GENE PRIORITIZATION THROUGH GENOMIC DATA FUSION

Léon-Charles Tranchevent, PhD defense, 09/05/2011

MOTIVATION

Which genes are the most promising candidates?

Which genes are the most promising candidates?

Goh *et al.*, PNAS (2007) Smith *et al.*, Gene (2003) Jimenez-Sanchez *et al.*, Nature (2001)

Which genes are similar to the genes involved in the process under study?

DATA FUSION

DATA FUSION

DATA FUSION

ORDER STATISTICS BASED DATA FUSION

JANIAR

9/30

SIMILARITY

Neighbors of known disease genes are promising candidates

KERNEL BASED DATA FUSION

The is tor wat is mon the second of the second to the second with the second and a subsection

LEUVEN Gene prioritization through genomic data fusion

12/30

BENCHMARKING

Alter a fin the second of the

PROCEDURE

KATHOLIEKE UNIVERSITEIT

Gene prioritization through genomic data fusion

16/30

PROCEDURE

LEUVEN Gene prioritization through genomic data fusion

17/30

	OMIM	GO I	MetaCore diseases	GAD	MetaCore pathways	Ingenuity pathways	GO II
Nb sets	29	3	833	142	454	94	37
Nb genes	621	75	12699	3310	10053	2947	1216

ENDEAVOUR: RESULTS

ENDEAVOUR: RESULTS

	Random	OMIM	MetaCore diseases	GAD	MetaCore pathways	Ingenuity	GO II
Sensitivity at 1%	~1%	46%	33%	33%	64%	69%	56%
Sensitivity at 10%	10%	83%	75%	77%	94%	94%	89%
Sensitivity at 30%	30%	95%	92%	93%	98%	98%	97%

MERKATOR: RESULTS

ENDEAVOUR: LITERATURE

	Literature (2008)	Literature (2010)
Number of genes	32	43
Median	9,50%	11,21%
Sensitivity at 30%	90,63%	90,70%

KATHOLIEKE UNIVERSITEIT Ge

VALIDATION

Were a stand for and the second of the secon

GENETIC SCREEN

180 deficiency lines on chromosomes 2 and 3

12 ato specific positive loci (1056 genes)

KATHOLIEKE UNIVERSITEIT

GENETIC SCREEN

Name	Rank ratio on locus	Rank ratio on chromosome	Phenotype
cas	1,94%	2,00%	-33,60%
dom	5,15%	7,90%	-31,40%
Egfr	0,37%	0,03%	-51,30%
fj	2,63%	1,20%	-50,00%
lilli	8,20%	4,70%	-35,40%
mus209	2,50%	9,20%	-36,70%
ppan	14,29%	10,70%	-33,60%
sbb	7,02%	3,90%	-33,60%
shg	0,74%	0,60%	-66,40%
smg	5,56%	4,60%	-100%
toc	14,74%	15,90%	-33,60%
zip	2,00%	2,30%	-38,10%

CONCLUSIONS AND PERSPECTIVES

mating people to 1 thing in the Low side of

CONCLUSIONS

Two prioritization methods

Benchmarked

Series Experimentally validated

PERSPECTIVES

** Improved data warehouse
** Automatic training set construction
** Bio-entities prioritization
** Improved results visualization

PERSPECTIVES

Chemical/pharmaceutical focus
Clustering/classification/prioritization platform
Feature selection before kernel computation
More experimental validations

