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Introduction
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Human Genome
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Human Epigenome
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Cis-regulatory module (CRM)
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Promoter or enhancer sequences

Transcription factor binding site (TFBS) = Motif



Problem statement

• CRM detection
– Very hard combinatorial search problem

• Given 50 motifs, there are 250  combinations

– Previous studies were restricted by computational limit

– Problem of selecting correct coregulated sequences

We want to solve this problem using itemset mining
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Coexpression

ChIP-Seq

Motif Screening
(TRANSFAC)

How is CRM detection performed?

… … … …

CRM
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Combinatorial Search

Position weight 
matrix (PWM)

To find the combination of motifs that occur more frequently in an input set than 
can be expected by chance
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ModuleDigger

An itemset mining framework for the 
detection of cis-regulatory modules

9

Sun et al. 2019 BMC Bioinformatics

Collaboration with Engineering Mathematics, University of Bristol, UK



Input for ModuleDigger

10

0        0        1        …        0

0        1 0 …        0
1 0        1        …        0

0        1        1        …        0

gene 1

gene 2
gene 3

gene k

…

M1 M2 M3 … M66

We only select the best scoring motif instance for each TF



Algorithm of ModuleDigger

11

Zaki & Hsiao et al. 2002 SDM

Frequency constraint
Length of motifset



Algorithm of ModuleDigger

12

To select the biologically most interesting CRMs, we introduce a filter strategy

Gallo et al. 2007 PKDD



Limitations of ModuleDigger

• Difficulty on longer eukaryotes sequences

– 1 motif instance per gene for a TF

• Although faster, but still computational limit

– Because redundancy reducing wasn’t addressed 
during the mining procedure

13



Solutions

• Add proximity constraint to allow for multiple instances

– It’s difficult to implement in classic itemset mining

• Incorporate redundancy reducing during the mining

14



CPModule

Cis-regulatory module detection based 
on constraint programming 

for itemset mining

15

Guns et al. 2010 BIBM
Sun et al. 2011  In Revision Nucleic Acids Res

Collaboration with Computer Science Department of DTAI



Constraint programming (CP)

Model (by user)

Search (by solver)

Variables V
Domains D(v)
Constraints C:   defined on a set of variables

Propagation:     in which a constraint is used to remove values from the domain of variables that would violate it

Branching:        in which a variable is assigned a value from its domain D(v)

16

One of the most efficient general problem solving techniques

De Raedt et al. 2008 KDD



Model

• Variables
– A Boolean variable m_i for every motif

• Indicating whether this motif is part of the motifset

– A Boolean variable s_j for every sequence
• Indicating whether the motifset is a potential CRM in a sequence

– A Boolean variable seqm_ij for every motif i and every 
sequence j
• Indicating whether motif m_i is in the proximity of the motifs in 

motifset on sequence j

• Domains: {0, 1}
• Constraints: defined on the variables (explain latter)

17



Frequency constraint

18

… …

Existing constraint The CRM should occur in at 
least 2 sequences to be 
considered valid

Valid CRM



Proximity constraint

19

Only motif instances that 
occur in each others 
proximity can contribute to 
a valid CRM

… …

60 bp

50 bp

40 bp

40 bp

55 bp

Not existing constraint



Redundancy constraint

20

Existing constraint We found most of the solutions 
are redundant, and most occur 
in exact the same sequences. 

The CRM with more motifs will 
be most specific for the 
sequence set and most 
statistically significant 

Removing redundant CRMs drastically 
decreases the computation time 
(closeness in itemset mining)

Selected one



Propagation of the constraints

21

50 bp

50 bp

Binary matrix dynamically updated

Filled instances-> assigned a value 1
Unfilled instances-> assigned a value 0

propagation

We focus on the propagation of the proximity constraint, we propagate 
changes of the motif variables to the seqm_ij variables. 

m_i

Whether motif m_i is in the proximity of the motifs in motifset on sequence j?



CPModule

Generic framework GECODE: 
Generic Constraint Development Environment
http://www.gecode.org/

Guns et al. 2010 BIBM
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Potential CRM

Frequency Constraint = 2 seq
Proximity Constraint = 55 bp
Redundancy Constraint

60 bp

40 bp

… …

50 bp

55 bp

135 135 1345

1345 1345 1356 12345

1345 123456 1356 123452456

Invalid CRM

2456135

135

245

135

135



Enrichment score calculation

• Similar to ModuleDigger

– Because now the solutions we have are non-
redundant, thus we can directly calculate the 
score for each solution and rank them accordingly

23



Benchmark on synthetic data

• To simply test the combinatorial search part

– Xie et al. 2008 Genome Res
• 22 sequences inserted with 3 motif instances

• Maximal distance between the three TFBSs is 164 bp

• Each sequence is 1000 bp in length

– 516 TRANSFAC vertebrate PWMs
• TFs from the same protein family are very similar

• MotifComparison

24

Coessens et al. 2003 Nucleic Acids Res



Correlation coefficient

• Motif level and nucleotide level CC

• Based on the data
– TP: motif/nucleotide was predicted and it is part of the CRM

– FP: motif/nucleotide was predicted but it isn’t part of the CRM

– FN: motif/nucleotide wasn’t predicted and it’s part of the CRM

– TN: motif/nucleotide wasn’t predicted and it isn’t part of the CRM

CC lies in the range of -1 to +1. +1 indicates the prediction 
corresponds to the correct answer

))()()(( FNTNFPTPFPTNFNTP

FPFNTNTP
CC






25

Klepper et al. 2008 BMC Bioinformatics



Effect of proximity on performance
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Figure 1: Effect of the proximity constraint on the quality of the results.

The binding sites were at most 164 bp from each other
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Benchmark with well performing tools

• Benchmark with Cister, Cluster-Buster, 
ModuleSearcher and Compo

– The performance was assessed by comparing the best 
scoring solution of each method with the known true 
solutions

27

Cister Cluster-Buster ModuleSearcher Compo CPModule

mCC 0.16 0.05 / - 0.57

nCC 0.23 0.23 / - 0.55

Table 1: Comparison of CRM prediction algorithms

“/” indicates termination by lack of memory, “-” indicates the algorithm was still running after 2 days.
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Each set sampled 10 times

CPModule has performances similar 
to state of the art algorithms on a 
synthetic dataset BUT is able to deal 
with much larger sequence sets

Run with increasing number of PWMs
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Figure 2: Effect of noise on the motif and nucleotide correlation



Unveiling combinatorial regulation of 
mouse embryonic stem cells through 

the combination of ChIP information and in 
silico CRM detection

Sun et al. 2011 In Revision

29

Application



Motivations

• Combine CRM detection with ChIP-Seq

– Largely reduce the regions of the binding sites of 
the assayed TF

– Search for CRMs that at least contain one TFBS for 
the assayed TF (Query-based way)

30



Five ChIP-Seq dataset and input

• Dataset
– ChIP-Seq binding peaks for 5 key transcription factors: 

KLF4, NANOG, OCT4, SOX2 and STAT3 involved in self-
renewal of mouse embryonic stem cells (ESCs)

• Input
– Sequences

• Top 100 binding peaks for each of the assayed TF 
• 500 bp sequence centered around each of the top 100 binding 

peaks

– 517 PWMs
• 516 TRANSFAC PWMs
• 1 KLF4 PWM from literature

31

Chen et al. 2008 Cell
Won et al. 2010 Genome Biology
Wilbanks et al. 2010 PLoS ONE
Whitington et al. 2009 Nucleic Acids Res
Jiang et al. 2008 Nature Biotechnology



Motif screening

Figure 3: A stringent screening and a non-stringent screening.
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Assessing the effect of screening on 

– Sensitivity: number of true sites recovered

– Precision: number of false positives in the 
screening

Use ChIP-Seq data as benchmark

Assess sensitivity: each of the 
sequences located around the top 100 
binding peaks should contain a binding 
site for the assayed TF

Assess precision: the average number of 
binding sites per TF other than the 
assayed one should be restricted (on 
average <1 as not all TF should have a 
site)



Motivation for epigenetic filtering

• Recent study shows

– A lower binding specificity but a stable chromatin 
stability can also lead to the binding of TF

Whitington et al. 2009 Nucleic Acid Research
Li et al. 2011 Genome Biology
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Motivation for epigenetic filtering for 
embryonic stem cells

Nucleosome

H1

Linker DNA

Potential TFBS
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Motivation for epigenetic filtering for 
embryonic stem cells

Nucleosome

H1

Linker DNA

TF

35

Potential TFBS



Motivation for epigenetic filtering for 
embryonic stem cells

TFNucleosome

H1

Linker DNA

TF
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Potential TFBS



Motivation for epigenetic filtering for 
embryonic stem cells

TFNucleosome

H1

Linker DNA

TF
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Potential TFBS

TF



Epigenetic scores

For each potential TFBS (except for the assayed TF), we calculate

• Nucleosome occupancy
– Nucleosome occupancy score

• First assign a probability to each base pair position of the TFBS using a prediction model
• The nucleosome occupancy score for TFBS was calculated as the geometric mean of the 

probabilities at all positions of the potential TFBS

• DNA methylation level
– GC dinucleotide score

• The fraction of GC dinucleotides within a window of 50 bp centered around the TFBS

– GC content score
• The fraction of G or Cs within a window of 50 bp centered around the TFBS

Ernst et al. 2010 Genome Research
Ramsey et al. 2010 Bioinformatics
Xi et al. 2010 BMC Bioinformatics 
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Choosing thresholds for epigenetic filtering
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(1.7 – 1.2) x 100sequences x 517pwms = 258500TFBSs

Figure 4:  Effect of the nucleosome occupancy score filtering thresholds on motif 
screening results.



Choosing thresholds for epigenetic filtering
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Figure 5: Effect of the GC content filtering thresholds on motif screening results.
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Parameter settings for CPModule

• Parameter settings
– Start our analysis by setting 150 bp as the proximity constraint, 

and gradually step wisely increasing 50 bp till 400 bp

– Frequency constraint was set at 60%

• CRM selection
– Only the first detected CRM that consists of the assayed TF will 

be selected

41



Detected CRMs in mouse embryonic 
stem cell

42

ChIP-Seq-
assayed TF

CRM Rank Frequency
constraint

Cross 
validation

Proximity 
constraint (bp)

Number of CRMs

All Query-
based

All Query-
based

KLF4 KLF4, STAT4 143 2 60% 40.00% 300 147 3
NANOG NANOG, OCT1 6846 4 61% 70.49% 300 6868 17

NANOG, STAT3 14017 10 60% 25.00% 350 14033 26
OCT4 OCT4, STAT1, [XFD2, 

STAT4, STAT6]
5 5 63% 11.10% 150 5068 613

SOX2 SOX2, OCT4 430 1 63% 79.40% 150 14180 22
SOX2, STAT3, [CDXA, 

PAX2, STAT5A]
61807 24 60% 23.33% 250 117006 189

STAT3 STAT3, OCT4, [STAT1, 
STAT5A, STAT6]

1 1 61% 24.59% 150 1366 20

Table 2: CRMs obtained with CPModule with non-stringent screening and filtering for non-assayed TFs



Detected interactions between the 5 
TFs in mouse embryonic stem cell

43

Loh YH et al., 2006, Nature Genet

SOX2

STAT3

KLF4

NANOGOCT4

Papapetrou EP et al., 2009, PNAS



Top 3 ranked CRMs

44

Assayed 
TF

Proximity 
constraint (bp)

Rank Frequency
constraint

CRM Reference
All Query-based

KLF4 300 84 1 60% KLF4, TBP More details see below
143 2 60% KLF4, STAT4 (Bourillot&Savatier 2010)
147 3 61% KLF4, CAP Not available or no comment

NANOG 300 6465 1 62% NANOG, TTF1 More details see below
6827 2 61% NANOG, BRCA More details see below
6828 3 63% NANOG, FAC1 More details see below

350 13615 1 61% NANOG, HOXA3 More details see below
13863 2 63% NANOG, TTF1 More details see below
14002 3 60% NANOG, HELIOSA More details see below

OCT4 150 1 1 60% OCT4, HMGIY, ELF1, XFD2 (John et al.,1995;Leger et al.,1995)
2 2 63% OCT4, HMGIY, ELF1, CDXA (John et al.,1995;Leger et al.,1995)
3 3 60% OCT4, PAX2, HMGIY, ELF1, CDXA (John et al.,1995;Sun et al.,2008;Gupta et al., 2006)

SOX2 150 430 1 63% SOX2, OCT4 (Kuroda et al.,2005)
2821 2 60% SOX2, CDXA, AR Not available or no comment
4662 3 62% SOX2, CDXA, CAP1 Not available or no comment

250 2514 1 60% SOX2, OCT4, CDXA, LEF1 (Kurado et al.,2005)
4026 2 60% SOX2, OCT4, PAX2, LEF1 (Kurado et al.,2005)
5561 3 60% SOX2, OCT4, PAX2, SRY (Kurado et al.,2005)

STAT3 150 1 1 61% STAT3, OCT4, STAT1, STAT5A, STAT6 (Hall et al., 2005)
2 2 61% STAT3, OCT4, STAT6, STAT5A (Hall et al.,2005)
3 3 60% STAT3, OCT4, STAT5A, STAT6 (Hall et al.,2005)

Table 3: Top three ranked CRMs for each of the five assayed TFs



Literature support for the involvement 
of the retrieved TFs in functions 

related to ESC biology
• Human TBP protein increases anchorage-independent growth of cells (Johnson et al., 2003).
• STAT4 activation is involved in differentiation of type 1 helper T cells (Farrar et al., 2000).
• CAP1 has a role in apoptosis (Wang et al., 2008).
• TTF1 is involved in lung morphogenesis (Hosgor et al., 2002).
• HELIOS is expressed in the earliest hematopoietic sites of the embryo (Kelley et al., 1998).
• HMGA1 affects embryonic stem cell lymphohematopoietic differentiation (Battista et al., 2003).
• FOXI1 genetic and biochemical data suggest a central role in embryonic development for genes encoding forkhead

proteins (Pierrou et al., 1994).
• ELF1 plays an important and non-redundant role in the development and function of NKT cells (Choi et al., 2010).

Homozygous knockout of ELF in mice affects development of heart, brain, liver and gastrointestinal tract (Tang et
al., 2003).

• CDX1 is involved in axial patterning and intestinal cell differentiation (Beck et al., 2010 ,Park et al., 2009).
• AR is required for male embryonic sexual differentiation (Holdcraft et al., 2004).
• LEF1 regulates lineage differentiation of multipotent stem cells in skin (Merrill et al., 2001). Mouse LEF1 is involved

in differentiation of paraxial mesoderm and morphogenesis of embryonic limb (Calceran et al., 1999).
• PAX2 is involved in nephric lineage specification (Bourchard et al., 2002) and urogenital development (Torres et al.,

1995).
• SRY is the master switch in mammalian sex determination (Kashimada&Koopman 2010).
• The JAK1-STAT1-STAT3 pathway promotes proliferation and prevents premature differentiation of myoblasts (Sun

et al., 2007).
• STAT5 is required for embryonic thymocyte production, TCRgamma gene transcription, and Peyer's patch

development (Kang et al., 2004). STAT5 promotes multilineage hematolymphoid development in vivo through
effects on early hematopoietic progenitor cells (Snow et al., 2002).

• STAT6 protein is necessary for development of T-helper cell (Wurster et al., 2000).
45



Literature support for the CRMs

• KLF4-TBP: We could not find direct literature support for the interaction between KLF4 and TBP, but TBP is a
general TATA box-binding protein (Bertolino&Singh 2002), making the interaction is plausible.

• NANOG-TTF1: Recent studies in mouse models have demonstrated that SOX2 regulates airway epithelium
differentiation and that SOX2 and thyroid transcription factor TTF1 are modulated in concert during the course of
tracheal and esophageal development (Que et al., 2007). As NANOG at least during embryonic stem cell
development belongs to the same regulatory network as SOX2, the interaction of NANOG with TFs that are also
interaction partners of SOX2 is possible.

• NANOG-BRCA: Roles of BRCA in both homologous recombination and nonhomologous end joining DNA repair
have been shown (Shafee et al., 2008; Farmer et al., 2005). Such function of BRCA might also play a role during the
self-renewal process to repair DNA damage.

• NANOG-FAC1: The putative transcriptional regulator FAC1 is expressed in embryonic and extraembryonic tissues
of the early mouse conceptus. Study showed FAC1 is essential for trophoblast differentiation during early mouse
development (Goller et al., 2008). Thus there might be an interaction between NANOG and FAC1.

• NANOG-HOXA3: As we known, HOXA3 is involved in wound repair (Mace et al., 2009), so it might interact with
NANOG in the self-renewal process.

• SOX2-CDXA: Binding of homeobox domain from CDX1 protein and SOX2 protein was shown to occur in a system of
purified components (Beland et al., 2004). Although we identified a module with cdxA, cdxA and cdx1 belong to
the same family and have very similar motif models.

• STAT3, STAT6, STAT1: Binding of human STAT3 protein and human STAT6 protein occurs (2-hybrid assay) (Ravasi et
al., 2010). STAT1 and STAT3 can form heterodimers (John et al.,1995; Levy&Darneel 2002). Note however that with
the STAT motif models it is difficult to make the distinction between the different STAT members.
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Ingenuity pathway analysis of the 
retrieved TFs

For the 21 transcription factors in the list of predicted CRMs that could be
mapped to Ingenuity Pathways (AR, BPTF, BRCA1, CAP1, CDX1, ELF1, FOXI1,
HMGA1, HOXA3, IKZF2, LEF1, PAX2, SPTBN1, SRY, STAT1, STAT4, STAT6,
STAT5A, TBP, TTF1, LEF1), we searched for known functions involving at least
half of the TFs in the set

Cellular Growth and Proliferation (AR, BRCA1, CDX1, ELF1, HMGA1, HOXA3, IKZF2, LEF1, PAX2,
SPTBN1, SRY, STAT1, STAT4, STAT6, STAT5A)
Cell Death (AR, BPTF, BRCA1, CDX1, FOXI1, HMGA1, HOXA3, LEF1, PAX2, STAT1, STAT4, STAT6,
STAT5A, TBP, TTF1)
Cancer (AR, BRCA1, CDX1, HMGA1, HOXA3, IKZF2, LEF1, PAX2, SPTBN1, STAT1, STAT6, STAT5A)
Cellular Development (AR, BRCA1, CDX1, HMGA1, LEF1, PAX2, SRY, STAT1, STAT4, STAT6, STAT5A)
Tissue Morphology (AR, BRCA1, CDX1, FOXI1, HOXA3, LEF1, STAT1, STAT4, STAT6, STAT5A)
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Conclusions

• Powerful combinatorial search strategy based on constraint 
programming for itemset mining
– Handle much larger dataset comparing with previous tools

– Open up new application of combining CRM detection with ChIP data
• Unveil the combinatorial regulation

• Help biologists with the design of consequent ChIP experiment

• Potential applications
– Combination of chromatin marks

• Chromatin marks may act cooperatively to prepare chromatin for transcriptional
activation (Zhang et al. 2008, Nature Genetics, Ernst&Kellis 2010, Nature
Biotechnology)

– Combination of single nucleotide polymorphisms (SNPs)
• Coulet et al. 2007, BMC Bioinformatics

– … …
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