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Preface

Ever since I was little, I have been fascinated with computers and programming.
I started my journey in the digital realm as an avid Digger player on a
now-prehistoric 8086 MS-DOS PC, moved on to study computer science and
mathematical modelling and finally ended up specializing in machine learning
to design a screening tool for diabetes. What a long, strange trip it’s been . . .

Before I started my Master’s, I never anticipated becoming a PhD student, at
least partly due to my ignorance about what scientific research actually means.
Now, at the end of my doctoral studies, I am happy to reflect on one of the best
choices of my life. The past five years were inspiring, challenging and rewarding.
I am proud to have worked on various meaningful projects and of the promising
results we obtained through joint efforts involving many intelligent, creative
and fun researchers. I feel priviliged to be a small cog in the giant machine that
is scientific research along with so many talented, passionate people.

This thesis summarizes my research work as a PhD student at the STADIUS
lab of the Dept. of Electrical Engineering (ESAT) of KU Leuven. My work was
done in close collaboration with the National Alliance of Christian Mutualities
(NACM), the Dept. of Clinical and Experimental Endocrinology of UZ Leuven
and the Dept. of Computer Science of KU Leuven.

First, I want to thank my promotors Bart De Moor and Frank De Smet for
making the project happen and for giving me the freedom to explore different
avenues and to define my own research focus. In particular, Frank’s help and
guidance throughout the project has been invaluable, especially during the
initial phases. Secondly, I am grateful to all my supervisors for their guidance
and input in the project. Finally, I want to thank all jury members for their
highly constructive comments on my work and for their suggestions on how to
improve it further. I have learned so much from all of you.

My research would have been impossible without the medical expertise of Profs.
Chantal Mathieu and Pieter Gillard. Thank you for all your input and for
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patiently teaching me about the key aspects of diabetes and its treatment. I
am proud to have collaborated with you, and I have always felt flattered by
your enthusiasm about the project and the results we obtained.

I am grateful to have been able to learn about machine learning from many
talented professors and colleagues. First, I would like to thank Prof. Johan
Suykens for his invaluable input in various machine learning aspects and
especially for helping me get on track during the initial phase of the project.
Thanks to Prof. Yves Moreau for organizing group meetings which taught me a
great deal about bioinformatics and for involving me in various projects. Finally,
I feel blessed by the collaboration with Prof. Jesse Davis, which taught me a
lot about expressing complex ideas and the importance of rewriting until an
idea is explained just right.

I want to thank everyone at STADIUS for making the lab an inspiring
workplace. Thanks to all my current and former office buddies for the friendships,
collaborations and (most importantly?) the lunch breaks! First, thanks to
Jaak and Dusan for being such productive coauthors. Next, thanks to Nico,
Dusan, Arnaud and Yousef for all the interesting discussions, Gorana for (force?)
feeding me cookies and Oliver for his endless supply of bad puns. Thanks to all
BIOI members for making the past few years a fantastic experience. I am also
grateful to Inge for her help in writing and managing project proposals. The
administrative support of Ida, Elsy, John and Wim has been fantastic, as was
the technical support by Maarten and Liesbeth.

I received a lot of help from many people at CM and hence I want to thank
everyone there for the pleasant and productive collaboration. I would like to
specifically show my appreciation to Michael Callens for coordinating the project
and advocating in its favor. Thanks also to Koen Cornelis, Bernard Debbaut
and Frie Niesten for enlightening me about different aspects of Belgian health
insurance and the database infrastructure of CM.

I am grateful to the Flemish Institute of Science and Innovation (IWT) for
granting me a doctoral scholarship. Additionally, I feel priviliged to have been
able to take part in various workshops and entrepeneurial training sessions
organized by iMinds and KU Leuven Research & Development.

I want to thank all fellow teaching assistants of courses I’ve been involved in for
the nice teamwork. I specifically want to thank Devy for the fun collaboration
on the control theory sessions and Nico for making the management of an
army of job students enjoyable. Finally, kudos to Mauricio for his incredible
dedication to teaching, evidenced by his excellent coordination of the course of
CACSD and all the effort that went into setting up the online learning platform.
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I owe a debt of gratitude to all my friends, and specifically to Alexander
Vandersmissen for showing interest in whatever I do and patiently listening to
various rants when their time is due. Thank you for only making moderate
amounts of fun of me. Your understanding, support and advice have been
extremely motivating and inspiring.

I want to thank my parents for their incessant patience, support and trust
throughout my life. I am grateful to my entire family, which has recently
expanded into a global conglomerate.

In closing, I would like to express my deepest gratitude to my maganda wife
Joanne. Thank you for your patience and continuous support through the
difficult and busy phases of my doctoral studies. You have always kept your
faith in me, even when I doubted myself. You are my rock.
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Abstract

Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia,
which may cause serious harm to many of the body’s systems. Diabetes is a
deadly pandemic which presents a significant burden on healthcare systems
worldwide, and will continue to do so as its global prevalence rises rapidly
(particularly type 2 diabetes). In developed countries, the rising prevalence is
primarily driven by population aging, lifestyle changes and greater longevity
of diabetes patients. Diabetes can be managed effectively when detected early.
Unfortunately, early detection proves difficult as the time between onset and
clinical diagnosis may span several years. Furthermore, estimates indicate that
over one third of diabetes patients in developed countries are undiagnosed.

We investigated the potential of Belgian health expenditure data as a basis to
build a cost-effective population-wide screening approach for (type 2) diabetes
mellitus, aspiring to improve secondary prevention by speeding up the diagnosis
of patients in order to initiate treatment before the disease has caused irrevocable
damage. We used health expenditure data collected by the National Alliance
of Christian Mutualities – the largest social health insurer in Belgium. This
data comprises basic biographic information and records of all refunded medical
interventions and drug purchases, thus providing a long-term longitudinal
overview of over 4 million individuals’ medical expenditure histories.

Screening was formulated as a binary classification task, in which diabetes
patients represent the positive class. Due to the nature of the problem and
limitations of health expenditure data, we were unable to identify a set of known
negatives (patients without diabetes). Hence, we had to learn classifiers from
positive and unlabeled data. During this project we made two contributions to
this subdomain of semi-supervised learning: (i) a novel learning method which
is robust to false positives and (ii) an approach to evaluate classifiers using
traditional metrics without known negatives in the test set. Additionally, we
mapped the survival of patients starting various antidiabetic pharmacotherapies
and developed two open-source machine learning packages: one for ensemble
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learning and another to automate hyperparameter search.

We built a screening method with competitive performance to existing state-of-
the-art approaches. This exceeded our expectations, since health expenditure
data omits most info about the typical risk factors used by other screening
methods (BMI, lifestyle, genetic predisposition, . . . ). As such, the combination
of health expenditure data and additional information about risk factors is a
promising avenue for future research in screening for diabetes mellitus. Finally,
our approach has a very low operational cost since we only used readily-available
data, which effectively removes one of the key barriers of population-wide
screening for diabetes.



Beknopte samenvatting

Diabetes mellitus is een metabolische stoornis die gekarakteriseerd wordt
door chronische hyperglycemie, hetgeen zware schade kan veroorzaken aan
verschillende biologische systemen in het lichaam. Diabetes is een dodelijke
pandemie die leidt tot een enorme belasting op de wereldwijde gezondheidszorg.
De impact van diabetes zal verder toenemen in de komende jaren aangezien
de globale prevalentie nog steeds stijgt, in het bijzonder deze van type 2
diabetes. In ontwikkelde landen is de stijgende prevalentie voornamelijk
te wijten aan vergrijzing, veranderingen in levensstijl en langere overleving
van diabetespatiënten. Wanneer diabetes vroeg gedetecteerd wordt, kan de
ziekte goed behandeld worden, maar vroegtijdige detectie blijkt problematisch
aangezien de periode tussen de ontwikkeling en diagnose van diabetes
verschillende jaren kan duren. Verder is naar schatting één derde van de
type 2 diabetes-patiënten niet gediagnosticeerd in Westerse landen.

Wij hebben het potentieel onderzocht om een kosteneffectieve, nationale
screening-methode voor (type 2) diabetes mellitus te ontwikkelen op basis
van Belgische ziekenfondsgegevens. Dit zou een meerwaarde kunnen betekenen
in secundaire preventie als we hiermee sneller patiënten kunnen diagnosticeren
en vervolgens behandelen voor de ziekte onherroepelijke schade heeft aangericht.
We maakten gebruik van ziekenfondsgegevens die verzameld werden door de
Landsbond der Christelijke Mutualiteiten (CM) – het grootste ziekenfonds in
België. Deze data omvat simpele biografische informatie en records van alle
terugbetaalde medische interventies en aankopen van medicijnen, wat in zijn
geheel een longitudinaal overzicht over lange termijn geeft van de medische
uitgaven van de meer dan 4 miljoen CM-leden.

Screening werd geformuleerd als een binaire klassificatie-taak, waarin diabete-
spatiënten de positieve klasse voorstellen. Door de aard van het probleem
en beperkingen van ziekenfondsgegevens konden we geen verzameling van
gekende negatieven bekomen (dit zijn mensen die zeker geen diabetes hebben).
Daarom hebben we modellen moeten opstellen op basis van positieve en niet-
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gelabelde data. Tijdens dit project hebben we twee bijdragen geleverd aan
dit subdomein van semi-supervised learning: (i) een nieuwe leermethode die
robuust is tegen valse positieven en (ii) een aanpak om de performantie van
modellen te evalueren via traditionele metrieken zonder gekende negatieven in
de test set. Verder hebben we de overleving van patiënten die startten met
verscheidene glucoseverlagende farmacotherapiëen in kaart gebracht en twee
open source pakketten ontwikkeld voor machine learning: één voor ensemble
learning en één om hyperparameter-optimalisatie te automatiseren.

De ontwikkelde screening-methode is qua performantie competitief met de
beste bestaande alternatieven. Dit overtrof onze verwachtingen, aangezien
ziekenfondsgegevens weinig tot geen informatie bevatten over een aantal typische
risicofactoren die aan de basis liggen van de meeste bestaande screening-
methodes (BMI, levensstijl, genetische aanleg, . . . ). Hieruit volgt dat de
combinatie van ziekenfondsgegevens en bijkomende informatie over risicofactoren
een interessante piste is voor toekomstig onderzoek in screening voor diabetes
mellitus. Tenslotte heeft onze aanpak een zeer lage operationele kost omdat
de methode volledig gebaseerd is op gegevens die reeds ter beschikking staan,
hetgeen een oplossing biedt aan één van de belangrijkste barrières voor nationale
screening-methodes voor diabetes.
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Chapter 1

Introduction

In this work we explored the ability of screening for (type 2) diabetes mellitus
based on Belgian health expenditure data from a machine learning perspective.
The thesis is organized as a collection of papers concerning various aspects
related to this application.1 This chapter provides some context of the project,
including the medical background of diabetes and its treatment, a summary of
the Belgian health insurance system and this project’s data analysis challenges.

This work aligns with the overall trend towards eHealth and the rising use of
all sorts of data for evidence-based medicine. Our work is the first data-driven
medical application based on health expenditure records and demonstrates the
potential use of this data in clinical applications that might improve patient
outcomes while simultaneously reducing healthcare costs. Building useful
medical applications based on health expenditure data can be considered a
modern interpretation of one of the key missions of Belgian mutual health
insurers as defined by law, namely to promote the physical, psychological and
social well-being of their members [5].

To meet our objective we tackled various machine learning challenges, of both
theoretical and practical nature. This work contains contributions to machine
learning, including open-source implementations of all proposed methods, and a
detailed description of our steps towards building a reliable screening approach
for type 2 diabetes that can be applied on a population-wide scale.

We will first briefly introduce diabetes mellitus in Section 1.1. We proceed
to describe early detection and intervention of type 2 diabetes (T2D) – the
most common variant of diabetes mellitus – in Section 1.2. Next, the Belgian

1Some chapters have minor differences compared to the papers on which they are based.
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health insurance landscape is described in Section 1.3. Subsequently, Section 1.4
contains a discussion of the main challenges of this project from a machine
learning perspective to explain the necessity of each aspect of our research.
Finally, Section 1.5 summarizes the structure of the text and indicates how all
chapters (papers) are related to each other.

1.1 Diabetes mellitus

Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia,
which is primarily caused by insufficient insulin secretion and/or insulin
resistance [10]. The worldwide incidence of diabetes has increased dramatically
over the last century due to changes in human behaviour and lifestyle [290, 61].
Diabetes is one of the main threats to human health world wide [149, 290, 289]
and is projected to be the 7th leading cause of death by 2030 [174]. Some key
facts related to diabetes mellitus are summarized in the diabetes atlas made by
the International Diabetes Federation (IDF) (Figure 1.1).

An overview of the medical background of diabetes mellitus is described in
Appendices 1.A to 1.E, which discuss various aspects of the disease, namely
the underlying biological problem, common complications and comorbidities, a
classification of diabetes based on etiology, the prevalence and burden of the
disorder and finally treatment approaches with an emphasis on pharmacotherapy.
We will focus on type 2 diabetes (T2D) in the remainder of the text. T2D
accounts for about 90% of diabetes mellitus patients, but early detection of this
highly prevalent disease poses significant challenges to contemporary medicine.

1.2 Early detection and intervention in type 2
diabetes

Studies have convincingly shown that early detection and treatment of T2D
can prevent or delay complications of the disease [120, 93, 83, 107, 134, 102,
87]. Additionally, treatment of early-stage T2D is often relatively simple and
cheap (e.g. lifestyle changes, often specifically targetted towards weight loss)
compared to the treatment of progressed T2D, which typically involves strict
pharmacological therapy along with the treatment of potential complications
[196, 257, 83, 286], indicating the value of early detection. The successive steps
of a typical diagnostic process are shown in Figure 1.2.
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full population
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specificity & precision
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Figure 1.2: The stages of the medical diagnostic process: screening is used to
identify patients at high risk, which are then forwarded to diagnostic tests. The
cost and invasiveness of tests increase as patients move down the funnel, hence
each step aims to remove negatives while retaining positives.

Despite its widely-recognized importance, early detection of T2D proves to be
problematic, as one fourth up to one third of T2D patients are estimated to be
undiagnosed in developed countries [4, 30, 15] and typically years pass between
the onset of T2D and its clinical diagnosis [127]. In fact, the clinical diagnosis of
T2D often follows signs of serious complications, which have developed during
the latent stage of the disease [210, 124, 136, 15].

Diagnostic inertia for T2D arises in several ways. First, the disease may remain
asymptomatic for many years [11], during which unmanaged hyperglycemia
may induce serious and irreversible development of micro -and macrovascular
complications [100, 30]. Second, health and healthcare information related to a
specific patient is often fragmented across databases of individual caregivers and
other medical stakeholders. This can induce situations in which various subtle
symptoms of diabetes are presented to multiple caregivers, but the diagnosis
remains elusive because each individual caregiver receives too little information
to spot the slumbering slayer. Finally, universal screening for T2D is cost-
prohibitive [270, 93], though many organizations advise opportunistic screening
of high-risk subgroups [276, 11, 93, 15].

Certain metabolic abnormalities typically precede T2D and can therefore be
used as proverbial miners’ canaries by screening approaches, specifically:

• Impaired fasting glucose (IFG), also known as prediabetes, is a condition
in which fasting blood glucose levels are consistently higher than normal,
but not high enough to warrant a diabetes diagnosis. Some patients with
IFG can also be diagnosed with impaired glucose tolerance.
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• Impaired glucose tolerance (IGT) is a prediabetic state of hyperglycemia
which may precede T2D by many years. IGT is detected as an abnormal
response to the oral glucose tolerance test (OGTT, cfr. Section 1.2.1).
Specifically, patients with IGT exhibit raised glucose levels after 2 hours
compared to healthy people, but not high enough to qualify for T2D.
Patients with IGT present a higher risk for diabetes than patients with
IFG. Approximately 40% of subjects with IGT progress to diabetes over
the next decade [290]. Additionally, subjects with IGT have heightened
risk of macrovascular disease compared to subjects with IFG [255, 260].

Both IFG and IGT are associated with insulin resistance and increased risk
of diabetes and cardiovascular pathologies, with IGT being more strongly
associated with cardiovascular outcomes [260]. Although the transition of IFG
and/or IGT to diabetes may take many years, the majority of individuals with
these pre-diabetic states eventually develop diabetes [257, 83, 183]. Additionally,
the risk of complications is known to commence many years before the onset of
clinical diabetes [120, 290].

In the remainder of this Section we will discuss current diagnostic tests, existing
screening programmes and the Belgian situation and recommendations.

1.2.1 Diagnosis of diabetes

The gold standard to diagnose hyperglycemia is the oral glucose-tolerance
test (OGTT), which determines how quickly glucose is cleared from the blood
[10, 193]. In this test, patients are administered glucose after fasting for 12
hours and afterwards the patient’s blood glucose levels are measured, sometimes
at multiple intervals, but typically after 2 hours [4].

Type 1 diabetes has a sufficiently pronounced clinical onset characterized by
acute, extreme elevations in glucose concentrations combined with symptoms
which make its diagnosis fairly unambiguous and typically timely [70]. Type
2 diabetes, however, has a more gradual onset making its diagnosis less
straightforward and causing the diagnostic criteria to be debated regularly
[193, 70]. The diagnostic criteria as currently recommended by the WHO are
listed in Table 1.1.

The OGTT was widely agreed upon as diagnostic test, though in 2003 the
American Diabetes Association (ADA) modified its recommendations in favor
of using fasting plasma glucose to diagnose asymptomatic T2D [193]. More
recently, the use of the A1C assays for diagnosis was considered, though current
point-of-care A1C assays were considered insufficiently accurate [70].



6 INTRODUCTION

• impaired fasting glucose (IFG):

– fasting plasma glucose ≥ 6.1 and < 7.0 mmol/l, and
– 2-hour plasma glucose < 7.8 mmol/l (if measured).

• impaired glucose tolerance (IGT):

– fasting plasma glucose < 7.0 mmol/l, and
– 2-hour plasma glucose ≥ 7.8 and < 11.1 mmol/l.

• diabetes:

– fasting plasma glucose ≥ 7.0 mmol/l, or
– 2-hour plasma glucose ≥ 11.1 mmol/l.

Table 1.1: Diagnostic criteria for diabetes and related metabolic abnormalities
as recommended by the WHO [193].

1.2.2 Existing screening and prescreening approaches

The clinical inertia in diagnosing type 2 diabetes is being tackled by a wide
variety of screening and prescreening approaches, which commonly rely on
information that is already available or relatively easy to obtain. The main
method to implement such screening methods is via questionnaires, possibly
paired with clinical information such as parameters recorded in patients’
electronic health records or by general practioners.

The Cambridge Risk Score (CRS) was developed to assess the probability of
undiagnosed T2D based on data that is routinely available in primary care
records, including age, sex, medication use, family history of diabetes, BMI
and smoking status [114], The CRS and comparable scores have been shown
to be useful on multiple occasions [24, 114, 198, 245]. The FINDRISC score is
based on a 10-year follow-up using age, BMI, waist circumference, history of
antihypertensive drugs and high blood glucose, physical activity and diet and is
used to predict drug-treated diabetes [163]. The strongest reported predictors
in this study were BMI, waist circumference, history of high blood glucose and
physical activity. Glümer et al. [109] developed a risk score based on age, sex,
BMI, known hypertension, physical activity and family history of diabetes. The
German diabetes risk score is based on age, waist circumference, height, history
of hypertension, physical activity, smoking, and diet [227]. More complex risk
scores include various clinical parameters [129, 247, 175].
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1.2.3 Situation in Belgium

The IDF estimates over 170,000 undiagnosed diabetes patients in Belgium [2].
The Diabetes Liga estimates that currently one out of three T2D patients are
undiagnosed, that one out of ten Belgians will have type 2 diabetes in 2030
and that 8% and 6.5% of the Belgian population currently has diabetes or
prediabetes, respectively [4]. Domus Medica2 advises against population-wide
screening, though it recommends case finding in high-risk subpopulations [271],
for instance via the risk factors listed in Table 1.2.

• Persons of 18–45 years of age that meet one of the following conditions:

– prior history of gestational diabetes
– prior history of stress-induced hyperglycemia

• or two of the following conditions:

– prior history of giving birth to a baby of over 4.5 kg
– diabetes in first-line relatives (mother, father, sister, brother)
– BMI ≥ 25 kg/m2

– waist circumference > 88 cm (for women) or > 102 cm (for men)
– treated for high blood pressure or with corticoids

• Persons of 45–64 years of age that meet one of the conditions listed above.

• Persons above 64 years old, regardless of additional risk factors.

Table 1.2: High-risk subpopulations according to the Diabetes Liga [4].

The Belgian Scientific Institute of Public Health (WIV-ISP) reports that
screening efforts are increasing in Belgium, but also indicates a need for risk
stratification that goes beyond selecting all patients above a given age [132].

1.3 Belgian mutual health insurance

The Belgian health care insurance is a broad solidarity-based form of social
insurance. Mutual health insurers are the legally-appointed bodies for managing

2A non-profit organization of general practionners that focuses on preventive medicine.
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and providing the Belgian compulsory health care and disability insurance. The
Belgian sickness fund law of 1990 states that a main goal of mutualities is to
promote the physical, psychological and social well-being of their members [5].

Joining one of several mutual health insurers or, alternatively, the relief fund for
sickness and disability insurance3 is obliged for anyone who (i) starts working,
(ii) is still studying at the age of 25 years or (iii) receives unemployment benefits.
Among other things, mutual health insurers are responsible for refunding medical
interventions, drug purchases and payments related to disability and pregnancy
leave. To implement their operations, mutual health insurers dispose of large
databases containing health expenditure records of all their respective members.

This project was done in close collaboration with the National Alliance of
Christian Mutualities (NACM).4 NACM is the largest Belgian mutual health
insurer with records of over 4.4 million persons and over 60% and 40% market
share in Flanders and Belgium, respectively. All data extractions and analyses
were done in-house at the department of medical management of NACM in its
headquarters in Brussels under supervision of and upon request by the Chief
Medical Officer.

We developed a screening system based exclusively on basic personal information
(i.e., age, gender) and readily-available health expenditure records collected by
NACM, without requiring any external input. Our approach is cheap, non-
invasive and can be applied on a population-wide scale, making it a suitable
initial screening procedure (cfr. Figure 1.2). The relevant patient-centric
information embedded in these records belongs to three key classes:

• Basic biographical information includes the member’s age, gender,
place of residence and, if deceased, the date of death. Limited information
regarding social status is also available, e.g. whether a member is entitled
to increased compensation or suffers from a chronic illness.

• Medical provisions are encoded via a national nomenclature comprising
over 20,000 unique codes. Each medical act yields one or several of these
nomenclature codes.

• Drug purchases are registered automatically and are encoded per
package or per unit when purchased in retail and hospital pharmacies,
respectively. In both cases, the encoding contains information about both
volume and active substances.

Figure 1.3 depicts the main data exchanges in Belgian healthcare. Each
healthcare provider manages its own subset of a patient’s health data, which is

3In Dutch: Hulpkas voor Ziekte -en Invaliditeitsuitkering (HZIV).
4In Dutch: Landsbond der Christelijke Mutualiteiten (LCM).
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usually not fully shared with other caregivers. In principle, the patient’s global
medical file (GMF), which is managed by his or her general practitioner (GP),
should be comprehensive. However, GMFs require caregivers to share data,
which does not always occur, and puts a burden on GPs. In contrast, mutual
health insurers dispose of all reimbursed claims data, regardless of the associated
caregiver, which gives them an overview of all healthcare activities. Additionally,
claims data are structured while communication between caregivers is often
done through plain text. Data sharing is improving through initiatives like
Vitalink5, Hubs and Metahubs6, though these are still in their infancy.

Figure 1.3: Data exchanges between caregivers in Belgian healthcare: mutual
health insurers receive information from all stakeholders through claims, while
other stakeholders often only have subsets of a patient’s health data.

The time-stamped records related to provisions and drug purchases enable
constructing a medical resource-use timeline for each patient. As this constitutes
the main source of information in our work we will discuss claims records related
to provisions and drug purchases in more detail in Sections 1.3.1 and 1.3.2.
Finally, we will briefly discuss the overall quality of health expenditure data.

1.3.1 Data related to medical interventions

Each distinct medical intervention is encoded in a national nomenclature that
is maintained by the National Institute for Health and Disability Insurance
(NIHDI)7 [264]. After a consultation, patients receive a certificate indicating
which provisions were performed (a green, white or blue slip). The patient
can then file a claim to get (partially) refunded through his or her mutual
health insurer. Refunds can be claimed up to two years after the date of

5More information can be found at http://www.vitalink.be/.
6https://www.ehealth.fgov.be/nl/zorgverleners/online-diensten/hubs-metahub
7In Dutch: Rijksinstituut voor ziekte -en invaliditeitsverzekering (RIZIV).

http://www.vitalink.be/
https://www.ehealth.fgov.be/nl/zorgverleners/online-diensten/hubs-metahub
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the intervention, though most patients do this more swiftly. In some cases,
a copayment system enables the caregiver to get paid directly by the health
insurer, removing the need for the patient to claim refunds.

The list of nomenclature numbers can be consulted via the website of the
NIHDI and currently comprises over 20,000 unique codes. The sheer number of
codes indicates the fine granularity at which medical interventions are encoded,
making it a valuable source of information. Codes can fall out of use when
interventions get deprecated or because they get replaced by other codes that
are often more specific in some sense.

However, the codes that identify interventions only carry limited information.
Specifically, these codes are sufficiently detailed to know which intervention
was performed, but do not contain any information regarding its outcome. For
example, there are codes indicating blood tests, but the results of these tests are
not available to the mutual health insurer. As such, nomenclature codes often
serve as proxies for specific diseases, but essentially carry no direct information
regarding diagnoses, indications or clinical parameters.

1.3.2 Data related to drug purchases

Drug purchases work via a copayment system in Belgium, in which the patient
only pays his or her share at the time of purchase while the rest is already
deducted automatically. As such, drug purchases are automatically recorded
and known to health insurers without requiring the patient to explicitly claim
refunds and are therefore implicitly complete.

Each drug package carries a Code Nationale Kode (CNK) code which indicates
the volume in the package and information about the drug itself including its
active substances. Hence, these CNK codes carry enough information to map a
drug purchase onto one or several codes of the internationally used Anatomical
Therapeutic Chemical (ATC) classification system with an associated amount
of Defined Daily Doses (DDDs). Tables to map CNK codes onto ATC codes
are provided freely by the BCFI8 and the APB9.

The ATC classification system is maintained by the World Health Organization
and divides active substances into different groups based on the organ or system
on which they act and their therapeutic, pharmacological and chemical properties
[273]. Each drug is classified in groups at 5 levels in the ATC hierarchy: fourteen
main groups (1st level), pharmacological/therapeutic subgroups (2nd level),
chemical subgroups (3rd and 4th level) and the chemical substance (5th level).

8In Dutch: Belgisch Centrum voor Farmacotherapeutische Informatie.
9In Dutch: Algemene Pharmaceutische Bond.
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Figure 1.4 illustrates the structure of ATC system for common antidiabetic
drugs.

A: alimentary tract and metabolism
A10: drugs used in diabetes

A10A: insulins and analogues
A10B: blood glucose-lowering drugs, excluding insulins

A10BA: biguanides
A10BA02: metformin

A10BB: sulfonylureas
A10BB01: glibenclamide
A10BB08: gliquidone
A10BB12: glimepiride

A10BF: alpha-glucosidase inhibitors
A10BF01: acarbose

A10BG: thiazolinediones
A10BG03: pioglitazone

A10BH: dipeptidyl peptidase 4 (DPP-4) inhibitors
A10BH01: sitagliptin
A10BH02: vildagliptin

Figure 1.4: Example of the ATC hierarchy for common GLAs. A brief
explanation of these different active substances is given in Appendix 1.E.

1.3.3 Quality of health expenditure data

Overall, health expenditure data can be considered complete, due to the clear
financial incentive for patients and caregivers to file claims. The automated
registration of drug purchases also contributes to this aspect.

A key benefit of health expenditure data is that it integrates resource-use from
all medical sources (cfr. Figure 1.3). Patients may consult multiple caregivers
and institutions but each patient is affiliated to only one mutual health insurer
at a time. Additionally, most Belgians never switch mutual health insurer.

Health expenditure records give a fine-grained overview of patients’ medical
histories thanks to the detailed encoding of provisions and drug packages.
However, the absence of data related to outcomes, diagnoses and clinical
parameters constitutes an important limitation. In this regard, it must be
noted that a lot of relevant information to screen for T2D is missing, such as
glycated hemoglobin levels, lifestyle, BMI and potential genetic predisposition.
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Health expenditure records prove extremely useful for retrospective observational
studies, as is common in epidemiology. However, a certain lag exists between
medical acts and the appearance of associated records in health expenditure
databases. For provision records, the maximum lag is two years, while for drug
purchases the lag is less than half a year. These lags present problems for
applications that require quasi real-time information, such as disease outbreak
detection, but are less problematic for screening.

A disadvantage is that expenditure data may be noisy. Most sources of noise
can be considered random and hence neglected, but some structural issues exist
as well. Specific examples include abuse via overconsumption and fraud through
upcoding.10 Such phenomena are known to plague healthcare systems in various
countries and likely occur in Belgium as well to some extent [239, 246, 36, 22].

Finally, it is worth noting that the potential of health expenditure data for
clinical applications is also being investigated in other countries. A highly
visible recent example was the Heritage Health Prize competition to identify
patients who will be admitted to a hospital within the next year using historical
claims data, with an impressive $3,000,000 prize pool.11

1.4 Machine learning challenges and contributions

The previous Sections introduced diabetes mellitus, explained the need for
screening approaches and indicated the potential use of Belgian health
expenditure data. Identifying individuals at high risk for T2D based on Belgian
health expenditure data posed several machine learning challenges, including
dealing with missing and noisy information, defining representations that capture
the implicit structure of health expenditure data and coping with the size of
the learning problem, in terms of number of instances and features alike.

This Section highlights the main machine learning contributions made during
this project. We will briefly describe the fundamental problems that were
tackled, outline the approach and clarify how it fits into the overarching theme
of identifying patients at risk for diabetes based on health expenditure data.
Chapters 3 to 8 describe the solutions and methodologies we developed in detail.

We approached the screening task as a binary classification problem. Binary
classifiers are models which yield some level of confidence that an instance
belongs to the positive class, based on the features of that instance. In our

10Upcoding refers to caregivers’ wilfull reporting of wrong nomenclature codes, or codes
corresponding to provisions that were never performed, in order to obtain higher refunds.

11More information is available at http://www.heritagehealthprize.com/.

http://www.heritagehealthprize.com/
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application, every person represents an instance. The associated labels indicate
whether a person requires GLA therapy such that persons using GLAs are
positive, while all others are unlabeled.12 The biographic information and
resource-use history of each person represent the associated features.

The relationships between all aspects of this project’s machine learning research
are depicted in Figure 1.5. Our contributions revolved around three focal
points: learning from positive and unlabeled data, automated hyperparameter
optimization and the development of reusable open-source software to facilitate
reproducibility. Sections 1.4.1 to 1.4.3 describe each focal point in more detail.

1.4.1 Learning from positive and unlabeled data

A critical challenge inherent to our application is an infeasibility to ascertain
which patients are non-diabetic based only on health expenditure records. This
problem originates from several sources, most notably because a significant
fraction of diabetic patients is undiagnosed (as discussed in Section 1.2) and
additionally because initial diabetes therapies may exclusively consist of lifestyle
changes (cfr. Section 1.E) which are not recorded in health expenditure data.

Fortunately, we were able to identify a reasonable set of known diabetics
(positives) based on health expenditure data. Positives were identified
through the use of pharmacotherapy involving glucose lowering agents (GLAs)
over extended periods of time. The thus identified set of positives mainly
consists of patients with progressed diabetes (since the treatment involves
pharmacotherapy) and omits patients with (potentially diagnosed) prediabetes.
This labeling induces a small fraction of false positives, mainly due to the use
of GLAs for alternative reasons (e.g. use of metformin for weight loss).

In machine learning, the true class of an instance is commonly called its label.
Given the labeling issues described previously, we had to learn binary classifiers
from positive and unlabeled data to enable screening based exclusively on health
expenditure data. This learning scenario is receiving increasing amounts of
research attention and is commonly dubbed PU learning. During this project,
we improved an existing PU learning method [179] and additionally developed
a method to evaluate classifiers without known negatives. The latter aspect is
particularly important because it has significant practical implications and was
previously uncharted territory.

12Persons without records of GLA use should not be treated as negatives because such
persons might still need GLA therapy, e.g., undiagnosed diabetes patients.
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Figure 1.5: Dependencies of the key contributions made to machine learning
research during this project. To enable diabetes screening based on Belgian
health expenditure data (Chapter 8), we made contributions to semi-supervised
learning (Chapters 4 and 7), automated hyperparameter search (Chapters 5
and 6) and open-source machine learning software (Chapters 3 and 6).

Building classifiers with only positive and unlabeled data

This is a common topic within semi-supervised learning, presenting additional
complexity compared to fully supervised binary classification.13 Various methods
have been devised to cope with the increased uncertainty, based on one of two
fundamental approaches: (i) first attempt to infer a set of likely negatives from
the unlabeled data and then train a fully supervised model to distinguish known
positives from inferred negatives [167, 282, 161] vis-à-vis (ii) treat unlabeled

13In this context, fully supervised means all class labels are known.
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instances as negatives with noisy class labels and deal with this directly [92,
159, 166, 179, 168].

The method we developed fits into the latter category and is described in
detail in Chapter 4. Our technique achieves state-of-the-art performance in PU
learning and is additionally designed for robustness against false positives, which
are known to exist in our application. False positives significantly deteriorate the
performance of other existing methods, limiting their usability in our project.

Evaluating classifiers with only positive and unlabeled data

Assessing the performance of binary classifiers without known negatives was
an open problem at the start of the project. Prior to our work, a few methods
have been devised for model selection in PU learning which allow basic pairwise
comparisons between classifiers [159]. During our work, some additional related
methods were developed by others [230, 121]. However, none of these quantify
the performance of a given classifier in terms of commonly used metrics like
sensitivity, specificity and area under the ROC curve.

The performance of models for screening must be quantified before their use
can even be considered, however no convincing method to quantify performance
without known negatives existed. To circumvent this problem we initially
considered manually obtaining negative labels by directly asking patients
whether or not they had diabetes. Clearly, this is a very sensitive matter
and would additionally have been labour intensive to acquire a sufficient amount
of negative labels.

Instead of manual labeling, we developed a method to reliably estimate
performance of binary classifiers without known negatives (cfr. Chapter 7). This
method is the first of its kind and relies only on the reasonable assumption that
known positives are sampled completely at random from all positives, which
implies that the distributions of known and latent positives are comparable. Our
work effectively reduces estimating performance without negatives to estimating
the fraction of positives in the unlabeled set, which is often feasible.

1.4.2 Automated hyperparameter optimization

Most machine learning algorithms are parameterized, for example to allow
the user to determine an optimal model complexity for a given problem. The
coefficients of a trained model are commonly called parameters, and hence
the parameters used to describe the training problem itself are referred to
as hyperparameters. Current research focuses on automatically determining
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suitable values for these hyperparameters [139, 35, 242, 32, 33, 90, 254], which
essentially boils down to the development of suitable (heuristic) optimizers.

Some of the key challenges in hyperparameter optimization are described in
Chapter 5. Several libraries have been developed to automate this process
and have proven to be far more efficient than manual tuning or grid search
[139, 32, 242, 33]. However, most of these libraries are hard to install (even
for seasoned programmers!) and expose a lot of complex configurations, hence
effectively limiting their potential userbase to experts. We have developed a
cross-platform open-source Python library that provides a variety of optimizers
to automate hyperparameter search via a simple, lightweight API to fill this
apparant gap of user-friendly tuning software (described in Chapter 6).

1.4.3 Open-source software

Machine learning research requires high-quality, tested and documented software
to advance rapidly. Fortunately, several authoraties in the machine learning field
are appreciative of open-source software [244]. Overall, the field is blessed with
a wealth of open-source packages covering all aspects of the learning process
and we strongly feel that cultivating this ecosystem is in the best interest of
the entire academic community, for reasons such as efficiency, reliability and
reproducibility. It is worth noting that every analysis in this project was done
using freely available software.

As we recognize the value and importance of a solid open-source ecosystem, we
decided to pay it forward by developing two open-source libraries of our own:
EnsembleSVM and Optunity.

EnsembleSVM is a C++ package for ensemble learning with support vector
machine (SVM) base models (described in Chapter 3). This software enables
efficiently computing nonlinear models on large-scale data sets, which would
otherwise be infeasible without significant computational resources. The PU
learning method we developed (cfr. Chapter 4) is a use-case of EnsembleSVM
and was implemented entirely using the API offered by the library.

Optunity is a Python library for automated hyperparameter optimization,
with interfaces to R, MATLAB, Octave and Java. An overview of Optunity
is given in Chapter 6. At the time of writing, Optunity receives hundreds of
downloads each month via the Python Package Index (PyPI). Optunity was
used to optimize the hyperparameters of the learning approaches we used to
construct models for diabetes screening.
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1.5 Structure of the thesis

This Section summarizes all subsequent chapters and reiterates how every aspect
is relevant to diabetes screening based on Belgian health expenditure records.

• Chapter 2 describes a study we performed to quantify the survival of
Belgian patients after starting various glucose-lowering pharmacotherapies.
Unlike other studies, our study does not focus on relative efficacy of
different GLA therapies. Instead, it is the only one that provides an
expected survival rate for patients starting a specific therapy, accounting
for all possible future therapies commonly seen in the Belgian population.

• Chapter 3 introduces the EnsembleSVM software package, which provides
efficient routines for ensemble learning using SVM base models.

• Chapter 4 describes a novel algorithm to learn robust binary classifiers from
positive and unlabeled data. The key design criterion is robustness to false
positives, which was lacking in existing approaches. The implementation
is based on EnsembleSVM (see Chapter 3).

• Chapter 5 discusses the main optimization challenges posed by automated
hyperparameter search and summarizes the current state-of-the-art.

• Chapter 6 describes the Optunity software package, which provides
metaheuristic optimization routines for automated hyperparameter
optimization. Optunity is available on most commonly used machine
learning platforms and tackles the challenges outlined in Chapter 5.

• Chapter 7 presents a method to evaluate the performance of binary
classifiers without negative labels. This method enables estimating most
commonly used performance metrics in a semi-supervised setting, which
was uncharted territory.

• Chapter 8 integrates all machine learning aspects into a workflow to predict
which patients are likely to start glucose-lowering pharmacotherapy, based
exclusively on readily available, individual health expenditure records.
This chapter combines all techniques described in previous chapters.

• Chapter 9 summarizes our work and describes potential use-cases and
promising future research avenues. Finally, we conclude with some
relevant tradeoffs from a policy perspective regarding the use of health
and healthcare data for medical applications.



Appendix

1.A Regulation of blood glucose levels

To allow a better understanding of the underlying problems inherent to diabetes
mellitus, we will briefly describe the critical role of insulin in the regulation of
blood glucose levels.

Insulin is a peptide hormone which regulates the metabolism of fats,
carbohydrates and proteins. In normal circumstances, insulin is released in
response to changes in blood glucose concentration to prevent glucose levels
from reaching toxic concentrations. Specifically, insulin promotes the absorption
of glucose from the blood to skeletal muscles and fat tissue, thereby lowering
the glucose level in the bloodstream, and additionally inhibits hepatic glucose
output [243]. Insulin is exclusively produced by pancreatic β cells, which are
located in clusters known as the islets of Langerhans.

Hyperglycemia occurs when the regulation of the blood glucose level fails and
hence toxic concentrations of glucose remain in the bloodstream. Such failures
are typically caused by excessive glucose intake, insufficient insulin secretion
and/or insulin resistance.

1.B Complications and comorbidities of diabetes

Exposure to chronic hyperglycemia can cause serious damage to many of the
body’s systems, including dysfunction and failure of various organs.

The leading complication of type 2 diabetes is cardiovascular disease, with
about half of type 2 diabetes patient deaths attributable to a cardiovascular
cause [281, 38]. Diabetes may lead to severe macro -and microvascular problems.
The process of atherosclerosis is the main pathological mechanism leading to
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macrovascular complications [31, 47, 100] such as acute vascular infarction
[47] and cardiovascular events [31]. Microvascular complications contribute
considerably to the morbidity of the disease, specifically diabetes mellitus may
lead to the progressive development of retinopathy (which potentially results in
blindless), neuropathy (which can induce problems like foot ulcers), nephropathy
(which can lead to renal failure) [20] and small vessel vasculopathy causing
lower extremity amputation [38]. Finally, patients with diabetes mellitus are at
increased risk for peripheral vascular and cerebrovascular disease.

1.C Classification of diabetes mellitus

Diabetes mellitus is a disorder of multiple etiologies and is subdivided into
several more specific classes. The primary distinction between subclasses is
essentially whether or not external insulin is necessary for survival. The first
widely accepted classification was made by the World Health Organization
(WHO) in 1980 [190], proposing two main classes of diabetes mellitus:

• Type 1 diabetes (T1D) refers to a condition characterized by insuffi-
cient insulin secretion caused by the autoimmune-mediated destruction
of pancreatic β-cells. T1D patients require insulin for survival. T1D can
start at an early age and has a strong genetic component.

• Type 2 diabetes (T2D) results from defect(s) in insulin secretion,
almost always paired with insulin resistance. T2D includes patients that
require insulin for metabolic control and those that don’t require insulin
at all. The often asymptomatic onset of T2D typically occurs after 50
years of age14, often as a result of genetic susceptibility combined with
chronic obesity, a sedentary lifestyle and overly rich nutrition [290, 241].
The terms diabesity and obesity dependent diabetes mellitus have been
suggested [232, 19] because obesity is a common comorbidity of T2D [241].

In the original proposal, T1D and T2D were aliased insulin-dependent
diabetes mellitus (IDDM) and noninsulin-dependent diabetes mellitus (NIDDM),
respectively [190]. However, since then the WHO has deprecated the terms
IDDM and NIDDM as their use frequently led to patients being classified based
on treatment, rather than pathogenesis [10]. Hence, contemporary terminology
exclusively uses type 1 and type 2 to denote the main classes of diabetes mellitus.

14Though a case-study reported a 3 year-old child diagnosed with T2D at this year’s
European Association for the Study of Diabetes (EASD) meeting [8, “A toddler with type 2
diabetes”, pp. 152–153].
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Though our work focuses on type 1 and particularly type 2 diabetes mellitus,
it must be noted that more forms exist, such as gestational diabetes mellitus
which may occur during pregnancy and then disappear or progress into T2D.

T2D accounts for over 90% of diabetes patients and has long been considered
an epidemic that affects both developing and developed nations [288, 290,
215, 183, 61, 156] effectively rendering it a pandemic [38]. T2D is often a
manifestation of a much broader underlying disorder [212, 288], including the
metabolic syndrome which is a cluster of cardiovascular disease risk factors
that includes hyperinsulinemia, dislipidemia, hypertension, visceral obesity,
hypercoagulability and microalbuminuria [12, 290, 98].

1.D Prevalence and burden of diabetes

The number of diabetes patients, particularly type 2 diabetes, is increasing
rapidly. In developed countries, this increase is driven by population aging,
lifestyle changes (particularly rising levels of obesity and inactivity) but also
by greater longevity among diabetes patients [248, 38]. The majority of social
and economic burden of type 2 diabetes patients is attributable to vascular
complications [38], with pharmacy costs generating the majority of diabetes-
related health expenditure [186, 104].

Prevalence In 1995 an estimated 135 million people worldwide had diabetes,
which has increased to 285 million patients worldwide in 2010 [235, 61] and is
predicted by the WHO to increase further to at least 366 million by 2030 [241].
WHO estimated the global prevalence of diabetes to be 9% among adults over
18 years of age [13]. A recent study estimated the prevalence of diabetes in
adults aged 20–79 in Belgium and Europe to be 8% and 6.9%, respectively [235].
Typically, the prevalence of prediabetes is estimated even higher [73, 279, 61].

Mortality The premature mortality attributable to diabetes is widely
underestimated because only a minority of persons with diabetes die from
a cause that is uniquely attributable to the disease [38]. One study reported
about 2.9 million deaths worldwide attributable to diabetes [216] and indicated
that this excess mortality accounts for over 8% of deaths in developed countries.
More recently, the global excess mortality in adults directly related to diabetes
has been estimated to 3.8 million deaths [38]. The main causes of premature
deaths in type 2 diabetes patients are due to cardiovascular and renal problems
[181, 38]. Chapter 2 reports the survival of patients starting various glucose
lowering pharmacotherapies in Belgium and confirms excess mortality in patients
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with diabetes compared to the general population. Additionally, our analysis
indicates that the excess mortality is significantly associated with the type of
pharmacotherapy, which is related to the patient’s health status.

Cost Managing diabetes and its complications is expensive, both to the affected
individuals and healthcare systems around the world. The International Diabetes
Federation (IDF), estimates that diabetes already accounts for one ninth of the
total healthcare budget in many countries in 2014 [3]. The IDF further reports
an average cost per diabetes patient of 5,679 USD in Belgium [2]. Other sources
report comparable numbers: the CoDiM study estimated that in Germany in
2001, annual direct mean costs per diabetic patient are 5, 262 EUR with an
additional 5, 019 EUR indirect costs, compared to 2, 755 EUR and 3, 691 EUR
for non-diabetics [153]. Köster et al. [153] also note that the direct costs of
diabetic patients account for 14.2% of total healthcare costs. Patients of type 2
diabetes with macrovascular complications generate costs that are three times
higher than type 2 diabetes patients without macrovascular complications and
seven times higher than people with neither type 2 diabetes nor macrovascular
diseases [38]. The primary origin of diabetes-related healthcare expenditure
are pharmacy costs [186, 104]. The complications of diabetes constitute a large
portion of the burden of the disease, with diabetes being a leading cause of
blindness, lower limb amputation and kidney failure [38].

1.E Treatment of diabetes mellitus

The fact chronic hyperglycemia may manifest in various ways is reflected in a
wide variety of treatments for diabetes mellitus. Treatment of type 1 diabetes
patients revolves around timely administration of external insulin, which they
need for survival. In contrast, a wide range of treatment options exist for
patients with type 2 diabetes.

Management of type 2 diabetes includes several lifestyle interventions, often
specifically targetted towards weight loss, including healthy eating (specifically
high-fiber, low-fat foods like fruits and vegetables), regular exercise and blood
sugar monitoring and management. Pharmacotherapy via glucose lowering
agents (GLAs) is used when lifestyle changes alone are insufficient for adequate
glycemic control or when diabetes is already in a progressed stage at the time
of clinical diagnosis.

We will elaborate on pharmacological treatment of type 2 diabetes, as this
has played a crucial role in our work. Pharmacological therapies for (type 2)
diabetes may be based on various biological mechanisms:



22 INTRODUCTION

• External insulin is administered when insufficient insulin is secreted by
the pancreas. External insulin is always necessary to treat type 1 diabetes
but may also be required to treat insulin deficiency in type 2 diabetes.
Insulin cannot be taken as a pill because it would be broken down during
digestion just like protein in food. Instead, it must be injected or inhaled.

• Sensitizers reduce the insulin resistance that is central in type 2 diabetes.

– Biguanides suppress hepatic glucose output and increase uptake
of glucose by the periphery. The most common agent in this class
is metformin (brand names include Glucophage®, Glucovance®) [150].

– Thiazolidinediones (TZDs) enhance the effects of insulin by increasing
insulin-dependent glucose disposal and reducing hepatic glucose
output (as a result of increased hepatic insulin sensitivity) [222, 280].
An example of TZDs is pioglitazone (brand name Actos®).

• Secretagogues increase insulin output from the pancreas. The main
type of secretagogues – sulfonylurea (SU) – stimulate endogenous insulin
secretion from pancreatic β-cells [207]. Hypoglycemia is a major concern
when using sulfonylureas [43]. The most common SU are glimepiride
(brand name Amaryl®), glibenclamide (Euglucon® and Daonil®), gliclazide
(Diamicron®), glipizide (Glucotrol®) and gliquidone (Glurenorm®).

• Alpha-glucosidase inhibitors slow down digestion of starch in the
small intestine, thereby reducing the rate at which the resulting glucose
enters the bloodstream. These agents do not have a direct effect on insulin
secretion or sensitivity, but can (i) be sufficiently efficient in early stages
of impaired glucose tolerance or (ii) be used in combination with other
antidiabetic agents. A common alpha-glucosidase inhibitor is acarbose
(brand name Glucobay®).

• Incretin-based therapies use the antidiabetic properties of the incretin
hormone glucagon-like peptide 1 (GLP-1), namely that GLP-1 augments
glucose-induced insulin secretion in a highly glucose-dependent manner
[184, 169]. As this form of insulin secretion occurs in a glucose-dependent
manner, incretin-based therapies are less prone to cause hypoglycemia.

– GLP-1 receptor agonists activate GLP-1 receptors, resulting in
increased insulin synthesis and release [85]. Common GLP-1
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receptor agonists include liraglutide (brand name Victoza®), exenatide
(Byetta®) and lixisenatide (brand name Lyxumia®).

– Dipeptidyl peptidase-4 (DPP-4) inhibitors increase the blood
concentration of GLP-1 by inhibiting its degradation caused by
the enzyme DPP-4. Common DPP-4 inhibitors include sitagliptin
(brand name Januvia®), vildagliptin (brand name Galvus®).





Chapter 2

Mortality in individuals
treated with glucose lowering
agents: a large, controlled
cohort study

This chapter has been submitted as:
Claesen, M.?, Gillard, P.?, De Smet, F., Callens, M., De Moor, B. & Mathieu, C.
(2015). Mortality in individuals treated with glucose lowering agents:
a large, controlled cohort study, Journal of Clinical Endocrinology and
Metabolism.
?: these authors have contributed equally to the manuscript.

Contributions Marc Claesen contributed to the study design and performed
all data extractions and statistical analyses.

25



26 MORTALITY IN INDIVIDUALS TREATED WITH GLUCOSE LOWERING AGENTS: A LARGE,
CONTROLLED COHORT STUDY

Abstract

Context Several observational studies and meta-analyses have reported
increased mortality of patients taking sulfonylurea and insulin. The impact of
patient profiles and concomitant therapies often remains unclear.

Objective To quantify survival of patients after starting glucose-lowering
agents (GLAs) and compare it to control subjects, matched for risk profiles and
concomitant therapies.

Design Controlled, retrospective cohort study.

Setting The study is based on health expenditure records of the largest Belgian
health mutual insurer, covering over 4.4 million people. We analyzed records
of 115,896 subjects starting metformin, sulfonylurea or insulin (alone or in
combination) between January 2003 and December 2007 and compared them
with control subjects without GLA therapy. Controls were matched for age,
gender, history of cardiovascular events and therapy with antihypertensives,
statins and blood platelet aggregation inhibitors.

Main Outcome Measure 5-year survival after start of GLA.

Results Profiles of patients using different GLAs varied, with patients on
sulfonylurea being oldest and patients on insulin having more frequently a
history of cardiovascular disease. Excess mortality differed across GLA therapies
compared to matched controls without GLAs, even after adjusting for observable
characteristics. Only metformin monotherapy was not associated with increased
5-year mortality compared to matched controls, while individuals on combination
of sulfonylurea and insulin had highest mortality risks. Age and concomitant
use of statins strongly affect survival.

Conclusions Differences exist in 5-year survival of patients on GLA, at least
partly driven by the risk profile of the individuals themselves. Metformin use
was associated with lowest 5-year mortality risk and statins dramatically lowered
5-year mortality throughout all cohorts.
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2.1 Introduction

Glucose lowering therapy in type 2 diabetes is challenging, due to the progressive
nature of the disease by the underlying failure of the insulin-secreting beta-cells
[204]. Algorithms and guidelines are proposed by international bodies, guiding
clinicians through the maze of possibilities of glucose-lowering agents, but these
tools are mostly based on evidence from the original UKPDS study, reported
in the middle of the 1990’s [117]. Evidence on the impact of glucose-lowering
agents on the hardest endpoint, survival, is limited. In particular, sulfonylurea
and insulin have been associated with higher mortality risks in cross-sectional
studies or population studies [116, 218, 76, 141, 180, 259] with criticisms arising
that comparing the mortality risk in these individuals to the global population
is unfair as the profile of this population may be different, predisposing them
to a higher mortality risk.

On the other hand, many studies report a lower mortality risk in type 2 diabetes
patients treated with metformin [116, 218, 76, 141, 180, 259, 28] but again, the
profile of these people may be different by itself, thus influencing risk. Finally,
in the high cardiovascular risk disease that is type 2 diabetes, use of statins has
been debated frequently, with doubts being cast over the usefulness of these
drugs in this population, in particular in the young or very old age groups.

This study investigated the survival of patients starting therapies involving
various glucose-lowering agents (GLAs) compared to fully matched control
subjects. We particularly analyzed the effect of age and concomitant use of
statins.

This study was performed in collaboration with the largest mutual health
insurance fund in Belgium (National Alliance of Christian Mutualities - NACM),
which has access to a large database containing health expenditure records of
4.4 million people throughout the country. The Belgian health care insurance
is a broad solidarity-based form of social insurance. Mutual health insurers
like NACM are the legally-appointed bodies for managing and providing the
Belgian compulsory health care and disability insurance. To implement its
operations, NACM disposes of a large database containing health expenditure
records of all its members. These records hold all financial reimbursements
of drugs, procedures and contacts with health care professionals. Long-term
follow-up and full matching of the people using GLAs to people identical in
age, gender, concomitant medications and start of follow-up are possible. We
performed a 5-year survival analysis to assess the excess mortality in patient
cohorts defined by their GLA therapy compared to references without GLA
therapy but with otherwise similar observable characteristics. Our analysis
shows differences in 5-year survival in individuals treated with GLAs, at least
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partly driven by the risk profile of the individuals themselves.

2.2 Research design and methods

This study is based on records of the NACM, the largest Belgian mutual health
insurer with over 4.4 million members (market shares of over 40% and 60%
in Belgium and Flanders, respectively). All data extractions and analyses
were performed at the Medical Management Department of the NACM under
supervision of the Chief Medical Officer. NACM disposes of a longitudinal
overview of its members’ medical resource use, embedded in health expenditure
records. Only 2% of the subpopulation under study left the NACM to switch to
another mutual health insurer, emigration or employment by a foreign employer
during the 5-year follow-up period, leading to a retention rate of 98% in our
study. Patients that joined NACM after December 1999 were excluded from
all analyses to minimize the chance of missing glucose-lowering therapy and/or
cardiovascular events prior to starting follow-up.

Medication records were mapped onto the fifth level of the anatomical
therapeutic chemical (ATC) classification system via the main chemical
substances associated with each drug. The ATC system classifies drugs based on
the targeted organ or system and their therapeutic and chemical characteristics
[192]. Patients were partitioned into treatment groups based on ATC codes
listed in their individual histories. Exact definitions of all pharmacological
groups can be consulted in Table 2.1. In addition to pharmacotherapy, we
considered a set of cardiovascular events prior to follow-up, which were identified
via a combination of medicinal and surgical interventions (also described in
Table 2.1). Based on usual prescription behavior in Belgium, exposure of oral
glucose lowering drugs was assumed to be uninterrupted between the dates of
the first record and up to six months after the final record in the insurance
database.

2.2.1 Study cohort selection

The selection process is illustrated in Figure 2.1. 115,896 patients over 18 years
old in whom glucose-lowering therapy was prescribed between 1st of January
2003 and 31st of December 2007 were eligible for the study. Eligible patients
were assigned to study cohorts based on their glucose-lowering pharmacotherapy:
more specifically metformin (MET), sulfonylurea (SU) and insulin (INS). Every
combination of these three drug types defines a study cohort. Patients on DPP4
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Category Definition
metformin ATC codes: A10BA02, A10BD02, A10BD07, A10BD08
sulfonylurea ATC codes: A10BB01, A10BB08, A10BB09, A10BB12,

A10BD02
insulin ATC codes: A10AB02, A10AB03, A10AB04, A10AB05,

A10AB06, A10AB30, A10AC01, A10AC02, A10AC03,
A10AC04, A10AC30, A10AD01, A10AD02, A10AD03,
A10AD04, A10AD05, A10AD30, A10AE01, A10AE02,
A10AE03, A10AE04, A10AE05, A10AE30, A10AF01

statins ATC codes: all codes under C10AA
antihypertensives ATC codes: all codes under C02, C03, C07, C08, C09
blood platelet
aggregation in-
hibitors

ATC codes: all codes under B10AC

cardiovascular
events

An arterial thrombotic event of the coronary, carotid, vertebral,
aortic, iliac or lower extremity arteries necessitating an
intervention for revascularization. Open and/or percuta-
neous interventions included thrombectomy, embolectomy,
endarterectomy, artery bypass, vascular endoprosthese,
endovascular dilatation, stenting or brinolysis. A positive
history of a cardiovascular event was defined as having one or
more of those events reimbursed by the NACM based on the
Belgian nomenclature of health care provisions.

Table 2.1: Definitions of drug categories and cardiovascular events.

inhibitors or GLP-1 receptor agonists were not included as these were only
introduced in Belgium around 2008.

Follow-up started on the first day of therapy intake, based on the patient’s
purchase of the prescribed agent(s). In each study and control group, subjects
were followed until death or censoring over a maximum period of 5 years since
inclusion. For control subjects, the start of follow-up was determined at random
within the year of inclusion of the associated study subject to avoid bias related
to the time of entry into the study.

Monotherapy study cohorts denote the first glucose-lowering therapy consisting
of a single type of GLA, given to a patient without prior use of other GLAs
(n=74,938), based on historical records from 1990 onwards. Patients are excluded
from monotherapy cohorts if they transition to combination therapy within
three months. Patients who started a combination therapy during the selection
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NACM member population
on January 1, 2003
(n = 4, 567, 172)

patient was member before 2000?

patients with known recent history
(n = 4, 266, 401)

yes

records of any antidiabetes therapy
up to and including 2013?

patients with known history
of antidiabetes therapy

(n = 490, 052)

yes

does the patient satisfy
all final inclusion criteria?

patients eligible for
assignment to study groups

(n = 115, 896)

yes

records of antidiabetes therapy
prior to inclusion event?

patient can enter appropriate
combination study group

(n = 28, 708)

yes

patients with insufficient
historical records are excluded

because we may be unaware
of recent cardiovascular events
and/or antidiabetes therapy

no

patient enters reference population
from which controls are sampled

(n = 3, 776, 349)

no

final inclusion criteria:

• therapy must start/change in
2003–2007

• patient must survive ≥ 30 days

• same therapy for ≥ 90 days

• age at inclusion must be ≥ 18

patient can enter appropriate
mono -or combination
therapy study group

(n = 87, 188)

no

(Patient may enter additional study groups)

Figure 2.1: Flowchart describing the selection protocol for study and control
patients. Patients can move from the bottom right (monotherapy) to the bottom
left group (combination therapy), but not vice versa. All listed counts are for
unique patients.
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interval for at least 3 months (or until death) were included in the associated
study cohorts, regardless of potential prior glucose-lowering therapy (n=47,149).

Patients could successively enter multiple study cohorts and be included in
multiple cohorts during follow-up. For instance, a patient without prior GLA
therapy who started metformin in 2003 and added sulfonylurea in 2005 is
included in both the metformin monotherapy and the metformin and sulfonylurea
combination therapy cohorts (5-year follow-up starting in 2003 and 2005,
respectively), with some period of overlap (2005-2008).

Only patients with at least one month between the first and last purchase of
associated GLAs were included in study cohorts, inducing an immortal time of
one month. We accounted for potential bias by consistently matching control
patients who survived for at least one month [217, 234]. Patients who started
treatment and died during a single hospital admission were excluded from the
analysis.

2.2.2 Control cohort selection

We compared study groups to controls with similar observable characteristics.
Controls were sampled without replacement from the NACM population with
matched characteristics to the study cohort, but without records of GLA therapy
up to and including 2013. Unless stated otherwise, the control groups contained
5 subjects per subject in the study cohort, matched exactly on age at the
start of follow-up, gender, cardiovascular history (had event/no event before
the start of the follow-up), associated therapy (use of statins, antiplatelet and
antihypertensive drugs) and the year of start of follow-up. Matching based on
associated therapy was performed dichotomously (subject has/has not received
the therapy for more than half of the individual’s effective follow-up period).

2.2.3 Therapy changes within cohorts

The majority of patients remained on the same GLA therapy during the entire
follow-up (Table 2.2.4). 15.4 to 28.5% of patients starting on monotherapy
moved to a combination therapy by the end of the follow-up. Patients on
combination therapy at start were still on the same regimen in 47.7 to 66.5%
of cases: changes were often due to stopping of sulfonylurea (9 to 20%) or
eliminating metformin from combination regimens that include insulin (15.2 to
18.7%).



mono therapy combination therapy
→ end regimen metformin sulfonylurea insulin metf+sulf metf+ins sulf+ins metf+sulf+ins
metformin 81.8% 2.0% 0.8% 10.9% 2.9% 0.3% 1.3%
sulfonylurea 5.2% 63.9% 2.4% 20.7% 1.3% 3.9% 2.7%
insulin 2.2% 0.9% 86.2% 0.7% 5.8% 2.6% 1.6%
metf+sulf 9.2% 4.5% 3.2% 66.5% 5.5% 1.7% 9.3%
metf+insulin 9.5% 0.5% 15.2% 1.9% 66.1% 1.3% 5.5%
sulf+insulin 0.9% 11.2% 20.1% 2.9% 3.2% 51.6% 10.2%
metf+sulf+insulin 2.3% 1.7% 11.7% 9.1% 20.6% 7.0% 47.7%

Table 2.2: Partitioning of final treatment regimen of patients starting a specific therapy (rows). The final treatment
regimen (columns) is based on the last 9 months of individual followup. Patients are censored in all survival analyses
after 9 consecutive months of renunciation from metformin, sulfonylurea and insulin.
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2.2.4 Censoring

As we were primarily interested in prognoses for patients starting a certain
therapy, no censoring was done based on therapy changes (such as adding
additional GLAs) or poor compliance. Censoring based on therapy changes
would be informative and hence bias the survival estimates of interest. Patients
that discontinued all GLA therapy for nine consecutive months are right censored,
as this was considered to indicate that the patient was not using GLAs to
manage glucose levels (e.g. using metformin for weight loss). Right censoring
also occurred when subjects left the health insurer (lost to follow-up), which
was rare (less than 2% of all patients in follow-up in each cohort). Switching
health insurer was considered unrelated to a patient’s medical condition and
can therefore be considered non-informative.

2.2.5 Statistical analysis

Empirical survival curves were obtained using the Kaplan-Meier estimator. The
associated 95% CIs were computed using the exponential Greenwood formula
[145]. We used Cox proportional hazards (PH) models to quantify excess
mortality between study and control cohorts while controlling for all observable
patient characteristics. Adjusting for concomitant medication was particularly
important, as controls were only matched in a binary fashion. Unless mentioned
otherwise, the PH models contained the following set of predictors: continuous
covariates describing age at start of follow-up and associated therapy (specifically
statins, antiplatelet and antihypertensive drugs) and dichotomous factors for
gender and the group a subject belonged to (study or control). Associated
therapy-related predictors quantify the fraction of the subject’s effective follow-
up time during which he/she was exposed to the agent. Finally, an interaction
term between age and gender is consistently included. The PH assumption
was assessed via the Grambsch-Therneau test on scaled Schoenfeld residuals
from the PH models [112]. The proportionality assumption was tested for each
reported hazard ratio at the 1% significance level and rejections are indicated
in all tables.

Software Statistical analyses were conducted in R using the survival package
[252, 253]. Statistical plots were made in R using the ggplot2 package [274].
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2.3 Results

2.3.1 Baseline cohort characteristics

An overview of the study cohorts and their baseline characteristics is given in
Table 2.3.2. The study group with the youngest patient population was the
group on insulin monotherapy without CV history (p < 0.001 compared to all
other groups), followed by patients on metformin monotherapy without CV
history (p < 0.001 compared to all remaining groups). The oldest patients were
those who received sulfonylurea regardless of CV history (p < 0.001 compared
to all other groups). Patients with a history of CV disease were consistently
older than others (p < 0.001 in all pair-wise comparisons to groups without CV
history) except in the sulfonylurea-insulin combination group. Patients without
insulin in their GLA therapy were less likely to have a history of CV disease
(less than 9% percent of the total group) than patients with insulin on board
(more than 20% percent of total group) (p < 0.001).

The percentage of males and intake of associated therapies (statins, antiplatelet
and antihypertensive therapies) were consistently higher in the patients with a
history of CV disease than in those without, irrespective of the glucose lowering
therapy (p < 0.001 for all groups). The majority of patients with a CV history
were taking statins for over half the follow-up period, ranging from 58% in the
SU + INS group to 79% in the metformin monotherapy group. In contrast,
only a minority of patients without CV history were taking statins: ranging
from 23% in the insulin monotherapy group to 47% in the MET + INS group.

2.3.2 Five-year survival in individuals on different glucose
lowering agents

Compared to their associated matched controls, patients on metformin
monotherapy showed no significant excess mortality during the follow-up. In
contrast, patients started on SU, and certainly on insulin, did much worse
than their respective controls (Figure 2.1). The excess mortality was highest
in patients starting on insulin (23.8%), followed by SU (4.1%) and finally
metformin (0.3%, though not statistically significant at the 5% significance
level). Patients who started with bitherapy (MET + SU or MET + INS) or
tritherapy (MET +SU +INS) also exhibited reduced 5-year survival compared
to matched controls, with the highest difference in survival (12.9 and 15.6%)
when insulin was part of the regimen from the start of follow-up.
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Figure 2.1: 5-year survival for increasing age per cohort.



gender associated therapy
subjects age female statins antiplatelet antihypertensive

study cohort n mean± SD n (%) n (%) n (%) n (%)
metformin 42, 900 62.0± 12.3 21, 759 (51) 19, 747 (46) 7, 725 (18) 33, 785 (79)

no cv history 39, 578 61.6± 12.4 20, 913 (53) 17, 127 (43) 5, 579 (14) 30, 592 (77)
cv history 3, 322 66.8± 10.3 846 (25) 2, 620 (79) 2, 146 (65) 3, 193 (96)

sulfonylurea 19, 231 68.4± 12.6 10, 100 (53) 7, 479 (39) 3, 825 (20) 15, 507 (81)
no cv history 17, 438 68.0± 12.8 9, 576 (55) 6, 325 (36) 2, 739 (16) 13, 786 (79)
cv history 1, 793 71.8± 9.7 524 (29) 1, 154 (64) 1, 086 (61) 1, 721 (96)

insulin 12, 807 62.8± 17.8 5, 818 (45) 3, 842 (30) 4, 270 (33) 10, 214 (80)
no cv history 10, 372 61.0± 18.7 5, 125 (49) 2, 395 (23) 2, 410 (23) 7, 827 (75)
cv history 2, 435 70.6± 10.2 693 (28) 1, 447 (59) 1, 860 (76) 2, 387 (98)

metf+sulf 25, 218 65.8± 12.0 12, 632 (50) 11, 718 (46) 5, 521 (22) 20, 913 (83)
no cv history 22, 830 65.4± 12.1 11, 966 (52) 9, 973 (44) 4, 038 (18) 18, 612 (82)
cv history 23, 88 69.6± 9.4 666 (28) 1, 745 (73) 1, 483 (62) 2, 301 (96)

metf+insulin 9, 506 64.8± 13.9 4, 880 (51) 4, 891 (51) 3, 562 (37) 8, 305 (87)
no cv history 7, 874 64.0± 14.5 4, 330 (55) 3, 716 (47) 2, 333 (30) 6, 710 (85)
cv history 1, 632 68.7± 10.1 550 (34) 1, 175 (72) 1, 229 (75) 1, 595 (98)

sulf+insulin 6, 087 74.1± 11.0 3, 201 (53) 2, 285 (38) 2, 730 (45) 5, 580 (92)
no cv history 4, 580 74.1± 11.6 2, 639 (58) 1, 415 (31) 1, 584 (35) 4, 108 (90)
cv history 1, 507 74.1± 8.8 562 (37) 870 (58) 1, 146 (76) 1, 472 (98)

metf+sulf+insulin 10, 653 69.1± 11.4 5, 570 (52) 5, 405 (51) 4, 680 (44) 9, 746 (91)
no cv history 8, 380 68.7± 12.0 4, 800 (57) 3, 827 (46) 2, 933 (35) 7, 520 (90)
cv history 2, 273 70.5± 9.1 770 (34) 1, 578 (69) 1, 747 (77) 2, 226 (98)

Table 2.1: Baseline characteristics of the study cohorts. Individuals starting starting mono therapy are selected such that they have no
prior history of diabetes-related drugs. Individuals starting combination therapy may have a prior history of diabetes-related drugs. All
differences in use of associated therapy are statistically significant between study cohorts, except for use of antihypertensives in insulin and
sulfonylurea mono cohorts (no significant difference). All associated therapy use is statistically significantly elevated in subgroups with
prior cardiovascular events within each study cohort. All comparisons of study group characteristics use significance level α = 0.05 and are
computed using Tukey’s test in conjunction with ANOVA to adjusts for multiple comparison.
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Comparable differences were seen in survival of patients without a history of
cardiovascular (CV) events, with the lowest survival rates in therapies involving
both insulin and SU (up to 29% difference after 5 years) (Table 2.2). Patients
with a history of CV events consistently exhibited lower survival than patients
without a CV history, but excess mortality compared to matched controls was
comparable for both subgroups. Of note, the survival of patients with a CV
history on metformin monotherapy was not significantly different from the
survival of the associated controls. The observed survival benefit of metformin
monotherapy disappeared in combination therapy cohorts (Table 2.2).

2.3.3 Age-dependent 5-year survival of individuals on different
glucose lowering agents

Figure 2.3.4 illustrates the 5-year survival of patients as a function of age at
the start of follow-up. Compared to the general population, 5-year survival
was lower at any age in all cohorts on glucose lowering monotherapy except
the metformin monotherapy cohort, which exhibits comparable survival to the
general population. At any certain age, survival was highest in patients on
metformin, worse in patients on sulfonylurea, and worst in patients on insulin.
In patients starting on combination therapy, survival was also lower at any age
than associated controls. Again, if the regimen contains insulin, survival is
worse at any age category, with or without sulfonylurea on board.

The differences in survival at any age were slightly reduced when comparing to
fully matched controls, though they remain large and statistically significant
(illustrations are given in Figure 2.3.4). This reduction in excess mortality
appears to be mainly attributable to the fact that the fully matched control
groups have a higher frequency of prior cardiovascular events than the unmatched
general population.

Patients starting metformin monotherapy at a very young age (between 18 and
40 years; n=1,446; 83.3% male) had a 5-year survival rate of 99.2% [98.4%–
99.6%] compared to 99.3% [99.1%–99.5%] for fully matched controls (p=0.644).
Of note, all females in this study group (n = 242) survived the entire follow-up.
In the age category 18 to 40 years, the 5-year survival rate of patients on insulin
monotherapy (n = 1,873) was reduced compared to fully matched controls (p <
0.001), with survival rates of 94.7% [93.4%–95.6%] and 99.5% [99.3%–99.6%]
respectively.
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no history of cardiovasular disease
5-year survival (%) hazard ratio

study cohort study cohort control study
control

metformin 92.6 [92.3–92.9] 92.9 [92.8–93.0] 1.07 [1.02–1.11]
sulfonylurea 82.5 [81.9–83.1] 86.5 [86.3–86.8] 1.45 [1.40–1.52] •
insulin 63.9 [62.9–64.9] 88.1 [87.8–88.3] 4.32 [4.14–4.51] •
metf+sulf 87.0 [86.5–87.4] 90.3 [90.1–90.5] 1.40 [1.35–1.46]
metf+insulin 77.1 [76.1–78.0] 89.8 [89.5–90.1] 2.71 [2.56–2.87] •
sulf+insulin 50.3 [48.8–51.7] 78.4 [77.8–78.9] 3.07 [2.92–3.23] •
metf+sulf+insulin 71.5 [70.5–72.5] 87.5 [87.2–87.8] 2.71 [2.58–2.85]

history of cardiovasular disease
5-year survival (%) hazard ratio

study cohort study cohort control study
control

metformin 86.7 [85.4–87.8] 85.2 [84.6–85.7] 0.92 [0.83–1.02]
sulfonylurea 72.5 [70.2–74.6] 77.2 [76.4–78.1] 1.35 [1.22–1.50]
insulin 56.1 [53.9–58.3] 78.6 [77.9–79.3] 2.69 [2.49–2.90]
metf+sulf 79.1 [77.4–80.7] 81.8 [81.1–82.5] 1.18 [1.07–1.30] •
metf+insulin 69.2 [66.9–71.4] 82.7 [81.8–83.5] 2.07 [1.87–2.30]
sulf+insulin 48.8 [46.2–51.3] 74.3 [73.3–75.2] 2.66 [2.44–2.89]
metf+sulf+insulin 67.4 [65.5–69.3] 81.5 [80.8–82.2] 2.05 [1.89–2.23]

Table 2.2: Overview of survival for the study cohorts compared to a fully
matched control cohort, stratified by cv history. The control group is sampled
from the general population and matched for age, gender and use of statins,
antihypertensives and antiplatelet drugs. For every patient in the study cohorts,
5 patients with completely matching profiles were used in control. • indicates
that the proportional hazards assumption was rejected for the associated hazards
ratio (p < 0.01).
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2.3.4 Statins and survival in individuals on different glucose
lowering therapy

Survival was compared between patients with and without statins. Survival
was consistently higher for patients that used statins in conjunction with GLA
therapy (Table 2.3), irrespective of CV history. The observed mortality rate
when using statins along with GLAs was 57 to 64% lower in patients without a
history of CV disease and by 50 to 68% in patients with a CV history, compared
to patients using only GLAs.

no history of cardiovasular disease
5-year survival (%) hazard ratio

study cohort without statins with statins statins
no statins

metformin 90.2 [89.8–90.6] 95.5 [95.2–95.9] 0.43 [0.39–0.47] •
sulfonylurea 76.9 [76.1–77.8] 91.7 [91.0–92.4] 0.36 [0.32–0.40] •
insulin 59.6 [58.4–60.8] 77.3 [75.4–79.0] 0.37 [0.33–0.41] •
metf+sulf 82.5 [81.8–83.2] 92.6 [92.0–93.1] 0.42 [0.38–0.46] •
metf+insulin 68.2 [66.7–69.6] 86.8 [85.7–87.9] 0.39 [0.35–0.44]
sulf+insulin 41.3 [39.6–43.1] 69.9 [67.4–72.3] 0.43 [0.38–0.48]
metf+sulf+insulin 61.5 [60.0–62.9] 83.4 [82.1–84.5] 0.43 [0.39–0.48] •

history of cardiovasular disease
5-year survival (%) hazard ratio

study cohort without statins with statins statins
no statins

metformin 71.3 [67.5–74.6] 90.6 [89.4–91.7] 0.36 [0.29–0.45]
sulfonylurea 53.1 [48.8–57.2] 82.5 [80.1–84.6] 0.32 [0.26–0.40]
insulin 40.5 [37.0–43.9] 66.5 [63.7–69.1] 0.45 [0.39–0.53]
metf+sulf 62.8 [58.8–66.5] 85.0 [83.2–86.6] 0.42 [0.34–0.51] •
metf+insulin 46.7 [42.0–51.2] 77.9 [75.4–80.2] 0.40 [0.33–0.49]
sulf+insulin 32.3 [28.6–36.0] 60.8 [57.4–63.9] 0.50 [0.42–0.59]
metf+sulf+insulin 46.6 [42.8–50.3] 76.6 [74.4–78.6] 0.42 [0.35–0.49]

Table 2.3: Analysis of the effect of statins within each study cohort. Presented
hazard ratios are associated to the fraction of follow-up on statins. Patients
are classified as statin users if they were on statins for at least half the
follow-up. The proportional hazards models used here control for age, gender,
use of antihypertensive and antiplatelet drugs and an age-gender interaction.
• indicates that the proportional hazards assumption was rejected for the
associated hazards ratio (p < 0.01).

In a second analysis, cohorts in which all patients on glucose lowering therapy
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were taking statins were compared to the general age and gender matched
population. Patients on metformin monotherapy (with and without a CV
history) and sulfonylurea mono (without CV history) that were also taking
statins exhibited higher survival rates than age and gender matched control
groups without glucose lowering therapy (of which resp. only 32,4%, 24.7%,
and 29.9% were taking statins during the majority of the follow-up). Patients
on the combination of MET and SU and statins had the same survival rate
than their controls, irrespective of CV history (Table 2.4).

study cohort no history of CVD history of CVD
metformin 0.66 [0.61–0.71] • 0.67 [0.58–0.78]
sulfonylurea 0.88 [0.80–0.97] 0.95 [0.81–1.12]
insulin 2.84 [2.53–3.19] • 2.12 [1.83–2.47]
metf+sulf 0.91 [0.84–0.99] • 0.96 [0.84–1.11] •
metf+insulin 1.91 [1.71–2.14] 1.67 [1.37–2.03]
sulf+insulin 2.40 [2.13–2.71] 2.43 [2.07–2.87]
metf+sulf+insulin 1.83 [1.66–2.01] 1.44 [1.23–1.69]

Table 2.4: Hazard ratios between statin users in the study group a control
group matched for age and gender. The remaining characteristics of the control
groups used here follow the distribution of the total NACM member population
(after matching for age and gender). The proportional hazard models used to
compute these hazard ratios control for age, gender, the use of antihypertensive
and antiplatelet drugs and an age-gender interaction. • indicates that the
proportional hazards assumption was rejected for the associated hazards ratio
(p < 0.01).

2.4 Conclusions

The main objective of this large controlled cohort study was to investigate
the survival of patients on various glucose lowering therapies in comparison
to a reference population with similar observable characteristics. It was found
that 5-year survival rates vary between glucose lowering therapies, at least
partly driven by the risk profile of the individuals themselves, and substantially
influenced by the intake of statins and the age at the start of GLA therapy.

Increased 5-year mortality rates were observed in patients on GLAs compared
to matched references not on GLAs. This confirms the study of Bannister
et al. [28] showing an increased mortality in patients on SU monotherapy
and extends the evidence to other groups on insulin monotherapy and different
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combination therapies. Although we did not see a better survival rate in patients
on metformin monotherapy, our data show that these patients have similar
survival rates compared to matched controls, especially if a positive history of
CV disease is present.

Our study confirms data from many other observational studies that patients
on metformin monotherapy have a lower mortality risk than patients on other
glucose lowering therapy [116, 218, 76, 141, 180, 259], characterized by reduced
excess mortality compared to matched controls. This study does not determine
whether this excess mortality of patients on SU and insulin is mainly caused
by the vulnerability of the background population or by negative properties
of the therapies themselves. The extra mortality risk can, at least partially,
be explained by the risk profile of the individuals themselves and not by using
SU or insulin per se. First of all, this might reflect the progressive nature of
type 2 diabetes such that patients with less pronounced hyperglycemia are
started on metformin monotherapy whereas uncontrolled patients are started
on insulin or combination therapies including SU. Age is another important
independent predictor of mortality and can explain why younger patient groups
(i.e. metformin mono) have better survival rates than older patient groups
(i.e. SU mono). Age however does not explain the lower survival rates in
younger patients on insulin monotherapy and survival differences throughout
all age categories. A positive history of cardiovascular events also increases
the background risk of our populations and explains the lower survival rates
in any study cohort with a positive CV history. As in Morgan et al. [180],
a combination of several other elements will probably play a role such as
hypertension and factors that were not available in our study such as presence
of chronic kidney disease and albuminuria, the level of glycemic control, smoking
and heart failure.

Data from the literature are conflicting concerning differences between agents.
On the one hand several studies report no difference in survival when comparing
metformin with SU [23, 130, 144] or SU with insulin [130]. Also in the ORIGIN
trial, insulin glargine was not associated with higher mortality rates than
controls [108] despite the lower use of metformin in the insulin glargine group.
On the other hand, many clinical and observational studies have indicated an
increased mortality risk associated with the use of SU and insulin compared
to metformin [116, 218, 76, 141, 180, 259], although differences were shown to
depend on the type of SU [226, 272], and the dose of insulin [103] used. In fact
only a well-controlled RCT with sufficient power comparing different treatment
strategies might answer this question, but it is very unlikely that these RCT’s
will ever be undertaken. Observational studies are in that view considered
complementary as they do not omit patients on the basis of strict criteria and
will usually have enough follow-up time to evaluate hard endpoints such as
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mortality risk.

This study is the first to show a beneficial impact of intake of statins on real-life
survival data in a large population study of patients on glucose lowering therapy.
This is not unexpected, since available evidence from RCT’s convincingly showed
beneficial effect of statins on survival and prevention of cardiovascular events
in secondary prevention (reviewed in [37]). Data in primary prevention are
scarce with the only RCT in diabetic patients lacking power to show an overall
mortality benefit [68]. Our trial shows a beneficial effect of statins in patients
with diabetes, both in primary and secondary prevention, with mortality risks
being 60 to 80% lower independent of the type of glucose lowering therapy or
presence of a CV disease history. Of note, patients taking statins in combination
with metformin or SU monotherapy even showed better survival than the general
population.

An asset of this study was the use of health expenditure records to assess the
survival of patients on various glucose lowering therapies in comparison with a
similar reference cohort from the general population. Claims records constitute
a valuable source of information for observational epidemiological studies by
embedding long-term longitudinal medical information of a large number of
patients. Additionally, claims records aggregate proxies of medical information
from various caregivers into a complete patient-wide overview which is often
unavailable to individual caregivers and other medical stakeholders.

Through exact pair-wise matching of the reference cohort and regression
adjustment in the proportional hazards models we were able to exclude important
observable confounders in comparisons of the study cohorts with their respective
references [220]. Having access to a large population from which to sample
control subjects allowed us to find references with exact matches on key
confounding variables. Matching on these observable factors excludes the
confounding effect and yields an efficiency gain [155]. Some residual confounding
resulting from uncontrolled and unobservable factors may remain. Our study
also has limitations. While there are considerable benefits in using claims data
for epidemiological research, the absence of detailed clinical parameters prohibits
causal inference because we could not control for level of glycemic control (e.g.,
fasting blood glucose or HbA1c), BMI, or other modifiable cardiovascular risk
factors (e.g., smoking). However, we controlled for age, sex, concomitant
medication, and presence of history of CV disease. Due to its observational
nature our study remains susceptible to confounding by indication [115, 208, 44].
Therefore our study is not suitable to compare GLA therapies directly as the
patients’ underlying conditions yield indications for their treatment, preventing
comparisons [115, 21].

We conclude that 5-year survival in patients on glucose lowering therapy is
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lower than in matched controls except for metformin monotherapy. Intake of
metformin is associated with lowest 5-year mortality. In all groups, the intake
of statins was associated with a reduced mortality rate.



Chapter 3

EnsembleSVM: A Library for
Ensemble Learning Using
SVMs

This chapter has been previously published as:
Claesen, M., De Smet, F., Suykens, J. A. K., & De Moor, B. (2014).
EnsembleSVM: A library for ensemble learning using support vector
machines. Journal of Machine Learning Research, 15(1), 141–145.

Contributions Marc Claesen has developed, tested and documented the
software and took the lead in writing the paper.

Abstract

EnsembleSVM is a free software package containing efficient routines to perform
ensemble learning with support vector machine (SVM) base models. It currently
offers ensemble methods based on binary SVM models. Our implementation
avoids duplicate storage and evaluation of support vectors which are shared
between constituent models. Experimental results show that using ensemble
approaches can drastically reduce training complexity while maintaining high
predictive accuracy. The EnsembleSVM software package is freely available
online at http://esat.kuleuven.be/sista/ensemblesvm.
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3.1 Introduction

Data sets are becoming increasingly large. Machine learning practitioners
are confronted with problems where the main computational constraint is the
amount of time available. Problems become particularly challenging when the
training sets no longer fit into memory. Accurately solving the dual problem
for SVM training with nonlinear kernels requires a run time which is at least
quadratic in the size of the training set n, thus training complexity is Ω(n2)
[45, 165].

EnsembleSVM employs a divide-and-conquer strategy by aggregating many SVM
models, trained on small subsamples of the training set. Through subdivision,
total training time decreases significantly, even though more models need to be
trained. For example, training p classifiers on subsamples of size n/p, results in
an approximate complexity of Ω(n2/p). This reduction in complexity helps in
dealing with large data sets and nonlinear kernels.

Ensembles consisting of SVM models have been used in various applications
[269, 164, 178]. Collobert et al. [69] use ensembles for large scale learning and
employ a neural network to aggregate base models. Valentini and Dietterich
[261] provide an implementation which allows base models to use different
kernels. We require base models to share a single kernel function for efficiency.

While other implementations mainly focus on improving predictive performance,
we primarily aim to (i) make nonlinear large-scale learning feasible through
complexity reductions and (ii) enable prototyping of novel ensemble algorithms.

The default ensemble learning approach we offer is bagging, which is commonly
used to improve the performance of unstable classifiers [50]. In bagging,
base models are trained on bootstrap resamples of the training set and their
predictions are aggregated through majority voting. A critical aspect of bagging
is that base models should have low bias but may exhibit high variance
[50, 29, 147], which makes base models like decision trees ideal [52]. Typically,
SVM classifiers are considered stable [46] and by implication ill suited for
bagging frameworks. However, when using SVM base models in a bagging setup,
variance can be promoted while simultaneously reducing bias by using small
base model training sets in combination with high misclassification penalties.
Effectively, overfitting the base models may positively affect overall performance
of the ensemble due to increased efficiency of aggregation. As such, bagging
SVM models requires striking a balance between base model performance
vis-à-vis aggregation benefits for a given learning task. This may appear
counterintuitive as this tradeoff is difficult to make based on domain knowledge
alone. However, appropriate hyperparameterizations enable finding the right
balance automatically, for instance using Optunity (cfr. Chapter 6).
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3.2 Software Description

The EnsembleSVM software is freely available online under a LGPL license.
EnsembleSVM provides ensembles of instance-weighted SVMs, as defined in
Equation (3.1).

Base model flexibility is maximized by using instance-weighted binary support
vector machine classifiers, as defined in Equation (3.1). This formulation lets
users define misclassification penalties per training instance Ci, i = 1, . . . , n
and encompasses popular approaches such as C-SVC and class-weighted SVM
[72, 195].

min
w,ξ,ρ

1
2wTw +

n∑
i=1

Ciξi, (3.1)

subject to yi(wTϕ(xi) + ρ) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

When aggregating SVM models, the base models often share support vectors
(SVs). The EnsembleSVM software intelligently caches distinct SVs to ensure
that they are only stored and used for kernel evaluations once. As a result,
EnsembleSVM models are smaller and faster in prediction than ensemble
implementations based on wrappers.

3.2.1 Implementation

EnsembleSVM has been implemented in C++ and makes heavy use of the standard
library. The main implementation focus is training speed. We use facilities
provided by the C++11 standard and thus require a moderately recent compiler,
such as gcc ≥ 4.7 or clang ≥ 3.2. A portable Makefile system based on GNU
autotools is used to build EnsembleSVM.

EnsembleSVM interfaces with LIBSVM to train base models [57]. Our code must
be linked to LIBSVM but does not depend on a specific version. This allows
users to choose the desired version of the LIBSVM software in the back-end.

The EnsembleSVM programming framework is designed to facilitate prototyping
of ensemble algorithms using SVM base models. We particularly provide
extensive support to define novel aggregation schemes, should the available
options be insufficient. Key components are extensively documented in the
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code and on a wiki, which serves as a high-level guideline.1 Intuitive APIs are
provided for convenient features such as thread pools, command line interface
and deserialization to enable users to develop new tools efficiently.

The EnsembleSVM library was built with extensibility and user contributions
in mind. Major API functions are well documented to lower the threshold for
external development. The executable tools provided with EnsembleSVM are
essentially wrappers for the library itself. The tools can be considered as use
cases of the main API functions to help developers.

3.2.2 Tools

The main tools in this package are esvm-train and esvm-predict, used to
train and predict with ensemble models. Both of these are pthread-parallelized.
Additionally, the merge-models tool can be used to merge standard LIBSVM
models into ensembles. Finally, esvm-edit provides facilities to modify the
aggregation scheme used by an ensemble.

EnsembleSVM includes a variety of extra tools to facilitate basic operations such
as stratified bootstrap sampling, cross-validation, replacing categorical features
by dummy variables, splitting data sets and sparsifying standard data sets. We
recommend retaining the original ratio of positives and negatives in the training
set when subsampling.

3.3 Benchmark Results

To illustrate the potential of our software, EnsembleSVM 2.0 has been
benchmarked with respect to LIBSVM 3.17. To keep the experiments simple, we
use majority voting to aggregate predictions, even though more sophisticated
methods are offered. For reference, we also list the best obtained accuracy with
a linear model, trained using LIBLINEAR [95]. Linear methods are common in
large-scale learning due to their speed, but may result in significantly decreased
accuracy. This is why scalable nonlinear methods are desirable.

We used two binary classification problems, namely the covtype and ijcnn1
data sets.2 Both data sets are balanced. Features were always scaled to [0, 1].
We have used C-SVC as SVM and base models (∀ i : Ci = C). Reported

1The EnsembleSVM development wiki is available at https://github.com/claesenm/
EnsembleSVM/wiki.

2Available at: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.
html and UCI.

https://github.com/claesenm/EnsembleSVM/wiki
https://github.com/claesenm/EnsembleSVM/wiki
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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numbers are averages of 5 test runs to ensure reproducibility. We used the
RBF kernel, defined by the kernel function κ(xi,xj) = exp

(
− γ||xi − xj ||2

)
.

Optimal parameter selection was done through cross-validation.

The covtype data set is a common classification benchmark featuring 54
dimensions [41]. We randomly sampled balanced training and test sets of
100, 000 and 40, 000 instances respectively and classified class 2 versus all others.
The ijcnn1 data set was used in a machine learning challenge during IJCNN
2001 [206]. It contains 35, 000 training instances in 22 dimensions.

data set test set accuracy no. of SVs time (s)
LIBSVM LIBLINEAR ESVM LIBSVM ESVM LIBSVM ESVM

covtype 0.92 0.76 0.89 26516 50590 728 35
ijcnn1 0.98 0.92 0.98 3564 7026 9.5 0.3

Table 3.1: Summary of benchmark results per data set: test set accuracy,
number of support vectors and training time. Accuracies are listed for a single
LIBSVM model, LIBLINEAR model and an ensemble model.

Results in Table 3.1 show several interesting trends. Training EnsembleSVM
models is orders of magnitude faster, because training SVMs on small subsets
significantly reduces complexity. Subsampling induces smaller kernels per base
model resulting in lower overall memory use.

Ensembles can end up with more support vectors than a single SVM. Due to our
parallelized implementation, prediction with ensemble models was faster than
with LIBSVM models in both experiments even though the ensembles comprise
twice as many SVs.

The ensembles in these experiments are competitive with a traditional SVM
even though we used simple majority voting. For covtype, ensemble accuracy
is 3% lower than a single SVM and for ijcnn1 the ensemble is marginally better
(0.2%). Linear SVM falls far short in terms of accuracy for both experiments,
but is trained much faster (< 2 seconds).

We obtained good results with very basic aggregation. Collobert et al. [69]
illustrated that more sophisticated aggregation methods can improve the
predictive performance of ensembles. Others have reported performance
improvements over standard SVM for ensembles using majority voting [261, 269].
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3.4 Conclusions

EnsembleSVM provides users with efficient tools to experiment with ensembles of
SVMs. Experimental results show that training ensemble models is significantly
faster than training standard LIBSVM models while maintaining competitive
predictive accuracy.

Linear methods are frequently applied in large-scale learning, mainly due to
their low training complexity. Linear methods are known to have competitive
accuracy for high dimensional problems. As our benchmarks showed, the
difference in accuracy may be large for low dimensional problems. As such, fast
nonlinear methods remain desirable in large-scale learning, particularly for low
dimensional tasks with many training instances. Our benchmarks illustrate the
potential of the ensemble approaches offered by EnsembleSVM.

Ensemble performance may be improved by using more complex aggregation
schemes. EnsembleSVM currently offers various aggregation schemes, both linear
and nonlinear. Additionally, it facilitates fast prototyping of novel methods
through its Pipeline framework.3

EnsembleSVM strives to provide high-quality, user-friendly tools and an intuitive
programming framework for ensemble learning with SVM base models. The
software will be kept up to date by incorporating promising new methods and
ideas when they are presented in the literature. User requests and suggestions
are welcome and appreciated.

3https://github.com/claesenm/EnsembleSVM/wiki/Pipeline

https://github.com/claesenm/EnsembleSVM/wiki/Pipeline
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ensemble approach to learn from positive and unlabeled data using
SVM base models. Neurocomputing, 160, 73-84.

Contributions Marc Claesen designed the learning method and performed all
experiments. He took the lead in writing the paper.

Abstract

We present a novel approach to learn binary classifiers when only positive and
unlabeled instances are available (PU learning). This problem is routinely cast
as a supervised task with label noise in the negative set. We use an ensemble of
SVM models trained on bootstrap resamples of the training data for increased
robustness against label noise. The approach can be considered in a bagging
framework which provides an intuitive explanation for its mechanics in a semi-
supervised setting. We compared our method to state-of-the-art approaches in
simulations using multiple public benchmark data sets. The included benchmark
comprises three settings with increasing label noise: (i) fully supervised, (ii)
PU learning and (iii) PU learning with false positives. Our approach shows
a marginal improvement over existing methods in the second setting and a
significant improvement in the third.
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4.1 Introduction

Training binary classifiers on positive and unlabeled data is referred to as PU
learning [166]. The absence of known negative training instances warrants
appropriate learning methods. Inaccurate label information can be more
problematic than attribute noise [287]. Specialised PU learning approaches are
recommended when (i) negative labels cannot be acquired, (ii) the training data
contains a large amount of false negatives or (iii) the positive set has many
outliers.

Practical applications of PU learning typically feature large, imbalanced training
sets with a small amount of labeled (positive) and a large amount of unlabeled
training instances. The PU learning problem arises in various settings, including
web page classification [284], intrusion detection [157] and bioinformatics tasks
such as variant prioritization [238], gene prioritization [9, 178] and virtual
screening of drug compounds [236].

Though these applications share a common underlying learning problem, the
final evaluation criteria may be fundamentally different. For instance, in
prioritization one wishes to obtain high precision since highly ranked targets
may be subjected to further biological analysis. Intrusion detection, on the
other hand, necessitates high recall to ensure that no anomalies go unnoticed.

Following Mordelet and Vert [179], we will use the term contamination to refer
to the fraction of mislabeled instances in a given set. We will denote the positive
and unlabeled training instances by P and U , respectively. Contamination
in P refers to false positives while contamination in U refers to the presence
of positives in P. Usually U contains mostly true negative instances (e.g.
contamination below 0.5) and P is assumed to be uncontaminated.

The distributions of the positive and a contaminated unlabeled set overlap even
when those of the positive and underlying negative sets do not, which makes
classification more difficult compared to a traditional supervised setting. Elkan
and Noto [92] and Blanchard et al. [42] report statistical approaches to estimate
the contamination of the unlabeled set and additionally show that distinguishing
positives from unlabeled instances is a valid proxy for distinguishing positives
from negatives.

The assumption in PU learning that P is uncontaminated may be violated in
applications due to various reasons [101]. Additionally, outliers in the positive
set may have a similar effect on classification performance [200]. We propose a
novel PU learning method that is less vulnerable to potential contamination in
P called the robust ensemble of support vector machines (RESVM). RESVM is
compared to other methods in a series of simulations based on several public
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data sets.

4.2 Related work

PU learning approaches can be split into two main conceptual categories: (i)
approaches that account for the contamination of the unlabeled set explicitly by
modeling the label noise and (ii) approaches that try to infer an uncontaminated
(negative) subset N̂ from U and then train supervised algorithms to distinguish
P from N̂ . When very few labeled examples are available, the structure within
the data is the main source of information which can be exploited by semi-
supervised clustering techniques [14].

Accounting for the contamination of U in the modeling process This can be
done by weighting individual data points, such as in weighted logistic regression
[92, 159]. Another approach is by changing the penalties on misclassification
during training, as is done in class-weighted SVM [166], bagging SVM [179] and
RT-SVM [168].

Inferring an uncontaminated subset from U Another class of approaches tries
to infer a negative set N̂ from U . After the inferential step, binary classifiers
are trained to distinguish P from N̂ in a supervised fashion. Examples of such
two-step approaches include S-EM [167], mapping convergence (MC) [282] and
ROC-SVM [161].

Class-weighted SVM and related approaches The approach we suggest
belongs to the first class of methods and is closely related to class-weighted SVM
and bagging SVM (which uses class-weighted SVM internally). We will discuss
both of these approaches in more detail before moving on to the proposed
method. We evaluated our method compared to both class-weighted SVM and
bagging SVM.

4.2.1 Class-weighted SVM

Class-weighted SVM (CWSVM) is a supervised technique in which the penalty
for misclassification differs per class. Liu et al. [166] first applied class-weighted
SVM for PU learning by considering the unlabeled set to be negative with noise
on its labels. CWSVM is trained to distinguish P from U . During training,
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misclassification of positive instances is penalized more than misclassification
of unlabeled instances to emphasize the higher degree of certainty on positive
labels. In the context of PU learning, the optimization problem for training
CWSVM can be written as:

min
α,ξ,b

1
2

N∑
i=1

N∑
j=1

αiαjyiyjκ(xi,xj) + CP
∑
i∈P

ξi + CU
∑
i∈U

ξi, (4.1)

s.t. yi(
N∑
j=1

αjyjκ(xi,xj) + ρ) ≥ 1− ξi, i = 1, . . . , N,

ξi ≥ 0, i = 1, . . . , N,

with α ∈ RN the support values, y ∈ {−1,+1}N the label vector, κ(·, ·)
the kernel function, ρ the bias term and ξ ∈ RN the slack variables. The
misclassification penalties CP and CU require tuning (typically CP > CU to
emphasize known labels). SVM formulations with unequal penalties across
classes have been used previously to tackle imbalanced data sets [195].

4.2.2 Bagging SVM

Mordelet and Vert introduce bagging SVM as a meta-algorithm which consists of
aggregating classifiers trained to discriminate P from small, random resamples
of U [179]. They posit that PU learning problems have a particular structure
that leads to instability of classifiers, namely the sensitivity of classifiers to the
contamination of the unlabeled set. Bagging is a common technique used to
improve the performance of instable classifiers [50].

In bagging SVM, random resamples of U are drawn and CWSVM classifiers
are trained to discriminate P from each resample. By resampling U , the
contamination is varied. This induces variability in the classifiers which the
aggregation procedure can then exploit. The size of the bootstrap resample of
U is a tuning parameter in bagging SVM. The ratio CP/CU is fixed so that the
following holds:

|P| × CP = nU × CU , (4.2)

with |P| the size of the positive set and nU the size of resamples from the
unlabeled set. This choice of weights is common in imbalanced settings [55, 77].

All base models in bagging SVM classify the full set of positives against a subset
of unlabeled instances and use a high misclassification penalty on the positives
similar to CWSVM. To our knowledge, bagging SVM was initially designed for
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gene prioritization [178], the goal of which is to identify genes that are likely
related to some disorder based on genes with known associations [9, 178]. This
task often has very few known positives (less than 100) and many unlabeled
instances (≈ 20,000), which is probably why bagging SVM consistently uses all
positives in every base model by design.

4.3 Robust Ensemble of SVMs

We propose a new technique called the robust ensemble of SVMs (RESVM).
RESVM is a bagging method using CWSVM base models as discussed in
Section 4.2.1. Base model training sets are constructed by bootstrap resampling
both P and U separately, both of which may be contaminated.

In the remainder of this text, bagging SVM is used to refer to the method by
Mordelet and Vert [179] as outlined in Section 4.2.2. The name bagging SVM
is somewhat unfortunate since the approach is atypical for bagging frameworks,
which usually resample the full training set. Our approach is effectively more
similar to standard bagging (using SVM base models) than bagging SVM.

The key difference between RESVM and bagging SVM is that the former
resamples P in addition to U to increase variability between base models.
RESVM additionally features an extra degree of freedom to control the relative
misclassification penalty between positive and unlabeled instances, which is
fixed in bagging SVM. Mordelet and Vert [179] report no significant changes
when varying the relative penalty in bagging SVM, though our experiments
show that it is important in RESVM (see wpos in Table 4.5).

Before elaborating on the details of RESVM, we briefly illustrate the effect of
resampling contaminated sets. Subsequently we summarize the mechanisms
of bagging and why they are advantageous when learning with label noise in
the RESVM approach. Finally, we provide the full RESVM training approach
and the way ensemble decision values are computed based on the base model
decision values.

4.3.1 Bootstrap resampling contaminated sets

The RESVM approach resamples both P and U , both of which are potentially
contaminated. Resampling contaminated sets with replacement induces
variability in contamination across the resampled sets (e.g. resamples of U
and P that are used for training). The variability in contamination between
resamples increases for increasing contamination of the original set. We assume
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contamination levels below 50%, e.g. less than half the instances in a given
set are mislabeled. Due to the law of large numbers the contamination in
bootstrap resamples of increasing size converges to the expected contamination,
which equals that of the original set that is being resampled. As a result, the
variability in contamination decreases for increasing resample size. Figure 4.1
illustrates this property empirically based on 20, 000 repeated measurements for
each resample size: the expected value (mean) equals the original contamination,
but the variability in resample contamination decreases for increasing resample
size.
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Figure 4.1: Contamination of bootstrap resamples for increasing size of resamples
when the original sample has 10% contamination. Errorbars indicate the 95%
confidence interval (CI) of contamination in resamples. The contamination
varies greatly between small resamples as shown by the CIs.

4.3.2 Bagging predictors

Breiman [50] introduced bagging as a technique to construct strong ensembles
by combining a set of base models and stated that “the essential problem in
combining classifiers is growing a suitably diverse ensemble of base classifiers”
which can be done in various ways [53]. In bagging, the ensemble models use
majority voting to aggregate decisions of base models which are trained on
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bootstrap resamples of the training set. From a Bayesian point of view, bagging
can be interpreted as a Monte Carlo integration over an approximated posterior
distribution [211].

In his landmark paper, Breiman [50] noted that base model instability is an
important factor in the success of bagging which led to the use of inherently
instable methods like decision trees in early bagging approaches [84, 52]. The
main mechanism of bagging is often said to be variance reduction [29, 51]. In
more recent work, Grandvalet [113] explained that base model instability is not
related to the intrinsic variability of a predictor but rather to the presence of
influential instances in a data set for a given predictor (so-called leverage points).
The effect of bagging is explained as equalizing the influence of all training
instances, which is beneficial when highly influential instances are harmful for
the predictor’s accuracy.

4.3.3 Justification of the RESVM algorithm

We have shown the effect of resampling contaminated sets and provided some
basic insight into the mechanics of bagging. We will now link these two elements
to justify bagging approaches in the context of contaminated training sets. Its
usefulness can be considered by both the variance reduction argument of Bauer
and Kohavi [29] and equalizing the influence of training points as described by
Grandvalet [113].

Variance reduction Resampling a contaminated set yields different levels of
contamination in the resamples as explained in Section 4.3.1. Varying the
contamination between base model training sets induces variability between
base models without increasing bias. This observation enables us to create a
diverse set of base models by resampling both P and U . The variance reduction
of bagging is an excellent mechanism to exploit the variability of base models
based on resampling [29, 51]. In the context of RESVM, a tradeoff takes place
between increased variability (by training on smaller resamples, see Figure 4.1)
and base models with increased stability (larger training sets for the SVM
models).

Equalizing influence The influence of a training instance on an SVM model
can be quantified in terms of its dual weight (the associated α value). Three
distinct cases can be distinguished: (i) the training instance is correctly classified
and not within the margin (α = 0, not a SV), (ii) the training instance lies on
the margin and is correctly classified (α ∈ [0, C], free SV) and (iii) the training
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instance is incorrectly classified or within the margin (α = C, bounded SV),
where C is the misclassification penalty associated to the training instance [45].
Instances that are misclassified during training become bounded SVs, which
have the maximal α value and can therefore be considered leverage points
of the SVM model. When learning with label noise, the mislabeled training
instances are likely to end up as bounded SVs. In a best case scenario, the
mislabeled training instances are classified in concordance to their true label
by the SVM model (which means they must be a bounded SV as the training
procedure identifies this as a misclassification). As such, mislabeled training
instances act as leverage points for SVM models. Following Grandvalet [113],
bagging equalizes the influence of training instances (e.g. lowers the influence of
mislabeled leverage points in comparison to the rest of the data) which yields
improved robustness against contamination in the context of RESVM.

4.3.4 RESVM training

RESVM uses CWSVM base models trained on resamples from the original
training set, where both P and U are being resampled. The technique involves 5
hyperparameters: 3 to define the resampling strategy and 2 for the base models.
Additional hyperparameters may be involved, for example γ for the RBF kernel
κ(xi,xj) = exp(−γ‖xi − xj‖2).

The number of base models to include in the ensemble, nnmodels, is the first
hyperparameter. Using more base models improves the stability of the ensemble
(up to a certain plateau) at a linear increase in computational cost for training
and prediction. nmodels is not a traditional hyperparameter in the sense that a
good value can be determined during training, for example based on out-of-bag
error estimates [27].1

By resampling P , RESVM takes potential contamination of the labeled instances
into account by design. Since the contamination between P and U can vary,
the ability to vary the size of resamples from P and U separately is required.
This results in two tuning parameters: npos and nunl. In general, using small
base model training sets results in increased base model variability which then
necessitates using more base models in the ensemble to obtain a given level
of stability. In our experiments, we have tuned npos and nunl but it is also
possible to obtain good values using out-of-bag techniques [173].1

RESVM additionally inherits at least 2 hyperparameters from its SVM base
models, namely misclassification penalties for both classes and, if applicable,

1Note that the error estimates in out-of-bag techniques must account for potential
contamination. See our discussion of hyperparameter tuning for a possible score function.
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hyperparameters related to the kernel function. We define the CWSVM penalties
in see Eq. (4.1) based on 2 hyperparameters CU and wpos:

CP = CU × wpos ×
nunl
npos

. (4.3)

wpos enables reweighting labeled and unlabeled instances after equalizing class
imbalance. In bagging SVM, wpos is always fixed to 1.

The RESVM training approach has been summarised in Algorithm 1. The
algorithm uses 5 hyperparameters plus additional kernel parameters.

Algorithm 1: Training procedure for RESVM.
Data: P: the set of positive instances.

U : the set of unlabeled instances.
Input: nmodels: number of base models to include in the ensemble.

nunl: size of bootstrap resamples of U .
npos: size of bootstrap resamples of P.
CU : misclassification penalty for U in class-weighted SVM.
wpos: relative positive misclassification penalty coefficient.
κ(·, ·): kernel function to be used by base models.

Output: Ω: RESVM with nmodels base models.
begin

Ω← ∅;
CP ← CU × wpos × nunl

npos
;

for i← 1 to nmodels do
// create base model training set from P and U.
P(i) ← sample npos instances from P with replacement;
U (i) ← sample nunl instances from U with replacement;
// train CWSVM base model ψ(i) and add to ensemble Ω.
ψ(i) ← train CWSVM for P(i) vs. U (i) (parameters CP , CU , κ);
Ω← {Ω, ψ(i)};

4.3.5 RESVM prediction

RESVM uses majority voting to aggregate base model predictions. By default,
the returned label is the one predicted by most base models. The fraction of
positive votes for a test instance x can be written as:

v(x) = nmodels +
∑nmodels

i=1 sgn(ψ(i)(x))
2nmodels

, (4.4)
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where sgn(·) is the sign function and ψ(i) denotes the decision function of SVM
base model i with codomain R. v(·) has the interval [0, 1] as codomain.

The RESVM decision value for a test instance x is defined as the fraction of
votes in favor of the positive class v(x) unless the result is unanimous. In the
case of a unanimous vote, the ensemble decision value is based on the decision
values of its base models to increase the model’s ability to differentiate. In case
of a unanimous negative vote, the sum of the decision values of the base models
is taken (each SVM base model decision value is negative in this case). In case
of a unanimous positive vote, the sum of the decision values of the base models
(all positive) plus one is taken. The decision value d(·) has codomain R and is
computed as follows:

d(x) =


v(x) if 0 < v(x) < 1,∑nmodels

i=1 ψ(i)(x) if v(x) = 0,
1 +

∑nmodels

i=1 ψ(i)(x) if v(x) = 1.
(4.5)

The resulting label for a given decision threshold T can be written as follows:

l(x) = sgn
(
d(x)− T

)
. (4.6)

The default decision value threshold for positive classification is T = 0.5 (this
is majority voting, e.g. positive iff more than half of all base models predict
positive). Using the modified decision values d(x) instead of the votes v(x)
does not affect the predicted labels for typical choices of the threshold T (e.g.
T ∈ (0, 1)). It does, however, affect performance measures that use the entire
range of decision values such as area under the PR curve. Using d(x) enables
us to rank different instances that received all positive or all negative votes by
base models (e.g. v(x) = 1 and v(x) = 0, respectively).

4.4 Experimental setup

RESVM has been compared to class-weighted SVM (CWSVM) and bagging
SVM (BAG) in a number of simulations to assess the merits of our modifications
compared to conceptually comparable algorithms. In this Section we will
summarize the experimental setup (training set construction, model selection
and performance evaluation) and the data sets we used.

4.4.1 Simulation setup

Our experiments consist of repeated simulations on a variety of data sets under
different settings. Briefly, in each iteration hyperparameters were optimized per
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approach based on cross-validation on the training set (using identical folds for
all approaches). Subsequently, a model with the optimal parameters is trained
on the full training set and used to predict an independent test set. An overview
of the experiments is shown in Figure 6.1. Every experiment consists of 20
repetitions.

Figure 4.1: Overview of a single benchmark iteration.

To assess what situations are favorable per approach, we have investigated three
different settings with distinct label noise configurations. For every data set,
we performed 10 iterations per simulation in the following settings:

1. supervised: no contamination in P or U (U is the negative class).

2. PU learning: contamination in U but not in P.

3. semi-supervised: contamination in both P and U . The contamination
levels in P and U were always chosen equal (except in Section 4.5.6).

The contamination levels we used were chosen per data set based on when
differences between the three approaches become visible. A summary is available
in Table 4.1 in Section 4.4.2. When applicable, contamination was introduced
by flipping class labels (e.g. true positives in U and true negatives in P). This
effectively changes the empirical densities of the classes in the training set
(illustrated in Figure 4.2 in the next Section).

Every binary learning task was repeated 20 times to get reliable assessments
of all methods. Each repetition involves redoing all steps shown in Figure 6.1,
including resampling of training sets based on the known true positives and
true negatives. Contamination was introduced at random where applicable by
flipping class labels.



64 SVM ENSEMBLE LEARNING FROM POSITIVE AND UNLABELED DATA

Hyperparameter selection In every iteration, hyperparameters were tuned
per setting using 10-fold cross-validation over a grid of parameter tuples. To
ensure a fair comparison, one set of folds is generated in each iteration and used
by all methods. We ensured that the optimal values that were found during
tuning in any setting were never on the edge of the search grid. The search
resolution in comparable parameters between methods was always defined to
be identical (for example γ in the case of an RBF kernel).

The same search grids were used in all three settings for a given data set to
illustrate that a method can work well in a supervised setting with a given
search grid but degrade when label noise is added. Since negative labels are
unavailable in PU learning, we used the following score function in all learning
settings which only requires positive labels for hyperparameter selection [159]:

pu_score = precision× recall
Pr(y = 1) = recall2

Pr(ŷ = 1) , (4.7)

where Pr(y = 1) is the fraction of known positive labels in the predicted set
and Pr(ŷ = 1) is the fraction of positive predictions made by the classifier.
Note that this score function is not ideal when P is contaminated, though we
obtained good results even in that setting.

The following parameters were tuned per method: (CWSVM) CP and CU ,
(BAG) CU and nU and (RESVM) CU , wpos, npos and nunl. In both ensemble
approaches we consistently used 50 base models.

Performance assessment Models are trained with the optimal hyperparame-
ters on the full training set and subsequently tested on the independent test set.
We use the known test labels to compute the area under the Precision-Recall
curve (AUC) for each model. We opted to use PR curves because they capture
the performance of interest of models over their entire operating range and work
well for imbalanced data [79].

We used statistical analyses to determine whether one approach trumps another
while accounting for the variability between simulations. The nonparametric
Wilcoxon signed-rank test is recommended for pairwise comparisons between
learning algorithms [81]. In every setting per data set we performed a
paired one-tailed Wilcoxon signed-rank test comparing the area under the
PR curve of bagging SVM and RESVM with alternative hypothesis h1 :
AUCRESVM > AUCBAG (pairs being iterations). Low p-values indicate a
statistically significant improvement.
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Implementation details We used the class-weighted SVM implementation
available in LIBLINEAR [95] and LIBSVM [57] for models using the linear
and RBF kernel, respectively. Bagging SVM and RESVM were implemented
using the EnsembleSVM library [65].2 The decision values of bagging SVM
used to compute PR curves were defined in the same way as for RESVM (see
Section 4.3.5).

4.4.2 Data sets

We used a synthetic data set and 5 publicly available data sets:3

• synthetic: a 2-D binary data set. Positive instances are sampled from a
standard normal distribution. Negative instances are sampled from a circle
centered at the origin with radius 4 with 2-D noise superimposed from a
standard normal distribution. Training and testing data was generated in
every iteration. Figure 4.2 shows densities for all settings.

• cancer: the Wisconsin breast cancer data set related to breast cancer
diagnosis. It consists of 10 features and 683 instances without an explicit
train/test partitioning so we partitioned it at random in every iteration.

• ijcnn1: used for the IJCNN 2001 neural network competition [206],
comprising 2 classes, 22 features and 49, 990/91, 701 training/testing
instances.

• covtype: a common classification benchmark about predicting forest
cover types based on cartographic information [41]. We used a subsample
of 100, 000/40, 000 training/testing instances.

• mnist: a digit recognition task [158]. This data set contains 10 classes
(one for each digit), 780 features, 60, 000 training instances and 10, 000
test instances with an almost uniform class distribution. We performed
one-versus-all classification for each digit.

• sensit: SensIT Vehicle (combined), vehicle classification [86]. This data
set contains 3 classes with an uneven distribution. We performed one-
versus-all classification for each class. This data set has 100 features,
78, 823 training instances and 19, 705 testing instances.

Most data sets have a prespecified test set, except for synthetic and cancer.
We used the prespecified test sets when available. We used the RBF kernel for

2Python code for RESVM is available at https://github.com/claesenm/resvm.
3Public data at: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

https://github.com/claesenm/resvm
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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all data sets except mnist (linear kernel). Note that both RESVM and bagging
SVM models are always implicitly nonlinear due to their majority voting scheme,
even when using linear base models, as illustrated in Figure 4.3.

In every setting each original data set was resampled without replacement to
construct training sets to use in the simulations. The resampled training sets
are typically significantly smaller than what is available in the original data
sets to show that some methods can obtain good models even with few training
instances. An overview of the actual training sets we constructed is presented
in Table 4.1.

contamination training set test set
data set d in percent |P| |U| |P| |N |

synthetic 2 30 100 200 5, 000 5, 000
cancer 10 30 50 200 100 100
ijcnn1 22 10 100 10, 000 8, 712 82, 989
covtype 54 30 100 1,000 20,000 20,000
mnist 780 10 50 2, 000 ≈ 1, 000 ≈ 9, 000

sensit 1 100 30 100 1, 000 4, 575 15, 130
sensit 2 100 30 100 1, 000 5, 520 14, 455
sensit 3 100 30 100 1, 000 9, 880 9, 825

Table 4.1: Overview of the data sets used in simulations: number of features,
contamination (when applicable), training set size as used in the experiments
and test set size. The mnist data set consists of 10 classes and the test set is
almost uniformly distributed. The sensit data set has 3 classes with uneven
class distribution in the test set, so we treat it separately here.



EXPERIMENTAL SETUP 67

−6
−4
−2
0
2
4
6

Psupervised Usupervised

−6
−4
−2
0
2
4
6

PPU UPU

−6−4−2 0 2 4 6
−6
−4
−2
0
2
4
6

Psemisupervised

−6−4−2 0 2 4 6

Usemisupervised

Figure 4.2: Empirical densities of the synthetic data used for training per
problem setting (visualized in input space). The supervised densities (top row)
are based on samples of the underlying positive and negative classes. The use
of high contamination (30%) induces similar empirical densities for P and U in
the semi-supervised setting (bottom row).
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Figure 4.3: The effect of majority voting in an ensemble Ω with three linear
base models (ψ1, ψ2, ψ3). The thick black line represents the overall decision
boundary of Ω. The use of majority voting generally induces nonlinear decision
boundaries, e.g., when using linear base models the ensemble has a piecewise
linear decision boundary.
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4.5 Results and discussion

We will summarize all results of our simulation experiments comparing class-
weighted SVM (CWSVM), bagging SVM (BAG) and the robust ensemble of
SVMs (RESVM). First we will show the results of each setting separately.
Subsequently we present an overview of the number of wins per setting for each
method across all data sets. Section 4.5.6 shows the results of an experiment to
assess the effect of contamination in P and U on all methods. Finally, we include
an interesting observation regarding the optimal hyperparameters of RESVM
that were found using cross-validation on the mnist data set per setting in
Table 4.5.

4.5.1 Results for supervised classification

Table 4.1 summarizes our results in a fully supervised setting. In these
experiments both P and U are uncontaminated. Based on the number of
wins per simulation and the confidence intervals, we can conclude that all
methods are competitive in this setting.

The confidence intervals show that all methods obtain comparable results for
all simulations except mnist digit 8, where CWSVM performs poorly compared
to the others. This performance difference could be caused by the fact we
used linear class-weighted SVM while both ensemble methods implicitly yield
nonlinear decision boundaries. A linear model may be too simple to properly
distinguish this digit from the others.

The overall good results in the supervised setting confirm that the score function
in Equation (4.7) is a good choice for tuning. In these supervised experiments
we could have used a traditional score like accuracy, area under the ROC curve
or F-measure, but these would no longer be useful in the other settings. The
performance in these supervised experiments can be considered an objective
baseline for comparison in the PU learning and semi-supervised setting since
only levels of contamination are varied.

4.5.2 Results for PU learning

The results of our experiments in a PU learning setting are shown in Table 4.2.
In the pure PU learning setting, P is uncontaminated but U is contaminated.
Class-weighted SVM tends to suffer from the largest loss in performance between
supervised learning and pure PU learning based on area under PR curves. Class-
weighted SVM obtains less wins than it did in the supervised simulations (21
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area under PR curve number of wins
data CWSVM BAG RESVM p CWSVM BAG RESVM

synthetic 98.1–98.7 98.7–98.8 98.7–98.8 2 12 6
cancer 98.4–98.8 98.4–98.7 98.3–98.7 8 12 0
ijcnn1 85.3–87.4 79.1–81.6 82.3–86.2 • • • 16 0 4
covtype 77.1–78.3 76.8–78.5 76.8–78.7 8 6 6

mnist (positive = x)
0 96.9–97.5 96.9–97.4 96.9–97.4 7 8 5
1 98.1–98.3 98.3–98.5 98.2–98.5 0 8 12
2 87.3–89.1 88.5–89.8 89.6–90.5 • 2 6 12
3 83.7–85.9 86.9–88.7 88.8–90.1 • • • 0 5 15
4 88.8–90.2 89.8–91.1 90.8–92.2 • • • 1 3 16
5 78.7–80.9 79.2–81.0 81.4–83.2 • • 3 3 14
6 92.4–93.4 93.9–94.7 94.3–94.9 0 8 12
7 92.2–92.9 92.6–93.2 93.1–93.7 • • • 1 3 16
8 56.5–58.9 74.3–76.1 79.6–80.5 • • • 0 0 20
9 72.5–75.6 77.8–80.3 81.5–82.6 • • • 0 2 18

sensit (positive = x)
1 80.5–81.4 79.8–80.7 80.5–81.3 • 10 2 8
2 65.7–75.4 72.6–74.0 73.5–74.9 • • • 15 0 5
3 35.5–56.1 92.3–92.7 91.7–92.3 0 15 5

Table 4.1: 95% CIs for mean test set performance in a fully supervised setup,
the results of a paired one-tailed Wilcoxon signed-rank test comparing the AUC
of BAG and RESVM with alternative hypothesis h1 : AUCRESVM > AUCBAG

and the number of times each approach had best test set performance. Test
result encoding: • p < 0.05, • • p < 0.01 and • • • p < 0.001.

wins in PU learning compared to 73 in the supervised setting), except on the
cancer data set. Bagging SVM and RESVM maintain strong performance.
Bagging SVM obtains a comparable number of wins and RESVM gains many
compared to the supervised setting.

On the mnist data, RESVM consistently exhibits the best performance (based
on the Wilcoxon signed-rank test), though the effective improvement over
bagging SVM is marginal. On sensit with classes 2 or 3 as positive, bagging
SVM obtains the majority of wins though the confidence intervals of its area
under the PR curve overlap completely with those of RESVM. On the other data
sets, no worthwile differences were obtained between both ensemble methods.
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area under PR curve number of wins
data CWSVM BAG RESVM p CWSVM BAG RESVM

synthetic 96.9–98.4 97.9–98.6 98.2–98.5 6 8 6
cancer 98.2–98.5 87.5–98.4 96.1–98.1 10 7 3
ijcnn1 71.2–76.5 73.4–78.2 72.6–80.7 • 1 5 14
covtype 65.2–67.9 70.2–72.2 71.4–73.0 0 6 14

mnist (positive = x)
0 74.1–77.8 90.5–93.3 94.6–95.5 • • • 0 5 15
1 89.1–91.2 95.2–96.7 96.4–97.3 • • 0 5 15
2 55.2–60.1 75.5–80.0 84.2–86.1 • • • 0 0 20
3 54.6–60.2 74.5–80.3 83.6–86.2 • • • 0 2 18
4 57.8–62.5 73.9–80.3 83.9–85.9 • • • 0 2 18
5 53.3–56.7 63.8–70.3 69.1–72.6 • 0 7 13
6 66.9–71.0 85.9–89.7 90.6–92.5 • • 0 4 16
7 71.4–74.8 84.0–88.0 90.0–91.4 • • • 0 1 19
8 34.8–38.8 63.5–69.1 72.2–74.8 • • • 0 4 16
9 50.5–54.8 66.2–71.0 74.2–76.4 • • • 0 1 19

sensit (positive = x)
1 61.6–73.0 70.6–75.3 72.5–76.2 • 2 7 11
2 58.6–68.1 68.5–70.5 67.8–70.0 2 10 8
3 33.2–50.2 90.2–91.8 89.7–91.1 0 14 6

Table 4.2: 95% CIs for mean test set performance in a PU learning setup, the
results of a paired one-tailed Wilcoxon signed-rank test comparing the AUC of
BAG and RESVM with alternative hypothesis h1 : AUCRESVM > AUCBAG and
the number of times each approach had best test set performance. Test result
encoding: • p < 0.05, • • p < 0.01 and • • • p < 0.001.

4.5.3 Results of semi-supervised classification

In the semi-supervised setting we deliberately violated the assumption of an
uncontaminated positive training set by contaminating P and U . The results
listed in Table 4.3 confirm that both class-weighted and bagging SVM are
vulnerable to contamination in P and experience very large performance losses.
We believe this is induced by using high misclassification penalties for training
instances in P without any resampling to account for potential false positives. In
bagging SVM this leads to a systematic bias in all base models. The resampling
strategy of RESVM prevents systematic bias over all base models.

The results clearly show that RESVM is more robust to false positives, evidenced
by a much lower drop in predictive performance for almost all data sets. The
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area under PR curve number of wins
data CWSVM BAG RESVM p CWSVM BAG RESVM

synthetic 83.6–90.0 91.9–94.9 96.4–97.4 • • • 3 2 15
cancer 62.5–80.2 91.1–96.7 96.2–97.6 • 1 8 11
ijcnn1 69.8–73.4 67.4–70.4 72.0–75.2 • • • 5 2 13
covtype 58.1–61.8 61.2–64.2 60.4–65.7 4 4 12

mnist (positive = x)
0 59.9–64.1 72.8–81.1 91.4–93.4 • • • 0 0 20
1 80.3–82.7 90.6–93.4 96.1–97.4 • • • 0 0 20
2 42.3–48.0 55.1–63.7 79.8–83.0 • • • 0 0 20
3 43.8–47.6 59.9–66.0 78.1–81.1 • • • 0 0 20
4 52.4–56.2 66.4–72.8 79.7–83.4 • • • 0 0 20
5 40.5–45.2 56.0–61.1 65.8–69.4 • • • 0 2 18
6 52.4–57.3 72.9–79.3 87.9–90.9 • • • 0 0 20
7 58.7–61.6 69.9–77.3 87.9–90.2 • • • 0 1 19
8 29.7–33.9 48.3–55.3 68.0–71.0 • • • 0 0 20
9 42.1–44.9 52.5–59.0 68.7–72.7 • • • 0 0 20

sensit (positive = x)
1 34.5–49.4 59.6–69.0 60.6–66.4 3 12 5
2 44.9–53.7 46.4–53.4 50.1–56.7 • 8 4 8
3 44.5–61.1 75.4–83.5 80.5–84.9 • 1 7 12

Table 4.3: 95% CIs for mean test set performance in a semi-supervised setup,
the results of a paired one-tailed Wilcoxon signed-rank test comparing the AUC
of BAG and RESVM with alternative hypothesis h1 : AUCRESVM > AUCBAG

and the number of times each approach had best test set performance. Test
result encoding: • p < 0.05, • • p < 0.01 and • • • p < 0.001.

performance difference between bagging SVM and RESVM is statistically
significant for all data sets except covtype and sensit. Surprisingly, CWSVM
obtains 8 wins on sensit with class 2 as positive. RESVM shows the best and
most consistent performance overall.

On the mnist data, RESVM not only achieved consistently higher area under
the PR curve, but visual inspection showed that its PR curves almost always
dominated the others over the entire range. This means that in this experiment,
RESVM models are always better than the others regardless of design priorities
(high precision versus high recall). As an illustration, Figure 4.1 shows the PR
and ROC curves of a representative simulation with digit 7 as positive. Since
the PR curve of RESVM completely dominates the others we know that its
ROC curve does too [79].
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Figure 4.1: Performance in semi-supervised setting on mnist, digit 7 as positive.

Finally, it is worth noting that the confidence intervals of RESVM tend to
be narrower than those of both other approaches. Even though RESVM base
models have more variability compared to bagging SVM base models, the overall
performance of RESVM is more reliable. This constitutes an important practical
advantage since assessing different models is not trivial outside of simulation
studies (e.g. when no negative labels are available).

4.5.4 A note on the number of repetitions per experiment

The tightness of the confidence intervals of generalization performance allow us
to conclude that the number of repetitions (20) is sufficient to demonstrate the
merits of RESVM (see Tables 4.1–4.3). Increasing the number of repetitions
further would yield even narrower confidence intervals and increase the number
of statistically significant results in the Wilcoxon signed-rank test comparing
bagging SVM and RESVM (due to increased power). All key conclusions remain
valid if the number of repetitions would be increased.

Additional statistically significant results may only be obtained in experiments
where the improvement offered by RESVM is too small to be of practical
significance (as large improvements already yield significant test results). Failure
to reject the null hypothesis (h0 : AUCBAG ≥ AUCRESVM ) in our current
results indicates that (i) bagging SVM is effectively better than RESVM, (ii)
they are comparable or (iii) the performance improvement of RESVM is too
small to yield a significant test result given the current sample size (number of
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repetitions). Increasing the number of repetitions can only lead to additional
statistically significant results in the latter situation.

To illustrate our claims, we performed 100 repetitions for covtype in the semi-
supervised setting. This yielded the following CIs and win counts: CWSVM
59.0–60.5% (8 wins), bagging SVM 62.3–63.5% (21 wins), RESVM 63.8–65.8%
(71 wins). The p-value of the Wilcoxon signed-rank test becomes 2×10−5, while
the p-value was insignificant with 20 repetitions (Table 4.3).

4.5.5 Trend across data sets

In the previous tables we have shown the results per data set for each setting. In
this section we summarize the results across all data sets, using critical difference
diagrams [81] in Section 4.5.5 and an overview of win counts in Section 4.5.5.

Critical difference diagrams

In every setting, we compared the performance of the three learning approaches
across all data sets using non-parametric statistical tests. For each data set,
approaches were ranked based on their mean area under the PR curve across
all iterations. Multiclass data sets count once per class. Friedman tests per
setting yielded significant evidence of differences between the three learning
approaches at the α = 0.05 level, though this was marginal in the supervised
setting (p = 0.034). The Nemenyi post-hoc test [185] was used after each
omnibus test to assess differences between all approaches. The critical difference
diagrams in Figure 4.2 visualize the results.

Critical difference diagrams were introduced by Demšar [81] to visualize a
comparison of multiple learning approaches over multiple data sets. These
diagrams depict the average rank of each approach (lower is better) along with
the critical difference (CD). The critical difference is the minimum difference in
average ranks that yields a significant result in the Nemenyi post-hoc test. It
depends on the significance level (α = 0.05), the number of learning approaches
(3) and the number of data sets (17).

From Figure 4.2 we can conclude that bagging SVM and RESVM are comparable
in the PU learning setting (both significantly better than CWSVM). In the
semi-supervised setting, bagging SVM is statistically significantly better than
CWSVM and RESVM is significantly better than both other approaches across
all data sets.
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Figure 4.2: Critical difference diagrams for each setting. Groups of algorithms
that are not significantly different at the 5% significance level are connected.

Win counts

The number of wins per method across all data sets are summarized in Table 4.4.
The top half shows the total number of wins across all data sets, which weighs
mnist and sensit heavier than the other data sets since we performed several
one-vs-all experiments. Because RESVM consistently performed very strong on
mnist, the top half is an overly optimistic representation.

The bottom half of Table 4.4 contains normalized results, where every data set
contributes equally. Based on these numbers we can conclude that there is little
difference between the three methods in a supervised setting. In the PU learning
setting, ensemble methods become favorable over CWSVM (bagging SVM and
RESVM being competitive). Finally, in the semi-supervised setting RESVM
pulls far ahead of both other methods and obtains 65% of the normalized wins,
which is over three times more than bagging SVM and over five times more
than class-weighted SVM.

4.5.6 Effect of contamination

In this Section we show the effect of different levels of contamination in P and
U on the synthetic data set. In these simulations, we fixed the contamination
level in one part of the training set (P or U) and the contamination of other
was varied. The fixed contamination was set to 30%. Twenty simulations were
run per contamination setting.
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CWSVM bagging SVM RESVM
setting count win % count win % count win %
supervised 73 21 93 27 174 51
PU learning 21 6 88 26 231 68
semi-supervised 25 7 42 12 273 80
supervised 44.8 37.3 40.3 33.6 36.0 30.0
PU learning 18.3 15.3 39.4 32.8 62.2 51.8
semi-supervised 17.0 14.2 24.0 20.0 79.0 65.8

Table 4.4: Number of wins in simulations for each method per setting. The
bottom half shows normalized number of wins, where wins in multiclass data
sets (mnist and sensit) are divided by the number of classes.

In these experiments, we used random search to tune hyperparameters of
each method [32] using the Optunity package.4 Briefly, hyperparameters were
searched by random sampling 100 tuples uniformly within a given box and
subsequently the best tuple was selected as before. We ensured that the optimal
hyperparameters were never too close to the edge of the feasible region (if so,
the box was expanded). Note that this approach of testing a fixed number of
tuples favors methods with less hyperparameters. Even though RESVM has
more hyperparameters than the other methods, good models can be obtained
at the same search cost.

The results are shown in Figure 4.3. In general, contamination in P causes
larger performance losses than the same level of contamination in U for all
algorithms. As expected, the difference in sensitivity to contamination in P and
U is smallest for RESVM in which P and U are resampled similarly. At high
contamination levels, RESVM is the only method that still works well (even at
60%).

Figure 4.3a illustrates that RESVM and bagging SVM behave in a similar
fashion at contamination levels of U up to 50% and both outperform class-
weighted SVM. RESVM outperforms bagging SVM for contamination levels
of 30–50% but the consistency (width of CI) and performance losses of both
methods are comparable. Figure 4.3b shows the increased robustness of RESVM
to contamination in P resulting in reduced loss of generalization performance
for increasing contamination.

4Optunity is available at: http://www.optunity.net.

http://www.optunity.net
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Figure 4.3: Effect of different levels of contamination in U and P on
generalization performance. The plots show point estimates of the mean area
under the PR curve across experiments and the associated 95% confidence
intervals.

4.5.7 RESVM optimal parameters

As an illustration of the implicit mechanism of RESVM we show some of the
optimal tuning parameters for every setting in Table 4.5. These parameters
were obtained by performing 10-fold cross-validation on the training set.

An interesting observation is that the size of the training sets that are being used
decreases for increasing contamination. Increasing label noise induces RESVM to
favor smaller base model training sets for which the variability in contamination
is larger (see Figure 4.1). Though this may appear counterintuitive, bagging
approaches are known to exhibit a bias-variance tradeoff [29] for which using
weaker base models with increased variability may yield better ensembles [147].

The optimal value of the misclassification penalty for positive training instances
relative to unlabeled instances, wpos, changes between learning settings (see
Equation (4.3)). It exhibits expected behaviour: the maximum value is obtained
when the certainty on P relative to U is largest (e.g. the pure PU learning
setting). This parameter implicitly balances empirical certainty on P and
U and is an important degree of freedom in RESVM. In bagging SVM, this
parameter is implicitly fixed to 1 via Equation (4.2) [179]. Note that wpos need
not be larger than 1 (which would place extra emphasisis on the known labels
after accounting for class imbalance). In highly imbalanced settings where
nunl � npos, the optimal value of wpos may well be less than 1.
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0 1 2 3 4 5 6 7 8 9 mean
npos
supervised 20 20 20 20 20 20 10 20 20 10 18
PU learn 10 10 10 10 10 15 10 10 10 10 10.5
semi-sup. 10 5 10 10 10 10 10 10 10 10 9.5
nunl/npos
supervised 10 10 10 10 10 10 10 10 10 10 10
PU learn 5 5 5 5 5 5 5 5 5 5 5
semi-sup. 5 5 5 8 5 5 5 5 5 5 5.25
wpos
supervised 1.6 1.6 1.6 3.2 3.2 3.2 3.2 1.6 3.2 2.4 2.48
PU learn 4.8 6.4 3.2 6.4 4.8 6.4 4.8 4.8 6.4 6.4 5.44
semi-sup. 12.8 6.4 4.8 2.1 4.8 6.4 4.8 3.2 3.2 3.2 5.17

Table 4.5: Medians of optimal hyperparameters per digit obtained via cross-
validation and mean of all medians per setting. The normalized relative weight
on positives versus unlabeled instances (wpos) is associated with the relative
size and contamination of the positive and unlabeled training sets.

4.6 Conclusion

We have introduced a new approach for learning from positive and unlabeled
data, called the robust ensemble of SVMs (RESVM). RESVM constructs an
ensemble model using a bagging strategy in which the positive and unlabeled
sets are resampled to obtain base model training sets. By resampling both P
and U , our approach is more robust against false positives than others.

The robustness of our approach to potential contamination in both P and U
can be attributed to the synergy between our resampling scheme and voting
aggregation. The resampling itself strongly resembles a typical bootstrap
approach. RESVM uses class-weighted SVM base models though the resampling
scheme is likely to work well with other types of base models.

RESVM was compared with class-weighted SVM and bagging SVM on several
data sets under different label noise conditions. The trends across data sets show
that bagging SVM and RESVM outperform class-weighted SVM in PU learning.
In a pure PU learning setting the average improvement over existing methods is
modest though RESVM classifiers exhibit lower variance in performance making
it more reliable.

In the semi-supervised setting, label noise was introduced in P to highlight
the improved robustness of RESVM compared to the other methods. Our
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experimental results show that RESVM remains very strong in the semi-
supervised setting while both other approaches degrade dramatically. Statistical
analysis showed that RESVM is significantly better than both other approaches
across all data sets.

Visual inspection of the PR curves shows that in the majority of experiments
the curve for RESVM not only has higher AUC but completely dominates the
other curves. As such RESVM models are a good approach regardless of design
priorities (high recall versus high precision).

A weakness of RESVM is its amount of hyperparameters (5 plus potential kernel
parameters), though RESVM models are less sensitive to accurate tuning of
these parameters than standard SVM. Our experiments indicated that although
RESVM has more hyperparameters, good models can be obtained at the same
search effort than the other approaches (e.g. testing the same number of
hyperparameter tuples). An interesting question is whether prior knowledge
regarding contamination of P and U can help in limiting the search scope for
some of the hyperparameters (npos, nunl and wpos specifically).



Chapter 5

Hyperparameter Search in
Machine Learning

This chapter has been previously published as:
Claesen, M., & De Moor, B. (2015). Hyperparameter Search in Machine
Learning. In Proceedings of the 11th Metaheuristics International Conference
(MIC), Agadir, Morocco.
Manuscript available at http://arxiv.org/abs/1502.02127.

Contributions Marc Claesen drafted the paper.

Abstract

We describe the hyperparameter search problem in the field of machine learning
and discuss its main challenges from an optimization perspective. Machine
learning methods attempt to build models that capture some element of
interest based on given data. Most common learning algorithms feature a
set of hyperparameters that must be determined before training commences.
The choice of hyperparameters can significantly affect the resulting model’s
performance, but determining good values can be complex; hence a disciplined,
theoretically sound search strategy is essential.
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5.1 Introduction

Machine learning research focuses on the development of methods that are
capable of capturing some element of interest from a given data set. Such
elements include but are not limited to coherent structures within data
(clustering) or the ability to predict certain target values based on given
characteristics, which may be discrete (classification) or continuous (regression).

A large variety of learning methods exist, ranging from biologically inspired
neural networks [40] over kernel methods [225] to ensemble models [52, 65].
A common trait in these methods is that they are parameterized by a set of
hyperparameters λ, which must be set appropriately by the user to maximize
the usefulness of the learning approach. Hyperparameters are used to configure
various aspects of the learning algorithm and can have wildly varying effects on
the resulting model and its performance.

Hyperparameter search is commonly performed manually, via rules-of-thumb
[135, 133] or by testing sets of hyperparameters on a predefined grid [201].
These approaches leave much to be desired in terms of reproducibility and are
impractical when the number of hyperparameters is large [64]. Due to these flaws,
the idea of automating hyperparameter search is receiving increasing attention
in machine learning, for instance via benchmarking suites [90] and various
initiatives.1 Automated approaches have already been shown to outperform
manual search by experts on several problems [35, 32].

We briefly introduce some key challenges inherent to hyperparameter search in
Section 5.2. The combination of all these hurdles make hyperparameter search
a formidable optimization task. In Section 5.3 we give a succinct overview of
the current state-of-the-art in terms of algorithms and available software.

5.1.1 Example: controlling model complexity

A key balancing act in machine learning is choosing an appropriate level of
model complexity: if the model is too complex, it will fit the data used to
construct the model very well but generalize poorly to unseen data (overfitting);
if the complexity is too low the model won’t capture all the information in
the data (underfitting). This is often referred to as the bias-variance trade-off
[106, 74], since a complex model exhibits large variance while an overly simple
one is strongly biased. Most general-purpose methods feature hyperparameters
to control this trade-off; for instance via regularization as in support vector
machines and regularization networks [94, 128].

1Such as http://www.automl.org/ and https://www.codalab.org/competitions/2321.

http://www.automl.org/
https://www.codalab.org/competitions/2321
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5.1.2 Formalizing hyperparameter search

The goal of many machine learning tasks can be summarized as training a model
M which minimizes some predefined loss function L(X(te); M) on given test
data X(te). Common loss functions include mean squared error and error rate.
The modelM is constructed by a learning algorithm A using a training set X(tr);
typically involving solving some (convex) optimization problem. The learning
algorithm A may itself be parameterized by a set of hyperparameters λ, e.g.
M = A(X(tr); λ). An example modelM is a support vector machine classifier
with Gaussian kernel [225], for which the training problem A is parameterized
by the regularization constant C and kernel bandwidth σ, i.e. λ = [C, σ].

The goal of hyperparameter search is to find a set of hyperparameters λ?
that yield an optimal modelM? which minimizes L(X(te); M). This can be
formalized as follows [64]:

λ? = arg min
λ

L
(
X(te); A(X(tr); λ)

)
= arg min

λ
F(λ; A, X(tr),X(te), L). (5.1)

The objective function F takes a tuple of hyperparameters λ and returns the
associated loss. The data sets X(tr) and X(te) are given and the learning
algorithm A and loss function L are chosen . Depending on the learning task,
X(tr) and X(te) may be labeled and/or equal to each other. In supervised
learning, a data set is often split into X(tr) and X(te) using hold-out or cross-
validation methods [88, 151].

5.2 Challenges in hyperparameter search

The characteristics of the search problem depend on the learning algorithm
A, the chosen loss function L and the data set X(tr), X(te), as shown
in Equation (6.1). Hyperparameter search is typically approached as a
non-differentiable, single-objective optimization problem over a mixed-type,
constrained domain. In this section we will discuss the origins and consequences
of challenges in hyperparameter search.

5.2.1 Costly objective function evaluations

Each objective function evaluation requires evaluating the performance of
a model trained with hyperparameters λ. Depending on the available
computational resources, the nature of the learning algortihm A and size of the
problem (X(tr), X(te)) each evaluation may take considerable time. Training
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times in the order of minutes are considered fast, since days and even weeks are
not unheard of [154, 80, 250]. Evaluation time is exacerbated when procedures
that train multiple models are employed; for instance to reliably estimate
generalization performance [88, 151]. This leads to an increasing need for
efficient methods to optimize hyperparameters that require a minimal amount
of objective function evaluations.

Additionally, the time required to train and test models can be contingent
upon the choice of hyperparameters. Some hyperparameters have an obvious
influence on train and/or test time, e.g., the architecture of neural networks
[40] and size of ensembles [52, 65]. The influence of hyperparameters can also
be subtle, for instance regularization and kernel complexity can significantly
affect training time for support vector machines [45].

5.2.2 Randomness

The objective function often exhibits a stochastic component, which can be
induced by various components of the machine learning pipeline, for example
due to inherent randomness of the learning algorithm (initialization of a
neural network, resampling in ensemble approaches, . . . ) or due to finite
sample effects in estimating generalization performance. This stochasticity can
sometimes be addressed via machine learning techniques; but unfortunately
such solutions typically dramatically increase the time required per objective
function evaluation, limiting their usefulness in some settings.

This inherent stochasticity directly implies that the empirical best hyperparam-
eter tuple, obtained after a given set of evaluations, is not necessarily the true
optimum of interest λ?. Fortunately, many search methods are designed to probe
many tuples close to the empirical best. If the search region surrounding the
empirical optimum is densely sampled, we can determine whether the empirical
best was an outlier or not in a post-processing phase, for instance by assuming
Lipschitz continuity or smoothness.

5.2.3 Complex search spaces

The number of hyperparameters is usually small (≤ 5), but it can range up
to hundreds for complex learning algorithms [34] or when preprocessing steps
are also subjected to optimization [139]. It has been demonstrated empirically
that in many cases only a handful of hyperparameters significantly impact
performance, though identifying the relevant ones in advance is difficult [32].
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Hyperparameters are usually of continuous or integer type, leading to mixed-
type optimization problems. Continuous hyperparameters are commonly
related to regularization. Common integer hyperparameters are related to
network architecture for neural networks [40], size of ensembles [52, 65] or the
parameterization of kernels in kernel methods [225].

Some tasks feature highly complex search spaces, in which the very existence of
certain hyperparameters are conditional upon the value of others [139, 35, 33].
A simple example is optimizing the architecture of neural networks [40], where
the number of hidden layers is one hyperparameter and the size of each layer
induces a set of additional hyperparameters, conditional upon the number of
layers.

5.3 Current approaches

A wide variety of optimization methods have been used for hyperparameter
search, including particle swarm optimization [176, 162], genetic algorithms
[256], coupled simulated annealing [278] and racing algorithms [39]. Surprisingly,
randomly sampling the search space was only established recently as a baseline
for comparison of optimization methods [32]. Bayesian and related sequential
model based optimization techniques using variants of the expected improvement
criterion [142] are receiving a lot of attention currently [35, 138, 242, 25, 90],
owing to their efficiency in terms of objective function evaluations.

Software packages are being released which implement various dedicated
optimization methods for hyperparameter search. Such packages are usually
intended to be used in synergy with machine learning libraries that provide
learning algorithms [201]. Most of these packages focus on Bayesian methods
[139, 242, 33], though metaheuristic optimization approaches are also offered
[64]. The increased development of such packages testifies towards the growing
interest in automated hyperparameter search.

5.4 Conclusion

A fully automated, self-configuring learning strategy can be considered the holy
grail of machine learning. Though the current state-of-the-art still has a long
way to go before this goal can be reached, it is evident that hyperparameter
search is a crucial element in its pursuit. Automated hyperparameter search is a
hot topic within the machine learning community which we believe can benefit
greatly from the techniques and lessons learnt in metaheuristic optimization.





Chapter 6

Easy Hyperparameter Search
Using Optunity

This chapter has been submitted as:
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Abstract

Optunity is a free software package dedicated to hyperparameter optimization.
It contains various types of solvers, ranging from undirected methods to direct
search, particle swarm and evolutionary optimization. The design focuses on
ease of use, flexibility, code clarity and interoperability with existing software in
popular machine learning environments. Optunity is written in Python and
contains interfaces to R, Julia, Octave and MATLAB. Optunity uses a BSD
license and is available at http://www.optunity.net.
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6.1 Introduction

Many machine learning tasks involve training a model M which minimizes
some loss function L(M | X(te)) on given test data X(te). A model is obtained
via a learning algorithm A which uses a training set X(tr) and solves some
optimization problem. The learning algorithm A may itself be parameterized
by a set of hyperparameters λ, e.g. M = A(X(tr) | λ). Hyperparameter search
– also known as tuning – aims to find a set of hyperparameters λ∗, such that the
learning algorithm yields an optimal modelM∗ that minimizes L(M | X(te)):

λ∗ = arg min
λ

L
(
A(X(tr) | λ) | X(te)) = arg min

λ
F(λ | A, X(tr),X(te), L).

(6.1)
In tuning, F is the objective function and the hyperparameters λ are
optimization variables. The learning algorithm A, loss function L and data sets
X(tr) and X(te) are known.

Tuning hyperparameters is a recurrent task in machine learning which may
significantly affect overall performance. Commonly tuned hyperparameters are
related to kernels, regularization, learning rates and network architecture. Some
specific challenges associated to hyperparameter optimization are discussed by
Claesen and De Moor [63]. General machine learning packages provide only
basic tuning methods like grid search [201]. In practice, the most common tuning
approaches are grid search and manual tuning, though both are known to fail
when the number of hyperparameters grows and manual search is additionally
hard to reproduce [32].

The current adoption of dedicated hyperparameter optimizers is limited: we
surveyed NIPS 2014 and found that only 2 out of 86 works used suitable
approaches while 84 papers reported the use of grid search, random search or
manual tuning (cfr. Appendix 6.A).

6.2 Optunity

Optunity offers various optimizers and utility functions to enable efficient
hyperparameter optimization using only a few of lines of code and minimal
expertise. Our software is complementary to libraries that provide learning
algorithms, such as scikit-learn [201]. The package uses a BSD license and is
simple to deploy in any environment. Optunity supports Python, R, Octave
and MATLAB on Linux, OSX and Windows.
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6.2.1 Functional Overview

Optunity provides both simple routines for lay users and expert routines that
enable fine-grained control of various aspects of the solving process. Basic tuning
requires only an objective function, a maximum number of evaluations and
box constraints on the hyperparameters to be optimized. Conditional search
spaces in which the existence of some hyperparameters is contingent upon some
discrete choice are also supported.

The objective function must be defined by the user. It takes a hyperparameter
tuple λ and typically involves three steps: (i) training a modelM with λ, (ii)
useM to predict a test set and (iii) compute some score or loss based on the
predictions.

Tuning involves a series of function evaluations until convergence or until a
predefined maximum number of evaluations is reached. Optunity is capable
of vectorizing evaluations in the working environment to speed up the process
at the end user’s volition.

Optunity also provides k-fold cross-validation to estimate the generalization
performance of supervised modeling approaches. The implementation can
account for strata and clusters.1 Finally, a variety of common quality metrics is
available. The snippet below shows how to tune an SVM classifier with RBF
kernel using scikit-learn and Optunity:2

1 @optunity.cross_validated(x=data, y=labels, num_folds=10, num_iter=2)
2 def score(x_train, y_train, x_test, y_test, C, gamma):
3 model = sklearn.svm.SVC(C=10**C, gamma=10**gamma).fit(x_train, y_train)
4 decision_values = model.decision_function(x_test)
5 return optunity.metrics.roc_auc(y_test, decision_values)
6

7 hps, _, _ = optunity.maximize(score, num_evals=100, C=[-5, 2], gamma=[-5, 0])
8 svm = sklearn.svm.SVC(C=10**hps[’C’], gamma=10**hps[’gamma’])
9 svm.fit(data, labels)

The objective function as per Equation (6.1) is defined on lines 1 to 5, where
λ = (C, γ), A is the SVM training algorithm and L is area under the ROC curve.
We use 2× iterated 10-fold cross-validation to estimate area under the ROC
curve. Up to 100 hyperparameter tuples are tested in an exponential search
space, bounded by 10−5 < C < 102 and 10−5 < γ < 100 on line 7. Finally, an
SVM with optimized hyperparameters is trained on lines 8 and 9.

1Instances in a stratum should be spread across folds. Clustered instances must remain in
a single fold.

2We assume the correct imports are made and data and labels contain appropriate
content.
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6.2.2 Available Solvers

Optunity provides a wide variety of solvers, ranging from basic, undirected
methods like grid search, sobol sequences and random search [32] to evolutionary
methods such as particle swarm optimization [148], the covariance matrix
adaptation evolutionary strategy (CMA-ES) [123], tree-structured Parzen
estimator [35] and the Nelder-Mead simplex. The default solver is particle
swarm optimization, which performs well for a large variety of tuning tasks
involving various learning algorithms. Additional solvers will be incorporated
in the future.

6.2.3 Software Design and Implementation

The design philosophy of Optunity prioritizes code clarity over performance.
This is justified by the fact that objective function evaluations constitute the
performance bottleneck.

In contrast to typical Python packages, we avoid dependencies to facilitate users
working in non-Python environments (sometimes at the cost of performance).
To prevent issues for users that are unfamiliar with Python, care is taken to
ensure all code in Optunity works out of the box on any Python version above
2.7, without requiring tools like 2to3 to make explicit conversions. Optunity
has optional dependencies on DEAP [99] and Hyperopt [33] for the CMA-ES
and TPE solvers, respectively.

A key aspect of Optunity’s design is interoperability with external environ-
ments. This requires bidirectional communication between Optunity’s Python
back-end (O) and the external environment (E) and roughly involves three
steps: (i) E → O solver configuration, (ii) O ↔ E objective function evaluations
and (iii) O → E solution and solver summary. To this end, Optunity can do
straightforward communication with any environment via sockets using JSON
messages as shown in Figure 6.1. Only some information must be communicated,
big objects like data sets are never exchanged. To port Optunity to a new
environment, a thin wrapper must be implemented to handle communication.

6.2.4 Development and Documentation

Collaborative development is organized via GitHub.3 The project’s master
branch is kept stable and is subjected to continuous integration tests using

3We maintain the following subdomains for convenience: http://{builds, docs, git,
issues}.optunity.net.

http://builds.optunity.net
http://docs.optunity.net
http://git.optunity.net
http://issues.optunity.net
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Figure 6.1: Integrating Optunity in non-Python environments.

Travis CI. We recommend prospective users to clone the master branch for the
most up-to-date stable version of the software. Bug reports and feature requests
can be filed via issues on GitHub. Future development efforts will focus on
wrappers for Java and C/C++. We additionally plan to incorporate Bayesian
optimizers which have no reference implementation in other packages.

Code is documented using Sphinx and contains many doctests that can serve
as both unit tests and examples of the associated functions. Our website
contains developer and user documentation and a wide range of examples to
illustrate all aspects of the software. The examples involve various packages
and environments, including scikit-learn [201], OpenCV [49] and Spark’s
MLlib [285].

6.3 Related Work

A number of software solutions exist for hyperparameter search. Hyperopt
offers random search and sequential model-based optimization [33]. Some pack-
ages dedicated to Bayesian approaches include Spearmint [242], DiceKriging
[219], SMAC [138] and BayesOpt [172]. Finally, ParamILS provides iterated
local search [139].

Optunity distinguishes itself from other packages by exposing a variety of
fundamentally different solvers through a lightweight API. Optunity’s client-
server model facilitates integration in any language and environment and can
even be used to run solvers remotely.

6.4 Solver Benchmark

We compared Optunity against BayesOpt [172], Hyperopt [33], SMAC [138],
and random search [32]. Implementations of the last three solvers were available
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in HPOlib [90]. We optimized 5-fold cross-validated area under the ROC curve
for an SVM classifier with an RBF kernel (with continuous hyperparameters
logC and log γ), given a fixed search space and a budget of 150 evaluations on 19
pristine real-world problems. All solvers were given identical objective functions.
Figure 6.1 summarizes the results using critical difference (CD) diagrams as
introduced by Demšar [81]. More details are available in Appendix 6.B.

Optunity and BayesOpt statistically significantly outperformed random search
at 75 and 150 evaluations, with BayesOpt winning twice. Optunity improved at
150 evaluations relative to the other optimizers, indicating it is better at local
search. Overall, we conclude that all 4 directed optimizers are competitive and
convincingly outperform random search.

12345

CD 75 evaluations

random (4.32)
SMAC (3.16)

Hyperopt (2.95)
(1.69) BayesOpt
(2.88) Optunity

12345

CD 150 evaluations

random (4.59)
Hyperopt (3.02)

SMAC (3.00)
(1.89) BayesOpt
(2.49) Optunity

Figure 6.1: Critical difference diagrams for 75 and 150 evaluations to tune an
SVM with RBF kernel, depicting average rank per optimizer (lower is better).
Optimizers without statistically significant performance differences at α = 5%
are linked.



Appendix

6.A Survey of hyperparameter optimization in NIPS
2014

To objectively assess the current adoption of dedicated hyperparameter
optimization techniques, we have surveyed all papers of the NIPS 2014
conference4 (411 in total).5 The main question was how many papers reported
the use of techniques other than grid search, random search and manual
tuning. We counted all papers mentioning cross-validation or hyperparameter
optimization (86 papers) and then categorized these papers based on which
hyperparameter optimization method was used. Table 6.A.1 summarizes the
survey’s outcome.6

Table 6.A.1 indicates that the adoption of dedicated hyperparameter optimizers
remains limited in contemporary machine learning. Grid search remains the
head honcho for hyperparameter optimization (used in 82 out of 86 works,
or 95%), despite significant evidence that better optimization methods exist.
Although automated hyperparameter optimization is a hot topic in contemporary
machine learning research, the resulting methods appear to not yet be a part of
practitioners’ toolkits and workflows (used in 2 out of 86 works, or 2%).

We believe several barriers exist towards the adoption of dedicated hyper-
parameter optimization methods. First, users must know of their existence

4The NIPS 2014 conference homepage is available at https://nips.cc/Conferences/
2014/.

5The full survey with each paper’s tags is available at https://github.com/jaak-s/
nips2014-survey.

6To automate the survey and make it reproducible, we scanned all papers for names of
well-known hyperparameter optimization packages and techniques along with names of the
authors of the corresponding publications. Using this approach, we automatically accounted
for random search [32], Spearmint [242], Hyperopt [33], BayesOpt [172], ParamILS [139],
SMAC [138] and the Tree of Parzen Estimators (TPE) optimizer [35].
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https://nips.cc/Conferences/2014/
https://nips.cc/Conferences/2014/
https://github.com/jaak-s/nips2014-survey
https://github.com/jaak-s/nips2014-survey
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optimization method number of uses
grid search 82
random search 2
Spearmint [242] 1
predictive entropy search [131] 1
total 86

Table 6.A.1: The use of hyperparameter optimization methods as reported in
NIPS 2014 papers. Methods and packages with 0 recorded uses are omitted
from this table.

and relative benefit compared to conventional methods (we believe this to be
the case). Second, these methods must be available in all common machine
learning environments. Third, it must be easy for potential users to start using
these optimizers and get immediate results, which requires that installation is
straightforward and the APIs are intuitive, flexible and well-documented.

Finally, it is worth noting that NIPS is one of the hotspots of automated
hyperparameter optimization research, both in terms of publications and related
workshops. Hence it is reasonable to assume that the adoption of dedicated
hyperparameter optimization methods is elevated within the NIPS community
compared to the entire machine learning field and more applied fields such as
computer vision and bioinformatics.

6.B Performance benchmark

We created a benchmark to assess the performance of Optunity’s default
optimizer (particle swarm optimization) against the defaults of SMAC [138],
Hyperopt [33] and BayesOpt [172] for real hyperparameter search tasks.7

6.B.1 Setup

Our benchmark entails optimizing the 2 continuous hyperparameters of an
SVM classifier with RBF kernel on an exponential grid (10−8 < C < 10 and
10−8 < γ < 10). We used 5-fold cross-validation to estimate area under the

7The benchmark is based on HPOlib (which provided Hyperopt, SMAC and random search).
All code and full results are available at https://github.com/claesenm/optunity-benchmark
and should work on any linux platform, provided all dependencies are met.

https://github.com/claesenm/optunity-benchmark


PERFORMANCE BENCHMARK 93

ROC curve to build the objective function. All optimizers used the exact
same objective function and a uniform prior to optimize log10(C) and log10(γ)
within the specified bounds (the exponentiation was done within the objective
function). Each optimizer was given a budget of 150 function evaluations and
we probed their intermediate results at 75 evaluations and the final results at
150 evaluations.

We simulated 19 real-world problems based on the mnist digits, covtype,
diabetes and ionosphere data sets. Multiclass data sets were used several
times in a one-vs-all setting, i.e., mnist digits and covtype were used to create
10 and 7 optimization problems, respectively. mnist digits and covtype were
used as provided in scikit-learn [201], while we used the scaled versions of the
diabetes and ionosphere data sets as available on the website of LIBSVM.8

For some data sets we added random noise on the data matrix to make the
learning problems more challenging and enable differentiating between various
hyperparameter optimizers. Each task was simulated 5 times to improve
consistency. Results of each optimization task at 75 and 150 evaluations are
shown in Tables 6.B.1 and 6.B.2, respectively, which show average performance
and rank of each solver per data set along with an overall summary.

6.B.2 Results & Discussion

The results of the benchmark are summarized in Figure 6.1 and shown in full for
75 and 150 evaluations in Tables 6.B.1 and 6.B.2, respectively. The tables show
averages (across 5 runs per problem) of the optimum across all solvers, the third
quantile of random search performance (to indicate problem difficulty) and the
relative rank and regret per solver. Regret in this case means the difference
between an optimizer’s best and the overall best solution in a given experiment
and can be considered to measure the cost of using a given optimizer for a given
task, with the optimizer that found the best solution inducing 0 regret.

Overall, BayesOpt took the lead in this benchmark at both evaluation counts,
followed by Optunity. Optunity and Hyperopt improve in terms of regret and
relative rank in evaluations 76–150, with Optunity showing the biggest relative
improvement. Since most optimizers have already reached fairly good solutions
after 75 evaluations, local search performance is key in the final 75 evaluations.
Since Optunity’s regret and relative rank amongst optimizers show a noteworthy
improvement at 150 evaluations compared to 75 evaluations, we conclude that
its local search performance beats that of other optimizers.

8Available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ and in the
GitHub repo.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 6.B.1: Benchmark results for tuning an SVM classifier with RBF kernel, using an optimization budget of 75
evaluations (best result per data set in bold, worst in gray). Results depict averages across 5 runs of the optimum (i.e.,
the best found solution across all optimizers), the third quantile (Q3) of random search results (which indicates the
difficulty of the optimization problem: low Q3 vis-à-vis the optimum indicates the region of strong performance is small
within the overall search space) and the relative rank and regret per optimizer. Performance and regret are measured
in terms of cross-validated area under the ROC curve and shown in percent. Relative ranks indicate non-parametric
global performance within the pool of optimizers (lower is better, the best optimizer has rank 1).

Optunity Hyperopt SMAC BayesOpt random search
data set optimum Q3 rank regret rank regret rank regret rank regret rank regret
digits-0 96.56 95.46 1.80 0.041 3.20 0.096 3.40 0.145 1.80 0.055 4.80 0.340
digits-1 91.10 86.69 2.40 0.256 2.60 0.258 3.80 0.562 1.20 0.069 5.00 1.064
digits-2 93.27 91.19 2.60 0.166 3.80 0.376 2.60 0.390 2.00 0.156 4.00 0.734
digits-3 90.82 88.63 2.20 0.316 3.40 0.530 3.40 0.528 1.80 0.093 4.20 0.651
digits-4 94.86 93.50 3.60 0.406 3.20 0.291 2.20 0.222 1.60 0.051 4.40 0.480
digits-5 93.11 90.67 2.60 0.328 3.60 0.570 2.40 0.399 1.40 0.101 5.00 1.038
digits-6 95.97 94.97 3.40 0.325 2.20 0.121 3.20 0.300 1.60 0.098 4.60 0.516
digits-7 95.20 93.52 3.00 0.162 2.80 0.193 2.20 0.130 2.00 0.068 5.00 0.774
digits-8 82.75 73.61 3.00 0.365 2.80 0.370 3.80 0.754 1.80 0.168 3.60 0.373
digits-9 87.92 84.61 2.60 0.260 2.60 0.506 3.20 0.522 1.60 0.164 5.00 1.143
covtype-1 82.41 77.44 2.00 0.508 3.20 0.870 3.00 0.868 2.60 0.442 4.20 1.491
covtype-2 81.97 73.97 2.20 0.649 2.80 0.919 3.80 2.074 1.60 0.262 4.60 2.906
covtype-3 97.91 94.79 3.20 0.263 3.20 0.210 3.60 0.185 1.60 0.012 3.40 0.182
covtype-4 99.76 98.40 3.20 0.130 3.40 0.058 3.20 0.090 1.60 0.019 3.60 0.067
covtype-5 96.84 90.53 4.00 0.797 2.80 0.441 3.00 0.586 1.20 0.023 4.00 0.744
covtype-6 97.40 93.63 4.60 0.595 2.80 0.241 2.40 0.339 1.40 0.083 3.80 0.498
covtype-7 98.51 94.66 2.80 0.183 3.00 0.335 4.80 0.854 1.00 0.000 3.40 0.440
diabetes 84.28 81.87 3.60 0.785 2.00 0.293 2.60 0.220 1.80 0.163 5.00 1.477
ionosphere 83.20 73.90 2.00 0.650 2.60 0.681 3.40 1.409 2.60 0.606 4.40 1.682
average N/A N/A 2.88 0.378 2.95 0.387 3.16 0.557 1.69 0.139 4.32 0.874
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Table 6.B.2: Benchmark results for tuning an SVM classifier with RBF kernel, using an optimization budget of 150
evaluations (best result per data set in bold, worst in gray). Results depict averages across 5 runs of the optimum (i.e.,
the best found solution across all optimizers), the third quantile (Q3) of random search results (which indicates the
difficulty of the optimization problem: low Q3 vis-à-vis the optimum indicates the region of strong performance is small
within the overall search space) and the relative rank and regret per optimizer. Performance and regret are measured
in terms of cross-validated area under the ROC curve and shown in percent. Relative ranks indicate non-parametric
global performance within the pool of optimizers (lower is better, the best optimizer has rank 1).

Optunity Hyperopt SMAC BayesOpt random search
data set optimum Q3 rank regret rank regret rank regret rank regret rank regret
digits-0 96.68 95.41 2.40 0.065 3.40 0.110 2.40 0.157 1.80 0.043 5.00 0.391
digits-1 91.26 86.48 3.20 0.371 1.80 0.182 3.20 0.477 2.00 0.095 4.80 0.726
digits-2 93.42 91.08 2.40 0.195 3.60 0.380 1.40 0.071 2.60 0.214 5.00 0.672
digits-3 90.87 88.56 2.20 0.176 3.40 0.236 3.20 0.285 1.60 0.065 4.60 0.444
digits-4 94.99 93.42 2.80 0.277 3.00 0.211 3.20 0.276 1.60 0.037 4.40 0.539
digits-5 93.32 90.60 1.80 0.278 4.20 0.544 2.80 0.460 1.80 0.064 4.40 0.586
digits-6 95.97 94.91 3.00 0.205 1.80 0.072 4.00 0.292 2.20 0.098 4.00 0.280
digits-7 95.30 93.45 2.00 0.064 3.40 0.209 3.00 0.213 2.40 0.095 4.20 0.516
digits-8 83.24 73.05 1.80 0.220 3.80 0.737 3.20 0.676 2.60 0.510 3.60 0.581
digits-9 88.00 84.48 1.80 0.033 3.20 0.447 3.20 0.441 1.80 0.206 5.00 0.901
covtype-1 82.75 77.31 2.80 0.220 3.60 0.630 2.20 0.239 1.40 0.000 5.00 1.864
covtype-2 82.15 73.55 1.80 0.182 2.60 0.452 3.60 1.356 2.00 0.248 5.00 2.768
covtype-3 97.97 94.12 2.00 0.074 2.80 0.129 3.80 0.178 1.80 0.051 4.60 0.261
covtype-4 99.78 98.13 2.80 0.119 3.20 0.022 3.60 0.060 1.20 0.000 4.20 0.084
covtype-5 96.91 89.55 3.40 0.620 2.80 0.463 3.20 0.440 1.20 0.021 4.40 0.810
covtype-6 97.47 92.72 3.40 0.318 2.80 0.142 3.00 0.332 1.00 0.000 4.80 0.581
covtype-7 98.56 94.07 2.60 0.163 3.40 0.245 3.20 0.318 1.20 0.026 4.60 0.499
diabetes 84.38 81.89 2.80 0.374 2.60 0.165 1.80 0.027 2.80 0.166 5.00 1.166
ionosphere 83.68 74.16 2.40 0.673 2.00 0.390 3.00 0.658 3.00 1.044 4.60 1.497
average N/A N/A 2.49 0.243 3.02 0.303 3.00 0.366 1.89 0.157 4.59 0.798





Chapter 7

Assessing Binary Classifiers
Using Only Positive and
Unlabeled Data

This chapter will be submitted to ACM SIGKDD 2016 as:
Claesen, M., Davis, J., De Smet, F., & De Moor, B. (2015). Assessing Binary
Classifiers Using Only Positive and Unlabeled Data.

Contributions Marc Claesen has derived the approach, implemented it and
created examples. He took the lead in writing the initial draft and revisions.

Abstract
Assessing the performance of a learned model is a crucial part of machine
learning. However, in some domains only positive and unlabeled examples are
available, which prohibits the use of most standard evaluation metrics. We
propose an approach to estimate any metric based on contingency tables using
only positive and unlabeled data. Estimating these metrics is essentially reduced
to estimating the fraction of (latent) positives in the unlabeled set, assuming
known positives are a random sample of all positives. We provide theoretical
bounds on the quality of our estimates, illustrate the importance of estimating
the fraction of positives in the unlabeled set and demonstrate empirically that
we are able to reliably estimate ROC and PR curves on real data.
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7.1 Introduction

Model evaluation is a critical step in the learning process. Typically, evaluations
either report summary metrics, such as accuracy, F1 score, or area under
the receiver operator characteristic (ROC) curve or visually show a model’s
performance under different operating conditions by using ROC or precision-
recall curves. All the aforementioned evaluation approaches require constructing
contingency tables (also called confusion matrices), which show how a model’s
predicted labels relate to an example’s ground truth label. Computing a
contingency table requires labeled examples. However, for many problems only
a few labeled examples and many unlabeled ones are available as acquiring
labels can be time-consuming, costly, unreliable, and in some cases impossible.

The field semi-supervised learning [58] focuses on coping with partially labeled
data. Positive and unlabeled (PU) learning is a special case of semi-supervised
learning where each example’s label is either positive or not known [166, 283,
82, 92, 229, 179, 66]. Both semi-supervised and PU learning tend to focus on
developing learning algorithms that cope with partially labeled data during
training as opposed to evaluating algorithms when the test set is partially
labeled. What is less well studied is the effect of partially labeled data on
evaluation. Currently, algorithms are evaluated assuming that the test data is
fully labeled [111, 187, 60, 54, 59, 179, 66] and if the test data is only partially
labeled, sometimes it is assumed that all unlabeled instances are negative when
evaluating performance [178, 238, 230].

This paper describes how to incorporate the unlabeled data in the model
evaluation process. We show how to compute contingency tables based on only
positive and unlabeled examples where the unlabeled set contains both positive
and negative examples, by looking at the ranking of examples produced by a
model. Theoretically, we establish important relationships between contingency
tables and rank distributions, which allow us to provide bounds on the false
positive rate at each rank when the ranking contains examples whose ground
truth label is unknown. Our findings have important implications for model
selection as we show that naively assuming that all unlabeled examples are
negative, as is sometimes done in PU learning, could lead to selecting the wrong
model. We demonstrate the efficacy of our approach by estimating ROC and
PR curves from real-world data.
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7.2 Background and definitions

We first review the relevant background on model evaluation and issues caused
by partial labeling.

7.2.1 Rank distributions and contingency tables

We focus on binary decision problems, where the goal is to classify examples as
either positive or negative. Most learned models (e.g., SVM, logistic regression,
naive Bayes) predict a numeric score for each example where higher values imply
higher confidence that the instance belongs to the positive class. Typically, a
ranking R is produced by sorting examples in descending order by their numeric
score such that confident positive predictions are ranked close to the top of R.1

Within a ranking R, we treat P ⊂ R as the subset of examples with positive
labels, P̄ = R − P as the subset of examples with negative labels, and let
rank(R, x) denote the rank of an instance x in R. Given a cutoff rank r,
predictions can be made by assigning the positive class to the r top ranked
instances and the negative class to the rest. This decision rule yields a true
positive rate (TPR), which is the fraction of positive examples that are correctly
labeled as positive, and false positive rate (FPR), which is the fraction of
negative examples that are incorrectly labeled as positive:

TPR(P, r) = Pr(rank(R, x) ≤ r | x ∈ P),

= |{ x ∈ P : rank(R, x) ≤ r}| / |P|, (7.1)

FPR(P, r) = Pr(rank(R, x̄) ≤ r | x̄ ∈ P̄) = TPR(R−P, r). (7.2)

Given the number of positives |P| and negatives |R−P|, the contingency table
for a rank r is:

TP(P, r) = TPR(P, r) · |P|, (7.3)

FN(P, r) = |P| − TP(P, r), (7.4)

FP(P, r) = FPR(P, r) · |R − P|,

TN(P, r) = |R − P| − FP(P, r). (7.5)

The rank distribution of a set of instances P within an overall ranking R is
defined as the distribution of their corresponding ranks within R. The rank
cumulative distribution function (CDF) of a set of instances P is defined as the
(empirical) CDF of their ranks, i.e. ∀ r ∈ {1, . . . , |R|}:

F(P, r) = Pr(rank(R, x) ≤ r | x ∈ P). (7.6)
1Which means a low value for rank in this work, though this is often referred to as highly

ranked in literature.
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The concept of rank CDF is illustrated in Figure 7.1. Note that F(P, r) ≡
TPR(P, r) (Equations (7.1) and (7.6)), that is, the rank CDF of the set of
positives P at rank r in an overall ranking R can be interpreted directly as a
true positive rate, when labeling the r top ranked instances as positive.
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Figure 7.1: Rank CDF of two sets of positives P1 = {B,D,A,C} and P2 =
{E,G, F} within an overall rankingR = {B,E,D,G,H,A, F,C, I}, with |P1| =
4 and |P2| = 3. In practice R is obtained by sorting the data according to
classifier score. The rank CDF of a set S ⊆ R is based on the positions of
elements of S in R.

We use two convenience functions to partition sets of ranks:

head(X, r) = { rank(R, x) ≤ r : x ∈ X },

tail(X, r) = { rank(R, x) > r : x ∈ X },

such that head(X, r) ∪ tail(X, r) = X and |head(X, r)| = F(X, r) · |X|.

7.2.2 ROC and PR curves

Receiver operator characteristic (ROC) curves are used extensively for evaluating
classifiers in machine learning [48] as they illustrate the performance of a model
over its entire operating range. ROC curves depict how a model’s true positive
rate (shown on the y-axis) varies as a function of its false positive rate (shown on
the x-axis). Each cutoff rank r ∈ {1, . . . , |R|} corresponds to a single point (i.e.,
(FPR, TPR) pair) in ROC space (Eqs. (7.1) and (7.2)). An (empirical) ROC
curve for a ranking R and set of positives P ⊂ R is constructed by computing
FPR(P, r) and TPR(P, r) at each rank r and interpolating by drawing a straight
line between points corresponding to consecutive ranks. The area under an
ROC curve (AUROC) is a commonly used summary statistic, typically ranging
between 0.5 (random model) and 1 (perfect model). AUROC is a popular
criterion in model selection and is often used as the optimization objective in
hyperparameter search [48].



RELATIONSHIP BETWEEN THE RANK CDF OF POSITIVES AND CONTINGENCY TABLES 101

Precision-Recall (PR) curves [79] are an alternative to ROC curves that show
how a model’s precision (y-axis) varies as a function of recall (x-axis). Recall is
equivalent to TPR and precision is the fraction of examples classified as positive
that are truly positive (TP /(TP + FP)). PR curves are widely used when there
is a skew in the class distributions [78, 66].

7.2.3 Evaluation with partially labeled data

In the partial labeling setting, R consists of disjoint sets of known positives PL,
known negatives NL and unlabeled instances U . The unlabeled set U consists
of latent positives PU and latent negatives. The fraction of latent positives in
the unlabeled set plays a crucial role in our work, denoted by β:

β = Pr(x ∈ PU | x ∈ U) = |PU | / |U|. (7.7)

Note that computing contingency tables requires fully labeled data. If only a
few labeled instances of both classes are available, they can be used to compute
rough estimates of predictive performance. However, if only positive labels are
available, even a rough approximation of common metrics cannot be estimated
directly as we do not know which unlabeled examples are positives and which
are negative. A common approach to evaluate models in a PU learning context
is to treat the full unlabeled set as negative [178, 238, 230], though we will show
that this may lead to spurious results.

7.3 Relationship between the rank CDF of positives
and contingency tables

The challenge of incorporating unlabeled data into an evaluation metric is
knowing which unlabeled examples are latent positives and which are latent
negatives. Our insight is that, if the known positives are sampled completely at
random from all positives, the rank distribution of latent positives should follow
the rank distribution of known positives. Thus if we know β, which is needed
to compute the expected number of latent positives within the unlabeled data,
this provides an avenue for building contingency tables that incorporate the
unlabeled data. To do so, we first prove relationships between rank CDFs of sets
of positives within an overall ranking at a given rank r and the corresponding
contingency tables. Then, we use these relationships to prove bounds on the
FPR at a given rank r when the ranking includes unlabeled examples, some of
which are latent positives.
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7.3.1 Rank distributions and contingency tables based on
subsets of positives within a ranking

We begin by considering given sets of positives within an overall ranking.
Lemma 1. Given a rank r and two disjoint subsets of positives P1 and P2
within an overall ranking R. If |P1| = |P2| and TPR(P1, r) > TPR(P2, r), then
FPR(P1, r) < FPR(P2, r) (see Figure 7.1). If TPR(P1, r) = TPR(P2, r), then
FPR(P1, r) = FPR(P2, r).

0 1FPR(P, r)

TPR(P1, r)

> TPR(P2, r)

0 |R|
0

1

P1 ⊂ R
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|P1| = |P2|
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Figure 7.1: Illustration of Lemma 1: higher TPR at a given rank r implies lower
FPR at r for two positive sets of the same size.

Proof: The numerator of FPR is the number of false positives, this is the number
of positive predictions minus the number of true positives. Via Equations (7.2)
and (7.3), this is r and TPR(P, r) · |P|, respectively:

FPR(P, r) = r − TPR(P, r) · |P|
|R| − |P|

. (7.8)

Since |P1| = |P2|, the denominators of FPR(P1, r) and FPR(P2, r) are equal,
so TPR(P1, r) > TPR(P2, r)↔ FPR(P1, r) < FPR(P2, r).

TPR(P1, r) = TPR(P2, r) trivially implies FPR(P1, r) = FPR(P2, r) via
Equation 7.8, as all terms in the right hand side are equal for P1 and P2.
�

Lemma 2. Given a rank r and two disjoint sets of positives P1 and P2 in a
ranking R and PΩ = P1 ∪ P2. If TPR(P1, r) = t1 < TPR(P2, r) = t2 then
TPR(P1, r) < TPR(PΩ, r) < TPR(P2, r) (see Figure 7.2).

Proof: write TPR(PΩ, r) in terms of t1 and t2:

TPR(PΩ, r) = t1 · |P1|+ t2 · |P2|
|P1|+ |P2|

. (7.9)

since t1 < t2, we get t1 < TPR(PΩ, r) < t2. �
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r?

TPR(P2, r?)

TPR(P1, r?)

P1 ⊂ R
P2 ⊂ R
P1 ∩ P2 = ∅
PΩ = P1 ∪ P2

rank r

T
P
R

P1

P2

F(PΩ)

Figure 7.2: Illustration of Lemma 2: F(·) denotes feasible region. The rank
distribution of the union PΩ of two sets of positives P1 and P2 lies between
their respective rank distributions.

Corollary 1. Given a rank r and three sets of positives PA, PB and PC within
a ranking R such that PA ∩ PB = ∅ and PA ∩ PC = ∅ and |PB | = |PC |, then

TPR(PB , r) = tB < TPR(PC , r) = tC ↔ TPR(PA∪PB , r) < TPR(PA∪PC , r).

Proof: all terms are equal for TPR(PA ∪ PB , r) and TPR(PA ∪ PC , r) except
tB < tC in Eq. (7.9). �

7.3.2 Contingency tables based on partially labeled data

Lemmas 1 and 2 describe relationships between rank distributions and
contingency tables of different (but known) sets of positives within an overall
ranking. We now show how to construct contingency tables corresponding to the
greatest-lower and least-upper bound of the FPR at a given rank, accounting for
the unknown set of latent positive example from partially labeled data, given β.

Theorem 1. Given an overall ranking R consisting of disjoint sets of known
positives PL, known negatives NL and unlabeled instances U , where U contains
an unknown set of latent positives PU ⊂ U of known size |PU | = β · |U|. Given
a rank r and an upper bound Tub(r) ≥ TPR(PU , r), a tight lower bound on
FPR(PΩ, r) with PΩ = PL ∪ PU can be found without explicitly identifying PU .

Proof: Step 1: assign a set of surrogate positives P?U :2

P?U = arg min
P∗

U
⊂ U

TPR(P∗U , r), (7.10)

subject to TPR(P∗U , r) ≥ Tub(r) and |P∗U | = β · |U|,

then TPR(P?U , r) ≥ TPR(PU , r) by construction. If |head(U , r)| < βTub(r) ·
|U|, then no P?U exists that satisfies the constraint TPR(P?U , r) ≥ Tub(r) in

2A surrogate positive is an example that we treat as if its ground truth label is positive
(even though in reality its ground truth label is unknown) when constructing a contingency
table.
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Equation (7.10).3 In this case, treat all instances in head(U , r) as surrogate
positive, which trivially implies TPR(P?U , r) ≥ TPR(PU , r).

Step 2: define P?Ω = PL ∪ P?U . Using Corollary 1 yields TPR(P?Ω, r) ≥
TPR(PΩ, r). Since |P?Ω| = |PΩ|, using Lemma 1 yields the lower bound on
FPR, i.e., FPR(P?Ω, r) ≤ FPR(PΩ, r). �

Applying Theorem 1 yields a nontrivial lower bound on FPR(PΩ, r). In Lemma 3
we prove that FPR(P?Ω, r) is the greatest achievable lower bound based on a
given U ⊂ R.

Lemma 3. Minimizing TPR(P?U , r) in Equation (7.10) of Theorem 1 ensures
FPR(P?Ω, r) is the greatest achievable lower bound on FPR(PΩ, r) given β,
Tub(r), R and U .

Proof (by contradiction): suppose another set of surrogate positives P•U ⊂ U
exists with |P•U | = β · |U|, such that P•U 6= P?U , and TPR(P•U , r) ≥ Tub(r) and
for P•Ω = PL ∪ P•U :

FPR(P?Ω, r) < FPR(P•Ω, r) ≤ FPR(PΩ, r).

Via Corollary 1 this implies TPR(P•U , r) < TPR(P?U , r), which contradicts the
definition of P?U (Eq. (7.10)). �

Due to its symmetry, Theorem 1 can also be used to obtain the least achievable
upper bound of FPR(PΩ, r) given a rankingR and a bound Tlb(r) ≤ TPR(P?U , r)
by assigning P?U such that:

P?U = arg max
P∗

U
⊂ U

TPR(P∗U , r), (7.11)

subject to TPR(P∗U , r) ≤ Tlb(r) and |P∗U | = β · |U|.

7.4 Efficiently computing the bounds

We now describe how to use Theorem 1 and Lemma 3 to compute the contingency
tables corresponding to the greatest lower and least upper bound on FPR(PΩ, r)
from a finite sample. First, we explain how to compute contingency tables
efficiently via Theorem 1. Second, we propose how to obtain the bounds on
rank CDF (Tlb(r) and Tub(r)) that are needed to build the contingency table.

3An infeasibility implies that Tub(r) and/or β are too high.
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7.4.1 Computing the contingency table with greatest-lower
bound on FPR at given rank r

Given β, R and the sets PL, NL, and U , Theorem 1 enables computing
contingency tables corresponding to the least upper and greatest lower bound
on FPR at a given cutoff rank r. We focus on building the contingency table
corresponding to the lower bound on the FPR, the other is analogous.

We decompose the computation to consider the labeled and unlabeled instances
separately:[
TPrΩ FPrΩ
FNr

Ω TNr
Ω

]
=
[
TPrL = |head(PL, r)| FPrL = |head(NL, r)|
FNr

L = | tail(PL, r)| TNr
L = | tail(NL, r)|

]
+
[
TPrU FPrU
FNr

U TNr
U

]
.

Given that at rank r we can directly compute partial contingency tables for the
labeled data based on R, PL and NL, we focus on computing the contingency
table for the unlabeled instances.

Given Tub(r), we can use Theorem 1 to determine the values in the contingency
table for the unlabeled instances for the greatest lower bound on FPR. Doing
so requires inferring a set of surrogate positives P?U from the unlabeled data,
which must be a solution to Equation (7.10). This requires θ surrogate positives
in head(P?U , r) and the rest in tail(P?U , r), where θ is defined as:

θ =
⌈
Tub(r) · |P?U |

⌉
=
⌈
Tub(r) · β · |U|

⌉
, (7.12)

By rounding up in Equation (7.12), we ensure that TPR(P?U , r) ≥ Tub(r) as
required by Theorem 1.

In practice, two corner cases must be considered. One is if |head(U , r)| < θ,
then it is impossible to assign θ surrogates below rank r in U . In this case, all
of head(U , r) is assigned as surrogate positives and the remaining surrogates
are in tail(U , r) (as discussed in Theorem 1). Two is if | tail(U , r)| < |P?U | − θ,
in which case all of tail(U , r) is labeled positive and the remaining surrogate
positives inevitably end up in head(U , r). Hence, any set of surrogate positives
P?U that meets the following criteria solves Equation (7.10) and thus yields a
valid bound:

|P?U | = β · |U|,

|head(P?U , r)| =
{

min
(
|head(U , r)|, θ

)
if |P?U | − θ ≤ | tail(U , r)|,

|P?U | − | tail(U , r)| if |P?U | − θ > | tail(U , r)|. (7.13)
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Given a set of surrogate positives P?U , the partial contingency table of interest
becomes: [

TPrU FPrU
FNr

U TNr
U

]
=
[
|head(P?U , r)| |head(U − P?U , r)|
| tail(P?U , r)| | tail(U − P?U , r)|

]
, (7.14)

where U − P?U is the set of surrogate negatives and |P?U | and |head(P?U , r)| are
known via Eq. 7.13.

Note that computing the partial contingency table for the unlabeled data can
be done very efficiently since it only requires set sizes as shown in Equation 7.14,
without explicitly partitioning the unlabeled set U . That is, we do not need
to know which examples are in head(P?U , r), tail(P?U , r), head(U − P?U , r) and
tail(U −P?U , r), we just need to know the number of examples each set contains.

The contingency table with least upper bound on FPR(PU , r) is obtained by
replacing Eq. (7.12) by:

θ =
⌊
Tlb(r) · |P?U |

⌋
=
⌊
Tlb(r) · β · |U|

⌋
. (7.15)

7.4.2 Bounds on the rank distribution of PU

Applying Theorem 1 to build a contingency table at rank r requires a bound
Tub(r) ≥ TPR(PU , r) for estimating a lower bound on the FPR and a
bound Tlb(r) ≤ TPR(PU , r) for estimating an upper bound on the FPR. To
compute these bounds, we assume known and latent positives have similar rank
distributions. This holds when known positives PL are selected completely at
random from all positives PΩ, but is violated if the process of selecting examples
for labeling is biased [60].

TPR(PΩ, r) is estimated via the empirical CDF of PL, which only approximates
the true CDF. To acccount for uncertainty, we construct confidence intervals
(CIs) for the rank CDF. Our assumption implies that a CI of the CDF based
on PL is also a CI of the CDF of PU . A CI boundary is treated as a function
mapping rank r to the estimated bound on the CDF. Tlb and Tub denote these
bounds:

0 ≤ Tlb(r) ≤ TPR(PL, r),TPR(PU , r),TPR(PΩ, r) ≤ Tub(r) ≤ 1, ∀ r. (7.16)

We formalize the bounds of the CI of the CDF as functions of rank because
an underlying set with that rank distribution does not necessarily exist in the
overall ranking R.

The confidence band on rank CDF can be computed based on the known
positives in several ways. We use a standard bootstrap approach [89] in our
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experiments. Having many known positives yields a tight confidence band on
rank CDF, which then translates to tight bounds on performance metrics.

7.5 Constructing ROC and PR curve estimates

Next, we describe how to estimate bounds on the true ROC and PR curves.
Though we focus on these two criteria, our approach can be used to estimate
any metric based on contingency tables.

ROC curves Given a ranking, instead of constructing a single ROC curve, our
approach computes two curves: one corresponding to the upper bound and one
corresponding to the lower bound on the CI on rank CDF of known positives
PL, using the methodology outlined in Section 4 to compute two contingency
tables for each rank r, corresponding to the greatest lower and least upper
bound on FPR(PΩ, r). The set of contingency tables corresponding to greatest
lower bounds on FPR at each rank form an upper bound on the ROC curve
of all positives PΩ, whereas the set of contingency tables corresponding to the
least upper bound on FPR form a lower bound on the ROC curve of PΩ.

It is important to understand how these estimates correspond to bounds in
ROC space. By computing θ as in Equation (7.12) to obtain the greatest lower
bound on FPR(PU , r), the corresponding TPR is higher than TPR(PU , r). As
such, the upper bound on the ROC curve is shifted upwards and to the left.
Conversely, the lower bound on the ROC curve (based on the least upper bound
on FPR at each rank, i.e. θ as in Equation (7.15)) is shifted downward and to
the right. This implies that the upper bound on the ROC curve completely
dominates the curve of PΩ and the lower bound is completely dominated by the
curve of PΩ, provided that Tlb(r) ≤ TPR(PU , r) ≤ Tub(r), ∀r ∈ {1, . . . , |R|}.

Convergence properties The convergence properties of our bounds are
contingent on those of (a CI on) the empirical CDF: via the strong law of
large numbers the empirical CDF F̂n(x) is a consistent pointwise estimator of
the true CDF F (x), converging uniformly for increasing n [265].

Figure 7.2 shows the convergence of the bounds on area under the curve for the
estimated lower and upper bound of the ROC curve for increasing amounts of
known positives in simulated rankings. The range of bounds depends on the
width of the CI on rank CDF, which in turn depends on the number of known
positives (higher is better) and the size of the total data set (lower is better).

PR curves Given the contingency tables used to generate the least upper
bound and greatest lower bound ROC curves, it is straightforward to construct
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the corresponding bounds in PR space. Each contingency table contains all the
required information for generating a point in PR space.

A key result relating ROC and PR curves is that one curve dominates another
in ROC space if and only if it also dominates in PR space [79]. Given this
result, mapping the bounds we obtain for ROC curves to PR space directly
yields (tight) bounds on the corresponding true PR curve. Since the upper
bound in ROC space completely dominates the true curve, and the lower bound
in ROC space is completely dominated by it, the same holds for the bounds on
PR curves.

7.6 Discussion and Recommendations

Next, we discuss several issues related to using our approach in practice.

7.6.1 Determining β̂ and its effect

Our approach requires having an estimate β̂ of β. There are many problems
where β is known from domain knowledge (e.g., calculated and published based
on a data source you do not have access to), but explicit negatives are scarce or
unavailable in the data under analysis. A real-world example where this is true
is the task of predicting whether someone has diabetes from health insurance
data (cfr. Chapter 8). Some individuals are coded as having diabetes, but many
diabetics are undiagnosed and hence it is wrong to assume that all unlabeled
patients do not have diabetes. However, the incidence rate of diabetes is known
and published in the medical literature. This type of situation characterizes
many medical problems. If β is not known from domain knowledge, then it
could be estimated from data [92, 229, 224].

In either case, if β̂ is not exact, the conditions of Lemma 1 are potentially
violated where it is used within Theorem 1. The effects of set size on FPR is
characterized in Lemma 4, which will help us understand the effect of over or
under estimating β.

Lemma 4. Given two sets of positive labels P1 and P2 within an overall ranking
R and a rank r, such that TPR(P1, r) = TPR(P2, r) = t and |P1| > |P2|, then:

(a) FPR(P2, r) < t→ FPR(P1, r) < FPR(P2, r),

(b) FPR(P2, r) > t→ FPR(P1, r) > FPR(P2, r).
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(a) corresponds to a ranking and cutoff that is better than random (i.e.
TPR(P, r) > FPR(P, r)) whereas (b) corresponds to a ranking and cutoff
that is worse than random.

0 |R|
0

1

rank r

T
P
R
(P

,r
)

PA

PB

PC

0 1FPR(P, r)

Figure 7.1: Illustration of Lemma 4, with PA ⊂ R, PB ⊂ R, PC ⊂ R,
|PA| > |PC | and |PB | > |PC | . If two sets of positives P1 and P2 achieve a
given TPR at the same rank r, e.g. TPR(P1, r) = TPR(P2, r) and |P1| > |P2|
then FPR(P1, r) < FPR(P2, r) if FPR(P2, r) < TPR(P2, r) and otherwise
FPR(P1, r) > FPR(P2, r).

Proof: take the derivative of FPR to |P| while fixing r, based on Equation (7.8):

dFPR(P, r)
d|P|

= r − t · |R|
(|R| − |P|)2 ,

= r − t · |P| − t · |R − P|
(|R| − |P|)2 . (7.17)

r − t · |P| is the number of negatives in the top ranking (false positives) and
t · |R−P| is the number of false positives at FPR = t. The derivative is negative
if the FPR is below t and vice versa, therefore if the ranking is better than
random (TPR = t > FPR), increasing |P| leads to a lower FPR at rank r and
vice versa. �

Lemma 4 has a large practical impact. If the ranking of PL is better than random,
then over and under estimating β̂ is useful to obtain a (loose) upper/lower
bound on performance curves, respectively. In other words, given bounds or
a CI on β, that is β̂lo ≤ β ≤ β̂up, we can use β̂lo and β̂up to estimate a lower
and upper bound on the true ROC or PR curve. Bounds computed based on a
CI for β constitute a CI for the performance metric (at the same confidence
level), assuming the rank CDF of PU is contained by the confidence band
on the rank CDF. Tighter bounds on β translate directly to tighter bounds
on performance estimates. Finally, treating the full unlabeled set as negative
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results underestimates performance, since β̂ = 0 < β. The effect of varying β̂ is
shown in Figure 7.3.
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Figure 7.2: The effect of |PL| on estimated AUC. Based on |U| = 100, 000,
NL = ∅ and β̂ = β = 0.2. Bounds on rank CDF were obtained via bootstrap.
The depicted confidence intervals are based on 200 repeated experiments.
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Figure 7.3: The effect of β̂ on estimated ROC curves, based on 2,000 known
positives, 100,000 unlabeled instances and β = 0.3.

7.6.2 Model selection

Often evaluation metrics are used to select the best model from a set of
candidates. If model A’s ROC (PR) curve dominates model B’s ROC (PR)
curve, then for all β model A is better than model B (leaving aside significance
testing). However, in most cases one model does not dominate another model
and there exists a point where the two curves cross. Surprisingly, the ordering in
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terms of both AUROC and AUPR are dependent on β̂ when this happens. This
means that the ordering of models according to these metrics can switch when β̂
changes. Figure 7.4 depicts an example that illustrates this. This demonstrates
that β̂ can play a crucial role in model selection. In the likely event that the
curves cross, it is important to look at the range of possible values for β̂ that
represent different operating conditions when selecting among different models.

A more formal explanation of why this occurs can be made based on partial
derivatives of each entry of the partial contingency table and TPR, FPR and
precision based on unlabeled instances to β̂:4

∂ TPRr
U

∂β̂
= 0, (7.18)

∂ FPRr
U

∂β̂
= |head(U , r)| − T (r) · |U|

(1− β̂)2
, (7.19)

∂ PRErU
∂β̂

= T (r) · |U|
|head(U , r)| ≥ 0. (7.20)

The partial derivative of TPR is exactly 0 because our approach is based on
rank CDFs (that is TPR at each rank). Interestingly, the partial derivatives
of FPR and precision to β̂ are dependent on the value of the rank CDF T (r)
that is being used to infer surrogate positives. Since TPR is not a function of β̂
and the partial derivatives of FPR/precision to β̂ are functions of T (r), distinct
segments of an ROC/PR curve are moved differently when β̂ changes, inducing
a non-uniform scaling of AUC across the TPR range. Such scaling potentially
changes the ordering of models based on AUC.

7.6.3 Empirical quality of the estimates

We illustrate the quality of our estimated bounds on ROC and PR curves using
a model trained in a PU learning setting [66] on the covtype data set [41].
The model was evaluated on a fully labeled test set of 20, 000 positive and
20, 000 negative examples. To estimate performance, we randomly selected 5%
of positive examples to serve as our labeled set and treated all other examples as
unlabeled, which yields |PL| = 1, 000, |U| = 39, 000 and β ≈ 49%. We present
ROC and PR curves with bounds for β̂ = β, β̂ = 0, and a confidence interval
β̂lo = 0.8β ≤ β̂ ≤ β̂up = 1.2β. Finally, as we have the ground truth, we present
true curves as a reference.5

4We made some simplifications, the details are described in Appendix 7.A.
5Python code to reproduce all results (and modify the configuration) is available at

https://github.com/claesenm/semisup-metrics.

https://github.com/claesenm/semisup-metrics
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Figure 7.4: The effect of β̂ on ROC curves. Setup: |U| = 45, 000, |PL| = 5, 000.

Corresponding AUROC (best in bold):
estimated β̂ model 1 model 2

0.0 72.5% 73.2%
0.1 75.5% 74.7%

Figure 7.5 presents the rank CDF and estimated bounds on ROC and PR
curves. Figure 7.5a shows the true rank CDF of PU along with an estimated
95% CI on the rank CDF using the PL via a standard bootstrap approach with
2, 000 resamples. In this case, the CI contains the true rank CDF of latent
positives.6 Figures 7.5b and 7.5c show that the bounds closely approximate the
true performance curves. The estimated bounds are wider in PR space than
in ROC space, particularly at low recall. Note that estimated PR curves are
sensitive to the estimation error in β̂, as precision is directly affected by class
balance, limiting their usefulness if only a rough estimate of β is available.

7.6.4 Relative importance of known negatives compared to
known positives

As our approach can incorporate known negatives, a natural question is how
their presence influences the estimates. In practice, a test set is of fixed size, so
known negatives essentially reduce the size of the unlabeled subset, which in
turn reduces the number of degrees of freedom in assigning surrogate positives.

6The rank CDF of PU is unknown in practice, but assumed to be comparable to the rank
CDF of PL.
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Figure 7.5: Results for covtype showing rank CDF, ROC and PR curves, with
β ≈ 49%. Performance curve legend:

true curve, β̂ = 0, β̂ = β and 0.8β ≤ β̂ ≤ 1.2β.

Using the same setup as in Subsection 7.6.3, we varied the proportion of known
positives and negatives and found known negatives provide some benefit, though
this is small in practice. However, our approach can also be reversed given
a large amount of negatives, that is flip known class labels, use β̄ = 1 − β
and adjust the resulting contingency tables accordingly, which can improve
performance bounds. The benefits of known negatives are further discussed in
Appendix 7.B.

7.7 Conclusion

We presented an approach to construct contingency tables corresponding to
a lower and upper bound on FPR using only partially labeled, which enables
computing many commonly used performance metrics in a semi-supervised
setting. Our approach relies on knowing the fraction of latent positives in the
unlabeled data, and we discussed its effect on determing the bounds and model
selection. We have seen that our approach can yield good estimates in practice.



Appendix

7.A Effect of β̂ on contingency table entries and
common performance metrics

To study the effect of imprecise estimates of β, we start by computing partial
derivatives of each entry of the partial contingency table based on unlabeled
instances to β̂ (see Section 7.4.1). Subsequently, we will compute partial
derivatives of TPR, FPR and precision to β̂ to describe the effect of estimating
β on (area under) ROC and PR curves.

For ease of notation, we base all subsequent calculations on θ̃ = β̂T (r) · |U| ≈ θ
which ignores the discrete effect of rounding in the real definition of θ (Eq. 7.12).
We additionally assume it is possible to assign the desired amount θ̃ of surrogate
positives in head(U , r), which holds for ranks r that are not too close to the top
or bottom of R, given reasonable values of β̂ and CDF bounds T (r).7 If this
does not hold, that is when there is clipping in Eq. 7.13, then (small) changes
in β̂ do not affect TPrU and hence the partial derivatives of all entries in the
contingency table to β̂ are effectively 0.

7T (r) represents a bound on rank CDF, that is either Tlb(r) or Tub(r) as used in the
manuscript.
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Given these simplifications, the partial contingency table based on unlabeled
instances becomes:

TPrU = θ̃ = β̂T (r) · |U|

FNr
U = |P?U | − TPrU = β̂ · |U| − β̂T (r) · |U| = β̂

(
1− T (r)

)
· |U|

FPrU = |head(U , r)| − TPrU = |head(U , r)| − β̂T (r) · |U|,

TNr
U = |U| − |P?U | − FPrU = |U| − β̂ · |U| − |head(U , r)|+ β̂T (r) · |U|,

=
(
1− β̂ + β̂T (r)

)
· |U| − |head(U , r)|.

The partial derivatives of each entry of the partial contingency table then
become:

∂ TPrU
∂β̂

= T (r) · |U| ≥ 0, ∂ FPrU
∂β̂

= −T (r) · |U| ≤ 0,

∂ FNr
U

∂β̂
=
(
1− T (r)

)
· |U| ≥ 0, ∂ TNr

U

∂β̂
=
(
T (r)− 1

)
· |U| ≤ 0.
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Partial derivatives for TPR, TPR and precision are a little more involved:

∂ TPRr
U

∂β̂
=

∂ TPr
U

∂β̂
|P?U | − TPrU

∂|P?
U |

∂β̂

|P?U |2
= T (r)β̂ · |U|2 − T (r)β̂|U|2

β̂2|U|2

= T (r)− T (r)
β̂

= 0 (7.21)

∂ FPRr
U

∂β̂
=

∂ FPr
U

∂β̂
· (|U| − |P?U |)− FPrU

∂(|U|−|P?
U |)

∂β̂

(|U| − |P?U |)2

= −T (r) · |U| · (|U| − |P?U |) + FPrU ·|U|
(|U| − |P?U |)2

= −T (r)(1− β̂) · |U|2 + FPrU ·|U|
(1− β̂)2 · |U|2

= −T (r)
1− β̂

+ (|head(U , r)| − β̂T (r) · |U|) · |U|
(1− β̂)2 · |U|2

= −T (r)
(1− β̂)2

+ |head(U , r)|
(1− β̂)2 · |U|

= |head(U , r)| − T (r) · |U|
(1− β̂)2

(7.22)

∂ PRErU
∂β̂

=
∂ TPr

U

∂β̂
· (TPrU + FPrU )− TPrU

∂(TPr
U + FPr

U )
∂β̂

(TPrU + FPrU )2

= T (r) · |U| · (TPrU + FPrU )
(TPrU + FPrU )2

= T (r) · |U|
(TPrU + FPrU ) = T (r) · |U|

|head(U , r)| ≥ 0 (7.23)

Both ∂ FPRr
U /∂β̂ and ∂ PRErU /∂β̂ are a function of T (r), while ∂ FPRr

U /∂β̂ =
0. This implies that the ordering of rankings in terms of area under the ROC
curve can change when the estimate of β changes, as proven by example in
Figure 7.4.
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7.B The effect of the fraction of known positives,
known negatives and β̂

Known negatives can be incorporated in our approach as described in
Section 7.4.1. Given a fixed ranking R, having known negatives essentially
reduces the size of the unlabeled subset U , which in turn reduces the number of
degrees of freedom in assigning surrogate positives. As such, known negatives
provide some benefit, though this is small in practice. Table 7.B.1 illustrates the
effect of increasing amounts of known positives and known negatives: known
positives significantly tighten bounds on AUROC, while known negatives only
do so marginally (cfr. bounds with 10% known positives and 40/60/80% known
negatives).

However, when the number of known negatives is large, it may be useful to
reverse our approach, i.e., start from the rank distribution of known negatives.
To do so, we can essentially flip all known class labels, use β̄ = 1− β and adjust
the resulting contingency tables accordingly.

Table 7.B.2 shows bounds when based on known positives or known negatives
(whichever are tightest). It is important to see that |NL| > |PL| does not
guarantee that performance bounds based on known negatives are tighter,
because β also affects the bounds. When computing performance bounds based
on known negatives, overestimating β̂ leads to underestimated bounds (since we
use β̄ = 1− β̂) and vice versa. The effect of errors in β̂ is opposite in bounds
based on NL.

Hence, bounds on performance metrics can be computed based primarily on
known positives PL or known negatives NL. The width of the bounds depends
on the combination of |PL| (or |NL|) and β (or β̄) in a nontrivial way: depending
on β, it is possible to obtain wider bounds based on known negatives, even if
|NL| > |PL| (or vice versa). In practice, we can estimate metrics based on PL
and NL separately and then use whichever yields the tightest bounds, as shown
in Table 7.B.2.
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configuration bounds on area under the ROC curve (true AUROC=76.8%)
|PL|
|PΩ|

|NL|
|NΩ| β β̂ / β = 0.8 β̂ / β = 1.0 β̂ / β = 1.2

10 0 15
20 18
40 23
60 31
80 47

67% 76.8% 87% 67% 76.8% 87% 67% 76.8% 87%
30 0 12

20 15
40 19
60 26
80 41

67% 76.8% 87% 67% 76.8% 87% 67% 76.8% 87%
50 0 9

20 11
40 14
60 20
80 33

67% 76.8% 87% 67% 76.8% 87% 67% 76.8% 87%
70 0 6

20 7
40 9
60 13
80 23

Table 7.B.1: Estimated bounds on AUROC under different configurations. The
total data set comprises 2, 000 positives and 10, 000 negatives. We varied the
fraction of known positives and known negatives, which also implies changing
β. All entries in the table are in percentages. We used three estimates for β̂,
namely an underestimate, the correct value and an overestimate (left to right).
Legend: true AUROC, bounds based on known positives.
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configuration bounds on area under the ROC curve (true AUROC=76.8%)
|PL|
|PΩ|

|NL|
|NΩ| β β̂ / β = 0.8 β̂ / β = 1.0 β̂ / β = 1.2

10 0 15
20 18
40 23
60 31
80 47

67% 76.8% 87% 67% 76.8% 87% 67% 76.8% 87%
30 0 12

20 14
40 18
60 25
80 41

67% 76.8% 87% 67% 76.8% 87% 67% 76.8% 87%
50 0 9

20 11
40 14
60 20
80 33

67% 76.8% 87% 67% 76.8% 87% 67% 76.8% 87%
70 0 5

20 6
40 9
60 13
80 23

Table 7.B.2: Estimated bounds on AUROC under different configurations. The
total data set comprises 2, 000 positives and 10, 000 negatives. We varied the
fraction of known positives and known negatives, which also implies changing
β. All entries in the table are in percentages. We used three estimates for
β̂, namely an underestimate, the correct value and an overestimate (left to
right). In this table, we computed bounds based on known positives and known
negatives (separately) and report the tightest confidence interval each time.
Legend: true AUROC, bounds based on known positives and
known negatives.
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Abstract

Early diagnosis is important for type 2 diabetes (T2D) to improve patient
prognosis, prevent complications and reduce long-term treatment costs. We
present a novel risk profiling approach based exclusively on health expenditure
data that is available to Belgian mutual health insurers. We used expenditure
data related to drug purchases and medical provisions to construct models that
predict whether a patient will require glucose-lowering pharmacotherapy in the
coming years, based on that patient’s recent medical expenditure history. The
design and implementation of the modeling strategy are discussed in detail
and several learning methods are benchmarked for our application. Our best
performing model obtains between 74.9% and 76.8% area under the ROC curve,
which is comparable to state-of-the-art risk prediction approaches for T2D
based on questionnaires. In contrast to other methods, our approach can be
implemented on a population-wide scale at virtually no extra operational cost.
Possibly, our approach can be further improved by additional information about
some risk factors of T2D that is unavailable in health expenditure data.

8.1 Introduction

Type 2 diabetes mellitus (T2D) is a chronic metabolic disorder characterized by
hyperglycemia and is considered one of the main threats to human health [290].
In developed countries, T2D makes up about 85% of diabetes mellitus patients
and occurs when either insufficient insulin is produced, the body becomes
resistant to insulin or both [276]. Prediabetes and less severe cases of T2D are
initially managed by lifestyle changes, specifically increasing physical exercise,
dietary change and smoking cessation [257, 83, 15]. If this yields insufficient
glycemic control, pharmacotherapy with glucose-lowering agents (GLAs) like
metformin or insulin is started [258, 15].

Several studies have indicated that one third to one half of T2D patients are
undiagnosed [125, 149, 221]. Additionally, patients often remain undiagnosed
for extended periods of time, with average diagnose-free intervals ranging from
4 to 7 years [127]. The prognosis of untreated patients can deteriorate rapidly
as prolonged hyperglycemia can cause serious damage to many of the body’s
systems. Timely diagnosis of T2D proves challenging in contemporary medicine,
as many patients already present signs of complications of the disease at the
time of clinical diagnosis of T2D [126, 210, 152, 26, 124, 136].

Earlier diagnosis and subsequent treatment is believed to prevent or delay
complications and improve prognosis [199, 93]. When impaired glucose tolerance
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is diagnosed early, initial treatment can often be limited to lifestyle changes
[196, 257, 83]. Compared to pharmacotherapy, lifestyle changes are simple, fully
manageable by the patient and far less likely to cause serious treatment-induced
complications like hypoglycemia [231, 286]. Complementary to health benefits,
early diagnosis and prediction of future T2D pose a health economical advantage,
as patients that do not require acute or intensive long-term treatment are far
less demanding on the health care system.

Universal screening for T2D is cost-prohibitive [270, 93], but many organizations
advise opportunistic screening of high-risk subgroups [276, 11, 93, 15]. Several
risk profiling strategies have been developed to aid in the timely diagnosis
of T2D [24, 247, 163, 175, 109, 129, 228]. Risk profiling is typically done by
assessing some of the key risk factors for T2D, which include obesity [177],
genetic predisposal [233, 140], lifestyle [213] and various clinical parameters.
Existing risk profiling approaches are implemented via questionnaires, potentially
augmented with clinical information that is available to the patient’s general
practitionner [114, 245, 163, 109, 227, 129]. Commonly required information
includes BMI, family history, exercise and smoking habits and various clinical
parameters.

In this work, we present an alternative approach for risk profiling which
only requires data that is already available to Belgian mutual health insurers.
This work was done in collaboration with the National Alliance of Christian
Mutualities (NACM). NACM is the largest Belgian mutual health insurer with
over four million members. Our approach does not require any questionnaires
or additional clinical information and predicts whether a patient will require
GLAs in the next few years. Interestingly, our approach works well despite the
fact that Belgian health insurer data contains little direct information regarding
key risk factors of T2D, that is weight, lifestyle and family history are all
unavailable.

8.2 Existing Type 2 Diabetes Risk Profiling Ap-
proaches

The Cambridge Risk Score (CRS) was developed to assess the probability of
undiagnosed T2D based on data that is routinely available in primary care
records, including age, sex, medication use, family history of diabetes, BMI
and smoking status [114], The CRS has been shown to be useful on multiple
occasions [114, 198, 245], though its AUC seems to depend heavily on the
population in which it is used, ranging between 67% [245] and 80% [114]. The
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information used in the CRS is comparable to the approach of Baan et al. [24]
which obtained AUCs ranging between 70% and 78%.

The FINDRISC score is based on a 10-year follow-up using age, BMI, waist
circumference, history of antihypertensive drugs and high blood glucose, physical
activity and diet with reported AUCs of 85% and 87% in predicting drug-treated
diabetes [163]. The strongest reported predictors in this study were BMI, waist
circumference, history of high blood glucose and physical activity. Glümer et
al. [109] developed a risk score based on age, sex, BMI, known hypertension,
physical activity and family history of diabetes with AUC ranging from 72%
to 87.6%. The German diabetes risk score reached AUCs ranging from 75% to
83% on validation data and is based on age, waist circumference, height, history
of hypertension, physical activity, smoking, and diet [227].

Heikes et al. [129] developed a decision tree for risk prediction achieving 82%
AUC in a cross-validation setting, based on weight, age, family history and
various clinical parameters. Various other approaches based on routine clinical
information have demonstrated similarly accurate predictions of type 2 diabetes
[247, 175].

8.3 Health Expenditure Data

The Belgian health care insurance is a broad solidarity-based form of social
insurance. Mutual health insurers such as NACM are the legally-appointed
bodies for managing and providing the Belgian compulsory health care and
disability insurance, among other things. To implement their operations, Belgian
mutual health insurers dispose of large databases containing health expenditure
records of all their respective members.

These expenditure records hold all financial reimbursements of drugs, procedures
and contacts with health care professionals. Each record comprises a timestamp,
financial details and a description of the claim. The financial aspect is irrelevant
from a medical point of view, but the type of resource-use as indicated by the
description can contain medical information about the patient. These types
belong to one of two main categories:

1. Drug purchases are recorded per package. The coding of packages
contains information about the active substances in the drug along with
the volume of the package.

2. Medical provisions are identified by a national encoding along with
an identifier of the associated medical caregiver. Each provision has a
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distinct code number.

In addition to resource-use data, some biographical information is available about
each patient including age, gender, place of residence and social parameters. In
the remainder of this Section we will elaborate on expenditure records related
to drugs and provisions as used in our models. Subsequently we will briefly
summarize the main strengths and limitations of using health expenditure data
for predictive modeling.

8.3.1 Records Related to Drug Purchases

Expenditure records concerning drug purchases contain information about the
active substances in the drug and the purchased volume. We mapped all active
substances onto the anatomical therapeutic chemical (ATC) classification system
maintained by the WHO [273]. The ATC classification system divides active
substances into different groups based on the organ or system on which they act
and their therapeutic, pharmacological and chemical properties. Each drug is
classified in groups at 5 levels in the ATC hierarchy: fourteen main groups (1st
level), pharmacological/therapeutic subgroups (2nd level), chemical subgroups
(3rd and 4th level) and the chemical substance (5th level).

After mapping records onto the ATC classification system, a patient’s medication
history consists of specific ATC codes (5th level) along with the associated
number of defined daily doses (DDD). In the period of interest, purchases of
4,580 distinct active substances were recorded in the NACM database. Table 8.1
shows an example of the classification of active substance on all levels in the
ATC system.

level ATC code description
1 A alimentary tract and metabolism
2 A10 drugs used in diabetes
3 A10B blood glucose lowering drugs, excluding insulins
4 A10BA biguanides
5 A10BA02 metformin

Table 8.1: Example of the ATC classification system: classification of metformin
per level.
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8.3.2 Records Related to Medical Provisions

Expenditure records concerning medical provisions can be considered tuples
containing time-stamped identifiers of the patient, physician and medical
provision. A single patient-physician interaction may yield multiple such records,
one for each specific provision that occurred.

In the Belgian health care system, medical provisions are encoded via the Belgian
nomenclature of medical provisions [264], which is maintained by the National
Institute for Health and Disability Insurance (NIHDI).1 This nomenclature is
an unstructured list of unique codes (numbers) for each provision that is being
refunded. Nomenclature numbers are added when new provisions are defined
or when revisions are made. A single provision may correspond to multiple
numbers for various reasons.

8.3.3 Advantages of Health Expenditure Data

The key benefit of expenditure databases is that they centralize structured
medical information across all medical stakeholders to yield a comprehensive,
longitudinal overview of each patient’s medical history. Other health data
sources are commonly fragmented, e.g., medical records maintained by the
patient’s general practitioner or hospital often contain only a subset of the
patient’s medical history. This fragmentation hampers the identification of
patterns that may indicate elevated risk for diseases like type 2 diabetes. The
NACM database comprises claims records of over four million Belgians, which
enables complex modeling. Additionally, claims data have few omissions due
to the financial incentive for patients and medical stakeholders (e.g., hospitals)
to claim refunds. While other health data sources may contain more detailed
information, the strength of NACM’s data is in its volume, both in terms
of number of patients and the amount of information that is recorded per
individual. Finally, as most people tend to stay affiliated with the same mutual
health insurer, their expenditure records provide long-term information.

8.3.4 Limitations of Health Expenditure Data

Belgian health expenditure data is strictly limited to what is required for mutual
health insurers to implement their operations, which are mainly administrative
in nature. Detailed health information such as diagnoses and test results
are not directly available. In some other countries, health insurers dispose

1The website of NIHDI is available at http://www.riziv.fgov.be.

http://www.riziv.fgov.be
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of more detailed information, such as ICD-10 codes which include diagnoses
and symptoms [277]. Including such information is out of scope of this work
as we focus exclusively on data that is already available to Belgian mutual
health insurers. Biographical information about patients does not contain
direct information about some important risk factors such as lifestyle, family
history and BMI, though this may be partially embedded indirectly in medical
resource-use.

8.4 Methods

In this Section we define the prediction task and describe all its aspects: the
overall setup (Section 8.4.1), the data and its representation (Section 8.4.2) and
the learning algorithms (Section 8.4.3). Briefly, our aim is to predict which
patients will start glucose-lowering pharmacotherapy within the next 4 years,
based on expenditure records of the previous 4 years.

Our key hypothesis is that patients with increased risk for T2D or those that
are already afflicted but not diagnosed have a different medical expenditure
history than patients without impaired glycemic control. We essentially use the
start of GLA therapy as a proxy for diagnosis of (advanced) type 2 diabetes.
This is reasonable since most patients that start GLA therapy above 40 years
old have T2D [276].

We posed this task as a binary classification problem. Our classifiers produce
a numeric level of confidence that a given patient will start glucose-lowering
pharmacotherapy. When predicting a population, the outputs can be used to
rank patients according to decreasing confidence that the patients will start
glucose-lowering therapy. Highly ranked patients represent a high-risk subgroup
which can be targetted for clinical screening. Briefly, we used nested cross-
validation to obtain unbiased estimates of the predictive performance of each
vectorization and learning approach. Predictive performance of all models was
quantified via (area under) receiver operating characteristic (ROC) curves.

Data Our work is based on a subset of the expenditure records of NACM.
All data extractions and analyses were performed at the Medical Management
Department of the NACM under supervision of the Chief Medical Officer.
The other research partners received no personally identifiable information
(including small cells) from NACM. The patient selection protocol and vector
representations are described in detail in Section 8.4.2.
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Class definitions The positive class was defined as patients that require GLAs
for long-term glycemic control.2 The negative class is then defined as patients
that do not need GLAs. Expenditure records related to GLAs were used to
identify a set of known positives. However, the absence of such records in a
patient’s resource use history is not proof that this patient has no need for
GLAs. This subtle difference is crucial, because it is well known that patients
with impaired glycemic control or T2D often remain undiagnosed and hence
untreated for a very long time [125, 149, 15]. As we cannot identify negatives,
we had to build models from positive and unlabeled data.

PU learning Learning binary classifiers from positive and unlabeled data (PU
learning) is a well-studied branch of semi-supervised learning [159, 92, 179, 66].
PU learning is more challenging than fully supervised binary classification, since
it requires special learning approaches and quality metrics for hyperparameter
optimization that account for the lack of known negatives. We benchmarked
three PU learning methods, which are discussed in more detail in Section 8.4.3.

Software The entire data analysis pipeline was implemented using open-source
software. For general data transformations and preprocessing we used SciPy
and NumPy [143, 266]. The learning algorithms we used are available in scikit-
learn and EnsembleSVM [201, 65] . Finally, we used Optunity for automated
hyperparameter optimization [64].

8.4.1 Experimental Setup

We gathered all expenditure records during the 4-year interval of 2008 up to
2012 and labeled patients that used GLA therapy in [2012, 2014] as positive.
The selection protocol and representations of patients’ medical resource-use are
discussed in detail in Section 8.4.2. All vector representations of patients include
age (in years), an indicator variable for gender and positive entries related to
the patient’s medical resource-use. A patient vector p can be written in the
following general form, where dmeds and dprovs denote the number of features
in the vectorization of medication and provision use, respectively:

p ∈ R2+dmeds+dprovs
+ =

[
age gender medication provisions

R+ {0, 1} Rdmeds
+ Rdprovs

+

]
. (8.1)

In Sections 8.4.2 and 8.4.2 we explain how records related to medication
purchases and provisions were represented in vector form. All entries in the

2GLAs are defined as any drug in ATC category A10, which includes metformin, sulfonylurea
and insulin.
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vector representations were consistently normalized to the interval [0, 1] by
dividing feature-wise by the 99th percentile and subsequently clipping where
necessary. These normalized vector representations are used as inputs for the
learning algorithms described in Section 8.4.3.

Figure 8.1 summarizes the full machine learning pipeline, which starts from
expenditure records and ends with models to predict whether a patient will start
glucose-lowering pharmacotherapy along with an estimate of their generalization
performance. We used nested cross-validation to estimate generalization
performance of different learning configurations [267]. The outer 3-fold cross-
validation is used to estimate generalization performance of the full learning
approach. Internally, twice iterated 10-fold cross-validation was used to find
optimal hyperparameters for every learning method.

patient labels y age and gender drug records provision records

medication vectorization
maps onto Rdmeds

+

provision vectorization
maps onto Rdprovs

+

data matrix X

each row ∈ R2+dmeds+dprovs

+ =

[
age gender medication provisions

R+ {0, 1} Rdmeds
+ Rdprovs

+

]

feature-wise normalization: all inputs are scaled to the interval [0, 1]

scaled data matrix Xscaled

outer cross-validation (3-fold on Xscaled and y):

1. determine folds based on labels y

2. loop:

• determine train and test data X
(outer)
train , X

(outer)
test

• build model on X
(outer)
train with associated labels

• test model on X
(outer)
test with associated labels

3. aggregate performance estimates across folds

1. determine optimal hyperparameters λ∗

• optimize area under ROC curve

• estimated using 2× 10-fold
cross-validation on X

(outer)
train and

its associated labels

• via particle swarm optimization

2. train model with λ∗ on X
(outer)
train

performance estimates
ROC and PR curves

optimized models
feature importance

Figure 8.1: Overview of the full learning approach: data set vectorization,
normalization and the nested cross-validation setup. Per iteration,
hyperparameter optimization and model training is done based exclusively
on X(outer)

train .
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Model evaluation Models are compared based on area under the ROC curve.
ROC curves visualize a classifier’s performance spectrum by depicting its true
positive rate (TPR)3 as a function of its false positive rate (FPR)4 while varying
the decision threshold to decide on positives. Area under the ROC curve
(AUROC) is a useful summary statistic of a classifier’s performance. AUROC
is equal to the probability that the classifier ranks a random positive higher
than a random negative and is known to be equivalent to the Wilcoxon test of
ranks [122].

Hyperparameter search We used Optunity’s particle swarm optimizer to
identify suitable hyperparameters for each approach based on the given training
set as defined by the outer cross-validation procedure [64]. Every tuple of
hyperparameters was evaluated using twice iterated 10-fold cross-validation on
the training set. Per technique, the hyperparameters that maximized cross-
validated area under the ROC curve were selected and used to train a model on
the full training set.

Computing ROC curves Full label knowledge is required to compute ROC
curves. In previous work, we introduced a method to compute bounds on ROC
curves based on positive and unlabeled data [62]. Briefly, it is based on the
positions of known positives in a ranking produced by a given classifier and
requires two things:

• The rank distributions of labeled and latent positives must be comparable.
This holds when known and latent positives follow the same distribution
in input space (ie. the vector representation of patients). This is a fair
assumption in our application, since we specifically ignore records after
the start of glucose-lowering pharmacotherapy while identifying the set of
positives (see Section 8.4.2), so the medication regimen of known positives
has not yet diverged from the regimen of untreated patients.

• An estimate β̂ of the fraction of latent positives in the unlabeled set is
needed, that is the fraction of members that have never used GLAs but are
likely to start glucose-lowering pharmacotherapy. In the period 2010–2014
roughly 8% of members of NACM aged 40 or higher started using GLAs.5
Underestimating β̂ results in an underestimated ROC curve and vice versa
[62]. We opted to be conservative and used β̂lo = 5% to estimate lower
bounds and β̂up = 10% for upper bounds.

3TPR measures the fraction of true positives that are correctly identified by the classifier.
4FPR measures the fraction of true negatives that are incorrectly identified by the classifier.
5The true value of β is higher than 8%, as this estimate omits all undiagnosed patients.
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We consistently used the lower bounds for hyperparameter search. All our
performance reports contain lower and upper bounds, based on β̂lo and β̂up,
respectively.

Diagnosing overfitting In addition to measuring performance, we diagnosed
overfitting via the concept of rank distributions as defined by Claesen et al. [62].
The rank distribution of a subset of test instances is defined as the distribution
of the positions of these test instances in a ranking of the full test set based on
a model’s predicted decision values. We diagnose overfitting based on the rank
distributions of known positive training instances (Ptrain) and known positives
in the independent test fold (Ptest) after predicting the full data set. If the
model overfits, the rank distribution of Ptrain is inconsistent with the rank
distribution of Ptest. Specifically, ranks in Ptest are worse than those in Ptrain
when the model overfits. This can be quantified via the Mann-Whitney U test
[170] based on ranks of Ptrain and Ptest after predicting the full data set (that is
all outer folds). The Mann-Whitney U test is expected to yield a non-significant
result when the rank distributions of Ptrain and Ptest are comparable. We
report the average p-values of the test across outer cross-validation folds for
each model (low p-values indicate overfitting).

8.4.2 Data Set Construction

We constructed a data set containing records of patients born before 1973
(e.g. 40 or more years old in 2012). Patients with records of glucose-lowering
agents (GLAs) during less than 30 days were discarded. Patients with records
of glucose-lowering therapy prior to 2012 were discarded. Patients that joined
NACM after 2005 were also discarded, as we cannot determine whether these
patients used GLAs in the recent past.

All patients that started glucose-lowering pharmacotherapy in 2012 or later are
included as known positives (n = 31, 066), along with unlabeled patients that
were sampled at random from the remaining NACM members (n = 79, 243).
Known positives have a minimum of 30 days between the first and last purchase
of GLAs to avoid contaminating the data set with false positives, for instance
due to insulin use in surgical and medical ICUs [263, 262]. It must be noted
that some false positives remain, that is patients that use GLAs but not for
glycemic control.

In Sections 8.4.2 and 8.4.2 we describe the vector representations of records
regarding medication and medical provisions, respectively.
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Representation of Medication Records

The simplest way to represent medication purchases during a time interval is
by having one input dimension per active substance (level 5 ATC codes) and
counting the purchased volume in terms of DDDs. This representation is easy
to construct but fails to capture any similarity between active substances, such
as the system or organ on which they act.

Imposing structure We can directly use the hierarchical structure of the ATC
system to define a measure of similarity between drugs. To impose structure
between drugs we included input dimensions related to more generic levels of
the ATC hierarchy (levels 1 to 4). On more generic levels we summed all DDD
counts of active substances per category (level 5). This redundancy allowed
us to express similarity between different active substances with a standard
inner product. By normalizing every feature to the unit interval, we obtained
the desired effect that patients with comparable drug use on ATC level 5
are more similar than patients that only share coefficients on more generic
levels. Figure 8.2 illustrates this vector representation of trees and the effect of
normalization.

Summary All vectorizations related to drug purchases are described in
Table 8.1.

vectorization description dmeds

atc 5 counts of DDDs per medication class in ATC level 5 4,580
atc 1–4 counts of DDDs per medication class in ATC levels 1–4 1,257
atc 1–5 counts of DDDs per medication class in ATC levels 1–5 5,837

Table 8.1: Summary of vectorization schemes used for records of drug purchases.

Representation of Provision Records

When considering a specific time period, we can describe records by a (sparse)
three-dimensional tensor containing frequency counts as illustrated in Figure
8.3. We filtered all provisions with a description containing diabetes, insulin and
glucose and provisions not recorded with a physician identifier. After filtering,
5,799 distinct provision codes remain (denoted by #provisions).

Each patient is modelled by a histogram of their provisions in the period
of interest. This essentially means we compute the sum over the physician-
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Figure 8.2: Visualization and vectorization of trees. In the tree representation,
the value of internal nodes is the sum of the values of its children. The
unnormalized vector representations VA and VB contain the values per node
in the tree representation in some fixed order. Inner products between
unnormalized representations VA and VB are mainly influenced by the top
level nodes, since those have the largest value by construction. This undesirable
effect can be fixed through feature-wise scaling. The scaling vector S was
constructed using node-wise maxima. The normalized vector representations V?A
and V?B are obtained by dividing the vector representations (VA, VB) element-
wise by entries in the scaling vector S. V?A and V?B are used as input to classifiers
in the remainder of this work. As desired, the inner product of normalized
vector representations is increasingly influenced by similarities at higher depths
in the tree representations.
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Figure 8.3: Tensor formulation of medical provisions with three components:
patients, physicians and provisions. Each entry in the tensor is the frequency
of the given tuple. This provision tensor is very sparse. The patient matrix is
obtained by summing counts over all physicians (transposed). The physician
matrix is obtained by summing counts over all patients. These matrices capture
complementary information.
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component of the tensor representation to obtain a matrix, in which rows and
columns represent patients and provisions, respectively. Unfortunately, the
encoding of provisions has no medically relevant structure in contrast to the
ATC hierarchy for drugs as discussed in Section 8.4.2.

Imposing structure In order to define a reasonable similarity measure between
patients, we first had to impose a structure onto the nomenclature that captures
similarity between provisions. To structure provisions, we should not use
information originating from the patient matrix, as this may cause information
leaks (since the patient matrix is used directly in our models for prediction).
Instead, we used the complementary physician matrix as a basis to define
similarity between provisions, which essentially serves as a proxy for the medical
specializations to which each provision belongs.

First, we computed cosine similarity between provisions based on the physician
matrix. We used cosine similarity because it is known to work well for text
mining with bag-of-words representations, which is comparable to our use case
as it also features sparse, high dimensional input spaces. The cosine similarity
κcos between two column vectors u and v is defined as:

κcos(u,v) = 〈u,v〉
‖u‖ · ‖v‖ = uTv

‖u‖ · ‖v‖ . (8.2)

Using cosine similarity we can construct a pair-wise similarity matrix Sprov
between provisions based on the rows of the physician matrix xi, i =
1..#provisions:

Sprov =
(
κcos(xi,xj)

)
ij
∈ R#provisions×#provisions. (8.3)

Sprov expresses similarity between provision codes based on the physicians
that provide them and can be regarded as a proxy for the medical subdomain
each provision frequently occurs in. In our context, its entries range from 0
(completely orthogonal) to +1 (exact similarity). To impose sparsity we set all
entries of Sprov below 0.05 to 0. Its structure is visualized in Figure 8.4, which
clearly indicates that our approach successfully identifies some coherent groups
of provisions.

Finally, the structured representation of provisions Pstruct is defined as the
matrix product between the patient matrix Pflat and the provision similarity
matrix Sprov:

Pstruct = Pflat × Sprov ∈ R#patients×#provisions. (8.4)

Pstruct approximately captures which provisions occur in a patient’s history
with redundancy based on medical specializations.
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Figure 8.4: Structure of the provision similarity matrix Sprov based on providing
physicians.

Summary All vectorizations related to medical provisions are described in
Table 8.2.

vectorization symbol description dprovs

provs flat Pflat entries taken from the patient matrix 5, 799
provs struct Pstruct captures similarity between provisions 5, 799
provs both Pflat | Pstruct concatenation of flat & structured 11, 598

Table 8.2: Summary of vectorization schemes used for records of medical
provisions.

8.4.3 Learning Methods

Having only positive and unlabeled data (PU learning) presents additional
challenges for learning algorithms. Two broad classes of approaches exist to
tackle these problems: (i) two-phase methods that first attempt to identify
likely negatives from the unlabeled set and then train a supervised model on
the positives and inferred negatives [167, 282] and (ii) approaches that treat
the unlabeled set as negatives with label noise [92, 159, 179, 66].

We have tested three approaches from the latter category in this work, namely
class-weighted SVM [166], bagging SVM [179] and the robust ensemble of SVM
models [66]. All of these approaches are based on support vector machines.
We used the linear kernel on vector representations of patients as described
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in Section 8.4.2.6 We will briefly introduce each method in the following
subsections.

Class-weighted SVM

Class-weighted SVM (CWSVM) uses a misclassification penalty per class.
CWSVM was first applied in a PU learning context by Liu et al. [166], by
considering the unlabeled set to be negative with noise on its labels. A CWSVM
is trained to distinguish positives (P) from unlabeled instances (U), leading to
the following optimization problem:

min
α,ξ,b

1
2

N∑
i=1

N∑
j=1

αiαjyiyjκ(xi,xj) + CP
∑
i∈P

ξi + CU
∑
i∈U

ξi, (8.5)

s.t. yi(
N∑
j=1

αjyjκ(xi,xj) + b) ≥ 1− ξi, i = 1, . . . , N,

ξi ≥ 0, i = 1, . . . , N,

where α ∈ RN are the support values, y ∈ {−1,+1}N is the label vector, κ(·, ·)
is the kernel function, b is the bias term and ξ ∈ RN are the slack variables for
soft-margin classification. The misclassification penalties CP and CU require
tuning. We used the implementation available in scikit-learn [201] based on
LIBSVM [57].

Bagging SVM

In bagging SVM, random resamples are drawn from the unlabeled set and
CWSVM classifiers are trained to discriminate all positives from each resample
[179]. Resampling the unlabeled set induces variability in the base models which
is exploited via bagging. Base model predictions are aggregated via majority
voting.

Bagging SVM with linear base models has two hyperparameters, namely the
size of resamples of the unlabeled set nU and the misclassification penalty on
unlabeled instances CU . The misclassification penalty on positives CP is fixed
via the following rule:

CP = nU × CU
|P|

, (8.6)

6Though it must be noted that the ensemble methods are always implicitly nonlinear.
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where |P| denotes the number of known positives. The heuristic rule in
Equation 8.6 is common in imbalanced settings [55, 77]. We implemented
bagging SVM using the EnsembleSVM library [65].

Robust Ensemble of SVM models

The robust ensemble of SVM models (RESVM) is a modified version of bagging
SVM in which both the positive and unlabeled sets are resampled when
constructing base model training sets [66]. The extra resampling induces
additional variability between base models which improves performance when
combined with a majority vote aggregation scheme. Claesen et al. [66]
demonstrated that resampling the positive set provides robustness against
false positives, which makes RESVM appealing for our application since our
data set is known to contain a small fraction of false positives (as explained in
Section 8.4.2).

When using linear base models, the RESVM approach has four hyperparameters
that must be tuned, namely resample sizes and misclassification penalties per
class. This approach was implemented based on EnsembleSVM [65].

8.5 Results and Discussion

Section 8.5.1 shows the predictive performance per learning configuration
and compares these performances to the current state-of-the-art in large-scale
risk assessment for T2D. Section 8.5.2 shows performance curves of the best
configuration, which enable us to determine suitable cutoffs to identify target
groups in practice. Finally, Section 8.5.3 describes a simple approach to assess
which features contribute most to risk according to our best models.

8.5.1 Benchmark of learning methods

Table 8.1 summarizes the performance of each learning configuration. The
age,gender feature set provides a baseline for comparison, all other feature
sets include these as well. As shown in the results, this two-dimensional
representation already carries some information.

Based on Table 8.1 we can conclude that a patient’s medication history is highly
informative to predict the start of GLA therapy. Using features based on ATC
level 5, the RESVM model obtained an AUC between 72.55% and 74.43%. By
adding redundancy as described in Section 8.4.2 the performance based on
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RESVM bagging SVM class-weighted SVM
features AUROC (%) p AUROC (%) p AUROC (%) p

age, gender 55.74–56.64 ∗ 58.61–59.67 ∗ 60.96–62.21 0.04
atc 5 72.55–74.43 0.17 70.83–72.62 0.09 71.89–73.74 0.01
atc 1–4 73.12–75.07 0.07 69.57–71.24 ∗ 73.05–74.91 0.04
atc 1–5 74.34–76.27 0.13 71.50–73.27 0.05 72.13–73.94 ∗
provs flat 58.45–59.51 ∗ 60.74–61.92 ∗ 63.01–64.31 ∗
provs struct 57.40–58.39 0.02 59.53–60.58 0.01 62.53–63.81 0.01
provs both 58.89–59.75 ∗ 61.72–62.87 ∗ 63.45–64.75 ∗
atc | provs 74.89–76.82 0.04 69.72–71.40 ∗ 73.77–75.64 ∗

Table 8.1: Average bounds on area under the ROC curve and p-value of the
Mann-Whitney U test over all folds for different feature sets per learning
approach in a long-term prediction setup. The lower and upper bounds on AUC
were computed with β̂lo = 0.05 and β̂up = 0.10, respectively. The atc | provs
feature set is the concatenation of the best performing sets per aspect, namely
atc 1–5 and provs both. Stars (∗) denote p-values below 0.005.

medication history alone was further increased to between 74.34% and 76.27%
for the best learning approach (RESVM).

Predictive performance based on provisions alone turned out fairly poor,
showing only a mild improvement compared to models based exclusively on
age and gender for all learning algorithms. Interestingly, the best approach for
representations based on provisions was class-weighted SVM, with RESVM being
worst of all three learning methods. It appears that for these representations,
large training sets are more important than base model variability: class-
weighted SVM uses the full training set, bagging SVM uses all positives and a
subset of unlabeled instances per base model and RESVM uses (small) subsets
of both positives and unlabeled instances per base model.

The best representation included age, gender, and structured information about
the drugs and provision history of each patient. The best learning method on
this representation was RESVM, achieving an AUC between 74.89% and 76.82%.
In Section 8.5.1 we compare the performance of our approach to competing
screening methods.

Finally, RESVM appears most resistant to overfitting in the hyperparameter
optimization stage as it consistently exhibits the highest average p-values in
our diagnostic test (higher is better, see Section 8.4.1). We believe this to
be attributable to the use of small resamples of both positives and unlabeled
instances when training base models in RESVM, since this makes it unlikely
to obtain a structural overfit of the ensemble model on the full training set.
In contrast, bagging SVM is far more prone to overfitting because every base
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model is trained on all positives.

Comparison to State-of-the-art

Our best approach obtained cross-validated AUC between 74.89% and 76.82%
(exact numbers are unknown due to the lack of known negatives). This is
comparable to many competing approaches, based on questionnaires and some
clinical information such as the Cambridge Risk Score (AUC 67%–80%, [245,
114]), the Danish risk score (AUC 72%–87.6%, [109]), the German diabetes
risk score (AUC 75%–83%, [227]) and a Dutch approach (AUC 74%, [24]).
Approaches using detailed clinical information generally perform better, but
are more expensive to maintain [247, 175, 163, 129]. The key advantage of
our approach is the fact it is easy to implement on a population wide scale at
virtually no operational cost.

The target class we used in this work is stricter than in the risk prediction
methods mentioned in Section 8.2, namely patients that require GLAs for
glycemic control versus patients with impaired glycemic control, respectively
(except for Lindström and Tuomilehto [163], which also predicted drug-treated
T2D). It is reasonable to assume that our models generally rank patients with
impaired glycemic control but without a need for GLAs higher than patients
without impaired glycemic control. In our performance assessment both of these
patient groups are essentially treated as negatives, in contrast to the screening
programmes mentioned previously which treat patients with impaired glycemic
control as positives. Hence, we believe the performance of our models would
appear higher when evaluated against a target class comprising all patients
with impaired glycemic control, as is done in the evaluation of other screening
approaches. Unfortunately, we are unable to accurately identify patients with
impaired glycemic control but without need for GLAs.

All competing methods use either clinical information or direct knowledge of
risk factors that is unavailable to us. Furthermore, some of the characteristics
that are lacking in our data have been reported to be the most informative to
assess risk for T2D [163, 247, 175]. We obtained generalization performances
that are comparable to existing approaches, despite these missing predictors.
Finally, our approach is the only one that is based exclusively on existing data
that is always available, without requiring additional patient contacts or clinical
tests.
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8.5.2 Performance Curves

The RESVM model based on atc | provs vectorization had the best overall
performance. Figure 8.1 shows bounds on the ROC and PR curves for this
model and includes curves for the CWSVM model based on age and gender
and a random model for reference. These bounds were computed using the
technique described in Chapter 7. The true curve is unknown because we do
not dispose of negative labels.

ROC curves enable us to determine a cutoff to use in practice, based on a
suitable balance between true and false positive rate (sensitivity and 1-specificity,
respectively). Determining a suitable balance requires a tradeoff between the
relative importance of identifying undiagnosed patients (true positives) vis-à-vis
increased amounts of screening tests on patients that are in fact healthy (false
positives).

It should be noted that precision depends on class balance, and therefore the
PR curve shown in Figure 8.1b is not representative for screening an overall
population, since the overall population has a higher fraction of negatives than
our custom data set (i.e. precision would be lower in practice). In contrast, the
bounds in ROC space are representative because ROC curves are insensitive
to changes in class distribution [96]. What matters in the PR curves is the
shape of the curve for RESVM, which peaks at low recall, while the curves for
CWSVM and a random model do not. The CWSVM approach is similar to the
existing guidelines outlined in Table 1.2, which essentially identify persons at
high risk through age and a handful additional risk factors. The performance
curves indicates that the RESVM model is good for case finding (which requires
high precision) and far outperforms screening based on only age and gender.

8.5.3 Feature Importance Analysis for the RESVM Model

The RESVM model is implicitly nonlinear due to its majority voting rule
to aggregate base model decisions, which poses problems in assessing the
importance of each predictor. However, our use of linear base models enables a
simple approximation. The decision value for base model i ∈ {1, . . . , nmodels}
for a test instance z can be written as follows:

fi(z) = 〈wi, z〉+ ρi = wT
i z + ρi,

where wi is the separating hyperplane and ρi is a bias term. A simple linear
approximation of such ensemble models can be computed as the average of all
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base model hyperplanes:

w̄ =
nmodels∑
i=1

wi/nmodels. (8.7)

Feature importance can then be determined based on the coefficients in w̄. The
range of every feature is comparable, since we normalized all features to the
unit interval [0, 1]. This allows us to conclude that the features with largest
(positive) coefficients in w̄ contribute most to risk according to our model.

Table 8.2 depicts the level 3 ATC codes that contribute most to diabetes risk
based on the metric outlined above. As expected, cardiovascular medication
(ATC C*) is identified as a clear risk indicator [146, 118, 136]. However, a
number of less obvious indicators are also revealed, specifically antipsychotics
(N05A), antidepressants (N06A) and antigout preparations (M04A), for which
associations with T2D are known [67, 16, 177]. The relative importance of
features and associated medical implications will be discussed in detail in a
forthcoming medical paper.

8.6 Conclusion

In this work we have demonstrated the ability to predict clinical outcomes based
solely on readily available health expenditure data. We successfully built proof-
of-concept classifiers to predict the start of glucose-lowering pharmacotherapy
in patients above 40. Our experiments show that accurate predictions can
be made based on historical medication purchases. These predictions can be
further improved by incorporating information about medical provisions and
the use of appropriate vectorization schemes.

Since adult patients starting glucose-lowering pharmacotherapy are mainly
afflicted with type 2 diabetes (T2D), our models can be used for T2D risk
assessment. Our approach presents a novel method for case finding which can
be easily incorporated in modern healthcare, since all required data is already
available. The associated operational costs are very low as the entire workflow
can be fully automated without any need for patient contacts or medical tests.
As such, our work provides an efficient and cost-effective method to identify a
high risk subgroup, which can then be screened using decisive clinical tests.

Interestingly, our approach works well even though health expenditure data
contains very limited direct information on some important known risk factors.
In that sense, our approach is fundamentally different from the current state-of-
the-art which mainly focuses on quantifying known risk factors directly, either
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Figure 8.1: Performance curves for RESVM classifier based on atc | provs
vectorization, CWSVM based on age and gender and a random model. The lower
and upper bounds are estimated using β̂lo = 5% and β̂up = 10%, respectively.

feature normalized weight as per Equation (8.7)
C09B 788.3
C09D 653.8
C10A 503.0
N05A 434.3
C03E 412.7
C03C 404.2
N06A 403.1
M04A 397.0
A02B 378.5
C09A 340.1

Table 8.2: Level 3 ATC codes with highest normalized feature weight.
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by asking the patient or through clinical tests. The performance of our approach
is expected to improve further when additional information about these risk
factors can be obtained, e.g., family history and lifestyle.





Chapter 9

Conclusion

We conclude by summarizing the main insights and implications of the
project, along with interesting avenues for future research. We will discuss
machine learning-specific aspects in Section 9.1 and the screening application
in Section 9.2.

9.1 Machine learning contributions

The machine learning research in this project focused on learning from positive
and unlabeled data and the construction of high-quality, reusable tools that
allow easy reproduction of our results, fast prototyping of novel ideas and the
partial automation of machine learning pipelines.

One of the main hurdles we had to overcome was learning classifiers from
positive and unlabeled data, where the set of labeled positives is known to be
contaminated with some false positives (Chapter 4). Existing approaches were
sensitive to false positives, often to such an extent that they became unreliable.
Our approach addresses this weakness by resampling known positives within
a bagging framework, which was a natural extension to the already-existing
bagging SVM that used the same idea on the unlabeled set [179].

The major issue we tackled in semi-supervised learning was evaluating binary
classifiers without known negatives (Chapter 7). Prior to our work, a lack
of negatives prohibited the quantification of classifier performance in terms
of traditional metrics, which in turn prohibited the use of (potentially very
good) models for many applications (e.g., the performance of models used for
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screening or diagnosis must be quantified before their use is even considered).
Our contribution solves an important problem that plagues many practical
applications. Specifically, the ability to evaluate models without known negatives
saved us a considerable amount of time, as the only alternative would have been
to acquire negative labels manually. Additionally, we have shown that existing
model selection approaches are prone to errors in some practical cases.

The software packages we developed (described in Chapters 3 and 6) provide
easy access to our methods to other researchers and enable them to reuse
and extend our work, rather than having to reinvent the wheel. With these
packages we gave heed to the call of several prominent journals regarding the
need and value of open-source software in scientific research [244, 205]. Optunity
specifically tackles a common element of practical machine learning (Chapter 6),
as most methods feature hyperparameters that must be optimized somehow.
Optunity’s usefulness is evidenced by its popularity, with hundreds of monthly
downloads through the Python Package Index at the time of writing.1

9.1.1 Future work

Based on the experience gathered and results obtained during our work, we see
opportunities for future machine learning research in automated hyperparameter
optimization and learning from positive and unlabeled data.

Fully automated machine learning is becoming popular, evidenced by
competitions like the ChaLearn AutoML challenge [119]. A key element of such
pipelines is automated hyperparameter optimization, which is receiving a lot of
research attention [35, 242, 32, 34, 90, 172, 64, 91]. Current research focuses
on Bayesian optimization based on the somewhat dogmatic belief that these
optimizers converge faster than others. We are skeptical towards this claim, as
meta-heuristic techniques have been shown competitive in recent publications
[197] as well as our own experiments (see Chapter 6) and because the famous
no free lunch theorem applies [275]. We believe that meta-heuristic techniques
for hyperparameter optimization are currently underdeveloped but promising.

In Chapter 7 we described how to compute any contingency table-based metric
based on only positive and unlabeled data. This is the first approach to compute
commonly known metrics, and hence an important contribution, though it does
not directly enable computing probablistic performance metrics in general and
strictly proper scoring rules like log loss or Brier score in particular. Strictly
proper scoring rules [110] are especially useful for model selection and calibration

1Statistics can be found at https://pypi.python.org/pypi/Optunity.

https://pypi.python.org/pypi/Optunity
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as they are more sensitive than metrics like AUROC and AUPR, so extending
our approach to enable approximation of these metrics would be useful.

9.2 Screening for type 2 diabetes

We set out to investigate the extent to which health expenditure data enables
clinical applications like screening for T2D, and thereby improve healthcare.
During this research we have successfully developed a proof-of-concept screening
method for type 2 diabetes, based exclusively on readily-available health
expenditure data collected by the largest Belgian mutual health insurer. Our
performance benchmarks have indicated competitiveness to existing screening
approaches for T2D that have proven useful in international contexts. Our work
can serve as the basis for cost-effective population-wide screening for type 2
diabetes which would strengthen early detection of the disease.

Principally, our screening method identifies patients that will require glucose
lowering agents. Given the way we approached the task, we likely have problems
identifying patients suffering from mild (pre)diabetes. That said, we treated
such patients as negatives in all evaluations, and hence all reported performance
estimates are conservative. In fact, our performance estimates are conservative
under the reasonable assumption that claims histories of patients with mild
diabetes are somewhere between claims histories of healthy patients and those
of patients that require GLAs. Interestingly, additional experiments indicate
that our approach can identify patients years before GLA therapy is or needs
to be initiated, which further adds to the potential of our approach.

Finally, the screening models can also be used to identify drugs and provisions
that indicate diabetes risk. This information can then be used to create new
medical guidelines or finetune existing ones. Additionally, small subsets of these
indictors may be used to create alerts for physicians to help them in screening
for diabetes. An example would be to add alerts in the software used by general
practitioners when certain combinations of drugs/provisions occur.

9.2.1 Weaknesses and limitations of our approach

The screening approach we developed has a number of weaknesses, related to
the labeling of NACM members, limitations of health expenditure data and
limitations of machine learning in general.
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Labeling issues

The quality of learned models hinges upon the quality of the ground truth
on which they are based, that is the representativeness of the sets of known
positives and (ideally) known negatives for the positive and negative class,
respectively. Any labeling bias will perpetuate throughout the modeling process
and bias resulting models and performance estimates to some extent.

Known positives have progressed T2D We identified diabetes patients
(positives) based on the routine use of GLA therapy. This labeling omits
patients that are exclusively on lifestyle interventions and hence only identifies
more severe cases of diabetes. By implication, our models are able to identify
patients with profiles that are similar to those on GLA therapy, i.e., patients that
likely require GLA therapy, while identifying early stage patients is problematic.

False positives Our labeling can flag type 1 diabetes patients, however these
patients are usually diagnosed at a young age [18]. Hence, any bias caused by
T1D patients is low when screening in adults above 30. A more severe problem
is that we might also flag patients on GLA therapy for alternative reasons (e.g.,
weight loss [182]). This is problematic because a significant amount of false
positives prohibits reliably estimating performance using the technique outlined
in Chapter 7. Fortunately, the number of false positives in our setting can
reasonably be assumed negligible, though an exact estimate remains unavailable.

No known negatives As explained in Section 1.4.1, we had to use semi-
supervised learning approaches because it is impossible to directly identify
negatives (persons without diabetes). A fully supervised dataset with both
positive and negative labels would facilitate learning better models. One way
to reliably identify negatives would be to contact individual NACM members
to inquire about their health, though this approach may be cost-prohibitive.

Limitations of health expenditure data

An important weakness of screening for type 2 diabetes based on health
expenditure records is the fact this data source lacks direct indicators for
several key risk factors, including lifestyle, diet and genetic predisposition.
Luckily, some of this information may nonetheless be available via proxies, e.g.,
obesity may be subtlely indicated by treatments of hypertension [209], asthma
[240, 249], joint diseases [251, 71] and many more health issues.
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Additional problems arise when relevant information is omitted from health
expenditure databases, e.g., when patients forget to claim refunds. Finally,
we must be aware of potentially relevant biases against certain population
segments. For example, poverty, lower health literacy and social exclusion are
known barriers to accessing healthcare [137, 203, 191, 237] while unfortunately
the affected population segments are often exposed to elevated health risks
[137, 223, 171]. These increased risks include diseases like obesity and diabetes
[214, 223].

Machine learning limitations

Machine learning approaches have shown impressive performance on a wide
variety of tasks, but it is important to note that machine learning is not a silver
bullet that can solve all problems in data analysis. Contemporary machine
learning is constrained by limitations which are similar to those imposed on
computing in general since the early days of Babbage’s Analytical Engine:

“The Analytical Engine has no pretensions whatever to originate anything.
It can only do whatever we know how to order it to perform. It can follow
analysis, but it has no power of anticipating any analytical revelations or
truths. Its province is to assist us in making available what we are already
acquainted with.” – Ada Byron, Countess of Lovelace, 1815 – 1852

The notion of generalization performance in machine learning does not defy
Lady Lovelace’s statement, since generalization performance of learned models
is entirely contingent upon the degree to which the assumptions underpinning
the learning approach hold. These assumptions are made when designing
learning algorithms and object representations. An additional crucial factor is
the informativeness of the training data and quality of prior knowledge (if any),
as is aptly summarized by the mantra of “garbage in, garbage out”.

The key assumption underlying this entire work is that the health expenditure
profiles of undiagnosed diabetes patients are similar in some sense to
the health expenditure profiles of patients that started glucose-lowering
pharmacotherapy. Furthermore, as we used linear SVM (base) models, the
assumed similarity should be captured in the input space representation of
persons (cfr. Section 8.4.2). The performance of our approach indicates that our
assumptions are reasonable, though our method is not fit to identify atypical
diabetes patients. Such limitations can only be overcome by universal screening.
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9.2.2 Future work

Our research has shown that health expenditure data can effectively be used as a
basis for T2D screening programmes with state-of-the-art performance, despite
the fact it lacks information on known risk factors for diabetes which are heavily
used by other screening approaches (e.g., lifestyle, BMI, genetic predisposition,
. . . ). This suggests a lot of potential in screening methods that combine both of
these types of information, that is health expenditure data and lifestyle, BMI
and various clinical parameters, though the potential improvement in predictive
performance by linking data sources is difficult to estimate a priori.

Health expenditure data unifies information across caregivers and provides a
fairly complete long-term overview, while other data sources include crucial
parameters about lifestyle, genetics and clinical measurements. As such, it is
reasonable to assume that these types of data are complementary, and hence
their union may allow for screening approaches that far outperform existing
approaches. A lot of this information could simply be obtained via patient
questionnaires (e.g. BMI, lifestyle, family history, . . . ), though more detailed
clinical parameters are harder to procure. Overall, this is a very promising
direction for future research, though coupling health expenditure data with
other types of information is a sensitive subject from a privacy point of view, so
strict adherence to all guidelines and regulations is of paramount importance.

9.2.3 Health expenditure data

The screening method itself is a proof-of-concept which showcases the potential
clinical value of administrative databases such as claims databases maintained
by mutual health insurers. The results of the project yield a few conclusions
regarding the use of health expenditure data for clinical applications:

• It is a valuable source of information to build screening programmes
for diseases like type 2 diabetes, which prove challenging to detect in
contemporary medicine. Its key strengths are that it integrates healthcare
information across all caregivers and provides a reliable longitudinal
overview of a patient’s medical resource-use history. However, resource-use
histories are not as detailed as clinical databases maintained by caregivers.

• It is difficult to find or replicate these strengths elsewhere. Particularly,
Belgium does not yet have EHRs that record information from all medical
stakeholders into a central, comprehensive database. Implementing such
EHRs would be complex for technological, legal, political and psychological
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reasons. Initiatives like Vitalink2 and the shared pharmaceutical file3

envision parts of this functionality, though these projects are currently in
their infancy. For now, claims records remain the sole source of complete,
long-term information across medical stakeholders and time.

Health expenditure data is already widely used for epidemiology [202, 160, 105,
272] and, more recently, to assess quality of care [268]. Our work shows that
claims data can additionally be used pro-actively to improve healthcare, rather
than only in retrospective, descriptive studies. The wealth of information in
these databases can likely improve healthcare in many aspects.

9.2.4 The elephant in the room

Our work demonstrated the technological possibility of screening for T2D based
on health expenditure data. However, we have not touched upon the ethical,
legal and psychological perspectives of data-driven applications in the health
and healthcare domain. We conclude this work by briefly discussing some key
barriers and open questions concerning applications such as ours.

Population-wide screening

The approach outlined in this thesis enables population-wide screening for T2D
at a very low operational cost, since we exclusively use readily-available health
expenditure data. A major practical question for any population-wide screening
approach is how it should be put to use in the real world.

The first option is to perform risk assessment on the whole population (all
members of NACM in our context) and actively contact persons identified to
be at high risk. From a medical perspective, such a push model seems most
appropriate since this has the potential to help a maximal amount of people.

On the other hand, many people may have qualms about inferences of their
health status without the concerned person’s explicit prior request and/or
approval. A push model as described above can raise issues from a psychological
point of view, as it can induce a “Big Brother” feeling that will surely be resisted
by some. Additionally, the right not to know has experienced a revived interest
from an ethical point of view due to advances in genetic research [194, 17, 56],
and many of the arguments raised in that discussion essentially also apply to
push models which involve proactively notifying patients identified at high risk

2More info about Vitalink is available at http://www.vitalink.be/.
3In Dutch: gedeeld farmaceutisch dossier (GFD).
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for some disease.4 A pull model, which allows everyone to request the results of
a personalized risk analysis at their own leisure, may prove to be more popular.

Use of personal data

Principally, health and healthcare data is considered personal information owned
by the involved patient, though often this patient has limited or no access to
his or her data and may even be unaware of its existence. This highly sensitive
type of personal data is rightfully protected from unpermitted use [6, 1].

Several models exist for patients to permit the usage of personal data for
research and various applications after obtaining informed consent. The main
distinction is between opt-in models, in which data usage is permitted after
explicit approval of the patient, and opt-out models, in which data can be used
unless patients explicitly prohibit it. Opt-in models are most common due to
their conservative nature from a privacy point of view, but these may prohibit
applications that require a lot of data to create a minimum viable product.

The use of health and healthcare data is a sensitive matter and policymakers
in Belgium and Europe understandably err on the side of conservatism [6,
1], though this inevitably constrains both research and potentially beneficial
applications. Recently, the proposal for European data protection regulation
raised a lot of criticism, as researchers in health and healthcare worried that an
increased amount of conservatism could significantly impede scientific research
[188, 75, 97, 7, 189]. Our project chimes in on this discussion with a proof-of-
concept clinical application based on health expenditure data.

In the end, policymakers must strike a tradeoff between patient privacy vis-à-vis
potential healthcare improvements through the use of personal data. This
sensitive matter is the subject of ongoing debate in both Belgium and Europe.

4The right not to know entails whether patients must be informed regarding some
(potentially serious) health problems, even if the patients themselves do not want to know.
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