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Abstract

In the past decade microarray technology has had a big impact on cancer research.
More recently other technologies such as mass spectrometry-based proteomics or array
comparative genomic hybridization have emerged as data providers with potentially
similar impact. These technologies have a top-down approach in common instead of
a bottom-up. Whether it is the genome, transcriptome or proteome that is targeted,
each technology attempts to capture its corresponding ‘omics’ as a whole. Moreover,
the data resulting from these technologies potentially hold information on the actual
biological reasons why subsets of tumors behave differently, instead of relying on
general clinical data or morphological characteristics of a tumor.
In our research, we investigated how omics data can be used to predict diagnosis,
prognosis or therapy response in cancer. The large dimensionality of omics data
however prohibits direct interpretation and requires dedicated models. Biomedical
decision support modeling attempts to tackle this issue and aims to build reliable
models. We focused on the use of Bayesian networks as biomedical decision support
model. More specifically, we developed a Bayesian network integration framework
able to integrate heterogeneous and high-dimensional data. We consider two specific
types of data in our framework: patient specific data or entity specific data. We define
patient specific data as primary data and entity specific data as secondary data. The
latter characterizes entities within each omics layer such as genes in the genome,
mRNA in the transcriptome or proteins in the proteome. First, we illustrate Bayesian
network modeling on two primary data sources separately: clinical and genomic data.
Secondly, we develop algorithms to integrate primary data sources. Finally, we extend
the framework to include secondary data sources.
Besides the use of publicly available data and due to the availability of unique data
gathered at the University Hospitals Leuven, we applied our framework on two main
cancer sites: ovarian cancer and rectal cancer. Our results show the potential of
integrating both primary and secondary data sources. Finally, we look into the future
and project which research avenues should be pursued to improve the framework.
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Korte Inhoud

Microroostertechnologie heeft een grote impact gehad op het kankeronderzoek in het
laatste decennium. Recent zijn ook andere technologieën zoals proteomica gebaseerd
op massa spectrometrie en microroostertechnologie voor comparatieve genomische
hybridisatie opgedoken als data leveranciers met potentieel gelijkaardige impact. Deze
technologieën hebben een “top-down” aanpak gemeenschappelijk waarbij het genoom,
transcriptoom of proteoom in hun geheel onderzocht worden. Bovendien bevatten
de “omics” data die geleverd worden door deze technologieën potentieel informatie
betreffende de biologische kenmerken die verantwoordelijk zijn voor het gedrag van
tumoren in plaats van klinische of morfologische karakteristieken.
In ons onderzoek hebben we onderzocht hoe omics data gebruikt kunnen worden voor
het voorspellen van de diagnose, prognose of therapierespons van kankerpatiënten. De
hoge dimensionaliteit van omics data echter verhindert de directe interpretatie van deze
data and vereist specifieke modelleringstechnieken. Biomedische besluitvormingssys-
temen hebben als doel om dit probleem aan te pakken en het gebruik hiervan is gericht
op het bouwen van betrouwbare modellen ter ondersteuning van de behandeling van
patiënten. Meer specifiek hebben we gebruik gemaakt van een Bayesiaans netwerk
als besluitvormingsysteem. Hiervoor hebben we een raamwerk uitgebouwd voor de
integratie van heterogene en hoog dimensionale data waarbij twee verschillende types
data werden gemodelleerd: primaire en secundaire data. We definiëren primaire data
als patiënt specifiek terwijl secundaire data specifiek zijn voor de entiteiten binnen
elk omics dataset. Deze entiteiten zijn genen voor het genoom, mRNA voor het
transcriptoom en proteı̈nen voor het proteoom. Ten eerste, hebben we het gebruik
van Bayesiaanse netwerken geı̈llustreerd voor het modelleren van twee primaire
databronnen: klinische en genomische data. Ten tweede, hebben we algoritmes
ontwikkeld om primaire databronnen te integreren. Tenslotte, hebben we het raamwerk
uitgebreid om ook secundaire databronnen te kunnen gebruiken.
Naast het gebruik van publiek beschikbare data en ook door de aanwezigheid van
unieke data verzameld in de Universitaire Ziekenhuizen Leuven, hebben we onze
methodologie ook toegepast op data van ovarium- en darmkankerpatiënten. Onze
resultaten tonen het potentieel aan van het integreren van primaire en secundaire
databronnen. Tenslotte, kijken we naar de toekomst en vermelden we enkele
uitdagingen om dit onderzoek voort te zetten.
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Acronyms

ANN Artificial neural network
AUC Area under the ROC curve
BDIM Best Decision Integration Model
BPIM Best Partial Integration Model
BRCA Breast cancer early onset gene
CA125 Cancer antigen 125
CGH Comparative genomic hybridization
CNA Copy number alteration
CNG Copy number gain
CNL Copy number loss
CNV Copy number variation
CPT Conditional probability table
CRT Chemo-radiation therapy
CT Computed tomography
DNA Deoxyribonucleic acid
EGFR Epidermal growth factor receptor
ELISA Enzyme-linked immunosorbent assay
ER Estrogen receptor
FIGO Fédération Internationale de Gynécologie Obstétrique
HMM Hidden Markov model
IDF Inverse Document Frequency
IOTA International ovarian tumor analysis consortium
LOO-CV Leave one out cross validation
LS-SVM Least squares support vector machine
MALDI-TOF Matrix assisted laser desorption ionization time-of-flight
MAP Maximum a posteriori
MCMC Markov chain monte carlo
MRI Magnetic resonance scan
mRNA messenger RNA
pCR pathological complete response
PI Pulsatility index
PPTC Probability propagation in tree of cliques
PR Progesteron receptor
PRM Probabilistic Relational Models
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PSV Peak systolic velocity
qRT-PCR quantitative real time polymerase chain reaction
RBF Radial basis function
RCRG Rectal cancer regression grade
RI Resistance index
RMA robust multi-chip average
RNA Ribonucleic acid
ROC Receiver operator characteristic curve
SELDI-TOF Surface enhanced laser desorption ionization time-of-flight
SNP Single nucleotide polymorphism
TAMXV Time-averaged maximum velocity
TME Total mesorectal excision
TNM Tumor Node Metastases
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Data integratie met Bayesiaanse
netwerken voor het modelleren
van biomedische data

Hoofdstuk 1: Inleiding

Ovariumkanker vertegenwoordigt 4% van alle kwaadaardige aandoeningen bij vrouwen
maar staat toch op de vijfde plaats als doodsoorzaak door kanker. Dit komt omdat deze
aandoening in 80% van de gevallen in een te laat stadium ontdekt wordt (stadia III en
IV) terwijl deze aandoening in het eerste stadium beter te behandelen is. De overleving
na 5 jaar is 90% bij diagnose in stadium I, in latere stadia is dat slechts 35%. In de
meeste gevallen wordt de aandoening pas ontdekt wanneer de tumor al is uitgezaaid en
dan zijn de therapeutische mogelijkheden beperkt. De meerderheid van alle ovariale
tumoren zijn goedaardig en kunnen behandeld worden met hormonale therapie of met
een relatief eenvoudige chirurgische ingreep. De kwaadaardige tumoren zaaien echter
uit en zijn levensbedreigend. De behandeling bestaat in veel gevallen uit majeure
chirurgie door tussenkomst van een gynaecologische oncoloog. De adjuvante therapie
bestaat uit het toedienen van chemotherapie. Helaas worden hierbij ook normale cellen
aangetast met negatieve bijwerkingen tot gevolg.
Biomedische besluitvormingssystemen hebben als doel om dit probleem aan te pakken
en de clinicus te ondersteunen bij het nemen van beslissingen betreffende de be-
handeling van de patiënt. Dit gebeurt door het leren van een model gebaseerd
op biomedische data waarvan de uitkomst gekend is. Dit model wordt vervolgens
toegepast om de uitkomst te voorspellen van patiënten waarvoor de uitkomst gemas-
keerd is. Enkele voorbeelden van zulke modellen zijn logistieke regressie, support
vector machines en Bayesiaanse netwerken. Traditioneel werd voor het bouwen
van medische besluitvormingssystemen vooral gebruik gemaakt van klinische data.
Echter dankzij het humaan genoom project en technologische vooruitgang, werd een
grote hoeveelheid moleculaire gegevens beschikbaar bijvoorbeeld de expressie van alle
genen in het menselijk genoom. Door de hoge dimensionaliteit van deze data is het
onmogelijk om deze data direct te interpreteren en is het een noodzaak geworden om
medische besluitvormingssystemen te bouwen.
In deze thesis hebben we ons tot doel gesteld om Bayesiaanse netwerken te gebruik
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om heterogene en hoog dimensionale data te modelleren in kankerpatiënten. Hiervoor
hebben we een raamwerk uitgebouwd voor de integratie van twee verschillende types
data: primaire en secundaire data. We definiëren primaire data als patiënt specifiek
terwijl secundaire data specifiek zijn voor de entiteiten binnen elk omics dataset. Deze
entiteiten zijn genen voor het genoom, mRNA voor het transcriptoom en proteı̈nen voor
het proteoom.
In Hoofdstuk 2 zijn we dieper ingegaan op de methodologie en in Hoofdstuk 3 hebben
we de data die in deze thesis gebruikt werd nader toegelicht. Vervolgens, hebben we
onze methodologie eerst toegepast voor het modelleren van twee afzonderlijke primaire
databronnen: klinische data van ovariumkankerpatiënten in Hoofdstuk 4 en genomis-
che data van ovariumkankerpatiënten met of zonder een mutatie in het BRCA1-gen
in Hoofdstuk 5. Ten tweede hebben we aan de hand van publiek beschikbare data
en darmkankerdata de integratie van primaire databronnen onderzocht. Tenslotte zijn
we nagegaan of het integreren van secundaire databronnen de performantie van de
modellen verbeterd in Hoofdstuk 7.

Hoofdstuk 2: Bayesiaanse netwerken

Een Bayesiaans netwerk is een manier om een statistische distributie tussen variabelen
op een vereenvoudigde manier voor te stellen. In essentie is het een methode om een
gezamenlijke verdeling op een schaarse wijze neer te schrijven. Deze is gebaseerd
op de kettingregel voor kansen. Een Bayesiaans netwerk bestaat uit twee delen:
een netwerkstructuur en lokale afhankelijkheidsmodellen. Dit vertaald zich in twee
stappen om Bayesiaanse netwerken te leren. Eerst wordt de structuur geleerd aan
de hand van het K2 zoekalgoritme. Vervolgens worden de parameters van de lokale
afhankelijkheidsmodellen rekening houdend met de structuur.
Vermits we de Bayesiaanse filosofie gebruiken kunnen we voor beide delen van een
Bayesiaans netwerk een prior distributie definiëren. Dit laat toe om extra informatie te
integreren in het bouwen van dit model. In deze thesis, zullen we specifiek gebruik
maken van de prior distributie over mogelijke netwerken om zo de zoekruimte te
beperken. Hiervoor zullen we gebruik maken van secundaire databronnen.
Vervolgens kunnen we uitgaande van de structuur en de probabiliteitstabellen het
netwerk rechtstreeks gebruiken om classificatieproblemen aan te pakken. Gebruik
makend van de gegevens kunnen we het netwerk een vraag stellen over een variabele
waarin we genteresseerd zijn, in ons geval is dat de variabele die de diagnose, prognose
of therapieresponse bevat. Het berekenen van de benodigde conditionele en marginale
verdelingen kan gedaan worden met behulp van het ”probability propagation in tree
of cliques” algoritme. Dit is een complex algoritme waarbij enkele grafische stappen
uitgevoerd worden, gevolgd door het invoegen en propageren van het bewijsmateriaal.
Het resultaat van deze procedure is een conditionele distributie over de knopen in elke
”clique”, a.d.h.v. marginalisatie kunnen we dan de distributie van de doelvariabele
berekenen.
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Hoofdstuk 3: Ovariumkanker en darmkanker: achter-
grond, doelstellingen en data
In deze thesis hebben we gebruik gemaakt van twee unieke datasets verzameld in
de Universitaire Ziekenhuizen Leuven. Een eerste dataset bevat klinische data van
ovariumkankerpatiénten. Dit dataset werd verzameld in het kader van de International
Ovarium Tumor Analysis consortium (IOTA). IOTA is een multi-centrische studie met
als doel om klinische data te verzamelen op een gestandaardiseerde wijze om een beter
voorspelling mogelijk te maken omtrent de maligniteit van ovariale massa’s. Deze
studie is opgestart door Prof. Dr. Dirk Timmerman aan het U.Z. te Leuven in 1998
en heeft ondertussen data verzameld van meer dan 3500 patiënten. De gegevens
omvatten o.a. medische en familiale voorgeschiedenis, echografische variabelen,
data bekomen uit kleurendoppler onderzoek (CDI) (variabelen met betrekking tot de
bloeddoorstroming in de tumor), een subjectieve beoordeling van de ovariale massa,
waarde van de tumormerker CA 125 en postoperatieve bevindingen. Fase 1 van IOTA
heeft geleid tot een data set van 1066 patiénten uit 9 Europese ziekenhuizen. Fase
1b, een interne validatiestudie, omvat 507 patiénten. Fase 2 tenslotte, een externe
validatiestudie, omvat data van 1938 patiénten.
Het tweede data set bevat microrooster en proteoom gegevens van ongeveer veertig
darmkankerpatiënten. Dit dataset werd verzameld in de context van een fase 1/2
klinische studie naar het effect van de drug cetuximab in combinatie met chemotherapie
en radiotherapie in de preoperatieve behandeling van darmkankerpatiënten. Op drie
tijdspunten tijdens de therapie werd tumorweefsel verzameld: voor therapie, na 1
dosis cetuximab en vlak voor chirurgie. Dit tumorweefsel werd gebruikt voor zowel
microrooster- als proteoomanalyses. Deze gegevens kunnen vervolgens gebruikt
worden om het effect en de uitkomst van de therapie op moleculair niveau te
bestuderen.

Hoofdstuk 4: Klinische data
In dit hoofdstuk hebben we achterhaald hoe Bayesiaanse netwerken kunnen gebruikt
worden om klinische data te modelleren. Hierbij hebben we gebruik gemaakt van de
klinische data van het IOTA project. Dit data set laat toe om na te gaan of klinische
data kan gebruikt worden om de maligniteit van ovariumkanker te voorspellen. Om dit
doel te bereiken hebben we gebruik gemaakt van het IOTA fase 1 data set. Dit dat set
bevat 1066 patiënten die worden opgesplitst in een training set en een test set. Enkel
het training set werd gebruikt om een Bayesiaans netwerk te ontwikkelen. Hiervoor
werden alle continue variabelen gediscretiseerd. Vermits het aantal variabelen in de
IOTA data set beperkt is, werd dit manueel gedaan rekening houdend met de expertise
van een gynaecologisch expert.
Het aldus ontwikkelde Bayesiaanse netwerk had een oppervlakte onder de ROC curve
van 0.946 op het test set van IOTA fase 1. Zoals reeds in het vorige hoofdstuk werd
vermeld zijn er na IOTA fase 1 twee bijkomende studies gevolgd: IOTA fase 1b
bestaande uit 507 patiënten en IOTA fase 2 bestaande uit 1938 patiënten van zowel
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centra uit IOTA fase 1/1b als uit nieuwe centra. De oppervlakte onder de ROC curve
van het Bayesiaanse netwerk op IOTA fase 1b en 2 was 0.954 en 0.944 respectievelijk.
Vervolgens werd een studie gedaan van de variabelen die nodig zijn voor de predictie
van de maligniteit van ovariumkanker. Het model heeft informatie van 15 variabelen
nodig. Een studie van deze variabelen liet toe om na te gaan welke variabelen
de kans op maligniteit doen stijgen en omgekeerd. Zo bleek dat de aanwezigheid
van bloeddoorstroming in papillaire structuren de kans op een maligne massa sterk
verhoogt.
Tenslotte toonde een vergelijking van de performantie van het Bayesiaanse netwerk
met een logistiek regressie model dat beide een vergelijkbare performantie hebben
op alle IOTA data sets. Hieruit besluiten we dat een Bayesiaans netwerk een
waardig alternatief is voor de meer traditionele modelleringstechnieken zoals logistieke
regressie. Bovendien laten Bayesiaanse netwerken toe om niet-lineaire verbanden
tussen variabelen te ontdekken. Zo ontdekten we bijvoorbeeld een niet-lineair verband
tussen de aanwezigheid van vloeistof en de kans op maligniteit van een ovariale massa.

Hoofdstuk 5: Genomische data
In dit hoofdstuk bestudeerden we het gebruik van een speciale klasse van Bayesiaanse
netwerken, een Hidden Markov model, voor het modelleren van genomische data.
Meer specifiek hebben we bestudeerd of informatie omtrent het aantal kopieën van
stukken DNA verschillend is tussen ovariumkankerpatiënten met en zonder een
mutatie in het BRCA1 gen. Hiervoor beschikten we over genomische data van 5
ovariumkankerpatiënten met een BRCA1 mutatie en 8 zonder een BRCA1 mutatie.
Om de verschillen na te gaan tussen deze twee groepen van ovariumkankerpatiënten
maakten we gebruik van een Hidden Markov model dat toelaat om recurrente
afwijkingen in het aantal DNA kopieën te extraheren. Dit recurrent Hidden Markov
model werd dan ook gebruikt om voor beide groepen van patiënten de recurrente
afwijkingen te identificeren.
De resultaten toonden aan dat het aantal afwijkingen in beide groepen gelijkaardig is.
Echter wanneer het type van afwijking, deletie of amplificatie, in rekening gebracht
werd, werd vastgesteld dat het aantal deleties groter was in de groep van BRCA1
mutanten. Bovendien waren deze deleties significant langer dan de deleties in de groep
zonder mutaties.
Vervolgens werd nagegaan welke genen overeenkwamen met de afwijkende regios en
of deze genen deel uitmaken van belangrijke biologische processen. Hiervoor werd een
studie uitgevoerd waarbij de genen in de afwijkende regios, in beide patiëntengroepen,
grote overeenkomsten vertonen met gekende biologische processen. Deze analyse
toonde aan dat vooral in BRCA1-mutanten belangrijke biologische processen verstoord
zijn. Een voorbeel hiervan is dat een set van tumor suppressor genen een lager aantal
kopieën vertoonde in de BRCA1-mutanten.
We besluiten dat een speciale klasse van Bayesiaanse netwerken, een Hidden Markov
model, in staat is om belangrijke biologische resultaten te extraheren uit genomische
informatie. Bovendien, tonen de resultaten aan dat belangrijke biologische processen
differentieel verstoord zijn in de twee groepen van patiënten. Vermoedelijk zijn
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verschillende therapiestrategieén dan ook aangewezen.

Hoofdstuk 6: Integratie van primaire data
In de vorige twee hoofdstukken werd telkens één primaire databron gemodelleerd
met Bayesiaanse netwerken. In dit hoofdstuk beschrijven we ons onderzoek naar de
integratie van meerdere primaire databronnen aan de hand van Bayesiaanse netwerken.
Dit onderzoek is gemotiveerd door het feit dat meerdere lagen van het centrale
dogma van de moleculaire biologie vermoedelijk complementaire informatie bevatten.
De meeste studies focussen op het transcriptoom vooral dankzij de populariteit van
microroostertechnologie. Echter andere niveaus in de moleculaire biologie zoals
genomische data beschreven in het vorige hoofdstuk, bevatten potentieel predictieve
informatie.
We hebben in ons onderzoek twee integratiegevallen onderzocht: de integratie van
klinische- en microroosterdata, en de integratie van microrooster- en proteoomdata.
Hiervoor hebben we enkele verschillende strategieén ontwikkeld voor het integreren
van primaire databronnen met Bayesiaanse netwerken. De partiële integratiestrategie
waarbij eerst voor iedere primaire databron een netwerk geleerd werd en daarna
werd geı̈ntegreerd leverde de beste resultaten op. Deze strategie toonde aan dat de
integratie van klinische en microroosterdata succesvol is voor het voorspellen van de
prognosis van borstkankerpatiënten. Onze resultaten toonden verder aan dat dit model
beter was dan enkele veel gebruikte modellen op basis van klinische data en dat het
model een gelijkaardige performantie had ten opzichte van een model op basis van
microroosterdata.
Het tweede integratiegeval dat werd uitgewerkt bestudeerde de integratie van mi-
crorooster en proteoomdata van darmkankerpatiënten. Hiervoor werd de partiële
integratiestrategie uitgebreid in een Bayesiaans kader, in plaats van slechts één model
te leren werd een benadering gemaakt van de a posteriori distributie. Dit laat toe
om een betrouwbaarheid te geven van de gevonden interacties in het geı̈ntegreerde
netwerk. Onze resultaten toonden aan dat de integratie van zowel de microrooster-
als de proteoom data de beste resultaten opleverde om de prognose van de patiënten te
voorspellen. Bovendien bestudeerden we het finale netwerk en vonden enkel interacties
met hoge betrouwbaarheid die reeds in de literatuur beschreven waren.
We besluiten dat de integratie van primaire databronnen een belangrijke onder-
zoeksstrategie is die potentieel leidt tot betere predictieve performantie en nieuwe
biologische hypotheses. Een belangrijke tekortkoming op dit moment is dat de datasets
slechts een klein aantal patiënten bevatten. Dit impliceert dat er een dringende nood is
aan grote datasets die meerdere primaire databronnen bevatten.

Hoofdstuk 7: Integratie van secundaire data
In dit hoofdstuk beschrijven we de methoden die we ontwikkeld hebben om secundaire
databronnen te integreren met Bayesiaanse netwerken. We definieerden secundaire
data bronnen als specifiek voor de entiteiten binnen elk omics dataset. Deze entiteiten
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zijn genen voor het genoom, mRNA voor het transcriptoom en proteı̈nen voor
het proteoom. Secundaire data kan gebruikt worden in de integratiestrategie met
Bayesiaanse netwerken omdat de relaties tussen deze entiteiten specifiek gemodelleerd
worden. Zo kan prior informatie omtrent interacties tussen gene en proteı̈nen gebruikt
worden als prior op de structuur van een Bayesiaans netwerk. Een probleem is echter
dat veel van deze relaties niet in de daartoe bestemde databases zitten maar vervat in
de literatuur in ongestructureerde vorm.
Door gebruik te maken van tekst mining technieken echter hebben we een methode
ontwikkeld die toelaat om informatie omtrents genen te extraheren uit abstracten.
Hiervoor hebben we alle genen die manueel geannoteerde abstracten hadden verwerkt
en omgezet naar het vector space model aan de hand van een kankerspecifiek
vocabularium. Dit laat toe om zo ieder gen te karakteriseren op basis van het
voorkomen van de termen uit het vocabularium. De similariteit tussen deze genen
kan vervolgens gebruikt worden als kennis in de structuurprior van een Bayesiaans
netwerk.
Gebruik makend van twee publiek beschikbare data sets zijn we nagegaan of het
gebruik van deze prior kennis in een Bayesiaans netwerk het voorspellen van de
prognosis van borskanker-, lungkanker- en ovariumkankerpatiënten verbetert. Onze
resultaten tonen aan dat dit het geval is met een significante stijging in de oppervlakte
onder de ROC curve voor deze data sets. Bovendien toonden onze resultaten aan dat
minder genen nodig waren om tot deze predictie te komen.
Op basis van onze resultaten concluderen we dat de integratie van informatie uit de
literatuur in de structuurprior van een Bayesiaans netwerk een belangrijke strategie
is om de prognose te voorspellen van kankerpatiënten. Bovendien is deze methode
generisch zodat ook informatie uit andere databases kan geı̈ntegreerd worden in de
structuurprior van een Bayesiaans netwerk.

Hoofdstuk 8: Conclusie
In deze thesis hebben we ons tot doel gesteld om een integratiestrategie uit te
werken rond Bayesiaanse netwerken en dit om biomedische beslissingsmodellen te
maken op basis van heterogene en hoog-dimensionale data. Hierbij hebben we
een onderscheid gemaakt tussen primaire en secundaire databronnen. Primaire data
hebben we gedefinieerd als patiënt specifiek terwijl secundaire data specifiek zijn voor
de entiteiten binnen elk omics dataset. In Hoofdstuk 4 en 5 toonden we aan dat
Bayesiaanse netwerken kunnen gebruikt worden om primaire databronnen afzonderlijk
te modelleren. Vervolgens beschreven we in hoofdstuk 6 en 7 de integratie van primaire
en secundaire databronnen respectievelijk.
Naar de toekomst toe zien we twee belangrijke uitdagingen. Ten eerste een verder
onderzoek naar het integreren van secundaire databronnen. Het aantal databases met
secundaire databronnen is sterk toegenomen en deze bevatten enorme hoeveelheden
informatie waarvan nog niet is nagegaan of zo in onze integratiestrategie van nut
zijn. Een moeilijkheid hierbij is het gebrek aan standaardisatie van de informatie
in dergelijke databases. Dit belooft in de toekomst echter gemakkelijker te verlopen
bijvoorbeeld dankzij het ontstaan van standaarden zoals BIOPAX.
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Een tweede uitdaging is de opkomst van nieuwe technologieën. Microroostertechnol-
gie werd aanvankelijk enkel gebruikt voor het bestuderen van het transcriptoom. Deze
technologie werd echter meer en meer gebruikt om andere omics te meten zoals DNA
copy nummer variatie en SNPs. Bovendien, dankzij doorbraken in technologieën om
het genoom te bepalen zullen we in de nabije toekomst over de DNA sequentie van
individuen beschikken. Dit zal de dimensionaliteit van de data drastisch verhogen
zodat het maken van complexe modellen de computationele belasting sterk zal doen
toenemen. We vermoeden dat het gebruik van hoge performantie computer clusters
hier een oplossing kan voor bieden.
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Chapter 1

Introduction

Data does not equal information;
information does not equal knowledge;

and, most importantly of all,
knowledge does not equal wisdom.

We have oceans of data,
rivers of information,

small puddles of knowledge,
and the odd drop of wisdom.”

– Henry Nix, 1990 –

Technological breakthroughs such as microarrays, mass spectrometry
based proteomics and more recently second generation sequencing are
creating a flood of data. When generated to advance cancer diagnostics
and prognostics it is impossible for clinicians or biologists to interpret
the data directly. This initiated the development of dedicated tools and
models needed to appropriately model these data and investigate their use
in biomedical decision support. In our research we developed Bayesian
methods using these emerging biomedical data with the aim to predict
the clinical behavior of tumors and extract information on cancer biology
from oceans of data.

1.1 Context
We introduce the context of this thesis by describing issues arising when diagnosing
ovarian cancer. Ovarian cancer represents 3% of all cancers in women but ranks
fifth when considering mortality [1]. Ovarian cancer remains clinically quiet, while

1
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planting seeds of metastases until it reaches the advanced stage. This severely delays
diagnosis up until the point when the disease has already spread to other organs making
the therapeutic options limited. The prognosis of ovarian cancer heavily depends on
disease stage which determines how far the disease has spread from the ovary. The
five year survival rate is 90% for early stage disease (stage 1 and 2) but only 20%
for stage III and 5% for stage IV disease. Based on estimations, 5% to 10% of
women will undergo a surgical procedure for a suspected ovarian neoplasm during
their lifetime [2]. However, the majority of patients presenting with an ovarian mass,
is diagnosed with benign disease and can be treated effectively with hormonal therapy
or relatively simple surgery [3]. Malignant tumors on the other hand metastasize and
are life threatening. Treatment is mostly based on surgery by a gynecologic oncologist
followed by (neo)adjuvant therapy.
Currently, it is not possible to distinguish between benign and malignant ovarian tumors
based on clinical data. While the majority of tumors are correctly classified by clinical
ultrasound experts or by mathematical models [3], there is a subgroup where both
experts and mathematical models fail to classify the samples correctly. Pre-operative
knowledge of the malignancy of an ovarian mass is important since there is a favorable
effect on the prognosis of the patient. In case of a malignant tumor the patient is
referred to a specialized gynecologic oncologist instead of a general gynecologist.
Appropriate surgical treatment is essential because the rupture of a stage 1 ovarian
cancer during the operation may worsen the prognosis. The only clinically available
serum biomarker now is CA125, which has a rather low sensitivity and specificity for
diagnostic use.
Traditionally, cancer management starts with the diagnosis and the staging of the tumor.
Based on microscopic examination (i.e. histopathology) the origin and grade of the
tumor is determined. Tumor grade is based on the degree of differentiation of tumor
cells, ranging from well differentiated to poorly differentiated, and is an attempt to
describe the tumor cells compared to normal cells. Staging determines the extent of
the disease based on tumor size and invasion in lymph nodes and/or metastasis to
distant organs. Based on these data the clinician determines therapy which is often
a combination of surgery, radiotherapy and chemotherapy.
This is just one example of the difficult decisions clinicians have to make based
on population-based clinical parameters such tumor grade or stage, or inadequate
biomarkers instead of the fundamental characteristics of a tumor. Many more examples
exist for other cancer sites or other time points during therapy at which a decision has
to be made regarding the management of the patient.

1.2 Biomedical decision support
Biomedical decision support is the discipline which attempts to provide solutions to
the aforementioned challenges (see Figure 1.1). Biomedical decision support draws
methods from mathematics, statistics and artificial intelligence to model biomedical
data. The general aim is to support the clinician in making decisions related to the
clinical management of diseases. Typically this is done by learning a model based
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Figure 1.1: The difference between traditional cancer management and (BIO)medical
decision support. On the left are possible data sources that can be used by the clinician
or the model to predict clinical outcomes such as diagnosis, prognosis or response to
therapy. Data from two omics layers have been used as an example for biomedical
decision support: microarray and proteomics.

on biomedical data of which the clinical outcome is known. Then, this model is
used to predict clinical outcomes of blinded data to investigate whether the model
generalizes to new data. Research in the development of models to predict the clinical
outcome of diseases has a history of more than three decades [4,5] and has found many
applications [3, 6, 7].
The need for biomedical decision support arises when complex patterns exist in the
data relevant for outcome prediction that cannot be extracted manually. For example,
in many cases a multivariate model, a model based on more than one variable, may
outperform any univariate model. A formal analysis using multivariate models could
result in more complex models. A few examples of often used multivariate biomedical
decision support models are, logistic regression, support vector machines (SVM) [8]
or Bayesian networks [9]. Each of these methods has their own assumptions. Logistic
regression assumes linear relationships between the variables and the clinical outcome
while SVM allow to model certain non-linear relationships. All methods however have
in common that they provide a formalized way of analyzing biomedical data instead of
interpretation of clinical parameters based on a clinician’s expert knowledge.
One decade ago, this field was focused mainly on medical decision support as most
data were of a medical origin. Medical or clinical data consist of patient history,
laboratory analysis, ultrasound parameters etc., depending on which data are relevant
for the disease under study. Medical decision support modeling aims at using these data
to improve prediction of clinical outcome compared to routine clinical management
[3, 6, 7].
In 2001 however the first draft of the Human Genome project unlocked a vast resource



4 Introduction

of data which was previously unavailable [10]. For the first time it was possible to have
an idea of all genes in the human genome. This accelerated research on a genome-
scale level and, combined with technological advances, led to the creation of large
volumes of data. This has had significant consequences for diseases such as cancer.
Additionally, this breakthrough makes decision support inevitable for biomedical data
because of the size of genome-scale data which can range from 25,000 to a few
100,000 data points per patient. In this thesis we report the first attempt to develop
methods for biomedical decision support that are able to cope with high dimensional
and heterogeneous data sources.
Furthermore, due to technological developments leading to a second generation of
sequencing technologies (i.e. Solexa [11], SOLiD [12] and HeliScope [13]), soon the
complete genome of an individual patient, a sequence of 3 billion letters per patient,
will become available increasing both the opportunities and challenges in discovering
patterns in biomedical data [14]. Recently additional genomes were sequenced among
which the genomes of J. Craig Venter [15] and James Watson [16].
To illustrate that this evolution is nearby, the first steps to accomplish personalized
genome sequencing have already been taken. The Welcome Trust Sanger institute
together with the Beijing Genomics Institute and the National Genome Research
Institute have embarked on a project that aims to sequence the genome of 1000
individuals across the world (www.1000genomes.org) which, when successful, will
uncover natural variation in the human genome and may lead to more routine se-
quencing applications. The amount of data that became available due to technological
breakthroughs and the amount of data that will become available in the near future,
makes the development of biomedical decision support models a necessity.

1.3 The omics revolution: technological breakthroughs
The technological advances that lead to a flood of genome-scale data allow to
characterize the different layers of organization in molecular biology. In this thesis
these layers will be called ‘omics’ [17–19]. Figure 1.2 shows four omics and
hypothetical relationships between the entities that define each omics layer: genes in
the genome, mRNA in the transcriptome, proteins in the proteome and metabolites in
the metabolome. This figure gives a hypothetical example of the connections in omics
layers because currently not much is known on how these entities connect to each other
on a genome scale level. In addition, this illustration is a simplified version of actual
molecular biology since many other omics layers and entities exist (e.g. the epigenome
and microRNA to name a few popular emerging layers). In this chapter, however we
will focus on these four omics and describe how they can be measured.

The first omics layer that was unlocked was the transcriptome using microarray
technology. Microarray technology has its origin in the nineties [20, 21] and this
technology allows to measure the expression of thousands of genes at once; possibly
representing the whole genome. Usually a microarray consists of a selection of
probes which are applied onto a solid surface and represent a number of genes. Next,
reverse transcribed mRNA extracted from a sample such as a tumor can be hybridized
with the probes on this surface resulting in expression levels of thousands of genes
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Figure 1.2: Hypothetical example of interactions between genes, mRNA, protein and
metabolites. If only the transcriptome is studied, only indirect interactions between
genes can be modeled.

for every tumor sample that is hybridized (see Figure 1.3). Although the basis of
microarray technology was established already before the completion of the human
genome sequence, the knowledge of the human genome sequence allowed to design
probes for both known and unknown genes. This greatly accelerated the application of
microarray technology to genetic diseases such as cancer [22–24].

Secondly, the proteome has received increased attention due to the progress in
mass spectrometry-based proteomics. The first study applying Surface Enhanced
Laser Desorption Ionization (SELDI) technology on ovarian cancer samples [26], was
heavily criticized [27–34]. Many others have used the same or similar technologies,
such as Matrix Assisted Laser Desorption Ionization (MALDI), to profile diseases at
the proteomic level [35–40]. In general, mass spectrometric measurements are carried
out in the gas phase on an ionized sample. By definition, a mass spectrometer consists
of an ion source, a mass analyzer that measures the mass-to-charge ratio (m/z) of the
ionized sample molecules, and a detector that registers the number of ions at each m/z
value [41]. Each step has a number of different technologies implementing these steps,
therefore a large range of mass spectrometry methods can be developed each with their
own properties and resolution (see Figure 1.4 for an introduction). In this way mass
spectrometry-based proteomics allows to quantify and possibly identify a large number
of proteins and peptides in one run.

Thirdly, concurrently with microarray technology, the same principle was used to
measure the copy number variations that are present in the human genome. This is done
by measuring the DNA level or genome instead of the transcriptome. This technology
was called array Comparative Genomic Hybridization (arrayCGH) and first applied on
breast cancer already in 1998 [42–44] (See Figure 1.5). It only recently became clear
that the copy number of genes can differ greatly between individuals [45–49]. A Copy
Number Variation (CNV) is a region in the genome of 1kb or larger that has more or
less copies compared to the reference human genome sequence. In Chapter 5 we will
present our results on genomic data and show the importance of CNV for studying
clinical outcome.
These technologies have one concept in common namely a top-down approach instead
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Figure 1.3: Microarray technology. Panel A, two-channel microarray technology.
First, mRNA from a patient and mRNA from a control sample are labeled with
different fluorescent dyes. Then both patient and control sample are mixed and
hybridized on a microarray containing probes representative of genes. After scanning
the fluorescent intensities of each spot, relative expression levels are obtained for each
gene represented on the array. Panel B, one-channel microarray technology. A sample
is first labeled and applied separately onto a microarray. Hybridization is measured
based on perfect match probes while background hybridization is measured using
mismatch probes. The result is an absolute expression for each gene represented on
the array. Adapted from Quackenbush [25]

of a bottom-up. Whether it is the genome, transcriptome or proteome, each technology
attempts to capture these omics as a whole. This makes it possible to measure the
transcriptomic, proteomic and genomic make-up of a tumor. These technologies
provide also a holistic view of how the copy number of genes, their expression or
the amount of protein changes instead of focussing on a single gene, mRNA or protein.
In this thesis however we investigate if it is necessary to broaden the holistic view
not only by looking at all entities within an omics layer but at the same time by
integrating multiple omics layers. This field of research is often referred to as systems
biology [17–19, 50].
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Figure 1.4: The basic proteomics setup is shown at the top left and consists of an
ion source, a mass analyzer and a detector. a-f represent different configurations
for Electrospray Ionization (ESI) and matrix-assisted laser desorption/ionization
(MALDI). Taken from Aebersold and Mann [41].

1.4 The molecular biology of cancer

We have just introduced the large layers of molecular biology by focusing on the
technologies that can unlock their respective omics. Here, we will focus in more detail
on the entities that make-up each omics level by introducing the basics of molecular
biology. In this thesis we exclusively study biomedical decision support related to
cancer. Therefore, we will introduce molecular biology by describing the central
dogma of molecular biology in the context of cancer and point out what can go wrong
in cancer cells.
The central dogma of molecular biology dictates that genes which are encoded in DNA
form proteins through an intermediate called messenger RNA (mRNA). This is done
in two steps: transcription and translation. The process of transcription is initiated by
the binding of transcription factors together with RNA polymerase to form an mRNA
molecule which is a perfect copy of the DNA template of a gene. Next, this mRNA
is processed and transported out of the nucleus to the cytoplasm where it is translated
into a protein by the ribosome complex. The general idea behind this dogma is that
information flows from DNA over mRNA to the final protein product. However, more
and more exceptions that contradict this idea have been found and the actual processes
at the molecular level are more complex.
First, the genome which contains the blueprints for genes and other functional elements
is more variable than previously thought. A recent study showed that CNVs, whereby
an individual has more or less copies of a gene compared to the reference genome,
occur more than expected and overlap significantly with locations of disease related
genes [45]. Moreover, the average size of these CNV is about 250kb which is more
than the average size of a gene (approximately 60kb). This means that CNVs often
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Figure 1.5: Array comparative genomic hybridization (arrayCGH). First a test and
reference sample are labeled with different fluorescent dyes. Next, they are applied
onto a microarray containing genomic probes. The fluorescent intensities of each spot
on the array represent the copy number of each probe. At the bottom, the log2 ratio is
shown of all probes on chromosome 9. The probes indicated with the arrow on the left
have a log2 ratio of -1 indicating loss of one copy whereas the probes indicated with
the middle arrow have a normal log2 ratio.

contain genes and therefore their transcription will be affected.
A second form of genomic variation, single nucleotide polymorphisms (SNP), defined
as a one base difference in the DNA of two individuals, may determine differences
in protein function or expression levels between individuals [51, 52]. SNPs can be
implicated in cancer, possibly through interactions with environmental exposures,
causing differences in prognosis or response to therapy between individuals.
Another example of increasing complexity arises when considering alternative splicing
of mRNA. Alternative splicing takes place after transcription and is a process whereby
an mRNA molecule is spliced differently such that one gene can produce multiple
forms or variants of the corresponding protein. This process is regulated by a group of
proteins and small RNA molecules (i.e. the spliceosome). Other proteins can influence
this process positively or negatively. Moreover, alternative splicing occurs in 40% to
60% of human genes [53]. There are already examples where this process is disturbed
and gives rise to cancer [54] but in general it is thought that this occurs more often than
observed now [55, 56].
Next, mRNA molecules are translated by the ribosome complex to become proteins.
Proteins however can be post-translationally modified by adding a chemical group,
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for example a phosphate group. This process, called phosphorylation, changes the
structure of the protein and thus affects its function. Other forms of post-translational
modifications exist e.g. acetylation or glycosylation. The previously adopted paradigm
’one gene - one protein’ thus is violated. When taking into account alternative splicing
and post-translational modifications, one gene can produce a variety of proteins.
Potentially, each of the above introduced processes may be involved in the transfor-
mation of a healthy cell into a cancer cell. A cancer cell originates by evading the
six hallmarks of cancer through one or more of these processes (see Figure 1.6) [57].
Eventually this results in fast, uncontrolled and abnormal cellular growth attacking
healthy tissue. However, it is still unclear how these processes at different omics
layers interact as a whole. Moreover, it is currently unknown which omics layer
provides the most information to predict cancer outcome or whether integrating data
from multiple omics improves predictive performance. The choice of omics to study
a certain outcome of a specific disease is heavily biased towards literature or practical
availability of methods. In this thesis, we hypothesize that combining information
from different omics, can contribute to improve the characterization of a tumor and
offer complementary information on the biological mechanisms in cancer cells. More
specifically, we will attempt to accomplish this using Bayesian modeling.

Figure 1.6: The six hallmarks of cancer, taken from Hanahan and Weinberg [57].
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1.5 Bayesian networks and Bayesian modeling

So far we have focused on the data and on technologies to gather data for biomedical
decision support. But what type of modeling did we use? Throughout this thesis we
will focus on the use of Bayesian networks to model biomedical data. A Bayesian
network is a probabilistic model that consists of two parts: a graph, encoding the
dependencies between the variables and local probability models, specifying these
dependencies [58]. Bayesian networks are considered a perfect combination of
probability theory and graph theory [9, 59–63] and were put at the center of machine
learning research by pioneering work of Judea Pearl in 1988 [58]. A Bayesian network
is in essence a sparse representation of the full multivariate probability distribution
which is in the case of biomedical data very large. For example, a microarray data
set contains easily more than 20,000 mRNA expression levels which will result in a
probability distribution of the same size. The sparseness of a Bayesian network is thus
a very desirable quality for modeling biomedical data.
Bayesian networks are a popular research topic and much research has been done on
different aspects of Bayesian network modeling such as structure learning algorithms
[58, 64, 65]. In biomedical research an important contribution was made by Friedman
et al. [62]. They published the first application of Bayesian network modeling on
microarray data. Secondly, an extension of Bayesian networks to the database world,
called Probabilistic Relational Models (PRM), has been proposed and applied to
microarray data [66]. In this thesis, we use the original Bayesian network definition
and we extend existing Bayesian network learning algorithms to be able to integrate
multiple heterogeneous and high-dimensional omics data.
Despite its name, Bayesian networks can be learned in two ways: the Bayesian way or
the non-Bayesian way. In this thesis, we preferred the paradigm of Bayesian modeling.
Bayesian modeling centers around the concept of combining data with a person’s
subjective belief to get an updated model which offers a compromise between the
data and the subjective prior. The larger the data set, the lower the influence of the
prior. Often it is difficult to specify a prior for a specific problem due to lack of any
prior information. This can in most cases be solved by defining an uninformative prior
reflecting the fact that nothing is known a priori. This is often seen as a disadvantage
of Bayesian models.
Our choice for Bayesian networks and the Bayesian paradigm for modeling data is
motivated by the flexibility of Bayesian networks to model any kind of data and by the
robustness against noise of probabilistic models in general. Bayesian networks can be
tuned to each omics layer by defining dedicated probability distributions. Moreover,
many omics technologies are noisy, e.g. microarray technology is notorious for its low
signal-to-noise ratio. Probabilistic methods capture the noise naturally in the model
which is not the case for deterministic methods.
Additionally, the ability to define a subjective prior is considered an advantage in
our setting. When modeling biomedical data many sources of information exist that
can be used as a prior. For each omics layer some relationships may already be
known, for example a protein-protein interaction indicating that two proteins bind or, a
transcription factor and its targets indicating which genes it regulates. These data which
are entity specific and which will be defined as secondary data sets in the next section
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allow defining a prior distribution on relationships between entities within and between
omics. It is important to stress that in this thesis only the Bayesian network structure
and its parameters are defined in a Bayesian way. This implies that no hyper-priors
are used, which is typical in hierarchical Bayesian modeling [67]. In Chapter 2 we
will discuss in more detail Bayesian modeling and how it compares to non-Bayesian
modeling.
The research on the use of Bayesian networks for modeling biomedical data has already
a long standing tradition in SISTA. Previously, Antal et al. developed methods to
integrate expert knowledge in the structure prior and the parameter prior of a Bayesian
network model [68]. There results showed that when few data was available an
expert prior on the possible structures of Bayesian networks improved the predictive
performance. Secondly, a method was developed by Geert Fannes that captures expert
knowledge in the form of a Bayesian network. Next, this knowledge is transformed in
the form of virtual data sets as a prior for a neural network model [69]. In both projects
the developed models were used to distinguish benign and malignant ovarian masses.
Our research builds further on this experience and extends Bayesian network modeling
and the use of structure priors to multi omics data.

1.6 Objectives
We have now introduced the technology, the data, our hypothesis and the model
which allows us to define our goal. The main goal of this thesis is to develop a
Bayesian network model able to integrate heterogeneous and high-dimensional data
for biomedical decision support. We consider two specific types of data in our models:
patient specific data or entity specific data (see Figure 1.7). We define patient specific
data as a primary data source because it is the patient that is actually modeled and
for whom we want to predict disease outcome. This means that clinical data and the
previously introduced omics data are patient specific and thus primary data sources.

Entity specific or secondary data sources are ‘orthogonal’ to primary data sources
because they contain information on each entity within an omics layer. An entity
depends on each omics layer for genomics the entities are genes, for transcriptomics
mRNA, for proteomics proteins and for metabolomics metabolites. The integration of
secondary data sources in Bayesian network models is possible because the relations
between entities in an omics layer are explicitly modeled in a Bayesian network which
is not the case when using for example an SVM with a linear or RBF kernel. [8].
We want to stress that in our setting the patient is modeled in a classification setting.
This makes our definition of secondary data sources relative towards patient data. Other
research has focused on classifying genes and frameworks have been developed that
integrate many gene-related data sources (e.g. Lanckriet et al. [70]). In these gene-
focused frameworks our previously defined secondary data sources are at the center of
attention and genes are classified into functional groups instead of patients. Thus, our
definition of primary and secondary data only applies to patient-focused modeling.
The use of secondary data sources is motivated by the fact that they are in most cases
publicly available. Moreover, the number of databases containing potential secondary
data sets has increased significantly [71]. Examples of such databases where secondary
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Figure 1.7: Visualization of the two specific types of data that are considered in
this thesis. Primary or patient specific data such as clinical data, transcriptomic data,
proteomic data and so on. Secondary data sources are ‘orthogonal’ to the primary data.
In this figure possible secondary data sources are shown for the transcriptomic layer.

data sources can be mined are BIOCARTA, KEGG [72] and Reactome [73]. Even the
literature itself, in the form of published abstracts can be mined. Also for clinical data,
in many cases, secondary data is available at relatively low cost in the form of expert
knowledge. In most cases clinical data is low-dimensional making it possible for an
expert in the field to deliver information that can be used as a secondary data source.
Now we can define three important goals of this thesis:

• Modeling primary data sources: Due to the heterogeneous nature of primary
data sources, a different approach is needed for each primary data source. For
example a clinical data set has well defined variables and is low dimensional.
An arrayCGH data set on the other hand, consists of measurements for genomic
clones which have to be transformed to CNVs. The latter is harder since the
variables are not defined yet. We will demonstrate methods to model these two
data sources and illustrate the flexibility of Bayesian networks.

• Integrate primary data sources: We will develop algorithms to integrate
primary data sources with Bayesian networks. Recently, model fusion became
a hot topic in bioinformatics. However, no adequate models and methods have
been developed and prior to our work little research has been done investigating
data fusion for biomedical decision support.

• Integrate secondary data sources: We will investigate the use of secondary
data sources to facilitate the first two objectives. To the best of our knowledge,
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the use of secondary data to improve the performance of biomedical decision
support models has not been investigated before.

1.7 Chapter-by-chapter overview
Figure 1.8 shows an overview how the different chapters are related to each other.
Hereafter, we will give a brief description of each chapter.

Figure 1.8: Overview of the relationships between the different chapters of this thesis.

• Chapter 2: This chapter gives an introduction on Bayesian methods in general
and Bayesian networks specifically. We will focus on algorithms to learn
Bayesian networks. Additionally, since throughout this thesis we will use
discrete valued Bayesian networks, we will discuss this choice and introduce
discretization algorithms.

• Chapter 3: This chapter explains the background, aims and the data of the
cancer sites that will be used in this thesis due to the availability of unique data
gathered at the University Hospitals Leuven: ovarian cancer and rectal cancer.
Additionally, the publicly available data sets used in this thesis are described.

• Chapter 4: This chapter defines clinical data and discuss its use. We will focus
on Bayesian network modeling of clinical data from the ovarian cancer case.

• Chapter 5: In this chapter we describe genomic date. More specifically we
will introduce copy number data and how it is modeled with a special class of
Bayesian networks.
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• Chapter 6: In this chapter we discuss methods for integrating primary data
sources and illustrate them using publicly available data and data from the rectal
cancer case.

• Chapter 7: In the last chapter, we investigate the use of secondary data sources
as priors in Bayesian network models. More specifically we describe our efforts
when using literature abstracts as a prior for learning Bayesian network models
of microarray data.

1.8 Specific contributions of this thesis
In this section, we highlight consecutively our specific contributions to this thesis with
references to their publications.

• Primary data integration: A Bayesian network integration method was
developed to integrate clinical and microarray data. More specifically, we have
developed and evaluated three methods to integrate clinical and microarray data
from breast cancer patients using Bayesian networks: full integration, partial
integration and decision integration. The difference in these integration methods
is when integration takes place during model building: early, intermediate or
late. We have applied these methods for the prediction of the prognosis of breast
cancer patients. Our results show that the partial integration method had the best
performance. The final model contained three clinical variables and 13 genes
that were needed for the prediction of prognosis of breast cancer patients.
This work was presented at the 14th Annual international conference on
Intelligent Systems for Molecular Biology and published in Bioinformatics
(Gevaert et al. 2006). An extension of this framework was developed to integrate
microarray and proteomics data and is currently under review (Gevaert et al.
submitted). This work is described in Chapter 6.

• Secondary data integration: The Bayesian network framework was extended
to include secondary data sources as structure priors. Due to the high dimension-
ality of omics data, expert priors are not feasible therefore we investigated the use
of automatically generated priors to restrict the model space. More specifically,
we studied whether the use of priors based on text mining of literature abstracts
improved predictive performance of the models. Prior to this work, there were
no previous reports on the use of text priors in a classification setting. We applied
our methods and four data sets and the results showed that in each case using the
text prior improved the prediction of prognosis of cancer patients.
This work was presented at the pacific symposium on biocomputing (Gevaert
et al. 2008) and a general framework was published in an issue on reverse
engineering biological networks by the Annals of the New York Academy of
Sciences (Gevaert et al. 2008). These results are described in Chapter 7.

• Modeling clinical data: We applied Bayesian network modeling to predict
malignancy in ovarian masses based on clinical data. This involved the
prospective testing of a Bayesian network model. This work was presented at
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the 18th World Congress on Ultrasound in Obstetrics and Gynecology and a full
paper is submitted to Ultrasound in obstetrics and gynecology (Gevaert et al.
2008). The results are described in Chapter 4.

• Modeling arrayCGH data: A special class of Bayesian networks called hidden
Markov modeling, was used to differentiate BRCA-mutated and sporadic ovarian
cancers. We specifically investigated the molecular mechanisms that cause
carcinogenesis in BRCA mutated tumors. This work will be presented at the
12th biennial meeting of the international gynecologic cancer society (Leunen et
al. 2008). The results are described in Chapter 5.

1.9 Other research
Due to the interdisciplinary nature of the research an extensive collaboration with
clinicians of the University Hospitals Leuven arose. This produced a number of
research projects which are not explicitly included in this thesis.
We have contributed to the research on pregnancies of unknown location (PUL) in a
collaboration with Prof. Dirk Timmerman and with Prof. Tom Bourne, Dr. Emma
Kirk and Prof. George Condous at St Georges Hospital in London (now at University
of Sydney). This involved investigating the use of expert priors in combination with
Bayesian network models to predict ectopic pregnancies in the PUL population. The
results were published in Human Reproduction (Gevaert et al. 2006).
Secondly, in collaboration with Prof. Ignace Vergote and Prof. Dirk Timmerman we
evaluated a model built on a pilot microarray data set of ovarian cancer patients [74], on
an independent data set. This model was a Least Squares Support Vector Machine (LS-
SVM) which belongs to the class of kernel methods. The LS-SVM model was used to
predict therapy response in ovarian cancer patients. The results were recently published
in BMC Cancer (Gevaert et al. 2007). More recently, we are also investigating the use
of mass spectrometry data, including both Surface enhanced laser desorption ionization
time-of-flight (SELDI-TOF) and Matrix assisted laser desorption ionization time-of-
flight (MALDI-TOF) approaches, to predict therapy response in ovarian cancer and
other gynecological tumors.
Additionally, in cooperation with Dr. Ann Smeets we are investigating the use of
microarray data and least squares support vector machines to predict lymph node
invasion in breast cancer patients.
We also cooperated in the research to investigate mathematical decision trees versus
clinician based algorithms in the diagnosis of endometrial disease in cooperation with
Prof. Dirk Timmerman and Dr. Thierry Van den Bosch. The results were published as
an abstract (Van den Bosch et al. 2007) and a full paper (Van den Bosch et al. 2008) in
Ultrasound in Obstetrics and Gynecology.
Next, in cooperation with Prof. Thomas D’Hooghe we investigated the use of
mathematical models to predict the presence of endometriosis. This ongoing research
includes the use of ELISA, tissue proteomics (SELDI-TOF), serum proteomics
(SELDI-TOF) and nerve fiber density as a data source and has been presented at two
international meetings (Kyama et al. 2007, Kyama et al. 2008). Currently, three full
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papers of which we are a co-author are submitted (Mihalyi et al., Kyama et al., Bokor
et al.).
Next, an ongoing cooperation with the Bioinformatics and Neurology group from the
Erasmus MC University Medical Center Rotterdam centers on the investigation of
glioma development. To accomplish this we are using unsupervised and supervised
analysis to define molecular subgroups and develop models to aid diagnosis and
treatment.
In cooperation with Prof. Jos van Pelt, Prof. Chris Verslype and Dr. Louis Libbrecht
(now at University Hospitals Ghent) of the hepatology section we aided in the
development of models to predict prognosis in hepatocelullar carcinoma.
Finally, in cooperation with Anneleen Daemen a kernel framework is being built
to integrate omics and clinical data. This work has been presented at the Pacific
Symposium on Biocomputing (Daemen et al. 2008). Additionally, the work focused
on the analysis of arrayCGH data with kernel methods has been presented at the
12th International Conference on Knowledge-Based and Intelligent Information and
Engineering Systems (Daemen et al. 2008). A follow-up paper will be presented at the
Pacific symposium on biocomputing in 2008 (Daemen et al. 2009). Currently, a full
paper on the kernel integration framework is submitted (Daemen et al.).



Chapter 2

A Bayesian network primer

“Graphical models are a marriage between probability theory and graph
theory. They provide a natural tool for dealing with two problems that occur

throughout applied mathematics and engineering – uncertainty and
complexity – and in particular they are playing an increasingly important role

in the design and analysis of machine learning algorithms. Fundamental to
the idea of a graphical model is the notion of modularity – a complex system

is built by combining simpler parts. Probability theory provides the glue
whereby the parts are combined, ensuring that the system as a whole is

consistent, and providing ways to interface models to data.”

– Michael Jordan 1998 –

There exist many types of models that can accomplish the goals of
biomedical decision support. In this thesis we have chosen the class of
Bayesian modeling and more specifically the Bayesian network model.
In this chapter we will argue this choice, which as we will explain, are
independent of each other. We will focus on algorithms to learn Bayesian
networks, how to incorporate prior information in a Bayesian network
model and we will describe in detail an inference algorithm. Finally,
we will argue our choice for discrete models and discuss algorithms for
discretization of continuous data.

2.1 Introduction
This quote from Michael Jordan emphasizes the potential of Bayesian network
modeling and when interpreted through systems biology glasses many of the points
raised make sense. Biomedical data is both characterized by uncertainty in the form of
noise and by the complexity of how genes, through their transcripts, form proteins

17
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steering metabolic processes that determine the fate of the cell. Furthermore the
modularity of Bayesian networks is mirrored in modularity in biological networks
[75–77]. Recent research results point to highly modular blocks that are connected
by hubs. This is evidenced by the so-called party hubs observed in protein-protein
interaction networks [78] or the cancer modules discovered by an extension of Bayesian
network theory to the database world [66].
Before 1988 Bayesian networks received little attention. It was due to pioneering
work of Judea Pearl in 1988 who developed an algorithm for inference that Bayesian
networks became a viable research topic [58]. Inference is the prediction of unseen
events based on observed evidence using a Bayesian network. Pearl called this
algorithm “the message passing algorithm” and it formed the basis for later work on
inference and made it for the first time possible to perform exact inference in Bayesian
networks. This algorithm and its successors in combination with increasing computer
power augmented the usefulness of Bayesian networks [60,79]. Now, the focus was on
learning Bayesian networks and many algorithms, Bayesian and non-Bayesian, were
developed and applied to many different applications [80, 81].
Despite their name Bayesian networks are essentially not Bayesian. Bayesian networks
are called Bayesian because they use Bayes’ rule for inference, the prediction of
unseen events when model building is already finished. The “Bayesian” in Bayesian
networks thus does not refer to the manner that this model is built. Both Bayesian
and non-Bayesian, also called frequentist, algorithms exist to learn the structure and
parameters of a Bayesian network model [59]. To put this into perspective, we will
first shortly discuss the Bayesian and the frequentist approach to general statistical
inference followed by an introduction on Bayesian networks. We specifically focus
on algorithms to learn Bayesian networks and our motivation of using discrete valued
Bayesian networks, a subclass of Bayesian network models. Next, due to this choice
for discrete valued Bayesian networks we describe methods to discretize data. Finally,
we describe the Bayesian network software implementation that was used in this thesis.

Figure 2.1: The frequentist paradigm: parameters are unknown and are estimated
using the data. The uncertainty in the parameters is estimated by considering parallel
universes that created slightly different data sets which can be used to repeat the
parameter estimation. These parameters estimates capture the uncertainty of the actual
parameter estimate.
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2.2 Two paradigms for statistical inference
The frequentist paradigm is based on the view that data is generated by a process with
unknown but fixed parameter θ [63]. Based on data θ is estimated by choosing this
parameter such that the likelihood of observing the data is maximal (see Figure 2.1).
In most cases this corresponds to the popular maximum likelihood estimate however
other methods exist. Uncertainty in this estimate is captured by repeating the data
generating process which results in a probability distribution over θ representing the
uncertainty. Obviously, in many cases the data generating process cannot be repeated
such that this exercise is a hypothetical one and is accomplished using techniques such
as bootstrapping [82].

The Bayesian formalism does not regard the parameters, θ, to be fixed but rather

Figure 2.2: The Bayesian paradigm: parameters are considered to be randomly
distributed and are modeled using a probability density function which is estimated
based on the data.

defines it as a random variable [63]. Intuitively a random variable is a mapping from
the sample space to real numbers. Then, θ is considered to be distributed according to
some probability density function specifying the probability of each possible outcome
in the sample space. To overcome the difficulty of attaching a probability to a non-
repeatable event, subjective uncertainty is introduced (see Figure 2.2). The uncertainty
of θ is captured by the well known Bayes’ rule. The subjective prior is multiplied with
the likelihood to form the posterior distribution:

p(θ|D) ∝ p(D|θ)p(θ) (2.1)

This implies that inference is done only on the data gathered instead of the
cumbersome parallel universes in the frequentist approach. Figure 2.3 shows an
example of the application of Bayes rule and the influence of the prior. In this example
we assume a binary event and its true probability of occurring is 0.5, for example
flipping a coin. Three situations are depicted: a weak prior, a strong prior and an
uninformative prior. In each situation the data is the same: there are 25 observations of
heads and 25 observations of tails. Figure 2.3 shows that in the case of the weak prior,
the posterior is less peaked compared to the strong prior. The uninformative prior on
the other hand has little influence and only the data determine the posterior.
Throughout this text we have favored a Bayesian approach in most cases motivated
from a practical point of view. In many situations where no information a priori is
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Figure 2.3: Bayes rule in practice. The prior, likelihood and posterior are shown for
a binary event, for example flipping a coin. The probability θ of either outcome is
0.5 and the data consists of 25 observations of each outcome. The first row shows the
influence of a weak prior, the second row of a strong prior and the last row of a uniform
prior.

available, it is difficult to determine a suitable prior. In these cases uninformative
priors are used which are not always straightforward [67]. However, in our case prior
information is often available thus increasing the usefulness of the Bayesian approach
over the frequentist approach.
First we will define Bayesian networks and its concepts followed by a description
of learning algorithms. Next, we will define priors for Bayesian networks and how
inference is done. Finally, we describe discretization algorithms.

2.3 Bayesian networks

2.3.1 Definition
A Bayesian network is a probabilistic model that consists of two parts: a dependency
structure and local probability models [9, 58]. Figure 2.4 shows an example of a
Bayesian network related to lung cancer. The dependency structure specifies how the
variables are related to each other by drawing directed edges between the variables
without creating directed cycles. Each variable depends on a possibly empty set of
other variables which are called the parents:

p(x1, ..., xn) =
n∏

i=1

p(xi|Pa(xi)) (2.2)
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Figure 2.4: A toy example of a Bayesian network with four binary variables. The
conditional probabilities are shown next to each node. The probabilities are chosen
realistically.

where Pa(xi) are the parents of xi. Usually the number of parents for each variable is
small therefore a Bayesian network is a sparse way of writing down a joint probability
distribution. This is an important advantage of Bayesian networks because this allows a
dramatic decrease in the number of parameters that is needed to specify a probabilistic
distribution over a number of variables. In the discrete case, the full joint probability
distribution for n binary variables needs 2n−1 probabilities or parameters that have to
be specified; one probability for each instantiation of the variables. For example, the
Bayesian network in Figure 2.4 needs 11 parameters vs. 31 parameters that are needed
for the full joint distribution.
The second part of this model, the conditional probability distributions, specifies how
the variables depend on their parents. Throughout this thesis we systematically used
discrete-valued Bayesian networks therefore these conditional probability distributions
can be represented with Conditional Probability Tables (CPTs). Such a table specifies
the probability that a variable takes a certain value given the value of its parents. In
Figure 2.4 the CPTs for each variable are shown alongside each node.

2.3.1.1 Markov blanket

An important concept of Bayesian networks is the Markov blanket of a variable. The
Markov blanket of a variable is the set of variables that completely shields of this
variable from the other variables. This set consists of the variable’s parents, children
and its children’s other parents (see Figure 2.5). A variable in a Bayesian network is
conditionally independent of the other variables given its Markov blanket. Conditional
independency means that when the Markov blanket of a certain variable x is known,
adding knowledge of other variables leaves the probability of x unchanged [83]. This is
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an important concept because the Markov blanket is the only knowledge that is needed
to predict the behavior of that variable. For classification purposes we use the concept
of the Markov blanket to identify the minimal set of variables that are needed to predict
the clinical outcome.

2.3.2 Bayesian network learning
A Bayesian network is thus composed of two parts: a structure and its conditional
probability distributions. Depending on the data a Bayesian network is manually
created or learned from data. In practice manual specification of the structure and/or
the conditional probability distributions of a Bayesian network is only possible when
the number of variables is limited. For example when modeling clinical data the
dimensionality is limited to a few dozen variables and it is feasible to specify a
Bayesian network by hand based on expert knowledge. In all other cases, when
modeling genome-scale data, the number of variables ranges from a few hundred to
more than thousand variables, which prohibits manual specification of a Bayesian
network. In these cases, algorithms are used to learn a Bayesian network from data.
Due to the duality of Bayesian networks, two steps have to be performed during
the learning process: structure learning and parameter learning. Structure learning
corresponds to learning the arrows of Figure 2.4 or the identity of the the parents
Paxi

of variable xi in equation 2.2. Parameter learning corresponds to learning the
probabilities in the CPTs of Figure 2.4. When finished, a Bayesian network can be used
to predict unseen data. Subsequently, we describe in more detail how the structure and
parameters are estimated.

2.3.2.1 Structure learning

First, the structure is learned using a search strategy. Since the number of possible
structures increases super-exponentially with the number of variables, the well-known
greedy search algorithm K2 [84] was used in combination with the Bayesian Dirichlet
(BD) scoring metric [80]:

p(S|D) ∝ p(S)
n∏

i=1

qi∏
j=1

[
Γ(N ′

ij)
Γ(N ′

ij +Nij)

ri∏
k=1

Γ(N ′
ijk +Nijk)
Γ(N ′

ijk)

]
, (2.3)

with Nijk the number of cases in the data set D having variable i in state k associated
with the j-th instantiation of its parents in current structure S. Data set D contains n
variables which are fixed and known before Bayesian network learning starts. Next,
Nij is calculated by summing over all states of a variable: Nij =

∑ri

k=1Nijk. N ′
ijk

and N ′
ij have similar meanings but refer to prior knowledge for the parameters. When

no knowledge is available they are estimated using N ′
ijk = N/(riqi) [59] with N

the equivalent sample size, ri the number of states of variable i and qi the number of
instantiations of the parents of variable i. Γ(.) corresponds to the gamma distribution.
Finally p(S) is the prior probability of the structure which we will define later in this
chapter.
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Figure 2.5: The Markov blanket of variable A is composed of the variable’s parents, its
children and its children’s other parents. The Markov blanket variables are encircled.

Using Equation 2.3 we can now score structures using the K2 search strategy. K2
consists of a greedy search combined with a prior ordering of the variables. This
ordering restricts the search space by only allowing parents if they precede the current
variable in the ordering. Then K2 iteratively tries to find the best parents for each
variable separately by starting with an empty set of parents and incrementally adding
the best parents. When the addition of a parent does not increase the score, the
algorithm stops and moves on to the next variable in the ordering. Since the ordering of
the variables is not known in advance, the model building process is iterated a number
of times with different permutations of the ordering. Then, the network with the
highest score is chosen. Randomly permuting the ordering of the variables is similar to
randomly changing a number of edges in the network and restarting the search strategy.
Both methods are used to escape local minima in the search space.

2.3.2.2 Parameter learning

The second step of the model building process consists of estimating the parameters of
the local probability models corresponding with the dependency structure. Since we
only use discrete variables in our Bayesian network models, we will discuss how the
parameters in a CPT are learned. For each variable a CPT exists that consists of a set
of parameters. Each set of parameters is given a uniform Dirichlet prior:

p(θij |S) = Dir(θij |N ′
ij1, ..., N

′
ijk, ..., N

′
ijri

, S) (2.4)

with θij a parameter set where i refers to the variable and j to the j-th instantiation
of the parents in the current structure. θij contains a probability for every value of
the variable xi given the current instantiation of the parents. Dir corresponds to
the Dirichlet distribution with (N ′

ij1, ..., N
′
ijri

) as parameters. In this thesis no prior
information will be integrated in the parameter prior therefore the N ′

ij1 parameters of
the Dirichlet distribution are chosen un-informatively [59]. Parameter learning then
consists of updating these Dirichlet priors with data. This is straightforward because
the multinomial distribution that is used to model the data, and the Dirichlet distribution
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that models the prior, are conjugate distributions. This results in a Dirichlet posterior
over the parameter set:

p(θij |D,S) = Dir(θij |N ′
ij1 +Nij1, ..., N

′
ijk +Nijk, ..., N

′
ijri

+Nijri
, S) (2.5)

with Nijk defined as before. We summarized this posterior by taking the Maximum A
Posteriori (MAP) parameterization of the Dirichlet distribution and used these values
to fill in the corresponding CPTs for every variable. Using MCMC could improve
our current set-up because this technique allows devising the complete posterior
distribution however at a higher computational cost [85].

2.3.3 Priors
We specifically chose the Bayesian framework because of the flexibility of incorpo-
rating information in the learning process through priors. We already stated in the
introduction that many secondary or entity specific data sources exist that can be
incorporated in priors. A number of examples of possible sources of prior information
are known interactions between proteins (BIND, IntAct, HPRD, ...), metabolic and
signaling pathways (BIOCARTA, KEGG [72], Reactome [73]) and the literature. For
clinical data prior information is also available in the form of expert knowledge.
The duality of Bayesian networks is also translated in its ability to incorporate prior
information. Prior information can be incorporated in both steps of the learning process
in the form of a structure prior and a parameter prior. It is important to stress that in this
thesis only the Bayesian network structure and its parameters are defined in a Bayesian
way. This implies that no hyper-priors are used, which is typical in hierarchical
Bayesian modeling [67].

2.3.3.1 Structure prior

Previously two approaches have been used to define informative prior distributions over
Bayesian network structures [68]. First, there are penalization methods that start from a
prior structure and score structures based on the difference with the prior structure [59].
Secondly, there are pairwise methods which define the prior probability of a Bayesian
network structure by combining individual edge scores between variables. This method
assumes that being a parent of some node is independent of any other parental relation.
In this thesis the second approach was chosen because our secondary data sources are
in most cases in the form of pairwise relationships. Moreover this type of structure
prior is decomposable which has important computational advantages.
The structure prior decomposes as:

p(S) =
n∏

i=1

p(Pa(xi)→ (xi)) (2.6)

with Pa the parents of xi. Each parent set can be learned independently of other
parental relationships which preserves the decomposability of the Bayesian Dirichlet
score. We can thus replace the P (S) in equation 2.3 and bring the structure prior within
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the outer product:

p(S|D) ∝
n∏

i=1

p(Pa(xi)→ (xi))
qi∏

j=1

[
Γ(N ′

ij)
Γ(N ′

ij +Nij)

ri∏
k=1

Γ(N ′
ijk +Nijk)
Γ(N ′

ijk)

]
(2.7)

In the current domain there are many variables therefore it is computationally less
expensive to update the prior locally instead of globally for every move that is made
in the search space. This would not be possible when using a penalization method to
define the structure prior which would severely increase computational times.
The probability of a local structure (i.e. p(Pa(xi) → xi)) is then calculated by
multiplying the probability that there is an edge between the parents of xi and the
probability there is no edge between the other variables and xi:

p(Pa(xi)→ xi) =
∏

z∈Pa(xi)

p(z → xi)
∏

y/∈Pa(xi)

p(y 9 xi) (2.8)

where 9 means no edge between y and xi. The p(z → xi) and p(y 9 xi) come from
the prior data source and are defined depending on its nature. These individual edge
probabilities can be represented in a matrix and are used to guide model search through
their influence on Equation 2.3.
Depending on the type of prior data, the structure prior can be sparse or non-sparse.
In the latter case many edges have a strong prior which will result in very complex
networks. A fully connected Bayesian network can explain any data set, therefore
network complexity should be reduced. Rather than using the prior edge probabilities
directly, we will introduce an extra parameter ν, called the mean density, which controls
the density of the networks that will be generated from the distribution. We will
transform all the matrix elements in the prior with an exponent ζ such that the average
of the mean number of parents per local substructure is in agreement with the given
mean density [68]. Finding the exponent ζ that gives rise to the correct mean number
of parents can be done with any single variable optimization algorithm. This parameter
allows to control the complexity of the networks that will be learned.

2.3.3.2 Parameter prior

We already mentioned that the best choice for a prior for the parameters in a CPT is the
Dirichlet distribution. Equation 2.4, which we repeat here for convenience, illustrates
the possibility for incorporating information at the second level of a Bayesian network.

p(θij |S) = Dir(θij |N ′
ij1, ..., N

′
ijk, ..., N

′
ijri

, S) (2.9)

This Dirichlet distribution forms the prior for each parameter set θij . It is determined
by its parameters, called hyper-parameters, N ′

ijk. The N ′
ijk can be interpreted as

the number of times variable i has been observed with value k and with the j − th
parent instantiation. This type of knowledge is not easily available from the previously
mentioned secondary data sources. Moreover, as the structure changes the parent set
of each variable i can change requiring a different parameter prior. This could lay a
large computational burden on learning algorithms instead of aiding in the learning
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process. Expert knowledge on the other hand can be integrated in a parameter prior.
When using the example of Figure 2.4, a parameter prior for variable xi, the history
of lung cancer, could be the number of smokers in the general population based on a
study from literature. A more complex example is variable x5, mass seen on X-ray,
which has one parent, the presence of lung cancer. For x5 the parameter prior could
come from another study which has X-ray data of lung cancer patients by counting the
number of patients with lung cancer that have or don’t have a mass on X-ray. However,
suppose the structure changes and the link between x3 and x4 is removed, this would
invalidate this parameter prior. This makes the use of a parameter prior a cumbersome
task which can only be undertaken when the dimensionality of the data is limited, for
example when modeling clinical data.
We have investigated the use of expert information in the parameter prior of a Bayesian
network by distinguishing ectopic pregnancies in a population of pregnancies of
unknown location (PUL). There we showed that using a parameter prior based on
expert knowledge improves classification performance. The results were published
in Human Reproduction [7].

2.3.4 Inference

When model building is finished a Bayesian network can be used for prediction of an
alternative hypothesis based on evidence. In the context of Bayesian networks this
is called inference. We used the probability propagation in tree of cliques algorithm
(PPTC) developed by Lauritzen and Spiegelhalter [65], refined by Jensen [64], to
predict the state of the outcome variable (i.e. the diagnosis of ovarian masses). Here
we will briefly describe the PPTC algorithm, for a more elaborate description we refer
to an excellent review by Huang and Darwiche [86].
To illustrate the objective of the PPTC algorithm, we will give an example based
on Figure 2.4. Using this algorithm one can compute the probability of lung cancer
given that a mass is visualized on X-ray and the patient does not smoke: P (x3|x1 =
false, x5 = true). More generally PPTC allows to compute P ({xi}|{xj}) where
{xi} is a collection of variables of which we want to compute its value and {xj} is a
collection of other variables of which we have evidence. In short we ask what is the
probability of xi given that we know xj .
PPTC consists of two steps: construction of the clique tree and handling the evidence.
A clique tree is in the literature also known as join tree, junction tree, tree of belief
universes, cluster tree, among others. The clique tree is an undirected tree where each
node represents a cluster of variables and each edge represents the intersection of the
adjacent clusters. A Bayesian network is transformed in its corresponding clique tree
by applying some graphical steps. The idea behind this step is to create a tree where
nodes represent collections of variables from the original Bayesian network. This
is necessary because the next step in the algorithm, handling the evidence requires
a tree structure. After initialization of the clique tree, the evidence is entered and
propagated until the tree is consistent. Once the tree is consistent our probability
P (x3|x1 = false, x5 = true) can be calculated.



2.4 Evaluation measures 27

2.4 Evaluation measures
When inference is viewed in the context of biomedical decision support, inference is
done to predict the outcome variable P (outcome|data). To assess the performance of
a model for predicting clinical outcomes we adopt the concepts of training and test set
that form the basis of classification in machine learning. Typically a model is built only
based on the training set. Next, the model is tested on a set of new patients called the
test set which was not used for training the model. The performance of the model on
this test set can be used to compare with other models in an unbiased way. Performance
can be measured based on a number of different metrics. In this thesis we primarily
used the ROC curve and the area under the ROC curve (AUC). In the next section we
will explain this in detail.

2.4.1 Receiver Operating Characteristic curve
In most cases, we used Receiver Operating Characteristic curves (ROC) to evaluate the
predictive performance of the developed models [87]. More specifically, the models
were compared using the Area Under the ROC curve (AUC) which can be interpreted
as the probability of being able to distinguish a sample with disease from a sample
without the disease. To explain the meaning of a ROC curve first we have to explain
sensitivity and specificity of a test. Figure 2.6 shows a typical situation of a two-class
problem. In this situation one class is considered as the positive and the other class is
considered to be the negative class. In the rows are the patients that are classified by
the model in either of these two classes. In the columns is the true class of each patient.
This gives four definitions:

• true positive (TP): a positive patient classified as a positive

• false positive (FP): a negative patient classified as a positive

• false negative (FN): a positive patient classified as a negative

• true negative (TN): a negative patient classified as a negative

Based on these definitions we can define the following concepts:

• sensitivity: TP/(TP+FN)

• specificity: TN/(FP+TN)

• positive predictive value (PPV): TP/(TP+FP)

• negative predictive value (NPV): TN/(FN+TN)

• accuracy: (TP+TN)/(TP+FP+FN+TN)

Many models however do not just predict whether a patient is a positive or negative
but output a continuous value e.g. the probability of being a positive. This means
that we can generate many tables as in figure 2.6 depending on the threshold on the
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Figure 2.6: Truth table: in the rows are the predictions by the model in two classes,
positives and negatives. In the columns are the actual classes of the patients. This gives
four situations: true positives, false positives, false negatives and true negatives which
are used to define sensitivity, specificity, positive predictive value, negative predictive
value and accuracy. See the main text for these definitions.

Figure 2.7: The Receiver Operating Characteristic curve or ROC curve. On the left a
general ROC curve is depicted with one operating point highlighted. The ROC curve
in the middle corresponds to a random model. The ROC curve on the right corresponds
to a perfect model.

continuous probability. Now we can define a ROC curve which is the sensitivity vs.
1 minus the specificity for all possible thresholds. Each point of the ROC curve thus
corresponds to a sensitivity and specificity of the test and is called an operating point.
Figure 2.7 shows an example of a ROC curve. The advantage of the ROC curve is that
it is independent of the threshold that is chosen. Choosing a threshold after all depends
heavily on the disease, in some cases a high sensitivity is required while in other cases
a high specificity is needed.
The most important property of the ROC curve is the area under the ROC curve (AUC)
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which can be interpreted as the ability of the model to distinguish the two classes.
More formally the AUC is the probability of being able to distinguish a positive and a
negative from each other. An AUC of 50% corresponds to a random model the model
is not able to discriminate the two classes better than flipping a coin. An AUC of
100% corresponds to a perfect model which always can discriminate the two classes
independent of the operating point.

2.4.2 Cross validation and randomization
When the number of samples is limited however, the data set may be too small to have
an independent test set. In this case the performance is estimated using cross-validation
methods. Instead of using an independent test set cross validation splits the data up in a
number of equal parts for example 10. Each part is called a fold and the number of folds
depends on the data set size. In general this method is called k-fold cross validation
depending on the number of folds. First a model is built on all folds except one and
tested on the left-out fold. This is iterated for all folds such that each fold is used once
as an independent test set. The performance of the model on each of the folds is then
aggregated to have a final performance. The performance can be measured using the
previously introduced evaluation metrics such as accuracy or AUC.
Leave-one-out cross validation (LOO-CV) is an extreme form of k-fold cross validation
where the number of folds is equal to the number of samples. LOO-CV is mostly used
for very small data sets.
A downside of cross validation is that the results heavily depend on how the data is split
into folds. If by accident a subgroup of similar samples are put into the same fold, this
fold may not be representative of the population. This can be remedied by using other
methods such as randomization. Randomization randomly assigns patients to train or
test set independently for each randomization.

2.5 Discretization

2.5.1 Motivation
Throughout this text always discrete valued Bayesian networks were used. This
means that continuously valued variables whether these are clinical or biological of
origin are discretized into a finite number of bins. We have chosen discrete valued
Bayesian networks inspired by the argumentation of Hartemink [88]. Firstly, the
space of arbitrary continuous distributions is large and it is unclear which continuous
distribution should be used to model the relationship between a parent and a child.
A solution often advocated could be to restrict ourselves to the use of Gaussian
Bayesian networks. This class of models however assumes linear interactions between
the variables which is too simplistic when modeling biomedical data. Secondly, the
discretization of gene expression values into a limited set of states seems a plausible
abstraction. When studying cancer due to the experimental setup, gene products are
assumed to be in steady state such that the expression of a gene is in for example one
of three states: under-expression, off or over-expression. Additionally, discrete-valued
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Bayesian networks allow to represent arbitrary discrete probability distributions with
a limited number of parameters. Therefore, to avoid the enormous space of non-linear
continuous distributions or too simplistic continuous distributions such as Gaussian
conditional probability distributions, we chose the process of discretization where we
specifically tried to minimize any loss of relationships between the variables.

2.5.2 Algorithms
2.5.2.1 Simple discretization algorithms

Two simple discretization methods are quantile discretization and interval discretiza-
tion. In quantile discretization the observations of a variable are divided in bins by
sorting the observations and putting an equal number of observations in each bin. For
example of the data is discretized in four bins, the first quartile of the observations is
put in the first bin, the second quartile in the second bin and so on.
Interval discretization divides the range of the observations in equal parts. Interval
discretization thus puts the observations in bins of equal size in the measurement scale
of the observations instead of bins of equal number of observations. This simple
discretization method is therefore sensitive to outliers since they can severely influence
the location of the bins.

2.5.2.2 Information preserving discretization

The previous discretization methods are simple methods since they are operated in an
univariate manner. Each gene is discretized independently of the other genes. However,
this may cause that the relationships between the genes are lost. Figure 2.8 shows
an example that illustrates this concept with two genes. Since we are attempting to
learn the relationships between variables the loss of relationships between variables
is critical. The essence of representing omics data with Bayesian networks is the
relationships between the variables in the form of (in)dependence relationships.
To remedy this we used an information preserving discretization method developed by
Hartemink [88]. This algorithm discretizes a data set by starting from a large number
of bins per variable and iteratively joining neighboring bins by minimizing the loss
of mutual information. First, a simple discretization method for example quantile or
interval discretization is used to discretize the variables in a large number of bins (e.g.
30). Then the algorithm starts by iterating over the variables and for each variable all
possible combinations of neighboring bins are considered. The operation which results
in the smallest loss of mutual information with respect to each of the other variables
is chosen. This is done for every variable and until the variables all have the desired
number of bins (e.g. 3). In this manner, the bins are chosen in a multi-variate manner
taking into account the relationships between the variables.
We slightly adapted this algorithm in the context of discrete clinical variables by
also taking into account the mutual information with these clinical variables. The
discretization was thus adapted such that the loss of relationships between all types
of variables is minimized.
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Figure 2.8: Information preserving discretization: The top panel shows an example
of discretizing two genes separately. The discretization on the right seems acceptable.
When considering both genes together in the bottom panel the previous discretization
is suboptimal. Much of the relationship between the two genes would get lost. When
considering both variables together, the discretization is done differently.

The disadvantage of this information preserving discretization is that it is compu-
tationally more expensive compared to simple discretization methods. Especially
when taking into account the relationships with the clinical variables and the clinical
outcome. In this case the discretization is done supervised and thus information from
the outcome variable is used to build the model. Therefore the discretization has to be
done inside the previously introduced cross-validation methods.

2.5.3 Implementation
The software used in this thesis is based on a combination of C++, java, matlab and
perl. The Bayesian network algorithms were previously implemented in C++ by Geert
Fannes and Peter Antal. Functions to enable the integration of primary and secondary
data sources were added to the core Bayesian network software already present. Matlab
scripts based on the thesis of Hartemink [88] were used to implement the multivariate
discretization. Next, Matlab scripts were used to construct the structure priors in
combination with Java Lucene for indexing pubmed in cooperation with Steven Van
Vooren. Finally, perl scripts were used to implement the different workflows for
integrating primary and secondary data sources.
A typical analysis of learning a Bayesian network took between 5 and 30 minutes
depending on the data set size ranging from 10 to 200 variables. When multiple data
sets are integrated the computational load should be multiplied with the number of
data sources. Finally, this computational cost should be multiplied with the number of
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cross-validation or randomizations that is performed. During our PhD research initially
all analysis were done on a desktop computer followed by the use of a 12-node cluster
of AMD dual core opteron 2.4 GHz servers with between 4 and 16 GB RAM memory.
Finally, we used the high performance cluster of the KU Leuven containing 256 nodes
to parallelize cross-validation runs.

2.6 Conclusions
In this chapter we have introduced the model that we will use primarily in this thesis:
the Bayesian network. We described Bayesian methods in general and Bayesian
networks in detail. As evaluation measures we introduced an important concept called
the ROC curve and the AUC which will be used repeatedly throughout this thesis.
Finally, we discussed and motivated discretization of the data. In the following chapter
we will describe in detail the cancer sites where we investigated the use of biomedical
decision support.



Chapter 3

Ovarian and rectal cancer:
background, aims and data.

“In current clinical practice, the majority of patients with early breast cancer
receive some form of systemic adjuvant therapy, which may have important

side effects and which puts considerable burden on health care costs.
Although guidelines have been developed to assist clinicians in selecting

patients who should receive adjuvant therapy, it still remains a challenge to
distinguish those patients who would really need adjuvant systemic therapy

from those who could be spared such treatment.”

– Desmedt et al., Clinical Cancer Research, 13(11), 3207-3214, 2007 –

Each cancer site has its specific challenges or problems that have to
be addressed. For example, ovarian cancer is often called the “silent
killer” due to absence of symptoms in early stages. Clinicians also face
challenges when deciding which therapy to use. For example, breast
cancer patients are often overtreated while it is known that approximately
25% of node positive patients will remain free of disease even without
adjuvant therapy. In this chapter we will describe the background of
the cancer sites that are studied in these thesis. Due to the availability
of unique data sets for ovarian and rectal cancer, gathered at the
University Hospitals Leuven, we focused on these cancer sites to develop
Bayesian network models. However, the methods that will be described in
subsequent chapters are sufficiently general such that they can be applied
on data from other cancer sites as well.

33
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3.1 Overview
In the previous chapter we discussed the basics of Bayesian network modeling. In
this chapter, we will give an overview of the data that was available to develop our
models. We will specifically focus on the challenges and issues for the two cancer sites
for which unique data sets were available through a collaboration with the University
Hospitals Leuven. These primary cancer domains were: ovarian cancer and rectal
cancer.
Ovarian cancer was the first application domain and motivation of this thesis. This is
mainly due to the availability of a large clinical data set gathered in the International
Ovarian Tumor Analysis (IOTA). The IOTA project is currently preparing its third
phase and already resulted in a large data set of over 3500 patients. Additionally,
to address other challenges in the clinical management of ovarian cancer omics
technologies can be used to improve current biomedical decision support. Therefore,
microarray technology was used to study the prediction of therapy response and
proteomics technology is currently being investigated as a second stage test for the
diagnosis of difficult ovarian masses. In addition a pilot study was done where familial
ovarian tumors were studied with arrayCGH technology.
The second cancer site, rectal cancer was studied due to the availability of multiple
omics data for the same patients. These data were gathered in the framework of a
phase I/II randomized trial and were analyzed in cooperation with the department of
radiation oncology of the University Hospitals Leuven and the department of medical
oncology of the University Hospitals St. Luc Brussels. This unique data set contains
microarray data and proteomics data at three time points during the therapy of the
patients. This makes the rectal cancer data set a benchmark for integration of data for
biomedical decision support. The number of data sets containing multiple omics data
for the same patient is currently limited making this data set essential to develop data
integration methods for biomedical decision support.
It is important to state at which time point during management of the patient the
problem in decision support arises. This determines which biological materials are
available and thus which omics technologies can be used to gather data. For example
for prognosis prediction of ovarian cancer, tumor tissue is available while diagnosis
of an ovarian mass should be done non-invasively due to the large number of benign
masses. This limits the number of omics technologies that can be applied and also
limits the number of multi omics data sets.
First, we will describe the background, aims and data for ovarian cancer and rectal
cancer which will provide the data for the Bayesian network models in Chapter 4 and
Chapter 5 respectively. Finally, we will also describe publicly available data sets that
we will use in Chapters 6 and 7.

3.2 Ovarian cancer

3.2.1 Background
It is important to state that the word tumor refers to an abnormal growth of tissue that
can either be benign or malignant whereas the word cancer always refers to a malignant
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tumor.
An ovarian tumor is an abnormal growth located in the ovaries, the female reproductive
glands on both sides of the uterus (see Figure 3.1). Most ovarian cancers originate in the
epithelial cells (i.e. cells forming the covering and inner lining of most organs) and are
called epithelial ovarian cancers. Based on recent data [1], ovarian cancer represents
3% of all cancers in women corresponding to approximately 21650 new cases each
year in the US [1]. However it ranks fifth when considering mortality corresponding
to 15520 deaths each year in the US. Ovarian cancer remains clinically quiet, while
planting seeds of metastases until it reaches the advanced stage. This severely delays
diagnosis up until the point when the disease has already spread to other organs making
the therapeutic options limited. Therefore ovarian cancer is often called the “silent
killer”.

Figure 3.1: Anatomy of the ovary.

The five year survival rate is 90% for early stage disease but only 20% for stage III
and 5% for stage IV disease.. Based on estimations, 5%-10% of women will undergo
a surgical procedure for an ovarian neoplasm during their lifetime [2]. However, in
reality the majority of non-functional ovarian tumors is benign (75%) which causes
unnecessary morbidity in a high proportion of patients since the treatment of a benign
ovarian tumor is completely different from treatment of a malignant ovarian tumor.
Benign tumors are mostly serous or mucinous. They are treated effectively with
hormonal therapy or relatively simple surgery (i.e. laparoscopy). Then, treatment
can be carried out without the need of a skilled gynecological oncological surgeon.
Moreover, for a benign tumor, there is no need for many pre-operative investigations
and the operation time and subsequent hospitalization length is limited. However it is
not uncommon that patients are asked for consent to perform laparotomy such that the
surgeon is prepared to proceed without delay when malignant disease is uncovered.
Malignant tumors on the other hand metastasize and are life threatening. A suspected
malignant tumor is best treated with a midline laparotomy by a specialist (i.e. gyne-
cologic oncologist) followed by adjuvant therapy (e.g. radiotherapy or chemotherapy)
when malignancy is confirmed. In ovarian cancer patients surgical treatment involves
optimal debulking. Therefore it is important to be able to determine non-invasively
and pre-operatively whether an ovarian tumor is benign or malignant such that patients
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can be treated accordingly. Moreover, pre-operative determination of malignancy of an
ovarian mass is important since the prognosis of the patient is worse in case of rupture
of a stage I tumor. Additionally, the diagnosis of ovarian cancer has an effect on the
hospitalization time, the number of pre-operative investigations, the length of operative
procedures and the subsequent work incapacity of the patient.

3.2.1.1 Issues in diagnosis

Currently it is not possible to perfectly distinguish between benign and malignant
ovarian tumors based on clinical data. While a large group of tumors can be correctly
classified by clinical ultrasound experts or by mathematical models [3], there is a
subgroup where both experts and mathematical models fail to classify the samples
correctly. Pre-operative knowledge of the malignancy of an ovarian mass is important
since there is a favorable effect on the prognosis of the patient. In case of a malignant
tumor the patient is referred to a specialized gynecologic oncologist instead of a general
gynecologist. Appropriate surgical treatment is essential because the rupture of a stage
1 ovarian cancer during the operation may worsen the prognosis. A non-invasive
diagnostic test could improve current clinical practice significantly. The only clinically
available biomarker now is CA125, which has a rather low sensitivity and specificity
for diagnostic use. Highly sensitive and specific tools to further optimize diagnosis and
treatment are needed.

3.2.1.2 Issues in therapy response

FIGO (Fédération Internationale de Gynécologie Obstétrique) stage at diagnosis is an
important prognostic factor but only partially explains the behavior of ovarian cancer
patients. For example, 10% to 50% of patients with early-stage disease will recur
after initial surgery, and a subset of patients with stage III or IV disease will prove
to be resistant to platin-based chemotherapy. However, at this moment, no clinical
or pathologic parameters are available that can predict these events with sufficient
accuracy. There are no clinical or pathologic variables that can reliably predict
recurrence in FIGO stage I patients or resistance to platin-based chemotherapy in
advanced stage disease (FIGO stage III or IV). This makes patient tailored therapy
difficult such that many patients will not receive the right treatment or will receive
superfluous treatment.

3.2.1.3 Issues in familial ovarian cancer

Approximately 5-10% of patients with epithelial ovarian carcinomas have a familial
history [89]. Nearly 90% of this hereditary ovarian cancer can be attributed to
germline mutations in the tumor suppressor genes BRCA1 or BRCA2. A mutation
of the BRCA1 gene cumulates the risk for ovarian carcinoma with 26-85% while a
BRCA2 mutation increases the cumulative risk with 10%. These BRCA related ovarian
cancers seem to have distinct clinical behavior and are supposed to respond better to
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platinum based chemotherapy. It is still an unsettled issue to what extent the molecular
mechanisms involved in ovarian carcinogenesis are distinct in sporadic cases compared
with inherited cases and how this influences therapy response.

3.2.2 Previous research

3.2.2.1 IOTA

The ability to distinguish between benign and malignant ovarian cancer has already
been the topic of much research. More specifically in Flanders, Prof. Dirk Timmerman
played an important role when he started in 1994 to collect pre-operatively clinical
data with the goal to develop mathematical models that can reliably predict the
malignancy of ovarian cancer. This data set consisted of variables that were potentially
of diagnostic importance and belong to the following groups: medical history (e.g.
personal and familial history of ovarian and breast cancer), ultrasonography (e.g. size
of the lesion, the presence of ascites, color doppler imaging, etc.), serum tumor marker
(CA-125), histopathology and staging. This resulted in a data set of 500 patients which
was used to develop several models.
In 1998 Prof. Dirk Timmerman expanded the study by setting up the International
Ovarian Tumor Analysis group (IOTA). The IOTA study is a multicentric cooperation
with renowned universities in Lund/Malmö, Leuven, Rome, London, Paris, Milan,
Monza, and Napels using a unified protocol for data collection. This international
collaboration is technically supported by ESAT-SCD, with mathematical models,
software and internet-applications. The principal aim of the IOTA project phase
is to collect a multi-center data set for the development of conventional and new
mathematical models such as logistic regression models, artificial neural networks
(ANN), Bayesian Networks, and Least-Squares support vector machines (LS-SVM))
for the pre-operative classification of malignant and benign ovarian tumors and to
assess their performance in comparison with subjective assessment. Phase 1 of the
IOTA study started in 1999 and was concluded in 2002. In this phase data from 1242
patients with an adnexal tumor were used to construct a large database with potentially
important medical parameters. After removing the bilateral masses, the final data set
contained 1066 patients recruited from nine European centers. 800 patients (75%) had
benign tumors and 266 (25%) had malignant tumors. More than 40 parameters were
recorded based upon which several new mathematical models were developed.
Following IOTA phase 1, an internal validation was performed in IOTA phase 1b. The
IOTA phase 1b data set consisted of 507 new patients gathered in the main centra that
contributed to IOTA phase 1: the University Hospitals of the Katholieke Universiteit
Leuven, Malmö University Hospital at Lund University and Universitá Cattolica del
Sacro Cuore in Rome. Data collection started in 2002 and ended in 2005.
In November 2007 another milestone in the IOTA project was taken with the end of
the IOTA phase 2 data collection. IOTA phase 2 contains data from centers that also
participated in phase 1 but also from new centers not previously included in the IOTA
project. This data set thus serves both as an internal and external prospective evaluation
of all models. The complete data set contained 1938 patients from nineteen centers in
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eight countries.
Recently, a logistic regression model was published based on the phase 1 IOTA data [3].
This model is based on the following variables: personal history of ovarian cancer,
hormonal therapy, age, maximum diameter of lesion, pain, ascites, blood flow within
the papillary projection, presence of an entirely solid tumor, maximal diameter of the
solid component, irregular internal cyst walls, acoustic shadows and a color score
of intra-tumoral blood flow has been proposed. This model gave a sensitivity and
specificity of 93% and 76% on the test data set which consisted of 312 patients from
IOTA phase 1 not used for training. There were 14 malignant masses incorrectly
classified as benign. Of these 14 masses, there were 10 borderline malignant, three
primary invasive and one metastatic mass. Next, this model classified 130 benign
masses as malignant.
Internal validation on the IOTA phase 1b data set of this model resulted in similar
performance (sensitivity of 95% and specificity of 74%) while external performance
on the IOTA phase 2 data set resulted in a sensitivity of 92% and specificity of 80%.
Additionally, based on the IOTA data it was shown that CA-125 does not significantly
improves the model when considered in a multivariate model. A logistic regression
model including CA-125 resulted in an area under the receiver operating characteristic
curve (AUC) of 0.934 and did not outperform an earlier defined model without serum
CA-125 information (AUC 0.936). Moreover, specifically designed new models
including CA-125 for pre-menopausal women and for postmenopausal women did not
perform significantly better than the model without CA-125 (AUC 0.891 vs. AUC
0.911 and AUC 0.975 vs. AUC 0.949, respectively). In masses felt to be very difficult
to classify as benign or malignant by the ultrasound examiner the logistic regression
model with CA-125 did not outperform the logistic regression model without CA-125
(AUC 0.773 vs. AUC 0.833). Adding information on CA-125 to clinical information
and ultrasound information does not improve discrimination of mathematical models
between benign and malignant adnexal masses. Furthermore, raised CA-125 levels are
associated with specific types of benign and malignant ovarian pathology. Based on
the IOTA data, knowledge of CA-125 does not add to the ability to suggest a specific
histological diagnosis of ovarian tumors using ultrasonography. This shows that the
current biomarker CA-125 has serious disadvantages and does not improve models
based on clinical and ultrasound information. Therefore, highly sensitive and specific
tools are needed to further optimize early diagnosis and treatment.

3.2.2.2 Proteomics

Since ovarian cancer is clinically quiet, it is often called the “silent killer”. Therefore
ovarian cancer diagnosis could greatly benefit from more advanced technologies that
can be applied for diagnostic purposes. In Chapter 1 we already mentioned that in
2002 Petricoin et al. applied SELDI mass spectrometry to assess differences in the
spectra of benign and malignant ovarian masses [26]. They used 50 serum samples
with ovarian cancer and 50 serum samples without ovarian cancer and used an iterative
search algorithm to develop a pattern that distinguishes benign from malignant. Next,
this model was tested on 116 new serum samples, 50 from women with ovarian cancer
and 66 from unaffected women or non-malignant ovarian masses. Using SELDI mass
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spectrometry this resulted in a pattern based on the amplitudes at key mass-to-charge
(m/z) values of 534, 989, 2111, 2251 and 2465. This pattern had a sensitivity of
100% and specificity of 95% with a positive predictive value of 94%. However, no
identification of the key m/z values was performed, therefore this pattern constitutes a
black box model (i.e. no biological interpretation is possible). The authors also claimed
that this model can be used for ovarian cancer screening.
The results of this study lead to a significant increase in research on mass spectrometry-
based proteomics applied for cancer diagnosis and prognosis. However, the approach
of Petricoin et al. is highly questionable [27] and initiated a debate in the literature.
Firstly the technique used (SELDI) has limited resolution and mass range compared
to other technologies such as Matrix-Assisted Laser Desorption Ionization (MALDI).
Secondly, the approach fails to identify the key protein or peptide behind the m/z values
of interest which could lead to more insight in the diagnostic power of each protein
or peptide. This would allow an extra check for proteins which are known to have
no relation to carcinogenesis because the discriminating proteins and peptides might
not be tumor-derived products. These could instead be epiphenomena of metabolic
changes due to the presence of the tumor which may not be specific enough for
one type of cancer. These concerns were already mentioned shortly after the initial
publication of the study [28, 90]. Thirdly, there was much discussion and debate
about the experimental set-up of the study by Petricoin et al. For example Sorace
and Zhan and also Baggerly et al voice their concerns about experimental setup and
calibration [32, 33]. Additionally, Baggerly et al. report that they found evidence
that experimental settings were changed during the experiments. Finally, the use
of the model for screening was independently questioned by Rockhill, Elwood and
Pearl [29–31]. They argue that the model will not have a positive predictive value of
94% since this calculation only applies to the patient population studied by Petricion
et al. Even with the current sensitivity and specificity, this would translate to a low
positive predictive value due to the low prevalence of ovarian cancer. These concerns
show that the approach by Petricoin and colleagues has several disadvantages and
may not be ready for clinical use. However mass spectrometry-based technology
should definitely not be dismissed as a concept [91] and has several advantages when
more effort is invested in the use of high quality instrumentation and processing.
The use of more advanced technologies such as high pressure liquid chromatography
and MALDI-based mass spectrometry can deliver substantially better sensitivity and
specificity, with the added possibility of obtaining more biological insight via protein
identification. Moreover, since the diagnosis has to be made non-invasively, because it
is still uncertain if a mass is benign or malignant, non-surgical procedures are suitable.
This makes tumor tissue unavailable for further analysis.

3.2.2.3 Therapy response prediction

Roberts and colleagues used human ovarian cancer cell lines to demonstrate that
microarray data can predict sensitivity to four platin-based drugs [92]. Another study
investigating the prediction of response to platin-based chemotherapy was conducted
by Hartmann et al. [93] using tumor samples. This study resulted in a 14-gene
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predictive model based on a training set of 51 patients. This model had an accuracy
of 86% on a test set of 28 patients. De Smet and colleagues however reported that
information from the test set was used to perform model selection [94]. Therefore
the reported performance of Hartmann et al. cannot be considered to reflect the
true independent test set performance. Due to the high dimensionality of microarray
data sets the use of a truly independent test set is critical due to the danger of over-
fitting [95]. Over-fitting occurs when models fit the training data too well and are not
capable of predicting new samples, and it can only be detected when using proper cross-
validation techniques or independent test set analysis. A recently published review
of published microarray studies that focus on cancer related outcomes showed that
the most common flaw in classification studies is a biased estimation of the accuracy
(present in 12 of 28 studies published in 2004 [96]). This illustrates that inappropriate
evaluation of classifiers based on microarray data is a common problem when building
models to predict cancer outcomes.
More recently, Helleman et al. investigated whether a gene set identified using
microarrays could be used to predict platin resistance in ovarian cancer [97]. To
accomplish this they studied a training set obtained from 24 tumors that were analyzed
using cDNA microarrays. This set contained 5 women who were platin-resistant
(the non-responders) and 19 women who were platin-sensitive (the responders). The
authors concluded that 69 genes were differentially expressed between the responders
and the non-responders. An algorithm based on clustering was used to identify the
most predictive genes among these 69 genes in the training set. This resulted in 9
genes (the differential expression of these genes was later confirmed with qRT-PCR)
that could significantly discriminate between the responders and the non-responders
in the training set. Subsequently, this 9-gene set was used to predict platin resistance
in an independent test set of 72 tumors (9 non-responders and 63 responders) using
expression levels measured with qRT-PCR. This resulted in a sensitivity of 89% and a
specificity of 59%.
We have examined this model in detail and noticed that it has a disadvantage because
it is not optimally tuned for implementation in clinical practice. For women that
are platin-sensitive (the responders), the non-platinum containing regimen strategies
remain suboptimal. Therefore, it is imperative to accurately identify patients that
will respond to platin-based chemotherapy. Because the specificity of the model of
Helleman et al. is only 59%, 41% of the responders will be predicted to have platin
resistance and will therefore be wrongfully assigned to the group of patients where
other management options are recommended. Although 89% (value of the sensitivity)
of the women with platin-resistance are correctly classified by the model of Helleman
et al. this is considered to be less critical in a clinical setting since these patients have
worse prognosis, which can, at this moment, only be minimally improved by different
treatment strategies. In clinical practice, a higher specificity, perhaps at the cost of a
lower sensitivity, would have been more useful. We have published this analysis in the
International Journal of cancer [98].
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3.2.3 Aims for ovarian cancer decision support
In this thesis we will investigate two topics related to ovarian cancer. First, we will
investigate the use of Bayesian networks as medical decision support system based on
clinical data (see Chapter 4). This allows us to compare Bayesian networks with the
other models that are developed on the clinical data.
Secondly, we will investigate the molecular mechanisms that differentiate BRCA1
mutated ovarian cancer vs. sporadic ovarian tumors (see Chapter 5). This may lead
to a better understanding of the pathogenesis of BRCA-mutated tumors and may lead
to the identification of therapeutic targets.
We also studied two topics outside the scope of this thesis by applying support vector
machines. First, we investigated the use of microarrays to improve prediction of
therapy response. More specifically, we focus on the prediction of platin based drugs
and we investigate a two step approach. First, a model is built on a pilot data set.
Next, another data set is used to estimate its independent test set performance. This
approach was chosen to avoid any flow of information from the independent test set
and subsequent biased performance estimation [99].
Secondly, we investigate the use of proteomics to diagnose the difficult masses. These
are masses that are wrongly classified by the models based on clinical data or by
gynecological experts. The diagnosis has to be made non-invasively because it is still
uncertain if a mass is benign or malignant. In this case, non-surgical procedures are
suitable such that tumor tissue is unavailable for analysis. Therefore proteomics was
used to analyze the serum of patients with an ovarian mass.

3.2.3.1 Data used in this thesis

• Clinical data: All clinical data were gathered in the framework of the multi-
center IOTA project managed by Prof. Timmerman. The IOTA data consists of
three sub data sets: IOTA phase 1 (1066 patients), IOTA phase 1b (507 patients)
and IOTA phase 2 (1938 patients).

• Genomic data: copy number data from array CGH technology for 13 ovarian
cancer patients. Eight patients were sporadic ovarian cancers and five patients
had a confirmed BRCA1 mutation. All patients were treated for ovarian cancer
at the Department of Gynecology, University Hospitals Leuven.

3.3 Rectal cancer

3.3.1 Background
The second cancer site, colorectal cancer is one of the most common cancers worldwide
and is more frequent in developed countries because of the sedentary lifestyle and
diet. In Belgium, colorectal cancer takes the third place in men after prostate and
lung cancer, while in women it takes the second place after breast cancer. In men and
women, colorectal tumors represent about 13% of all types of cancer and about 30%
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of these tumors are located in the rectum (Belgische Kankerregistratie). In 2001, the
global 5-year survival in Belgium was 46% in men and 47% in women. Outcome
depends on the treatment (e.g. quality of the surgery) and characteristics of the tumor.
The gold standard for the diagnosis of rectal cancer is a colonoscopy with biopsy and
physical examination. In addition, a computed tomography (CT) of the abdomen and
the lungs, a magnetic resonance imaging (MRI) scan of the pelvis and an endoscopic
ultrasound are performed. Based on the results of the endoscopic ultrasound, the MRI
scan and/or the CT scan, the stage of the tumor can be evaluated. Tumor staging is
based on the Tumor Node Metastases (TNM) classification of the International Union
Against Cancer that classifies the tumor according to the degree of penetration of the
tumor through the bowel wall (T), the presence or absence of nodal involvement (N)
and the presence or absence of distant metastases (M).
Rectal cancer has a high risk of locoregional relapse that can cause significant
morbidity and treatment failure. Preoperative (chemo)radiation (CRT) followed by
total mesorectal excision (TME) is considered as a standard treatment for stage II and
stage III rectal cancer, decreasing the local relapse rate and improving clinical outcome
[100–104]. Nevertheless, the risk of local relapse in this patient group remains around
5-20%. To further improve these results, targeted therapies that might selectively radio-
sensitize tumors are being investigated.
Cetuximab (Erbitux c©, Merck, Germany) is a chimeric IgG1 monoclonal antibody di-
rected against the epidermal growth factor receptor (EGFR). EGFR is a member of the
HER tyrosine kinase growth factor receptor family that signals cellular differentiation,
proliferation and survival. Cetuximab has demonstrated significant clinical activity
in metastatic colorectal cancer [105–107]. In addition, cetuximab in combination
with curative-intent radiotherapy has been reported to increase median survival over
radiation alone in locally advanced head and neck carcinoma [108]. See Figure 3.2 for
a graphical representation of the mode of action of Cetuximab.

3.3.1.1 Issues in therapy response

We postulated that the addition of cetuximab to a preoperative concurrent radiotherapy
and capecitabine regimen in patients with rectal cancer would improve pathological
response and clinical outcome [109]. Surprisingly, the pathological complete response
(pCR) rate was only 5%. In another report, only 9% of patients treated with a regimen
combining capecitabine, cetuximab, oxaliplatin and preoperative radiation therapy had
pCR [110]. These data contrast with the 16% pCR rate observed when they used the
same regimen without cetuximab [111]. Although non-randomized, these two trials
raise the questions how to optimally combine cetuximab with CRT and highlight the
need for a better understanding of the molecular mechanisms involved. We investigated
the molecular responses of patients in our phase II clinical study [109].

3.3.2 Aims for rectal cancer decision support
To elucidate the molecular mechanisms of cetuximab treatment, microarray and
proteomics technologies were gathered at three time points during therapy in a
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Figure 3.2: Mode of action of Cetuximab. The epidermal growth factor receptor
(EGFR) is one of four members of the erbB family of receptor tyrosine kinases, which
consist of an extracellular domain that can bind ligands, a transmembrane domain
and an intracellular tyrosine kinase domain. Binding of a ligand to EGFR causes
receptor dimerization (either with another EGFR monomer or with another member
of the erbB family), leading to tyrosine kinase activation. The resultant receptor auto-
phosphorylation initiates signal-transduction cascades involved in cell proliferation and
survival. Cetuximab blocks binding of ligands to EGFR, thereby inhibiting receptor
phosphorylation and downstream events. Taken from Kirkpatrick et al. Nature Reviews
Drug Discovery 3, 549-550, July 2004.

phase I/II clinical study combining preoperative cetuximab with radiotherapy and
capecitabine [109]. Figure 3.3 gives an overview of the available data and the time
point at which it was gathered. At surgery, the Rectal Cancer Regression Grade
(RCRG) was registered which includes a measurement of tumor response after pre-
operative therapy [112]. Based on the RCRG patients were divided into two groups:
the positive group (RCRG pos) corresponding to good responsiveness and the negative
group (RCRG neg) corresponding to moderate and poor responsiveness. Our first aim
is to develop a Bayesian modeling framework to integrate all data sources and predict
RCRG. Secondly, we want to elucidate the molecular mechanisms behind the RCRG.

3.3.2.1 Data used in this thesis

• Microarray data: microarray data for 40 patients at three time (T1,T2 and T3)
points during therapy. Figure 3.4 shows a visualization of the microarray data at
T2.

• Proteomics data: proteomics data in the form of 96 proteins measured at three
time (T1,T2 and T3) points during therapy.

• Clinical data: Dworak [113] and Wheeler [112] regression grade. Ultrasound
and pathological T and N staging.
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Figure 3.3: The rectal cancer time line depicting the treatment of rectal cancer patients.
Time point 0 (T0) corresponds to the start of therapy. Time point 1 (T1) is after one
dose of Cetuximab. Finally, at time point 2 (T2) the tumor is surgically removed.
At each time point microarray data and a set of the expression of 100 cancer related
proteins are available.

3.4 Publicly available data
Besides the above data sets we also used publicly available data from two publications
[24, 114].

3.4.1 van ’t Veer data set
In the Chapters 6 and 7 we used a well known publicly available breast cancer
data set [24]. This data set consists of two groups of patients. The first group of
patients, which is called the training set, consists of 78 patients of which 34 patients
belonged to the poor prognosis group and 44 patients belonged to the good prognosis
group. The second group of patients, the test set, consists of 19 patients of which
12 patients belonged to the poor prognosis group and 7 patients belonged to the
good prognosis group. A poor prognosis corresponds to recurrence within 5 years
after diagnosis and a good prognosis corresponds to a disease free interval of at least
5 years. DNA microarray analysis was used to determine the mRNA expression
levels of approximately 25000 genes for each patient. Every tumor sample was
hybridized against a reference pool made by pooling equal amounts of RNA from
each patient. The ratio of the sample and the reference was used as a measure for the
expression of the genes and they constitute the microarray data set. Each patient also
had the following clinical variables recorded: age, diameter, tumor grade, oestrogen
and progesterone receptor status, the presence of angio-invasion and lymphocytic
infiltration, which together form the clinical data.
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Figure 3.4: Heat map of the 50 most differentially expressed genes related to the Rectal
Cancer Regression Grade (RCRG) at T2.
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3.4.2 Bild data
In Chapter 7 we used data from [114]. This study contained data on 171 breast cancer
patients, 147 ovarian cancer patients and 91 lung cancer patients. The three groups of
tumors were analyzed on different Affymetrix chips; the breast tumors were hybridized
on Hu95Av2 arrays, the ovarian tumors on Hu133A arrays and the lung tumors on
Human U133 2.0 plus arrays. The data were already pre-processed using robust multi-
chip average (RMA) [115]. For all cancer sites survival data was available and patients
were split up in two groups according to the following thresholds: 53 months for breast
cancer, 62 months for ovarian cancer and 36 months for lung cancer. The thresholds
were chosen to make sure both classes contained approximately the same number of
samples.



Chapter 4

Clinical data

“Good old clinical markers.”

– Patrik Edèn et al., European Journal of Cancer 2004, 40(12):1837-41 –

Classical clinical data, such as patient history, laboratory analysis or
ultrasound variables are often the basis of day-to-day clinical decision
support. These data have been the basis of research and, up till now,
fully guide the clinical management of diseases such as cancer. When the
relationship between these variables is complex or not well understood,
direct interpretation of the data for clinical decision support may become
difficult. In these cases mathematical modeling for predicting the outcome
of complex diseases can provide solutions. This research topic has already
a history of more than three decades and has gained widespread attention
in biomedical research. In this chapter we will demonstrate medical
decision support by modeling clinical data from ovarian cancer patients
with Bayesian networks.

4.1 Introduction
Clinical data consist of a heterogeneous mixture of variables because, depending on
the disease, different variables are important. For example, when studying breast
cancer prognosis, important clinical variables are the status of estrogen receptor (ER),
progesteron receptor (PR) and the HER-2 receptor (also called HER-2/neu, official
name: ERBB2) while for the diagnosis of ovarian tumors variables derived from
ultrasound characteristics are important. In this chapter, we define clinical data as
any set of variables which is not available on a genome wide scale. Thus, clinical
data are characterized by a much lower dimensionality compared to microarray data.
Thus, a single tumor marker (e.g. CA125 in ovarian cancer) or a set of tumor markers
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are considered clinical data whereas a genome wide quantitative characterization of
proteins in a sample is not. A few examples of clinical variables are age, family history,
but also tumor markers and variables derived from ultrasound and color Doppler
imaging. Our definition is not tied to the nature of the variable but to the dimensionality
of the data set.
The use of mathematical modeling of clinical data for the prediction of diagnosis or
prognosis of complex diseases has already a history of more than three decades [4, 5].
Many examples exist where mathematical models are used to predict diagnosis or
prognosis based on clinical data [3, 6, 116]. When the number of variables or the
number of data points increases, it becomes less straightforward to interpret the data
manually. Mathematical models can aid clinicians to interpret the data by learning
from the data and building models to predict the clinical outcome of new patients. A
few examples of often used mathematical or statistical methods are, logistic regression,
support vector machines (SVMs) or Bayesian networks [6, 68, 117]. These and other
methods provide a formalized way of analyzing clinical data compared to manual
interpretation. Additionally, depending on the model very simple or more advanced
relationships in the data can be represented. For example, logistic regression models
each variable linearly whereas an SVM can cope with specific non-linear relationships.
Thus, mathematical or statistical methods allow to model complex relationships in the
data which would be difficult to ascertain manually.
In this chapter we will demonstrate medical decision support by modeling clinical data
from ovarian cancer patients with Bayesian networks. The ovarian cancer problem
domain and its associated data sets have been described in section 3.2 and we defined
the issues in diagnosis of ovarian cancer in section 3.2.1.1. There we stated that it is
not possible to perfectly distinguish between benign and malignant ovarian tumors
based on clinical data. While a large group of tumors are correctly classified by
clinical ultrasound experts or by mathematical models [3], there is a subgroup where
both experts and mathematical models fail to classify the samples correctly. In this
chapter, we describe our results when using Bayesian network modeling to predict the
malignancy of ovarian tumors based on clinical data from the IOTA project.

4.2 Overview

Figure 4.1 gives an overview of the Bayesian network modeling of the clinical data
from the IOTA project. The IOTA project set out to gather a large number of clinical
variables in multiple centers in order to develop models for predicting the outcome
of ovarian tumors. Three phases of this project have been completed: IOTA phase 1,
IOTA phase 1b and IOTA phase 2. The IOTA phase 1 data was used to build a Bayesian
network model and to estimate its generalization performance. This data set was first
split into a training set to build the model and a test set to estimate the generalization
performance. Next, the IOTA phase 1b and the IOTA phase 2 data set were used to
validate this (see Figure 4.1).
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Figure 4.1: Modeling of clinical data from the IOTA project using Bayesian networks.
First, the IOTA phase 1 data set is split in a training and test set. A Bayesian network is
built only on the training set and its ability to predict the malignancy of ovarian tumors
is then estimated using the test set. Next, the IOTA phase 1b and 2 data sets are used to
estimate the prospective performance of this model.

4.3 Data

For all IOTA phases data on more than 50 variables was gathered. These variables
include medical history (personal and family history of breast and ovarian cancer, age,
etc.), serum tumor marker CA125, color Doppler imaging and blood flow indices (such
as the peak systolic velocity or PSV), ultrasonography, morphology and echogenicity.
For patients with masses in two ovaries we used the dominant tumor. Furthermore,
patients who were pregnant and patients with missing values in the mandatory variables
were excluded from the analysis. The phase 1 IOTA data set contained 1066 patients
from 9 centers in 5 countries. In phase 1b another 507 patients from the three largest
centers of IOTA phase 1 were gathered. Finally, in phase 2, 1938 patients were
gathered from 19 centers, including both old and new centers. Based on results from
previous studies and with the help of a medical expert 32 variables besides the outcome
were selected as relevant to the domain. Table 4.1 shows a description of all selected
variables.
In section 2.5 we argued our choice for discrete Bayesian networks. This implicates

that continuous variables have to be discretized. In the IOTA project each clinical
variable is well defined and the number of continuous valued clinical variables is
limited, therefore the discretization was done manually based on the expertise of a
gynecological expert. See Table 4.4 for the discretization of the continuous variables.
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Table 4.1: Description of the 32 variables selected for modeling the outcome of ovarian
tumors with Bayesian networks.

Short name Type Description
Age Continuous age of the patient in years
Ascites Binary the presence of fluid outside the pouch of Douglas
Bilateral Binary masses on both sides
ColScore Categorical semi-quantitative assessment of the blood flow
Echogenicity Categorical dominant feature of the cystic contents
FamHist Binary family history of either ovarian or breast cancer
FamHistBrCa Binary family history of breast cancer
FamHistOvCa Binary family history of ovarian cancer
Fluid Continuous amount of fluid in the pouch of Douglas
HormTherapy Binary current use of hormonal therapy
Hysterectomy Binary hysterectomy
IncomplSeptum Binary presence of an incomplete septum
Locularity Categorical morphology of lesion
MaxLes Continuous maximum diameter of lesion in mm
MaxSolid Continuous maximum diameter of largest solid component in

mm
Meno Binary menopausal status
NrLocules Categorical number of locules
Pain Binary presence of pain
PapFlow Binary presence of blood flow within papillary structures
Papillation Binary presence of papillary structures
PapSmooth Binary largest papillary structure is irregular
Parity Categorical number of deliveries
PersHistBrCa Binary personal history of breast cancer
PersHistOvCa Binary personal history of ovarian cancer
PI Continuous pulsatility index
PSV Continuous peak systolic velocity
RI Continuous resistance index
Shadows Binary presence of acoustic shadows
Solid Binary presence of a solid component
TAMXV Continuous time-averaged maximum velocity
VolumeLes Continuous volume of the lesion
WallRegularity Binary irregular internal cyst wall

4.4 Results

Figure 4.2 shows the Bayesian network built on the training set from the IOTA phase
1. We will refer to this network as BN1. The outcome variable represents the
malignancy of ovarian tumors. First, we will describe the predictive performance of
BN1 followed by a discussion of the relationship of the Markov blanket variables
with the outcome. Finally, we will compare BN1 with two logistic regression models
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previously developed by Timmerman et al. [3] (also see Section 3.2.2.1 for previous
research on the IOTA data set).

Figure 4.2: The Bayesian network built on the IOTA phase 1 training data. The
outcome variable is the variable of interest and represents the nature of an ovarian
tumor (i.e. benign or malignant). The Markov blanket variables of the outcome variable
are shaded and represent the smallest set of variables that has to be known to predict
the outcome variable using Bayesian network inference algorithms.

4.4.1 Predictive performance of BN1
First, we investigated the predictive performance of BN1 by using the inference
algorithm described in section 2.3.4 on all IOTA data sets: the IOTA phase 1 test data,
the IOTA phase 1b data set and the IOTA phase 2 data set. Remember that the IOTA
phase 1b data set contained only centers that also participated in IOTA phase 1. So
this data set corresponds to an internal validation. The IOTA phase 2 data set on the
other hand contains both old and new centers and can be used to assess models in new
centers.
On the IOTA phase 1 test data BN1 had an Area Under the ROC curve (AUC) of 0.946
(SE 0.016). On the IOTA phase 1b data set BN1 had an AUC of 0.954 (SE 0.012).
Finally, on the IOTA phase 2 data set BN1 had an AUC of 0.944 (SE 0.005). Figure
4.3 shows the ROC curves of BN1 on the three data sets.
The IOTA phase 2 data set contains old centers which also participated in IOTA phase
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Figure 4.3: ROC curve of BN1 on the IOTA phase 1 test data, the IOTA phase 1b data
and the IOTA phase 2 data. AUC stands for Area under the ROC curve and is indicated
for all three data sets.

1 and new centers. Therefore, it is interesting to investigate if there is a performance
difference between these two groups of centers. The IOTA phase 2 data contained 941
patients from 7 old centers and 997 patients from 12 new centers. The AUC in the old
and new centers was 0.943 (SE 0.007) and 0.945 (SE 0.008) respectively (see Figure
4.4).

4.4.2 Markov blanket of outcome
Now, we will focus on the Markov blanket variables of the outcome. In section 2.3.1.1
we defined the Markov blanket of a variable as the variable’s parents, children and its
children’s other parents. There are 15 variables in the Markov blanket of the outcome
variable: 2 parents, 11 children and 2 of these children have another parent. These are
the shaded nodes in Figure 4.2 and these variables are necessary for the prediction of
the outcome of ovarian tumors. The outcome is conditionally independent of all other
variables when the value of the Markov blanket variables is known. Thus, BN1 needs
the value of 15 variables to predict the outcome of ovarian tumors.
Next, we investigated the relationships of the Markov blanket variables with outcome.
To accomplish this we constructed a baseline patient by setting the Markov blanket
variables to a value expected in a benign tumor. Table 4.2 shows the Markov blanket
variables and their instantiations in the baseline patient. Next, we investigated the effect
of changing each single variable’s state and compared the probability of malignancy
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Figure 4.4: ROC curve of BN1 on the IOTA phase 2 data set for the old and new
centers separately. AUC stands for Area under the ROC curve and is indicated for both
subsets.

with the baseline prediction.

4.4.2.1 Binary variables

First, we looked at the effect of all binary variables. Table 4.3 shows the increase or
decrease of the odds ratio of malignancy when each binary variable is put at its ‘active’
state. The presence of ascites, bilateral tumors, papillary structures and irregular
internal cyst walls each separately increase the probability of malignancy. For Ascites
and WallRegularity the odds of malignancy increases more than 12 times and 10 times,
respectively. Additionally, the presence of blood flow in a papillary structure increases
the probability of malignancy dramatically with an odds ratio of almost 87. There
is only one binary variable which decreases the probability of malignancy compared
to the baseline patient. The presence of acoustic shadows decreases the odds of
malignancy more than twofold.

4.4.2.2 Multinomial variables

Besides the previously discussed binary variables nine multinomial variables remain in
the Markov blanket. Table 4.4 shows the odds ratio when changing each multinomial
variable to another state and allows to ascertain the relationship between each
multinomial variable and the outcome. Next, we will discuss each variable in turn.
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Table 4.2: The Markov blanket variables of the outcome variable and their value in the
baseline patient.

Variable name Value in the baseline patient
Age ≥ 51 and < 61
Ascites no
Bilateral no
Echogenicity anechoic
Fluid 0
Locularity unilocular
MaxLes < 95 mm
MaxSolid 0 mm
PapFlow no
Papillation no
PI ≥ 2.03
RI ≥ 0.7
Shadows no
TAMXV < 9 cm/s
WallRegularity no

Table 4.3: The odds ratio of having a malignant tumor when turning each of the binary
variables separately to its ‘active’ state.

variable name odds ratio of malignancy when present
Ascites 12.3
Bilateral 2.4
Papillation 3.2
PapFlow\ 86.9
Shadows 0.43
WallRegularity 10.2
\ The baseline patient was changed by setting Papillation to ‘active’
since PapFlow is only relevant when papillation is present.

The first variable in Table 4.4 is age. The odds ratio for each age bin shows a positive
relationship between age and the odds ratio of malignancy. For example, the odds ratio
when comparing patients older than 61 to the baseline age is 1.74. For younger patients
the odds ratio is smaller than one indicating a decreasing probability of malignancy.
The echogenicity variable is a visual classification of the cystic fluids in the tumor.
The odds ratio of malignancy only differs from 1 when it is mixed compared to
anechoic. Tumors with a mixed echogenicity thus are more than two times more likely
to be malignant. Other values for echogenicity did not result in interesting odds ratio
increases or decreases.
Next, the presence of fluid increases the odds ratio when more than 12 mm of fluid is
present. When less fluid is present the odds ratio drops to 0.81.
The locularity of the tumor is a morphological classification of the tumor. A quick
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glance on the odds ratios in Table 4.4 shows that this is a very important variable. The
odds ratio is above 100 when there is a solid component present, either in a unilocular
or a multilocular tumor, or when the tumor is purely solid.
The maximum diameter of the lesion also has a positive relationship with the odds ratio
of malignancy. When this variable is larger than 150 mm the odds of a malignant tumor
is 6 times higher compared to tumors smaller than 95 mm. Additionally, when a solid
component is present, independent of its size, the odds ratio of a malignant tumor is
114.
Finally, there are three color Doppler variables (CDI) that represent different aspects
of the blood flow in the tumor. PI and RI represent the resistance to blood flow in
the tumor and are typically high in benign tumors. TAMXV represents the mean
velocity of the blood flow in the tumor and is typically low in benign tumors. This
is also reflected in the odds ratios in Table 4.4. When PI decreases, the odds ratio of
malignancy increases. For RI the odds ratio is similar for all values of RI below 0.7.
When TAMXV increases above 9 cm/s the odds ratio of a malignant tumor increases
6.5 times.

4.4.3 Comparison with logistic regression models
Finally, we compare the performance of BN1 to two previously developed logistic
regression models which were built on the same training data from IOTA phase 1 [3].
This makes it possible to directly compare the results of BN1 with these models. The
first logistic regression model, LR1, contains the following 12 variables: (1) personal
history of ovarian cancer, (2) hormonal therapy, (3) age, (4) maximum diameter of
lesion, (5) pain, (6) ascites, (7) blood flow within a solid papillary projection, (8)
presence of an entirely solid tumor, (9) maximal diameter of solid component, (10)
irregular internal cyst walls, (11) acoustic shadows, and (12) a color score of intra-
tumoral blood flow. The second logistic regression model, LR2, specifically developed
with less variables, contains: (1) age of the patient (in years), (2) the presence of
ascites , (3) the presence of blood flow within a solid papillary projection, (4) maximal
diameter of the solid component, (5) irregular internal cyst walls, and (6) the presence
of acoustic shadows. Table 4.5 shows the results of these models on the IOTA phase 1
test data set, the IOTA phase 1b data set, the IOTA phase 2 data set, and for both old
and new centers in IOTA phase 2 separately.

4.5 Conclusions
In this chapter we have illustrated the modeling of clinical data using Bayesian
networks. More specifically we studied the prediction of malignancy of ovarian tumors
to facilitate the diagnosis of patients with an adnexal mass. This was possible thanks
to the IOTA project which gathered clinical data from 3511 patients in three phases
from 21 centers in 10 countries. This data set enables to develop and compare different
models because it is large, multi-centric and most importantly standardized a large
number of variables derived from ultrasound examination and color Doppler imaging.
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Table 4.4: The odds ratio of malignancy when changing the state of all multinomial
variables in the Markov blanket.

Variable name state or range odds ratio of malignancy
Age compared to patients ≥ 51 and < 61

< 32 0.21
≥ 32 and < 41 0.29
≥ 41 and < 51 0.61
≥ 61 1.74

Echogenicity compared to anechoic
homogeneous 1.0
ground glass 0.94
hemorrhagic 0.83
mixed 2.3
no cyst fluid 1.5

Fluid compared to no fluid
≥ 0.1 mm and < 12 mm 0.81
≥ 12 mm 2.6

Locularity compared to unilocular
unilocular-solid 117.8
multilocular 31.0
multilocular-solid 137.5
purely solid 269.8
unclassified 21.1

MaxLes compared to <95mm
≥ 95 mm and < 150 mm 4.1
≥ 150 mm 6.6

MaxSolid compared to 0
≥ 0.1 mm and < 20 mm 114.0
≥ 20 mm and < 40 mm 114.0
≥ 40 mm 114.0

PI compared to PI ≥ 2.03
< 0.84 5.0
≥ 0.84 and <2.03 1.6

RI compared to RI ≥ 0.7
≥ 0.45 and < 0.7 13.1
≥ 0.1 and < 0.45 13.1
< 0.1 13.1

TAMXV compared to TAMXV < 9
≥ 9 6.5
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Table 4.5: Area under the ROC curve of the logistic regression models LR1 and LR2
on all IOTA data sets and separately for old and new centers in the IOTA phase 2 data
set.

Data set BN1 LR1 LR2
IOTA phase 1 test data set 0.946 0.942 0.920
IOTA phase 1b data set 0.954 0.950 0.950
IOTA phase 2 data set 0.944 0.951 0.934
IOTA phase 2 old centers 0.943 0.945 0.918
IOTA phase 2 new centers 0.945 0.956 0.949

This most likely resulted in a good performance for all developed models performed
on both internal and external data sets (see Table 4.5). More specifically, the results
on the IOTA phase 1 test data show that BN1 is able to predict the malignancy with a
high AUC comparable to the performance of the logistic regression models LR1 and
LR2 which were previously developed by Timmerman et al. [3]. Also on the internal
and external validation data sets both modeling strategies perform well. Unexpectedly,
both BN1 and the logistic regression models perform also very well on the IOTA phase
2 data from new centers. We want to stress that this subset of the IOTA phase 2 data
is a prospective data set containing only patients from centers that did not participate
in IOTA phase 1 and thus the models were not trained on data from these centers. This
indicates that BN1 can be used in other centers in addition to the ones that were used
to train the model.
The main advantage of BN1, the point that distinguishes this model from other models
such as logistic regression, is that BN1 contains a type of non-linearity that cannot
easily be modeled with other models. Each instantiation of the Markov blanket
variables is independent and gives rise to a different probability of malignancy. An
example of this non-linearity is given in Figure 4.5 with the fluid variables. Based
on the results from Table 4.4 this variable has a non-linear relationship when its odds
ratios are extrapolated. Figure 4.5 gives a graphical representation of this extrapolation
showing that for increasing amount of fluid the odds ratio first drops and only rises for
large amounts of fluid (> 12 mm). The dotted line shows a possible extrapolation of
the odds ratio but the actual relationship can only be detected by increasing the number
of bins for this variable.

This extra complexity comes at a price, continuous variables have to be discretized
which inevitably results in loss of information. It is not always straightforward to
discretize the continuous variables and to determine the number of bins. When using
many bins, the loss of information is reduced but at the same time the number of
parameters of the Bayesian network increases super-exponentially. Therefore, the
number of bins of all variables in the network has to be kept to a minimum such that
the complexity is kept under control. On the other hand, in the case of clinical data
discretization is easier due to the availability of expert knowledge.
A disadvantage of BN1 is that it needs more variables to predict the outcome compared
to LR1. LR1 is based on 12 variables while BN1 needs 15 variables and has the same
predictive performance. Keeping the number of variables that is needed for prediction
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Figure 4.5: A graphical representation of the extrapolated non-linear relationship
between the amount of fluid in mm and the odds ratio of malignancy of the ovarian
tumor. The three data points represent the odds ratio at the three discretization
intervals of the fluid variable. The dashed line represents a possible extrapolation of
the relationship between fluid and the odds ratio of malignancy.

under control is important since it reduces the complexity of the model and the time
needed for the clinician to have a prediction. However, when the modeling process was
repeated with different parameter instantiations, similar models were acquired with
the same number of variables in the Markov blanket. This indicates that the current
complexity of the network of BN1 is required to achieve the reported performances.
Finally, after the completion of IOTA phase 2, the complete data set over all phases
now contains over 3500 patients. The next step is to investigate whether a bigger
training set, drawing patients from all IOTA phases, leads to better models. Especially,
in the case of Bayesian networks this may improve the model. Bayesian networks
are more complex when compared to logistic regression because this model strategy
attempts to represent the relationship between all variables instead of only representing
the relationship between the outcome and the remaining variables.



Chapter 5

Genomic data

“They [Redon et al.] document nearly 1,500 variable regions, covering a
remarkable 12% of the human genome and including hundreds of genes and

other functional elements whose copy number differs, sometimes dramatically,
among us. The data suggest that the greatest source of genetic diversity in our

species lies not in millions of SNPs, but rather in larger segments of the
genome whose presence or absence calls into question what exactly is a

‘normal’ human genome.”

– Kevin V. Shianna and Huntington F. Willard, Nature 444, 428-429, 23
November 2006 –

Technologies probing the genome have received increased attention the
last few years. Many studies have emerged studying SNPs and CNVs in
varying populations and their relationship with disease. SNPs are Single
Nucleotide Polymorphisms, defined as a one base difference in the DNA of
two individuals. CNVs are Copy Number Variations, defined as a region
in the genome of 1kb or larger that occurs more or less compared to
the reference human genome sequence. More recently, a landmark study
was published which showed that the variation between any two genomes
attributed to CNVs was 5- to 10-fold bigger than previously thought. The
average size of these CNVs is about 250kb which is more than the average
size of a gene which is approximately 60kb. In addition, this study showed
that many CNVs overlap significantly with disease related genes.

5.1 Introduction
In the introducing chapter we stated that the DNA level or genome also potentially
contains important information relevant for cancer outcomes. It only became recently
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clear that the copy number of genes can differ greatly between individuals [45]. A Copy
Number Variation (CNV) is a region in the genome of 1kb or larger that has more or
less copies compared to the reference human genome sequence. It is still unclear what
the ‘normal’ human genome looks like [118] but it became clear that the number of
CNV between two individuals is bigger than expected. This raises the question how
these CNV are related to disease.
Recently, many studies have shown that copy number variations are related to cancer
outcomes in many cancer sites [119–123]. Many defects in human development
leading to cancer are due to gains and losses of chromosomes and chromosomal
segments. These aberrations defined as regions of aberrantly increased or decreased
DNA copy number or Copy Number Alterations (CNA) can be detected using e.g. array
comparative genomic hybridization (arrayCGH) technology introduced in Chapter 1.
The difference between a CNA and a CNV is that a CNV does not necessarily lead to
a disease but can be attributed to normal human genetic variation while a CNA is an
aberrant increase or decrease in copy number. This technology measures variations in
DNA copy number within the entire genome of a disease sample compared to a normal
sample. The arrayCGH technology was first applied on breast cancer in 1998 [42] and
offers a much higher resolution than traditional CGH. Moreover, arrayCGH can couple
the CNA directly to the genomic sequence. This makes this technology a candidate
for a genome-wide identification and localization of genetic alterations involved in
diseases.

5.2 Aims and data
In this chapter we describe the results of a study of ovarian tumors analyzed with
arrayCGH to illustrate the potential of this technology in biomedical decision support
when using Bayesian modeling. We used a special class of Bayesian networks,
called Hidden Markov models (HMM), to analyze arrayCGH data. A HMM can be
considered as a Bayesian network with known structure and hidden variables. The
hidden variables represent the gains and losses in a tumor sample at each position
across the human genome. The HMM is a popular method to model arrayCGH data
because it automatically takes into account the position information of the clones and
due to its Bayesian nature this method can also handle the uncertainty in the data.
We applied this method on a set of ovarian tumors with or without a family history
of breast and/or ovarian cancer. In section 3.2.1.3 we introduced familial ovarian
cancer as an important subclass of ovarian tumors. Approximately 5-10% of patients
with epithelial ovarian carcinomas have a familial history [89]. Nearly 90% of
this hereditary ovarian cancer can be attributed to germline mutations in the tumor
suppressor genes BRCA1 or BRCA2. Both increase the risk for ovarian carcinoma
and these tumors seem to have a distinct clinical behavior. It is still an unsettled
issue to what extent the molecular mechanisms involved in ovarian carcinogenesis
are distinct in sporadic cases compared with inherited cases and how this influences
therapy response.
To investigate the molecular mechanisms that cause carcinogenesis in BRCA mutated
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tumors, tumor tissue of 13 patients treated for ovarian cancer at the Department
of Gynecology of the University Hospital of Leuven, was collected. Due to the
infrequency of ovarian tumors in general and since only 5-10% present with a BRCA1
mutation, these data represent unique opportunities for analysis. Moreover, to our
knowledge, arrayCGH has not yet been applied to study BRCA mutated ovarian cancer
elsewhere.
To ensure homogeneity, only patients with similar clinical characteristics were re-
tained: all patients had stage III or IV tumors that were serous papillary and poorly
differentiated ovarian cancers. All tumor samples were collected at the time of
primary surgery and immediately rinsed and frozen. Patients who received neo-
adjuvant chemotherapy followed by interval debulking surgery were not included. The
remaining tumors belonged to two classes: sporadic tumors defined as patients without
a family history or a mutation in the BRCA1 gene, and BRCA-mutated tumors with
a confirmed mutation in the BRCA1 gene and a positive family history. There were 8
sporadic and 5 BRCA-associated ovarian cancers.
These 13 tumor samples were subjected to arrayCGH with a 1Mb resolution such
that on average the array contains a clone every 1Mb. Each tumor was hybridized
twice (dye-swap) against a common reference pool. The reference cell population was
extracted from peripheral blood samples of each matched participating patient. After
washing, arrays were scanned and image analysis was performed. Subsequently, Cy5
and Cy3 fluorescence intensities were background corrected. Then, the ratio of the
Cy5 and Cy3 is calculated and normalized by the median Cy5-Cy3 ratio. Finally, these
ratios are log transformed and the average of the replicate (dye-swap) experiments is
used as input for subsequent Bayesian modeling.

5.3 Modeling
We used a recurrent HMM (RHMM) to identify the recurrent CNA in BRCA-mutated
and sporadic ovarian cancer developed by Shah et al. [124]. We have designed
two different analyses to identify CNA: a pooled analysis and a differential analysis.
The pooled analysis is aimed at identifying the common CNA in both sporadic and
familial ovarian tumors while the differential analysis is aimed at finding the CNA
differentiating both groups. The RHMM itself will be introduced in Section 5.3.3.

5.3.1 Pooled analysis
Figure 5.1 gives an overview of the pooled analysis. In the pooled analysis both
sporadic and BRCA mutated samples are pooled as one data set. Next, a hidden
Markov model is used to identify the CNA in the data. In the next section the hidden
Markov model is explained in more detail. The final model allows to construct a full
genome view on the common CNA in the data. The total length of these CNA is huge
such that manual analysis of the genes overlapping with these CNA is to cumbersome.
This is remedied by instead investigating which biological pathways are affected. This
is done by first extracting the genes overlapping with the CNA using Ensembl. This
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results in a list of genes which we will define as a signature. Next, biological pathways
are downloaded from the MSigDB and the overlap with the signature is statistically
assessed (see Figure 5.1).

Figure 5.1: An overview of the pooled analysis to identify the common Copy
Number Alterations (CNA) in both the sporadic and the BRCA mutated patients. Both
groups, the BRCA mutated and the sporadic patients, are modeled together with a
single Recurrent Hidden Markov Model (RHMM). The resulting CNA are used to
identify overlapping genes using the Ensembl database. Finally, de MSigDB database,
containing curated gene sets, is used to investigate pathway enrichment.

5.3.2 Differential analysis
In the differential analysis a similar work flow is used. The main difference here is
that the sporadic samples and the BRCA mutated samples are modeled separately.
This results in two RHMM for both groups of patients. The CNA resulting from the
differential analysis were further processed by removing the CNA that overlap between
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the BRCA1 and the sporadic samples. Interpretation of the CNA was done similarly
as in the pooled analysis by using pathway enrichment analysis. Figure 5.2 gives an
overview of the differential analysis.

Figure 5.2: An overview of the differential analysis to identify the distinct Copy
Number Alterations (CNA) between the sporadic and the BRCA mutated patients.
Both groups, the BRCA mutated and the sporadic patients, are modeled separately
with a Recurrent Hidden Markov Model (RHMM). The resulting CNA are used to
identify overlapping genes using the Ensembl database. Finally, the MSigDB database,
containing curated gene sets, is used to investigate pathway enrichment.
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5.3.3 Recurrent hidden Markov model

To identify differential regions, the BRCA1 and sporadic samples were analyzed using
a HMM. Each sample is modeled by a HMM with three hidden states corresponding
to Copy Number Loss (CNL), neutral and Copy Number Gain (CNG). Instead of
modeling each sample separately with a HMM the samples were grouped and analyzed
with a RHMM. This model has been developed by others and is formally introduced
in [124]. This allows identification of CNA found at the same location in multiple
samples using a statistical model. The recurrent HMM delivers the probability of
CNA across all samples belonging to the group. A CNL or CNG was called when its
probability of occurring according to the RHMM was more than 80%. For the pooled
analysis one RHMM was built on the complete data set. For the differential analysis
two RHMM were built for the sporadic and BRCA mutated samples separately.

5.3.4 Signature construction

CNA resulting from both the pooled and the differential analysis were subjected to
gene set enrichment analysis [125]. The CNA from the pooled analysis were used
without further selection. The CNA resulting from the differential analysis were further
processed by removing the CNA that overlap between the BRCA1 and the sporadic
samples. Then, for both pooled and differential analysis we extracted the HUGO id
from all genes within the found CNA using Ensembl. The genes resulting from this
operation were called a signature. By taking into account the type of CNA (CNG,
CNL or either) and the patient group in which the CNA occurs (BRCA1, sporadic or
either), 9 different signatures were constructed. This was done to investigate whether
the enrichment of biological pathways in a signature depended on the type of CNA and
the patient group where it was identified.

5.3.5 Pathway enrichment analysis

Next, we extracted meaningful pathways from the MSigDB database v2.1 [125]. Three
types of gene sets were extracted: curated gene sets, motif gene sets and computational
gene sets. Curated gene sets contained gene sets from well known pathway databases
such as KEGG or Biocarta [72, 126]. The motif gene sets consisted of gene sets
which share a cis-regulatory motif or miRNA target. Finally the computational gene
sets were constructed based on genes correlating with well known cancer genes in
microarray compendia. The enrichment analysis was carried out by calculating the
number of genes overlapping between each gene set and the genes contained in the
differential CNA (i.e. the signature). Next, 5000 random signatures of the same size
were constructed and the overlap between the gene set and the randomly constructed
signatures was calculated. A p-value was determined by counting the number of
more extreme observations in the random set of signatures compared to the number
of genes overlapping with the real signature. Due to the larger number of statistical
tests that is performed, multiple testing correction was performed by controlling the
False Discovery Rate (FDR) [127].
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5.4 Results

5.4.1 Identification of CNA
Table 5.1 shows the patient characteristics of the BRCA1 and sporadic patients.
5 patients had a confirmed BRCA1 mutation; 8 patients tested negative and are
considered sporadic. After pre-processing, we applied RHMM-modeling to the
BRCA1 and sporadic samples in two ways: for both patient groups together (i.e.
pooled analysis) and for each group separately (i.e. differential analysis). Figure 5.3(a)
shows the CNA for chromosome 1 from the pooled analysis. Figure 5.3(b) and 5.3(c)
show the same chromosome for the sporadic and BRCA-mutated tumors respectively
resulting from the differential analysis. The CNA with a probability of 80% or more
are shown on top of the raw probabilities. These CNA are ‘called’ and will be used
for further analysis. Figure 5.4 and 5.5 show the CNA genome resulting from the
differential analysis and thus, after removing all common CNA, specific to the sporadic
and BRCA1-mutated tumors respectively.
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(a) BOTH

(b) sporadic

(c) BRCA1

Figure 5.3: The Copy Number Alterations (CNA) of chromosome 1. (a) CNA from
the pooled analysis, (b) CNA in the sporadic tumors from the differential analysis and
(c) CNA in the BRCA-mutated tumors from the differential analysis
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5.4.2 Statistical analysis of CNA from differential analysis
Based on the called CNA from the differential analysis, we investigated whether there
is a difference in the number of CNA, their length and their type between the two
groups. Table 5.2 shows the number of the CNA that were shown in Figure 5.4 and
5.5 according to their type (i.e. CNG or CNL) and for both groups. We observed more
CNA in the BRCA1 group compared to the sporadic group. However, when focusing
on the type of CNA, the sporadic group had the most CNGs while the BRCA1 group
had the most CNLs. Overall, we did not observe a difference in the length of the
CNA between the two groups. However, again when focusing on the type of CNA
we observed that there was no difference in length for the CNGs, while there was a
statistically significant difference between the length of the CNLs. CNLs in the BRCA1
group were typically longer, median length 5.2 Mb in the BRCA1 group vs. 0.2 Mb
in the sporadic group (P-value < 1.8e-8). The CNGs were also longer in the BRCA1
group; however this difference was not significant (median length of 5.3 Mb and 2.5
Mb for the BRCA1 and sporadic tumors, respectively).

Table 5.2: Number of CNGs and CNLs based on the differential analysis for the
BRCA1 and Sporadic tumors

Type BRCA1 Sporadic
CNG 34 40
CNL 60 46
Total 94 86
CNG: Copy Number Gain, CNL: Copy Number Loss,

5.4.3 Signature construction
The CNA from the pooled and differential analysis were transformed into signatures
which contain the genes within their corresponding CNA. Table 5.3 and Table 5.4 show
the signatures for the pooled and differential analysis, respectively and the number of
genes recovered for each signature. When considering all differential CNA, up to 6581
genes are affected whereas when focusing on the CNLs in the sporadic group only 327
genes are affected.

5.4.4 Pathway enrichment analysis
Because we hypothesized that interesting biological processes might be disrupted by
these CNA, we further investigated these signatures. Manual annotation of these genes
is not feasible. Therefore we resorted to gene set enrichment analysis by checking the
over-representation of gene sets from publicly available databases with our signatures.
All gene sets were downloaded from MSigDB [125] and were constructed based on
well known pathway databases such as KEGG or Biocarta, cis-regulatory motif or
miRNA targets and genes correlating with well known cancer genes in microarray
compendia. We chose the HUGO gene name as the common identifier because
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Table 5.3: The number of genes with HUGO id and this for three possible signatures
from the pooled analysis (i.e. BRCA1 and sporadic patients pooled). These signatures
differ based on the type of CNA (CNG, CNL or either).

Type of CNA Nr of genes with HUGO Id
Either, CNG or CNL
Either 1479
CNL 742
CNG 737
CNA: Copy Number Alteration, CNL: Copy Number Loss,
CNG: Copy Number Gain

Table 5.4: The number of genes with HUGO id and this for 9 possible signatures from
the differential analysis. These signature differ based on the type of CNA (CNG, CNL
or either) and the patient group in which the CNA occurs (BRCA1, sporadic or either)

Group Type of CNA Nr of genes with HUGO Id
Either, BRCA1 or sporadic Either, CNG or CNL
Either CNG 6581
Either CNL 5102
Either CNG 1479
BRCA1 Either 5266
BRCA1 CNL 4775
BRCA1 CNG 491
Sporadic Either 1315
Sporadic CNL 327
Sporadic CNG 988
CNA: Copy Number Alteration, CNL: Copy Number Loss,
CNG: Copy Number Gain

the MSigDB database uses this identifier to uniquely characterize genes. Table 5.5
shows the gene sets that are enriched in the signature containing all CNA from the
pooled analysis. A complete list of enriched gene sets per signature is available
as supplementary data. The most significant gene set corresponds to a region on
chromosome 8 that is gained in pancreatic adenocarcinoma [128] and also gained in our
samples. Interestingly the oncogene myc is part of the overlap between the signature
and the gene set. The next four gene sets are related to immune response and have
similar genes overlapping with the signature. Finally, a set of genes which are down-
regulated by BRCA1 are gained [129].
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Subsequently, the CNA from the differential analysis were subjected to gene set
enrichment analysis to investigate whether different gene sets are enriched in BRCA1
or sporadic patients. Table 5.6 lists the interesting gene sets that are enriched in all
CNA specific to the BRCA1 group according to each signature. Table 5.6 shows that
the HOX genes are significantly altered in the BRCA1 group. More detailed analysis
shows that part of this gene set is significantly gained and another part is significantly
lost. Also a collection of tumor suppressor genes is significantly lost while a set of
matrix metallo-proteinases are gained. Next, genes related to estrogen signaling and
the pathway responsible for methylation of CARM1 through estrogen signaling are
significantly lost in BRCA1 patients.
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Finally, Table 5.7 shows the interesting gene sets that are enriched in the sporadic
patients for all sporadic signatures. For the sporadic patients no gene sets were
found that were significantly lost. Again four inflammation related genes appear to
be enriched, and more specifically gained in sporadic patients. Next, a cancer-related
gene set involved in cell adhesion and metallo-proteinases is altered. Again, most of
these genes appear to be related to cell adhesion and are not metallo-proteinases, which
also corresponds with the enrichment of the GO category cell adhesion. Finally, a gene
set containing experimentally identified targets of the oncogene MYC are also gained
in sporadic patients.
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5.5 Conclusions
In this chapter two groups of ovarian cancer patients were compared using array CGH:
sporadic and BRCA1-mutated tumors. After DNA extraction of BRCA related and
sporadic ovarian cancer tissue, copy number alterations were investigated. Due to the
small number of patients special care was invested to select patients with similar tumor
characteristics to limit the heterogeneity of the group. All patients presented with stage
III-IV, poorly differentiated serous papillary ovarian cancer. On these samples, array
CGH was performed looking for new and differential findings between both groups.

5.5.1 Previous work
After the development of metaphase CGH in 1992, this tool has been used in many
different studies and for many different tumor types. It was designed to detect relatively
large chromosomal regions (i.e. several Mb) that are regularly lost or gained in
tumors [130]. The use of chromosomal metaphase CGH is complicated because it
needs template chromosome spreads of maximal length with minimal chromosomal
overlaps. Moreover, the chromosomal denaturation and hybridization conditions can
be variable between different chromosomal preparations. However, the most important
limitation is that small regions (smaller then 5-10Mb) can not reliably be detected
[Lee et al 2000]. Therefore a higher resolution technique was required and array CGH
was developed in 1997 [131]. Further improvements of this technology now allow to
develop genome wide array CGH contiguously covering a tumor chromosome with an
average resolution of 75kb.
However, our comparison of sporadic versus hereditary ovarian cancer is, to our
knowledge, the first to date using array CGH in the search of differential genetic
signatures. Previous metaphase CGH already suggested different pathways in the
oncogenesis of sporadic versus hereditary ovarian cancers. However, the number of
studies is small and as already mentioned, the resolution of metaphase CGH is rather
low in comparison with whole genome array CGH. When studying the previous CGH
reports comparing both groups, the findings were quite similar in different studies.
Gains in 8q and 3q were often demonstrated but not qualifying as specific for the
hereditary group. However, Zweemer et al. [132] demonstrated differential higher
proportion of gains at 11q22, 13q22 and 17q24-25 in the hereditary group. Also
deletions at 15q11-15, 15q2-25, 8q21 ter, 22q13 and 12q24 appear to be specific to
hereditary ovarian cancer. Next, Tapper et al. [133] described amplification of 2q24-32
as the only statistically difference between BRCA and sporadic ovarian cancer. The
BARD-1 gene is located in this region. This gene encodes for a protein that interacts
with BRCA1 and has been suggested to harbor a somatic oncogenetic mutation in
breast and ovarian cancer [134]. Israeli et al. [135] also describe a number of genetic
alterations in the BRCA group which occur more frequently than in the sporadic group.
Amplification of 8q, 3q, 2q and 1q as well as losses in 9q and chromosome19 were
specific for BRCA related OvC; both chromosomes harboring several putative tumor
suppressor genes.
Finally, Jazaeri et al [136] studied 61 tumor samples with cDNA microarrays contain-
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ing 7651 sequence-verified features and analyzed 6 genes with reverse transcription
PCR. The authors came to the same conclusion, that mutations in BRCA1 and
BRCA2 may lead to carcinogenesis through distinct molecular pathways, but that
those pathways also appear to be involved in sporadic cancers. Sporadic carcinogenic
pathways may result from epigenetic aberrations of BRCA1 and BRCA2 or their
downstream effectors.

5.5.2 Our results
With these interesting data in mind, array CGH was performed in 5 BRCA related and
8 sporadic ovarian tumors in an attempt to find new significant differences between
both groups using a higher resolution technology compared to metaphase CGH such
that typical genetic signatures leading to improved comprehension of the distinct
pathways in both groups. Therefore, it was important to primarily look for the
CNA differentiating each subgroup. Due to the higher dimensionality of the data,
interpretation is done using more complex but more powerful statistical methods.
Looking at the results the first interesting finding was a clear difference in type of CNA;
losses being more frequent in the BRCA1 group. Moreover it was demonstrated that de
length of CNA was different in both groups what concerns the CNL, where the length
of CNL in the BRCA1 group was superior to the CNL in the sporadic. This was not so
obvious looking at the CNG. BRCA related ovarian cancer seems therefore to involve
more genes than the sporadic ones, acting by other pathways and leading to alteration
of downstream genes.
In the sporadic group of ovarian cancer patients, the most significant gene sets were
known to have a function in cell adhesion and complement activation, as do PTK2,
FAT, VCAM1, CDH1 and 6, SDC2, DDR2, and NEDD9. PTK2 for example is a
protein kinase implicated in signaling pathways involved in cell motility, proliferation
and apoptosis. This protein plays a potential role in oncogenic transformation resulting
in increased kinase activity. PTK2 and Myc are necessary components for the AKT
pathway, accepted actually as the key pathway in the carcinogenesis of ovarian cancer
[137–139]. However, the tumors in the BRCA1 group seem to act through distinct
pathways when compared to our group of sporadic tumors, by (in)activation of a
distinct group of genes. The HOX genes, metalloproteinases (MMP’s) and genes
related to estrogen signaling pathways are involved. The MMP’s are involved in the
breakdown of the extracellular matrix and are believed to have a role in tumor initiation
and metastasis. A part of the cluster is localized on chr 11q22.3, and this locus on chr
11 has been described before by Zweemer et al. as a location of alterations distinctive
for familial ovarian cancer [132].
HOX Homeobox proteins are transcription factors involved in growth control and
differentiation during embryogenesis as well as homeostasis. The HOX genes, when
deregulated, play important roles in oncogenesis [140].
A large number of genes are implicated in the estrogen signaling pathway and are
exposed in Table 5.6. Many of them are present in the breast cancer estrogen
signaling pathway, which is interesting and could partly be an explanation for the
organ specificity of BRCA related tumors, often limited to breast and ovary. Many
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genes besides BRCA are implicated in these pathways. TP53, encoding for tumor
protein p53 regulates target genes that induce cell arrest, apoptosis, senescence and
DNA repair. Down-regulation of this gene, functioning as a tumor suppressor gene,
has been associated with many tumors.
These results indicate that complex but powerful modeling strategies based on a sub-
class of Bayesian networks called hidden Markov models, allow to identify recurrent
aberrations that differentiate sporadic from BRCA-mutated tumors. Moreover, the
pathway enrichment analysis demonstrates that the discovered CNA have important
biological implications. We hypothesize that BRCA-mutated tumors are driven by
different biological processes and may benefit from different therapeutic strategies.
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Chapter 6

Integration of primary data
sources

“It is also important to realize that gene expression profiling is one of many
new powerful tools that have become available for the purpose of dissecting

the biological complexity of breast cancer. Other important technology
platforms are being developed to analyze genetic and epigenetic changes in

DNA, microRNAs, proteins and functional proteins. Ultimately, the use of all
these platforms should allow us to develop a much more comprehensive

picture of the biology of individual tumors, as well as the particularities of the
individual hosts.”

– Christos Sotiriou and Martine J. Piccart, Nature Reviews Cancer, 7,
545-553, July 2007 –

Data fusion is becoming more and more important in biomedical deci-
sions support. Microarray data is high dimensional, characterized by
many variables and few observations. Integration of other sources of
information could be important to counter randomly generated differences
in expression levels. Similarly data from new technologies introduced
earlier could contain complementary information which is not present in
the clinical or microarray data and thus improve predictive performance.
Currently, it is unknown which technology and thus which level of
molecular biology is the most relevant for prognostic prediction.

6.1 Introduction
In the previous chapters we have demonstrated the use of Bayesian networks to model
a single primary data source. In this chapter we will describe the methods that we
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developed to integrate multiple primary data sources. In Chapter 1 we defined a
primary data source as one of two data types that can be modeled in our Bayesian
framework (see Figure 1.7). A primary data source contains patient specific data for
example clinical data, microarray data or proteomics data. Integration of primary data
sources is motivated by the observation that omics data sources contain only one layer
of information from the central dogma of molecular biology whereas each layer may
contain information relevant for biomedical decision support. Currently, microarray
technology is the most mature and consequently the most popular technology used to
gather genome scale data. Most cancer studies focus on the transcriptome while the
other omics layers such as the genome or proteome, are less well studied in the context
of biomedical decision support mostly due to technological reasons. However based
on experimental knowledge, examples exist where both the genome and proteome can
contain important diagnostic or prognostic information.
At the genomic level, it is known that the cancer genome is highly aberrated, tumor
suppressor genes are deleted while oncogenes are amplified [42, 123]. Our results
in Chapter 5 have illustrated this, a tumor suppressor pathway was deleted in BRCA-
mutated ovarian tumors while a set of matrix metallo-protease genes, involved in tumor
initiation and metastasis, are gained. Moreover, it has been shown that both the genome
and the transcriptome are directly and indirectly correlated [141]. Analyzing both
omics layers together may reduce the number of false positives common in microarray
data analysis.
The proteome is also less well studied in the context of biomedical decision support.
This is mainly caused by the fact that the proteome is more complex. The number
of genes is estimated to be between 20000 and 25000, whereas due to alternative
splicing and post-translational modifications the proteome is estimated to be a number
of times bigger than the transcriptome [41, 142]. Additionally, the same processes,
alternative splicing and post-translational modifications, cause that gene expression
does not always reflect the final amount of protein product. Therefore, studying the
proteome may reveal information which is not present in the transcriptome but relevant
for biomedical decision support.
Additionally, in biomedical decision support often clinical data is available. Clinical
data is the primary data source closest to the patient and captures the phenotypic
characteristics of the disease. Nevertheless, the focus in most cancer microarray studies
is on the microarray data while the clinical data is not used in the same manner. Clinical
data, which we introduced in Chapter 4 is still the basis of research and fully guides the
clinical management of cancer and is often neglected when microarray data is available.
Before this work was undertaken, there were only a few examples of studies which
model microarray and clinical data together [143,144]. We believe that this integration
can lead to better predictive models for biomedical decisions support.
In this chapter, we will describe a method based on Bayesian networks to integrate
primary data sources and treat variables from different primary data sources in the
same manner. First, we will develop and illustrate our methods to integrate clinical and
microarray data from breast cancer patients. Secondly, we will illustrate the integration
of microarray and proteomics data using data from a rectal cancer study.
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6.2 Integration of clinical and microarray data
A Bayesian network allows different strategies to integrate two data sources. First, it
is possible to combine data sources directly or, secondly, by combining them at the
decision level. Furthermore, because Bayesian networks are learned from data in two
independent steps, we can define a third method to integrate both data sources. These
three methods will be presented and evaluated using Receiver Operator Characteristic
(ROC) curves.
We will focus as an example on the prediction of the prognosis in lymph node negative
breast cancer (without apparent tumor cells in local lymph nodes at diagnosis). We
define the outcome as a variable that can have two values: poor prognosis or good
prognosis. Poor prognosis corresponds to recurrence within 5 years after diagnosis and
good prognosis corresponds to a disease free interval of at least 5 years [24]. If we can
distinguish between these two groups, patients could be treated more optimally thus
eliminating over- or under-treatment.

6.2.1 Data and model building
We used a publicly available breast cancer data set [24]. This data set consists of two
groups of patients. The first group of patients, which we call the training set, consists of
78 patients of which 34 patients belonged to the poor prognosis group and 44 patients
belonged to the good prognosis group. The second group of patients, the test set,
consists of 19 patients of which 12 patients belonged to the poor prognosis group and 7
patients belonged to the good prognosis group. DNA microarray analysis was used to
determine the mRNA expression levels of approximately 25000 genes for each patient.
Every tumor sample was hybridized against a reference pool made by pooling equal
amounts of RNA from each patient. The ratio of the sample and the reference was used
as a measure for the expression of the genes and they constitute the microarray data
set.
Each patient also had the following clinical variables recorded: age, diameter, tumor
grade, oestrogen and progesterone receptor status, the presence of angio-invasion and
lymphocytic infiltration, which together form the clinical data.
We evaluated the performance of the different methods for integrating both data sources
using the training data. This was done by randomizing the training data set 100 times,
in a stratified way, into a set of 70% of the patients used to build the model (model
building data set) and a set of 30% to estimate the Area Under the ROC curve (AUC).
Then these 100 AUCs were averaged and reported. In this manner we can evaluate the
generalizing performance of a specific method and compare with other methods. Next,
the method that performed best in the previous step was used to train 100 models with
different orderings using the complete training set. The model with the highest AUC
among these 100 models was chosen to predict the outcome on the test set.

6.2.2 Integration Methods
Bayesian networks allow to combine the two data sources, the clinical and microarray
data, in different ways. We devised three methods to integrate both data sources: full,
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partial and decision integration. The difference in these integration methods is when
integration takes place during model building: early, intermediate or late.

6.2.2.1 Full integration

The first method, full integration, is equal to putting both data sources together and
treating them as if it is one data set. This means that both the clinical variables (e.g.
age, diameter or grade) and the gene expression values are combined and used as one
data set for subseqent Bayesian network learning. In this manner the developed model
can contain any type of relationship between the clinical variables and the microarray
variables.
The structure is learned for the combined data set:

p(Scm
K2|Dcm) ∝ p(Dcm|Scm

K2)P (Scm
K2) (6.1)

using equation 2.3 to calculate the right hand side. Next, the parameters are learned by
updating the Dirichlet priors using the data, Dcm:

p(θij |Dcm, Scm
K2) = Dir(θij |N ′

ij1 +N cm
ij1 , ..., N

′
ijri

+N cm
ijri

) (6.2)

In this manner the developed model can contain any type of relationship between the
clinical variables and gene expression values.

6.2.2.2 Decision integration

The decision integration method amounts to learning a separate model for the clinical
and the microarray data. This method starts with learning a Bayesian network structure
for both data sources using K2. These structures are referred to as Sc

k2 and Sm
k2 for the

clinical and microarray structure respectively.

p(Sc
K2|Dc) ∝ p(Dc|Sc

K2)P (Sc
K2) (6.3a)

p(Sm
K2|Dm) ∝ p(Dm|Sm

K2)P (Sm
K2) (6.3b)

Equation 6.3b and equation 6.3b correspond with structure learning and are calculated
using equation 2.3. Next, this step is followed by updating the Dirichlet priors with the
data (Dc and Dm):

p(θij |Dc, Sc
K2) = Dir(θij |N ′

ij1 +N c
ij1, ..., N

′
ijri

+N c
ijri

) (6.4a)

p(θij |Dm, Sm
K2) = Dir(θij |N ′

ij1 +Nm
ij1, ..., N

′
ijri

+Nm
ijri

) (6.4b)

Equation 6.4a and 6.4b correspond to parameter learning for both structures (Sc
K2 and

Sm
K2) separately. Then the probabilities predicted for the outcome variable by both

models are combined using the weight parameter w:

p(Out|Dc, Dm) = wp(Out|Sc
K2, θ

c) + (1− w)p(Out|Sm
K2, θ

m) (6.5)

where Out stands for the outcome variable and w is the weight parameter. θc and
θm correspond to the complete set of parameters of the clinical model and microarray
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model respectively.
Then the predictions for the outcome are fused. This comes down to combining the
probability of the outcome for the clinical model with the probability of the outcome
for the microarray model using weights. The weight parameter is trained using only
the model building data set (see section 6.2.1) within each randomization which, in
the context of decision integration, is called an outer randomization. This is done by
performing again 100 inner randomizations of the model building data set within each
outer randomization by again splitting this data set in 70% of the data for training and
30% of the data for testing. For each inner randomization the weight is increased from
0.0 to 1.0 in steps of 0.1. Then the weight value with the highest average AUC on the
30% left out data of the 100 inner randomizations is chosen as weight for the outer
randomization.

6.2.2.3 Partial integration

Bayesian networks also allow a third method, which we will call partial integration.
This is due to the fact that learning Bayesian networks is a two step process. Therefore
we can perform the first step, structure learning, separate for both data sources.

p(Sc
K2|Dc) ∝ p(Sc

K2)p(D|Sc
K2) (6.6a)

p(Sm
K2|Dm) ∝ p(Sm

K2)p(D|Sm
K2) (6.6b)

where equations 6.6b and 6.6b are again calculated according to equation 2.3. This
results in a structure for the clinical data and a structure for the microarray data. Both
structures have only one variable in common, the outcome, since this variable is present
in both data sources. The outcome variable allows joining the separate structures into
one structure. Then the second step of learning Bayesian networks (i.e. parameter
learning) starts as if the structure was learned as a whole:

p(θij |Dm, Sc+m
K2 ) = Dir(θij |N ′

ij1 +N cm
ij1 , ..., N

′
ijri

+N cm
ijri

) (6.7)

where Sc+m
K2 is the combined structure. The parameter learning thus proceeds as usual

because this step is independent of how the structure was built. Partial integration
thus forbids links between both data sources. Partial integration is similar to imposing
a restriction during structure learning where no links are allowed between clinical
variables and gene expression variables.

6.2.3 Results
Model building was done as described in section 6.2.1 for the three integration
methods (full, partial and decision integration) and for both data sources (clinical
and microarray) separately for comparison. In case of decision integration, we used
randomizations to determine the weights to fuse the decisions. This resulted in a
weight of 0.6 for predicted probabilities of the clinical model and a weight of 0.4 for
predicted probabilities of the microarray model, slightly favoring the clinical model.
After choosing these optimal weights, we can compare the methods for integrating the
data sources. Table 6.1 shows the AUCs for the developed models. Partial integration
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and decision integration are significantly different from the other methods but not
significantly different from each other (p-value < 0.05 Wilcoxon rank sum test).

Table 6.1: Average AUC performance and standard deviation of the three methods
for integrating clinical and microarray data and each data source separately with 100
randomizations on the training data. The first two methods, clinical and microarray, are
for comparison. The next three methods (decision, partial and full) refer to the methods
for integrating the clinical and microarray data.

Method AUC Std
Clinical data 0.751 0.086
Microarray data 0.750 0.073
Decision integration 0.773 0.071
Partial integration 0.793 0.068
Full integration 0.747 0.099

Next, both decision integration and partial integration were chosen as the best methods
of integrating the two data sources and 100 models were built using the training set.
Then the best performing model for each method was chosen and used to predict the
outcome on the test data set. The best partial integration model is referred to as BPIM
(Best Partial Integration Model) and the best decision integration model as BDIM (Best
Decision Integration Model). Table 6.2 shows the AUC of these two models on the test
set. We compared our models with the 70 genes prognosis profile by applying the
methods described in [24] and using the resulting classifier on the test set. The AUC
is also shown in Table 6.2, the standard deviations were estimated according to [87].
Both BPIM and the 70 genes model perform in the same manner on the data set while
BDIM is worse. However, there are no significant differences between the ROC curves
of BDIM, BPIM and the 70 genes model [145].

Table 6.2: The AUC of the Bayesian network models (BPIM and BDIM) and of the
reconstructed model based on [24] based on 70 genes.

AUC std
70 genes 0.851 0.132
BPIM 0.845 0.132
BDIM 0.810 0.118

Next we chose an operating point for BDIM and BPIM by choosing a threshold that
corresponds with a maximum for the sum of the sensitivity and specificity [146].
Then we compared the classifications of our models with the 70 genes model and
with the following indices: the St. Gallen consensus [147], the National Institute of
Health (NIH) index [148] and following [149] also with the widely used Nottingham
Prognostic Index (NPI) [150]. For the NPI we used the standard threshold of 3.4 to
determine a good or a poor prognosis. Below this threshold the prognosis is considered
good, above this threshold the prognosis is considered moderate or poor [151]. Table
6.3 shows the number of patients that is assigned to the poor prognosis group for the
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complete test set, the set of true poor prognosis patients (i.e. sensitivity) and the set
of true good prognosis patients (i.e. 1-specificity). We have applied the St Gallen
consensus and the NIH index in the same manner as [24]. The results show that both the
St Gallen consensus and the NIH consensus criteria have a tendency to produce more
false positives than the other models which has been observed before [152]. In the test
set both indices also have some false negatives which can be due to sample selection
and small sample size. Both BPIM and the 70 genes have similar performance and are
better than the other models since they produce few false positives and false negatives.
Both tables 6.2 and 6.3 show that BPIM and the 70 genes have similar performance and
are better than BDIM and the frequently used indices. BPIM and 70 genes can reliably
be used to predict the prognosis in lymph node negative breast cancer.

Table 6.3: The number of patients assigned a poor prognosis for the complete test set
and for the true poor and good prognosis patients.

Total test Metastasis Disease
set within 5 yr free at 5 yr
(n=19) (n=12) (n=7)

St Gallen 1998\ 13/19 (68%) 10/12 (83%) 3/7 (43%)
NIH 2000◦ 15/19 (79%) 10/12 (83%) 5/7 (71%)
NPI♦ 11/19 (58%) 9/12 (75%) 2/7 (29%)
70 genes† 14/19 (74%) 12/12 (100%) 2/7 (29%)
BPIM† 13/19 (68%) 11/12 (92%) 2/7 (29%)
BDIM† 11/19 (58%) 9/12 (75%) 2/7 (29%)
\ Either one of the following criteria equals poor prognosis: ER
negative, tumour diameter ≥ 2 cm, grade 3 or age < 35
◦ Poor prognosis if tumour diameter > 1 cm.
♦ NPI is the sum of 0.2 times the tumour diameter in cms, lymph
node stage and the tumour grade.
† The operating point is determined by maximizing the sum of the
sensitivity and specificity on the training set.

Figure 6.1 shows the Markov Blanket in detail with the gene names where possible.
There are three clinical variables: age, grade and angioinvasion and 13 genes, 12
annotated and 1 unannotated.

6.2.4 Discussion
We have developed Bayesian networks to integrate clinical and microarray data using
the data of [24] and investigated whether an improvement was made for the prediction
of metastasis in breast cancer. We investigated three methods for integrating the two
data sources with Bayesian networks: full integration, partial integration and decision
integration. Table 6.1 showed that only partial integration and decision integration
perform significantly better than each data source separately. We believe that this is due
to the different nature of the data sources. Clinical data has a low noise level, there are
mostly fewer variables than observations and there are both discrete and continuous-
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Figure 6.1: Markov blanket of the outcome variable for the BPIM model containing 3
clinical variables and 13 genes. Gene names have been used where possible.

valued variables. Microarray data on the other hand has a much higher noise level.
There are a lot more variables than observations and all the variables are continuous.
Therefore, it could be advisory to treat them separately in some way. Partial integration
uses separate structure learning while decision integration builds separate models but
fuses the outcome probabilities. Full integration does not make a distinction between
these two heterogeneous data sources which causes that the clinical variables are
submerged by the microarray variables and mostly have few connections. This leads to
a model where the Markov Blanket only consists of microarray variables and explains
the similar performance between full integration and using only the microarray data.
Next, table 6.2 showed that BPIM generalizes best to unseen data compared to BDIM.
The difference between these two models is that BPIM is integrated at the parameter
level and BDIM at the decision level. The former combines clinical and microarray
variables in a more sophisticated way because combined parameter learning results
in different parameters for every instantiation of the clinical variables. The latter
method combines the outcome probabilities using a weighting scheme and relies on the
weights for each model. Furthermore BPIM outperforms the prognostic indices and has
comparable performance with the 70 genes prognosis profile [24] despite having fewer
genes. This suggests that using clinical data decreases the number of genes required to
reliably predict the prognosis. Moreover the low number of genes in BPIM could allow
the design of a cheaper test for breast cancer prognosis while still benefiting from data
at the molecular level.
Next, we also looked more closely at the BPIM model to investigate the performance of
the model when the links of the outcome variable with either the clinical variables or
the microarray variables in the Markov blanket are removed. This resulted in worse
performance of the model. When the links between the outcome and the clinical
variables are removed the AUC performance drops to 0.804 (std 0.130). Similarly
when the links between the outcome and the genes are removed the AUC performance
drops to 0.798 (std 0.128). This is strong evidence that the combination between the
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clinical and the microarray variables boosts the performance. Also the formation of a
prognostic index from a combination of clinical variables and a small number of genes
seems possible.
Furthermore we searched the literature for relations of the variables in the Markov
blanket of BPIM (see Figure 6.1) with breast cancer prognosis and metastasis.
The presence of the clinical variables can be explained because they are used as
conventional prognostic markers and in prognostic indices. Age in particular because
patients with breast cancer at young age have been correlated with poor prognosis
[147] while grade is part of the NPI [150]. Moreover, recently a large study
has shown that lympho-vascular invasion, which is related to angio-invasion, is an
independent prognostic factor in node-negative breast cancer and improves the NPI
[153]. Furthermore there are 13 genes, 12 annotated and 1 un-annotated. Among the
annotated genes, MMP9, HRASLS and RAB27B have strong associations with cancer
[154, 155]. MMP9 is associated with tumor invasion and angiogenesis since matrix
metallo-proteases are an important family of proteases that degrade a path through the
extra-cellular matrix and the stroma. This process allows tumor cells to invade the
surrounding tissue [156]. HRASLS is associated with the RAS pathway [157] and is
thought to function as a tumor suppressor. Furthermore RAB27B is a member of the
RAS oncogene family.
On the other hand BDIM also showed interesting characteristics. This decision
integration model used a weight of 0.6 for the clinical model and a weight of 0.4 for the
microarray model. This emphasizes the importance of the clinical data for classification
compared to the microarray data. In addition, the clinical data generalizes better to new
data since the test set performance is similar to the training set performance (average
training set AUC of 100 clinical data models is 0.838) while the microarray data
allows bitter fitting but with the danger of over-fitting (average training set AUC of
100 microarray data models is 0.981) (also see Table 6.1). Therefore combining both
data sources can lead to models benefiting from the complementary advantages of each
data source separately. The results of BDIM and BPIM prove that this is possible.
In conclusion, the integrated use of clinical and microarray data outperforms the indices
based on clinical data (NIH, St. Gallen and NPI) and has comparable performance
with the 70 genes prognosis profile. Therefore this approach offers possibilities for the
use of Bayesian networks to integrate data sources for other types of cancer and data.
Furthermore BPIM has comparable performance as the 70 genes prognosis profile [24]
but allows interpretation and contains fewer genes.

6.3 Integration of microarray and proteomics data
A second study we performed focuses on the integration of data coming from multiple
omics layers. Gathering multiple omics data from the same patient is necessary to get
a more complete view of the disease instead of studying only one omics layer such
as the transcriptome. Profiling at least a few omics layers such as the transcriptomic,
proteomic or metabolomic level can contribute to better characterize a tumor and to
offer complementary information on the biological mechanisms in cancer cells. These
information sources have the potential to reveal more knowledge on the molecular
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biology of cancer and subsequently can significantly influence the clinical management
of cancer.
In this second integration example we present a Bayesian framework to integrate
omics data sources and we will apply our framework by integrating microarray and
proteomics data to predict the behavior of rectal tumors. This framework is an
extension to a full Bayesian analysis of the previously presented method for integrating
clinical and microarray data using Bayesian networks 6.2. There, we showed that
the partial integration method whereby each data source is first modeled separately
before integrating them, is superior to other integration methods. However, our results
will show that this method does not perform well when integrating microarray and
proteomics data. We believe this is caused by two issues.
In the partial integration method, the posterior distribution for each data source was
approximated using the maximum a posteriori model. This has the disadvantage that
only one model is used, whereas multiple other models exist that have only a slightly
lower posterior probability. Moreover, our previous method for integrating data sources
prohibited links between variables of different data sources.
Here, we propose a Bayesian integration method that addresses these two disadvan-
tages. Firstly, instead of learning only one model for each data source, we adopt a full
Bayesian approach and learn a distribution of models for each data source separately.
Then, each distribution is combined in a prior for the Bayesian network modeling all
data sources instead of hard coding the structure. This means that when learning the
integrated model, links between variables of data sources are allowed. Figure 6.2 shows
the main steps of our integration framework which will be explained in more detail
in section 6.3.2. We will compare the performance of the full Bayesian integration
strategy with the previously developed methods as an internal validation and with
Least Squares Support Vector Machines (LS-SVM) [158]) and naive Bayes as external
validation.
Our framework is applied to a set of patients with rectal cancer subjected to a pre-
operative combination therapy of cetuximab, capecitabine and radiotherapy. In Section
3.3 we already discussed the rectal cancer problem domain and the available data.
Briefly, forty patients were recruited in this study and microarray and proteomics
data were gathered at three time points (T0, T1 and T2) during therapy. At
surgery, the Rectal Cancer Regression Grade (RCRG) was registered which includes a
measurement of tumor response after pre-operative therapy and is based on the Wheeler
regression grade a pathological staging system for irradiated rectal cancer [112]. The
patients were divided into two groups according to this RCRG: the positive group
(RCRG pos) corresponding to good responsiveness (i.e. the tumor is sterilized or
only microscopic foci of adenocarcinoma remain)) and the negative group (RCRG neg)
corresponding to moderate (i.e. marked fibrosis but with still a macroscopic tumor) and
poor responsiveness (little or no fibrosis with abundant macroscopic tumor).
Besides having both microarray and proteomics data for the same patients, both
technologies were used at three time points. Since our goal is to predict the RCRG
before or early in therapy, we can not use the microarray and proteomic data in the
last time point (i.e. at surgery). This leaves us with four data sources that can be
integrated and used for the prediction of RCRG: microarray at T0, microarray data at
T1, proteomics data at T0 and proteomics data at T1 (see Figure 3.3).
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Figure 6.2: Bayesian network integration framework: this figure explains the four
steps involving data integration using Bayesian networks. The data sets are represented
with matrices where rows correspond to patients and columns to genes or proteins. The
yellow variable refers to the RCRG. Step 1 consists of learning a Bayesian network
distribution for each data source separately by repeating the model building process
100 times. Note that since we use distributions of Bayesian networks, the networks that
result from step 1 represent a distribution of Directed Acyclic Graphs (DAGs) and thus
cycles can occur. The thickness of each edge represents its posterior probability where
edge thickness increases with increasing probability. Step 2 involves integrating each
separate distribution into the structure prior of a Bayesian network modeling all data
sources. Each entry represents the probability a certain edge occurs. Step 3 involves
learning a Bayesian network over all data sources using the previously constructed
structure prior. Finally, the RCRG of a new patient is predicted in step 4.
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6.3.1 Data preprocessing

Forty patients with rectal cancer (T3-T4 and/or N+) from seven Belgian centers were
enrolled in a phase I/II study investigating the combination of cetuximab, capecitabine
and radiotherapy in the pre-operative treatment of patients with rectal cancer [109].
Tissue and plasma samples were gathered before treatment (T0), after one dose of
cetuximab but before radiotherapy with capecitabine (T1) and at moment of surgery
(T2). At all these three time points, the frozen tissues were used for Affymetrix
microarray analysis while the plasma samples were used for Luminex proteomics
analysis. Four patients had to be excluded (1 disease progression, 1 death, 1 un-
resectable disease found at surgery and 1 for evidence of clotting at T1) which
ultimately resulted in a data set containing 36 patients. 26 patients were RCRG positive
and 10 patients were RCRG negative.
The tumor samples were hybridized to Affymetrix human U133 2.0 plus gene chip
arrays. The resulting data was first preprocessed for each time point separately using
RMA [115]. Secondly, the probe sets were mapped on Entrez Gene Ids by taking
the median of all probe sets that matched on the same gene. Probe sets that matched
multiple genes were excluded, unknown probe sets were not removed but given an
arbitrary Entrez Gene Id. This reduces the number of features from 54613 probe sets
to 27650 genes. Next, a pre-filtering without reference to phenotype was used to reduce
the number of genes by only retaining the genes with a variance in the top 25%. This
reduces the number of microarray features at each time point to 6913 genes.
The proteomics data consist of 96 proteins, previously known to be involved in cancer,
measured for all patients in a Luminex 100 instrument. Proteins that had absolute
values above the detection limit in less than 20% of the samples were excluded for
each time point separately. This results in the exclusion of six proteins at T0, four
at T1 and six at T2. The proteomics expression values of transforming growth factor
alpha (TGFα), which had too many values below the detection limit, were replaced by
the results of ELISA tests performed at the Department of Oncology, Laboratory of
Experimental Radiotherapy in Leuven. For the remaining proteins the missing values
were replaced by half of the minimum detected for each protein over all samples, and
values exceeding the upper limit were replaced by the upper limit value. Because most
of the proteins had a positively skewed distribution, a log transformation (base 2) was
performed. In this paper, only the data sets at T0 and T1 were used because our goal is
to predict the RCRG before the start of therapy or early in therapy.
Since we are using discrete valued Bayesian networks both the microarray and the
proteomics data are discretized. We used quantile discretization whereby each gene
or protein expression value is discretized in three bins such that each bin contains an
equal number of observations (see Section 2.5).

6.3.2 Integration framework

To integrate data sources, we built further on the partial integration method that we
developed in section 6.2. Previously, each data source was modeled separately by a
Bayesian network. Then, these networks were connected and the parameters of the
full network were learned. Here, we extend this idea by developing the integration
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framework in a full Bayesian manner also related to Bayesian model averaging [159].
Figure 6.2 shows the different steps of the algorithm in more detail. The data sets are
represented with matrices where rows correspond to patients and columns to genes or
proteins. Note that the microarray data sets are represented with larger matrices than
the proteomics data sets to stress their different dimensionality. There are four steps
involving our data integration methodology using Bayesian networks.
First, instead of learning one network per data source, a distribution of Bayesian
networks is constructed (Step 1 in Figure 6.2). This is done by repeating the model
building process a fixed number of times (e.g. 100). Each edge then receives a
probability depending on the number of times it occurs in all runs. A high probability
corresponds to an edge that occurs in many of the runs while a low probability
corresponds to an edge that rarely occurs in the runs. The thickness of the edges in
Figure 6.2 corresponds to this edge probability where edge thickness increases with
increasing probability. Next, the information from each of these Bayesian network
distributions is encoded in a structure prior modeling all data sources (Step 2 in Figure
6.2). The probability of having an edge between two variables is represented with
colors ranging from black (i.e. probalitity=0) to white (i.e. probability=1). This
structure prior only contains prior probabilities between variables within each data
source. Between data sources nothing is known based on Step 1 of the algorithm.
However, some information is included here. The black regions between data sources
have been forced to zero such that links that go back in time are penalized. The orange
regions correspond to links between data sources going forward in time and have
maximum uncertainty (i.e. probability=0.5). The following step consists of learning
a network with all data sources using the previously constructed structure prior (Step
3). Finally, this structure can be used for predicting new cases (Step 4 in Figure 6.2).
To accomplish this we use the junction tree algorithm [86]. In our case we focus on
the prediction of the RCRG of a patient which is represented by the yellow variable in
Figure 6.2. Network visualization was done using Cytoscape [160].

6.3.3 Model evaluation
The Area Under the ROC curve (AUC) was used to assess the prediction performance
of the integration framework. Due to the limited data set size, a Leave-One-Out Cross
Validation (LOOCV) approach was used to estimate the generalization performance.
In each LOOCV run, not using any information of the left-out sample, the top 50 genes
and the top 10 proteins at each time point that were differentially expressed between
the RCRG groups, are selected (Wilcoxon rank sum test). Then, after discretization
of the data, steps 1 to 3 of the integration method are performed. Finally the model
resulting from step 3 is used for predicting the RCRG of the left-out sample (Step 4).
We compared our integration framework with the previously developed integration
strategies partial and full integration as an internal validation and with naive Bayes
and LS-SVM as an external validation.
The naive Bayes model was implemented by including all 50 genes and 10 proteins per
time point in one data set and predicting the RCRG. Performing step 1 is not relevant
for naive Bayes because the structure is fixed based on the independence assumptions
of naive Bayes. The LS-SVM model with a linear kernel was built on the continuous
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data since no discretization is required for LS-SVMs. The regularization parameter
was optimized using a line search and LOOCV. An LS-SVM was built on the same
pre-selected data (i.e. top 50 genes and the top 10 proteins at each time point) and
also on a larger selection of genes and proteins: the top 500 genes and all proteins
(Wilcoxon rank sum test).

6.3.4 Results
Two data sources were available at two time points, therefore we examined the
following combinations: all data sources (ALL), microarray and proteomics data at
T0 (MPT0), microarray and proteomics data at T1 (MPT1), microarray data at T0 and
T1 (MT0T1), proteomics data at T0 and T1 (PT0T1). In addition, all data sources
were also modeled separately: microarray data at T0 (MT0), microarray data at T1
(MT1), proteomics data at T0 (PT0) and proteomics data at T1 (PT1). Finally, we also
compared with the two previous integration strategies developed: partial integration
and full integration.
Table 6.4 shows the AUC for all models. The ALL model, which contains all data
sources performs best compared to the models on fewer data sources and the previously
developed partial and full integration methods. Figure 6.3 shows the ROC curve of the
ALL model. Additionally, we compared the ALL model with a naive Bayes integration
of all data sources to investigate if a less complex model based on strong independence
assumptions is able to achieve the same predictive performance. This showed that the
naive Bayes model was not able to predict the RCRG (AUC 0.41). Moreover, we also
compared with LS-SVMs on the same data set size (i.e. LS-SVM small in Table 6.4)
and also with a larger data set since LS-SVMs can cope with higher dimensionality
than our Bayesian model (i.e. LS-SVM large in Table 6.4). Figure 6.3 shows the ROC
curve of both the LS-SVM small and LS-SVM large models. This illustrates that LS-
SVMs are not able to predict RCRG better than the Bayesian models (see Table 6.4).
Due to the limited data set size these AUCs were not significantly different from each
other.
Next, due to the size of the data set it is not possible to reach statistical significance

of the results therefore we investigated the variance of the results by constructing the
LOOCV network. To accomplish this, we gathered the networks from all LOOCV
iterations and represented them as a combined network where each edge receives a
weight depending on the number of times this edge occurs in all LOOCV iterations
(see Figure 6.4). Edges with high weight are represented with thick lines whereas edges
with low weight are thin. Figure 6.4 shows that there is a ring of genes and proteins
which have low edge weights and are most likely spuriously related. Next, there are two
big clusters in the network corresponding to the genes at T0 and at T1. The RCRG is
in between these two large clusters. The proteins are scattered throughout the network
and have strong links with RCRG. Table 6.5 shows the links with the highest weights,
for example for the protein Ferritin there is a strong link between the expression at
both time points. Additionally, the proteins IL6 and Ferritin have strong links with
the RCRG suggesting that they are important for prediction of response to therapy and
more importantly that they are robust in the LOOCV iterations.

Finally, we investigated the variables that are in the Markov blanket of RCRG
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Table 6.4: Model performance of different integration strategies. Area Under the ROC
curve (AUC) for all models when predicting RCRG.

Model abbreviation AUC SE
ALL 0.73 0.08

MPT0 0.23 0.09
MPT1 0.67 0.10

MT0T1 0.54 0.11
PT0T1 0.55 0.12
MT0 0.41 0.10
MT1 0.55 0.11
PT0 0.49 0.11
PT1 0.57 0.10

Partial Integration 0.61 0.11
Full integration 0.51 0.10

Naive Bayes 0.41 0.10
LS-SVM small 0.39 0.10
LS-SVM large 0.45 0.10

Figure 6.3: The ROC curves of the ALL, MPT1, the Naive Bayes and the LS-SVM
models for comparison. See Table 1 for the AUC for these models.
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Figure 6.4: This network represents the networks from all LOOCV iterations. See
Table 2 for the important edges in this network. The thickness of each edge represents
the number of times each edge occurs in the LOOCV iterations where the tickness of
the edge increases with an increase in the number of occurences. The colors refer to
the different data sources: blue = microarray at T0, green = microarray at T1, purple =
proteomics at T0, red = proteomics at T1, yellow= RCRG.

using the complete data set. Instead of investigating only one network, we used the
posterior Bayesian network distribution to estimate the posterior probability that a gene
or protein is related to outcome. This network is represented in Figure 6.5. Table 6.6
shows the top 10 links with RCRG from this network. Next, we investigated if these
genes or proteins shared similar function using Gene Ontology over-representation
analysis and found that many GO categories were significantly overrepresented in this
list of genes and proteins. The most important GO categories that were found are:
defense response (p-value 0.00096), response to stimulus (p-value 0.037) and immune
response (p-value 0.041) (hypergeometric test with FDR correction and all genes in
background, [161], also see Table 3).

Additionally, we investigated the high weight links in this posterior network which
are highlighted in Figure 6.5. Panel A in Figure 6.5 highlights the link between the
gene NCOR1 and the protein Thyroid stimulating hormone (TSHR) at time point 1
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Figure 6.5: Network representing the posterior RCRG network on the full data set.
Table 6.6 lists the top 10 edges with the highest posterior probability in this networks.
The thickness of each edge represents its posterior probability where edge thickness
increases with increasing probability. The colors refer to the different data sources:
blue = microarray at T0, green = microarray at T1, purple = proteomics at T0, red =
proteomics at T1, yellow= RCRG. Panel A through E represent important edges that
are discussed in the main text.
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Table 6.5: This table shows the 10 edges which occurred the most in all LOOCV
iterations (also see Figure 6.4) where A and B are the partners in the following edge:
A↔ B. For RCRG the type is outcome and it was registered at time point 2 (T2).

Gene/protein A Type A Time Gene/protein name B Type B Time
point A point B

Ferritin protein T1 Ferritin protein T0
232144 at gene T1 KCNJ2 gene T1

ETV6 gene T0 NFKB1 gene T0
240084 at gene T1 RGS18 gene T1

IL6 protein T1 RCRG outcome T2
Ferritin protein T1 RCRG outcome T2
ETV6 gene T0 238787 at gene T0

237622 at gene T1 USP42 gene T1
ST8SIA4 gene T1 RGS18 gene T1
C8orf55 gene T0 KIFC2 gene T0

Table 6.6: This table shows the 10 genes or proteins which are linked with the RCRG
and have the highest posterior probability associated with this link based on the full
data set (also see Figure 5). Significant GO categories are indicated.

Gene/protein Type Time point Defense Immune Response
response response to stimulus

Ferritin protein T0
TNFα protein T0 x x x

IL6 protein T1 x x x
GPR35 gene T0
LGR6 gene T0

Ferritin protein T1
MICA gene T1 x x x

231037 at gene T0
NLRC5 gene T1 x x

Apolipoprotein H protein T1 x x

which has a posterior probability of 0.78. NCOR1 is a nuclear receptor that mediates
ligand-independent inhibition of gene expression of TSHR [162] which appears to be
inversely correlated to RCRG. At T0, NCOR1 is over-expressed in RCRG positives
while TSHR is over-expressed in RCRG negative patients.
Panel B highlights the link between the gene CHD1L (chromodomain helicase
DNA protein 1-like) and the protein CSF3 (granulyte-colony stimulating factor) with
posterior probability 0.99 both at T0. CHD1L is a DNA binding protein that potentially
promotes cell proliferation and inhibits apoptosis. It is amplified in hepatocellular
carcinoma [163]. CSF3 is a cytokine that stimulates granulocyte cell production and
belongs to a group of hematopoietic cytokines (HCs). Some studies have shown that
HCs also stimulate cell proliferation in other cell types and receptors for HCs have been
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detected in cancer cell lines [164]. The link between them here suggests that CSF3
stimulates cancer cells and affects CHD1L downstream. Both CHD1L and CSF3 are
over-expressed in RCRG positives.
Panel C shows the link between the genes NCOR1 and CHD1L with posterior
probability 0.99 at T0. Both genes have just been discussed with other partners.
Experimental evidence shows that NCOR1 associates with CHD1 (chromodomain
helicase DNA protein 1) [165]. NCOR also associates with histone deacetylase
(HDAC) and represses transcription [165]. The link between NCOR1 and CHD1L
suggests that this may also be the case for CHD1L. Both NCOR1 and CHD1L are
over-expressed at T0 in RCRG positives.
Panel D highlights the link between the gene BCL3 and the protein IL4 with posterior
probability 1.0 both at T1. IL4 is part of the interleukin cytokines and regulates
apoptosis and cell proliferation. BCL3 is upregulated by IL4, but is dependent on
the JAK/Stat pathway [166]. The JAK/Stat pathway is regulated by cytokines such as
EGF through their receptors [167]. This may explain why this link is observed at T1
after treatment with cetuximab designed as an EGFR inhibitor. Both are upregulated
in RCRG positive patients.
Finally, panel E shows a link between the genes FGFR4 (fibroblast growth factor
receptor) and NFKB1 (nuclear factor of kappa light polypeptide gene enhancer in B-
cells 1) with posterior probability 0.7 at T0. NFKB1 is part of the NFKB protein
complex and performs a wide range of functions. A recent study shows that their is a
relationship between another fibroblast growth factor receptor FGFR7 and activation
of the NFKB [168]. Our results predict an inverse relationship between FGFR4 and
NFKB1 at T0 where FGFR4 is over-expressed in RCRG negative patients and NFKB1
is over-expressed in RCRG positive patients.

6.3.5 Discussion
In this section, we have developed a Bayesian framework for integrating high
dimensional and heterogeneous data sources for biomedical decision support. The
methodology was illustrated by focussing on the prediction of therapy response of
rectal cancer patients. By integrating microarray and proteomics data at different time
points, a better prediction could be made than any data source alone or a combination of
a few data sources. Additionally, when comparing the AUC of MPT0 and MPT1 (see
Table 6.4), the results showed that data at the second time point, was more informative
to predict RCRG.
Comparison with the previously developed integration strategies for integrating clinical
and microarray data, partial and full integration, showed that our full Bayesian strategy
is better. We hypothesize that this can be explained by the high dimensionality of the
rectal cancer data set compared to the low dimensional data in the breast cancer study
used in [117]. The rectal cancer data set contains two microarray data sets and two
proteomics data sets whereas the breast cancer study only provided a microarray data
set together with limited clinical data. A full Bayesian approach may be more suitable
to capture the uncertainty in each data set compared to the maximum a posteriori
approach that was used in the partial and full integration strategy. Moreover, other
microarray studies on cancer have shown that in many cases multiple gene sets exist



100 Integration of primary data sources

that can explain the clinical outcome [169] which can be easier represented in a full
Bayesian manner compared to a maximum a posteriori approach.
Subsequently, we also compared our integration approach with a less complex way
of integrating data sources. We chose the naive Bayes model which is based on
strong independence assumptions but has been shown to deliver excellent performance
in classification tasks [170, 171]. A naive Bayes model is the simplest form of a
Bayesian network where all variables are assumed conditionally independent given
the class variable (i.e. the RCRG). The results however showed that the complexity of
a Bayesian network is necessary to model the data and predict the RCRG.
Additionally, we compared with an LS-SVM model on the continuous data both with
the same pre-selection of genes and proteins, and with a higher number of genes and
all proteins. These results showed that the LS-SVM models did not perform better dan
a random predictor.
In Table 6.6 we showed the genes and proteins linked with RCRG with the highest
posterior weight. Now, we will discuss them since many of them have strong links to
tumorigenesis in the literature. First, several of the proteins have known associations
with rectal and colon cancer, such as TNFα and IL 6. The tumor necrosis factor TNFα
has important roles in immunity and cellular remodeling and influences apoptosis
and cell survival. Deregulation and especially overproduction of TNFα have been
observed to occur in colorectal cancer [172]. IL-6 regulates the immune response,
modulates normal and cancer cell growth, differentiation and cell survival [173]. It
causes increased steady-state levels of TGFα mRNA in macrophage-like cells [174].
Secondly, several of the genes in Table 6.6 have known associations with tumori-
genesis. MICA is part of the MHC class I complex which plays a major role in
immunity. Many cancers suffer from immune attacks due to these membrane proteins.
They subsequently develop immuno-evasion strategies and hide the stress by repressing
NKG2D ligands such as MICA. Otherwise these ligands would be expressed by cells
undergoing neoplastic transformation and recognized by natural killer cells [175].
Next, 2 of the 4 genes, LGR6 and GPR35, are G protein-coupled receptors. Although
nothing is known yet about these two individual genes, this class of membrane proteins
has proven to induce tumorigenesis. They stimulate a large class of G proteins that
function as mitogenic and anti-mitogenic signals and deregulation of this signalling has
been observed in certain types of cancer cells (e.g. small cell lung carcinoma) [175].
These examples together with consistent GO categories among these genes and proteins
provide strong evidence that our methodology is able to find biologically related
genes and proteins from a wealth of high throughput data gathered at different time
points during therapy. A limitation of our current approach is that much data (i.e.
many patients) is needed to learn complex models such as our Bayesian integration
framework. This is due to the fact that our methodology not only attempts to classify
new patients but also provides a probabilistic underlying model that can be interpreted
and verified. We illustrated this by discussing links with high posterior probability.
A possible advantage of this method is that in its first step, where each data source is
modeled separately, other data sets can be used studying a similar patient population.
Only in the third step all data sources are needed for each individual patient. In this
manner publicly available data sources can be used to refine the construction of the
structure prior in step 2 of our algorithm.
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6.4 Conclusions
In this chapter we have developed methods to integrate both clinical, microarray
and proteomics data using Bayesian networks. We have illustrated our methods by
integrating clinical and microarray data from breast cancer patients and by integrating
microarray and proteomics data from rectal cancer patients. In both cases the results
show that integrating primary data sources can lead to better models by improving the
predictive performance or generating new biological hypotheses.
An important shortcoming in both studies is that the number of data points is limited.
Therefore our results are preliminary and the methodology should be validated on data
sets containing more patients. However, our models should be considered as a proof-
of-principle method for integrating primary data sources and hopefully lead to more
studies focusing on gathering multiple primary data sources.
Finally, an important advantage of using a Bayesian network to integrate data is
that other sources of prior information (e.g. pathway knowledge, protein-protein
interactions, literature) can be easily integrated in the structure prior. This will be
the topic of the next chapter.
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Chapter 7

Integration of secondary data
sources

“Priors on network structures.
Biasing the search for Bayesian networks”

– Robert Castelo and Arno Siebes, International journal of approximate
reasoning, 24, 39-57, 2000 –

As we already stated in the second chapter, despite its name, a Bayesian
network is not necessarily Bayesian. However, in this thesis we focus on
Bayesian methods to build Bayesian networks. This makes it possible to
define a prior distribution over all possible Bayesian network structures.
In many situations where no information a priori is available, it is
difficult to determine a suitable prior. In these cases uninformative priors
are used which are not always straightforward. However, in our case
prior information is often available thus increasing the usefulness of the
Bayesian approach.

7.1 Introduction
In this chapter we will illustrate how secondary data sources can be integrated in
Bayesian network models for biomedical decision support. The previous chapters
dealt with primary data sources, either by modeling a single primary data source
(Chapters 4 and 5) or integration of primary data sources (Chapter 6). On the other
hand a secondary data source was defined in Chapter 1 as “orthogonal” to primary
data sources because they contain information on each entity within an omics layer
(see Figure 1.7). An entity depends on each omics layer for genomics the entities
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are genes, for transcriptomics mRNA, for proteomics proteins and for metabolomics
metabolites. The integration of secondary data sources in Bayesian network models is
possible because the relations between entities in an omics layer are explicitly modeled
in a Bayesian network which is not the case in for example kernel methods.
Integration of secondary data sources has become very popular in bioinformatics.
Recently, numerous publications involving the integration of multiple data sources to
discover new biological knowledge have been published [70,176,177]. Due to the high
dimensionality of microarray data it is difficult to reduce the number of false positives.
The hypothesis is that by integrating data from different sources this can be remedied.
Additionally, the number of databases has increased significantly [126] increasing the
number of secondary data sources that is publicly available.
Still much knowledge is contained in publications in unstructured form as opposed to
being deposited in public databases where they can be amenable to use in algorithms.
Thus the literature is in itself a secondary data source that can be accessed using text
mining algorithms. In this Chapter we present an approach to integrate information
from literature abstracts into Bayesian network models of gene expression data. A
Bayesian network model provides a natural solution to this problem since information
can be incorporated in the prior distribution over the model space. This prior is then
combined with other data to form a posterior distribution over the model space which
is a balance between the information incorporated in the prior and the data.
Specifically, we investigated how the use of text information as a prior of a Bayesian
network can improve the prediction of prognosis in cancer when modeling expression
data. Bayesian networks provide a straightforward way to integrate information in
the prior distribution over the possible structures of its network. By mining abstracts
we can easily represent genes as term vectors and create a gene-by-gene similarity
matrix. After appropriate scaling, such a matrix can be used as a structure prior
to build Bayesian networks. In this manner text information and gene expression
data can be combined in a single framework. Our approach builds further on our
methods for integrating prior information with Bayesian networks for other types of
data [7, 68] where we have shown that structure prior information improves model
selection especially when few data is available.
Bayesian networks and their combination with prior information have already been
studied by others [62, 177–179] prior to this work but none have investigated the
influence of priors in a classification setting or, more specifically, when predicting the
outcome or phenotypic group of cancer patients. First, we will show how the prior
performs on a well known breast cancer data set also used in the previous Chapter and
examine the effect of the prior in more detail [24]. Subsequently, we will validate our
approach on three other data sets studying breast, lung and ovarian cancer [114].

7.2 Structure prior

7.2.1 Gene prior

Since microarray data usually references thousands of genes, it is not feasible to
manually construct a structure prior. Therefore, prior construction involves methods
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Figure 7.1: Construction of the text prior. For each gene its manually curated abstracts
are extracted from PubMed and transformed to a term vector using the NCI vocabulary.
Next, if multiple abstracts were present their corresponding vectors are normalized and
averaged. This is done for each gene of interest. This results in a gene by term matrix
which is transformed to a structure prior by taking the cosine similarity.

based on an automatic elicitation of relationships between genes. Here, we propose
the use of priors that consist of gene-by-gene similarity matrices based on biomedical
literature mining. We used standard text mining methods to accomplish this by
representing the genes in the Vector Space Model (VSM) [180]. In the VSM model,
each position of a gene vector corresponds to a term or phrase in a controlled
vocabulary. In our case, we have constructed a cancer specific vocabulary which
was extracted from the National Cancer Institute Thesaurus [181]. Using a fixed
vocabulary has several advantages. Firstly, simply using all terms that occur in the
corpus of literature linked to the genes involved in the microarray experiment at
hand, will result in vectors of considerable size, which means genes are represented
in a high dimensional space. As this ‘curse of dimensionality’ is detrimental to the
strength of a metric, the use of only a relatively small set of concepts will improve the
quality of calculated gene-to-gene distances. Further reduction of the dimensionality is
accomplished by performing stemming [182], which will allow different terms that in
essence convey a same meaning (coughing, coughs, coughed) to be treated as a single
concept (cough). Secondly, the use of phrases reduces noise in the data set, as genes
will only be compared to each other from a highly domain specific view. Thirdly,
a structured vocabulary will enable the use of multi-word phrases as opposed to just
single terms, without having to resort to co-occurrence statistics on the corpus to detect
them. Fourthly, there is no need to filter out articles and stop words, as only highly
specific cancer related terms are considered.
The gene vectors themselves are constructed as follows. For each gene, manually
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curated literature references, called GeneRIFs, for each gene are extracted from Entrez
Gene. This ensures that only high qualitative gene-abstract associations made by
human experts are included in the prior. All PUBMED abstracts linked to these genes
are then indexed using the aforementioned vocabulary. As a result, all PUBMED
abstracts are represented in a high dimensional vector space using IDF (Inverse
Document Frequency) weights for non-zero vector positions [183, 184]. The IDF of
a term ti and abstract aj is defined as:

wIDF
ij = log

L

ni
(7.1)

with L the total number of documents and ni the number of abstracts that contain this
term. For example if all documents contain the term then the IDF is zero. The IDF
increases when less abstracts have the term.
The resulting vectors (which represent abstracts, not genes) are normalized to bring
them on the union hyper sphere in the vector space, which facilitates cosine similarity
calculation. Gene vectors are then constructed by averaging the vectors of all the
abstracts associated to that gene by Entrez Gene. Finally, the cosine measure is used
to obtain gene-to-gene distances between 0 and 1. These gene-to-gene distances can
then be represented as a symmetric matrix S which forms the structure prior for the
Bayesian network modeling. This process is visualized in Figure 7.1.

7.2.2 Outcome variable prior
We have already defined the way the prior is determined between the genes. Since
we are developing models which predict the prognosis in cancer, the need exists for
an additional variable in the model, namely the outcome of the patients. This variable
describes to which group each sample belongs, for example, good prognosis and poor
prognosis. Hence, we need to define the prior relation between the outcome variable
and the genes. To accomplish this, we used terms in the vocabulary which are related to
the prediction of the prognosis of cancer, such as outcome, prognosis and metastasis.
Next, we counted the number of associations each gene had with prognosis related
terms and increased the gene-to-outcome similarity for every additional term the gene
was associated with. Genes which had no association with either term were given
a prior probability of 0.5. This information was added to the gene prior creating a
structure prior for all the variables studied (i.e. genes and patient outcome). This
structure prior is then, after scaling according to the mean density, used in Bayesian
network learning. Scaling is necessary because a fully connected Bayesian network
can explain any data set. The structure prior potentially contains many high similarities
between variables and, if used without scaling, this results in very complex networks.
By reducing the average number of edges per variable less complex networks can be
built. This is done by controlling the mean density of the structure prior. The mean
density was introduced in Section 2.3.3.1 and controls the density of the networks that
will be generated.
Figure 7.2 shows an example of a text prior of the outcome variable and the first
50 genes that had the highest correlation with this outcome variable before and after
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Figure 7.2: Visualization of the text prior before (top panel) and after scaling (bottom
panel) with mean density equal to one. The first row and first column correspond to the
outcome variable followed by the first 50 genes in the text prior.

scaling. The top panel shows the structure prior before scaling while the bottom panel
shows the prior scaled to have a mean density of one. The first column (and also the
first row because the matrix is symmetrical) of Figure 7.2 in the top and bottom panel
correspond to the prior between the outcome variable and the genes.

7.3 Data
To test our approach we used publicly available microarray data on breast cancer [24]
(van ’t Veer data set). This data set consists of 46 patients that belonged to the
poor prognosis group and 51 patients that belonged to the good prognosis group.
DNA microarray analysis was used to determine the mRNA expression levels of
approximately 25000 genes for each patient. Every tumor sample was hybridized
against a reference pool made by pooling equal amounts of RNA from each patient.
The ratio of the sample and the reference was used as a measure for the expression
of the genes and they constitute the microarray data set. This data set was already
background corrected, normalized and log-transformed. Preprocessing was done
similarly as in [24]. This resulted in 232 genes that where correlated with the patient
outcome which were used in our models.
To validate our results we used three publicly available data sets from Bild et al. [114]
studying breast, lung and ovarian cancer (Bild data set). These data sets contained data
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on 171 breast cancer patients, 147 ovarian cancer patients and 91 lung cancer patients.
The three groups of tumors were analyzed on different Affymetrix chips; the breast
tumors were hybridized on Hu95Av2 arrays, the ovarian tumors on Hu133A arrays and
the lung tumors on Human U133 2.0 plus arrays. The data were already pre-processed
using RMA. For all cancer sites survival data was available and patients were split up
in two groups according to the following thresholds: 53 months for breast cancer, 62
months for ovarian cancer and 36 months for lung cancer. The thresholds were chosen
to make sure both classes contained approximately the same number of samples. Genes
were selected similarly as in the van ’t Veer data set by selecting the top 100 genes after
ranking them by their correlation with patient survival data.

7.3.1 Model evaluation
We used a randomization approach where we randomly distributed the data in 70%
used to build a model and 30% to estimate the Area Under the ROC curve (AUC).
This process was repeated 100 times to have a robust estimate of the generalization
performance of the two approaches: with text prior and without text prior. Then these
100 AUCs were averaged and reported. Next a model was built using the complete
data set for both methods and we investigated the possible differences between the
Markov blanket variables (i.e. the set of genes which are sufficient to predict the
outcome, see Section 2.3.1.1). The average AUC with and without prior are compared
by calculating the p-value with a two-sided Wilcoxon rank sum test. P-values are
considered statistically significant if smaller than 0.05.

7.3.2 Discretization
We have chosen discrete valued Bayesian networks therefore the microarray data has to
be discretized. We specifically tried to minimize the loss of relationships between the
variables by applying the algorithm of Hartemink [88]. The gene expression values
were discretized in three categories or bins: baseline, over-expression and under-
expression. This was done using a multivariate discretization method which minimizes
the loss of mutual information between the gene expression measurements as described
in Section 2.5.

7.4 Results

7.4.1 van ’t Veer data
First, we assessed the performance of the text prior regarding prediction of outcome
on the van ’t Veer data set. We performed 100 randomizations of the data set without
a prior and 100 randomizations with the text prior (as described in the Model building
and testing Section in Materials and methods). We repeated the analysis for different
values of the mean density to asses if this parameter had an influence on the results.
Table 7.1 shows the mean AUC for both methods and for increasing mean density.
The most important conclusion that can be drawn from Table 7.1 is that using the
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text prior significantly enhances the prediction of the outcome (P-value < 0.05). The
text prior guides model search and favors genes which have a prior record related to
prognosis. This knowledge improves gene selection and most likely wards off genes
which are differentially expressed by chance. Additionally, Table 7.1 shows that the
mean density has no influence on the result in the tested range. The mean density
controls the complexity of the network therefore large values should be avoided since
the danger of over-fitting increases. Note that the results for the mean AUC without
prior are essentially the same as our previously obtained result [117].

Table 7.1: Results of 100 randomizations of the van ’t Veer data set with the Text prior
and without prior. The mean AUCs are reported together with the p-value.

Mean Density Text prior Uniform prior P-value
mean AUC mean AUC

1 0.80 0.75 0.000396
2 0.80 0.75 < 0.0001
3 0.79 0.75 0.005770
4 0.79 0.74 < 0.0001

Next, we used the complete data set and we built one model with text prior and one
model without the text prior, to evaluate the set of genes which are sufficient to predict
the outcome (i.e. the genes in the Markov blanket of the outcome). We call the former,
the TXTmodel and the latter UNImodel. Table 7.2 shows the gene names that appear
in the two models. The average text score (i.e. the probability the gene is related to
patient outcome according to literature) of the genes in the TXTmodel is 0.85 compared
to only 0.58 for the UNImodel. The text prior thus has its expected effect and includes
genes which have a prior tendency to be associated with the prognosis of cancer. There
are only 10 genes in the TXTmodel compared to 15 genes in the UNImodel which
indicates that TXTmodel needs fewer genes. Moreover, the TXTmodel has many genes
which have been implicated in breast cancer or cancer in general such as TP53 [185],
VEGF [186], MMP9 [187], BIRC5 [188], ADM [189] and CA9 [190]. Next ACADS
[191], NEO1 [192] and IHPK2 [193] have a weaker link to cancer outcomes whereas
MYLIP has no association. In the UNImodel, as expected, far less genes are present
which have a strong link with cancer outcomes which likely increases the probability
of false positives. Only WISP1 [194], FBXO31 [195], IGFBP5 [196] and TP53 have
a relation with breast cancer outcome. The other genes have mostly unknown function
or are not related. Finally, two genes appear in both sets: TP53 and IHPK2. TP53 is
perhaps the best known gene to be involved in cancer. Therefore, it is bound to appear
in the TXTmodel and it is no surprise that it is also present in the UNImodel. IHPK2
however has a weak prior relation with prognosis in cancer therefore this gene proves
that genes with a low text prior still can be selected in the TXTmodel. Additionally,
genes which appear in both models can be considered more reliable.
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Table 7.2: Genes sufficient to predict the outcome variable for the TXTmodel and the
UNImodel.

TXTmodel UNImodel
MYLIP PEX12
TP53 LOC643007
ACADS WISP1
VEGF SERF1A
ADM QSER1
NEO1 ARL17P1
IHPK2 LGP2
CA9 IHPK2
MMP9 TSPYL5
BIRC5 FBCO31

LAGE3
IGFBP5
AYTL2
TP53
PIB5PA

7.4.2 Bild data
Finally we validated our approach on three independent data sets on breast, ovarian and
lung cancer [114] to assess if the results on the van ’t Veer data set can be confirmed.
Based on the results presented in Table 7.1 we chose a mean density of 1 for these data
sets. Again 100 randomizations of the data set with and without the text prior were
performed. Table 7.3 shows the average AUC for the three Bild data sets and confirms
that the text prior significantly improves the prediction of the prognosis on independent
data sets and for other cancer sites.

Table 7.3: Results of 100 randomizations of the three Bild data sets with the Text prior
and without prior. The mean AUCs are reported together with the p-value.

Mean Density Text prior Uniform prior P-value
mean AUC mean AUC

Breast 0.79 0.75 0.00020
Lung 0.69 0.63 0.00002
Ovarian 0.76 0.74 0.02540

7.5 Conclusions
In this Chapter we have shown a method to integrate information from literature
abstracts with gene expression data using Bayesian network models. This prior
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information was integrated in the prior distribution over the possible Bayesian network
structures after scaling. The results of the randomization analysis in Table 7.1 and 7.3
have shown that for both the van ’t Veer data set and the three Bild data sets the text
prior significantly improves the prediction of the prognosis of cancer patients.
A possible limitation of our approach is the discretization of the data. It is inevitable
that some information is lost in the process of discretization. We have chosen discrete
valued Bayesian networks because the space of arbitrary continuous distributions is
large. A solution could be to restrict ourselves to the use of Gaussian Bayesian
networks but this class of models assumes linear interactions between the variables
which, in our opinion, would restrict too much the type of relations among genes that
are modeled. Moreover, by using the algorithm of Hartemink we are performing a
multivariate discretization, keeping the relationships between the variables as much as
possible intact.
Secondly by using text information, which is often described as highly biased, one
could run the risk of focussing too much on the hot genes disregarding novel important
genes. However, in our case the emphasis is not so much on biomarker discovery
and more on developing models which can accurately predict the prognosis of disease.
There are already many genes known to be involved in different types of cancer based
on individual studies or because they are member of a cancer profile. However, finding
the minimal set of genes which is able to predict the prognosis of disease is still an
open problem. Our Bayesian network framework attempts to address this issue by
tackling the disadvantages of cancer microarray data sets (low signal-to-noise ratio,
high dimensional, small sample size, . . . ) by using information from the literature as a
guide.
Finally, the presented framework is complimentary to the methods described in the
previous Chapter for integrating primary data sources. This allows creating a Bayesian
network framework which enables modeling of both primary data sources (i.e. clinical,
microarray) and secondary data sources (e.g. literature abstracts, pathways) to improve
biomedical decision support in cancer or other genetic diseases. Moreover, our
definition of the structure prior makes no assumptions about the nature of prior
information. Therefore other sources of information can be combined with the text
prior (e.g. known protein-DNA interactions from Transfac, known pathways from
KEGG or motif information). Thus, creating a white box framework that visualizes
how decisions are made by a model.
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Chapter 8

Conclusions and Future
Research

“If we knew what it was we were doing, it
would not be called research, would it?”

– Albert Einstein (1879-1955) –

8.1 Conclusions
In this thesis our main goal was to develop a Bayesian network model able to integrate
heterogeneous and high-dimensional data for biomedical decision support. We have
considered two types of data sources that can be integrated in our Bayesian network
framework: primary data and secondary data sources. Primary data were defined
as patient specific while secondary were specific to entities within an omics layer
(e.g. genes, proteins). Three main parts could be distinguished: modeling a single
primary data source, modeling the integration of primary data sources and modeling
the integration of secondary data sources.
In the first part, we presented our results after applying Bayesian network modeling
separately on two primary data sources: clinical and genomic data. In Chapter 4 we
described Bayesian network modeling of clinical data from the IOTA project to predict
the malignancy of ovarian masses. There, we showed that our Bayesian network model
BN1 generalized well to prospectively collected data and had similar performance to
the logistic regression model LR1. Additionally, we showed the usefulness of Bayesian
network modeling by focusing on a complex relationship which can not be easily
modeled with other approaches.
In Chapter 5 we used a special class of Bayesian networks called hidden Markov
models (HMM) to identify common CNVs in ovarian cancer patients with or without a
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mutation in the BRCA1 gene. The results showed that our models were able to identify
biologically interesting pathways that had different copy number in both groups of
patients.
After illustrating modeling of two primary data sources, we focused on the integration
of primary data sources in Chapter 6. We described two cases where we integrated
primary data sources: clinical and microarray data, and microarray and proteomics
data. In both cases the results showed that integrating primary data sources can lead
to better models by improving the predictive performance or generating new biological
hypotheses. Due to the limited data set size our results should be confirmed on larger
multi omics data sets. The main objective was to develop a proof-of-principle for
integrating primary data sources.
Finally, due to the availability of prior knowledge in the form of literature abstracts, we
focused on the integration of secondary data sources in Chapter 7. More specifically,
we investigated whether information from literature abstracts can be integrated in the
structure prior of a Bayesian network. Our results showed that a text prior improved
the performance of a Bayesian network model for predicting the prognosis of cancer
patients.
Figure 8.1 shows an overview of the complete Bayesian network framework for
modeling primary and secondary data sources. Additionally, we indicated possible
applications of our framework, both clinically and biologically. Clinically the
developed models can be used for predictive purposes. This is often called patient
tailored therapy since biological information from the individual tumor is used instead
of treatment decisions based upon empirical knowledge. Secondly, identification of
genes or proteins related to the clinical outcome can lead to new drug targets.
Biologically, the developed models may predict new protein-protein or protein-DNA
interactions. These predictions can be verified experimentally which can lead to new
knowledge and new entries in biological databases. Subsequently, this knowledge can
be integrated again in the framework.
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8.2 Future research
The development of biomedical decision support models able to integrate multiple
omics data sources will become of utmost importance in the next years. We will first
discuss future research directly related to the Bayesian network framework that we
have developed. Secondly, we will discuss the important future challenges for general
biomedical decision support with respect to the omics revolution.

8.2.1 Extensions of the Bayesian network integration framework
The Bayesian network framework that we developed has particular advantages. Firstly,
our framework is to our knowledge one of the first to investigate multi-omics data
integration. Secondly, due to the ability of our framework to integrate secondary data
sources, a huge amount of data becomes accessible for biomedical decision support
which was previously unavailable. We identified two important challenges to extend
it: the integration of secondary data sources and the integration of data from new
technologies.

8.2.1.1 Integration of secondary data sources

Currently, we have only thoroughly investigated the use of literature abstracts as a
secondary data source. This choice was motivated due to the availability of this data
source for a large number of genes. We also investigated protein-protein interactions
from the BIND database [197]. This secondary data source however is extremely sparse
and therefore only has limited effect [198]. Other databases exist containing protein-
protein interactions such as HPRD or IntAct [199]. Moreover tools to integrate multiple
data sources are being developed [200]. Therefore it remains to be investigated if all
aggregated knowledge on protein-protein interactions perhaps combined with protein-
protein interactions from model organisms [76,77] can improve the developed models.
Additionally, other sources of information should be investigated as secondary data
sources (see for example www.pathguide.org for a list of 255 biological databases,
[201]). Examples are pathway databases such as BIOCARTA, KEGG [72] or
reactome [73]. These databases contain detailed experimentally verified information
on important biological pathways and thus constitute known interactions. The main
issue to mine these sources of data is a practical one. Each database has its own
formats and gene or protein identifiers making it cumbersome to integrate information
at the database level. Additionally, automated access to these databases is not always
provided [202]. Recently however efforts have been done to create a standard for
storing pathway information called BIOPAX (www.biopax.org). Additionally, tools
are being developed to mine the data stored in BIOPAX format. This will facilitate
access to biological pathway databases and make them available for use as secondary
data sources in our Bayesian network framework.
Additionally, the combination of many secondary data sources is not straightforward.
Each secondary data source has its own reliability. For example, an experimentally
verified interaction between two proteins should receive a higher confidence compared
to two proteins sharing many terms in literature abstracts. To accomplish this, methods
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should be developed to integrate different secondary data sources taking into account
their reliability.

8.2.1.2 New technologies

In the introduction we described the most mature omics technologies that are currently
available (see Section 1.3). However, new technologies are already on the horizon
such as genome sequencing, DNA methylation, microRNAs, etc. Moreover estab-
lished technologies such as microarrays are continuously being improved to detect
additional complexities of molecular biology. For example exon arrays allow studying
mRNA expression but because this technology contains probes at the exon-level, also
alternative splicing of mRNAs can be studied. Additionally, due to the technological
breakthroughs of sequencing technologies, in the near future it will be possible to
routinely sequence patients [14, 203]. Table 8.1 shows the current cost per megabase
of current Sanger sequencing and four second generation sequencing technologies.
The new technologies are much cheaper thanks to parallelizing the reactions but
the accuracy is much smaller. However, most technology vendors claim significant
decrease in cost and increase in accuracy in the very near future.

The first large scale project to sequence 1000 individuals in cooperation with the

Table 8.1: The cost per megabase of the second generation sequencing technologies
compared to current Sanger sequencing based on data from Shendure and Ji [14].

Technology Cost per megabase Reference
Current Sanger sequencing $500
454 $60 [204]
Solexa $2 [11]
SOLiD $2 [12]
HeliScope $1 [13]

second generation sequencing companies is already underway. In addition, researchers
at Harvard have started the Personal Genome Project (www.personalgenomes.org).
The goal of this project is to sequence regions of the genome known to have especially
high medical or functional significance of volunteers for free. The only requirement
is that the data is released to the public together with a full medical history. Although
many privacy issues are involved, this project potentially can lead to new associations
by matching genomes with medical histories. Currently, a pilot project in 10 volunteers
is ongoing however PGP has approval from Harvard Medical School to include 100,000
new volunteers.
Taken together, the rise of new technologies or improvements of established technolo-
gies will increase, most likely exponentially, the data that will be available for each
patient. This will make the use of biomedical decision support models a necessity and
at the same time this will increase the complexity to discover patterns in biomedical
data due to the curse of dimensionality. Moreover, building models in even higher
dimensional spaces will cause serious strains on computational systems.
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To overcome these difficulties, we believe two important research directions can be
taken. First, due to the rise of new technologies more and more genome-scale projects
will be undertaken. This will increase the number of publicly available data sets
making the integration of prior knowledge in biomedical models even more appealing.
Secondly, algorithms will have to be parallelized to allow results within acceptable time
frames. We have witnessed this evolution in our own work by running the described
algorithms first on a regular desktop, next on a 12-node cluster and finally we used the
high performance cluster of the K.U. Leuven.
The role of supercomputers such as the High Performance Cluster at the K.U.Leuven
is undeniably essential to be able to cope with increasing demands of biomedical
decision support. Supercomputing is required both for processing the raw data and
for model development. Processing the raw data will become increasingly more
difficult on regular computing infrastructure due to the increasing size of omics data
sets. For example, early microarray data sets had relatively low dimensions (i.e.
<10,000 variables and <50 tumor samples) while currently microarray data sets are
steadily increasing with the most recent microarray data sets containing over 50,000
variables and >200 samples. Also other omics have been targeted or existing omics
have been expanded. For example, the exon microarray allows to measure each
exon independently corresponding to 1 million variables per tumor sample profiled.
Secondly, the most recent Affymetrix SNP array contains 1.8 million variables. Finally,
large studies are being conducted such as the expression project for oncology (expO,
www.intgen.org) which is still ongoing and currently contains microarray data of over
2000 patients. Another large study, the welcome trust case control consortium [205],
contains 17,000 patients with 500,000 SNPs profiled per patient. For these data sets,
processing of the raw data is almost not feasible without supercomputing facilities.

8.2.2 The future of biomedical decision support
When looking at the importance of biomedical decision support in general, its influence
in future clinical management of cancer patients should not be underestimated.
Currently, it is unknown which technology and thus which level of molecular biology
is the most relevant for outcome prediction. To be able to assess the omics platform
with the most outcome related information, studies should be designed where multiple
omics technologies are applied on the same tumor samples in sufficiently large number.
We acknowledge that this will substantially increase costs however this is a necessary
investment to move away from costly empirical models to patient tailored therapy. It is
not unthinkable that the best model to predict cancer outcome could be a combination
of two down regulated genes, a methylated gene, a deleted region on a certain
chromosome and the presence of a phosphorylated protein.
We predict that research in biomedical decision support modeling will increase rapidly
in the coming years due to an increase of publicly available multi-omics data sets.
Currently few multi-omics data sets are available which limits the development of
integration methods. However, this will change rapidly due to decreasing cost and
increasing importance of a multi-omics approach for studying diseases such as cancer.
This is evidenced by a recently published study by the Cancer Genome Atlas Research
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Network, releasing a multi-omics data set on glioblastoma (i.e. the most common type
of adult brain cancer) [206]. In this project DNA copy number, gene expression and
DNA methylation were analyzed in 206 glioblastomas. The results showed that an
integrated approach allows a more comprehensive analysis of the molecular basis of
cancer.
To be able to organize similar studies there is a great need to collect biological samples
according to specific protocols. It is clear that few single institutions can achieve
this and that centralized biobanks are required. Together with appropriate sample
collection protocols and standardization, a biobank can enable research projects which
were previously not possible.
Finally, the next generation of clinicians will need appropriate training to accommodate
for this multi-omics revolution. Clinical investigators should be aware of the available
technologies to unlock possibly highly relevant information for future clinical trials
on a larger scale. Additionally, clinicians should be trained to understand biomedical
decision support modeling applied to omics data. This should include concepts from
statistics, mathematics and machine learning. This is necessary such that the next
generation of clinicians is prepared to answer questions when faced with patients
carrying there personal genome on a USB stick. Moreover, clinicians will have to
be able to interpret these data in the context of the results of disease association studies
and translate statistical results in layman’s terms to the patient.
To illustrate that this evolution is nearby, many companies exist that offer genotyping
to the general public for example 23andMe, deCODEme and Navigenics. These
companies do not sequence DNA but probe between 500,000 and 1 million SNPs
for $1000 and essentially look only at 0.02% of the full 6 million data points of the
complete diploid human genome. The first company to actually sequence the complete
diploid genome, Knome, was founded in 2007. For $300,000 you can have your
genome sequenced within 2-3 months. This evolution shows that the integration of
enormous amounts of data is at our doorstep and all stakeholders (i.e. clinicians,
statisticians, bio-informaticians, engineers, etc.) need to prepare for the subsequent
data deluge.
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