for biclustering gene expression data [47, 150]. While Gibbs sampling is less
sensitive to local optima and will generally lead to better solutions, it is also
typically slower than an Expectation-Maximization approach.

The EM iterates the following steps until convergence:

• Maximization step: maximize over the model parameters ¯̄µ, ¯̄σ, keeping
the hidden variables (i.e. the gene- and array-bicluster assignments G.B
and A.B) fixed.

• Expectation step: find the expected values for the hidden variables G.B
and A.B, keeping the current model parameters ¯̄µ, ¯̄σ fixed.

5.5.1 Maximization step

In the maximization step, all hidden variables A.B and G.B are assumed to be
known either from the initialization or from a previous Expectation step. We
need to maximize the log-posterior (Equation 5.20) w.r.t. the parameters ¯̄µ and
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¯̄σ for the given G.B and A.B assignment:

argmax ¯̄µ, ¯̄σlog(posterior)
= argmax ¯̄µ, ¯̄σ∑

a∈A

∑
b∈B

logP(µa,b, σa,b) +
∑
b∈B

∑
a∈A

logP(a.Bb) +

∑
e∈E

∑
b∈Bi

e

log f ∗1 (e.level|µa,b, σa,b). f ∗2 (e.level|b)

#iset(Bi
e)

+

∑
g∈G

logg1(g.B) +
∑
b∈B

∑
g∈G

logg2(g.Bb) (5.21)

Equation 5.21 can be simplified through the following observations. Several
terms are constant for fixed A.B and G.B assignments and due to our particular
choice of overlap model, one pair of (µa,b, σa,b) values is defined per array-
bicluster combination. From these observations, the following optimization
problem is derived from Equation 5.21:

argmax ¯̄µ, ¯̄σlog(posterior)
= argmax ¯̄µ, ¯̄σ∑

a∈A

∑
b∈B

logP(µa,b, σa,b) +

∑
a∈A

∑
e∈E·a

∑
b
∈

iset(Bi
e)

log f ∗1 (e.level|µa,b, σa,b)

#iset(Bi
e)

(5.22)

where E·a is defined as the subset of expression values for array a.

Equation 5.22 can be maximized independently per array since the parameters
(µa,b, σa,b) are independent of each other, leading to the following optimization
problem per array:

argmaxµ̄a,σ̄a

∑
b∈B

logP(µa,b, σa,b) +
∑
e∈E·a

∑
b
∈

iset(Bi
e)

log f ∗1 (e.level|µa,b, σa,b)

#iset(Bi
e)

(5.23)

The second summation in the above expression can be written independently
per bicluster by applying the following procedure. The expression levels are
grouped per different Bi

e assignment for the particular array which is optimized.
This means: group over all different possible Bi

e(= e.gene.B ∩ e.array.B) sets
(for a given array a, over all genes g). An example is given in Figure 5.4 and
illustrates the different Bi

e groups for two choices of array a.
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1

2

3

4

array a
a.B = [1,2]

iset(Bi
e)

[]

[]

[1]

[1,2]

[2]

array a
a.B = [3,4]

for 
a.B = [1,2]

for 
a.B = [3,4]

[]

[4]

[3]

[]

g.B:

[]

[1]

[1,3]

[1,2,3]

[2,3]

[2]

[]

[4]

a.B: [] [1,2] [2,4] [4] [3,4]

1

Figure 5.4: Illustration of the expression level grouping in the optimization of the Maximization
step. For reducing notational overhead, the binary vectors a.B and g.B are represented here as
the set of indices for which the vector elements are equal to 1. The image represents a gene
by array matrix where the arrays and genes with different a.B and g.B sets respectively, are
indicated. For two specific arrays, iset(Bi

e) is shown for each of the g.B possibilities.

Observing Equation 5.23, we note that there is a sum over one or more biclus-
ters for every possible Bi

e set. The summations are rearranged accordingly and
lead to the following optimization problem per array:

argmaxµ̄a,σ̄a

∑
b∈B

logP(µa,b, σa,b) +
∑
b∈B

∑
e∈E·a:

b∈iset(Bi
e)

log f ∗1 (e.level|µa,b, σa,b)

#iset(Bi
e)

(5.24)

Because of this rearrangement and because the parameters (µa,b, σa,b) are in-
dependent per bicluster, Equation 5.24 can now be optimized independently
per bicluster. The final set of optimization problems is given by Equation 5.25,
one per array-bicluster combination, and is generally applicable for any type
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of prior as defined in Section 5.4.5.

argmaxµa,b,σa,b logP(µa,b, σa,b) +
∑
e∈E·a:

b∈iset(Bi
e)

log f ∗1 (e.level|µa,b, σa,b)

#iset(Bi
e)

=

argmaxµa,b,σa,b logP(µa,b, σa,b) − nwlog(σa,b) −
ssqw − 2µsw + nwµ2

a,b

2σ2
a,b

(5.25)

where E·a is defined as the subset of expression values for array a and where
the following variables were used:

(weighted) count: nw =
∑
e∈E·a:

b∈iset(Bi
e)

1
#iset(Bi

e)
(5.26)

(weighted) sum: sw =
∑
e∈E·a:

b∈iset(Bi
e)

e.level
#iset(Bi

e)
(5.27)

(weighted) sum of squares: ssqw =
∑
e∈E·a:

b∈iset(Bi
e)

(e.level)2

#iset(Bi
e)

(5.28)

We will now derive the analytical expressions for the case where the prior
distribution P( ¯̄µ, ¯̄σ) is a Normal distribution, characterized by its sufficient
statistics: count n0, sum s0 and sum of squares ssq0. For this choice of prior,
the optimization problem per array and per bicluster becomes:

argmaxµa,b,σa,b − (nw + n0)log(σa,b) −
(ssqw + ssq0) − 2µ(sw + s0) + (nw + n0)µ2

a,b

2σ2
a,b

(5.29)

Taking the derivative of the above expression w.r.t. µa,b and σa,b, leads to the
following set of analytical solutions for each (µa,b, σa,b) pair:

µa,b =
sw + s0

nw + n0
(5.30)

σ2
a,b =

(ssqw + ssq0) − (sw+s0)2

nw+n0

nw + n0
(5.31)

5.5.2 Expectation step

The Expectation step needs to maximize the posterior w.r.t. all possible as-
signments for the G.B and A.B vectors. This optimization problem is com-
putationally intractable. However, a generalized Expectation-Maximization
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(GEM) approach [25, 113] can be applied that splits the Expectation-step into
two substeps. In these substeps the gene-bicluster attributes G.B and the array-
bicluster attributes A.B are alternatively fixed and the posterior is maximized
w.r.t. the other attributes (A.B and G.B respectively). This approach leads
to a further decomposition of the log-posterior in each of the substeps into a
number of terms that can independently optimized:

• E step 1: maximize posterior w.r.t. array-bicluster attributes A.B, keeping
¯̄µ, ¯̄σ and G.B fixed.

• E step 2: maximize posterior w.r.t. gene-bicluster attributes G.B, keeping
¯̄µ, ¯̄σ and A.B fixed.

E-step 1: reassigning the A.B attributes

In this step, the model parameters ( ¯̄µ, ¯̄σ) and the gene-bicluster attributes G.B
are fixed. We need to maximize the posterior w.r.t. all possible A.B assign-
ments, given the current G.B attributes and model parameters:

argmaxA.Blog(posterior)
= argmaxA.B∑

a∈A

∑
b∈B

logP(µa,b, σa,b) +
∑
e∈E

∑
b∈Bi

e

log f ∗(e.level|µa,b, σa,b, b)

#iset(Bi
e)

+

∑
b∈B

∑
a∈A

logP(a.Bb) +
∑
b∈B

∑
g∈G

logg2(g.Bb) +
∑
g∈G

logg1(g.B)

= argmaxA.B∑
a∈A

∑
e∈Ea

∑
b∈Bi

e

log f ∗(e.level|µa,b, σa,b, b)

#iset(Bi
e)

+
∑
a∈A

∑
b∈B

logP(a.Bb) (5.32)

The above expression can be optimized independently per array:

argmaxa.B

∑
e∈Ea

∑
b∈iset(Bi

e)

log f ∗(e.level|µa,b, σa,b, b)

#iset(Bi
e)

+
∑
b∈B

logP(a.Bb) (5.33)

Equation 5.33 needs to be evaluated for every possible a.B assignment. This
would lead to 2#B evaluations if there are #B biclusters. Note that in Equa-
tion 5.33, Bi

e also indirectly depends on the a.B assignment, since it is the
intersection between iset(a.B) and iset(g.B).

Optimization 1: precalculating and caching intermediate values
The most demanding calculations in Equation 5.33 can be performed once
upfront, thereby greatly reducing the computational cost. Equation 5.33 can
be rewritten by grouping terms with the same gene-bicluster assignment g.B
together: the set of bicluster indices iset(Bi

e) for an expression level e is identical
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for all genes in such a group, independent of the choice of a.B. Note that the
set iset(Bi

e) does change with a different choice of a.B, but it changes in the same
way for all genes that have an identical g.B vector, so for a given g.B, iset(Bi

e)
only depends on a.B. This grouping allows the reordering of summations and
leads to the definition of some invariant sums over the different a.B evaluations:

argmaxa.B

∑
gb∈

unq(G.B)

∑
e∈Ea:

e.gene∈gb

∑
b∈iset(Bi

e)

log f ∗(e.level|µa,b, σa,b, b)

#iset(Bi
e)

+
∑
b∈B

logP(a.Bb)

= argmaxa.B

∑
gb∈

unq(G.B)

∑
b∈iset(Bi

e)

1
#iset(Bi

e)

∑
e∈Ea:

e.gene∈gb

log f ∗(e.level|µa,b, σa,b, b) +
∑
b∈B

logP(a.Bb)

= argmaxa.B

∑
gb∈

unq(G.B)

∑
b∈iset(Bi

e)

va,gb,b

#iset(Bi
e)

+
∑
b∈B

logP(a.Bb)

= argmaxa.B

∑
gb∈

unq(G.B)

∑
b∈iset(Bi

e)

va,gb,b

#iset(Bi
e)

+ N0
aπbgr + (#B −N0

a,b)(1 − πbgr) (5.34)

where each of the values va,gb,b is precalculated and N0
a is the number of biclus-

ters b for which a.Bb = 0.

Figure 5.5 illustrates this precalculation step for an example with two biclus-
ters. The summations for a particular a.B in Equation 5.34 are decomposed
into a weighted sum of precalculated values va,gb,b, which are represented by
the colored blocks on the right hand side for a particular array a. For each
a.B vector, the expression of Equation 5.34 is visually represented as a column
with the weighted contributions of each va,gb,b. For example, the resulting ex-
pression for a.B = [1, 2] is:

va,[1],[1] +
va,[1,2],[1] + va,[1,2],[2]

2
+ va,[2],[2] + va,[],[] (5.35)

Optimization 2: Apriori algorithm
While the first optimization reduces the computational cost per a.B evaluation,
a second optimization can reduce the amount of evaluations by orders of
magnitude. Intuitively, one could hypothesize that assigning an array to
two biclusters X and Y will not lead to an improvement in score if the score
of assigning the array to both a single bicluster X and a single bicluster Y
does not lead to an improvement respectively (compared to the background
assignment).

One can prove that the above hypothesis holds under fairly general conditions
when the overlap between biclusters remains relatively small compared to
the non-overlapping parts of the biclusters. See Appendix A.4 for a formal
definition of this hypothesis and the derivation of the necessary conditions for
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1

2

for array a

array a
a.B:     [] [1] [2] [1,2]

1 1

2

2

21

[1]

[1,2]

[2]

[]

1

2

g.B:

Figure 5.5: Illustration of the E-step 1. For a particular array a in the example, we need to
evaluate Equation 5.33 for all possible a.B assignments. At the right hand side the situation
is shown for array a for each of the possible a.B assignments, namely [], [1], [2] and [1, 2].
Equation 5.33 consists of contributions from each of the expression levels in the colored blocks.
Blocks of identical color represent the same contributions for each of the a.B assignments in
Equation 5.34.

this hypothesis. An Apriori-like procedure, as described below, results in the
maximum a posteriori solution, namely if the overlap between two biclusters
is small compared to the respective bicluster sizes.

An approach similar to the Apriori algorithm [2] is used to evaluate only a small
subset of a.B vectors with potentially good scores while still guaranteeing the
optimality of the solution. For notational convenience, the binary vector a.B is
here represented as a vector of bicluster indices for which the vector elements
are equal to 1, e.g. a vector a.B = (1, 0, 0, 1, 0) is represented as [1, 4]. The
following procedure is applied: in the first iteration (level 0), the score for the
background assignment a.B = [] is calculated. For all next levels, the following
steps are iterated until no more candidate assignments remain and the a.B
assignment with the highest score is selected as the maximum a posteriori
solution of Equation 5.34.

• At level L, a list of candidate vectors a.B with each L bicluster indices
is constructed from the set of retained vectors from the previous level
(L− 1) using the following procedure. A vector a.B is added to the list of
candidate vectors if each of the L subvectors of a.B with (L − 1) elements
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(containing all but one of the indices of a.B) is present in the retained
vectors from the previous level.

• The score is calculated for each of these candidate vectors according to
Equation 5.34 and the candidate vector a.B is retained for the next level
only if its score is higher than the score of each of the (L − 1) subvectors.
An (L−1) subvector of a.B contains (L−1) biclusters that are all a bicluster
of a.B and is part of the retained vectors from level (L − 1).

• The list of retained vectors is used to construct the candidate vectors of
the next level (L + 1).

E-step 2: reassigning the G.B attributes

In this step, the model parameters ( ¯̄µ, ¯̄σ) and all the array-bicluster attributes
A.B are fixed. We now need to maximize the posterior w.r.t. all possible G.B
assignments:

argmaxG.B

∑
g∈G

∑
e∈Eg·

∑
b∈Bi

e

log f ∗(e.level|µa,b, σa,b, b)

#iset(Bi
e)

+

∑
g∈G

∑
b∈B

logg2(g.Bb) +
∑
g∈G

logg1(g.B) (5.36)

where Eg· is defined as the subset of expression values for gene g.

This expression can be optimized independently per gene and similar opti-
mizations as in Section 5.5.2 are performed:

argmaxg.B

∑
ab∈

unq(A.B)

∑
e∈Eg·:

e.array∈ ab

∑
b∈Bi

e

log f ∗(e.level|µa,b, σa,b, b)

#iset(Bi
e)

+

∑
b∈B

logg2(g.Bb) + logg1(g.B)

= argmaxg.B

∑
ab∈

unq(A.B)

∑
b∈Bi

e

1
#iset(Bi

e)

∑
e∈Eg·:

e.array∈ ab

log f ∗(e.level|µa,b, σa,b, b) +

∑
b∈B

logg2(g.Bb) + logg1(g.B)

= argmaxg.B

∑
ab∈

unq(A.B)

∑
b∈Bi

e

wg,ab,b

#iset(Bi
e)

+
∑
b∈B

logg1(g.Bb) + βκ(1 − β)(1−κ) (5.37)

where κ is defined as 1 if at least one element differs from 0 in the vector g.B,
otherwise it is 0. wg,ab,b is defined analogously to va,gb,b in Section 5.5.2 and it is
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also precalculated to reduce the computational cost. A similar Apriori strategy
as in Section 5.5.2 is applied to greatly reduce the number of evaluations of
Equation 5.37.

5.5.3 EM initialization

Any Expectation-Maximization algorithm starts the optimization procedure
from an initial assignment of the hidden variables. For the ProBic model, these
are the gene- and condition-bicluster attributes that require an initialization.
Once these attributes are known, the algorithm starts with a Maximization
step in which the parameter matrices ¯̄µ, ¯̄σ are estimated. Several strategies can
be applied to initialize the bicluster attributes G.B and A.B:

• Random initializations.

• Initialization around known gene clusters, known biclusters or around
a set of seed genes.

• Initialization with the complete set of genes and arrays.

Depending on the model and the specific dataset that is used, the type of
initialization could affect the biclustering result. Ideally, the initialization of
the algorithm is chosen such that the optimization result is independent of the
initialization. Results on simulated data have shown that for global bicluster-
ing, the initialization of each bicluster preferably contains the complete set of
genes and conditions as this converges to the global optimum in most practical
settings and is on average more likely to converge to the global optimum than
a set of random initializations (results not shown).

5.5.4 Query-driven biclustering in ProBic

The ProBic model can be used to perform query-driven biclustering by using
the prior distributions as defined in Section 5.4.5. Starting from a set of query
genes that are of interest to a biologist, the model searches for a bicluster with
a similar expression profile as the query genes for a subset of arrays. The
distribution prior P( ¯̄µ, ¯̄σ) can be any member of the exponential family of
which two priors are particularly interesting: the Normal distribution and the
Normal-Inverse-χ2 distribution (see Appendix A.3).

The Normal distribution is the most intuitive to be used as prior, since it can be
considered as a prior that adds a number of pseudo expression values to the
data. It is parameterized by a mean µ0, a standard deviation σ0 and a count n0
where the count represents the number of pseudo values. The Normal-Inverse-
χ2 distribution is more complex but it gives the researcher more freedom to
e.g. direct the algorithm towards biclusters with tighter expression profiles. It
is parameterized by the hyperparameters (µ0, κ0, ν0, σ2

0). µ0 reflects the prior



118 CHAPTER 5. PROBIC MODEL

mean and σ2
0/κ0 reflects the a priori variance on this mean. The parameters

ν0 and σ0 determine the a priori variance of the distribution and its associated
variance. See Appendix A.3 for more details.

The Normal-Inverse-χ2 distribution is used for all results presented in this
thesis. By choosing the prior mean µ0

a,b as the sample average µquery
a for the

expression values defined by the set of query genes for each array a, the
algorithm will identify a bicluster b around the expression profile of these
query genes. The prior standard deviation σquery

a is by default chosen to be
smaller than the background standard deviation σbgr

a by a fraction fbcl (set to
0.4 for all presented results) in order to identify tight bicluster profiles. The
user can however define priors that select genes that are more stringently or
more loosely tied around the expression profile of the query genes by varying
σquery

a .

From a biological perspective, this definition of query-driven biclustering has
an interesting property: some query genes can be removed from the bicluster
if they do not fit the bicluster profile well. This is very useful in situations
where a biologist is interested in identifying all the genes that are involved in
a specific pathway and where a known set of query genes is available that are
expected to be part of that pathway, meaning that most of these query genes
are indeed in the pathway but some are outliers that do not belong to the
pathway. The application of such ’noisy’ queries with outlier genes on the
E. coli compendium will be given in Section 5.7.

5.5.5 Convergence speed and quality of local optimum

The convergence of the EM algorithm can be adversely affected by ’disruptive’
changes during the EM iterations. For example, the complete removal of all
genes or arrays from a bicluster in one of the expectation substeps is such a
disruptive change. Large changes in the gene-bicluster assignments during the
Expectation steps can cause large changes in the ( ¯̄µ, ¯̄σ) parameter values during
the Maximization step. Large changes in the array-bicluster assignments do
not affect the ( ¯̄µ, ¯̄σ) parameter values, but indirectly also affect the convergence
behavior as this can lead to a different gene-bicluster assignment in E-step
2. Analogous to large temperature changes in simulated annealing, large
variations in both the model parameters ( ¯̄µ, ¯̄σ) and the hidden variables G.B
and A.B can lead to a local optimum with a lower scores compared to an
approach with smaller variations.

In order to avoid such disruptive changes, only a limited number of genes-
bicluster or array-bicluster attributes are allowed to be changed during the
Expectation steps. If we more closely examine the log-posterior formula of
the ProBic model (Equation 5.20), it is not the overall change in gene-bicluster
or array-bicluster assignments that needs to be limited, but rather the change
in assignments per gene or array block respectively where a block of genes (or
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arrays) is defined as a set of genes (or arrays) with the same gene- (or array-)
bicluster assignment.

Two user-defined parameters in ProBic control the maximally allowed per-
centage of genes or arrays that can be changed during the Expectation steps.
If more genes or arrays are to be changed in one of these steps, only the N top
genes or arrays that lead to the largest increase in score are allowed to change
their bicluster assignment.

5.5.6 EM algorithm variants for query-driven and global bi-
clustering

Several variants of the EM algorithm (Figure 5.6) were evaluated with respect
to the quality of the identified local optimum and the convergence stability
of the algorithm for both global biclustering and query-driven biclustering
settings. Various experiments on simulated data have lead to the following
conclusions.

Variant A:
initialization
while(not converged):

maximization
expectation-AB
maximization
expectation-GB

Variant B:
initialization
while(not converged):

maximization
expectation-AB

while(not converged):
maximization
expectation-AB
maximization
expectation-GB

Variant C:
initialization
while(not converged):

maximization
expectation-GB

while(not converged):
maximization
expectation-AB
maximization
expectation-GB

Figure 5.6: Different variants of the EM algorithm.

For global biclustering, the best results are obtained using Variant C, in which
first only the gene-bicluster attributes are optimized and in the second phase
both gene- and array-bicluster attributes are updated simultaneously in the
optimization procedure. These results match with what one would expect
from a theoretical perspective. At each iteration i during the first phase, the
current bicluster consists of a subset of genes over all conditions. Now consider
an array that is not part of the real bicluster. Assuming the prior distributions
for background and biclusters are either not too strong or sufficiently similar
to one another, the model scores for a model M1 with this array and for a
model M2 without this array, will not differ much. The reason is that for
arrays that are not part of the bicluster, the parameters of these ’bicluster’
distributions are very similar to those the background. Their differences are
only due to statistical variations of the (sampled) bicluster expression values
for that array. Therefore, the inclusion of background arrays in the bicluster
will have little effect on the optimization algorithm. However, the exclusion
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of bicluster arrays may lead too poor convergence. Therefore Variant C has far
better convergence properties than the two other variants in Figure 5.6.

For query-driven biclustering, Variant B achieves the best results. The algo-
rithm starts with a set of query genes and all conditions as the initial bicluster.
In the first phase, only condition-bicluster attributes are changed and this re-
sults in the removal of conditions whose expression levels are not sufficiently
different enough from the background distribution. Note that ’sufficiently
different’ is determined by the ratio πbicl

πbgr
as defined in Equation 5.9.

One might expect that the convergence properties of Variant C would also
be good for query driven biclustering, however in some cases the necessary
conditions as described in the previous paragraph are not met, namely that for
these query genes the bicluster distributions are similar to the background for
all arrays that are not part of the real bicluster. The reason is that the set of query
genes is usually very small, typically 1-5 genes, and thus statistical variations
on the expression values have a large impact on the distribution parameters,
contrary to the situation for global biclustering where the biclusters contain
more genes on average. Variant B avoids this by removing these background
arrays in the first phase of the algorithm.

The ’pure’ EM algorithm as described by Variant A has relatively poor con-
vergence properties for both global and query-driven biclustering because
it suffers from ’race conditions’ between the gene-bicluster and the array-
bicluster assignments. The process of reassigning both genes and conditions
at the same time in the initial phases of the algorithm is highly dependent
on the parameters that determine the convergence speed as defined in Sec-
tion 5.5.5. In case of global biclustering and starting with the complete dataset
as initial bicluster, typically more arrays are removed than genes during the
first iterations, leading to suboptimal biclusters with many genes and few or
none arrays. For query-driven biclustering the problem is less pronounced,
but Variant B virtually always leads to better local optima.

5.5.7 Time complexity of the EM algorithm

For discussing the time complexity of ProBic, the following notation is used:
G is the number of genes, A the number of arrays, B the number of biclusters
and I the number of iterations.

For the maximization step (see Section 5.5.1), a µa,b and σa,b value is calcu-
lated for every array-bicluster combination. Each calculation is a summation
over the number of genes in that bicluster, so an overestimation of the time
complexity of this step is: O(A · G · B)

Expectation step 1 optimizes the posterior for all A.B combinations and con-
sists of two parts: the first part is the precalculation of all va,gb,b values and the
second part the calculation over all arrays a of the scores for each a.B assign-
ment (see Section 5.5.2). In the first part, the precalculation of the va,gb,b is of
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time complexity O(A · G · B · log(B)): the expression value for each array-gene
combination is added to one or more (maximum B) va,gb,b values and the ad-
dition itself can be performed in an O(log(B)) time with a hash tree of depth B
with a gb vector at each of the leaf nodes in that tree.

For the second part, the calculation of the actual score for each array involves
an Apriori-like algorithm that generates the candidate a.B vectors (see Sec-
tion 5.5.2). If the assignment of no more than N biclusters is allowed to change
simultaneously, the time complexity of this step is O(BN). Each of the a.B
evaluations (see Equation 5.34) involves a summation over all possible gene-
bicluster vector gb and a summation over each bicluster in this vector of some
constant values va,gb,b plus a constant time operation for the second term in
Equation 5.34. The summation over each possible gene-bicluster vector gb is
O(BM) if no more than M biclusters can overlap simultaneously. This leads to
a total time complexity for the second part of O(A · BN+M).

A total time complexityO(A ·G ·B · log(B)+A ·BN+M) is obtained for Expectation
step 1 by combining the above results. Analogously3, the time complexity for
Expectation step 2 is of order O(A · G · B · log(B) + A · BN+M). Assuming that
there are I iterations until convergence and that each of the E-steps is followed
by an M-step, the time complexity of the complete algorithm is:

O(I · (A · G · B · log(B) + (A + G) · BN+M)) (5.38)

We observe that the worst case time complexity is linear in the number of genes
and arrays and polynomial in the number of biclusters.

However, for determining the average time complexity, we notice that only a
small fraction of the biclusters actually overlap in practice. A conservative
estimate is that the number of overlaps is of the same order of magnitude as
the number of biclusters, so the number of possible gene-bicluster vectors g.B
is O(B), leading to an average time complexity that is quadratic in the number
of biclusters:

O(I · (A · G · B · log(B) + (A + G) · B2)) (5.39)

The identification of a single bicluster in a synthetic dataset of 500 genes and
200 arrays, takes about 1 minute on a dual Opteron 250 server with 2 GB RAM
(using only one core) using default settings for the convergence speed (see
Section 5.5.5).

5.6 Modeling biclusters with anticorrelated profiles

Genes are transcriptionally regulated through either activating, inhibiting or
more complex types of interactions. In case of an inhibitory interaction, the

3The derivation is not explicitly given, but it is completely analogous to the derivation of
E-step 1.
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resulting gene expression profile will be anticorrelated with the profile of
genes that are regulated through an activating interaction. Most biclustering
algorithms do not explicitly identify anticorrelated genes. Instead, researchers
often identify two separate biclusters: one with the correlated genes and one
with the anticorrelated genes (called method A hereafter). Another option is to
add the anticorrelated profile of every gene to the microarray dataset and thus
effectively duplicating the dataset (method B).

Both these methods suffer from drawbacks that deteriorate the quality of the
resulting biclusters. Method A fails to use the information that both separate
biclusters are in fact their anticorrelated counterparts. As a result it may not
identify a small set of anticorrelated genes in a bicluster due to noise and
other confounding effects that would have been identified if the information
regarding their anticorrelation with another bicluster would have been used.

Apart from the additional memory requirements and slower speed for Method B
that are caused by the duplication of the dataset, Method B also deteriorates
the quality of the results. The reason for this is more subtle: by adding twice
as many genes to the dataset, the probability that spurious biclusters are iden-
tified containing only noise has increased compared to the dataset without
anticorrelated profiles. Moreover, information is also lost during the data du-
plication as the identity relation between the anticorrelated and the original
gene is broken. From these observations, it is clear that an explicit model
for biclusters containing genes with anticorrelated profiles is an interesting
property for a biclustering algorithm.

ProBic is extended to incorporate anticorrelated genes in the bicluster. This
can be done in a relatively straightforward way by extending the boolean at-
tributes g.Bb and a.Bb with a third category ’-1’, indicating the gene or array is
part of bicluster b but it is anticorrelated with the other genes. This extension
only changes the definition of f1(. . .) slightly and it does not affect Equation 5.7.
The new definition of f1(. . .) becomes:

f1(e.level|g.B, a.B, a.ID)
= f ∗1 (e.level|e.array = a, e.biclusters = {b}, g.Bb)
= f ∗1 (e.level|a, b, g.Bb)
= f ∗1 (e.level|µa,b, σa,b, g.Bb)

=
1

σa,b
√

2π
exp[−

(g.Bb · e.level − µa,b)2

2σ2
a,b

] (5.40)

This extension affects the maximization step where the expression values e.level
of anticorrelated genes need to be negated in case of anticorrelation. The
Equations 5.26-5.27 are adapted accordingly. The changes in the Expectation
steps are limited to the changed precalculations of the va,gb,b and wg,ab,b values
and the fact that Equations 5.36 and 5.37 are now maximized over the three
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possible g.Bi values, namely−1, 0 and 1. Note that, like method B, this extension
also suffer from an increased probability of identifying spurious biclusters.
However, the extension requires less memory and is faster than method B
and more importantly, the information regarding anticorrelation is explicitly
present in the model which is useful if the ProBic model is extended with
additional data sources that are related to the anticorrelated behavior.

5.7 Results

An evaluation of the ProBic algorithm was performed on simulated gene ex-
pression datasets to investigate the behavior of the algorithm under various
parameter settings and input data. We tested (1) the robustness of the algo-
rithm w.r.t. noise; (2) the algorithm’s ability to handle missing values; (3)
the algorithm’s ability to incorporate expert knowledge in the form of query
genes; (4) the automatic determination of the number of biclusters from the
data; (5) the automatic derivation of the optimal parameter settings for a spe-
cific dataset; (6) the speed of the algorithm.

A comparison between ProBic and a number of state-of-the-art biclustering
algorithms was performed (Section 5.7.5) and ProBic has been applied to a
number of query-driven settings on a compendium of E. coli microarray data
(Sections 5.7.6 and 5.7.7).

5.7.1 Datasets

ProBic has been applied to a number of simulated and biological datasets.
The simulated data is generated based on a model assuming biclusters with
constant columns (see Figure 5.1 for an illustration). A cross-platform com-
pendium for E. coli was used as a biological dataset. In the next Sections, a
brief overview is given of these datasets.

Simulated datasets

The simulated data is modeled according to the ProBic model assumptions.
Background values were sampled from a Normal distribution N(µbgr = 0, σbgr =
1) for all conditions. The expression values ega that are part of a single bicluster
b were sampled from the distributions N(µa,b, σa,b) (meaning a separate dis-
tribution per condition a and per bicluster b). The expression values in the
overlap region between multiple biclusters, were modeled as the average of
the values sampled from the distributions N(µa,b, σa,b) over all overlapping bi-
clusters b. The values for µa,b were chosen from a Normal distribution N(0, σµ)
(excluding the interval [−σµbgr/2, σµbgr/2]) where σµ = 1 unless otherwise spec-
ified. The value σa,b represents the level of ’noise’ in the bicluster compared to
the background and was defined separately for each of the analyses.
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E. coli compendium

For the application of ProBic on biological datasets, a cross-platform com-
pendium for E. coli datasets was used. Three major microarray databases
contain many of the publicly available microarray datasets on E. coli: Stanford
Microarray Database (SMD) [42], Gene Expression Omnibus (GEO) [13] and
ArrayExpress (AE) [125]. A cross-platform compendium was constructed in
by Lemmens et al. [102] that contains a collection of 870 publicly available
microarrays for diverse experimental conditions. Both cDNA and oligonu-
cleotide microarray datasets are normalized and combined into a single com-
pendium.

5.7.2 Identification of the number of biclusters

The ProBic model in principle requires the number of biclusters to be defined
upfront. However, the actual number of biclusters in reality is difficult or
even impossible to estimate. Firstly, the optimal number of biclusters depends
indirectly on the amount of noise in the data. As a model contains more
biclusters, also more spurious biclusters will be added that contain a random
set of accidently correlated genes. The ’optimal’ number of biclusters is the
set of biclusters that contains as few spurious biclusters as possible while
avoiding to miss any real biclusters. Depending on the research goals, the
relative importance of these two numbers (which are in fact the number of false
positive and false negative biclusters) will be different and this will be reflected
in the parameter settings of the model. Secondly, interesting biclusters exist
at different resolution levels [47]. A researcher can both be interested in a
small, tightly correlated bicluster or a large, more loosely correlated bicluster
that is a superset of the smaller bicluster, depending on his/her research goals.
The optimal number of biclusters will therefore necessarily depend on the
parameter settings that the researcher applies in a particular study.

This problem recurs in many clustering and biclustering settings [98, 144] and
often the number of (bi)clusters is estimated upfront either by the author, e.g.
using expert knowledge [144], or by applying other methods that perform an
estimation of this number. The ProBic model can use any of these techniques
to estimate the number of biclusters in the dataset. However it can also
automatically select the optimal number of biclusters in the dataset for a given
parameter setting of the model. The model is initialized with Nmax (empty)
biclusters where Nmax is chosen larger than the number of actual biclusters in
the dataset.

An analysis was performed for simulated 500x200 datasets with varying de-
grees of noise that were implanted with 7 biclusters each containing 50 genes
and 50 arrays. The model score was calculated for models with N biclus-
ters where N varied between 1 and 10. Figure 5.7 shows the model score
in function of the number of biclusters in the model for an artificial dataset
containing seven biclusters. In an iterative procedure, a model is constructed
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Figure 5.7: Identification of the number of biclusters in a simulated dataset for varying
degrees of noise. For simulated 500x200 datasets with seven 50x50 biclusters and for varying
noise levels, the model score is shown (Y-axis) for a model with N biclusters (X-axis). Legend
noise level: circle: 0.4; triangle: 0.6; square: 0.8.

with 1, 2, . . . optimized biclusters respectively where the remaining biclusters
are empty. We observe that the model score increases up until seven identified
biclusters, after which the model score does not increase anymore: no more
score improvements are achieved since the score would decrease by adding a
non-empty bicluster to the model. As soon as the real number of biclusters in
the data is obtained, the model will therefore only add empty biclusters to the
model.

As discussed, the optimal number of biclusters will vary in function of the
different parameter settings. For example, if no penalty is introduced for
adding expression values to a bicluster (πbicl

πbgr
= 1), the model will select as

many biclusters as possible since adding a bicluster increases its degrees of
freedom to fit the data.

5.7.3 Optimal model parameter settings

The ProBic biclustering model has several parameters that potentially affect
the biclustering. While it is important for real life applications that parameters
can be fine-tuned by the researcher, sensible default values need to be defined
that are broadly applicable on a wide range of datasets. In this Section we will
investigate optimal parameter settings for each of the parameters of the ProBic
model. Default values for most parameters can be directly derived from the
data.
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Parameter πbicl
πbgr

ratio

First, how to determine the optimal ratio πbicl
πbgr

that indicates how many times
more likely it is for an expression value to be part of a bicluster compared to the
background distribution before it is actually added to the bicluster. In order
to determine this optimal ratio, we assume there exist one or more known
clusters of genes in the dataset that are co-expressed in a subset of conditions.
This assumption is not too stringent as in most practical biological situations,
such known sets of genes exist (e.g. a set of operon genes). If such a set would
not be available, standard clustering techniques can also be used to identify
one or more of these clusters.

If the conditions are known in which the genes are co-expressed (i.e. we have a
set of known biclusters), the optimal ratio we can relatively easy be determined
using the following procedure: for every array a, the difference in score (called
δ’s in the remainder of the section) is calculated between the situations where
either that array is part of the bicluster or where it is part of the background. We
then solve a classification problem where the optimal threshold is determined
for the δ’s that minimizes the global error rate (= the product of the false
positive rate and the false negative rate) for classifying the arrays in either
the background or in the known bicluster. Figure 5.8a shows the δ’s for a
500x200 simulated dataset with one known 50x50 bicluster. Applying the
above automated procedure leads to the optimal ratio log(πbicl

πbgr
) = −0.5.

In case only a set of gene clusters is known but the arrays in which they
are coexpressed are unknown, a different procedure can be applied. Again
the δ’s are calculated for all arrays a. A plot of the sorted δ’s is made in
which a clear cutoff point between arrays with high and low δ’s can often be
determined visually, as can be seen in Figure 5.8b. This Figure shows the δ’s
for all arrays in the E. coli compendium for the set of genes that are known
to be regulated by FNR. Based on this plot, good cutoff values for −log(πbicl

πbgr
)

would range between 0.5 and 0.8. FNR is a global regulator and therefore
no tight bicluster exists that covers all FNR regulated genes. Therefore there
is a smooth transition between bicluster and background conditions and no
unique cutoff value can be determined. A broader region can however be
defined that separate bicluster and background conditions. An alternative to
selecting a single global regulator would be to select a large set of specific
regulators and define their target sets as the set of gene clusters for which the
δ’s are plotted. The latter approach would also average the selection of the
cutoff value over a large number of gene sets, thereby increasing the robustness
of the method.

Next we investigate the sensitivity of the bicluster inference quality with re-
spect to the πbicl

πbgr
ratio. Figure 5.9 shows how precision and recall for the arrays

vary with respect to the πbicl
πbgr

ratio for a synthetic 500x200 dataset with three
non-overlapping 50x50 biclusters for a number of different noise levels. As
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Figure 5.8: Illustration of determining the optimal ratio for pibicl
πbgr

.
(a) For a synthetic 500x200 dataset with three 50x50 biclusters (noise level 0.2). The plots
show the deltascore over all arrays (multiplied with the number of biclusters) for a set of genes
that are ’known’ to be co-expressed in a number of arrays. Large deltascore’s indicate that the
genes are likely to be in the bicluster distribution for that condition (compared to the background
distribution). The deltascore threshold that classifies these two sets of arrays best according to the
ratio is 0.5, leading to an optimal value of −log( πbicl

πbgr
) = 0.5. (b) Sorted deltascore levels for all

FNR regulated genes over all arrays in the E. coli compendium. Based on this plot, good values
for −log( πbicl

πbgr
) range between 0.5 and 0.8.

the πbicl
πbgr

ratio decreases, the precision is very high (precision=1) since only real
bicluster arrays are kept in the identified bicluster. Such high precision comes
however at the expense of a lower recall. The optimal predicted log(πbicl

πbgr
) val-

ues for the simulated datasets were -0.44, -0.36 and -0.22 for noise levels 0.2,
0.5 and 1.0 respectively. Figure 5.9 shows that for these parameter values a
precision and recall of almost 100% is achieved.

Parameter β

The overall probability that a gene is in any bicluster (β) indirectly affects the
size (in number of genes) of the biclusters. Figure 5.10 illustrates the effect of
varying β on the bicluster size for a 500x200 dataset with one 100x100 bicluster
that is composed out of three parts:

• expression values for 20 genes, sampled from N(µa, 0.2)

• expression values for 30 genes, sampled from N(µa, 0.5)

• expression values for 50 genes, sampled from N(µa, 1.0)
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We expect that lower β values will lead to a smaller bicluster (keeping only the
most correlated genes) and this is confirmed in Figure 5.10. A single bicluster
is identified with the ProBic model and the number of genes in the bicluster
decreases successively from 100 to 50 to 20 for decreasing β as predicted. We
confirmed that the identified bicluster indeed corresponded to the original
100x100, 50x100 and 20x100 biclusters respectively.

5.7.4 Noise and missing values robustness

To assess the effects of noise and of missing values on the bicluster iden-
tification, a 500x200 (genes x arrays) simulated dataset was constructed as
previously described with three 50x50 non-overlapping biclusters. The per-
centage of missing values in the dataset varied between 0% and 100% and the
bicluster noise level was varied between 0 (no bicluster noise) and 1 (bicluster
noise = background noise). The resulting effect on the precision and recall for
both the genes and the arrays is shown in Figure 5.11.

Figures 5.11a and 5.11c show that for lower bicluster noise levels (< 0.5), the
presence of up to 60% of missing values in the dataset does not interfere with
the detection of the true bicluster genes and arrays (a precision and recall of
about 100% is obtained for both the genes and arrays). As can expected the
model sensitivity to missing values increases with the bicluster noise level,
but even in the presence of high noise levels (1.0), the presence of up to 20%
missing values does not considerably deteriorate the algorithms recall and
precision (recall levels of 0.9 and 0.88 for the genes and arrays respectively).

5.7.5 Comparison of ProBic with state-of-the art query-driven
biclustering algorithms

Since many biclustering algorithms are based on different statistical measures
of ’good’ biclusters, a fair comparison between the algorithms is difficult and
often biased. Rather than using the simulated data described in Section 5.7.1,
we used previously published artificial data to avoid any bias in the results. In
Dhollander et al. [47], a systematic comparison of query-driven biclustering
algorithms was performed using various simulated gene expression datasets
defined by Prelic et al. [131]. The tested algorithms were ISA [79, 78], Gene
Recommender [123] and QDB [47].

Prelic et al. [131] have investigated various experimental settings. Datasets
were generated containing (1) biclusters with constant expression values,
called scenario 1, and (2) datasets containing biclusters with constant columns
and an additive bicluster model, called scenario 2. The datasets are 100 genes
by 50 arrays (scenario 1) and 100 genes by (100. . . 110) arrays (scenario 2) re-
spectively. For each of these scenarios, two settings were tested. In setting
A, noise is added to the gene expression values and a model without overlap
between the biclusters is used. The standard deviation σ of this distribution
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represents the noise level. In setting B an increasing amount of overlap be-
tween the biclusters is tested, varying between 0 (no overlap) and 10 (50%
overlap) for both genes and arrays of the biclusters. In each dataset 10 biclus-
ters are implanted of fixed size 10x10 for setting A and of an increasing size
(10 + i)x(10 + i) in setting B where i represents the amount of overlap. More
details on the experimental setup can be found in [131].

If we assume two sets of biclusters M1 and M2 and we denote the set of genes
of an individual bicluster Bi = (Gi,Ci) with Gi and the set of conditions with
Gi, then the following gene match score is used to asses the performance of the
algorithms, as defined in Prelic et al. [131]:

S∗G(M1,M2) =
1
|M1|

∑
G1,C1∈M1

maxG2,C2∈M2

|G1 ∩ G2|

|G1 ∪ G2|

This score lies between 0 and 1 and it is 1 if the bicluster sets are identical and
the score is 0 if none of the gene sets of the bicluster sets show any overlap.

If we define Mreal as the true set of implanted biclusters in the dataset, then
the average bicluster relevance score for a bicluster M is defined as S∗G(M,Mreal)
and the average bicluster recovery score as S∗G(Mreal,M). The bicluster relevance
reflects to what extent the identified biclusters represent true biclusters in
the gene dimension and the bicluster recovery determines how well the true
biclusters are recovered by the algorithm.

Figure 5.12 shows the results of this analysis. In general, all query-driven
algorithms perform very well on these data compared to various global bi-
clustering methods. We refer to Prelic et al. [131] for a detailed analysis of
global biclustering algorithms on these datasets and focus here instead on the
results for query-driven biclustering.

For the noise experiments (setting A), we observe that ProBic performs well for
low noise levels but it is more sensitive to higher noise levels compared to the
other biclustering algorithms. These results are in contrast with the noise and
missing value robustness results obtained in Section 5.7.4. In order to verify if
indeed noise was the cause of this reduced performance, an additional series
of experiments was performed using ProBic global biclustering (PB-G) on the
simulated datasets and the results for scenario 1 are added to Figure 5.12.
The global biclustering approach leads to a perfect recovery for all cases in
scenario 1. However poor recovery and relevance were observed for scenario
2 (score < 0.1, results not shown).

The fact that the global biclustering recovers biclusters that are not identified
in the query-driven setting was not due to any differences in the initialization
and a resulting local optimum of the EM algorithm: experiments for query-
driven biclustering with different types of initialization (complete dataset and
random initializations) lead to the same (global) optima. The reason for the
poor performance on noisy datasets of query-based clustering is due to our
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choice of prior distribution and its parameters (see Section 5.5.4). For the query-
driven biclustering a Normal-Inverse-χ2 prior was used in the ProBic model.
Analyses have shown that the performance of ProBic is sometimes greatly
affected by the choice of prior distribution and its associated parameters: e.g.
up to 20% variation for the bicluster relevance and recovery scores were seen in
setting A for varying the σ0 parameter which controls how ’tight’ the bicluster
profile should be a priori. All ProBic results shown in Figure 5.12 are for a
choice of σ0 = 0.4σbgr. While Setting A was very sensitive to these parameter
settings, Setting B was more robust for variations in the parameters of the prior
distributions.

Although this analysis on simulated data is helpful to gain insight in the
characteristics of the algorithm, it is however important to realize some short-
comings of these datasets. Realistic datasets contain thousands of genes and
several hundreds of conditions. Due to computational limitations for perform-
ing the comparison analysis, the simulated datasets are much smaller in size.
Secondly, the modules in the simulated data are all of nearly equal size and
vary relatively little with respect to noise compared to real biological datasets.
Thirdly, other definitions of overlap could be defined than the additive overlap
model that was used here. Finally, there are no real ’background’ genes in these
datasets that are not part of any bicluster. The latter leads to a disadvantage
for biclustering methods with an explicit background model such as QDB and
ProBic since the high percentage of biclusters confounds a robust background
estimation.
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Figure 5.9: Sensitivity of the array precision and recall w.r.t. πbicl
πbgr

. The effect is shown
of varying log(πbicl) on the precision and recall for the arrays for a 500x200 synthetic dataset
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πbgr
is important.

05 August, 2008 summary_0.sfs 21:40:54

Page 1 of 1

Scatter Plot

log(beta)

0

20

40

60

80

100

Color by init

0

All markers are connected and 
ordered by beta.

Query:
SELECT * FROM D:\Data\PrmModel\vicdata\experiments\tmpresults\2008-08-06_parameter_PGB_hierarchical\summary_0.txt

-1 -0.8 -0.6 -0.4 -0.2                 0

(a) Effect of β on the number of genes.

21 March, 2009 dataset_500_200_ov-hierarchical_n-0.2-0.5-1.0_3bicl.sfs 17:39:23

Page 1 of 1

Heat Map

Query:
SELECT * FROM D:\My Documents\DATASETS\prmmodel\examples\20080803_artificialDatasets_hierarchical\dataset_500_200_ov-hierarchical_n-0.2-0.5-1.0_3bicl.txt
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Figure 5.10: Illustration of the effect of the β parameter on the number of inferred genes
in a bicluster. A 500x200 simulated dataset contains one 100x100 bicluster that is composed
out of three parts: the expression values for 20 genes are sampled from N(µa, 0.2) distributions,
for 30 genes from N(µa, 0.5) and for 50 genes from N(µa, 1.0). (a) Effect of the log(β) value on
the number of genes in the inferred bicluster. (b) Heatmap plot of a part of the simulated dataset
containing the 100x100 bicluster with varying degrees of noise its expression values.
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Figure 5.11: Noise and missing value robustness of ProBic. ProBic performance on a
500x200 simulated dataset (containing three 50x50 biclusters) with varying degrees of noise
and missing values. The X-axes show the percentage of missing values (between 0% and 100%)
in the dataset and the plots indicate the average precision (= TP

TP+FP ) and recall (= TP
TP+FN ) for

the genes and arrays respectively. Noise level legend: square: 0.2; circle: 0.4; triangle: 0.6;
small triangle: 0.8; star: 1.0.
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5.7.6 Query-driven biclustering with single gene queries

Some query-driven biclustering algorithms such as Gene Recommender [123]
are known to deal badly with single gene queries. Therefore, a number of
experiments were conducted to identify biclusters in the E. coli compendium
based on single gene queries. Table 5.2 shows a selection of six known target
genes of different regulators together with the identified biclusters, known
regulator and gene ontology information. For verifying that the algorithm
converges to similar biclusters for different target genes of known regulators,
two different seed genes were chosen for both the LexA and CysB regulators.
The identified biclusters are shown in Figure 5.13.

Reg. Query Genes Arrays Reg. enrich. GO term
LexA uvrB 11 32 LexA SOS response

(1.0394e-14) (1.13e-19)
LexA dinI 8 20 LexA SOS response

(9.8312e-06) (2.05e-12)
Fur fhuE 20 75 Fur enterochelin (enterobactin)

(1.3682e-23) (1.43e-12)
CysB cysK 12 97 CysB Sulfur metabolism

(2.3838e-20) (5.36e-12)
CysB cysD 10 110 CysB unknown

(1.0744e-18)
NtrC ddpX 7 28 NtrC nitrogen metabolism

(7.0782e-10) (5.04e-02)

Table 5.2: Overview of the used seed genes for query-driven biclustering with single gene
queries. For each query gene, the known regulator is shown together with the number of
genes and arrays in the identified bicluster. An enrichment score was calculated for all known
regulator target genes based on RegulonDB data and the most enriched regulator is shown for
each module together with the p-value. Finally, the most enriched gene ontology term is shown
together with its associated p-value.

5.7.7 Outlier removal for query-driven biclustering

Biologists are often interested in the genes that are part of a specific pathway
for which only a subset of the genes is known. In some cases, the set of
query genes contains one or more outliers, genes that actually do not belong
to the pathway. In such cases, the query-driven biclustering should remove
these outlier genes from the query while retaining the other genes in the final
bicluster that is associated with the pathway of interest.

We simulated this situation for the E. coli compendium, by selecting two co-
expressed query genes that belong to the cyoABCDE operon cyoA and cyoB.
The resulting bicluster is shown for this query in Figures 5.14a-b. Two settings
with outlier genes were investigated with respectively one and two additional
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(a) uvrB (b) dinI

(c) fhuE (d) cysK

(e) cysD (f) ddpX

Figure 5.13: Identified biclusters expression profiles for different single gene queries.
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randomly chosen genes, namely (rfbB) and (rfbB, yniB). The resulting biclusters
are almost identical in both genes and conditions, as shown in Figures 5.14c-d.
The results show that even when 40% noisy query genes, the correct bicluster
is still identified and the noisy genes are removed from the resulting bicluster.

All resulting modules were most enriched for the Fur regulator. Fur is an
inhibitor which has been implicated in the regulation of a large number of
operons that encode enzymes involved in iron transport and is a known reg-
ulator for the cyoABCDE operon. Fur p-values ranged between 1e-29 and
1e-16, except for query (cyoA, cyoB, rfbB) where both Fur (p=1e-16) and ArcA
(p=4e-17) were most enriched.

5.8 Extending the ProBic model

The following Sections describe a number of extensions to the ProBic model
towards the integration of heterogeneous data. The combination of the PRM
framework with an EM optimization strategy lead to a powerful and modular
approach for building integrative models that identify transcriptional regula-
tory modules.

5.8.1 Integration of sequence data

The ProBic model can be extended towards identification of cis-regulatory
modules by incorporating promoter sequence data, similar to the approach
described by Segal et al. [147] for the identification of gene clusters and the
associated regulatory motifs. The following extension can both be considered
as an extension of ProBic by incorporating promoter sequences and as an
extension of Segal et al. [147] by biclustering over both gene and arrays rather
than gene clustering only.

In Figure 5.15, a graphical illustration is shown of the resulting PRM for such
an extension. An additional class Promoter is introduced that contains the
promoter sequences p.S for all the genes. The boolean variables g.Rr are
hidden and indicate if a gene is being regulated by a specific regulator r. They
are conditionally dependent on the promoter sequence and are modeled using
a position specific scoring matrix (PSSM). Note that the determination of the
MAP values of these attributes will depend both on the promoter sequence
data of the gene and the associated gene-bicluster attributes g.B. Each bicluster
in this model is now associated with one or more regulators, which is modeled
by the CPD P(g.B|g.R). In Segal et al. [147] this is for example modeled using
a softmax distribution. In the proposed model, this CPD associates a regulator
profile to each bicluster.

The JPD for the proposed model is given by Equation 5.41:
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(a) Bicluster heatmap (sorted arrays) for query
(cyoA, cyoB)

(b) Bicluster profile for query (cyoA, cyoB)

(c) Bicluster profile for query (cyoA, cyoB, rfbB) (d) Bicluster profile for query (cyoA, cyoB, rfbB,
yniB)

Figure 5.14: Illustration of the effect of a ’noisy query’ for a selected in the E. coli
compendium. (a) and (b) show the heatmap and expression profile for the identified bicluster
using two co-expressed query genes cyoA and cyoB that belong to the cyoABCDE operon. (c)
and (d) show the resulting bicluster profiles for noisy queries with one (rfbB) and two (rfbB
and yniB) additional random genes respectively to the original query cyoA and cyoB.
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likelihood = P(E.L,G.B,G.R,P.S,A.B)
= P(E.L|G.B,A.B,A.ID) · P(A.B) · P(G.B|G.R) · P(G.R|P.S) · P(P.S)

=
∏
e∈E

P(e.L|g.B, a.B, a.ID) ·
∏
a∈A

∏
k∈K

P(a.Bk) ·∏
g∈G

∏
b∈B

P(g.Bb|g.R) ·
∏
g∈G

∏
r∈R

P(g.Rr|P.S) ·
∏
p∈P

P(p.S) (5.41)

The MAP solution of this model is also determined using an EM approach sim-
ilar to the ProBic EM algorithm. Because of the design of the model extension,
namely that expression values depend only on the gene- and array-bicluster
assignments g.B and a.B, the existing EM steps as developed for ProBic remain
unchanged in the extended model. The Expectation step is now split into
three substeps: the two existing ProBic steps and one additional E step that
maximizes the posterior w.r.t. the hidden variables g.R. The Maximization
step of ProBic is extended with two additional and independent optimization
parts: the first part optimizes the PSSMs for defining the regulatory motifs
and the second part maximizes the softmax parameters.

A detailed description of how these extensions are modeled can be found in
[147] and in the PhD thesis of Segal [143] as part of the model description of
the identification of cis-regulatory modules.

5.8.2 Integration of microarray condition property data

Recently, large microarray datasets have become available with annotated
condition properties [102]. Such annotation includes all information regarding
the experimental conditions, for example the concentrations of all compounds
in the medium, either as absolute values or as relative changes compared to
a reference experiment. The use of such condition annotation data can lead
to novel insights about which biclusters or regulatory modules are associated
with specific (changes in) experimental conditions. E.g. a bicluster regulated
by a transcription factor that is associated with DNA repair might be strongly
associated with experimental conditions that have high concentrations of a
toxic compound X that damages DNA.

The ProBic model can be extended in an analogous way to Section 5.8.1, but
rather than the genes, the arrays are now extended with a number of addi-
tional attributes, namely the condition annotations as indicated with a.Ci in
Figure 5.16. These condition annotations are either continuous (e.g. compound
concentrations) or discrete (e.g. gene knockouts) and they are associated with
a bicluster through the CPD P(A.B|A.C). A softmax distribution can also be
used here similar to Section 5.8.1 and the ProBic EM algorithm can be extended
analogously to include the condition annotation data.
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ExpressionExpression

ArrayArray

level

B2IDB2 B B… …B1B1

R2 R…R1 R3

PromoterPromoter

S…S1 S2 S3 S4

Gene

Figure 5.15: Extension of the ProBic model towards identification of cis-regulatory
modules.

ExpressionExpression

ArrayArray

level

B2
ID

GeneGene

B2 B B…
…B1B1

B…C1 C2 C3

Figure 5.16: Extension of the ProBic model by incorporating condition annotation data.
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5.8.3 Identification of regulatory modules with condition an-
notation data

The full power of using PRMs to integrate relational data in combination with
an EM strategy can be illustrated by combining the extensions described in
Sections 5.8.1 and 5.8.2 into an integrative probabilistic model that identi-
fies regulatory modules with the associated regulatory motifs, experimental
conditions and associates these modules with one or more specific condition
annotations. Figure 5.17 visualizes the resulting PRM. Due to the particular
way that these model extensions preserve the independence relations between
the existing attributes in the ProBic model and the extensions, this combined
model can again use the unmodified Expectation and Maximization substeps
as defined in Sections 5.8.1 and 5.8.2.

ExpressionExpression

level

B2 B…B1

R2 R…R1 R3

PromoterPromoter

S…S1 S2 S3 S4

Gene

ArrayArray

B2
ID B…B1

B…C1 C2 C3

Figure 5.17: Extension of the ProBic model incorporating both promoter sequence and
condition annotation data.

5.9 Discussion

Design of the ProBic model

The ProBic model has been designed without an explicit Bicluster class in the
model. At first sight, it may seem counterintuitive for not explicitly modeling
this class. However, the design of a PRM with a separate Bicluster has some
disadvantages as we will outline. A possible structure of a PRM with a separate
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bicluster class is shown in Figure 5.18 and the JPD for this model is given by
Equation 5.42.

likelihood = P(E.L,M.B,A.ID)
= P(E.L|M.B,A.ID) · P(M.B) · P(A.ID)

=
∏
e∈E

P(e.L|e.module.B, e.array.ID) ·∏
m∈M

P(m.B) ·
∏
a∈A

P(a.ID) (5.42)

In a model with an explicit Bicluster class (named M in Equation 5.42), ’biclus-
ters’ are now defined at the expression level rather than at the gene or array
level. This means that in principle the shape of the biclusters is not restricted
anymore to rectangular blocks. Any set of expression levels can be grouped in
a bicluster in principle, the only factor that can prevents this from occurring
is the expression level CPD. Such models may however prove to be useful for
other domains such as e.g. image analysis applications.

ExpressionExpression

ArrayArray

level

ID

GeneGene

BiclusterBicluster

B2 B…B1

Figure 5.18: Alternative PRM model for biclustering gene expression data with an
explicit Bicluster class.

The structure of this PRM also does not allow for the types of priors on the gene-
bicluster assignments as defined in Section 5.4 since the bicluster attributes are
no longer defined at the gene level. The proposed ProBic extensions from
Section 5.8 can not be modeled in a straightforward way in a PRM with an
explicit Bicluster class for the same reason: the bicluster attributes are no longer
defined at the gene and array level.

In conclusion, while a biclustering model with a separate bicluster class would
be intuitive from a data-centric point of view, such model has undesired prop-
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erties from a model-centric point of view. These considerations not only apply
to ProBic but are more generally applicable in the context of relational models.
It is often necessary to reshape the relational structures in the dataset in order
to achieve the desired modeling properties such as the decomposability and
the proper definition of the CPDs towards their underlying real-world model.

Different overlap models

For the ProBic model, a particular overlap model was implemented that aver-
ages the individual probabilities of the expression level belonging to each of
the overlapping biclusters. In principle many other types of overlap models
can be chosen as the described overlap model. Depending on the biologi-
cal process of interest and properties of the gene expression data such as the
normalization procedure, other overlap models can be defined such as a sum,
average or weighted average overlap models as defined in Equations 5.44-5.45,
with γb the weights of each of the biclusters b, that are of biological interest to
the researcher:

f sum
1 (e.level|e.gene.B, e.array.B, e.array.ID)

= f ∗1 (e.level|µ =
∑
b∈

iset(Bi
e)

µa,b; σ =

√√√ ∑
b∈

iset(Bi
e)

σ2
a,b) (5.43)

f avg
1 (e.level|e.gene.B, e.array.B, e.array.ID)

= f ∗1 (e.level|µ =
1

#iset(Bi
e)

∑
b∈

iset(Bi
e)

µa,b; σ =

√√√ ∑
b∈

iset(Bi
e)

σ2
a,b) (5.44)

f weighted
1 (e.level|e.gene.B, e.array.B, e.array.ID)

=

∏
b∈

iset(Bi
e)

f ∗1 (e.level|µ = µa,b; σ = σa,b)γb∫ +∞

e=−∞

∏
b∈

iset(Bi
e)

f ∗1 (e.level|µ = µa,b; σ = σa,b)γb de
(5.45)

Extensions to the ProBic model

Extensions to the ProBic model are always confined to the implicit restrictions
that apply for the PRM framework. Firstly, the resulting ground Bayesian
network associated with the PRM and a dataset needs to be a DAG. This
requirement is automatically fulfilled if the PRM model itself is a DAG (note
however that this is an overly restrictive condition). Extensions that lead to
cycles in the GBN are therefore not allowed. Secondly, a PRM is a directed
graph, so undirected relations between attributes can not be modeled within
the PRM framework. The model can be extended to more general statistical
relational modeling frameworks, but at the cost of convergence guarantees
and other statistical properties that can be guaranteed for PRMs.
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Thirdly, while the convergence properties with respect to identifying the global
optimum are fairly good for the current ProBic model, the extension of the
model with additional attributes or datasets may adversely influence the al-
gorithm’s convergence. It is difficult to assess a priori what the effect will be
of such a particular model extension. Additionally, also the particular imple-
mentation of the EM algorithm affects the convergence. Therefore, any model
extension needs to be validated with a new convergence assessment on either
simulated or biological datasets.

5.10 Summary

We have developed a novel biclustering model, called ProBic, that builds upon
the expertise of previous work and extends the current generation of biclus-
tering methods in the following areas: (1) ProBic uses a model-based approach
for identifying multiple biclusters simultaneously; (2) both global and query-
driven biclustering can be performed within the model, even simultaneously;
(3) ProBic groups both correlated and anticorrelated genes within a biclus-
ter (diametrical biclustering) and is, to our best knowledge, the first constant
column biclustering algorithm with diametrical biclustering that has been de-
veloped; (4) ProBic is based on continuous expression data, so no discretization
of the gene expression data is required; (5) for query-driven biclustering, seed
genes can be removed from the resulting bicluster if they have no matching
expression profile with the bicluster, a feature that is important in practice to
biologists.

An Expectation-Maximization algorithm has been developed for learning the
model parameters and hidden variables efficiently. Experiments on both simu-
lated data show the robustness of the model with respect to noise and missing
values. Default parameter settings are automatically determined for each
specific dataset, while retaining the possibility of fine-tuning these parameter
settings to the researcher’s needs.

Results on simulated data from Prelic et al. [131] show that ProBic competes
with state-of-the-art biclustering algorithms and even outperforms ISA and
QDB for settings with high overlap between biclusters. A robustness analy-
sis with respect to noise and missing values on simulated data indicated that
ProBic can deal with relatively high noise and missing value levels, a necessary
feature for biclustering inherently noisy microarray datasets. In query-driven
settings where the set of query genes contain one or more outliers, the algo-
rithm also performs well and is able to remove such outlier genes from the
identified bicuster. This feature is particularly useful to biologists in practice.

ProBic is embedded in the relational framework of PRMs and therefore allows
for integrative extensions of the biclustering model towards the identification
of regulatory modules by incorporating additional data sources in a unified
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probabilistic model. Several extensions have been outlined that integrate both
sequence data and microarray condition property data. These model exten-
sions and their combinations reveal the power of using PRMs in combination
with an Expectation-Maximization approach as the existing EM steps can be
used unmodified in the extended models.



Chapter 6

Conclusion

In this Chapter we summarize the main contributions of this thesis and we
provide some directions for future work. The research described in this thesis
covers a number of topics related to inferring regulatory networks based on
gene expression data.

6.1 Summary and achievements

The first part of this thesis presents the development of a simulator for tran-
scriptional regulatory networks, called SynTReN (Figure ??), that generates
the associated gene expression data sets for the generated network. Three well
known network inference algorithms have been applied to various settings of
the simulated data and have led to insights in the operational characteristics of
these algorithms that would have been difficult or impossible to achieve using
biological data only.

• We designed a gene network generator and simulator that is able to sim-
ulate large regulatory networks with thousands of genes. Current state-
of-the-art dynamic simulators that simulate networks up to maximally a
few hundred genes. By reducing the data generation to only steady-state
solutions, the simulation of a network comprising thousands of genes
becomes computationally tractable.

• Our results show that the choice of network topology for the simulated
data can profoundly influence the quality of the results of some inference
algorithms. While inference algorithms are often tested on simulated
data, the topology of the underlying network is usually not considered
as key factor. Disregarding this aspect leads to biased and possibly faulty
conclusions based on the results on simulated data.
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• Different inference algorithms were applied to simulated datasets with
various characteristics. The results show a qualitatively very different
response of the algorithms with respect to parameters of the simulated
data such as noise, amount of data, types of interactions. These results
also prove that simulated data is useful to provide more insights in the
operational characteristics of an algorithm that are complementary to
the insights gained from experiments on real biological data and that are
unlikely to be discovered by means of biological data only.

The second part of this thesis describes the development of a model-based
biclustering algorithm that is developed within the framework of probabilistic
relational models. Both query-driven and global biclustering can be combined
in a single model and the model simultaneously identifies multiple potentially
overlapping biclusters containing genes with both correlated and anticorre-
lated profiles:

• An efficient biclustering algorithm, called ProBic, has been developed
within the framework of probabilistic relational models, requiring no
prior discretization of the gene expression data.

• The biclustering model naturally deals with missing values and noise
due to its probabilistic nature. This leads to robust identification of
biclusters under various settings of noise and missing values.

• Both global and query-driven biclustering can be combined within a
single model-based approach and the query-driven biclustering has been
proven robust with respect to outlier genes in the set of seed genes.

• ProBic simultaneously identifies multiple overlapping biclusters.

• An extension to ProBic allows to group both correlated and anticorrelated
genes within a single bicluster.

• The powerful combination of PRMs with an Expectation-Maximization
approach allows ProBic to be easily extended to incorporate additional
data sources, ultimately leading to the identification of regulatory mod-
ules with associated condition annotation, regulatory motifs and tran-
scription factors.

6.2 Future work

SynTReN

With the availability of more heterogeneous omics data and the development
of integrative algorithms that combine such datasets, there is a need for more
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complete simulated models of biological cells that model not only transcrip-
tional regulation but model the complete range of interactions between DNA,
RNA, proteins and metabolites.

As a first step towards such complete interaction models, the current SynTReN
model can be extended to include models of synthetic promoter sequences and
to model TF binding with the promoter binding sites. Integrative module and
network inference algorithms based on the extended SynTReN model can then
use various simulated omics datasets (simulated promoter sequences data,
simulated ChIP-chip data and simulated gene expression data) to generate an
extensive benchmark of the algorithm’s characteristics.

Since the computational power of personal computers doubles about every
two years, dynamic simulations of large networks involving multiple biologi-
cal entities such as genes, proteins and metabolites will become computation-
ally tractable within the next 10-20 years, assuming that Moore’s law will hold.
Under these circumstances, there is little added value left for static simulation
and SynTReN should be converted to a fully dynamic model. The difficulty
then may lie not so much in the computational cost of simulations, but rather
in the definition of ’good’ synthetic models with a set of biologically plau-
sible interactions and in the determination of kinetic parameter ranges that
approximate biological reality as closely as possible.

The results in Section 3.8.4 have also indicated that network inference algo-
rithms seem to perform better for network topologies based on biological
networks compared to using random graph models. This implies that biolog-
ical networks have additional topological properties which are currently not
covered by random graph models. There are indications in our experiments,
which need to be further confirmed, that the information loss in the biological
networks is lower than in the random graphs. Interesting research opportu-
nities exist here for designing random graph models that better capture all
required topological characteristics of real biological networks. Also the work
of Van Leemput [161] concerning the characterization of networks by means of
a probabilistic decomposition can provide fruitful ground for designing such
random graph models. Little work has also been done on the characteriza-
tion of heterogeneous regulation networks containing multiple entities such
as genes, RNA, proteins, metabolites, etc.

From a network inference perspective, the incorporation of graph topolog-
ical characteristics of biological networks as prior knowledge for inferring
networks may greatly reduce the search space of possible network structures
and lead to more robust models of gene regulation. Modeling such informa-
tion as usable prior knowledge for inference remains still a largely unsolved
challenge.
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ProBic

In order to convert ProBic into a user-friendly software package that is of
direct use to a biologist, a number of tasks need to be completed. First, the
current version of ProBic is command line based. While this has proven very
useful for running high-throughput experiments, a graphical user interface
needs to be developed in order to be of practical use to end users. Second,
the query-driven mode of ProBic is quite sensitive to different choices of priors
and their parameters. While a bioinformatician who is ’skilled-in-the-art’
can explore this parameter space and define sensible parameter values for a
particular dataset, research remains to be done to fully automate this prior
and parameter selection. Finally, when the query-driven biclustering is fully
automated, it will be most interesting to perform an extensive analysis of the
biclustering algorithm on a number of different biological datasets such as the
Escherichia coli, Bacillus subtilis and Salmonella typhimurium compendia that are
currently being generated at the CMPG.

As proposed in Section 5.8, the ProBic model is designed to be extended to-
wards identification of cis-regulatory modules. The first extension incorpo-
rates promoter sequence data and a second extension describes the integration
of microarray condition property data into the ProBic model. The full power
of using PRMs to integrate relational data in combination with an EM strat-
egy is illustrated by combining these two extensions into a single integrative
model that identifies cis-regulatory modules with the associated regulatory
motifs, experimental conditions and associates these modules with one or
more specific condition annotations. These extensions can then be applied to
the microarray compendia of the above organisms in combination with the
RegulonDB database and the condition annotation information that is present
in the compendia.

ProBic is based on the (directed) Probabilistic Relational Model framework.
While the framework offers some computational and modeling advantages,
certain model extensions may however prove to be more difficult within the
context of directed graphical models. More specifically the integration of
undirected information such as protein-protein binding information may be
more straightforward in either undirected models such as relational Markov
networks or in mixed directed and undirected models.

With the advent of huge online databases with interlinked information, an
explosion in available data has occurred and especially in the domain of com-
putational biology and many of these datasets are stored in complex multi-
relational databases. As described in Chapter 2, several specialized algorithms
and models have already been developed to integrate heterogeneous omics data
to answer specific research questions in e.g. systems biology. However, despite
storage and availability of these datasets, the structure, annotation and inter-
database relations are far from standardized and uniform. This requires re-
searchers to usually manually perform these integration steps which impedes
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for example the direct application of statistical relational learning techniques
to such datasets. As uniformity and standardization of these datasets further
increases, more automated and large-scale relational data mining tasks become
within reach of researchers that aim at answering their particular research
hypotheses across different knowledge domains, organisms and experimental
platforms.
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Appendix

A.1 Graph topological measures

Not many deterministic and informative topological measures are available [6].
The established measures can be roughly divided into two categories: high-
level (global) measures and low-level (local) measures. In order to calculate the
high-level property measures (e.g. average path length) one needs to know
the whole network, while the low-level properties can be calculated locally
(e.g. marginal degree of individual node).

We use both low and high-level topological measures that address different
aspects of the network structure. The high-level measures contain network
indices such as average clustering coefficient and average path length. The
low-level measures are composed of both marginal and bivariate joint degree
distributions [6, 177].

The average path length l̄ is defined as follows: Given two genes, let li j be the
length of the shortest path connecting these two genes, following the links
present in the network. Depending on the type of network, these can either be
directed and/or undirected links. N is defined as the number of nodes in the
network. The average path length l̄ is defined as:

l̄ =
2

N(N − 1)
·

N∑
i< j

li j

The adjacency matrixξi j indicates an interaction between genesγi andγ j (ξi j = 1)
or no interaction (ξi j = 0).

The set of nearest neighbors of a gene γi is indicated by Γi = {γ j|ξi j = 1} . The
clustering coefficient Ci for this gene is defined as the ratio between the actual
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number of connections between the genes in Γi, and the total possible number
of connections, |Γi |(|Γi |−1)

2 .

Formally, the clustering coefficient of the i-th gene Ci is defined as:

Ci =
2 · Li

|Γi|(|Γi| − 1)

where

Li =

N∑
j=1

ξi j · [
∑
k∈Γi

ξ jk]

The (average) clustering coefficient is defined as the average Ci over all genes
γi:

C =
1
N

N∑
i=1

Ci

A.2 SynTReN performance metrics

Comparison between adjacency matrices derived from the original and in-
ferred networks was performed by counting the corresponding and conflict-
ing entries in both matrices and calculating sensitivity (also known as recall),
specificity, and precision (also known as positive predictive value). As summary
metrics Jaccard index [148] and F-measure can for example be used. An entry
is considered to be a true positive (TP) or a true negative (TN) if it equals 1 or
0, respectively in both matrices. A false positive (FP) entry has a value of 1
in the reconstructed network matrix and a value of 0 in the known topology
matrix; a false negative (FN) entry equals 1 in the known network matrix and 0
in the reconstructed network matrix. The metrics mentioned above can then
be calculated as follows:

sensitivity = recall =
TP

TP + FN

speci f icity =
TN

TN + FP

precision =
TP

TP + FP

J = Jaccardindex =
TP

FP + FN + TP

F −measure =
2 × precision × recall

precision + recall

All of the performance metrics have a range between 0 and 1, with 1 represent-
ing a perfect match and progressively lower scores with increasing number of
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false positives or false negatives. As stated in [112], since genetic networks are
sparse, potential false positives far exceed potential true positives and speci-
ficity by itself might be an inappropriate performance metric as even small
deviations from a value of 1 represent quite large numbers of false positives.

Both the Jaccard index and the F-measure can be used as a single measure of
performance of the algorithm. The behavior of these metrics was studied by
starting from the adjacency matrix of a 50 gene, 76 edge regulatory network
and repeatedly adding, removing, or rewiring random a number of edges in
the network and comparing the resulting adjacency matrix with the original
one. The results of this analysis are shown in Figures A.1a-A.1c and A.1d-A.1f.
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Figure A.1: Evolution of the F-measure and the Jaccard index in function of the number of edge
additions, removals or rewirings.

The F-measure shows a near linear decrease with the number of modifications
for all three types of change. The Jaccard index declines linearly with edge
addition, but shows sublinear behavior for edge removal or edge rewiring.
Moreover the spread in values of the F-measure is substantially smaller com-
pared to that of the Jaccard index. Given the fact that the F-measure shows
smoother degradation it is preferred over Jaccard index in the results shown
later. We conclude that these metrics are different in nature, in that the F-
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measure exhibits gentle degradation in value when generally moving away
from the original network, while the Jaccard index lacks this behavior. We
have therefore adopted the F-measure as standard summarizing metric in the
experiments.

A.3 Conjugate prior distributions for ProBic model

Different conjugate priors can be defined for the ProBic model (µa,b, σa,b) dis-
tributions from Section 5.4.5. For example, any member of the exponential
family is a conjugate prior to Equation 4.13. We will highlight two mem-
bers of the exponential family here, namely the Normal distribution and the
Normal-Inverse-χ2 distribution.

A.3.1 Normal distribution prior

A straightforward choice for the prior distribution is a Normal distribution:

P(µa,b, σa,b) =
1

σa,b
√

2π
exp[−

ssqp − 2µa,bsp + npµ2
a,b

2σ2
a,b

] (A.1)

where the set of sufficient statistics (n0, s0, ssq0) parameterize the prior distri-
bution. These sufficient statistics can be considered as pseudo values, since the
prior behaves as if these additional values were added to the existing set of
expression values of the likelihood distribution P(X).

• n0: the number of pseudo expression values

• s0: sum of the pseudo expression values

• ssq0: sum of the squared pseudo expression values

The posterior distribution P(µa,b, σa,b)·P(X), where X represents the (expression)
data, is again a Normal distribution characterized by:

np = n0 + nX (A.2)
sp = s0 + sX (A.3)

ssqp = ssq0 + ssqX (A.4)

A.3.2 Normal-Inverse-χ2 distribution prior

The Normal-Inverse-χ2 distribution is a very useful but slightly more compli-
cated prior. It defines a prior distribution directly for the mean and standard
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deviation in the following way:

σ2 Inv − χ2(ν0, σ
2
0) (A.5)

µ|σ2 N(µ0, σ
2/κ0) (A.6)

This leads to the following formal definition of the prior which is parameter-
ized by (µ0, κ0, ν0, σ2

0):

P(µa,b, σa,b) = σ−1(σ2)−ν0/2+1exp
(
−

1
2σ2 [ν0σ

2
0 + κ0(µ0 − µ)2]

)
(A.7)

The posterior distribution P(µa,b, σa,b)·P(X), where X represents the (expression)
data, is again a Normal-Inverse-χ2 distribution characterized by:

µp =
κ0

κ0 + nX
µ0 +

κ0

κ0 + nX

sX

nX
(A.8)

κp = κ0 + nX (A.9)
νp = ν0 + nX (A.10)

νpσ
2
p = ν0σ

2
0 + (nX − 1)ssq +

κ0nX

κ0 + nX
(

sX

nX
− µ0)2 (A.11)

The posterior mean and variance for σ2 are:

E(σ2) =
νp

νp − 2
σ2

p (A.12)

var(σ2) =
2ν2

p

(νp − 2)2(νp − 4)
σ4

p (A.13)

(A.14)

and for the mean µ given σ2:

E(µ|σ2) = µp (A.15)

var(µ|σ2) = σ2/κp (A.16)
(A.17)

A.4 Necessary conditions for the E-step optimiza-
tion

As described in Section 5.5.2, one could hypothesize that assigning a gene(array)
to two biclusters X and Y will not lead to an improvement in score compared to
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each of the single bicluster assignments, if the score of assigning the gene(array)
to a single bicluster X or Y would not lead to a score improvement compared
to the background assignment.

If this hypothesis holds true, an Apriori [2] approach can be used to evaluate
only a.B vectors with potentially good scores by applying the following pro-
cedure. In the first iteration (level 0), the score for the background assignment
a.B = [] is calculated. For all next levels, the following steps are iterated until
no candidate assignments remain:

• at level L, a list of candidate assignments a.B with L biclusters is con-
structed where an assignment a.B is allowed only if all the (L − 1) sub-
vectors of a.B were a candidate assignment in the previous level (L − 1).
A (L−1) subvector of a.B contains (L−1) biclusters that are all a bicluster
of a.B.

• The score is calculated for this candidate assignment according to Equa-
tion 5.34 and the candidate assignment is kept only if this score is higher
than each of the (L − 1) subvectors.

Finally the a.B assignment with the highest score is selected as the maximum
likelihood solution of Equation 5.34.

We will now formalize our hypothesis and derive the necessary conditions for
this hypothesis to hold true in case of overlap between two biclusters:

if score([1]) < score([]) or score([2]) < score([])
then score([1, 2]) < score([1]) or score([1, 2]) < score([2]) (A.18)

From Equation 5.34, we can derive the scores for each of the possible a.B
assignments:

score(a.B = []) = va,[1],[]+ va,[1,2],[]+ va,[2],[]+ va,[],[] (A.19)
score(a.B = [1]) = va,[1],[1]+ va,[1,2],[1]+ va,[2],[]+ va,[],[] (A.20)
score(a.B = [2]) = va,[1],[]+ va,[1,2],[2]+ va,[2],[2]+ va,[],[] (A.21)

score(a.B = [1, 2]) = va,[1],[1]+
va,[1,2],[1] + va,[1,2],[2]

2
+ va,[2],[2]+ va,[],[] (A.22)

This leads to the following δ(score) expressions:

score(a.B = [1]) − score(a.B = []) = δa,[1],[1] + δa,[1,2],[1] (A.23)
score(a.B = [2]) − score(a.B = []) = δa,[1,2],[2] + δa,[2],[2] (A.24)

score(a.B = [1, 2]) − score(a.B = [1]) =
δa,[1,2],[2] − δa,[1,2],[1]

2
+ δa,[2],[2](A.25)

score(a.B = [1, 2]) − score(a.B = [2]) =
δa,[1,2],[1] − δa,[1,2],[2]

2
+ δa,[1],[1](A.26)
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with:

δa,[1],[1] = va,[1],[1] − va,[1],[] (A.27)
δa,[1,2],[1] = va,[1,2],[1] − va,[1,2],[] (A.28)
δa,[1,2],[2] = va,[1,2],[2] − va,[1,2],[] (A.29)
δa,[2],[2] = va,[2],[2] − va,[2],[] (A.30)

Hypothesis A.18 can be split in two cases: (a) score([1]) < score([]) and (b)
score([2]) < score([]) (the case where both (a) and (b) are fulfilled, is implicitly
covered). We now derive the necessary conditions for case (a), the conditions
for case (b) can be derived analogously.

From (a), we derive:

score([1] < score([])⇔ δa,[1],[1] + δa,[1,2],[1] < 0 (A.31)

leading to the necessary conditions:

score(a.B = [1, 2]) − score(a.B = [1]) < 0⇔
δa,[1,2],[2] − δa,[1,2],[1]

2
< δa,[2],[2] (A.32)

These necessary conditions are met for example if the overlap region between
two biclusters is small. In that case the score change δa,[1,2],[2] for adding the
overlap genes from the background to bicluster 2 and the score change δa,[1,2],[1]
for adding the overlap genes from the background to bicluster 1, are both small
compared to the score change δa,[2],[2] for adding all non-overlapping genes of
bicluster 2 from the background to bicluster 2, so Equation A.32 holds.
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