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Preface

In the end, this thesis took longer than anticipated, but now it is finally coming
to an end. Even though especially the last phase turned out to be quite difficult
for me, when I am looking back, I am looking back to several years of fond
memories.

The first time I was in Leuven was on my way back from a vacation at the
Belgian coast. I told my friends in the car that I had seen a PhD position in the
town we were just passing and whether it was okay to stop and have a look at
the place for an hour. Everyone agreed and I certainly liked what I saw. Back
at home I prepared an application and Johan was quick to invite me for an
interview and to offer the position that finally led to this text. I really want to
thank Johan not only for offering me that position in the first place, but also
for continuously supporting me along the way as my promotor. He is always
a source of valuable advice and always takes time to discuss one’s problems. I
would also like to thank my co-promotor, Bart De Moor. Even though I did not
interact with him as closely as I did with Johan, I greatly appreciate the work
environment he helped creating. He, among with the all the other professors
at SISTA, makes sure that there is always enough funding and encourages
everyone to use the many opportunities that the group is offering. Joos is not
only the head of the group, he also is a huge driver towards interaction. I still
remember a BBQ at his house and I really appreciate all the interaction arising
from IAP dysco and its study days. The first time I met Johan Schoukens, I
think, was during his Franqui lectures and I am really grateful for having him
on my jury. He always provides good feedback and discussions with him
are always interesting. It is also nice to know that wherever one goes in the
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context of system identification, one can be sure that someone from Brussels
is there as well, most often also Johan himself, be it a DYSCO workshop, the
ERNSI or Benelux meetings, the CDC, SYSID or the IFAC WC. I would also
like to thank Kristiaan, he alway encouraged me, was open to discussions
and played an important role to get me started at SISTA along with Marcelo.
Together with Johan he is the person who continuously helped me from my
very first day at SISTA until the completion of this thesis. Joris De Schutter
was one of the late additions to my jury, I really appreciate that he agreed to
this position. Not only did he provide some valuable feedback to the text, but
he is also genuinely interested in the, at times obscure methods, I came up
with and sometimes seems to be more positive about their application than I
am myself. Moritz Diehl also joined my jury as an additional member and
provided extremely good feedback on parts of the thesis I was not sure anyone
would read. Besides his formal involvement in my jury I really benefited from
what he achieved within OPTEC. He always managed to invite interesting and
renowned people to give lectures and seminars and stimulated interaction by
organizing BBQs and retreats or just by introducing as many people to each
other as possible. As final member of my jury, I would also like to thank Yves
Willems for serving as chairman. Through his kind way of administrating the
very final stages he makes sure that there is no additional pressure due to the
unknown situation and I really appreciate this.

At SISTA all of the PhD students can really focus on their research and
only have to do very little administration. This is due to the amazing help
we receive behind the scenes from the administrative staff which I am really
grateful for. At times it was still necessary to do some things ourselves but
also then Ilse, John, Ida, Lut and others, were always helping to make these
things run as smoothly as possible.

The work would really have been dull without all the guys in the tower.
Marco is always a incredible resource on new ideas and recent advances, al-
though I have to admit that I could not allows follow the level of mathematical
abstraction he achieved in our discussions. Then there is the “window” row
with Philippe, Kim, Pieter, Toni and later on Dries. Especially systems of
polynomial equations remain to be a mystery for me, but it was always nice to
work alongside and to travel with you. A good part of the “life” in the tower
was certainly due to the Columbian gang, Mauricio, Fabian, Carlos, Julian and
Marcelo (as Chilean associate member). Last but not least there is the rest of
the lunch group, Tom, Erik, Kris, Siamak, Rocco and Maarten. It was always
a pleasure to be working with you and discuss research as well as the world
over lunch.
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from school, Robert and Zhao Jun, Tilman and Mareike, Dennis and Henrike,
Matthias and Sandra, Benno, Oliver, and Katharina. They are still talking to
me, even though I often set work before going to Germany and attending a
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The Chemnitz group still tolerates me, even though I have always been
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even kept Anne from meeting you at all. Moving to Stuttgart was so easy
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To a large extent this is due to Corinna acting as a multiplier. Besides helping
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Abstract

This thesis discusses nonlinear system identification using kernel based mod-
els. Starting from a least squares support vector machine base model, addi-
tional structure is integrated to tailor the method for more classes of systems.
While the basic formulation naturally only handles nonlinear autoregressive
models with exogenous inputs, this text proposes several other model struc-
tures. One major goal of this work was to exploit convex formulations or to
look for convex approximations in case a convex formulation is not feasible.

Two key enabling techniques used extensively within this thesis are over-
parametrization and nonquadratic regularization. The former can be utilized
to handle nonconvexity due to bilinear products. During this work over-
parametrization has been applied to handle new model structures. Further-
more it has been integrated with other techniques to handle large data sizes
and a new approach to recover a parametrization in terms of the original vari-
ables has been derived. The latter technique, nonquadratic regularization, is
also suitable to construct convex relaxations for nonconvex problems. In this
context the major contribution of this thesis is the derivation of kernel based
model representations for problems with nuclear norm as well as group-ℓ􀁮
norm regularization.

In terms of new or improved model structures, this thesis covers a number
of contributions. The first considered model class are partially linear models
which combine a parametric model with a nonparametric one. These models
achieve a good predictive performance while being able to incorporate physi-
cal prior knowledge in terms of the parametric model part. A novel constraint
significantly reduces the variability of the parametric model part. The second
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part of this thesis, that exploits structure to identify a more specific model
class, is the estimation of Wiener-Hammerstein systems. The main contri-
butions in this part are a thorough evaluation on the Wiener-Hammerstein
benchmark dataset as well as several improvements and extensions to the
existing kernel based identification approach for Hammerstein systems.

Besides targeting more restricted model structures also several extensions
of the basic model class are discussed. For systems with multiple outputs
a kernel based model has been derived that is able to exploit information
from all outputs. Due to the reliance on the nuclear norm, the computational
complexity of this model is high which currently limits its application to small
scale problems. Another extension of the model class is the consideration of
time dependent systems. A method that is capable of determining the times
at which a nonlinear system switches its dynamics is proposed. The main
feature of this method is that it is purely based on input-output measure-
ments. The final extension of the model class considers linear noise models
in combination with a nonlinear model for the system. This work proposes a
convex relaxations to estimate the noise model as well as a model capturing
the system dynamics by solving a joint convex optimization problem.

The final contribution of this thesis is a reformulation of the classical least
squares support vector formulation that allows the analysis of existing models
with respect to their sensitivity to perturbations on the inputs.



Nomenclature

Abbreviations

(N)FIR (Nonlinear) finite impulse response model (cf. Tables 2.1,
2.2)

(N)ARX (Nonlinear) autoregressive model with exogenous input
(cf. Tables 2.1, 2.2)

(N)BJ (Nonlinear) Box-Jenkins model (cf. Table 2.1, 2.2)
(N)ARMAX (Nonlinear) autoregressive moving average model with

exogenous input (cf. Tables 2.1, 2.2)
(N)OE (Nonlinear) output error model (cf. Tables 2.1, 2.2)
SVD Singular value decomposition [Golub and Van Loan, 1996]
MIMO Multiple input multiple output system
MISO Multiple input single output system
SISO Single input single output system
SVM Support Vector Machine
LS-SVM Least Squares Support Vector Machine
RKHS Reproducing kernel Hilbert space
OLS Ordinary least squares
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KKT Karush-Kuhn-Tucker (conditions for optimality, c.f. Chapter 3)
RBF Radial basis function (kernel, c.f. Table 4.1)

RMSE Root mean squared error 􀊃= 􀇽
􀁮
𝑁

∑𝑁
𝑡=􀁮(𝑦𝑡 − 𝑦̂𝑡)

􀁯􀊆

QP Quadratic programming (problem)
SOCP Second order cone programming (problem)
SDP Semidefinite programming (problem)
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Symbols & Notation

𝒙, 𝝍 Bold face small letters are (column) vectors
𝑿 ,𝜳 Bold face capitals are matrices
𝑥(𝑡) Signal (function of time) with 𝑥 ∶ 𝕋 → ℝ, where 𝕋 is either

ℤ or ℝ for discrete and continuous time signals respectively
𝑥𝑘 Either value of signal 𝑥(𝑡) at time 𝑡 = 𝑘 or the 𝑘-th element of

vector 𝒙
𝑋𝑖𝑗, (𝑿)𝑖𝑗 The 𝑖𝑗-th value of 𝑿
𝑁 ,𝑀 Capitals are constants unless denoted otherwise
𝑥̂, 𝑥̂(𝑡), 𝒙̂, 𝑿̂ Estimates of a value, a signal, a vector and a matrix

respectively
𝒂𝑇 , 𝑨𝑇 Transposes of 𝒂 and 𝑨 respectively
𝑿−􀁮 Matrix inverse of 𝑿
𝑿 † Moore-Penrose pseudo inverse of 𝑿 [Golub and Van Loan,

1996]
𝐾(𝒙, 𝒚) Positive definite kernel function
(𝑎, 𝑏) Tuple
{𝑥􀁮, … , 𝑥𝑁 } Set
[𝑥􀁮, … , 𝑥𝑁 ] Row vector
[𝑨; 𝑩] Concatenation of two matrices (or vectors) along the first

dimension (vertical concatenation)
[𝑨, 𝑩] Concatenation of two matrices (or vectors) along the second

dimension (horizontal concatenation)
[𝑥𝑖]𝑁𝑖=􀁮 Element-wise definition of a vector in ℝ𝑁 whose 𝑖-th

element is 𝑥𝑖
{𝑥𝑖}𝑁𝑖=􀁮 Element-wise definition of a set with 𝑁 elements
𝟏𝑁 A 𝑁-dimensional vector of all ones
𝟎𝑁 A 𝑁-dimensional vector of all zeros
𝑰𝑁 The identity matrix of size 𝑁
𝟎⊠ A matrix of all zeros with compatible dimensions



x Contents

ℕ,ℝ,ℝ+ Natural numbers, real numbers and positive real numbers
𝑧−𝑘 Time shift operator, 𝑧−𝑘𝑓(𝑡) = 𝑓(𝑡 − 𝑘)
⪰, ≻, ⪯, ≺ Conic inequalities, if 𝒙, 𝒚 ∈ 𝐶 where 𝐶 is a cone then

𝒙 ⪰ 𝒚 ⇔ 𝒙 − 𝒚 ∈ 𝐶 and 𝒙 ≻ 𝒚 ⇔ 𝒙 − 𝒚 ∈ int(𝐶) where int(𝐶) is
the interior of 𝐶
If 𝒙 ∈ ℝ𝑁 and no cone is specified the inequalities are
implicitly with respect to the nonnegative orthant ℝ𝑁

+ ∪ {𝟎𝑁 }
and positive orthant ℝ𝑁

+ respectively, i.e. element-wise
inequalities, 𝒙 ⪰ 𝒚 ⇔ 𝑥𝑖 ≥ 𝑦𝑖 for 𝑖 = 1, … ,𝑁
If 𝒙 ∈ ℝ𝑁×𝑁 and no cone is specified the inequalities are
implicitly with respect to the cone of positive semidefinite and
positive definite matrices respectively

‖𝒙‖𝑝 Vector 𝑝-norm, ‖𝒙‖𝑝 = 􀊃∑
𝑁
𝑖=􀁮 |𝑥𝑖|

𝑝􀊆
􀁸
𝑝 for 𝒙 ∈ ℝ𝑁

‖𝑿‖𝐹 Frobenius norm, ‖𝑿‖𝐹 = 􀊃∑𝑖,𝑗𝑋
􀁯
𝑖𝑗􀊆

􀁸
􀁹

‖𝑿‖􀁯 Operator or spectral norm, largest singular vector of 𝑿
‖𝑿‖∗ Nuclear or trace norm, sum of singular vectors
𝜕
𝜕𝑥

Partial derivate with respect to 𝑥
𝜕
𝜕𝒙

Gradient with respect to 𝒙

𝜕 Subgradient
𝜕𝒙 Subgradient with respect to 𝒙
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1Introduction

The main topics of this thesis are well described by its title “nonlinear system
identification using structured kernel based models”. This can be broken down
into three main components,

1. nonlinear system identification,
2. kernel based models and
3. structure.

The central theme is system identification, which describes the process of
obtaining a model based on measured data. Access to a model is crucial
in many situations. One of the main applications is in control, regardless
whether the control is manual or automatic. Another important use case for
models is in analyzing and understanding a system. System identification for
linear systems is a well-established field with a broad selection of methods as
well as a deep understanding of their properties and limitations. However,
most real systems show nonlinear behavior, which cannot be captured by
linear models. As such, the class of nonlinear systems is much larger than
that of linear systems. Yet, the field of nonlinear system identification is still
in its infancy. Even certain subclasses of the full class of nonlinear systems
with attractive properties such as systems with smooth nonlinearities still
contain a vast amount of complicated behaviors. Most classic techniques in
nonlinear system identification are basically a form of function estimation
or regression using a mathematical model. The limitation of this approach is
that most of these models do not relate in any way to the system that they

1



2 Introduction

ought to represent. This has two major drawbacks. First of all, it is difficult
to incorporate any form of prior knowledge into the model. An example
for prior knowledge could be the applicability of a physical law for part of
system or information on its stability. Even though some effect might be well
understood, this knowledge cannot be provided to the model, but the model
has to rediscover it from the data. This is a waste of resources and results
in suboptimal models as the information contained in the data could have
been used for further refining the model. Second, once a model has been
estimated, no or only very limited information on the system it represents
can be extracted. Whereas in linear systems, one can connect the frequency
response or other parameters like time constants to physical concepts, there
are no such equivalents for most nonlinear modeling techniques. A large part
of this thesis is therefore devoted to providing some known tools from linear
identification in a nonlinear context.

All methods proposed in this thesis are derived from kernel basedmodels. In
particular the core formulation is using least squares support vector machines
(LS-SVMs) [Suykens, Van Gestel, et al., 2002; Suykens et al., 2010] which
have been shown to be a powerful technique for nonlinear regression and
beyond. One main advantage of this methodology is its versatility, which is
evident from its many applications besides regression, such as classification,
unsupervised and semi-supervised learning and dimensionality reduction. A
key aspect for this success is the formulation in a primal-dual framework and
the choice of a least squares loss. The latter greatly simplifies the derivation
of models and allows concentrating on the model formulation. The former
provides an ideal environment to incorporate additional structure as model
representations can be specified very explicitly in the primal. The derivation
of a form suitable for numerical estimation is often straightforwardly solved
by stating its dual.

A major contribution to the success of support vector techniques in general
is their reliance on convex optimization. This assures that global solutions
to the formalized optimization problems can be found in an efficient manner.
This thesis profits even more from the field of convex optimization as several
recently proposed powerful heuristics can be tailored to system identification
problems.
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1.1 Challenges

Challenges tackled in this thesis all relate to the identification of nonlin-
ear systems employing kernel based models using a LS-SVM core and the
complications arising in this context.

Nonlinear behavior poses complex problems as it contains a vast amount
of effects compared to linear systems. Due to this large space of poten-
tially relevant models, it is hard to find suitable model representations.
Furthermore, the parametrization of these models quickly gives rise
to nonlinear optimization problems, which are prone to local minima
and therefore suboptimal solutions. The challenge is therefore selecting
good model structures that on the one hand allow the representation of
nonlinear dynamics and on the other hand are formulated in a fashion
that admits an efficient numerical solution.

Large amounts of data are often accessible for problems in system identi-
fication. For many systems data can be acquired with relatively large
sampling rates, providing a wealth of quantitative information. As
averaging techniques are usually not suitable for nonlinear behavior,
other techniques have to be considered. This is especially important as
the complexity of the employed kernel based techniques scales cubi-
cally in the number of data samples. Therefore efficient techniques are
necessary that allow utilizing the wealth of available data.

Incorporating prior information is important to come up with the best
possible model by combining the prior knowledge with the information
contained in the data. However, coming from a purely data driven
approach it is not always straightforward how prior knowledge can
be incorporated into the estimation problem. For every kind of prior
knowledge, one has to look anew how to facilitate this information to
acquire an improved model. Often the resulting estimation problems are
more complicated and either cannot be solved exactly or at least require
additional effort to be solved. Therefore next to the modeling challenge
encountered when incorporating prior knowledge one regularly obtains
further complications in numerical problem solving.

Model representations are crucial for any identification technique. With-
out a suitable model representation, the model cannot be utilized. Two
key aspects are model structure and model parametrization. Kernel
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based techniques in a primal-dual setting have the advantage that they
usually start off with a model parametrization that allows a straight-
forward integration of model structure. The model structure is any
information that affects the model itself, i.e. a different model structure
will in general give rise to a model generating different predictions.
However, changing the parametrization of the model does not change
the model itself but might merely be easier to work with for particular
tasks. The initial model parametrization often suffers from two draw-
backs. First, the models are given in a parametric form, which for many
popular choices of the kernel function is unsuitable for solution due to
the very high dimensionality of the problem. Second, the parametric
model description may contain additional constraints on the model
behavior which are not embodied in the model equation itself. These
constraints are an integral part of the model structure as they dictate
part of the model behavior. In classical kernel based models these com-
plexities can be countered by switching to the nonparametric kernel
based parametrization. This parametrization has the advantage that all
information on the model structure is embedded in a single predictive
equation. However, the derivation of the kernel based parametrization
is only straightforward as long as the regularization term is quadratic.
In this thesis, model representations in the presence of a nonquadratic
regularization term have to be derived.

Numerical solution is essential for the applicability of any practical method.
Besides the basic problem of handling complexities resulting from large
data sets, more fundamental problems are encountered when relying
on recent regularization techniques. The current trade-off is between
(i) ease of implementation, (ii) numerical precision and (iii) rate of
convergence. Each of these aspects is important to come up with a
method that can be used in practice. The relative importance for a
particular application can vary, though.

1.2 Objectives

Theobjective to advance nonlinear system identification based on least squares
support vector machines can be divided into several key components.

Extension to more model classes The first objective is to extend the basic
formulation of LS-SVMs to cover more classes of systems. The ones to
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be implemented are multiple output systems, time varying systems and
systems with more complex noise structures.

Improving model performance The second objective is to incorporate
prior information, thus improving the model performance. In practice
the systems to be identified are rarely complete black boxes. Therefore
exploring means to facilitate this information is important.

Convex formulations The third objective is to retain as much convexity
from the basic formulation as possible. The addition of structure as
mandated by the two prior objectives often results in nonconvex estima-
tion problems. Hence, the goal is to find relaxations or approximations
that allow the recovery of good solutions based on convex optimization
techniques.

Validation on realistic data The last objective is to validate the proposed
methods on realistic data. All models contain approximations and
simplifications, which need to be verified on representative data. This
allows an analysis of strengths as well as weaknesses of a particular
approach.

1.3 Overview of chapters

The thesis is structured into two parts. The first part gives a brief introduction
to the theoretical background required for this thesis. The original work can
be found in Part II, which starts with Chapter 5. A short chapter by chapter
overview is given in the following.

Chapters 2–4 Chapter 2 briefly summarizes key concepts in the area of
system identification, e.g. parametric vs. nonparametric models and
white box vs. black box modeling. The following chapter outlines some
fundamental concepts of convex optimization that will be utilized later
on in the text. The last chapter of Part I finally introduces least squares
support vector machines and a few related techniques crucial for the
remainder of this thesis.

Chapter 5 outlines partially linear systems, which are a particular type
of nonlinear systems. These models combine a linear-in-parameters
parametric model with a nonparametric model. Their advantage lies in
situations in which good parametric models already exist. The chapter
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extends the classical formulation with a novel constraint that decouples
the estimation of the two model parts. This removes an ambiguity
which otherwise can result in large variabilities of the individual model
estimates.

Chapter 6 extends the classical LS-SVM formulation for regression to mod-
els with multiple related outputs. This is achieved by introducing an
advanced regularization scheme based on the nuclear norm. The main
complications tackled in this chapter are the derivation of the dual
nonparametric kernel based model as well as the expression of the
predictive model in terms of the dual solution. Furthermore, some im-
portant properties of the underlying optimization problem are studied
as well as methods for its numerical solution.

Chapter 7 presents the identification of a class of structured nonlinear sys-
tems, called Wiener-Hammerstein systems. These systems consist of
two linear dynamical blocks at the input and output respectively, which
sandwich a static nonlinearity. A convex relaxation scheme for their
estimation within a kernel based framework is presented. This esti-
mation scheme is then adapted for large data sets. After a discussion
of projection schemes for recovering the original model class from its
relaxation, the results from the previous chapter are applied for an
improved relaxation. Finally, the proposed methods are compared on a
benchmark data set.

Chapter 8 augments the basic nonlinear model given by LS-SVM with a
linear parametric noise model. The use of a noise model is necessary in
case the model residuals are correlated and can improve the prediction
performance in these cases. The chapter proposes a relaxation scheme
similar to that in Chapter 7 to jointly estimate the nonlinear system
dynamics along with the linear noise model. Special attention is given
to the projection onto the original model class as two independent
estimates for the noise model are obtained.

Chapter 9 studies the sensitivity of LS-SVM based models with respect to
unstructured perturbations. The analysis employs a worst case approxi-
mation and is based on a second order cone programming problem. This
change of the regularization requires some changes to the derivation of
the dual problem and the predictive model. To control the numerical
complexity, the robustified model is cast back into least squares form.



1.4 Guide through the chapters 7

Extended
model class

Gray box modeling

Chapter 6:
MIMO systems

Chapter 10:
Segmentation

Chapter 8:
Linear noise

models

Chapter 5:
Partially

linear models

Chapter 7:
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tured models

Figure 1.1: Clusters of chapters with respect to system identification topics

Based on the derived formulations, the sensitivity of simple models with
respect to input variables and employed kernel functions is studied.

Chapter 10 presents a method for the offline segmentation of data gener-
ated by a nonlinear systems with abrupt changes of system dynamics.
The estimation is once more based on a convex relaxation and uses ad-
vanced regularization. As in the previous chapters using nonquadratic
penalties, the work to obtain a finite-dimensional kernel based model
representation and the corresponding predictive equation is presented.
Due to the time dependent nature of the model, the model selection
is considered explicitly. Furthermore a scheme for a more efficient
numerical solution is presented.

Finally the thesis is concluded in Chapter 11.

1.4 Guide through the chapters

The thesis covers different aspects of related problems. Two main points of
entry can be identified. The first way chapters can be selected is based on
the problem they are solving. From this point of view, the chapters can be
grouped as shown in Figure 1.1. There is one cluster of chapters studying gray
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Over-
parametrizationNew regulariza-

tion schemes

Chapter 10:
Segmentation

Chapter 6:
MIMO systems

Chapter 9:
Sensitivity

Chapter 7:
Block struc-
tured models

Chapter 8:
Linear noise

models

Figure 1.2: Clusters of chapters with respect to techniques for deriving convex
approximation for nonconvex problems.

box models. Within this cluster the chapters can be read almost independently
and the selection can be determined by the interest of the reader. In general
Chapter 5 is a good entry point as it gives an overview of the common method-
ology, while requiring relatively few mathematical derivations. Section 7.4 is
based on ideas more thoroughly discussed in Chapter 6, however otherwise
Chapter 7 can be read independently. Moreover the mathematics used in
Chapter 6 is quite similar to that in Chapter 10, but the presentation slightly
different proving access from a different direction.

The second cluster of chapters depicted in Figure 1.1 contains approaches
extending the model class. As can be seen in the figure, Chapters 6 and 10
can be attributed to both clusters. Although belonging to the other cluster, it
is advisable to read Chapter 7 before Chapter 8 as the employed methodology
is much more thoroughly presented in the former.

A second approach for selecting chapters of interest and a suitable order
of reading is from a methodological point of view. Besides grouping the
chapters according to their modeling goal, it can be interesting to cluster them
based on the employed fundamental ideas. Such an arrangement is shown
in Figure 1.2. Chapter 5 is intentionally left out of this representation, as
the two main concepts for convex approximation used in this thesis are not
exploited in this chapter. The remaining chapters revolve around the idea of
overparametrization – the introduction of independent variables to model
bilinear terms – and the technique of using convex norms as surrogates for
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nonconvex functions.
The concept of overparametrization and many ideas revolving about its inte-

gration with kernel based models are most thoroughly discussed in Chapter 7.
Hence, for the cluster on overparametrization this should be the first chapter
to read. In Chapter 8 the same idea is applied to a different problem. The main
benefit from a methodological point of view is a more detailed numerical
analysis of the attained convex approximation versus the true global optimum.
Chapter 10 uses the idea of overparametrization in a more extreme setting.
It does not relax a bilinear product but introduces new model parameters
at each time instant. This only succeeds as the idea of overparametrization
is combined with a suitably crafted regularization scheme. For exactly this
reason Chapter 10 can be attributed to both clusters. Within the cluster on
regularization schemes, Chapter 9 provides a straightforward introduction
to nonquadratic regularization terms and the resulting complications for ob-
taining predictive models. With the most level of detail the topic is discussed
in Chapter 6. Chapter 10 can be considered complementary as it treats a
mathematically very similar problem but takes a slightly different approach
of presenting them.

1.5 Contributions of this work

The main contributions of this work are summarized in the following.

Wiener-Hammerstein identification Wiener-Hammerstein systems are
structured systems which consist of linear dynamical blocks and a
single static nonlinear function that captures all nonlinearity. The prior
knowledge about the system structure is used to improve the model
performance. The contributions of this thesis are: (i) the extension of
Hammerstein identification as proposed by Goethals et al. [2005b] to
Wiener-Hammerstein systems, (ii) an improved methodology to recover
the original model class by a new projection scheme, (iii) an extension
to handle large data sets and (iv) a thorough evaluation on a large
benchmark data set.

• Falck, T., Pelckmans, K., Suykens, J. A. K., and De Moor, B. (July
2009). “Identification of Wiener-Hammerstein Systems using LS-
SVMs”. In: Proceedings of the 15th IFAC Symposium on System
Identification. (Saint-Malo, France, July 6–8, 2009), pp. 820–825,
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• Falck, T., Dreesen, P., De Brabanter, K., Pelckmans, K., De Moor, B.,
and Suykens, J. A. K. (Nov. 2012). “Least-Squares Support Vector
Machines for the Identification of Wiener-Hammerstein Systems”.
In: Control Engineering Practice 20(11), pp. 1165–1174,

• Goethals, I., Pelckmans, K., Falck, T., Suykens, J. A. K., and De
Moor, B. (2010). “NARX Identification of Hammerstein Systems
using Least-Squares Support Vector Machines”. In: Block-oriented
Nonlinear System Identification. Ed. by F. Giri and E.-W. Bai.
Vol. 404. Lecture notes in control and information sciences. Sprin-
ger. Chap. 15, pp. 241–256.

Partially linear systems Partially linear systems combine parametric and
nonparametric models. This allows incorporating prior information
and yields models with improved performance. The novel contribution
is an orthogonality constraint which simplifies the model estimation. It
ensures a significantly reduced variability of the obtained parametric
model estimate compared to existing techniques.

• Falck, T., Signoretto, M., Suykens, J. A. K., and De Moor, B. (2010).
A two stage algorithm for kernel based partially linear modeling
with orthogonality constraints. Tech. rep. 10-03. ESAT-SISTA,
K.U. Leuven.

Parametric noise models For an accurate prediction of a system output, it
is often necessary to model the noise structure as well as the system
itself. The contribution of this thesis is a convex approach to jointly
estimate a linear parametric noise model along with a nonlinear model
for the system.

• Falck, T., Suykens, J. A. K., and De Moor, B. (Dec. 2010). “Linear
Parametric Noise Models for Least Squares Support Vector Ma-
chines”. In: Proceedings of the 49th IEEE Conference on Decision
and Control. (Atlanta, GA, USA, Dec. 15–17, 2010), pp. 6389–6394.

Nonquadratic regularization Recent advances in convex optimization pro-
vide powerful heuristics for convex relaxations. This thesis picks up
several of these approximations to improve system identification related
problems. The main contributions in this context are (i) the derivation
of dual, finite-dimensional, kernel based optimization problems, (ii)
model representations in terms of the kernel and the dual model param-
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eters and (iii) approaches for the numerical solution of the resulting
formulations. This is done for several application areas.
Multiple output systems Based on nuclear norms, the basic LS-SVM

model is extended to handle systems with more than one output.
The use of the advanced regularization scheme enables informa-
tion transfer from one system output to another.

Wiener-Hammerstein systems Wiener-Hammerstein systems as in-
troduced before are cast into a particular form of multiple output
systems. In this case, an intermediate signal takes the role of the
multiple system outputs. This yields a more accurate representa-
tion of the original model class and therefore improves the convex
relaxation proposed earlier.

• Falck, T., Suykens, J. A. K., Schoukens, J., and DeMoor, B. (Dec.
2010). “Nuclear Norm Regularization for Overparametrized
Hammerstein Systems”. In: Proceedings of the 49th IEEE Con-
ference on Decision and Control. (Atlanta, GA, USA, Dec. 15–
17, 2010), pp. 7202–7207.

Time varying systems By using sum-of-norms regularization, it is
possible to connect groups of variables. This enables linking time
dependent parameters of a system. This results in a problem
formulation that allows the detection of points in a time series at
which the underlying system changes its dynamics.

• Falck, T., Ohlsson, H., Ljung, L., Suykens, J. A. K., andDeMoor,
B. (Aug. 2011). “Segmentation of time series from nonlinear
dynamical systems”. In: Proceedings of the 18th IFAC World
Congress. (Milan, Italy, Aug. 28–11, 2011), pp. 13209–13214.

Sensitivity of kernel based models The use of unsquared ℓ􀁯-norms
instead of their squared counterparts in standard LS-SVMs allows
the application of results from robust linear modeling. Based on
these results, LS-SVM derivedmodels can be analyzed with respect
to their sensitivity towards the selection of the kernel function
and their input variables.

• Falck, T., Suykens, J. A. K., and De Moor, B. (Dec. 2009).
“Robustness analysis for Least Squares Kernel Based Regres-
sion: an Optimization Approach”. In: Proceedings of the 48th
IEEE Conference on Decision and Control. (Shanghai, China,
Dec. 16–18, 2009), pp. 6774–6779.
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First principle information Prior information on systems is often given in
terms of physical relations. These are usually formulated in terms of
differential equations. The possibility to use analytic derivatives of the
model during its estimation allows information provided in terms of
differential equations to be fused with measured data.

• Mehrkanoon, S., Falck, T., and Suykens, J. A. K. (July 2012b).
“Parameter Estimation for Time Varying Dynamical Systems using
Least Squares Support Vector Machines”. In: Proceedings of the
16th IFAC Symposium on System Identification. (Brussels, Belgium,
July 11–13, 2012), pp. 1300–1305,

• Mehrkanoon, S., Falck, T., and Suykens, J. A. K. (Sept. 2012a).
“Approximate Solutions to Ordinary Differential Equations Using
Least Squares Support Vector Machines”. In: IEEE Transactions on
Neural Networks and Learning Systems 23(9), pp. 1356–1367.

Evaluation of benchmark data A time series prediction benchmark prob-
lem contained three data sets from unknown sources. Based on amanual
analysis of these time series very competitive results could be obtained.
These results are based on the combination of several extensions of
LS-SVMs.

• Espinoza, M., Falck, T., Suykens, J. A. K., and De Moor, B. (Sept.
2008). “Time Series Prediction using LS-SVMs”. In: Proceedings
of the European Symposium on Time Series Prediction. (Porvoo,
Finland, Sept. 17–19, 2008), pp. 159–168.

Applications outside of system identification Besides work in the con-
text of system identification, similar algorithmic problems can be found
in other domains. On several occasions the technical expertise acquired
in this thesis was contributed to other problems.

• Yu, S., Falck, T., Daemen, A., Tranchevent, L.-C., Suykens, J. A. K.,
De Moor, B., and Moreau, Y. (2010). “L2-norm multiple kernel
learning and its application to biomedical data fusion”. In: BMC
Bioinformatics 11(309), pp. 1–53,

• Ojeda, F., Falck, T., De Moor, B., and Suykens, J. A. K. (July 2010).
“Polynomial componentwise LS-SVM: fast variable selection us-
ing low rank updates”. In: Proceedings of the International Joint
Conference on Neural Networks 2010. (Barcelona, Spain, July 18–23,
2010), pp. 3291–3297,
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• Van Herpe, T., Mesotten, D., Falck, T., De Moor, B., and Van den
Berghe, G. T. (Feb. 2010). “LOGIC-Insulin Algorithm for Blood
Glucose Control in the ICU: a pilot test”. At: Third International
Conference on Advanced Technologies & Treatments for Diabetes
(Basel, Switzerland, Feb. 10–13, 2010).
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2System identification

Many engineering applications rely on the concept of a system as shown in
Figure 2.1. To be useful in an engineering context one needs a model for the
system. Once a model has been obtained it can be used for different purposes,
such as analysis, prediction or control. This thesis is about constructing such
a model for a particular class of systems within a certain framework. The
goals of this chapter are to

• explain the class of considered systems and place it into a context,

• highlight the key concepts that are required to understand the properties
of the chosen framework and finally

• introduce the theory that is later on needed in the thesis.

Some distinctions that will be explained later on are those between white box
and black box models, linear versus nonlinear systems and parametric and
nonparametric techniques.

System
𝑢(𝑡) 𝑦(𝑡)

𝑣(𝑡)

Figure 2.1: Dynamic system with input 𝑢(𝑡) and output 𝑦(𝑡) where 𝑡 denotes
time. The system is subject to a disturbance 𝑣(𝑡).

17



18 System identification

2.1 System properties

The block structure shown in Figure 2.1 is very general and can be used
to represent many phenomena, depending on the precise definitions of the
system, input, output and disturbance. The term system is actually imprecise
because, in this thesis, it always refers to a dynamical system. The main
characteristic of a dynamical system is that it has a memory. As such its
output 𝑦 at time 𝑡􀁭 in general depends on its input 𝑢(𝑡) for 𝑡 from −∞ to 𝑡􀁭.

In the scope of this thesis only lumped systems are considered in contrast to
distributed systems. Whereas lumped systems can be described by a finite set
of parameters and often can be modeled with ordinary differential equations,
distributed systems have an infinite number of parameters and are usually
described by partial differential equations. Throughout this thesis it is assumed
that input 𝑢(𝑡), output 𝑣(𝑡) and disturbance are real valued. The case of discrete
or complex valued variables is not considered.

In most chapters the presentation is targeted to systems with a single
input 𝑢(𝑡) and a single output 𝑦(𝑡) (SISO systems), although the generalization
to multiple input and single output (MISO) is usually straightforward. An
exception in this respect is Chapter 6 which explicitly considers multiple
input multiple output (MIMO) systems. With the exception of Chapter 10 it
is assumed everywhere that the system is time invariant, i.e. that the system
itself does not depend on the time 𝑡. All presented material implicitly assumes
that the time variable 𝑡 is discrete and uniformly sampled. Strictly speaking
this is a property of the model and not of the system however.

The most important classification for systems relevant to this thesis is the
distinction between linear and nonlinear systems. The primary goal is to
construct models for nonlinear systems but in almost all cases there is some
relation to linear systems. Comprehensive information relevant for linear
systems can be found in [Kailath, 1980; Oppenheim et al., 1997], a good
reference on nonlinear systems and their theory is [Khalil, 2002].

2.2 Prior information

Apart from the system properties outlined in the previous section, which
are mostly governed by physics, a crucial point for choosing the modeling
technique is the information available on the system. On the extreme sides
of the spectrum are white box modeling and black box modeling. The term
white box modeling is used in case the system is modeled using physical
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insight and based on physical laws. This approach is limited to problems
where the physics are well understood. It often requires a large amount of
domain specific expert knowledge and can be very time consuming if the
system is complex. White box modeling often results in systems of differential
equations. Depending on the application these might need to be discretized
later on.

Black box modeling on the other side of the spectrum does not need any
physical insight about the system, instead it tries to infer all information from
measured data. This data-driven approach to modeling is what is usually
referred to by the term system identification. For this to be feasible it of course
has to be possible to take measurements of the system. Depending on the
application, taking measurements might be expensive or time consuming and
often is both. A historical overview of system identification is given by Gevers
[2006] and some relations to earlier work in statistics and econometrics are
presented by Deistler [2002]. A good overview of the key aspects of system
identification is given by Ljung [2010], for comprehensive information the
main references are [Söderström and Stoica, 1989; Ljung, 1999].

In between white box models and black box models there is a whole spec-
trum of so-called gray box models. Depending on the particular shade of gray,
these might be physical models for which some parameters are unknown
and have to be estimated from data. A much darker shade of gray would
be structural information. In both cases the deviation from a pure color can
introduce new problems. In case of black box models for example it is not
always straightforward how prior knowledge about a system can be exploited.

In the overview paper on system identification by Ljung [2010] several core
concepts are defined. These will be introduced in the following and related to
different parts of this thesis.

• The first concept is the model, which is defined as “a relationship be-
tween observed quantities”. In this thesis each chapter will describe a
methodology to establish such a relationship.

• The next concept is that of a true description. This is a useful tool to
prove statistical properties of a certain model, but will not be used
further in this text.

• A more important concept in the context of this work is information,
which on the one hand is described as the prior information and on
the other hand is about the information contained in the data. Prior
information has been introduced in this section and will play a major
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role in this thesis. For example in Chapters 5 and 7 prior structural
information is used to estimate dark gray models. The information
contained in the data is not explicitly addressed in this thesis and always
assumed to be rich enough to carry out the estimation.

• A closely related concept is the model class. The choice of the model
class is strongly influenced by prior information. Often considered
model classes for linear as well as nonlinear systems are introduced
in the next section. In this thesis the model class is either enriched as
in Chapters 6 and 8 or restricted as in Chapters 5 and 7 depending on
prior information.

• Having defined a particular model class, the next concept is estimation.
The estimation of a model that explains given data is the key problem
addressed in all chapters. Estimating a model often relies on solving
optimization problems. In this thesis the focus is on convex problems
for which some aspects are introduced in Chapter 3.

• Strongly related to estimation is the concept of complexity. The com-
plexity of a model describes its versatility to explain different behaviors.
One way to control the complexity of a model heavily used within
this thesis is regularization. Regularization is a key concept in least
squares support vector machines, the framework used for modeling
throughout this thesis and described in Chapter 4. In Chapters 6 and 10
new complexity measures based on improved regularization schemes
are considered.

• The estimation step is usually followed by validation. This step ensures
that the model does not only fit the data that it was estimated on, but
also generalizes to new data. According to Occam’s razor [Rasmussen
and Ghahramani, 2001] less complex models usually generalize better.

• Finally the last core concept according to Ljung [2010] is model fit. The
model fit quantifies how well a model fits a given data set. In this
work usually a simple least squares criterion is used, but one might
benefit from an application specific choice [Gevers and Ljung, 1986;
Gevers, 2005]. In Chapters 5, 9 & 10 model fit is compromised to better
accommodate other objectives.
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2.3 Model representation

To construct a model for the system shown in Figure 2.1 a representation needs
to be chosen. The most popular ways to represent a system in an engineering
setting are state space models, the behavioral approach and the representation
of systems as filters. Among these three, the behavioral approach [Willems,
2007] is a particular case as, in contrast to most other representations, it does
not consider inputs and outputs. Therefore, strictly speaking, it does not
correspond to the structure in Figure 2.1. It rather models the interaction
between variables and is particularly well suited for white box modeling and
consequently will not be considered further. In the following subsections
the remaining two model representations will be briefly introduced, namely
models in state-space and in polynomial form.

2.3.1 State-space models

A representation that gained immense popularity in the control commu-
nity due to the work of Kalman [1960b,a] is the state space representation.
For a linear time invariant system with 𝑛-dimensional input 𝒖(𝑡) ∈ ℝ𝑛 and
𝑚-dimensional output 𝒚(𝑡) ∈ ℝ𝑚, a state space model [Ljung, 1999, Eq. 4.84]
can be stated as

𝒙(𝑡 + 1) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡) + 𝒘(𝑡), (2.1a)
𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡) + 𝒗(𝑡), (2.1b)

where 𝒙 ∈ ℝ𝑑 is the 𝑑-dimensional state of the system. The matrices 𝑨,
𝑩, 𝑪 and 𝑫 are of compatible dimensions and describe the dynamics of the
system. The term 𝒘(𝑡) ∈ ℝ𝑑 is called process noise, whereas 𝒗(𝑡) ∈ ℝ𝑚 is
called measurement noise. The noise terms are usually characterized through
their covariance matrices 𝑹􀁮 = ℰ{𝒘(𝑡)𝒘(𝑡)𝑇 }, 𝑹􀁯 = ℰ{𝒗(𝑡)𝒗(𝑡)𝑇 } and 𝑹􀁰 =
ℰ{𝒗(𝑡)𝒘(𝑡)𝑇 }. Nonlinear versions can be stated as

𝒙(𝑡 + 1) = 𝒇 (𝒙(𝑡), 𝒖(𝑡), 𝒘(𝑡)), (2.2a)
𝒚(𝑡) = 𝒈(𝒙(𝑡), 𝒖(𝑡), 𝒗(𝑡)), (2.2b)

with 𝒇 ∶ ℝ􀁯𝑑+𝑛 → ℝ𝑑 and 𝒈 ∶ ℝ𝑑+􀁯𝑚 → ℝ𝑚. The state-space representation
is very popular for many applications as states can often be associated with
physical quantities. Also this representation handles MIMO systems in a very
natural fashion.
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2.3.2 Polynomial or difference equation models

Whereas the memory of a system for state-space models is given by the
state, one can also model a system as a filter. The filter takes past values
of the output 𝑦(𝑡) and input 𝑢(𝑡) and relates them to new outputs. In this
case the memory of the system is contained in the past values of the output.
Therefore an alternative form to model a linear time invariant system is given
by combining past values of its input 𝑢(𝑡) and its output 𝑦(𝑡) as in

𝑦(𝑡) =
𝑞

∑
𝑘=􀁭

𝑏𝑘𝑢(𝑡 − 𝑘) −
𝑝

∑
𝑘=􀁮

𝑎𝑘𝑦(𝑡 − 𝑘) + 𝑒(𝑡) (2.3)

where the 𝑎𝑘’s and 𝑏𝑘’s are coefficients that define the model while 𝑝 and 𝑞 are
the model orders. The term 𝑒(𝑡) represents noise and can be characterized by
its probability density function. Introducing the time shift operator 𝓏 defined
as 𝓏−􀁮𝑓(𝑡) = 𝑓(𝑡 − 1) where 𝑓 is an arbitrary function of time, the equation
can be rewritten as

⎛
⎜
⎝
1 +

𝑝

∑
𝑘=􀁮

𝑎𝑘𝓏−𝑘⎞⎟
⎠
𝑦(𝑡) =

⎛
⎜
⎝

𝑞

∑
𝑘=􀁭

𝑏𝑘𝓏−𝑘⎞⎟
⎠
𝑢(𝑡) + 𝑒(𝑡). (2.4)

Defining two polynomials in𝓏,𝐴(𝓏) = 1+∑𝑝
𝑘=􀁮 𝑎𝑘𝓏

−𝑘 and 𝐵(𝓏) = ∑𝑞
𝑘=􀁭 𝑏𝑘𝓏

−𝑘,
the model equation can be further simplified to 𝐴(𝓏)𝑦(𝑡) = 𝐵(𝓏)𝑢(𝑡) + 𝑒(𝑡).
Note that the model is completely determined by the polynomials 𝐴(𝓏) and
𝐵(𝓏). This particular model structure is called autoregressive model with
exogenous input (ARX). The description is valid only as long as the noise
process 𝑒(𝑡) is independent. In case the noise is correlated, more complicated
model structures have been proposed. These can all be unified in a general
polynomial model structure [Ljung, 1999, Eq. 4.33], visually represented in
Figure 2.2,

𝐴(𝓏)𝑦(𝑡) =
𝐵(𝓏)
𝐹(𝓏)

𝑢(𝑡) +
𝐶(𝓏)
𝐷(𝓏)

𝑒(𝑡), (2.5)

where 𝐴(𝓏), 𝐵(𝓏), 𝐶(𝓏), 𝐷(𝓏) and 𝐹(𝓏) are polynomials of the form intro-
duced above. With the exception of 𝐵(𝓏) all of these polynomials are monic.
Depending on which polynomials differ from unity, these structures are given
different names. The simplest and most common model structures are Finite
Impulse Response (FIR) and AutoRegressive with eXogenous input (ARX). Some
others areAutoRegressive Moving Average with eXogenous input (ARMAX), Box-
Jenkins (BJ) and Output Error (OE). Table 2.1 lists the nonunity polynomials
for these model structures.
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𝐵(𝓏)
𝐹(𝓏)

𝑢(𝑡) 1
𝐴(𝓏)

𝑦(𝑡)

𝐶(𝓏)
𝐷(𝓏)

𝑒(𝑡)

Figure 2.2: General structure of a linear time invariant system in polynomial
form.

Table 2.1: Model structures for linear dynamic time invariant systems in poly-
nomial form as in (2.5) and Figure 2.2 [Ljung, 1999, Table 4.1]. Poly-
nomials that are not mentioned are equal to 1.

model structure nonunity polynomials

FIR 𝐵(𝓏)
ARX 𝐴(𝓏), 𝐵(𝓏)
ARMAX 𝐴(𝓏), 𝐵(𝓏), 𝐶(𝓏)
BJ 𝐵(𝓏), 𝐹(𝓏), 𝐶(𝓏), 𝐷(𝓏)
OE 𝐵(𝓏), 𝐹(𝓏)

The extension to nonlinear models of the polynomial model structures
is not as straightforward as it is for state space models. To generalize the
polynomial model structure, one defines a regressor vector 𝝔(𝑡) that contains
all elements needed to compute 𝑦(𝑡) and a parameter vector 𝜽 that contains
all model parameters. For the ARX model defined by (2.3) these are 𝝔(𝑡) =
[𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑝), 𝑢(𝑡), … , 𝑢(𝑡 − 𝑞)]𝑇 and 𝜽 = [𝑎􀁮, … , 𝑎𝑝, 𝑏􀁭, … , 𝑏𝑞]𝑇 such that it
can be written as

𝑦(𝑡) = 𝜽𝑇𝝔(𝑡) + 𝑒(𝑡). (2.6)

The transition from linear to nonlinear systems is then achieved by replacing
the linear function 𝜽𝑇𝝔(𝑡) by a nonlinear one 𝑓(𝝔(𝑡)) where 𝑓 ∶ ℝ𝑝+𝑞+􀁮 → ℝ
such that

𝑦(𝑡) = 𝑓(𝝔(𝑡)) + 𝑒(𝑡). (2.7)
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Table 2.2: Model structures for nonlinear dynamic time invariant systems
specified as 𝑦(𝑡) = 𝑓(𝝔(𝑡)) + 𝑒(𝑡) [Sjoberg et al., 1995]. The table lists
the variables that are present in the regression vector 𝝔(𝑡).

model structure variables allowed in regressor vector

NFIR 𝑢(𝑡)
NARX 𝑢(𝑡), 𝑦(𝑡)
NARMAX 𝑢(𝑡), 𝑦(𝑡), 𝜖(𝑡)
NBJ 𝑢(𝑡), 𝑦̂(𝑡), 𝜖(𝑡), 𝜖𝑢(𝑡)
NOE 𝑢(𝑡), 𝑦̂𝑢(𝑡)

By Takens’ theorem most nonlinear systems can be represented in this way
under mild conditions [Takens, 1981; Kantz and Schreiber, 2003].

The nonlinear model in (2.7) is the nonlinear generalization of the ARX
model shown in (2.3) and accordingly denoted as NARX. To obtain a gen-
eralization of the general model structure in (2.5) to nonlinear models, the
regressor vector 𝝔 needs to be extended with variables beyond past input and
output measurements. To reach this goal one also considers the one-step-
ahead predictor

𝑦̂(𝑡) = 𝑓(𝝔(𝑡)) (2.8)

and additionally a simulation predictor 𝑦̂𝑢(𝑡). The difference between the
one-step-ahead predictor 𝑦̂(𝑡) and the simulation predictor 𝑦̂𝑢(𝑡) is that the
regressor vector 𝝔 for the former contains measured values for 𝑦 while for
the latter one these are replaced by their previously obtained predictions 𝑦̂𝑢.
Using these predictions one can further define the prediction error

𝜖(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡) (2.9)

and the prediction error in simulation mode 𝜖𝑢(𝑡) = 𝑦(𝑡) − 𝑦̂𝑢(𝑡) respectively.
Using these definitions Sjoberg et al. [1995] classify nonlinear models in
a fashion corresponding to the linear polynomial models. Depending on
which variables out of 𝑢(𝑡), 𝑦(𝑡), 𝑦̂(𝑡), 𝑦̂𝑢(𝑡), 𝜖(𝑡) and 𝜖𝑢(𝑡) are included in the
regression vector 𝝔, the nonlinear model structures are named in analogy to
their linear counterparts. The model structures and their regression variables
are summarized in Table 2.2.
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2.4 Model parametrization and estimation

The last section introduced different model classes but did not touch the
problem of estimating a model from data. A very natural approach is to define
an optimization problem that tries to maximize a model fit subject to a model
class. Therefore one needs to choose a model class, a parametrization for that
model class and the model fit. To simplify the presentation, only linear models
are considered in the beginning. Since polynomial models are most relevant
for this thesis, they are considered first. Note that the coefficients of the
polynomials completely characterize a model. Therefore one can collect these
coefficients in a parameter vector 𝜽. Such models are also called parametric
models, as they are described in terms of much less parameters than the
number of measurement data. On the other hand there are nonparametric
models for which the number of parameters is in the same order of magnitude
as the number of data. An example for nonparametric models are frequency
domain models. These models are made up by frequency response functions.
Their estimation considers each frequency value as one, often independent,
parameter. Note that polynomial models and frequency response functions
can be related via the Fourier transform.

No matter how a model is parametrized, for each choice of the parameters
𝜽 one can compute the estimate 𝑦̂(𝑡, 𝜽) at time 𝑡. Then one can estimate a
model with

𝜽∗ = argmin
𝜽,𝜀𝑡

𝑁

∑
𝑡=􀁮

𝑉(𝜖𝑡) subject to 𝜀(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡, 𝜽). (2.10)

Solving this optimization problem estimates the model parameters 𝜽 given
a dataset {𝑢(𝑡), 𝑦(𝑡)}𝑁𝑡=􀁮. Here the function 𝑉 ∶ ℝ → ℝ+ is a loss function
penalizing prediction errors. This general scheme is called prediction error
framework and was introduced by Åström and Bohlin [1965]. Depending
on the assumptions on the noise term 𝑒(𝑡), the model structure and the loss
function 𝑉 , the solution of (2.10) yields the maximum likelihood estimate.
Solving the optimization problem is highly nontrivial except for particular
choices of model structure and loss function. A special case are FIR and ARX
models and the least squares loss 𝑉(𝜖) = 𝜖􀁯 for which the estimation problem
can be solved using least squares. More information, mostly in the context of
linear systems in parametric form, can for example be found in [Ljung, 1999;
Söderström and Stoica, 1989]. For models specified in the frequency domain
the main reference is [Pintelon and Schoukens, 2001]. Estimation of nonlinear
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systems within this framework is discussed in [Sjoberg et al., 1995; Juditsky
et al., 1995; Nelles, 2001].

For state space models a natural parametrization are the coefficients of
the system matrices 𝑨, 𝑩, 𝑪 and 𝑫. However such a parametrization gives
rise to potentially very difficult nonconvex optimization problems. Among
other things, their solutions are not unique and only defined up to a similarity
transform on the state. The state of a system and its evolution are very
powerful tools to look at system dynamics. Therefore this description is
very popular for example in control. Also system properties like stability,
observability and controllability can be directly connected to and checked
upon its state space description. It is also the key element in a Kalman filter
[Kalman, 1960a] which allows the online reconstruction of the system state.
Initially state space descriptions were derived from impulse responses or
Markov parameters, their generalization to MIMO systems, if they were not
obtained from first principles modeling. This is known as realization theory
and was pioneered by Ho and Kalman [1966] in the deterministic setting and
Akaike [1974] in the stochastic one.

A relatively recent approach to identify state space models without the need
for an intermediate model or the direct measurement of Markov parameters
is subspace identification. In contrast to (2.10) it does not start from an
optimization problem but relies on a combination of system theoretic insights
and linear algebra. The idea is to factor suitably defined matrices of input
and output measurements in a way that allows the reconstruction of a state
sequence or the extended observability matrix. From either one of these, the
parameter matrices 𝑨, 𝑩, 𝑪 and 𝑫 can be straightforwardly estimated. In case
of a reconstructed state sequence for example one can apply least squares to
the set of equations in (2.1) to obtain these estimates. The first comprehensive
monograph on this topic is [Van Overschee and De Moor, 1996] while a more
recent presentation incorporating additional material has been published by
Katayama [2005].

A noteworthy parallel between state spacemodels and themodelingmethod-
ology considered further on during this thesis are its hybrid nature when
considering its parametrization. While the final state space model is paramet-
ric, the entire estimation process is nonparametric. The models that will be
considered later on start from an implicit parametric description and yield
nonparametric models in the end. Another similarity is that both approaches
strongly rely on linear algebra and were made possible due to advances in
other scientific fields. In case of subspace identification these were numerical
linear algebra and a deeper understanding of system theory while for the
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kernel based models considered from now on, the main influences are convex
optimization and machine learning. The crucial concepts for both will be
outlined in the following two introductory chapters.





3Convex optimization

Optimization is at the heart of every system identification problem as it
involves fitting some parameters to measured data. Depending on the cost
function, i.e. the optimization criterion and the structure of the model, the
optimization problem can be nonlinear. In general one can use first order
methods like conjugate gradient or second order techniques like the Newton
method to solve these problems [Nocedal and Wright, 2006; Bertsekas, 1999].
A common problem in nonlinear optimization is the presence of local optima
which may be found instead of the global optimum. Therefore an important
class of optimization problems are convex optimization problems [Boyd and
Vandenberghe, 2004; Nesterov, 2004]. For these every local optimum is also
globally optimal and for certain classes at least one can be found efficiently.
Furthermore, for a large class of convex problems called strictly convex, the
optimum is unique.

The most widely solved convex problems are linear programs (LPs) that
are popular since the 1950s due to the simplex algorithm by Dantzig in 1947
[Dantzig, 1963]. The simplex algorithm only applies to LPs, hence other con-
vex problems lagged behind for a long time. This started to change with the
introduction of a new algorithm known as interior point method for LPs by
Karmarkar [1984]. This algorithm has been extended to large class of convex
problems by Nesterov and Nemirovskii [1994]. Based on these ideas efficient
and robust algorithms in the form of general purpose solvers have been devel-
oped. These are one of the main reasons for the success of convex optimization
in the last two decades. In this thesis they have also been employed for various

29
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𝑥􀁮

𝑥􀁯

𝑥􀁮
𝑥􀁯

Figure 3.1: Illustration of a convex set (left panel) and a nonconvex set (right
panel).

problems. However for more complex convex problems like second order cone
programs (SOCP) and semidefinite programs (SDPs) general purpose software
does not always scale well with the number of unknowns. Therefore one
section of this chapter is dedicated to a recently popular approach using first
order gradient techniques. A recurring problem throughout this thesis is
that the problems that have to be solved are intrinsically nonconvex. Instead
of relying on nonlinear optimization software, one goal of this thesis is to
explore how far one can get by considering convex approximations and re-
laxations. A short overview of possible techniques to come up with similar
convex problems is given in Section 3.5.

3.1 Basic definitions and notation

The canonical form of an optimization problem is

min
𝒙

𝑓(𝒙)

subject to 𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1, … ,𝑀.
(3.1)

Now if both 𝑓(𝒙) as well as all 𝑔𝑖(𝒙)’s are convex the optimization problem is
said to be convex. To verify that a set 𝐶 is convex one has to check that the
line segment between two arbitrary points 𝒙􀁮, 𝒙􀁯 ∈ 𝐶 is entirely contained in
𝐶. Formally

𝒙􀁮 + 𝛾(𝒙􀁯 − 𝒙􀁮) ∈ 𝐶 (3.2)

has to hold for all 0 ≤ 𝛾 ≤ 1 and 𝒙􀁮, 𝒙􀁯 ∈ 𝐶. Examples for simple convex and
nonconvex sets are shown in Figure 3.1. Some convex sets are

• hyperplanes {𝒙 | 𝒂𝑇𝒙 + 𝑏 = 0},
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• halfspaces {𝒙 | 𝒂𝑇𝒙 + 𝑏 ≤ 0} and
• norm balls, for the norm ‖ ⋅ ‖𝑝 with 𝑝 ≥ 1 the corresponding norm ball
of size 𝑟 is {𝒙 | ‖𝒙‖𝑝 ≤ 𝑟}.

A special type of convex sets are convex cones. A set is a cone if for every
point 𝒙 ∈ 𝐶 all points 𝛾𝒙 for 𝛾 ≥ 0 are also in the set 𝐶. A compact condition
for 𝐶 being a convex cone is

𝛾􀁮𝒙􀁮 + 𝛾􀁯𝒙􀁯 ∈ 𝐶 (3.3)

for all 𝛾􀁮, 𝛾􀁯 ≥ 0 and 𝒙􀁮, 𝒙􀁯 ∈ 𝐶. Examples for convex cones are

• the nonnegative orthant of dimension 𝑑, ℝ𝑑
+ = {𝒙 | 𝒙 ∈ ℝ𝑑, 𝑥𝑖 ≥ 0 for 𝑖 =

1, … , 𝑑},
• norm cones, for the norm ‖ ⋅ ‖𝑝 with 𝑝 ≥ 0 the corresponding norm cone
is 𝐾𝑝 = {(𝒙, 𝑡) | ‖𝒙‖𝑝 ≤ 𝑡},

• especially the second order cone, also called Lorentz or ice-cream cone,
that corresponds to the Euclidian or 𝐿􀁯-norm and

• the semidefinite cone, 𝑆𝑑+ = {𝑿 | 𝑿 ∈ ℝ𝑑×𝑑, 𝑿 = 𝑿𝑇 , 𝑿 ⪰ 𝟎}.

A function 𝑓 ∶ ℝ𝑑 → ℝ is called convex if the domain 𝐷 of 𝑓 is a convex set
and

𝑓(𝛾𝒙􀁮 + (1 − 𝛾)𝒙􀁯) ≤ 𝛾𝑓(𝒙􀁮) + (1 − 𝛾)𝑓(𝒙􀁯), (3.4)

for all 𝒙􀁮, 𝒙􀁯 ∈ 𝐷 and 0 ≤ 𝛾 ≤ 1. Geometrically that means that the function
must be below the line segment between any two points of its graph. This is
illustrated in Figure 3.2.

3.2 Convex problems

A constrained optimization problem in standard form is given by

min
𝒙

𝑓(𝒙)

subject to 𝒈(𝒙) = 𝟎𝑀𝑒

𝒉(𝒙) ⪯ 𝟎𝑀𝑖

(3.5)

where 𝒙 ∈ ℝ𝑁 , 𝑓 ∶ ℝ𝑁 → ℝ, 𝒈 ∶ ℝ𝑁 → ℝ𝑀𝑒 and 𝒉 ∶ ℝ𝑁 → ℝ𝑀𝑖 . The La-
grangian of this problem is a function that incorporates the objective function
and the constraints. Based on it, several important results can be derived.
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Figure 3.2: Illustration of a convex function (left panel) and a nonconvex
function (right panel).

Table 3.1: Classification of convex optimization problems. The constraint
set of all optimization problems can be complemented with linear
equality constraints 𝑨𝒙 = 𝒃. The matrix 𝑷 is assumed to be positive
semidefinite.

name objective function constraint set

LP 𝒄𝑇𝒙 + 𝑑 𝑫𝒙 ≤ 𝒆
QP 􀁮

􀁯
𝒙𝑇𝑷𝒙 + 𝒄𝑇𝒙 + 𝑑 𝑫𝒙 ≤ 𝒆

SOCP 􀁮
􀁯
𝒙𝑇𝑷𝒙 + 𝒄𝑇𝒙 + 𝑑 𝑫𝒙 ≤ 𝒆, ‖𝒙‖􀁯 ≤ 𝒇 𝑇𝒙 + 𝑔

SDP ∑𝑁
𝑛=􀁮 𝑐𝑛𝑥𝑛 + 𝑑 𝑸􀁭 +∑𝑁

𝑛=􀁮𝑸𝑛𝑥𝑛 ⪯ 0

These will be briefly summarized in this subsection as they are important for
the remainder of this thesis. The Lagrangian is given by

ℒ(𝒙, 𝝀, 𝝂) = 𝑓(𝒙) + 𝝂𝑇𝒈(𝒙) + 𝝀𝑇𝒉(𝒙) (3.6)

with 𝝂 ∈ ℝ𝑀𝑒 , 𝝀 ∈ ℝ𝑀𝑖 and 𝝀 ⪰ 𝟎𝑀𝑖 . The most important concept following
from this definition is the Lagrange dual — or just dual — function defined as

𝑑(𝝀, 𝝂) = inf
𝒙
ℒ(𝒙, 𝝀, 𝝂). (3.7)

Note that the Lagrange dual function is the pointwise minimum of an affine
function in 𝝀 and 𝝂. Therefore it is always convex, even if the objective
function or some of the constraints are not. An important property of the
Lagrange dual function is that it provides a lower bound for the objective
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function. As this hold for any feasible 𝒙 it also holds for the optimal one,
hence one has a lower bound on the optimal value of the objective function
𝑓(𝒙), further on denoted as 𝑓∗. Based on the Lagrange dual function one can
formulate the Lagrange dual problem — or simply dual problem or dual — as

max
𝝀,𝝂

𝑑(𝝀, 𝝂)

subject to 𝝀 ⪰ 𝟎𝑀𝑖.
(3.8)

Denote the optimal value of the dual problem by 𝑑∗, then one can define the
duality gap 𝑓∗ − 𝑑∗. For primal problems (3.5) that are convex this quantity
is often zero. A sufficient condition for it to be zero is Slater’s condition [e.g.
Boyd and Vandenberghe, 2004]. For problems that have a zero duality gap
one says that strong duality holds. Among other things the duality gap is
important for algorithms as it provides a powerful stopping criterion. If it
is zero, one is guaranteed to have found optimal values for 𝒙, 𝝀 and 𝝂. In
case strong duality holds, one can show a property known as complementary
slackness which states that 𝜆∗𝑖ℎ𝑖(𝒙∗) = 0 for 𝑖 = 1, … ,𝑀𝑖 where 𝒙∗ and (𝝀∗, 𝝂∗)
denote primal and dual optimal solutions respectively.

While in some cases the derivation of dual functions is possible just by
means of its definition (3.7), for problems with differentiable objective and
differentiable constraints it is usually much easier to do so by considering the
Karush-Kuhn-Tucker conditions for optimality, or shortly the KKT conditions.
The KKT conditions combine the primal constraints, the dual constraints
and complementary slackness with the condition that the gradient of the
Lagrangianℒ in 𝒙 has to vanish at an optimal solution 𝒙∗. The complete set
of conditions is given by

𝒈(𝒙) = 𝟎𝑀𝑒, (3.9a)
𝒉(𝒙) ⪯ 𝟎𝑀𝑖, (3.9b)
𝝀 ⪰ 𝟎𝑀𝑖, (3.9c)

𝜆𝑖ℎ𝑖(𝒙) = 0, 𝑖 = 1, … ,𝑀𝑖, (3.9d)

∇𝑓(𝒙) −
𝑀𝑒

∑
𝑖=􀁮

𝜈𝑖∇𝑔𝑖(𝒙) −
𝑀𝑖

∑
𝑖=􀁮

𝜆𝑖∇ℎ𝑖(𝒙) = 𝟎𝑁 (3.9e)

For a problem that has strong duality any optimal solution solution (𝒙∗, 𝝀∗, 𝝂∗)
satisfies the KKT conditions. If the problem is additionally convex then also
the reverse holds and the KKT conditions provide a sufficient condition for
optimality. Using these conditions it is often easier to derive a compact closed
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form expression for (3.8) than working with (3.7) directly. In a general setting
the dual problem can be attractive as depending on the particular form of the
problem it might be easier to solve than the corresponding primal. For the
particular case discussed in this thesis it will be outlined in the next chapter
that the dual problem is in many cases essential if a numerical solution should
be obtained.

Up to now the considered inequalities in (3.5) and (3.8) were simply element-
wise. In the process of this thesis the generalization to conic constraints will be
important. Therefore consider that the primal problem (3.5) is augmented with
conic constraints of the form 𝒙 ∈ 𝒦𝑖 for 𝑖 = 1, … ,𝑀𝑐. Then the corresponding
Lagrangian is given byℒ(𝒙, 𝝀, 𝝂, 𝝃𝑖) = 𝑓(𝒙) − 𝝂𝑇𝒈(𝒙) − 𝝀𝑇𝒉(𝒙) −∑𝑀𝑐

𝑖=􀁮 𝝃
𝑇
𝑖 𝒙 with

𝜆 ⪰ 𝟎𝑀𝑖 and 𝝃𝑖 ∈ 𝒦∗
𝑖 , where 𝒦∗

𝑖 denotes the dual cone. Also the concept of
complementary slackness is directly extendible to 𝝃𝑇𝑖 𝒙 = 0 such that the KKT
conditions (3.9) for a conic problem have to be extended with

𝒙 ∈ 𝒦𝑖, 𝑖 = 1, … ,𝑀𝑐 (3.10a)
𝝃𝑖 ∈ 𝒦∗

𝑖 , 𝑖 = 1, … ,𝑀𝑐 (3.10b)
𝝃𝑇𝑖 𝒙 = 0, 𝑖 = 1, … ,𝑀𝑐 (3.10c)

and (3.9e) needs to be modified to

∇𝑓(𝒙) −
𝑀𝑒

∑
𝑖=􀁮

𝜈𝑖∇𝑔𝑖(𝒙) −
𝑀𝑖

∑
𝑖=􀁮

𝜆𝑖∇ℎ𝑖(𝒙) +
𝑀𝑐

∑
𝑖=􀁮

𝝃𝑖 = 𝟎𝑁 . (3.10d)

3.3 Sparsity inducing norms

Recently there has been a lot of interest in sparse models. A model is sparse
if many of its parameters are zero. On the one hand a sparse model is more
suitable for interpretation than a model which results from the interaction of
many influences. Another reason for their popularity is that one measure of
complexity for models is given by counting the number of parameters. Then
a well-known statement in learning and estimation, referred to as Occam’s
razor, is that a model with low complexity usually generalizes better than
a very complex one. The goal is then finding a model that is as simple as
possible but as complex as necessary (paraphrasing a quote by Einstein).

In addition to the interest in sparsity from a pure modeling and complexity
point of view, there are plenty of other situations where sparsity is of interest.
In large networks, e.g. gene networks, finding a sparse representation allows
one to draw conclusions about relevant interactions. Also many engineering
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problems can be formulated in such a way that sparsity is of great benefit,
basically in every situation where one starts with a very broad class of models
and wants to eliminate a large fraction. Some applications of this idea can be
found in Chapters 6 & 10.

Note however that counting the parameters is only one possible complexity
measure. In all regularized model formulations the effective number of param-
eters [Hastie et al., 2009] will be much lower that the number of parameters.

3.3.1 ℓ􀁮-norm

The most natural measure of sparsity is simply counting nonzero elements.
For a vector 𝒙 ∈ ℝ𝑁 the number of its nonzero elements, its cardinality, is
often written as ‖𝒙‖􀁭. This derives from the fact that the cardinality of a vector
can be seen as the limit of the ℓ𝑝-norms and quasi-norms for 𝑝 → 0. Strictly
speaking this is an abuse of notation because this “0-norm” does not satisfy
the conditions for a norm. Nevertheless it is often used in literature. From an
engineering point of view the 0-norm is not very useful as optimizing it is
a combinatorial problem and therefore excessively expensive for problems
with more than a few variables. As it can be relaxed into a convex problem, it
is frequently used to motivate problem formulations based on these convex
relaxations. The convex envelope, the smallest convex set containing another
set, of the 0-norm is the ℓ􀁮-norm ‖⋅‖􀁮. Besides being the convex envelope of the
cardinality, the ℓ􀁮-norm also works well in practice to obtain sparse solutions.
Graphically this is due to its pointy shape as illustrated in Figure 3.3. ℓ𝑝-norms
with 𝑝 < 1 are even more pointed and would result in a better approximation
of the cardinality and therefore sparser solutions but have the drawback that
they cannot be implemented as a convex problem. Two papers with a huge
impact on the application of convex optimization in a variety of fields are
[Tibshirani, 1996] that introduced the LASSO to select variables in a regression
problem and [Donoho, 2006] which introduced it for compressed sensing and
started a whole new line of research.

On the computational side ℓ􀁮-regularized problems are very attractive as
they can be solved as a QP problemwhen combined with a quadratic loss. Next
to general purpose solvers which already are able to deliver good performance
on many problems, for special cases like LASSO even more efficient special
solvers like LARS [Efron et al., 2004] exist.



36 Convex optimization

𝑥􀁮

𝑥􀁯
‖𝒙‖􀁮 = 1

𝒄𝑇𝒙

Figure 3.3: Level set of ℓ􀁮-norm and contour lines of a linear function.

3.3.2 Group ℓ􀁮-norm

An extension of ℓ􀁮-norms are so-called group ℓ􀁮-norms. Here the sparsity is
not desired with respect to single variables but with respect to groups of vari-
ables, hence the name. The most popular way to construct such group norms
is probably through the combination of ℓ􀁯- and ℓ􀁮-norms. Assume that a
parameter vector 𝜽 ∈ ℝ𝑁 is partitioned as 𝜽 = [𝜽𝑇􀁮 , … , 𝜽𝑴

𝑇 ]𝑇 with 𝜽𝑚 ∈ ℝ𝑁𝑚

and 𝑁 = ∑
𝑚𝑁𝑚. Then one can construct a group ℓ􀁮-ℓ􀁯-regularization as

∑
𝑚 ‖𝜽𝑚‖􀁯. Note that the ℓ􀁯-norms are always nonnegative and their sum-

mation is direct without an additional square. As the summation is over
nonnegative quantities it corresponds to an ℓ􀁮-norm. In this fashion one can
easily induce sparsity in groups of variables. Instead of the simple form of
combining norms to create sparsity, one can also come up with more elaborate
schemes like taking differences of variables as applied in Chapter 10.

In contrast to the ℓ􀁮-case the computational complexity of group ℓ􀁮-prob-
lems is in general higher. In most situations their solution requires solving
SOCP problems which are considerably harder than simple QPs. Furthermore
the effort to create specialized algorithms is higher. This also holds for their
complexity.

3.3.3 Nuclear norm

A more recently considered form of sparsity does not relate to elements of a
vector but to the rank ofmatrix. Inmany applications the solution of a problem
can be written with additional structure and cast into matrix form. Then, next
to the number of nonzero elements, another measure of complexity is the
number of rank-1 outer products necessary to form the matrix. Penalizing
the rank of a matrix has already been important in control theory for a long
time [El Ghaoui and Gahinet, 1993]. A previously known relaxation for
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the rank function is the trace of a matrix [Mesbahi and Papavassilopoulos,
1997; Mesbahi, 1998]. However, this relaxation is only applicable under
two assumptions. The first assumption is that the matrix has to be square
as otherwise the trace is not defined. Besides the shape of the matrix it
additionally has to be at least positive semidefinite (and thus symmetric) as
only in that case the sum of all eigenvalues of the matrix is a summation of
nonnegative values and therefore an incarnation of the ℓ􀁮-norm. In case any of
the two assumptions is not satisfied, Fazel recently showed, that instead of the
trace one can use the nuclear norm of the matrix. This norm is defined as the
sum of the singular values of a matrix. As singular values are nonnegative by
definition it is acting as a ℓ􀁮-norm on the singular values and hence imposing
a low rank on the solution. Other names for this norm are trace norm or
Schatten-𝑝 norm. In [Fazel et al., 2001; Fazel, 2002] it was shown that the
nuclear norm is the convex envelope of the rank function and how it can be
implemented as a SDP problem. Most applications of the nuclear norm so
far are not in the control community but rather in the field of compressed
sensing, especially matrix completion. The theoretic foundation in this field
is developed in [Recht et al., 2010].

The nuclear norm, for a matrix 𝑿 ∈ ℝ𝑁×𝑀 is denoted by ‖𝑿‖∗ and defined
as

‖𝑿‖∗ =
􀂚􀂖􀂛(𝑁,𝑀)

∑
𝑘=􀁮

𝜎𝑘 (3.11)

where 𝜎𝑘 are the singular values of 𝑿 . As mentioned previously in the text
it can be readily expressed as a problem that can be solved with a general
purpose SDP solver. The relation was first given in [Fazel et al., 2001] and is
based on the traces of suitably defined matrices as follows

‖𝑿‖∗ = min
𝑾=𝑾𝑇 ,𝑽=𝑽 𝑇

1
2
tr(𝑾) +

1
2
tr(𝑽 )

subject to 􀉾
𝑾 𝑿
𝑿𝑇 𝑽􀊁 ⪰ 0

(3.12)

where 𝑾 ∈ ℝ𝑁×𝑁 and 𝑽 ∈ ℝ𝑀×𝑀 are positive semidefinite matrices. In
many applications the dimensions of the matrix 𝑿 are large. Furthermore
this SDP based reformulation of the trace norm needs a large number of
auxiliary variables to be implemented. Therefore the use of general purpose
solvers is often not feasible. However, sparked through the large interest from
the compressed sensing community, there are many efforts to come up with
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customized solvers for nuclear norm based problems. Some of the basic ideas
of these algorithms are briefly outlined in the next section.

3.4 Algorithms

The adoption of advanced numerical optimization relies on the one hand on
efficient algorithms like those outlined in this section. On the other hand
a maybe even bigger impact for the adaption are tools that significantly
simplify the formulation of (convex) optimization problem. These tools allow
for a “natural” formulation of optimization problems and then automatically
transform the problem into standard forms suitable for general purpose solvers.
At least for academic purposes the packages CVX [Grant and Boyd, 2011]
and YALMIP [Löfberg, 2004] have proven to be extremely convenient. These
tools allow rapid development and successive testing of problem formulations
and move the complexity from interfacing with software to the high-level
modeling of the problem at hand.

3.4.1 Interior point methods

The presence of interior point solvers boosted the success of convex pro-
gramming. It is also the most commonly implemented algorithm for general
purpose solvers. The basic idea is to implement the constraints by an ad-
ditional penalty in the objective function called (self-concordant) barrier
function. The barrier function is taken from a family of functions which in the
extreme case take on a value of zero inside the feasible region and of infinity
when outside. Other elements of the family are smooth approximations of
the extreme case. In the process of the optimization the barrier is adjusted
such that it mimics the extreme case better and better. It has been shown that
under certain conditions, for a sequence of tuning parameters, the solution
at each iteration will converge to the solution of the optimization problem.
Interior point algorithms can be implemented for the primal problem (3.5) but
one can gain numerical stability by formulating an algorithm that solves the
primal and the dual problem in a joint way. A historical overview as well as
the key ingredients are nicely presented in a recent paper by Wright [2005].

Some popular general purpose solvers that rely on interior point methods
are SDPT3 [Toh et al., 1999], CVXOPT [Dahl and Vandenberghe, 2011],
MOSEK [Mosek, 2011] and CPLEX [IBM, 2010].
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3.4.2 First order algorithms

As suggested by the name, first order algorithms only use gradient information.
They recently regained popularity due to several advantages

• they often can be accelerated and then achieve convergence with 𝒪(1/𝑘􀁯)
[Nesterov, 2005; Beck and Teboulle, 2009],

• they have a very simple structure and only require basic algebra, which
allows easy as well as efficient implementation on highly parallel struc-
tures like GPUs,

• they can be extended to some important nonsmooth optimization prob-
lems,

• the computation of regularization paths is relatively inexpensive as
gradient methods can usually be warm-started efficiently and

• due to their simple form it is often straightforward to exploit structure
of the optimization problem at hand.

In the scope of this thesis the relevant algorithms are called (accelerated)
gradient projection which support nonsmooth optimization and can converge
as ‖𝑥𝑘 − 𝑥∗‖􀁯 < 𝑐𝑘−􀁯 where 𝑐 > 0 is a problem and initialization dependent
constant, 𝑘 the iteration count and 𝑥∗ an optimal point. First it will be discussed
under which conditions and how nonsmooth optimization problems can be
tackled. After that it will be briefly outlined how themethod can be accelerated
to achieve the optimal rate of convergence.

Consider the optimization problem

min
𝒙∈ℝ𝑁

𝑓(𝒙) subject to 𝒙 ∈ 𝒞 (3.13)

where 𝑓(𝒙) is a smooth convex function and 𝒞 is a convex set. The main
requirement for the success of a gradient projection algorithm is that a projec-
tion operator 𝑃𭒞 ∶ ℝ𝑁 → ℝ𝑁 onto 𝒞 exists and the projection can be computed
efficiently. Instead of assuming a convex constraint set one can generalize
the algorithm to composite objective functions of the form 𝑓(𝒙) + 𝑔(𝒙) where
𝑓(𝒙) is again a smooth convex function and 𝑔(𝒙) can be a nonsmooth function.
In this setting a proximal operator takes the place of the projection in the
simpler problem (3.13).

A problem of the form given by (3.13) can be solved with a straightforward
extension of the steepest descent algorithm. For this aim define a gradient
map 𝐺𝑐(𝒙) =

􀁮
𝑐
(𝒙 − 𝑃𭒞(𝒙 − 𝑐∇𝑓(𝒙)). Based on this a generic algorithm is as

follows.
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Algorithm 3.1 (Gradient projection method).

1. Set 𝑘 = 1 and initialize 𝒙􀁭.
2. For optimal convergence choose 𝑐𝑘

a) as 1/𝐿 where 𝐿 is a Lipschitz constant of ∇𝑓 or
b) such that the inequality

𝑓(𝒙𝑘−􀁮 − 𝑐𝑘𝐺𝑐𝑘(𝒙𝑘−􀁮)) ≤ 𝑓(𝒙𝑘−􀁮) − 𝑐𝑘∇𝑓(𝒙𝑘−􀁮) +
𝑐𝑘
2
‖𝐺𝑐𝑘(𝒙𝑘−􀁮)‖

􀁯
􀁯

is satisfied, for example with a backtracking line search.

3. Then set 𝒙𝑘 = 𝒙𝑘−􀁮 − 𝑐𝑘𝐺𝑐𝑘(𝒙𝑘−􀁮).
4. Stop if ‖𝐺𝑐𝑘(𝒙𝑘−􀁮)‖􀁯 is small enough.
5. Set 𝑘 ≔ 𝑘 + 1 and repeat with 2.

This algorithm is guaranteed to converge, but its convergence is only 𝒪(1/𝑘).
An algorithm with the optimal convergence rate 𝒪(1/𝑘􀁯) can be obtained by
storing two sequences of gradients. A possible modification of the algorithm
above, that achieves the optimal convergence rate, is given below.

Algorithm 3.2 (Accelerated gradient projection method).

1. Set 𝑘 = 1 and initialize 𝒙􀁭 and set 𝒚􀁭 = 𝒙􀁭.
2. For optimal convergence choose 𝑐𝑘

a) as 1/𝐿 where 𝐿 is a Lipschitz constant of ∇𝑓 or
b) such that the inequality

𝑓(𝒚𝑘−􀁮 − 𝑐𝑘𝐺𝑐𝑘(𝒚𝑘−􀁮)) ≤ 𝑓(𝒚𝑘−􀁮) − 𝑐𝑘∇𝑓(𝒚𝑘−􀁮) +
𝑐𝑘
2
‖𝐺𝑐𝑘(𝒚𝑘−􀁮)‖

􀁯
􀁯

is satisfied, for example with a backtracking line search.

3. Then set 𝒙𝑘 = 𝒚𝑘−􀁮 − 𝑐𝑘𝐺𝑐𝑘(𝒚𝑘−􀁮) and 𝒚𝑘 = 𝒙𝑘 +
𝑘−􀁮
𝑘+􀁯
(𝒙𝑘 − 𝒙𝑘−􀁮).

4. Stop if ‖𝐺𝑐𝑘(𝒚𝑘−􀁮)‖􀁯 is small enough.
5. Set 𝑘 ≔ 𝑘 + 1 and repeat with 2.

With TFOCS [Becker et al., 2012] there is a MATLAB toolbox that allows
the rapid development of first order algorithms by simple combination of
basic building blocks. However in many cases cycle performance of first order
algorithms is critical due to the typically large number of iterations needed
for convergence. In these cases it might still be necessary to implement a
custom solver exploiting and tailored to the specifics of the problem under
consideration.
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3.4.3 Related techniques

There are many other methods used for convex as well as general nonlinear
optimization. In this subsection two of them are briefly introduced. The
method of multipliers also known as augmented Lagrangian method allows
the use of unconstrained solvers for constrained optimization problems in an
iterative procedure. For problems with a large number of constraints, active
set strategies can be beneficial by solving a series of subproblems with few
constraints and terminating when all relevant ones are satisfied.

Method of multipliers

Most optimization routines are first developed for unconstrained optimization.
One example for such developments are gradient techniques that can be ex-
tended by projecting the gradients as described in the last subsection. Another
example that has already been discussed are interior point methods which
are an extension of the Newton method. In contrast to these examples the
method of multipliers is a straightforward and generic approach to extend any
unconstrained optimization routine to handle constrained problems. Here,
for clarity as well as brevity of presentation, it will only be considered for
equality constraints. Consider the following optimization problem

min
𝒙

𝑓(𝒙)

subject to 𝒉(𝒙) = 𝟎𝑀
(3.14)

with 𝒙 ∈ ℝ𝑁 , 𝑓 ∶ ℝ𝑁 → ℝ and 𝒉 ∶ ℝ𝑁 → ℝ𝑀. Then the idea used by the
method of multipliers is to form an augmented Lagrangian

𝑔𝑘(𝒙, 𝝀) = 𝑓(𝒙) + 𝝀𝑇𝒉(𝒙) + 𝑐𝑘‖𝒉(𝒙)‖􀁯􀁯 (3.15)

for a series of 𝑐𝑘 →∞ as the iteration 𝑘 goes to infinity. One can show, under
some conditions, that this procedure will converge to a local optimum of
𝑓 that satisfies the equality constraints [Bertsekas, 1996, 1999; Nocedal and
Wright, 2006].

In its most simple form, one initializes 𝝀 to an arbitrary 𝝀􀁭 and 𝑐𝑘 to 𝑐􀁭 > 0.
Then in every iteration first the problem 𝒙𝑘 = argmin𝒙 𝑔𝑘(𝒙, 𝝀𝑘) is solved, and
subsequently the multipliers are updated as 𝝀𝑘+􀁮 = 𝝀𝑘 + 𝑐𝑘𝒉(𝒙𝑘). Finally one
chooses a 𝑐𝑘+􀁮 such that 𝑐𝑘+􀁮 > 𝑐𝑘 and iterates until a stopping criterion is
satisfied. After convergence the solution will satisfy ‖𝒉(𝒙)‖􀁯 ≃ 0.

The basic outline of such an algorithm is given below. A more practical
algorithm is for example described by Nocedal and Wright [2006, Alg. 17.4].
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Algorithm 3.3 (Method of multipliers).

1. Initialize 𝑐􀁮 > 0, 𝒙􀁭 = 𝟎𝑁 , 𝝀􀁭 = 𝟎𝑀 and set 𝑘 = 1.
2. Set 𝝀𝑘 ≔ 𝝀𝑘−􀁮 + 𝑐𝑘𝒉(𝒙𝑘−􀁮).
3. Solve 𝒙𝑘 = min𝒙 𝑔𝑘(𝒙, 𝝀𝑘).
4. Terminate if ‖𝒉(𝒙𝑘)‖􀁯 is small enough.
5. Choose 𝑐𝑘+􀁮 such that 𝑐𝑘+􀁮 > 𝑐𝑘, increment 𝑘 and go to (2).

Active set techniques

As the last method, also active set techniques are intended for constrained
optimization problems. In contrast to the augmented Lagrangian method,
here the goal is not the solution itself, but merely a more efficient computation.
The idea of active set techniques is straightforward. Consider the optimization
problem

min
𝒙

𝑓(𝒙)

subject to 𝑔𝑘(𝒙) ≤ 0, 𝑘 = 1, … ,𝑀
(3.16)

with 𝒙 ∈ ℝ𝑁 , 𝑓 ∶ ℝ𝑁 → ℝ and 𝒈𝑘 ∶ ℝ𝑁 → ℝ for 𝑘 = 1, … ,𝑀. The use case for
active set methods are problems with many constraints, i.e.𝑀≫ 1. In that
case it can be very time consuming or even impossible to solve (3.16) using a
general purpose solver. One way to efficiently handle problems with many
constraints is to first start by solving a simplified problem with a substantially
reduced number of constraints. The obtained solution can then be substituted
into the original set of constraints. Then the constraint that is violated the
most is included in the set of active constraints and a new solution is found
for this updated problem. It is often the case that only a small fraction of the
constraints is active at the solution. In this situation the described iterative
procedure can substantially improve the computational speed, especially if
combined with a solver that can be warm started using the solution obtained
in the previous iteration. The outline of a basic active set algorithm is given
below.

Algorithm 3.4 (Active set algorithm).

1. Initialize ℐ􀁮 = {1}, 𝑘 = 1.
2. Solve 𝒙𝑘 = argmin𝒙 𝑓(𝒙) subject to 𝑔𝑙(𝒙) ≤ 0, 𝑙 ∈ ℐ𝑘.
3. Select 𝑙∗ = argmax􀁮≤𝑙≤𝑀 𝑔𝑙(𝒙𝑘).
4. If 𝑔𝑙∗(𝒙𝑘) = 0, stop.
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5. Form ℐ𝑘+􀁮 = ℐ𝑘 ∩ {𝑙∗}, set 𝑘 ≔ 𝑘 + 1 and go to 2.

Remark 3.1. This method is not to be confused with active set techniques for
quadratic or linear programming. These methods additionally exploit that at
the optimal solution the active constraints have to hold with equality. There-
fore at each iteration the current guess for the active inequality constraints
is added to the problem as equality constraints. Then a problem with only
equality constraints is solved and the guess for the set of active constraints
is updated. More details can for example be found in [Nocedal and Wright,
2006].

3.5 Convex relaxations

Many optimization problems of practical interest are not convex. However,
as motivated in this chapter, convex optimization problems have several theo-
retical as well as practical advantages, for instance that every local optimum
is also globally optimal and that for several classes of convex problems many
efficient solvers exist. Therefore there is strong interest to recast nonconvex
problems as convex ones. The solutions of convex relaxations naturally do
not necessarily coincide with those of the originally nonconvex problems.
However, for some classes of problems one can compute a worst case bound
of the distance that certain convex approximations can have to the globally
optimal solution [Goemans and Williamson, 1995; Karger et al., 1998]. In
other cases one can derive conditions under which the solution of the convex
approximation condition will coincide with the original problem [Candès
et al., 2006b].

3.5.1 Norms

One of the most widely studied classes of problems that can be relaxed using
norms, are problems involving the cardinality of a vector, i.e. its nonzero
elements. Also refer to Section 3.3 on sparsity. For example in feature selection
one tries to estimate the least number of variables that explains the data, or
in compressed sensing one tries to reconstruct a signal that is known to be
sparse from as few measurements as possible. These problems are commonly
stated as

min
𝒙∈ℝ𝑁

card(𝒙)

subject to ‖𝑨𝒙 − 𝒃‖ ≤ 𝜀
(3.17)
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where the cardinality is minimized subject to a bound on the misfit or

min
𝒙∈ℝ𝑁

‖𝑨𝒙 − 𝒃‖

subject to card(𝒙) ≤ 𝐶
(3.18)

where the misfit is minimized with a bound on the cardinality. A powerful
heuristic, that seems to work well in practice, is to replace the cardinality
function by its convex envelope, which can be shown to be the ℓ􀁮-norm. In
the area of compressed sensing it has been shown [Donoho, 2006; Candès
et al., 2006b] that under certain assumptions on 𝑨, known as the restricted
isometry property (RIP), the relaxation will give rise to the exact solution
with very high probability.

Another popular function that can often be used to capture the nonconvexity
in a problem is the rank of a matrix. Similar to the cardinality problem the
convex hull is again given by a norm, in this case the nuclear or trace norm.
Also for the trace norm the compressed sensing community formulated a
RIP condition under which the trace norm is a perfect surrogate for the rank
function with very high probability [Recht et al., 2010].

An extension of the ℓ􀁮-heuristic used later in this thesis is its application
to groups of variables and linear combinations. For example minimizing the
cardinality of 𝒛 where 𝑧𝑖 = ‖𝑷𝑖𝒙‖ for some linear combinations 𝑷𝑖 of 𝒙 are
sometimes interesting in practice.

3.5.2 Overparametrization

Besides using norms to obtain relaxation, another capable approach is the
introduction of new variables. This idea has first been applied by Shor [1987]
for the solution of nonconvex quadratic programs. He reformulated 𝒙𝑇𝑸𝒙
where 𝑸 is indefinite as tr(𝑸𝑿) where 𝑿 is obtained as the relaxation of
the rank-1 matrix 𝑿 = 𝒙𝒙𝑇 to a positive semidefinite matrix 𝑿 ⪰ 0. In case
the rank constraint on 𝑿 is obeyed, then this reformulation is exact with an
objective that is convex, however a constraint that is nonconvex. Then, by
relaxing the constraint, a convex approximation is obtained.

In fact the same idea can be applied to a much larger range of problems.
Whenever one faces bilinear forms 𝒙𝑇𝑹𝒚 = tr(𝑹𝒚𝒙𝑇 ) the rank-1 product can be
replaced by a matrix variable 𝒀 = 𝒚𝒙𝑇 and the corresponding rank constraint.
In the same manner as before a convex approximation of the bilinear form
can be obtained by dropping the rank-1 constraint on 𝒀 .

More advanced applications and theory on this topic, also referred to as
SDP liftings, can be found for example in [Luo et al., 2010; Nesterov, 1998]. A
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generalization denoted as the method of moments is described in [Lasserre,
2001; Henrion and Lasserre, 2004]. The basic scheme described here will be
used in most of the following chapters to obtain convex approximations for
initially nonconvex problems. In some cases heuristics based on norms, as
introduced in the last subsection, are considered to achieve tighter relaxations.





4Least Squares Support Vector
Machines

In the preceding chapter on system identification, one form of nonlinear
system identification was reduced to the estimation of a function of suitably
selected variables, c.f. (2.7). For this problem many methods have been pro-
posed, like wavelets [Zhang and Benveniste, 1992], artificial neural networks
[Narendra and Parthasarathy, 1990; Suykens et al., 1995; Haykin, 1998] and
more recently kernel based techniques. This chapter will briefly discuss Least
Squares Support Vector Machines (LS-SVMs) [Suykens, Van Gestel, et al., 2002;
Suykens et al., 2010] which fall into the large class of kernel based learning
methods. Other members of this class are for example Splines [Wahba, 1990],
Gaussian processes [Rasmussen andWilliams, 2006], Regularization Networks
[Poggio and Girosi, 1990], Support Vector Machines (SVMs) [Vapnik, 1998]
and Kriging [Krige, 1951]. Machine learning treats problems in many diverse
fields like, but not limited to, supervised and unsupervised learning, regression
and classification. Although LS-SVMs can be adapted to all of the mentioned
settings, in the context of this thesis only the (supervised) regression case is of
interest. Within the class of kernel based machine learning techniques there
are two popular ways of presentation. On the one hand one can formulate
optimization problems in a special class of function spaces, which allows a
finite dimensional representation of the solution in terms of the estimation
data. The key elements here are Reproducing Kernel Hilbert Spaces [Aron-
szajn, 1950] and representer theorems [Kimeldorf and Wahba, 1971]. On the
other hand one can explicitly parametrize the model in a so-called primal

47
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representation and then use Lagrangian duality and convex optimization to
obtain model representations in terms of the estimation data. This approach
is based on Mercer’s theorem [Mercer, 1909], which shows the existence of
basis function expansions of positive definite functions. Many results can be
obtained using either of these two approaches and the choice can be adapted
to one’s personal taste and background as well as the problem at hand. Clas-
sically LS-SVMs are formulated with primal and dual formulations based on
convex optimization, which will also be used most of the times throughout
this thesis. This chapter will introduce both formulations but concentrates on
the primal-dual methodology. The objective in LS-SVMs is to minimize the
squared residuals on a training set with a Tikhonov type of regularization on
the estimated function. As such its solution is related to that of other methods
such as Kriging and Regularization Networks which have the same objective.
However from its formulation and interpretation it is more closely related to
support vector machines. In both cases one starts from a linear regression
model in a high dimensional space

𝑓(𝒙) = 𝒘𝑇𝝋(𝒙) + 𝑏. (4.1)

The function𝝋 ∶ ℝ𝐷 → ℝ𝑛ℎ is denoted as “feature map” and defines the usually
high dimensional “feature space”. The parameters of the model are 𝒘 ∈ ℝ𝑛ℎ

and 𝑏. The important concept in support vector models is that the feature
map does not have to be defined explicitly. It is sufficient to specify a positive
definite and scalar valued kernel function. The relation between this kernel
function and its feature map is then given by the afore mentioned Mercer’s
theorem. Given a set of training data 𝒱􀁮 = {(𝒙𝑡, 𝑦𝑡)}𝑁𝑡=􀁮 one can fit the model
given by (4.1) to data using 𝑦𝑡 = 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑒𝑡, where the 𝑒𝑡 denotes the
modeling residuals. In SVMs the residuals are subject to the 𝜀-insensitive loss
function. This loss function is convex and can be described by a linear objective
function and linear inequality constraints. In combination with the Tikhonov
regularization term the resulting optimization problem is a QP, which can be
solved with general purpose optimization software. The complexity of kernel
based problems usually scales with the number of data 𝑁 . Therefore special
solvers have been developed to accelerate the solution by exploiting the special
structure of the problem, making the solution feasible even for larger values of
𝑁 . In contrast to SVMs, LS-SVMs do not require specialized software for their
solution as they only require the solution of linear systems of equations. This
is due to a change of the loss function from 𝜀-insensitive to the well-known
least squares loss. Using this loss, the model can be imposed using equality
constraints and the QP simplifies to a regularized least squares problem. In the
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following section the primal optimization problems for LS-SVMs and SVMs
will be formally stated. Using Lagrange duality and the kernel trick their
dual representations are derived. The subsequent section briefly discusses the
formulation based on reproducing kernel Hilbert spaces. While SVMs have
a loss function that induces sparsity, the solutions of LS-SVMs are usually
dense. Therefore one section is dedicated to approaches to cope with large
datasets by suitable approximations. The estimation of the parameters 𝒘 and
𝑏 characterizing the support vector models is a convex problem. However
the estimation of a model with good generalization performance relies on the
careful selection of kernel function and regularization constant. This problem
is nonconvex and mostly tackled with some kind of validation technique
which is briefly discussed in the last section of this chapter.

Note that the two proofs given in this chapter are blueprints for those in the
remainder of this thesis. Most of the following proofs will share the same key
ingredients like Lagrangian duality, the kernel trick and the general structure.

4.1 Primal and dual model representations

As suggested in the previous section, support vector techniques have two
forms, the primal and the dual. While the primal looks like a parametric
estimation problem and allows both easy interpretation and modification,
in most cases it is unsuitable for solution. Therefore the dual description is
derived which converts the parametric problem, that is often defined only
implicitly, into a nonparametric formulation. The dual is explicitly defined
and allows efficient solution but is itself not suitable for interpretation. An
important result is that not only the estimation problem can be solved in the
dual, but also the model itself can be expressed in terms of the dual solution.
The first fact is actually true for a large class of optimization problems. The
following two subsections will briefly derive two flavors of support vector
machines, namely LS-SVMs using the least squares loss and 𝜀-SVMs based on
the 𝜀-insensitive loss.

4.1.1 Least squares loss

Least squares support vector machines were first introduced by Suykens
and Vandewalle [1999] for classification. Comprehensive information in the
context of classification, regression and many others can be found in [Suykens,
Van Gestel, et al., 2002; Suykens et al., 2010].
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Table 4.1: Examples of positive definite kernel functions 𝐾(𝒙, 𝒚) for 𝒙, 𝒚 ∈ 𝑅𝐷.

kernel definition

Linear 𝒙𝑇𝒚
Polynomial (𝒙𝑇𝒚 + 𝑐)𝑑, 𝑐 ≥ 0, 𝑑 ∈ ℕ
Gaussian RBF exp(−‖𝒙 − 𝒚‖􀁯􀁯/𝜎􀁯), 𝜎 > 0

Based on the model given by (4.1), the least squares loss, Tikhonov regular-
ization and training data 𝒱􀁮 = {(𝒙𝑡, 𝑦𝑡)}𝑁𝑡=􀁮 with 𝒙𝑡 ∈ ℝ𝐷 and 𝑦𝑡 ∈ ℝ, the primal
LS-SVM problem for regression can be stated as

min
𝒘,𝑏,𝑒𝑡

1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡

subject to 𝑦𝑡 = 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑒𝑡, 𝑡 = 1, … ,𝑁,
(4.2)

where 𝛾 ∈ ℝ is a positive regularization constant. As noted before, the feature
map𝝋 is not necessarily defined explicitly, but usually implicitly by a positive
definite kernel function. Examples for popular kernel functions are given
in Table 4.1. For some kernel functions, like the Gaussian RBF kernel, the
corresponding feature map is infinite dimensional. The relation between
kernel function and feature map is given by Mercer’s theorem.

Definition 4.1 (Positive definite function). Let 𝑆 ⊂ ℝ𝐷 and 𝐾 ∶ 𝑆 × 𝑆 → ℝ be
a symmetric function, i.e. 𝐾(𝒙, 𝒚) = 𝐾(𝒚, 𝒙) for all 𝒙, 𝒚 ∈ 𝑆, that satisfies

𝑁

∑
𝑖,𝑗=􀁮

𝑐𝑖𝑐𝑗𝐾(𝒙𝑖, 𝒙𝑗) ≥ 0

for any 𝒙􀁮, … , 𝒙𝑁 ∈ 𝑆 and any 𝑐􀁮, … , 𝑐𝑁 ∈ ℝ. Then 𝐾 is said to be positive
definite.

Theorem 4.1 (Mercer’s theorem [Mercer, 1909]). Let 𝐾 be a positive definite
function, further on denoted as kernel, then it can be expressed as

𝐾(𝒙, 𝒚) =
∞

∑
𝑛=􀁮

𝜆𝑛𝜑̃𝑛(𝒙)𝜑̃𝑛(𝒚), (4.3)

where 𝜆𝑛 ≥ 0 and {𝜑̃𝑛}∞𝑛=􀁮. The 𝜑̃𝑛 ∶ ℝ𝐷 → ℝ form an orthonormal basis. Here,
𝜆𝑛 is an eigenvalue and 𝜑̃𝑛 the corresponding eigenfunction of 𝐾 ,

􀈧
𝑆
𝐾(𝒙, 𝒚)𝜑̃𝑛(𝒙)𝑑𝒙 = 𝜆𝑛𝜑̃𝑛(𝒚). (4.4)
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Based on this relation and Lagrangian duality the implicitly defined andmaybe
infinite dimensional problem (4.2) can be converted to an explicitly defined
problem in finite dimensions.

Lemma 4.2. Given a positive definite kernel function 𝐾 , that corresponds to
the feature map 𝝋 via Mercer’s theorem, the solution of the primal problem (4.2)
can be obtained from the linear system

􀉾
𝜴 + 𝛾−􀁮𝑰𝑁 𝟏𝑁

𝟏𝑇𝑁 0 􀊁 􀉾
𝜶
𝑏􀊁 = 􀉾

𝒚
0􀊁 , (4.5)

where 𝒚 = [𝑦􀁮, … , 𝑦𝑁 ]𝑇 . The kernel matrix or Gram matrix 𝜴 is defined element-
wise as 𝛺𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗) = 𝝋(𝒙𝑖)𝑇𝝋(𝒙𝑗) for 𝑖, 𝑗 = 1, … ,𝑁 . The dual variables
𝜶 ∈ ℝ𝑁 are the Lagrange multipliers for the equality constraints in (4.2). The
relation between primal and dual variables is given by 𝒘 = ∑𝑁

𝑡=􀁮 𝛼𝑡𝝋(𝒙𝑡).

Proof. Introducing Lagrange multipliers 𝛼𝑡 for the equality constraints of (4.2),
its Lagrangian can be stated as

ℒ(𝒘, 𝑏, 𝑒𝑡, 𝛼𝑡) =
1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡 −
𝑁

∑
𝑡=􀁮

𝛼𝑡(𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑒𝑡 − 𝑦𝑡).

Computing the Karush-Kuhn-Tucker conditions for optimality one obtains
the following relations

𝟎𝑛ℎ =
𝜕ℒ
𝜕𝒘

= 𝒘 −
𝑁

∑
𝑡=􀁮

𝛼𝑡𝝋(𝒙𝑡),

0 =
𝜕ℒ
𝜕𝑏

= −
𝑁

∑
𝑡=􀁮

𝛼𝑡,

0 =
𝜕ℒ
𝜕𝑒𝑡

= 𝛾𝑒𝑡 − 𝛼𝑡 and

0 =
𝜕ℒ
𝜕𝛼𝑡

= 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑒𝑡 − 𝑦𝑡.

The expansion of 𝒘 in terms of the dual variables is directly obtained from
the first KKT condition. Substituting this expansion into the last KKT con-
dition, one can apply Mercer’s theorem, in particular (4.3), backwards and
replace 𝝋(𝒙𝑖)𝑇𝝋(𝒙𝑗) = 𝐾(𝒙𝑖, 𝒙𝑗). This is also known as the kernel trick. Note
that for an explicitly known feature map Mercer’s theorem is not necessary
and 𝝋 can contain any linear independent functions. However, once 𝝋 is
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not explicitly defined and only implicitly induced by the kernel 𝐾 , Mercer’s
theorem provides the rationale that some, albeit unknown, feature map exists.
Furthermore substituting the relation 𝑒𝑡 = 𝛾−􀁮𝛼𝑡, obtained from the KKT con-
dition for 𝑒𝑡, into the last KKT condition and writing it in matrix form gives
the first block row of the dual linear system (4.5). The last row is simply the
KKT condition for 𝑏 written in vector form. ⬜

Based on the expansion of 𝒘 in terms of the dual variables, the predictor at a
point 𝒛 can be stated in the dual form as

𝑦̂(𝒛) =
𝑁

∑
𝑡=􀁮

𝛼𝑡𝐾(𝒙𝑡, 𝒛) + 𝑏. (4.6)

Below a complete algorithm is given to estimate a LS-SVM model.

Algorithm 4.1 (Estimation of plain LS-SVM model).

1. Select a regularization parameter 𝛾 and a kernel function 𝐾 (and its
parameters).

2. Compute the kernel matrix 𝜴 based on the training set 𝒱􀁮.
3. Solve the dual linear system (4.5).

4.1.2 𝜺-insensitive loss

Support vector machines (SVMs) were initially introduced in the context of
linear classification [Vapnik and Lerner, 1963]. They were later extended to,
among others, the regression problem and most importantly nonlinear prob-
lems making use of the kernel trick. The 𝜀-insensitive loss function was used
for the extension to the regression problem. Extensive background on SVMs,
their theory and extensions can be found in [Vapnik, 1998; Cristianini and
Shawe-Taylor, 2000; Schölkopf and Smola, 2002; Steinwart and Christmann,
2008]. A short introduction is available in [Smola and Schölkopf, 2004].

The 𝜀-insensitive loss is defined as 𝑙𝜀(𝑥) = 0 for 𝑥 ≤ 𝜀 and 𝑙𝜀(𝑥) = |𝑥| − 𝜀
otherwise. The fact that this loss function has i) ℓ􀁮-characteristic and ii) a
dead zone makes the solution of SVMs sparse in terms of the dual variables 𝛼𝑡.
This is in contrast to LS-SVMs which usually give rise to non-sparse 𝛼𝑡. Based
on this loss function, Tikhonov regularization for 𝒘 and the training data 𝒱􀁮
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introduced previously, the primal 𝜀-SVM can be formulated as follows

min
𝒘,𝑏,𝜉±

1
2
𝒘𝑇𝒘 + 𝐶

𝑁

∑
𝑡=􀁮
(𝜉+𝑡 + 𝜉−𝑡 )

subject to 𝑦𝑡 − 𝒘𝑇𝝋(𝒙𝑡) − 𝑏 ≤ 𝜀 + 𝜉−𝑡 , 𝑡 = 1, … ,𝑁,
𝒘𝑇𝝋(𝒙𝑡) + 𝑏 − 𝑦𝑡 ≤ 𝜀 + 𝜉+𝑡 , 𝑡 = 1, … ,𝑁,
𝜉±𝑡 ≥ 0, 𝑡 = 1, … ,𝑁,

(4.7)

where 𝐶 ∈ ℝ is a positive regularization constant and 𝜀 > 0 the width of
the dead zone characterizing the loss 𝑙𝜀. Comparing this formulation to the
LS-SVM problem (4.2) one can see that modeling the 𝜀-insensitive requires
inequality constraints instead of equality constraints, which are easier to
solve. Due to this, the dual problem in case of SVMs is the QP given in the
following Lemma.

Lemma 4.3. Given a kernel function 𝐾 , the dual problem to (4.7) is given by

max
𝛼𝑡

𝑁

∑
𝑡=􀁮

𝛼𝑡𝑦𝑡 − 𝜀
𝑁

∑
𝑡=􀁮

|𝛼𝑡| −
1
2
𝜶𝑇𝜴𝜶

subject to − 𝐶 ≤ 𝛼𝑡 ≤ 𝐶, 𝑡 = 1, … ,𝑁,
𝟏𝑇𝑁𝜶 = 0,

(4.8)

where 𝜶 = [𝛼􀁮, … , 𝛼𝑁 ]𝑇 is the difference of the Lagrange multipliers corre-
sponding to the inequality constraints in (4.7). The kernel matrix 𝜴 is defined
element-wise as 𝛺𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗) = 𝝋(𝒙𝑖)𝑇𝝋(𝒙𝑗) for 𝑖, 𝑗 = 1, … ,𝑁 . The relation
between primal and dual variables is given by 𝒘 = ∑𝑁

𝑡=􀁮 𝛼𝑡𝝋(𝒙𝑡).

Proof. The Lagrangian for (4.7) can be written as

ℒ(𝒘, 𝑏, 𝜉±𝑡 , 𝛼±𝑡 , 𝜁±𝑡 ) =
1
2
𝒘𝑇𝒘 + 𝐶

𝑁

∑
𝑡=􀁮
(𝜉+𝑡 + 𝜉−𝑡 )

+
𝑁

∑
𝑡=􀁮

𝛼+𝑡 (𝑦𝑡 − 𝒘𝑇𝝋(𝒙𝑡) − 𝑏 − 𝜀 − 𝜉+𝑡 ) −
𝑁

∑
𝑡=􀁮

𝜉+𝑡 𝜁+𝑡

+
𝑁

∑
𝑡=􀁮

𝛼−𝑡 (𝒘𝑇𝝋(𝒙𝑡) + 𝑏 − 𝑦𝑡 − 𝜀 − 𝜉−𝑡 ) −
𝑁

∑
𝑡=􀁮

𝜉−𝑡 𝜁−𝑡

where 𝛼±𝑡 ≥ 0 are the Lagrange multipliers for the inequality constraints and
𝜁±𝑡 ≥ 0 are the multipliers for the positivity constraints, respectively. Taking
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Table 4.2: Summary of important relations for LS-SVMs and 𝜀-SVMs.

ls-svm svm

loss function LS 𝜀-insensitive
primal problem (4.2) (4.7)
primal model — (4.1) —
dual problem (4.5) (4.8)
dual model — (4.6) —
optimization problem linear system QP

the conditions for optimality one obtains

𝟎𝑛ℎ =
𝜕ℒ
𝜕𝒘

= 𝒘 −
𝑁

∑
𝑡=􀁮
(𝛼+𝑡 − 𝛼−𝑡 )𝝋(𝒙𝑡),

0 =
𝜕ℒ
𝜕𝑏

= −
𝑁

∑
𝑡=􀁮
(𝛼+𝑡 − 𝛼−𝑡 ),

0 =
𝜕ℒ
𝜕𝜉±𝑡

= 𝐶 − 𝛼±𝑡 − 𝜁±𝑡 , 𝑡 = 1, … ,𝑁.

Introducing new variables 𝛼𝑡 = 𝛼+𝑡 −𝛼−𝑡 , the expansion for𝒘 is identical to the
LS case and so is the constraint 𝟏𝑇𝑁𝜶 = 0. From the optimality conditions for
𝜉±𝑡 one obtains 𝛼±𝑡 = 𝐶 − 𝜁±𝑡 . Combining this with the positivity constraints
on 𝛼±𝑡 and 𝜁±𝑡 one obtains the relation 0 ≤ 𝛼±𝑡 ≤ 𝐶. Performing the change of
variables introduced earlier this yields −𝐶 ≤ 𝛼𝑡 ≤ 𝐶. Substitution of all KKT
conditions into the Lagrangian yields the dual objective function. Note that
|𝛼𝑡| = 𝛼+𝑡 + 𝛼−𝑡 . ⬜

The one-step-ahead predictor in terms of the dual variables has the same form
as in the least squares case (4.6). A difference is that for those 𝑡 for which
the inequality constraints of (4.7) are strictly satisfied, i.e. the data (𝒙𝑡, 𝑦𝑡) is
within the insensitivity zone, the corresponding Lagrange multipliers are
zero. Therefore the SVM formulation has inherent sparsity. Table 4.2 briefly
summarizes the key elements and formulations of SVMs and LS-SVMs.

A notable variation of 𝜀-SVMs are 𝜈-SVMs [Schölkopf et al., 2000]. Whereas
in LS-SVMs one has to select only one parameter besides the kernel parameters,
𝛾, for the regularization, in 𝜀-SVMs the regularization parameter 𝐶 must be
selected along with the parameter 𝜀 of the cost function. In 𝜈-SVMs the
parameter 𝜀 is replaced by a variable 𝜌, the regularization constant 𝐶 is fixed
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to 𝑁−􀁮 and the cost function augmented by the term −𝜈𝜌. It can be shown
that this automatically selects a value for 𝜌 (or 𝜀 respectively). Therefore
only 𝜈 has to be chosen by the user, reducing the number of parameters to be
selected. Furthermore by selecting 𝜈 one can directly influence the sparsity
of the model, i.e. the fraction of nonzero support vectors.

4.2 Estimation in reproducing kernel Hilbert spaces

Instead of adopting the optimization setting presented in the previous section,
one can also rely on functional analysis to derive support vector models.
Instead of optimization and Mercer’s theorem, in this setting reproducing
kernel Hilbert spaces (RKHSs) [Aronszajn, 1950] and representer theorems
[Kimeldorf and Wahba, 1971; Schölkopf et al., 2001] are the crucial building
blocks.

Given a positive definite kernel 𝐾 and some domain 𝒳 one can define
functions as

𝑓(𝒛) =
𝑁𝑓

∑
𝑖=􀁮

𝛼𝑖𝐾(𝒙𝑖, 𝒛) and 𝑔(𝒛) =
𝑁𝑔

∑
𝑗=􀁮

𝛽𝑗𝐾(𝒙𝑗, 𝒛), (4.9)

where 𝛼𝑖, 𝛽𝑗 ∈ ℝ, 𝑁𝑓 , 𝑁𝑔 ∈ ℕ and 𝒙𝑖, 𝒙𝑗 are arbitrary points in 𝒳. An inner
product can be defined as

⟨𝑓, 𝑔⟩ =
𝑁𝑓

∑
𝑖=􀁮

𝑁𝑔

∑
𝑗=􀁮

𝛼𝑖𝛽𝑗𝐾(𝒙𝑖, 𝒙𝑗). (4.10)

Here it was used that a positive definite kernel is a representing kernel, i.e.
𝑓(𝒙) = ⟨𝐾(𝒙, ⋅), 𝑓(⋅)⟩. Completing the space given by (4.9) one obtains the
RKHS ℋ that corresponds to the kernel 𝐾 . The inner product for ℋ is given
by (4.10) and the associated norm can be defined based on the inner product
and is given by ‖𝑓‖ = 􀇼⟨𝑓, 𝑓⟩.

Now given the empirical data 𝒱􀁮, introduced in the previous section, one
can formulate estimation problems in the RKHS ℋ, for example

min
𝑓∈ℋ

𝑁

∑
𝑡=􀁮

𝑐(𝑓(𝒙𝑡) − 𝑦𝑡) + 𝜆‖𝑓‖􀁯 (4.11)

where 𝑐 ∶ ℝ → ℝ+∪{0} is a convex loss function and 𝜆 a positive regularization
constant. For estimation problems of the form given by (4.11) it has been



56 Least Squares Support Vector Machines

shown that the solution can be expressed as

𝑓(⋅) =
𝑁

∑
𝑡=􀁮

𝛼𝑡𝐾(𝒙𝑡, ⋅). (4.12)

This result is known as representer theorem and was first shown for 𝑐(𝑥) = 𝑥􀁯
by Kimeldorf and Wahba [1971]. A more universal generalization has been
proved in [Schölkopf et al., 2001]. Substituting the form of 𝑓 given by (4.12)
into (4.11) and using the least squares loss for 𝑐, one obtains

min
𝛼𝑡

𝑁

∑
𝑡=􀁮

⎛
⎜
⎝
𝑦𝑡 −

𝑁

∑
𝑛=􀁮

𝛼𝑛𝐾(𝒙𝑡, 𝒙𝑛)
⎞
⎟
⎠

􀁯

+ 𝜆
𝑁

∑
𝑡,𝑛=􀁮

𝛼𝑡𝛼𝑛𝐾(𝒙𝑡, 𝒙𝑛). (4.13)

Constructing the kernel matrix 𝜴 in the same fashion as in the previous
section, the solution to this now finite dimensional optimization is determined
by the linear system

(𝜴 + 𝜆𝑰𝑁 )𝜶 = 𝒚. (4.14)

Therefore, for the least squares loss, both the model representation (4.12)
and the estimation problem (4.14) are identical to the dual expressions for
LS-SVMs (4.6) and (4.5) respectively, in case the bias term 𝑏 is disregarded. In
this formulation this approach is known as regularization network [Poggio
and Girosi, 1990]. The representer theorem also holds for the 𝜀-insensitive
loss function and can be used to derive SVM models.

4.3 Handling of large data sets

The estimation of LS-SVMs on large data sets gives rise to two problems.
Problem number one concerns the estimation of the model. Note that, as
indicated in Algorithm 4.1, the dense kernel matrix has to be computed and
stored. The memory requirements of the kernel matrix scale with 𝑂(𝑁􀁯)
where 𝑁 denotes the size of the training set 𝒱􀁮. This limits the size of feasible
problems. The second problem is related to model evaluations. As the solution
of 𝜶 obtained by LS-SVMs is also dense, the evaluation of the model gets more
and more costly as the size of the data set increases.

Problem one can be tackled with, possibly approximate, low rank factoriza-
tions of the kernel matrix. One approach based on the incomplete Cholesky
decomposition has been proposed by Fine and Scheinberg [2002]. An alterna-
tive matrix factorization is the Nyström approximation [Williams and Seeger,
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2001]. The latter will be discussed in the next subsection. A favorable prop-
erty of the Nyström approximation is that it cannot only be used to obtain a
low rank matrix factorization of the kernel matrix, but also to obtain a finite
dimensional approximation of the feature map. Using this approximation one
can then solve the estimation problem in the primal (4.2). Even though the
solution is still not sparse in the dual variables 𝜶, it is sparse in the primal
variable𝒘 however. Therefore this procedure also allows more efficient model
evaluations. This approach is know as fixed-size LS-SVM and was initially
proposed in [Suykens, Van Gestel, et al., 2002]. It is discussed in Subsection
4.3.3. For SVMs the sparsity of the model, and therefore the support vectors,
follows directly from the dual optimization problem. In case of the Nyström
approximation the support vectors have to be selected manually. A simple
but efficient procedure to optimize this selection is briefly outlined in the
last subsection. The procedure is based on the maximization of an entropy
criterion and was proposed in the context of fixed-size LS-SVMs.

4.3.1 Nyström method

Given the data set 𝒱􀁮 = {(𝒙𝑡, 𝑦𝑡)}𝑁𝑡=􀁮, a finite number of eigenfunctions 𝜑𝑛
of the kernel can be obtained as described by Williams and Seeger [2001].
Therefore recall the integral equation (4.4) used to define the eigenfunctions
of the kernel 𝐾 in Mercer’s theorem. Taking the underlying data distribution
𝑝(𝒙) into account it can be modified to

􀈧
𝑆
𝐾(𝒙, 𝒚)𝜑̃𝑛(𝒙)𝑝(𝒙)𝑑𝒙 = 𝜆𝑛𝜑̃𝑛(𝒚), (4.15)

with solutions 𝜆𝑛 and 𝜑̃𝑛, 𝑛 = 1,… , 𝑛ℎ. Then, as performed in the kernel trick,
one can define the elements of the feature map as 𝜑𝑛(𝒙) = √𝜆𝑛𝜑̃𝑛(𝒙). To obtain
a finite dimensional representation, the integral (4.15) can be approximated
by means of its sample average. The eigenvalue decomposition of the kernel
matrix 𝜴 = 𝑼𝜮􀁯𝑼𝑇 , with 𝑼𝑇𝑼 = 𝑰𝑁 and 𝜮 diagonal, can then be used in
order to compute a 𝑁-dimensional approximation of the feature map

􀈵𝝋(𝒛) = 𝜮−􀁮𝑼𝑇𝒌(𝒛) (4.16)

where 𝒌(𝒛) = [𝐾(𝒙􀁮, 𝒛), … , 𝐾(𝒙𝑁 , 𝒛)]𝑇 . As shown in [Suykens, Van Gestel, et al.,
2002] this explicit finite-dimensional representation of the feature map 􀈵𝝋 can
be used in the primal model formulation (4.2) to estimate 𝒘 and 𝑐 directly.
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4.3.2 Approximation of the kernel matrix

The approximation of the feature map in (4.16) allows one to approximate
the kernel matrix. The goal of the approximation is to obtain a low rank
factorization for which the dual system (4.5) can be solved more efficiently.
Being based on the Nyström approximation introduced above, the parameter
that affects the rank of the decomposition is the dimension of the approximated
feature map. This dimension is identical to the size of the sample used to
approximate the feature map. Therefore one takes a subsample 𝒱𝑀

􀁮 of size
𝑀 of 𝒱􀁮 to compute the finite dimensional approximation of the feature
map. In a second step the approximate feature map can be evaluated on the
whole training set 𝒱􀁮. This yields 􀈵𝜱 = [􀈵𝝋(𝒙􀁮), … , 􀈵𝝋(𝒙𝑁 )] ∈ ℝ𝑀×𝑁 with the
corresponding approximation of 𝜴 based on𝑀 samples given by 􀈵𝜴 = 􀈵𝜱𝑇 􀈵𝜱.
This low rank approximate factorization can then be used to efficiently solve
(4.5). Note that the linear system can be solved in two steps with

𝑏 =
𝟏𝑇𝑁𝑨−􀁮𝒚
𝟏𝑇𝑁𝑨−􀁮𝟏𝑁

and (4.17a)

𝜶 = 𝑨−􀁮(𝒚 − 𝑏𝟏𝑁 ), (4.17b)

with 𝑨 = 􀈵𝜴 + 𝛾−􀁮𝑰𝑁 . Using the matrix inversion lemma and the low rank
factorization of 􀈵𝜴, the inverse of 𝑨 can be computed efficiently as 𝑨−􀁮 =
𝛾𝑰𝑁 − 𝛾 􀈵𝜱𝑇 (𝛾−􀁮𝑰𝑀 + 􀈵𝜱 􀈵𝜱𝑇 )−􀁮 􀈵𝜱. This reduces the complexity from one linear
system of size 𝑁 + 1 to three linear systems of size 𝑀 and some matrix
multiplications.

Algorithm 4.2 (Solution of LS-SVMs based on Nyström approximation of
the kernel matrix).

1. Pick a regularization parameter 𝛾 and a kernel function 𝐾 (and its
parameters).

2. Select a subset 𝒱𝑀
􀁮 of𝑀 samples with 𝒱𝑀

􀁮 ⊂ 𝒱􀁮.
3. Compute the kernel matrices 𝜴𝑀 ∈ ℝ𝑀×𝑀 with (𝜴𝑀)𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗) for
𝒙𝑖, 𝒙𝑗 ∈ 𝒱𝑀

􀁮 and 𝜴𝑀,𝑁 ∈ ℝ𝑀×𝑁 with (𝜴𝑀,𝑁 )𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗) for 𝒙𝑖 ∈ 𝒱𝑀
􀁮 and

𝒙𝑗 ∈ 𝒱􀁮 respectively.
4. Construct the eigenvalue decomposition 𝑼𝜮􀁯𝑼𝑇 of 𝜴𝑀.
5. Evaluate the approximate feature map as 􀈵𝜱 = 𝜮−􀁮𝑼𝑇𝜴𝑀,𝑁 .
6. Solve (4.17) to obtain 𝜶 and 𝑏.

The one-step-ahead predictor in this setting is given by

𝑦̂(𝒛) = 𝒌𝑀(𝒛)𝑇𝜴−􀁮
𝑀𝜴𝑀,𝑁𝜶 + 𝑏, (4.18)
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with 𝑘𝑀(𝒛) = [𝐾(𝒙􀁮, 𝒛), … , 𝐾(𝒙𝑀, 𝒛)]𝑇 where 𝒙􀁮, … , 𝒙𝑀 are the samples forming
𝒱𝑀
􀁮 .

4.3.3 Fixed size approach

The approach considering the matrix factorization of 𝜴 has two main disad-
vantages, i) the vector 𝜶 is of dimension 𝑁 which makes the naive evaluation
of (4.18) costly and ii) the estimation requires the solution of three linear
systems and some matrix multiplications. Both disadvantages can be circum-
vented when using the approximate feature map 􀈵𝝋 in the primal problem
(4.2) to estimate 𝒘 and 𝑏 directly. Using the same definition of 􀈵𝜱 as in the
previous subsection, one can solve a finite dimensional approximation of the
primal problem (4.2) based on 􀈵𝝋 by means of the linear system

􀉾
􀈵𝜱 􀈵𝜱𝑇 + 𝛾−􀁮𝑰𝑀 􀈵𝜱𝟏𝑁

𝟏𝑇𝑁 􀈵𝜱𝑇 𝑁 􀊁 􀉾
𝒘
𝑏 􀊁 = 􀉾

􀈵𝜱𝒚
𝟏𝑇𝑁𝒚

􀊁 . (4.19)

The evaluation at a new point 𝒛 is performed using the one-step-ahead pre-
dictor

𝑦̂(𝒛) = 𝒌𝑀(𝒛)𝑇𝑼𝜮−􀁮𝒘 + 𝑏, (4.20)

where 𝒌𝑀(𝒛) is defined as in the last subsection. Note that the disadvantages
mentioned at the beginning could — to a large extent — be resolved by an
efficient implementation. However the fixed size approach described here is
more straightforward as it does not need the dual formulation and special
linear algebra to be exploited. Therefore it is often easier to adapt to modi-
fied primal problems. It will be the preferred method used in the following
chapters.

The algorithm for this fixed size LS-SVM (FS-LS-SVM) procedure is almost
identical to Algorithm 4.2 with the only difference in the model estimation
step 6. It is reproduced here for later reference.

Algorithm4.3 (Solution of LS-SVMs in the primal based on finite dimensional
approximation of the feature map).

1. Pick a regularization parameter 𝛾 and a kernel function 𝐾 (and its
parameters).

2. Select a subset 𝒱𝑀
􀁮 of𝑀 samples with 𝒱𝑀

􀁮 ⊂ 𝒱􀁮.
3. Compute the kernel matrices 𝜴𝑀 ∈ ℝ𝑀×𝑀 with (𝜴𝑀)𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗) for
𝒙𝑖, 𝒙𝑗 ∈ 𝒱𝑀

􀁮 and 𝜴𝑀,𝑁 ∈ ℝ𝑀×𝑁 with (𝜴𝑀,𝑁 )𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗) for 𝒙𝑖 ∈ 𝒱𝑀
􀁮 and

𝒙𝑗 ∈ 𝒱􀁮 respectively.
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Table 4.3: Summary of important relations of large scale implementations of
LS-SVMs.

low rank ls-svm fs-ls-svm

estimation problem in the dual via (4.17) in the primal via (4.19)
variables 𝜶 ∈ ℝ𝑁 , 𝑏 𝒘 ∈ ℝ𝑀, 𝑏
complexity 3 × 𝑂(𝑀) 𝑂(𝑀 + 1)
predictor (4.18) (4.20)
algorithm 4.2 4.3

4. Construct the eigenvalue decomposition 𝑼𝜮􀁯𝑼𝑇 of 𝜴𝑀.
5. Evaluate the approximate feature map as 􀈵𝜱 = 𝜮−􀁮𝑼𝑇𝜴𝑀,𝑁 .
6. Solve (4.19) to obtain 𝒘 and 𝑏.

4.3.4 Active selection of support vectors

In the previous two subsections one had to form a subset 𝒱𝑀
􀁮 of the whole

training set 𝒱􀁮 to reduce the computational complexity of the algorithms.
Some straightforward methods for selecting a suitable subset of𝑀 samples
are, i) deterministic subsampling by taking every ∼ 𝑁/𝑀-th sample and ii)
stochastic subsampling by drawing𝑀 samples uniformly from 𝒱􀁮. Both of
these methods can work well in practice depending on the application at hand.
In case the performance is not satisfactory, active selection of the support
vectors, i.e. the samples in the subset 𝒱𝑀

􀁮 , can give rise to models with better
performance.

Whereas SVMs have an inherently active selection of their support vec-
tors, through means of the 𝜀-insensitive loss functions that induces sparsity,
LS-SVMs have to rely on independent preprocessing steps. One method that
works well and is computationally efficient is a form of entropy maximization
[Girolami, 2002; Suykens, Van Gestel, et al., 2002]. In this case, the𝑀 support
vectors are selected such that the quadratic Rényi entropy 𝐻𝑅 is maximized.
This entropy is given as

𝐻𝑅 = − log􀈧 𝑝􀁯(𝒙)𝑑𝒙,

with 𝑝 the probability density of the selected support vectors. The quadratic
entropy can be approximated on a finite subsample of size𝑀 [Girolami, 2002]
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by using

􀈧 𝑝̂􀁯(𝒙)𝑑𝒙 ≃
1
𝑀􀁯 𝟏

𝑇
𝑀𝜴𝑀𝟏𝑀, (4.21)

where 𝜴𝑀 is defined as before. The initial choices for the kernel function and
an efficient bandwidth to be used in this procedure are addressed in detail in
[De Brabanter et al., 2010]. The use of this active selection procedure can be
quite important for large-scale problems. The optimality of the selection is
related to the final accuracy that can be obtained for the modeling problem.
By using an entropy maximization criterion, one can assure that the selected
subsample is well spread over the entire data range, and it will not be concen-
trated in a certain area of the data set. The support vector selection is then an
iterative procedure formalized in the following algorithm.

Algorithm 4.4 (Active support vector selection by maximization of Rényi
entropy).

1. Select a kernel function 𝐾 and its parameters [De Brabanter et al., 2010].
2. Decompose 𝒱􀁮 into a set 𝒮 of size𝑀 and its complement 𝒮𝐶 such that

𝒱􀁮 = 𝒮 + 𝒮𝐶.
3. Compute the approximate quadratic Rényi entropy 􀈵𝐻𝑅 of 𝒮 via (4.21).
4. Pick one element of 𝒮𝐶 and use it to replace another element of 𝒮 and

denote the new set by 𝒮∗.
5. Compute the approximate quadratic Rényi entropy 􀈵𝐻∗

𝑅 of 𝒮∗ via (4.21).
6. If 𝐻∗

𝑅 > 𝐻𝑅 set 𝒮 ≔ 𝒮∗, 𝒮𝐶 ≔ 𝒱􀁮 ⧵ 𝒮 and 𝐻𝑅 ≔ 𝐻∗
𝑅.

7. If not converged, go to 4.

4.4 Model selection

Two of the key concepts identified by Ljung, as outlined on page 20, are
validation and model fit. Both of these terms are key elements for model
selection. All models considered in this thesis are based on the LS-SVM model
formulated in (4.2). However this formulation actually specifies a whole family
of model classes. To fix a single model class that allows to estimate a model by
solving (4.5), one has to choose i) a kernel function and its parameters, ii) the
regularization parameter 𝛾 and iii) the structure of the regression vector 𝒙𝑡.
This section will briefly outline how these hyper-parameters can be selected.
As the problem is nonconvex and in some cases not differentiable, the basic
procedure is to define a criterion that assesses the quality of a candidate model.
Then that criterion is used to rate a series of models and the best one is chosen.
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One important element of the quality criterion for a particular model is the
model fit. In the scope of this thesis only the root mean squared error (RMSE),
defined as

RMSE =
􀇻
⃓
⃓
⎷

1
𝑁 ′

𝑁 ′

∑
𝑡=􀁮
(𝑦𝑡 − 𝑦̂𝑡)􀁯, (4.22)

is used. Here it is important that the data used to evaluate 𝑦𝑡−𝑦̂𝑡 are usually not
elements of the training set 𝒱􀁮, which will be discussed in the next paragraph.
In the context of system identification it is important how the predictions 𝑦̂𝑡
are generated. One possible choice is to use the one-step-ahead predictors like
(4.6) as specified in this and the following chapters. For all model structures
containing past model outputs 𝑦𝑡 such as in NARX models, it is possible to
replace the measured quantities by their predictions. In case of NARX models,
the measured values for 𝑦𝑡 present in the regression vector 𝒙𝑡 can be replaced
by predictions 𝑦̂𝑡. When this is done recursively for all 𝑢𝑡, then this is called
simulation mode. As the computational complexity of evaluating the RMSE
in simulation mode is higher than with one-step-ahead predictions and there
often is little to no benefit, model selection is always performed based on
one-step-ahead predictions throughout this thesis.

As mentioned in the last paragraph the RMSE should not be computed on
the training set 𝒱􀁮. Doing this would, especially for nonlinear models, lead
to overfitting which in turn results in models that do not generalize well to
unseen data. Popular ways to select models with good generalization perfor-
mance are Bayesian inference [MacKay, 1999; Suykens, Van Gestel, et al., 2002]
and validation techniques. For their simplicity only validation techniques
are considered further on. Three basic validation techniques are i) using an
independent validation set, ii) 𝑘-fold cross-validation and iii) leave-one-out
cross-validation. For 𝑘-fold cross validation the whole data set 𝒟 is partitioned
into 𝑘 subsets 𝒟𝑘 of equal size. Then one estimates 𝑘 models where for the
𝑚-th model the training set is 𝒱􀁮 ≔ ⋃𝑘

𝑛=􀁮,𝑛≠𝑚 𝒟𝑛 and the RMSE is computed
on 𝒟𝑚. In a final step the RMSE values for all 𝑘 models are combined to
an overall score. Leave-one-out cross-validation is a special case of 𝑘-fold
cross-validation in which one considers 𝑁 subsets 𝒟𝑘, each containing just
a single point, for a data set 𝒟 of size 𝑁 . In system identification it is often
relatively cheap to acquire large amounts of data. Since both cross-validation
techniques require the estimation of multiple models, which increases the
computational complexity, in this thesis a validation set is used throughout.
A validation set is the easiest validation technique which simply partitions
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the data set 𝒟 as 𝒱􀁮 ∪ 𝒱􀁯. Then the RMSE is just evaluated on 𝒱􀁯. More
comprehensive information on the topic can for example be found in [Hastie
et al., 2009].

Using a validation set in combination with the RMSE a given model can
easily be tested for its (relative) quality. The candidate choices for the kernel,
its parameters, the regularization constant and, if considered, the elements of
the regression vector can be generated in many different ways. This includes
global search algorithms like genetic algorithms or simulated annealing, direct
search algorithms like the simplex method or coordinate search and a simple
grid based search. As with the previous choices, also for the search method
the simplest technique is generally used in this thesis, namely grid search.
A rough outline for a model selection procedure based on a validation set is
given below.

Algorithm 4.5 (Model selection for kernel based model).

1. Choose a regression vector 𝒙𝑡 and pick nominal values for the regular-
ization parameters 𝛾, the kernel function 𝐾 (and its parameters).

2. Estimate a single model with Algorithm 4.1 on 𝒱􀁮 a subset of all mea-
sured data 𝒟 to obtain model parameter 𝜶, 𝑏.

3. Predict values using this model by evaluating (4.6) on a different subset
𝒱􀁯 of the measured data 𝒟.

4. Compute a cost function, e.g. the root mean squared error (RMSE)
comparing the predicted with the measured values.

5. If stopping criterion is satisfied, stop, otherwise change one of the
parameters and repeat from 2.
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5Partially linear models with
orthogonality

Themain goal of this work is to exploremodel structures for nonlinear systems
based on Least Squares Support Vector Machines. The model structures
should either incorporate prior knowledge about the system or extend the
class of systems that can be represented. This chapter considers the case
where a parametric model for the system already exists. The objective is to
complement the existing model with a kernel based model while ensuring
that the information in the parametric model is retained.

The general model structure is shown in Figure 5.1. Models of this class are
usually referred to as semi-parametric models. To ensure that the identifica-
tion problem is convex it is assumed that the parametric model is linear in the
parameters. In this case the model class is known as partially linear models

𝑢(𝑡), 𝑢(𝑡 − 1), …
𝑦(𝑡 − 1), 𝑦(𝑡 − 2), …

parametric model

kernel based model

+
𝑦̂(𝑡)

Figure 5.1: Partially linear model with parametric and kernel based part and
ARX type regression variables.
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[Härdle et al., 2000]. Their main use is to extend an existing parametric model
to achieve improved prediction performance.

Kernel based models of this form have been considered for example in
[Wahba, 1984; Speckman, 1988; Wahba, 1990; Espinoza et al., 2005a; Li et al.,
2006; Xu and Chen, 2009]. All these formulations face the problem that parts
of the studied system may be modeled by the parametric part as well as by
the kernel based model. Thus an ambiguity arises and the estimate for the
parametric part might loose the connection to an interpretation. There are
different approaches to tackle this problem, ranging from neglecting the issue
for highest prediction performance [Li et al., 2006; Xu and Chen, 2009] over
constraints on the explanatory variables [Speckman, 1988; Espinoza et al.,
2005a] to constraints on the admissible parametric and nonparametric model
classes [Wahba, 1984, 1990].

The novel contribution of this chapter is to impose no restrictions on the
model classes or the explanatory variables. Nevertheless the estimate for the
parametric model part should be of the same quality as without the additional
kernel based model. This is achieved by introducing a new constraint in the
estimation problem that ensures empirical orthogonality of the predictions of
the two model parts.

Structure of the chapter Thenext sectionwill review prior work on kernel
based partially linear systems with a focus on formulations in a primal-dual
framework. Section 5.2 will analyze the estimate of the parametric model
part in case necessary assumptions are not satisfied and introduces the or-
thogonality constraint which gives rise to improved estimates. In Section 5.3
reformulations of the estimation problem are considered. The first reformula-
tion derives a regularization term that captures the orthogonality constraint
such that the parametric model part and the kernel based model part can be
estimated using separate estimation problems. The second reformulation mod-
ifies the kernel function such that an equivalent kernel function is obtained
which embodies the orthogonality constraint. The partially linear modeling
approach with orthogonality constraint is generalized from the least square
loss used for LS-SVMs to the ε-insensitive loss used in SVMs in Section 5.4.
Section 5.5 considers the partially linear models in a RKHS setting instead of
the primal-dual framework as considered in the rest of this chapter. Finally
Section 5.6 illustrates the effect of the orthogonality constraint on simulated
as well as real world data.
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5.1 Review of kernel based partially linear models

For LS-SVM based models, partially linear models were introduced by Es-
pinoza et al. [2005a]. They are based on the following assumption.

Assumption 5.1. The explanatory variables 𝒙 ∈ ℝ𝐷 can be partitioned into
𝒙𝑎 ∈ ℝ𝐷𝑎 that are part of the parametric model and 𝒙𝑏 ∈ ℝ𝐷𝑏 that are part of the
nonparametric model such that 𝒙 = [𝒙𝑇𝑎 , 𝒙𝑇𝑏 ]𝑇 and 𝐷 = 𝐷𝑎 + 𝐷𝑏. Furthermore
the variables 𝒙𝑎 and 𝒙𝑏 are independent.

Then a predictive equation can be stated as

ℎ̂(𝒙) = 𝜽𝑇𝝍(𝒙𝑎) + 𝒘𝑇𝝋(𝒙𝑏) + 𝑏, (5.1)

where 𝑏, 𝒘 are the parameters and 𝝋 is the feature map as introduced in
Chapter 4 respectively. The parametric model is defined by𝑀 basis functions
𝜓𝑖 ∶ ℝ𝐷𝑎 → ℝ compactly written as𝝍 = [𝜓􀁮, … , 𝜓𝑀]𝑇 and the parameter vector
𝜽 ∈ ℝ𝑀. The predictive equation in (5.1) is a generalization of [Espinoza et al.,
2005a] as any linear-in-parameters parametric model can be used and not just
linear models.

Given observation data {(𝒙𝑎,𝑡, 𝒙𝑏,𝑡, 𝑦𝑡)}𝑁𝑡=􀁮 a model given by the form in (5.1)
can be estimated by solving the convex optimization problem

min
𝒘,𝜽,𝑏,𝑒𝑡

1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡

subject to 𝑦𝑡 = 𝜽𝑇𝝍(𝒙𝑎,𝑡) + 𝒘𝑇𝝋(𝒙𝑏,𝑡) + 𝑏 + 𝑒𝑡, 𝑡 = 1, … ,𝑁,
(5.2)

with regularization constant 𝛾 > 0. The optimal model representation for the
kernel based model is

ℎ̂(𝒛) = 𝜽𝑇𝝍(𝒛𝑎) +
𝑁

∑
𝑡=􀁮

𝛼𝑡𝐾(𝒙𝑏,𝑡, 𝒛𝑏) + 𝑏 (5.3)

which follows from Lagrangian duality. The parameters 𝛼𝑡 are Lagrange
multipliers corresponding to the equality constraints in (5.2). They, as well as
the other parameters 𝜽 and 𝑏, can be obtained from the linear system

⎡
⎢
⎢
⎣

𝜴 + 𝛾−􀁮𝑰𝑁 𝜳𝑇 𝟏𝑁
𝜳 𝟎⊠ 𝟎𝑀
𝟏𝑇𝑁 𝟎𝑇𝑀 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝜶
𝜽
𝑏

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝒚
𝟎𝑀
0

⎤
⎥
⎥
⎦
. (5.4)

The matrix𝜳 ∈ ℝ𝑀×𝑁 is defined as [𝝍(𝒙𝑎,􀁮), … ,𝝍(𝒙𝑎,𝑁 )] and the elements of
the kernel matrix 𝜴 are given by 𝛺𝑖𝑗 = 𝐾(𝒙𝑏,𝑖, 𝒙𝑏,𝑗) for 𝑖, 𝑗 = 1, … ,𝑁 .



70 Partially linear models with orthogonality

5.2 Imposing orthogonality constraints

The need to partition the explanatory variables as in Assumption 5.1 is an
unnecessary restriction. In the context of Splines or more general for RKHSs,
less restrictive assumptions are known as will be discussed in Section 5.5. In
this section the consequence of not partitioning the variables will be analyzed.
Then a modification of the estimation problem is proposed that mitigates that
disadvantage. Therefore consider (5.2) without partitioned variables

min
𝜽,𝒘,𝑏,𝑒𝑡

1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡

subject to 𝑦𝑡 = 𝜽𝑇𝝍(𝒙𝑡) + 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑒𝑡, 𝑡 = 1, … ,𝑁,
(5.5)

where 𝝋 ∶ ℝ𝐷 → ℝ𝑛ℎ .

5.2.1 Parametric estimates under violated assumptions

The model ambiguity between the parametric and nonparametric parts can
be seen from the estimates obtained for 𝜽. To simplify the presentation it
is assumed that the measurements 𝑦𝑡 are zero mean and therefore 𝑏 in (5.5)
is equal to zero. Furthermore the matrix 𝜳 is supposed to be of full rank
and defined as𝜳 = [𝝍(𝒙􀁮), … ,𝝍(𝒙𝑁 )]. Consequently the value for 𝜽 obtained
from (5.5) is

𝜽̂𝑃𝐿 = (𝜳𝜳𝑇 )−􀁮𝜳(𝒚 −𝜱𝑇𝒘̂), (5.6)

where 𝒘̂ is the estimate following from (𝜱𝑷⟂
𝛹𝜱𝑇 + 𝛾−􀁮𝑰𝑁 )𝒘 = 𝜱𝑷⟂

𝛹𝒚 and
𝑷⟂
𝛹 = 𝑰𝑁 −𝜳𝑇 (𝜳𝜳𝑇 )−􀁮𝜳 is the projector onto the nullspace of𝜳 .
Under the assumption that the variables in (5.2) are partitioned such that

𝒙𝑎 and 𝒙𝑏 are independent, the term 𝜱𝜳𝑇 goes to zero as the number of
samples 𝑁 approaches infinity [Espinoza et al., 2005a]. For a finite amount of
samples this does not hold even if the restrictive partitioning of the variables
is carried out. Note that in the limit one obtains 𝜽̂𝑃𝐿 → 𝜽̂𝑂𝐿𝑆 = (𝜳𝜳𝑇 )−􀁮𝜳𝒚,
the ordinary least squares (OLS) estimate.

Therefore in the case that𝜱𝜳𝑇 is empirically nonzero, the estimate 𝜽̂𝑃𝐿
depends not only on the data, but also the kernel 𝐾 and the regularization
constant 𝛾 controlling the complexity of the nonparametric model. This is a
manifestation of the model ambiguity mentioned at the beginning.
Remark 5.1 (Ordinary least squares). It is important to note that while the
partially linear structure is able to improve the prediction performance of
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the composite model, it is however not able to improve the estimate of the
parametric part. Assume that the variables are partitioned and the sample
size is large enough such that the partial linear estimate 𝜽̂𝑃𝐿 coincides with
the OLS solution 𝜽̂𝑂𝐿𝑆. Therefore the estimate for the parametric model part
will be given by the ordinary least squares estimate (unless a different overall
cost function is used).

In the ideal setting the data is generated by a true underlying system of the
form

𝑦𝑡 = 𝜽𝑇􀁭𝝍(𝒙𝑡) + 𝜌(𝒙𝑡) + 𝜀𝑡,

where 𝜌(⋅) is the part of the underlying system that cannot be captured by the
parametric model. Then for a noise term 𝜀𝑡 that is zero mean, Gaussian white
noise with finite variance and independent of 𝒙𝑡, the OLS estimate is the best
linear unbiased estimate (BLUE). It is given by

𝜽̂𝑂𝐿𝑆 = 𝜽􀁭 + (𝜳𝜳𝑇 )−􀁮𝜳(𝜺 + 𝝆),

with 𝜺 = [𝜀􀁮, … , 𝜀𝑁 ]𝑇 and 𝝆 = [𝜌(𝒙􀁮), … , 𝜌(𝒙𝑁 )]𝑇 . Note that the noise contribu-
tion goes to zero for increasing sample sizes. What remains is the contribution
that depends only on the fraction of the true underlying system that is not
captured by the parametric model.

Remark 5.2 (Modeling of residuals). In view of the last remark it would seem
beneficial to start with the OLS estimate 𝜽̂𝑂𝐿𝑆 and compute the residuals
𝑟𝑡 = 𝑦𝑡 − 𝜽𝑇𝝍(𝒙𝑡). However modeling these residuals 𝑟𝑡 with a nonparametric
model gives rise to low prediction performances as will be illustrated in the
experimental section.

5.2.2 Imposing orthogonality

While a new model should have a comparable predictive performance as
existing partially linear models, the estimate of the parametric model given
by (5.6) should also always be as good as the OLS estimate. This should hold
for finite sample sizes as well as when the independence assumption is not
satisfied. To achieve this goal, the term (𝜳𝜳𝑇 )−􀁮𝜳𝜱𝑇𝒘̂ has to be zero which
follows from comparing (5.6) with the OLS estimate 𝜽̂𝑂𝐿𝑆 = (𝜳𝜳𝑇 )−􀁮𝜳𝒚.
This holds if and only if

𝜳(𝜱𝑇𝒘̂ + 𝟏𝑁 𝑏̂) = 𝟎𝑀 (5.7)
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is satisfied. Here the assumption that the output signal 𝑦𝑡 is zero mean and
therefore the bias term 𝑏 is zero has been dropped. To obtain an improved
partially linear model this relation is imposed as an additional constraint
in problem (5.5). This can be interpreted as (empirical) orthogonality of the
parametric and nonparametric models. Another interpretation is that the
nonparametric model is constrained such that its predictions are uncorrelated
with the predictions of any function with the chosen parametrization. For a
given data set {(𝒙𝑡, 𝑦𝑡)}𝑁𝑡=􀁮 the modified optimization problem is then

min
𝜽,𝒘,𝑏,𝑒𝑡

1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡

subject to 𝑦𝑡 = 𝜽𝑇𝝍(𝒙𝑡) + 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑒𝑡, 𝑡 = 1, … ,𝑁,
𝑁

∑
𝑡=􀁮

𝜓𝑖(𝒙𝑡)(𝒘𝑇𝝋(𝒙𝑡) + 𝑏) = 0, 𝑖 = 1, … ,𝑀.

(5.8)

Note that for kernel based models the feature map𝝋(𝒙) is only defined implic-
itly by a kernel function 𝐾 at the dual level. The basis functions 𝝍(𝒙) however
belong to the (existing) parametric model and need to be explicitly defined.

5.2.3 Dual problem: model representation and estimation

As mentioned earlier in Chapter 4 for some kernels like the RBF kernel,
the feature map 𝝋 is not only defined implicitly, but furthermore infinite
dimensional. Thus it is in general not possible to directly solve the primal
problem in (5.8). Therefore the problem has to be solved in the dual which is
formalized in the following Lemma.

Lemma 5.1. The solution to (5.8) is given by the linear system

⎡
⎢
⎢
⎢
⎣

𝜴 + 𝛾−􀁮𝑰𝑁 𝜴𝜳𝑇 𝟏𝑁 𝜳𝑇

𝜳𝜴 𝜳𝜴𝜳𝑇 𝜳𝟏𝑁 𝟎⊠
𝟏𝑇𝑁 𝟏𝑇𝑁𝜳𝑇 0 𝟎𝑇𝑀
𝜳 𝟎⊠ 𝟎𝑀 𝟎⊠

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜶
𝜷
𝑏
𝜽

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

𝒚
𝟎𝑀
0
𝟎𝑀

⎤
⎥
⎥
⎥
⎦

. (5.9)

The variables 𝜷 ∈ ℝ𝑀 are the Lagrange multipliers for the newly introduced
orthogonality constraints in (5.8) and can be used to express the dual predictive
model as

ℎ̂(𝒛) =
𝑁

∑
𝑡=􀁮

𝜂𝑡𝐾(𝒙𝑡, 𝒛) + 𝜽𝑇𝝍(𝒛) + 𝑏

with 𝜂𝑡 = 𝛼𝑡 + 𝜷𝑇𝝍(𝒙𝑡).
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Proof. The Lagrangian for (5.8) is

ℒ(𝒘,𝜽, 𝑏, 𝑒𝑡, 𝛼𝑡, 𝛽𝑖) =
1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡

−
𝑁

∑
𝑡=􀁮

𝛼𝑡(𝒘𝑇𝝋(𝒙𝑡)+𝜽𝑇𝝍(𝒙𝑡)+𝑏+𝑒𝑡−𝑦𝑡)−
𝑀

∑
𝑖=􀁮

𝛽𝑖
𝑁

∑
𝑡=􀁮

𝜓𝑖(𝒙𝑡)(𝒘𝑇𝝋(𝒙𝑡)+𝑏).

The corresponding KKT conditions for optimality are

𝟎 =
𝜕ℒ
𝜕𝒘

= 𝒘 −
𝑁

∑
𝑡=􀁮
(𝛼𝑡 + 𝜷𝑇𝝍(𝒙𝑡))𝝋(𝒙𝑡),

𝟎 =
𝜕ℒ
𝜕𝜽

= −
𝑁

∑
𝑡=􀁮

𝛼𝑡𝝍(𝒙𝑡),

0 =
𝜕ℒ
𝜕𝑏

= −
⎛
⎜
⎝

𝑁

∑
𝑡=􀁮

𝛼𝑡 + 𝜷𝑇𝝍(𝒙𝑡)
⎞
⎟
⎠
,

0 =
𝜕ℒ
𝜕𝑒𝑡

= 𝛾𝑒𝑡 − 𝛼𝑡, 𝑡 = 1, … ,𝑁,

0 =
𝜕ℒ
𝜕𝛼𝑡

= 𝑦𝑡 − 𝒘𝑇𝝋(𝒙𝑡) − 𝜽𝑇𝝍(𝒙𝑡) − 𝑏 − 𝑒𝑡, 𝑡 = 1… ,𝑁,

0 =
𝜕ℒ
𝜕𝛽𝑖

= −
𝑁

∑
𝑡=􀁮

𝜓𝑖(𝒙𝑡)(𝒘𝑇𝝋(𝒙𝑡) + 𝑏), 𝑖 = 1, … ,𝑀.

Rewriting the conditions for 𝒘 and 𝑒𝑡 and substituting them into 𝜕ℒ/𝜕𝛼𝑡
yields

𝑦𝑡 =
𝑁

∑
𝑘=􀁮
(𝛼𝑘 + 𝜷𝑇𝝍(𝒙𝑘))𝐾(𝒙𝑘, 𝒙𝑡) + 𝜽𝑇𝝍(𝒙𝑡) + 𝑏 +

1
𝛾
𝛼𝑡.

Substitution of 𝒘 into 𝜕ℒ/𝜕𝛽𝑖 yields

𝑁

∑
𝑡=􀁮

𝜓𝑖(𝒙𝑡)
𝑁

∑
𝑘=􀁮
(𝛼𝑘 + 𝜷𝑇𝝍(𝒙𝑘))𝐾(𝒙𝑘, 𝒙𝑡) + 𝑏 = 0.

Here, the inner products 𝝋(𝒙𝑘)𝑇𝝋(𝒙𝑡) were replaced by a positive definite
kernel 𝐾(𝒙𝑘, 𝒙𝑡) using the kernel trick. The rewritten KKT conditions 𝜕ℒ/𝜕𝛼𝑡
and 𝜕ℒ/𝜕𝛽𝑖 together with 𝜕ℒ/𝜕𝑏 and 𝜕ℒ/𝜕𝜽 correspond to the dual system
(5.9). ⬜
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5.3 Improved estimation schemes and
representations

The optimization problem given in (5.8) and its dual in (5.9) allow for the flex-
ible estimation of partially linear models in a kernel based setting. Rewriting
parts of the problem, alternative formulations can be obtained. One reformu-
lation allows the estimation of the parametric model part to be carried out
separately from the kernel based part and is based on a special regularization
matrix for the kernel based model. The second reformulation derives an equiv-
alent kernel that embeds the information of the orthogonality constraint into
the kernel, which can in turn be used in the classical partially linear setting
(5.5).

5.3.1 Separation principle

As detailed in Section 5.2, the goal of the orthogonality constraint is to obtain
the OLS solution for the parametric model part. However, it is not possible
to use the corresponding residuals to estimate the kernel based model as
mentioned in Remark 5.2. The following lemma describes how the orthogo-
nality constraint imposed on the kernel based model can be transformed into
a special regularization matrix. This special regularization then allows the
kernel based model to be estimated from the residuals in a separate estimation
step..

Lemma 5.2. Under the assumption that𝜳 has full row rank, the estimation of
the model can be performed in two stages as follows:

1. The parameter vector 𝜽 can be estimated using ordinary least squares
𝜽̂𝑂𝐿𝑆 = (𝜳𝜳𝑇 )−􀁮𝜳𝒚.

2. The kernel based model can then be identified by solving the reduced linear
system

􀉾
𝜴 + 𝛾−􀁮𝑷⟂

𝛹 𝟏𝑁
𝟏𝑇𝑁 𝟎⊠

􀊁 􀉾
𝜼
𝑏􀊁 = 􀉾

𝒓
0􀊁 (5.11)

with 𝒓 = 𝑷⟂
𝛹𝒚 = 𝒚 − 𝜳𝑇 𝜽̂𝑂𝐿𝑆 and 𝑷⟂

𝛹 = 𝑰𝑁 − 𝜳𝑇 (𝜳𝜳𝑇 )−􀁮𝜳 as in
Subsection 5.2.1.

Proof. Let ℜ􀁮 to ℜ􀁱 denote the block rows of (5.9). Isolating 𝜴𝜶 in ℜ􀁮 and
substituting this into ℜ􀁯 yields 𝜳𝒚 = 𝜳𝜳𝑇𝜽 + 𝛾−􀁮𝜳𝜶. Exploiting ℜ􀁱 one
obtains 𝜽 = (𝜳𝜳𝑇 )−􀁮𝜳𝒚. Performing a change of variables 𝜼 = 𝜶 + 𝜳𝑇𝜷
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and substitution of this relation into ℜ􀁱 yields 𝜷 = (𝜳𝜳𝑇 )−􀁮𝜳𝜼. Stating ℜ􀁰
in terms of 𝜼 yields 𝟏𝑇𝑁𝜼 = 0 and ℜ􀁮 can be rewritten as (𝜴+𝛾−􀁮𝑷⟂

𝛹 )𝜼 + 𝟏𝑁𝑏 =
𝑷⟂
𝛹𝒚. ⬜

Note that ℜ􀁯 in terms of 𝜼 reads𝜳(𝜴𝜼 + 𝟏𝑁𝑏) = 𝟎𝑀. This nicely illustrates
that the correlation between the kernel based model 𝜴𝜼 + 𝟏𝑁𝑏 and the basis
functions𝜳 is zero on the estimation data.

5.3.2 Equivalent kernel

In various situations it can be easier to change the kernel function than to
change the estimation problem. In that case the information of the orthogo-
nality constraint can be included in a modified kernel function. For simplicity
of presentation the bias term 𝑏 is set to zero for the remainder of this section.
This is no limitation since a static offset can be included in the parametric
basis. In that case the orthogonality constraint will ensure that 𝑏 is chosen as
zero.

Lemma 5.3. Under the assumption that 𝜳𝜴𝜳𝑇 is invertible, an equivalent
feature map 𝝋𝑒𝑞 that embeds the orthogonality constraint is given by 𝝋𝑒𝑞(⋅) =
𝑷⟂
𝛷𝛹𝝋(⋅). The projector 𝑷⟂

𝛷𝛹 is defined as

𝑷⟂
𝛷𝛹 = 𝑰𝑁 −𝜱𝜳𝑇 (𝜳𝜱𝑇𝜱𝜳𝑇 )−􀁮𝜳𝜱𝑇

with 𝜱 = [𝝋(𝒙􀁮), … ,𝝋(𝒙𝑁 )]. Application of the kernel trick to the equivalent
feature map yields the equivalent kernel function

𝐾𝑒𝑞(𝒙, 𝒚) = 𝐾(𝒙, 𝒚) − 𝒌(𝒙)𝑇𝜳𝑇 (𝜳𝜴𝜳𝑇 )−􀁮𝜳𝒌(𝒚) (5.12)

with 𝒌(𝒛) = [𝐾(𝒙􀁮, 𝒛), … , 𝐾(𝒙𝑁 , 𝒛)]𝑇 and where 𝜴 = 𝜱𝑇𝜱 is the original kernel
matrix.

Proof. Substitution of the expansion for 𝒘 obtained from the KKT conditions
in the proof of Lemma 5.1 into the KKT condition for 𝜷 gives 𝜳𝜱𝑇𝜱(𝜶 +
𝜳𝜷) = 𝟎𝑀. Then, assuming invertibility, the Lagrange multipliers 𝜷 can be
expressed as 𝜷 = −(𝜳𝜴𝜳𝑇 )−􀁮𝜳𝜴𝜶. Using this solution in the expansion
of 𝒘 yields 𝒘 = 𝑷⟂

𝛷𝛹𝜱𝜶. Reading this column-wise for the columns of 𝜱,
the equivalent feature map can be extracted. The equivalent kernel follows
directly from 𝐾𝑒𝑞(𝒙, 𝒚) = 𝝋𝑒𝑞(𝒙)𝑇𝝋𝑒𝑞(𝒚) = 𝝋(𝒙)𝑇𝑷⟂

𝛷𝛹𝝋(𝒚). ⬜
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Corollary 5.4. Using the equivalent feature map, problem (5.8) can be solved
equivalently as

min
𝜽,𝒘,𝑒𝑡

1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡

subject to 𝑦𝑡 = 𝜽𝑇𝝍(𝒙𝑡) + 𝒘𝑇𝝋𝑒𝑞(𝒙𝑡) + 𝑒𝑡, 𝑡 = 1, … ,𝑁.

In the kernel based form, the dual variables can be obtained from the linear
system

􀉾
𝜴𝑒𝑞 + 𝛾−􀁮𝑰𝑁 𝜳𝑇

𝜳 𝟎⊠
􀊁 􀉾
𝜶
𝜽􀊁 = 􀉾

𝒚
𝟎𝑀
􀊁 ,

where (𝜴𝑒𝑞)𝑖𝑗 = 𝐾𝑒𝑞(𝒙𝑖, 𝒙𝑗) for 𝑖, 𝑗 = 1, … ,𝑁 . This model can be evaluated at a new
point 𝒛 through

ℎ̂(𝒛) =
𝑁

∑
𝑡=􀁮

𝛼𝑡𝐾𝑒𝑞(𝒙𝑡, 𝒛) + 𝜽𝑇𝝍(𝒛). (5.13)

5.4 Extension to different loss functions

The orthogonality constraint for partially linear models can be generalized
from the least square loss to other (convex) loss functions. For example the
orthogonality constraint can be integrated into a SVM [Vapnik, 1998] with
𝜀-insensitive loss. The corresponding primal formulation is

min
𝜽,𝒘,𝑏,𝜉𝑡

1
2
𝒘𝑇𝒘 + 𝐶

𝑁

∑
𝑡=􀁮

𝜉𝑡

subject to |𝑦𝑡 − 𝜽𝑇𝝍(𝒙𝑡) − 𝒘𝑇𝝋(𝒙𝑡) − 𝑏| ≤ 𝜀 + 𝜉𝑡, 𝑡 = 1, … ,𝑁,
𝜉𝑡 ≥ 0, 𝑡 = 1, … ,𝑁,
𝑁

∑
𝑡=􀁮

𝜓𝑖(𝒙𝑡)(𝒘𝑇𝝋(𝒙𝑡) + 𝑏) = 0, 𝑖 = 1, … ,𝑀.

(5.14)

The Lagrange dual can be obtained by solving the KKT system

max
𝛼𝑡,𝛽𝑖

𝒚𝑇𝜶 −
1
2
(𝜶 +𝜳𝑇𝜷)𝑇𝜴(𝜶 +𝜳𝑇𝜷) − 𝜀𝟏𝑇 |𝜶|

subject to − 𝐶 ≤ 𝛼𝑡 ≤ 𝐶, 𝑡 = 1, … ,𝑁,
𝜳𝜶 = 𝟎𝑀,
𝟏𝑇𝑁 (𝜶 + 𝜳𝑇𝜷) = 0.

(5.15)
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where |𝜶| is understood as the element-wise absolute value. The predictive
model is identical to the one stated in Lemma 5.1. The primal variables 𝑏 and
𝜃𝑖 can for example be obtained from an interior point solver and correspond
to the dual variables of the equality constraints in (5.15).

Extensions to Huber’s robust loss function and other convex loss functions
can be derived in a similar fashion.

5.5 Equivalent RKHS approach

So far, the orthogonality constraint was presented in an optimization setting.
In addition to the primal-dual framework, optimization in function spaces
is a popular technique employed in machine learning. As introduced in
Chapter 4, support vector techniques can also be formulated in reproducing
kernel Hilbert spaces. The earliest results on partially linear models in RKHSs
however consider smoothing splines [Wahba, 1990, Ch. 1].

5.5.1 Partially linear models in RKHSs

In general, for partially linear models with a nonparametric model in a RKHS
one assumes that two spaces ℱ and 𝒢 are given. The mandatory condition
on these spaces, which generalizes Assumption 5.1, is:

Assumption 5.2. One can form the direct sum of the two spaces ℱ⊕𝒢 = ℋ
such that for any 𝑓 ∈ ℱ and 𝑔 ∈ 𝒢 the function 𝑓 + 𝑔 admits a unique
decomposition.

In the following the space 𝒢 is a RKHS induced by a kernel 𝐾 , while the space
ℱ can be expressed with a finite number of𝑀 basis functions 𝜓𝑖 ∶ ℝ𝐷 → ℝ,
𝑖 = 1, … ,𝑀. Given observational data {(𝒙𝑡, 𝑦𝑡)}𝑁𝑡=􀁮 with 𝒙𝑡 ∈ ℝ𝐷 and 𝑦𝑡 ∈ ℝ, a
function ℎ ∈ ℋ can be estimated from

min
ℎ∈ℋ

𝑁

∑
𝑡=􀁮
(𝑦𝑡 − ℎ(𝒙𝑡))􀁯 + 𝜆‖𝒫𭒢ℎ‖􀁯ℋ (5.16)

where𝒫𭒢 is the projector onto the reproducing kernel Hilbert Space (RKHS)
induced by 𝐾 and 𝜆 > 0 a regularization constant. From a representer theorem
[Schölkopf et al., 2001] it follows that the solution to this problem can be
expressed as

ℎ̂(𝒛) =
𝑀

∑
𝑖=􀁮

𝜃𝑖𝜓𝑖(𝒛) +
𝑁

∑
𝑡=􀁮

𝛼𝑡𝐾(𝒙𝑡, 𝒛) (5.17)



78 Partially linear models with orthogonality

for coefficients 𝜃𝑖, 𝛼𝑡 ∈ ℝ. Here the estimation problem (5.16) corresponds
to (5.2) in the primal-dual setting. Due to the generalization of Assumption
5.1 to Assumption 5.2 it is however closer to (5.5). Note that the modified
assumption imposes conditions on 𝝋 and 𝝍 which will become clear later
on. Another difference can be seen by comparing the predictive models (5.17)
and (5.3), notably that the RKHS formulation considers no bias term. This
distinction however is cosmetic as the bias term could be included in the
parametric basis. The model parameters can be estimated from (5.4) when
accounting for the missing bias term by eliminating the last column and the
last row from the system. The derivation in a functional setting is slightly
more involved and given by Wahba [1990, Eqs. (1.3.16) & (1.3.17)].

5.5.2 Empirical orthogonality in RKHSs

To derive results similar to the ones in the primal-dual setting, Assumption
5.2 on the existence of a direct sum decomposition between the spaces ℱ and
𝒢 is dropped. It is replaced by an explicit construction of a suitable subspace
𝒢𝑒𝑞 of 𝒢 that allows forming the direct sum between ℱ and 𝒢𝑒𝑞.

The result is an application of a lemma which states that a closed subspace
of an RKHS is itself an RKHS.

Lemma 5.5 (Kernel of a Closed Subspace [Berlinet and Thomas-Agnan, 2004,
Theorem 11]). Let 𝒱 be a closed subspace of a RKHS 𝒢. Then 𝒱 is an RKHS and
its kernel 𝐾′ is given by

𝐾′(𝒙, 𝒚) = 􀉼𝒫𭒱𝐾(⋅, 𝒚)􀉿 (𝒙) (5.18)

where𝒫𭒱 denotes the projection operator onto 𝒱.

Deriving a suitable subspace is again based on an orthogonality criterion
formulated upon the empirical data. As the orthogonality holds only on the
estimation data, the model parts need to be sampled, which is achieved by
the sampling operator𝒮 ∶ ℒ􀁯 → ℝ𝑁 , defined entry-wise as𝒮 ℎ ∶= [ℎ(𝒙𝑡)]𝑁𝑡=􀁮.
Then the linear operator 𝒞 ∶ ℒ􀁯 → ℝ𝑀 defined as 𝒞 ℎ = 𝜳𝒮 ℎ computes the
correlation between the parametric basis functions and an arbitrary function
in ℒ􀁯, both sampled on the empirical data. For technical reasons one has to
assume that ℎ ∈ ℒ􀁯 where ℒ􀁯 is the space of square integrable functions. Note
that it is implicitly assumed that ℱ,𝒢 ⊂ ℒ􀁯 which, for 𝒢, is true under mild
conditions on the kernel 𝐾 [De Vito et al., 2004].

Now the original RKHS can be decomposed as

𝒢 = range(𝒞 ∗) ⊕ null(𝒞 ),
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where 𝒞 ∗ ∶ ℝ𝑀 → 𝒢 is an adjoint operator of 𝒞 and defined as 𝒞 ∗𝜷 ∶=
𝒌(⋅)𝑇𝜳𝑇𝜷, where 𝜷 ∈ ℝ𝑀 and 𝒌(⋅) is defined as in Lemma 5.3. Note that
range(𝒞 ∗) is a finite dimensional subspace of 𝒢 and null(𝒞 ) is a closed sub-
space. Then by Lemma 5.5 null(𝒞 ) is a RKHS and its kernel function is solely
given in terms of 𝑔 and of 𝒫􀂛􀂢􀂙􀂙(𝒞 ), the projector onto the nullspace of 𝒞 .
Therefore𝒫􀂛􀂢􀂙􀂙(𝒞 ) ∶ 𝒢 → 𝒢 is given by (see e.g. [Luenberger, 1998, Theorem
1, Chapter 6.9])

𝒫􀂛􀂢􀂙􀂙(𝒞 )𝑔 = (ℐ −𝒞 ∗ 􀊂𝒞𝒞 ∗􀊅
−􀁮
𝒞 )𝑔 = 𝑔 − 𝒌(⋅)𝑇𝜳𝑇𝜴−􀁮

𝛹𝜳(𝒮 𝑔),

where 𝜴𝛹 ∶= 𝒞𝒞 ∗ = 𝜳𝜴𝜳𝑇 is assumed to be a full-rank matrix as in
Lemma 5.3 and ℐ denotes the identity operator. Then by equation (5.18)
the reproducing kernel of null(𝒞 ), denoted by 𝐾𝑒𝑞, is given by 𝐾𝑒𝑞(𝒙, 𝒚) =
􀉼𝒫􀂛􀂢􀂙􀂙(𝒞 )𝐾(⋅, 𝒚)􀉿 (𝒙). Finally one can denote null(𝒞 ) as 𝒢𝑒𝑞 and has constructed
a suitable subspace of the original RKHS such that the following holds.

Proposition 5.6. For any 𝑓􀁮 ∈ ℱ and any 𝑔􀁮 ∈ 𝒢𝑒𝑞 the function ℎ = 𝑓􀁮 + 𝑔􀁮
admits a unique decomposition under the assumption that𝜳 has full rank.

Proof. Suppose that there are 𝑓􀁯 ∈ ℱ and 𝑔􀁯 ∈ 𝒢𝑒𝑞 with 𝑓􀁮 ≠ 𝑓􀁯 such that
ℎ = 𝑓􀁯 + 𝑔􀁯. Note that 𝑓􀁮 and 𝑓􀁯 can be parametrized as 𝑓􀁮(𝒙) = 𝝍(𝒙)𝑇𝜽􀁮 and
𝑓􀁯(𝒙) = 𝝍(𝒙)𝑇𝜽􀁯 respectively. As 𝑓􀁮 ≠ 𝑓􀁯 also 𝜽􀁮 ≠ 𝜽􀁯. By assumption one
needs to have (𝑓􀁮 +𝑔􀁮)(𝒙) = (𝑓􀁯 +𝑔􀁯)(𝒙) for all 𝒙 ∈ ℝ𝐷. In particular this has to
hold if 𝒞 is applied to both sides. By construction one has 𝒞 𝑔􀁮 = 𝒞 𝑔􀁯 = 𝟎𝑀.
Therefore 𝜳𝒮 𝑓􀁮 = 𝜳𝜳𝑇𝜽􀁮 = 𝜳𝜳𝑇𝜽􀁯 = 𝜳𝒮 𝑓􀁯. As 𝜳 has full rank it
follows 𝜽􀁮 = 𝜽􀁯 which is a contradiction. ⬜

It now follows from Proposition 5.6 that one can write

ℋ ∶= ℱ ⊕ 𝒢𝑒𝑞.

Then for any ℎ􀁮 = 𝜽𝑇􀁮𝝍 + 𝑔􀁮 and ℎ􀁯 = 𝜽𝑇􀁯𝝍 + 𝑔􀁯 one can define the inner
product ⟨ℎ􀁮, ℎ􀁯⟩ ∶= 𝜽𝑇􀁮𝜽􀁯 + ⟨𝑔􀁮, 𝑔􀁯⟩𝐾𝑒𝑞 that turns 𝒢𝑒𝑞 and ℱ into orthogonal
complements. The corresponding norm is ‖ℎ‖ ∶= √⟨ℎ, ℎ⟩. Denoting by𝒫𭒢𝑒𝑞

the projection onto 𝒢𝑒𝑞 by the representer theorem, the solution of (5.16) is
given by (5.17) where 𝜽 ∈ ℝ𝑀 and 𝜶 ∈ ℝ𝑁 can be found in closed form by
solving a system of linear equations similar to (5.4). Since in the current
setting one has 𝜳𝜴𝑒𝑞𝜶 = 𝟎𝑀, similar arguments as in Lemma 5.2 can be
used to established that 𝜽 is given by 𝜽𝑂𝐿𝑆. Once the parametric part has
been computed, one can also find the nonparametric part starting from the
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residuals 𝒓 = 𝒚 − 𝜳𝑇𝜽𝑂𝐿𝑆 and solve (𝜴𝑒𝑞 + 𝜆𝑰)𝜶 = 𝒓. The final model (for
out-of-sample prediction) is given by (5.17) in terms of 𝜶, 𝜽 and the equivalent
kernel function 𝐾𝑒𝑞 that is given in terms of the original kernel 𝐾 , the training
data {𝒙𝑡}𝑁𝑡=􀁮 and the parametric basis functions {𝜓𝑖}𝑁𝑖=􀁮.

5.6 Experiments

To validate the modified model structure it is compared to existing ones
on a simulation example as well as a real life data set. For simplicity and
interpretability the considered parametric model class for both examples is a
linear ARX model. The different model structures that are evaluated are

PAR purely parametric models

SVM, LS-SVM purely kernel based black box models,

RES (LS-SVM) parametric model with kernel based model for residuals (cf.
Remark 5.2),

PL (LS-SVM) partially linear model without orthogonality constraints (cf.
Eq. (5.5)) and

OPL (LS-SVM), OPL (SVM) partially linear models with orthogonality con-
straints (cf. Eqs. (5.8) and (5.14)).

5.6.1 Experimental setup

For all experiments the parametric part is taken to be linear, i.e.𝝍(𝒙) = 𝒙, while
the nonparametric contribution is modeled with a RBF kernel. The tuning
parameters of the nonlinear models (kernel parameters and regularization
constant) are selected according to one-step ahead prediction performance
on a validation set using grid search.

Remark 5.3 (Necessity to employ orthogonality constraints). It has been shown
that if the Gaussian kernel is used in combination with a linear model, the
corresponding spaces allow unique decompositions [Ha Quang et al., 2009].
Therefore the experimental conditions satisfy the conditions for classical par-
tially linear models as given in Subsection 5.5.1. Although given in an RKHS
setting, it also applies to the primal-dual framework, i.e. a partitioning of the
regression variable is not needed. Therefore the addition of the orthogonality
constraint is, at least theoretically, not necessary and the PL (LS-SVM) model
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structure satisfies its assumptions. However the examples indicates that in
case of small but realistic sample sizes (> 1000 samples) an improvement by
using the constraint can be observed. This is due to the finite subsample size
as outlined in Subsection 5.2.1.

In addition to the root mean squared error (RMSE) on independent data the
parametric estimates are compared. In case of the simulation data this is done
with a metric for ARMA systems while for the real world data, the estimated
frequency response functions are plotted.

Remark 5.4 (Metric for ARMA systems [Martin, 2000]). This metric com-
pares the spectra of linear systems and, as such, is independent of their
parametrization. Elaborate arguments why this metric is better in terms of
system-theoretic properties than e.g. comparing AR coefficients are given
in the reference. For two stable AR systems 𝑆𝐴, 𝑆𝐵 with poles 𝑝𝐴𝑖 , 𝑝𝐵𝑗 , 𝑖 =
1, … , 𝑃𝐴, 𝑗 = 1, … , 𝑃𝐵 the metric can be computed as

𝑑(𝑆𝐴, 𝑆𝐵) = ln
⎛
⎜
⎜
⎝

∏𝑃𝐴
𝑖=􀁮
∏𝑃𝐵

𝑗=􀁮 |1 − 𝑝
𝐴
𝑖 𝑝𝐵𝑗

∗|􀁯

∏𝑃𝐴
𝑖,𝑗=􀁮(1 − 𝑝

𝐴
𝑖 𝑝𝐴𝑗

∗)∏𝑃𝐵
𝑖,𝑗=􀁮(1 − 𝑝

𝐵
𝑖 𝑝𝐵𝑗

∗)

⎞
⎟
⎟
⎠

where 𝑥∗ denotes the complex conjugate of 𝑥. The generalization to stable
ARX systems is given by Martin [2000]. A drawback of this metric is that it
applies equal weight to all frequencies, which might not be intended in some
situations.

5.6.2 Toy example

To illustrate the behavior of the different model classes, consider a simple
static one dimensional toy example 𝑦𝑡 = 𝑥𝑡+𝑥􀁯𝑡 +sin(𝑥𝑡)+cos(𝑥𝑡)+𝑒𝑡. Both input
and noise are normally distributed with mean zero. The standard deviation
for the inputs is 1 and for the noise 0.1 respectively. The size of the estimation
set for each model is 100 samples. The validation set used to select the tuning
parameters is of size 500 and so is the independent test set for evaluating the
prediction performance. To obtain insight into the stability of the estimates
1000 realizations of the data are tested. For this example the parametric model
is defined as 𝝍(𝑥) = [1, 𝑥, 𝑥􀁯]𝑇 and the nonparametric model is based on a RBF
kernel. Several properties of the model structures are compared in Table 5.1.

As motivated in the introduction, the prediction performance of the par-
tially linear models should be better than a purely parametric and a purely
nonparametric model. For this example PL slightly outperforms OPL and
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RES but all satisfy the objective. While the good performance of RES is most
likely due to the rather simple structure of the problem, the advantage of
PL is due to the higher flexibility of this model structure. An indication for
this flexibility is also the large fraction of the estimate contributed by the
nonparametric part. Instead of 11% for OPL and RES, it is is on average at
76% for PL with a very large variability compared to the others.

The second objective is to obtain an estimate for the parametric part that
is as good as the OLS one. Analyzing the mean is of limited usefulness in
this example as 𝑥 + 𝑥􀁯 and the nonparametric part sin(𝑥) + cos(𝑥) are highly
correlated. Therefore the comparison is focused on the variance. As can be
seen in Table 5.1, it is many times larger for PL than for OPL. The histograms
depicted in Figure 5.2 for the parameter values show that, for this example,
there seem to be at least two distinct decompositions that result in a similar
predictive performance in case of PL.

This observation is consistent with many other simulations, showing a
high variability for PL models. Only very few examples exhibited a smaller
variability for PL than for OPL. However, in these cases both models resulted
in stable estimates.

5.6.3 Mass-Spring-Damper system

To further evaluate the proposed method, it is tested on a simple mass spring
damper system with two masses and springs with cubic nonlinearities as
depicted in Figure 5.3. The system is described as

𝑚􀁮𝑠̈􀁮 = −𝐿􀁮𝑓􀁮(𝑠􀁮) + 𝐿􀁯𝑓􀁯(𝑠􀁯 − 𝑠􀁮) − 𝐶􀁮𝑠̇􀁮 + 𝐶􀁯(𝑠̇􀁯 − 𝑠̇􀁮),
𝑚􀁯𝑠̈􀁯 = −𝐿􀁯𝑓􀁯(𝑠􀁯 − 𝑠􀁮) − 𝐶􀁯(𝑠̇􀁯 − 𝑠̇􀁮) + 𝐹𝑢,

𝑦 = 𝑠􀁯, 𝑓􀁮(𝑥) = 𝑥 + 0.02𝑥􀁰 and 𝑓􀁯(𝑥) = 𝑥 + 0.005𝑥􀁰. The states 𝑠􀁮 and 𝑠􀁯 are the
displacement of mass 1 and mass 2 from rest, respectively. The constants are
chosen as 𝑚􀁮 = 5 kg, 𝑚􀁯 = 0.1 kg, 𝐿􀁮 = 1.5N/m, 𝐿􀁯 = 0.5N/m, 𝐶􀁮 = 0.3Ns/m
and 𝐶􀁯 = 0.05Ns/m. The output 𝑦 is sampled with 4Hz and the excitation
force 𝐹𝑢 is given by a Gaussian white noise process 𝑢𝑡. The equations are
simulated using MATLAB’s ode45, a zero order hold stage for the input
signal and zero initial conditions. For each realization of the input signal and
every amplitude value, 4000 samples are generated. The first 400 samples
of each data set are discarded to exclude transient behavior. To compare
measurements with different amounts of nonlinearity, excitation amplitudes of
{0.1, 0.3, 0.5, 0.75, 1, 1.25, 1.5, 2} are tested. This accounts to different fractions
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Figure 5.2: Histograms of parameter estimates for the toy example over 1000
realizations of the data. The light gray histograms are for PL and
the dark gray ones are for OPL respectively.
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Table 5.1: Comparison of model structures for the toy example. All reported
values are mean values averaged over 1000 realizations of the
data with the standard deviation given between parenthesis. Pre-
dictive performance (perf) is given as relative RMSE: RMSE(𝑦̂𝑡 −
𝑦𝑡)/RMSE(𝑦𝑡). “% nonpar” is the percentage of the model output
contributed by the nonparametric part (RMSE(𝑦̂􀂛􀂜􀂛􀂝􀂎􀂟,𝑡)/RMSE(𝑦̂𝑡)).
The remaining columns are the parameter estimates.

model perf % nonpar 𝜃̂􀁮 (∼ 1) 𝜃̂􀁯 (∼ 𝑥) 𝜃̂􀁰 (∼ 𝑥􀁯)

PAR 0.12 0 0.92 1.63 0.68
(0.02) (0) (0.06) (0.06) (0.08)

LS-SVM 0.07 100 – – –
(0.03) (0)

RES 0.05 11 0.92 1.63 0.68
(0.01) (2) (0.06) (0.06) (0.08)

PL 0.04 74 0.77 0.63 1.02
(0.18) (46) (1.29) (0.48) (0.18)

OPL (LS-SVM) 0.05 11 0.92 1.63 0.68
(0.01) (2) (0.06) (0.06) (0.08)

𝐿􀁮

𝑚􀁮

𝑠􀁮 𝐿􀁯

𝑚􀁯

𝑠􀁯

𝐹𝑢

𝐶􀁮 𝐶􀁯

Figure 5.3: Mass-spring-damper system with nonlinear springs.
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Figure 5.4: Prediction performance of different model structures for the mass
spring damper system on an independent test set as a function of
excitation amplitude. The root mean squared error for simulated
outputs averaged over ten input realizations is being reported.

of the system not being captured by the parametric (linear) model. For each
amplitude the estimation is performed for ten realizations of the input signal.
All data sets are split in three parts of equal size for model estimation, model
validation and test.

Figure 5.4 depicts the simulation performance for different model struc-
tures. The model orders are as follows 𝑝 = 𝑞 = 13 for PAR and 𝑝 = 𝑞 = 10
for all other models, where the input variable 𝒙𝑡 has NARX structure with
𝒙𝑡 = [𝑦𝑡−􀁮, … , 𝑦𝑡−𝑝, 𝑢𝑡−􀁮, … , 𝑢𝑡−𝑞]𝑇 . For a fair comparison the input sequence 𝑢𝑡
as well as the output sequence 𝑦𝑡 are normalized to unit variance for each
amplitude. As it can be expected the linear model is best for small amplitudes
but degrades quickly as the amplitude increases. The nonlinear black box
models LS-SVM and SVM are the best models for “large” amplitudes. Model-
ing the residuals is clearly inferior to all other approaches as it is never better
than the linear model. Finally the partially linear structures give improved
prediction performance for a number of amplitudes. Imposing orthogonality
constraints yields slightly worse predictive performance than using a partially
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Figure 5.5: Distance of the estimated parametric submodel to the “true” lin-
ear model for the mass-spring damper system for several model
structures as a function of the excitation amplitude. The models
PAR, OPL (LS-SVM) and RES (LS-SVM) have identical distances.
Error bars indicate the standard deviation for ten realizations of
the input signal. The comparison is based on the ARMA metric
proposed in [Martin, 2000].

linear structure without constraints.
Setting 𝑓􀁮(𝑥) = 𝑓􀁯(𝑥) = 𝑥, i.e. linearizing the springs, a “true” linear system

can be obtained. Using MATLAB’s c2d a discrete time transfer function
is computed from the continuous time system described above. The “true”
linear system is of order four while the identified models are of orders thirteen
and ten. Therefore the ARMA metric described earlier is used to compare
the estimated with the “true” model. The result is shown in Figure 5.5. It
can be seen that for small amplitudes the partially linear model is close to
the linear estimate. Yet for larger amplitudes it quickly diverges away from
the linear estimate and not only has a larger distance from the “true” linear
model but the estimates also have a larger variance. While both partially
linear structures move away from the “true” linear model as the excitation
amplitude increases, the models with orthogonality constraints degrade more
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gracefully than those without.
In conclusion, both partial linear structures yield better predictive perfor-

mance than a parametric or nonparametricmodel alone. The unique advantage
of using orthogonality constraints is that the estimate for parametric part
has a much smaller variance and also is much closer to the “true” underlying
model as seen in Figure 5.5.

5.6.4 Wiener-Hammerstein benchmark data

To test on a real life data set, the data of the Wiener-Hammerstein benchmark
[Schoukens et al., 2009] at SYSID2009 is considered. As it serves as a test
problem, only a small subset of the 188,000 measured samples is taken. For
model estimation and validation 2,000 samples are used each. The prediction
performance is computed on 5,000 independent samples.

The results are shown in Table 5.2, the reported values are for outputs nor-
malized to unit variance. It can be seen that roughly the same behavior as with
the simulated data is present. The partially linear models improve over the
purely linear and purely nonlinear models. Using orthogonality constraints
results in a slight degradation of prediction performance as observed in the
previous section. In tests with small estimation sample sizes the prediction
performance of OPL (LS-SVM) is better than PL (LS-SVM) up to a sample size
of about 200. Figure 5.6 shows transfer functions derived from the parametric
model parts. The estimation is done for 20 subsamples of size 300. One can
observe that the OPL structures are much closer to the reference spectrum
given by the Best Linear Approximation than the PLmodel. Also its variability
is much smaller.

5.7 Conclusions

This chapter reviewed existing classical partially linear models in Section 5.1
in a primal-dual setting and in Subsection 5.5.1 in a RKHS setting respectively.
The analysis of the existing model structures in Section 5.2 led to the introduc-
tion of a novel orthogonality constraint. This constraint ensures that, if the
model classes of the parametric model part and the kernel model overlap, the
kernel model is constrained such that the parametric model is not affected.
This is also ensured for finite sample sizes for which otherwise even for dis-
joint model classes, the parametric model part cannot be estimated properly.
This was illustrated on numerical examples. Both the classical as well as the
modified partially linear model class have a better predictive performance
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Figure 5.6: Estimated transfer functions for the proposed model with orthog-
onality constraints (OPL (LS-SVM), top) and classical partially
linear models (PL (LS-SVM), bottom). The estimates are obtained
for 20 different training samples of size of 300 taken out of the
Wiener-Hammerstein benchmark dataset. Each light gray line
corresponds to one realization, the thick black line indicates the
median value while the dashed line gives the Best Linear Approx-
imation [Schoukens et al., 2003] estimated on the full dataset as
reference. The excitation signal was subject to low-pass filtering
with a cut-off frequency of 10 kHz.
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Table 5.2: Performance of different model structures on a subsample of the
Wiener-Hammerstein benchmark dataset. The performance is re-
ported as root mean square error for simulation values.

model training data validation data testing data

PAR 0.164 0.168 0.230
LS-SVM 0.067 0.135 0.183
SVM 0.053 0.079 0.139
RES (LS-SVM) 0.162 0.155 0.222
PL (LS-SVM) 0.037 0.068 0.133
OPL (LS-SVM) 0.091 0.094 0.166
OPL (SVM) 0.051 0.071 0.140

compared to purely parametric and to purely kernel based models. However
the estimates for the parametric part exhibit large variations and deviate
significantly from the OLS estimate for the classical partial linear models. In
contrast to this, the estimates of the proposed partial linear model structures
have a small variability and show a good agreement with existing estimates.
In case the model with the best predictive performance is sought, then the
classical partially linear model structure is best. However in this case the user
has be aware of the effect this can have on the parametric estimate and must
be extremely cautious when attaching it to any kind of interpretation.

Additionally the results were considered in the context of RKHSs which
offered insights on how the new model class is related to the old one. For the
primal-dual formulation an alternative estimation scheme was derived that
allows estimating both model parts separately from each other. For better
integration with existing approaches the orthogonality constraint has been
embedded in an equivalent kernel function. Finally it has been demonstrated
that the extension to some alternative loss functions is straightforward on the
example of SVMs.





6Modeling systems with multiple
outputs

The motivation for the research presented in this chapter is twofold. On the
one hand, it picks up a recently popular way of regularization, specifically
nuclear norm regularization, and applies it to kernel based modeling in a
primal-dual framework. On the other hand there is an interest from the
application point of view, where it is beneficial when knowledge about one
system, or part of one system, can be used to improve the estimate of a similar
system, or another part of the same system. The next paragraphs should give
a rough overview of this chapter, starting with motivation as well as means.
A larger part will discuss the challenges identified so far and provide some
insight to what extent they have been solved. In general, the results presented
in this chapter are only preliminary and in many areas incomplete. Therefore
the intention is mostly to report the current status of this line of research and
provide some personal opinion on which areas will need most attention and
what would be the benefit if progress can be made.

6.1 Introduction

6.1.1 Possible applications

The application brought up in the first paragraph is to share information
about similar systems. To illustrate the intention and its potential use, three
hypothetical examples will be given.

91
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1. Consider a state space system and the objective is to predict the future
state trajectory from past data. For the sake of simplicity, assume that
the system has only one input and that the system is observable from
each of its multiple observed outputs. Then it is obvious that one has
access to several sets of measurements that allow the reconstruction
of the system dynamics. In the linear case, the measurements will be
different linear combinations of the system state, probably subject to
some measurement noise. For this linear case this knowledge, that the
different measured signals relate to the same system, can be readily
exploited by, for example, subspace identification. For the quite general
setting of this thesis, nonlinear systems with nonparametric kernel
based models, such methods are not generally known.

2. Another example where one has access to multiple sets of data that
relate to basically the same dynamical system can be found in other
chapters of this thesis, namely those making use of overparametrization
to overcome nonconvexity. The most straightforward example is that
of a Hammerstein system. Consider a static nonlinearity 𝑓(⋅) driving a
linear system that can be modeled by a finite impulse response system
𝐻(𝓏) = ∑𝑞

𝑘=􀁭 𝑏𝑘𝓏
−𝑘. Now modeling the output 𝑦𝑡 as a function of the

input 𝑢𝑡, yields

𝑦𝑡 =
𝑞

∑
𝑘=􀁭

𝑏𝑘𝑓(𝑢𝑡−𝑘), (6.1)

where noise is neglected for the sake of simplicity. It is straightforward
to realize that this accounts to measuring a linear combination of the
common nonlinear system 𝑓.

3. As last motivating example, consider the following real world scenario.
To distribute power in current electricity networks it is of paramount
importance to have accurate knowledge of power demands and sources.
Only then it can be distributed correctly in the network. To facilitate
this and make it more effective, there is also interest to forecast de-
mands as well as available power at a given time in the future. This
is even more important nowadays as power is traded on international
markets and – especially renewable – energy sources are highly volatile
over time. Looking at the demand side, one usually has measurements
at substations distributed around the transmission network. Concen-
trating on a very simple situation one has substations located in (i)
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purely residential areas, where power consumption is concentrated on
mornings, evenings and weekends, (i) purely office like environments
that consume most energy between 9-to-5 and only during workdays
and finally (iii) purely industrial areas, which have very regular profiles
and may for example operate on two shifts. While substations in each
of these hypothetical areas will have their specific profiles, there are
chances that a residential profile in village A is very similar to a residen-
tial profile in village B. In fact it has been demonstrated [Alzate et al.,
2009] that for the Belgian power distribution network one can identify a
number of distinct profiles with which almost all of the substations can
be described. Again there is the situation where one has access to data
for which a large number of measurements can possibly be explained
by a much smaller number of dominant behaviors.

6.1.2 Technical approach and theoretic setting

From a purely optimization point of view, basically all of the above problems
can be transformed into a formulation where the objective is to minimize
the number of independent components. Assuming that one has a suitable
and rich enough basis to describe those problems, one can focus on linear
independence. One of the key ideas in kernel based modeling, especially in
a primal-dual setting, is that an inherently nonlinear problem can be solved
using linear means by projection into a high dimensional space. Under the
assumption that this is also feasible once more than one system is considered
at the same time, one can focus on minimizing a number of linear independent
components. The advantage of the primal-dual framework is that models
are explicitly parametrized in the primal. Hence, a problem which aims at
modeling𝑀 systems will usually be described by𝑀 sets of parameters, which
will conveniently be denoted by 𝒘𝑚, 𝑚 = 1,… ,𝑀 for the remainder of this
subsection. Now the number of independent models in the set {𝒘𝑚}𝑀𝑚=􀁮 is equal
to rank(𝑾) where 𝑾 = [𝒘􀁮, … ,𝒘𝑀] is the concatenation of the individual
model parameters.

Summarizing the above, it turns out that the problem can be treated as
an optimization problem involving the rank of a suitably defined matrix of
parameters. Rank based optimization is a highly nonconvex problem, but
due to its many applications has gained significant interest in the last decade.
On the one side there are approaches that tackle the complexity directly on
the optimization side with techniques like optimization on manifolds [Absil
et al., 2008]. On the other side there is a growing community that looks into



94 Modeling systems with multiple outputs

a specific convex relaxation of the rank problem. In the context of system
identification the nuclear, or trace norm, was proposed by Fazel as the convex
envelope of the rank function [Fazel et al., 2001; Fazel, 2002]. Fazel also gave
a transformation into SDP form suitable for general purpose solvers. This
has been picked up in different areas, the most prominent probably being
compressed sensing. In this context special purpose algorithms have been
derived, mostly based on recent advances in first-order optimization. These
improved algorithms are capable of handling much larger problems as the
memory demand is much smaller and it is often possible to exploit problem
specific structure to speed up computations. On the downside, gradient based
algorithms need fairly results.

In the context of learning functional relations from data the work of Ar-
gyriou et al. [2008, 2009] derives many fundamental results.

6.1.3 General setting and identified difficulties

In the context of this chapter, the goal is to find joint kernel based models
for groups of models, where it is assumed that all systems can be described
as a linear combination of a few prototype models. Two additional technical
design choices are that the approach should rely on (i) convex optimization
as well as (ii) primal-dual model descriptions. As will be seen in the next
section, the problem formulation in this setting is rather straightforward once
the nuclear norm is chosen. The encountered challenges in a primal-dual
framework are threefold. The first challenge in kernel based models is that the
primal formulation is only implicitly defined and possibly infinite dimensional.
Therefore for numerical solution, the problem has to be transformed into an
explicitly defined, finite dimensional problem. In the conventional setting
outlined in Chapter 4 the derivation is straightforward mainly due to the
presence of a simple quadratic regularization term. However, in this case
the process involves several new approaches. The second problem is that
once the problem has been transformed into a finite dimensional problem, the
relation to the original model equations is lost. Although a numerical solution
to the optimization problem can be obtained, there is no access to the model
parameters without linking the dual solution variables with the primal ones
used to describe the model. The last problem is then of more practical nature
and concerns numerically efficient means to solve the optimization problem
and establish the aforementioned link between primal and dual parameters.

The first problem of dualizing the optimization problem, transforming it
into a finite dimensional and explicitly defined problem is solved in Section 6.4.
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The derivation is different from the traditional one in Chapter 4 but quite
general and also employed in similar form in Chapters 9 and 10.

The problem of linking the dual solution to the primal problem specification
is particular to the setting in this thesis. In kernel based learning and system
identification, optimization is a tool used to find good parameters for a specific
model structure. In the kernel based setting the model is parametrized as
a primal optimization problem and it is of crucial importance that values
for the chosen parameters are obtained, as otherwise the model cannot be
evaluated. In Section 6.5 such a relation is established. However the derived
connection has several limitations: i) in general another optimization problem
has to solved to establish a link between primal variables and dual solution, ii)
there are multiple ways to compute the relation, iii) none of these approaches
is elegant and maybe most importantly iv) no intuition or insight into the
problem is gained in the process. Therefore it is my personal opinion that
another link can still be found that not only connects the two representations
but also gains additional information in the process.

The third challenge in the methodology introduced in this chapter is of more
practical matter. The necessary optimization problems are very expensive to
solve. The current situation for suitable algorithms offers two compromise
solutions. On the one hand there is the possibility to treat the resulting
problems as SDPs and use general purpose solvers for such problems. On the
positive side this has the advantage that the implementation is straightforward
and requires only little effort. Also the results usually have a very high
numerical precision which is important for linking primal and dual solutions
as discussed in the previous paragraph. On the downside the available general
purpose solvers are slow and only capable of solving problems with relatively
few optimization variables.

The latter is a problem especially in the context of this chapter because
collections of models are being optimized in a joint approach. Therefore the
number of free parameters is the number of parameters of a single model
times the number of models. As a consequence, the computational demand
that would already be substantial for a single model is multiplied by the
number of models considered. The situation for kernel based models is even
worse. One advantage of classical kernel based models is that the number of
variables scales with the number of available data and not with the number of
model parameters, which can go to infinity for certain choices of the kernel
function. In the present context this has a severe consequence, whereas
a single system might be associated with 𝑁 data samples, 𝑀 systems will
usually have 𝑁 data samples each, resulting in a total of𝑀 ⋅ 𝑁 data samples.
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Now recall that a kernel matrix is square in the number of data. Hence
the available memory of the employed computing hardware is limiting the
number of models or data that can be analyzed in practice. For better intuition
consider the availability of 1GB for storing the kernel matrix alone, not
exploiting symmetry and assuming double precision representation of the
matrix elements, then the product𝑀 ⋅ 𝑁 can be 11,000. While this may seem
plenty, consider that for interesting situations the number of individual models
𝑀 can easily range between 10 and 100. This limits the processable data per
model quite drastically.

As an alternative to general purpose SDP solvers, one can consider first-
order optimization techniques. These recently gained much interest and
progressed quickly due to the demands in the compressed sensing community.
The advantages of these algorithms are that their complexity per iteration is
low, they can handle large problems, allow structure in the problem to be ex-
ploited, can be warm-started and are relatively straightforward to implement.
Apart from these attractive characteristics they also feature several important
disadvantages. No general purpose solvers exist that could be employed, but
the optimization algorithm needs to be implemented by the user, the number
of iterations until convergence is usually very high and the absolute numerical
performance is in general worse than that of general purpose interior-point
algorithms. Especially this last point makes their application very difficult for
the material presented in this chapter as the link between primal and dual
solutions is very sensitive to the quality of the results.

In conclusion, for the third problem there are two possible choices of algo-
rithms that both have advantages and disadvantages relevant to the current
setting. Which one to choose is basically an open problem as both choices do
not give overall satisfactory results at the moment. Therefore either progress
has to be made on an algorithmic level or the algorithmic challenges have to
be solved by more clever approaches in the modeling. From a personal point
of view, most potential is in making progress towards solving the second
challenge identified in one of the paragraphs further above. Depending on
the nature of the progress the need for extremely accurate solutions could be
relaxed so that the relatively flexible and fast first-order algorithms can be
employed.

6.1.4 Structure of chapter

The chapter is structured as follows. The following section will formally state
the estimation problem. First in its conventional form directly derived from
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the basic LS-SVM model and finally proposing an improved version. Due to
the more complex form of the optimization problem some of its properties
are derived in Section 6.3. The transformation of the parametric primal model
to the kernel based dual model is carried out in Section 6.4. In contrast to the
straightforward derivation of the dual model representation with LS-SVMs,
the more involved procedure necessary in this case is presented in Section 6.5.
Following that, the basic formulation derived in the previous sections is
extended to the case where each output variable can be modeled by different
input variables. This derivation includes the possibility to account for different
amounts of measurement data for each target variable, as for example with
missing data. Extensions to other convex loss functions besides the squared
loss function, like the 𝜀-insensitive or the Huber loss [Huber and Ronchetti,
2009] can be derived in a straightforward fashion. However, this task is
left as an exercise for the interested reader. The last extension discussed
in Section 6.6 are overparametrized models, which will play an important
role in the next chapters. The solution of the convex optimization problems
is discussed in Section 6.7. This section considers both, general purpose
semidefinite programming (SDP) solvers as well as approaches based on first
order algorithms, especially gradient projection algorithms. For validation a
numerical example is given in Section 6.8, before the chapter is concluded in
the last section.

6.2 Formal problem formulation and motivation

The goal of this chapter is to jointly model multivariate time-series. These
time-series can be generated by a single systemwithmultiple measured output
variables, multiple related systems or some other process. In this general
setting one is given measurement data {(𝒙𝑡, 𝒚𝑡)}𝑁𝑡=􀁮 with regression variables
𝒙𝑡 ∈ ℝ𝐷 and target variables 𝒚𝑡 ∈ ℝ𝑀.

6.2.1 Choice of model structure

If one denotes the 𝑖-th target variable with a superscript (𝑖) then a simple
parametric model is given by

𝑦̂(𝑖)𝑡 = 𝑓𝑖(𝒙𝑡) = 𝒘𝑇
𝑖 𝝋(𝒙𝑡) + 𝑏𝑖 (6.2)

where the components of 𝝋(⋅) ∶ ℝ𝐷 → ℝ𝑛ℎ form a set of 𝑛ℎ linearly indepen-
dent basis functions and𝒘𝑖 ∈ ℝ𝑛ℎ and 𝑏𝑖 ∈ ℝ are the model parameters for the
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𝑖-th target variable 𝑦(𝑖)𝑡 = (𝒚𝑡)𝑖. In this case 𝑓𝑖 is the nonlinear relation between
the input variables and a single output variable.

The relation in (6.2) is a convenient one, but often will not map well to a
system identification setting. In a typical system identification problem, the
input variable 𝒙𝑡 will be of ARX structure, i.e. 𝒙𝑡 = [𝑦𝑡−􀁮, … , 𝑦𝑡−𝑝, 𝑢𝑡, … , 𝑢𝑡−𝑞]𝑇 .
This brings forward a complication; in the situation analyzed here, there
is more than one output variable 𝑦𝑡 and possibly different relevant input
variables 𝑢𝑡. Therefore two approaches can be considered:

1. One can define a joint regression vector 𝒙𝑡 aggregating the information
of input and output variables, like 𝒙𝑡 = [𝑦(􀁮)𝑡 , … , 𝑦

(􀁮)
𝑡−𝑝, … , 𝑦

(𝑀)
𝑡 , … , 𝑦(𝑀)

𝑡−𝑝 ]𝑇
where for simplicity exogenous variables have been neglected. This has
the advantage that it fits the framework given by (6.2). However the
dimensionality of 𝒙𝑡 can get very large and a lot of irrelevant information
is provided to the individual models.

2. The second option is to define a regression vector per output variable.
In this setting one would define 𝒙(𝑖)𝑡 = [𝑦(𝑖)𝑡−􀁮, … , 𝑦

(𝑖)
𝑡−𝑝], again neglecting

possible exogenous variables. The obvious advantage of this strategy is
that the dimensionality of 𝒙𝑡 is identical to the univariate modeling case.
The drawback of this choice is that the model (6.2) has to be modified
to

𝑦̂(𝑖)𝑡 = 𝑓𝑖(𝒙𝑡) = 𝒘𝑇
𝑖 𝝋(𝒙

(𝑖)
𝑡 ) + 𝑏𝑖. (6.3)

This however will increase the numerical complexity of the problem
as was already briefly mentioned in the introduction and will become
evident further along in the text.

To keep the presentation as straightforward as possible, the initial derivation
will be carried out for the first possibility with a unique regression vector
𝒙𝑡. In Subsection 6.6.1 the generalization to different regression vectors per
target variable is briefly presented.

6.2.2 Conventional estimation problem

The model (6.2) is chosen such that it mimics the primal formulation of LS-
SVMs as introduced in Chapter 4. Therefore a basic estimation scheme would
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formulate𝑀 independent estimation problems such as

min
𝒘𝑖,𝑏𝑖,𝑒

(𝑖)
𝑡

1
2
𝜂𝒘𝑇

𝑖 𝒘𝑖 +
1
2

𝑁

∑
𝑛=􀁮
(𝑒(𝑖)𝑡 )􀁯

subject to

𝑦(𝑖)𝑡 = 𝒘𝑇
𝑖 𝝋(𝒙𝑡) + 𝑏𝑖 + 𝑒

(𝑖)
𝑡 , 𝑡 = 1, … ,𝑁,

(6.4)

for 𝑖 = 1, … ,𝑀. The first potential to couple the estimation problem is through
the model residuals 𝑒(𝑖)𝑡 . Therefore let𝑾 = [𝒘􀁮, … ,𝒘𝑀], 𝒃 = [𝑏􀁮, … , 𝑏𝑀]𝑇 and
𝒆𝑡 = [𝑒

(􀁮)
𝑡 , … , 𝑒

(𝑀)
𝑡 ]𝑇 , then the previous estimation problems can be reformulated

as

min
𝑾,𝒃,𝒆𝑡

1
2
𝜂‖𝑾‖􀁯𝐹 +

1
2

𝑁

∑
𝑡=􀁮

𝒆𝑇𝑡 𝑻𝒆𝑡

subject to
𝒚𝑡 = 𝑾 𝑇𝝋(𝒙𝑡) + 𝒃 + 𝒆𝑡, 𝑡 = 1, … ,𝑁.

(6.5)

The matrix 𝑻 ∈ ℝ𝑀×𝑀 is a positive definite weighting matrix. One possible
use case of this weighting is to establish different regularization values 𝜂 for
each one of the components, which corresponds to a diagonal weighting. For
more complex cases with nonzero elements off the main diagonal, problem
(6.5) cannot be decoupled to (6.4) anymore. It is straightforward to see that
‖𝑾‖􀁯𝐹 = ∑𝑀

𝑖=􀁮𝒘
𝑇
𝑖 𝒘𝑖 as well as that the constraint of (6.5) is a concatenation of

the constraints of (6.4) for 𝑖 = 1, … ,𝑀.

6.2.3 Improved estimation problem

In the introduction it has been motivated that in many practical problems the
models for the𝑀 target variables will not be independent. In that case the
matrix𝑾 will be rank deficient. Especially for a large number of variables
one can assume that rank(𝑾) should be small. This belief or intuition can be
translated into a mathematically viable optimization problem by employing
the nuclear norm introduced in Section 3.3.3.

Assume that the parameter matrix𝑾 is generated by 𝐿 independent com-
ponents such that it can be written as𝑾 = ∑𝐿

𝑙=􀁮 𝒗𝑙𝒖
𝑇
𝑙 , with 𝒗𝑇𝑙 𝒗𝑘 = 𝒖𝑇𝑙 𝒖𝑘 = 0

for 𝑙 ≠ 𝑘 and 𝒖𝑇𝑙 𝒖𝑙 = 1 for 𝑙 = 1, … , 𝐿. Then the nuclear norm of 𝑾 can
be expressed in terms of its independent components as ‖𝑾‖∗ = ∑𝐿

𝑙=􀁮 ‖𝒗𝑙‖.
Considering this as a regularization term allows for several interpretations:
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1. The regularization applied to each component individually ‖𝒗𝑙‖ is very
similar to that of an individual model in (6.2) 𝒘𝑇

𝑖 𝒘𝑖. The difference
between the ℓ􀁯-norm on the one hand and the squared ℓ􀁯-norm on the
hand is negligible as, for an individual model, one can be transformed
into the other.

2. The sum over the individual components corresponds to an ℓ􀁮-norm
over the components. This means that the optimization algorithm
will try to find a solution where only a few components have a norm
different from zero.

This motivates the change of the regularization term in (6.5) to the nuclear
norm. This ensures that the optimal solution𝑾 ∗ for

min
𝑾,𝒃,𝒆𝑡

𝜂‖𝑾‖∗ +
1
2

𝑁

∑
𝑡=􀁮

𝒆𝑇𝑡 𝑻𝒆𝑡

subject to
𝒚𝑡 = 𝑾 𝑇𝝋(𝒙𝑡) + 𝒃 + 𝒆𝑡, 𝑡 = 1, … ,𝑁,

(6.6)

will consist of only few dominant components.

6.3 Properties of parametric estimation problem

Most other chapters of this thesis consider problems with purely quadratic
loss functions and regularizations. These have the advantage that they are
very well understood. At the same time they have some convenient properties,
such as uniqueness and strong duality being straightforward to guarantee. For
the problem defined by (6.6) these can also be shown but require a little more
argument. Additionally this section considers the choice of the regularization
constant 𝜂. In ℓ􀁮-related optimization it is typical that starting at a specific
value of the regularization constant, the solution will remain constant.

6.3.1 Uniqueness of the solution

To simplify the analysis note that the estimation of 𝒃 in (6.5) and (6.6) is not
subject to regularization. Therefore it coincides with estimating the mean of
the data. Hence, it is possible to assume, without loss of generality, that the
data is zero mean and concentrate on solving the problem without 𝒃.

The least squares problem in (6.5) always has a unique solution as its ob-
jective is a strongly convex function [Boyd and Vandenberghe, 2004]. This
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follows from ‖𝑾‖􀁯𝐹 being strongly convex and the fact that the sum of a
strongly convex function with a convex function is again strongly convex.
For the nuclear norm penalty in (6.6) the uniqueness of 𝑾 is less obvious.
Therefore consider the following lemma.

Lemma 6.1. For 𝜂 > 0 the solution of (6.6) is unique in𝑾 , 𝒃 and 𝒆𝑡.

Proof. It has already been argued that 𝒃 is the average of the data and as
such it is unique. Considering the residuals 𝒆𝑡 = 𝒚𝑡 −𝑾 𝑇𝝋(𝒙𝑡) of a reduced
problem with zero mean data, a sufficient condition for their uniqueness
is the uniqueness of 𝑾 . Then eliminating the residuals 𝒆𝑡 yields the new
optimization problem

min
𝑾

1
2
‖(𝜱𝑇𝑾 − 𝒀𝑇 )𝑻

􀁸
􀁹 ‖􀁯𝐹 + 𝜂‖𝑾‖∗. (6.7)

A sufficient condition for the lemma to hold is that the solution to this problem
is unique. To show this, the variable 𝑾 will be decomposed into parts in
the range and the nullspace of𝜱 and𝜱𝑇 respectively. In a first step strong
convexity for the contribution in the range will be proved. The second step
then shows that the part in the nullspace is equal to zero.

An orthogonal basis for𝜱 is given by the singular value decomposition𝜱 =
𝑼􀁮𝜮􀁮𝑽 𝑇

􀁮 +𝑼􀁯𝜮􀁯𝑽 𝑇
􀁯 such that range(𝜱) = span(𝑼􀁮) and null(𝜱𝑇 ) = span(𝑼􀁯).

Then𝑾 can be decomposed in terms of this basis as𝑾 = 𝑼􀁮𝑿􀁮 + 𝑼􀁯𝑿􀁯 with
𝑿􀁮 = 𝑼􀁮𝑾 and 𝑿􀁮 = 𝑼􀁮𝑾 . Rewriting (6.7) in terms of this basis yields

min
𝑿􀁸,𝑿􀁹

1
2
‖(𝑽􀁮𝜮􀁮𝑿􀁮 − 𝒀𝑇 )𝑻

􀁸
􀁹 ‖􀁯𝐹 + 𝜂‖𝑼􀁮𝑿􀁮 + 𝑼􀁯𝑿􀁯‖∗. (6.8)

As 𝑻 is positive definite and hence has full rank, the first term is strongly
convex in 𝑿􀁮. As the sum of the convex term with a strongly convex term the
whole problem is unique in 𝑿􀁮. Thus it remains to be shown that 𝑿􀁯 = 𝟎.

Therefore suppose that 𝑿􀁯 ≠ 𝟎minimizes the nuclear norm term. In general
one has

‖𝑼􀁮𝑿􀁮 + 𝑼􀁯𝑿􀁯‖∗ = 􀉟 􀉾
𝑿􀁮
𝑿􀁯
􀊁 􀉟

∗

as the nuclear norm is unitary invariant. Hence, it does not change under left
multiplication of 𝑼𝑇 . Instead of looking at the singular values of [𝑿𝑇

􀁮 , 𝑿𝑇
􀁯 ]𝑇

one can equivalently consider the eigenvalues of

􀉼𝑿𝑇
􀁮 𝑿𝑇

􀁯 􀉿 􀉾
𝑿􀁮
𝑿􀁯
􀊁 = 𝑿𝑇

􀁮 𝑿􀁮 + 𝑿𝑇
􀁯 𝑿􀁯.
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Horn and Johnson [1990, Theorem 4.3.1] connect the eigenvalues of the sum
of symmetric matrices to the eigenvalues of the individual matrices. Let 𝜆𝑘(𝑿)
denote the 𝑘-th eigenvalue of 𝑿 ordered from small to large eigenvalues,
then 𝜆𝑘(𝑨 + 𝑩) ≥ 𝜆𝑘(𝑨) + 𝜆􀁮(𝑩). As 𝑿􀁯 ≠ 𝟎 one has 𝜆􀁮(𝑿𝑇

􀁯 𝑿􀁯) ≥ 0. Hence,
𝜆𝑘(𝑿𝑇

􀁮 𝑿􀁮 + 𝑿𝑇
􀁯 𝑿􀁯) ≥ 𝜆𝑘(𝑿𝑇

􀁮 𝑿􀁮). Furthermore note that tr(𝑿𝑇
􀁮 𝑿􀁮 + 𝑿𝑇

􀁯 𝑿􀁯) =
tr(𝑿𝑇

􀁮 𝑿􀁮) + tr(𝑿𝑇
􀁯 𝑿􀁯) > tr(𝑿𝑇

􀁮 𝑿􀁮) as 𝑿􀁯 ≠ 𝟎. One definition of the trace is
the sum of the eigenvalues. Using the first relation one can conclude that
all eigenvalues of 𝑿𝑇

􀁮 𝑿􀁮 + 𝑿𝑇
􀁯 𝑿􀁯 are at least as big as the corresponding

eigenvalue of 𝑿𝑇
􀁮 𝑿􀁮. The second relation states that the sum of eigenvalues

of 𝑿𝑇
􀁮 𝑿􀁮 + 𝑿𝑇

􀁯 𝑿􀁯 is strictly greater than the sum of eigenvalues of 𝑿𝑇
􀁮 𝑿􀁮. The

combination of these two relations shows that either 𝑿𝑇
􀁮 𝑿􀁮 + 𝑿𝑇

􀁯 𝑿􀁯 has at
least one additional positive eigenvalue or at least one of its eigenvalues is
strictly greater than the corresponding eigenvalue of 𝑿𝑇

􀁮 𝑿􀁮 or both. Due to
monotonicity, the same relation also holds for the singular values of [𝑿𝑇

􀁮 , 𝑿𝑇
􀁯 ]𝑇

and 𝑿􀁮. This concludes the proof as

􀉟 􀉾
𝑿􀁮
𝑿􀁯
􀊁 􀉟

∗
> 􀉟 􀉾

𝑿􀁮
𝟎 􀊁 􀉟∗

is a contradiction to the assumption that 𝑿􀁯 minimizes the norm. Therefore
𝑿􀁯 = 0 and the solution to (6.6) is unique. ⬜

6.3.2 Choosing the range of the regularization parameter

To select a model with good generalization performance the regularization
parameter 𝜂 needs to be chosen. To choose an appropriate range for 𝜂 consider
the following Lemma.

Lemma 6.2. For 𝜂 ≥ 𝜂􀁭 = 𝜎􀂚􀂎􀂥(𝜱𝑷⟂
􀁮 𝒀𝑇𝑻) the solution of (6.6) is given by

𝑾􀁭 = 𝟎 and 𝒃􀁭 =
1
𝑁
𝑻−􀁮𝒀𝟏𝑁 . (6.9)

Here, 𝑷⟂
􀁮 =

􀁮
𝑁
𝟏𝑁𝟏𝑇𝑁 denotes the projector onto the null space of 𝟏𝑁 and 𝜎􀂚􀂎􀂥(𝑿)

the largest singular value of 𝑿 .

Proof. By eliminating 𝒆𝑛 from (6.6), the problem can be written in uncon-
strained form as min𝑾,𝒃 𝒥(𝑾, 𝒃) with

𝒥(𝑾, 𝒃) =
1
2
‖(𝜱𝑇𝑾 + 𝟏𝑁𝒃𝑇 − 𝒀𝑇 )𝑻

􀁸
􀁹 ‖􀁯𝐹 + 𝜂‖𝑾‖∗.
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A necessary condition [Bertsekas, 1999] for (𝑾􀁭, 𝒃􀁭) to be an optimal solution
of (6.6) is that the subdifferential 𝜕𝒥 at (𝑾􀁭, 𝒃􀁭) contains the zero element
(𝟎, 𝟎). Using matrix calculus [Petersen and Pedersen, 2008] one obtains

𝜕𝑾𝒥 = 𝜱(𝜱𝑇𝑾 + 𝟏𝑁𝒃𝑇 − 𝒀𝑇 )𝑻 + 𝜂𝜕𝑾 ‖𝑾‖∗,
𝜕𝒃𝒥 = 𝑻(𝑾 𝑇𝜱+ 𝒃𝟏𝑇𝑁 − 𝒀)𝟏𝑁 .

Evaluating 𝜕𝒃𝒥 for𝑾􀁭 = 𝟎 and setting it equal to zero, one obtains the solution
𝒃􀁭 stated above.

The subgradient of the nuclear norm is given in [Watson, 1992]. Let 𝑼𝜮𝑽 𝑇

be the thin singular value decomposition [Golub and Van Loan, 1996] of 𝑿 .
Then 𝜕‖𝑿‖∗ = {𝑼𝑽 𝑇 + 𝒁,𝑼𝑇𝒁 = 𝟎, 𝒁𝑽 = 𝟎, ‖𝒁‖􀁯 ≤ 1} where 𝑿 and 𝒁 are
matrices of same dimension.

This allows the evaluation of the subdifferential 𝜕𝑾𝒥 at 𝑾􀁭. As 𝑾􀁭 = 𝟎,
bases for its row and column spaces are given by 𝑼 = 𝑽 = 𝟎. It follows
that 𝜕𝑾𝒥(𝑾􀁭, 𝒃􀁭) = −𝜱𝑷⟂

􀁮 𝒀𝑇𝑻 + 𝜂𝒁 with ‖𝒁‖􀁯 ≤ 1 has to contain 𝟎. This
translates to the necessary condition𝜱𝑷⟂

􀁮 𝒀𝑇𝑻 = 𝜂𝒁 which is satisfied for all
𝜂 ≥ 𝜂􀁭. ⬜

6.4 Dual formulation of the model

So far the model formulated in (6.6) is parametric and requires the selection
of appropriate basis functions. One advantage of kernel based modeling is
that the choice of basis functions is simplified by reducing it to the choice
of a kernel function. The kernel function often induces very large sets of
basis functions, but the inherent regularization is an effective methodology
to counter overfitting effects.

To exploit the kernel formulation already employed in the previous chapters,
Mercer’s condition must be applied, to transition from the parametric primal
problem (6.6) to its nonparametric dual. One approach based on convex
optimization will be the topic of the present section. The advantage of doing
this in an optimization based setting is that additional information about the
system can be incorporated in form of additional constraints, as shown in
other chapters of this thesis or in [Espinoza et al., 2007].

Remark 6.1. Instead of engaging in the endeavor of kernelizing this complex
regularization scheme, one can resort to more straightforward ways to inte-
grate the ideas of support vector regression and nuclear norm regularization
as in (6.6). In Section 4.3.1 the Nyström approximation has already been briefly
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described as a way to approximate a given kernel function on a given set of
data. The result is a set of approximate basis functions that span the space
induced by the kernel. This approximation is tailored to the distribution of the
given data sample. By using this approximation, one has a straightforward
mean to select basis functions for (6.6) while taking ideas from kernel based
learning into account.

6.4.1 Dual optimization problem

In an optimization setting, there are at least two approaches to derive a
dual formulation for (6.6), one relying on conic duality, the other based on
the definition of the dual norm. Both arguments are conceptually similar
and mostly differ in notation and level of abstractness. In this section the
derivation will be based on the dual norm, while in some of the later chapters
the conic duality approach will be utilized.

The definition of the dual norm ‖ ⋅ ‖𝐷 to the norm ‖ ⋅ ‖𝑃 is given by

‖𝑿‖𝐷 = max
‖𝒀‖𝑃≤􀁮

tr(𝑿𝑇𝒀), (6.10)

where 𝑿 and 𝒀 are matrices of identical dimensions. The dual norm for the
nuclear norm is the matrix 2-norm, also known as operator or spectral norm.
It is defined as ‖𝑿‖􀁯 ∶= 𝜎􀂚􀂎􀂥(𝑿) where 𝜎􀂚􀂎􀂥(𝑿) is the largest singular value of
𝑿 .

Then the kernel based, dual optimization problem corresponding to (6.6) is
given by the following lemma.

Lemma 6.3. The solution to (6.6) is equivalent to the solution of its Lagrange
dual

max
𝑨∈ℝ𝑀×𝑁

tr(𝑨𝑇𝒀) −
1
2
tr(𝑨𝑇𝑻−􀁮𝑨)

subject to
𝑨𝟏𝑁 = 𝟎𝑀, ‖𝑮𝑨𝑇‖􀁯 ≤ 𝜂

(6.11)

with 𝒀 = [𝒚􀁮, … , 𝒚𝑁 ] ∈ ℝ𝑀×𝑁 , 𝟏𝑁 ∈ ℝ𝑁 a vector of all ones and 𝟎𝑀 ∈ ℝ𝑀 a
vector of all zeros. The matrix 𝑮 is defined as a matrix square root, such that
𝑮𝑇𝑮 = 𝜴. The elements of the Gram matrix𝜴 can be computed using the kernel
trick 𝛺𝑖𝑗 = 𝝋(𝒙𝑖)𝑇𝝋(𝒙𝑗) = 𝐾(𝒙𝑖, 𝒙𝑗) for 𝑖, 𝑗 = 1, … ,𝑁 .

Proof. Introducing the short hand notation 𝑬 = [𝒆􀁮, … 𝒆𝑁 ] ∈ ℝ𝑀×𝑁 , the ob-
jective function in (6.6) can be rewritten as 𝜂‖𝑾‖􀁯 +

􀁮
􀁯
tr(𝑬𝑇𝑻𝑬). Similarly
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the modeling constraint can be reduced to 𝒀 = 𝑾 𝑇𝜱+ 𝒃𝟏𝑇𝑁 + 𝑬 where𝜱 =
[𝝋(𝒙􀁮), … ,𝝋(𝒙𝑁 )] ∈ ℝ𝑛ℎ×𝑁 . Using the definition of the dual norm (6.10), the
nuclear norm term can be reformulated as 𝜂‖𝑾‖∗ = 𝜂max‖𝑪‖􀁹≤􀁮 tr(𝑪

𝑇𝑾) =
max‖𝑪‖􀁹≤𝜂 tr(𝑪

𝑇𝑾) with 𝑪 ∈ ℝ𝑛ℎ×𝑀. Then the Lagrangian for (6.6) is

ℒ(𝑾, 𝒃, 𝑬, 𝑨) = max
‖𝑪‖􀁹≤𝜂

tr(𝑪𝑇𝑾)+
1
2
tr(𝑬𝑇𝑻𝑬)−tr(𝑨𝑇 (𝑾 𝑇𝜱+𝒃𝟏𝑇𝑁 +𝑬−𝒀))

where 𝑨 is the matrix of Lagrange multipliers for the equality constraints.
Using matrix calculus [Petersen and Pedersen, 2008] one can take the Karush-
Kuhn-Tucker (KKT) conditions for optimality [Boyd and Vandenberghe, 2004]:

𝜕ℒ
𝜕𝑾

= 0 ∶ 𝑪 = 𝜱𝑨𝑇 , (6.12a)

𝜕ℒ
𝜕𝒃

= 0 ∶ 𝑨𝟏𝑁 = 𝟎𝑀, (6.12b)

𝜕ℒ
𝜕𝑬

= 0 ∶ 𝑬 = 𝑻−􀁮𝑨. (6.12c)

Using these relations the Lagrangian can be reduced to the objective function
of (6.11). Finally only the constraint ‖𝑪‖􀁯 = ‖𝜱𝑨𝑇‖􀁯 ≤ 𝜂 contains references to
the unknown feature map. To kernelize the constraint, note that the following
statement is equivalent ‖𝑨𝜱𝑇𝜱𝑨𝑇‖􀁯 = ‖𝑨𝜴𝑨𝑇‖􀁯 ≤ 𝜂􀁯. Using the matrix
square root 𝑮 defined earlier, so is ‖𝑮𝑨𝑇‖􀁯 ≤ 𝜂. ⬜

6.4.2 Properties of the dual model

Analog to properties of the parametric problem derived in Section 6.3, similar
results will be derived for the dual problem (6.11).

In case of the dual, uniqueness of the solution is straightforward to show.

Corollary 6.4. For 𝜂 > 0 the solution of (6.11) is unique in 𝑨.

Proof. The weighting matrix 𝑻 is nonsingular by assumption. Hence, the
term tr(𝑨𝑇𝑻−􀁮𝑨) is strongly convex [Boyd and Vandenberghe, 2004]. As the
feasible set is nonempty, Slater’s condition is satisfied and (6.11) has a unique
solution. ⬜

The critical value for 𝜂 for which the optimal solution stays constant from
Lemma 6.2 can also be expressed in terms of the kernel matrix instead of the
feature map.
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Corollary 6.5. For 𝜂 ≥ 𝜂􀁭 with 𝜂􀁭 = 𝜎􀂚􀂎􀂥(𝑮𝑷⟂
􀁮 𝒀𝑇𝑻) the solution for (6.11) is

𝑨 = 𝑻𝒀𝑷⟂
􀁮 .

Proof. The value of 𝜂􀁭 is already given by Lemma 6.2, 𝜂􀁭 = 𝜎􀂚􀂎􀂥(𝜱𝑷⟂
􀁮 𝒀𝑇𝑻).

However, it explicitly references the feature map𝜱 which often is not acces-
sible in a kernel based setting. Therefore note that 𝜂􀁯􀁭 = 𝜆􀂚􀂎􀂥(𝑻𝒀𝑷⟂

􀁮𝜱𝑇𝜱𝑷⟂
􀁮

𝒀𝑇𝑻), where 𝜆􀂚􀂎􀂥 denotes the largest eigenvalue. The product𝜱𝑇𝜱 can be
rewritten as 𝜴 using the kernel trick. Using the square root 𝑮 of the kernel
matrix, one obtains the critical value 𝜂􀁭 stated in the corollary.

To determine the optimal value of 𝑨, note that for 𝜂 > 𝜂􀁭 the inequality
constraint will be inactive. Hence, it can be removed from the problem. The
remaining problem has a quadratic objective and a linear equality constraint.
This can be solved using Lagrangian duality. Let 𝒅 ∈ ℝ𝑀 denote Lagrange
multipliers for the equality constraint, then the Lagrangian for (6.11) without
the inequality constraint is

ℒ(𝑨, 𝒅) = tr(𝑨𝑇𝒀) −
1
2
tr(𝑨𝑇𝑻−􀁮𝑨) − 𝒅𝑇𝑨𝟏𝑁 .

The KKT condition for 𝑨 yields 𝑨 = 𝑻(𝒀 − 𝒅𝟏𝑇𝑁 ), whereas from the KKT
condition for 𝒅 one regains the equality constraint 𝑨𝟏𝑁 = 𝟎𝑀. By substituting
one into the other one obtains 𝒅 = 􀁮

𝑁
𝑻𝒀𝟏𝑁 and 𝑨 = 𝑻𝒀(𝑰𝑁 − 􀁮

𝑁
𝟏𝑁𝟏𝑇𝑁 ) =

𝑻𝒀𝑷⟂
􀁮 . ⬜

Remark 6.2. Instead of relying on optimization theory and Lagrangian duality,
SVM solutions can alternatively be derived using Representing Kernel Hilbert
Spaces (RKHSs) [Wahba, 1998] by proving a representer theorem [Kimeldorf
and Wahba, 1971]. For unitarily invariant matrix norms this has been done in
[Argyriou et al., 2009] of which the nuclear norm is a special case.

The derivation presented here has the advantage of being constructive and
that additional constraints can be integrated straightforwardly. Also it yields
a different optimization problem.

6.5 Predictive model

From Lemma 6.3 one can obtain the optimal solution for (6.6) even if the
feature map is not known explicitly. However, this solution is of no immedi-
ate use as the predictive model given by (6.2) is formulated in terms of the
primal variables𝒘𝑖. For problems with Tikhonov type regularization like (6.4)
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establishing a link between the primal and dual variables is straightforward.
From the KKT condition for 𝒘𝑖, c.f. Subsection 4.1.1, it directly follows that

𝒘𝑖 =
𝑁

∑
𝑡=􀁮

𝛼(𝑖)𝑡 𝝋(𝒙𝑡).

Establishing a similar relation between the solutions of (6.11) and (6.6) is
however much more involved.

Preliminaries

The following original result will provide the basis to establish such a connec-
tion.

Theorem 6.6. Let 𝑿 and 𝒁 be 𝑀 × 𝑁 matrices. Furthermore assume that 𝒁
has 𝑟 singular values equal to one while all others are strictly smaller. Finally let
𝑼􀁮 and 𝑽􀁮 denote the left and right singular vectors corresponding to the unit
singular values of 𝒁 respectively. Then for any 𝜉 > 0 it holds

{𝑿 ∶ tr(𝑿𝑇𝒁) = 𝜉, ‖𝑿‖∗ = 𝜉}
= {𝑼􀁮𝑯􀁮𝑽 𝑇

􀁮 ∶ tr(𝑯􀁮) = 𝜉, 0 ⪯ 𝑯􀁮 ∈ ℝ𝑟×𝑟}. (6.13)

Proof. See Appendix A.1. ⬜

The use of this result is within its combination with the definition of the dual
norm, ‖𝑿‖∗ = max‖𝒁‖􀁹≤􀁮 tr(𝑿

𝑇𝒁). From the theorem it follows that there is no
one-to-one relation between 𝑿 and its dual variables 𝒁 . In fact given a dual
matrix 𝒁 , a whole set of primal matrices 𝑿 with prespecified norm ‖𝑿‖∗ = 𝜉
satisfies the definition of the dual norm. This gives rise to several insights:

• A given dual solution alone is not enough to recover the primal variables
and derive a predictive model.

• To characterize the set of possible solutions, the norm of the primal
solution is required.

The norm of𝑾 in (6.6) can be obtained in a straightforwardmanner as detailed
in the following lemma.

Lemma 6.7. Given the optimal solution 𝑨 to problem (6.11) the optimal value
for ‖𝑾‖∗ in (6.6) is given by

‖𝑾‖∗ = 𝜂−􀁮(tr(𝑨𝑇𝒀) − tr(𝑨𝑇𝑻−􀁮𝑨)). (6.14)
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Proof. First it is shown that the duality gap between (6.6) and (6.11) is zero. In
a second step the objective functions are equated to obtain the desired result.

The sufficient condition for a vanishing duality gap is strong duality. For
Corollary 6.5 it has already been argued that Slater’s condition – and therefore
strong duality – holds for (6.11). As a direct consequence the duality gap is
zero.

Therefore 𝜂‖𝑾‖∗ +
􀁮
􀁯
tr(𝑬𝑇𝑻𝑬) = tr(𝑨𝑇𝒀) − 􀁮

􀁯
tr(𝑨𝑇𝑻−􀁮𝑨), where 𝑬 = [𝒆􀁮,

… , 𝒆𝑁 ]. Exploiting 𝑬 = 𝑻−􀁮𝑨 taken from the KKT condition (6.12c) of (6.6)
one obtains the result stated above. ⬜

Linking dual solution to primal variables

Recovering the primal variables can be split in two parts. Determining 𝒃 is
straightforward and handled first. The recovery of𝑾 is more involved and
explained thereafter.

Corollary 6.8. The optimal value for 𝒃 in (6.6) is given by

𝒃 =
1
𝑁
(𝒀 −𝑾 𝑇𝜱)𝟏𝑁 . (6.15)

Proof. Eliminating 𝒆𝑛 from (6.6) yields

min
𝑾,𝒃

𝜂‖𝑾‖∗ +
1
2
tr((𝑾 𝑇𝜱+ 𝒃𝟏𝑇𝑁 − 𝒀)𝑇𝑻(𝑾 𝑇𝜱+ 𝒃𝟏𝑇𝑁 − 𝒀)).

Taking the KKT condition for 𝒃 then gives 𝟏𝑇𝑁𝟏𝑁𝑻𝒃 − 𝑻(𝒀 − 𝑾 𝑇𝜱)𝟏𝑁 = 0.
The desired expression is then obtained by rearrangement. ⬜

Using the solution for 𝒃 and exploiting the knowledge about all matrices𝑾
that are consistent with the dual solution, it is possible to derive a closed form
solution for𝑾 in terms of the dual variables 𝑨.

Corollary 6.9. Let 𝜂 ≤ 𝜂􀁭 and 𝑼𝜮𝑽 𝑇 denote the thin singular value decompo-
sition of 𝑪 from the proof of Lemma 6.3. Furthermore let the matrices 𝑼𝜂 and 𝑽𝜂
contain all left and right singular vectors corresponding to the largest singular
value of 𝑪 – 𝜂 – respectively. Then

𝑾 = 𝑪𝑽𝜂𝑯𝜂𝑽 𝑇
𝜂 , (6.16)

with 𝑯𝜂 ⪰ 0, tr(𝑯𝜂) = 𝜂−􀁮‖𝑾‖∗ where 𝑯𝜂 has compatible dimensions.
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Proof. It holds that 𝜂‖𝑾‖∗ = tr(𝑪𝑇𝑾) and ‖𝑪‖􀁯 = 𝜂. Then by applying
Theorem 6.6 one obtains 𝑾 = 𝑼𝜂𝑯􀁮𝑽 𝑇

𝜂 with 𝑯􀁮 ⪰ 0 and tr(𝑯􀁮) = ‖𝑾‖∗.
Now consider 𝑪𝑽𝜂𝑯𝜂𝑽 𝑇

𝜂 = 𝑼𝜮𝑽 𝑇𝑽𝜂𝑯𝜂𝑽 𝑇
𝜂 = 𝜂𝑼𝜂𝑯𝜂𝑽 𝑇

𝜂 . As 𝑯𝜂 = 𝜂−􀁮𝑯􀁮, one
obtains the desired relation. ⬜

Note that 𝑪 = 𝜱𝑨𝑇 , therefore 𝑽𝜂 can be extracted from the finite dimensional
eigenvalue decomposition of 𝑨𝜱𝑇𝜱𝑨𝑇 = 𝑨𝜴𝑨𝑇 . The last missing piece is to
determine the matrix 𝑯𝜂.

Lemma 6.10. Under the same conditions as defined by Lemma 6.3 and Corollary
6.9 one obtains

𝑯𝜂 = 𝜂−􀁯𝑽 𝑇
𝜂 (𝒀𝑨𝑇 − 𝑻−􀁮𝑨𝑨𝑇 )𝑽𝜂. (6.17)

Proof. Substituting (6.16) and the KKT condition (6.12c) for 𝑬 into the equality
constraint of (6.6) in its compressed form as used in Lemma 6.3 yields

𝒀 = 𝑽𝜂𝑯𝜂𝑽 𝑇
𝜂 𝑪𝑇𝜱+ 𝒃𝟏𝑇𝑁 + 𝑻−􀁮𝑨.

Any solution has to satisfy the KKT conditions. As 𝑾 , 𝒃 and 𝑨 form the
primal and dual optimal solution, the linear system above is guaranteed to
be consistent. Therefore right multiplication with 𝑨𝑇 does not remove any
information. Recall that 𝑪 = 𝜱𝑨𝑇 . In a first step the equation can then be
simplified to

𝒀𝑨𝑇 = 𝑽𝜂𝑯𝜂𝑽 𝑇
𝜂 𝑪𝑇𝑪 + 𝒃𝟏𝑇𝑁𝑨𝑇 + 𝑻−􀁮𝑨𝑨𝑇 .

Exploiting (6.12b) the KKT condition for 𝒃, one can drop the term 𝒃𝟏𝑇𝑁𝑨𝑇 .
Additionally the relation 𝑪𝑇𝑪 = 𝑽𝜮􀁯𝑽 𝑇 allows simplifying another term.
This then yields

𝒀𝑨𝑇 = 𝜂􀁯𝑽𝜂𝑯𝜂𝑽 𝑇
𝜂 + 𝑻−􀁮𝑨𝑨𝑇 .

Solving this for 𝑯𝜂, one finally obtains the expression given in (6.17). ⬜

Remark 6.3. To check the accuracy of a numerical solution of the dual problem
(6.11) one can check several properties of 𝑯𝜂 as it has to be (i) symmetric, (ii)
positive definite and (iii) its trace has to equal ‖𝑾‖∗ as given by Lemma (6.7).

Finally the previous results can be combined to give direct relations between
𝑾 , 𝒃 and 𝑨.
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Corollary 6.11. The optimal values for𝑾 and 𝒃 in (6.6) in terms of the dual
optimal solution 𝑨 are given by

𝑾 = 𝜱𝑨𝑇𝑴 and 𝒃 =
1
𝑁
(𝒀 −𝑴𝑨𝜴)𝟏𝑁 (6.18)

with

𝑴 = 𝜂−􀁯𝑷𝜂(𝒀𝑨𝑇 − 𝑻−􀁮𝑨𝑨𝑇 )𝑷𝜂 (6.19)

where 𝑷𝜂 = 𝑽𝜂𝑽 𝑇
𝜂 .

Proof. Substitution of (6.17) into (6.16) and using that 𝑪 = 𝜱𝑨𝑇 yields the
first half of (6.18) along with (6.19). The second half of (6.18) follows from
substituting the first half into (6.15) and applying the kernel trick𝜱𝑇𝜱 = 𝜴.
Note that as 𝑯𝜂 is symmetric and so is𝑴 . ⬜

Predictive equation and algorithm

Using the link between primal and dual solutions established on the previous
pages, it is possible to formulate a predictive model for the dual solution in a
straightforward manner.

Corollary 6.12. With the definitions from Corollary 6.11 the predictive model
for a new point 𝒛, in terms of the dual variables, is given by

􀈴𝒚 = 𝒇 (𝒛) =
𝑁

∑
𝑡=􀁮

𝜶̃𝑡𝐾(𝒙𝑡, 𝒛) + 𝒃. (6.20)

The variables 𝜶̃𝑡 form the matrix 􀈸𝑨 = [𝜶̃􀁮, … , 𝜶̃𝑁 ], which is computed as 􀈸𝑨 =
𝑴𝑨.

Proof. For convenience the model formulated in (6.2) can be cast in vector
notation as 􀈴𝒚 = 𝒇 (𝒛) = 𝑾 𝑇𝝋(𝒛) + 𝒃. The predictive equation (6.20) then
directly follows after substitution of𝑾 given in (6.18) and application of the
kernel trick. ⬜

An overview of the most important ingredients of the parametric or primal
model on the one hand and the kernel based or dual model on the other hand
is presented in Table 6.1. Finally the following algorithm summarizes all
actions that are necessary to estimate a model from given data and using this
model to generate predictions at an unknown point 𝒛.
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Table 6.1: Overview of parametric/primal and kernel based/dual estimation
problems and the corresponding models.

parametric model kernel based model

basis functions choose 𝝋 choose kernel 𝐾

model estimation solve (6.6) for𝑾 and 𝒃 solve (6.11) for 𝑨

obtaining model
representation

prespecified obtain𝑴 and 𝒃 from
Corollary 6.11

generating
predictions

𝒇 (𝒛) = 𝑾 𝑇𝝋(𝒛) + 𝒃 𝒇 (𝒛) = ∑𝑇
𝑡=􀁮 𝜶̃𝑡𝐾(𝒙𝑡, 𝒛) + 𝒃

Algorithm 6.1. Given a kernel function 𝐾(𝒙, 𝒚), data {𝒙𝑛, 𝑦𝑛}𝑁𝑛=􀁮 and a regu-
larization constant 𝜂1 proceed as follows

1. Compute kernel matrix 𝛺𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗) for 𝑖, 𝑗 = 1, … ,𝑁 .
2. Compute a matrix square root 𝑮 such that 𝜴 = 𝑮𝑇𝑮.
3. Solve dual problem (6.11) to obtain 𝑨.
4. Compute the thin SVD of 𝑨𝜴𝑨𝑇 and form the matrix 𝑽𝜂 from the

eigenvectors corresponding to the largest eigenvalue (𝜂􀁯).
5. Evaluate (6.19) to obtain mixing matrix𝑴 .
6. Generate predictions at a new point 𝒛 by evaluating the model given

by (6.20).

6.6 Extensions

In Subsection 6.2.1 it has already been briefly mentioned that the model given
by (6.2) is not the only possible choice. In the following, the modifications
needed to allow for a model structure as defined by (6.3), are discussed. At the
same time the necessity to have measured every output variable at every time
step is lifted. This corresponds to given data specified like {{(𝒙(𝑖)𝑡 , 𝑦

(𝑖)
𝑡 )}𝑡∈𝕊𝑖}

𝑀
𝑖=􀁮

where the sets 𝕊𝑖 contain all time instances at which the 𝑖-th output is mea-
sured.

Another specialization of the problem definition (6.6) is the choice of the
least-squares loss to penalize the modeling residuals. Of course, other loss
functions like the 𝜀-insensitive loss known from SVMs or the robust Huber

1The results from Lemma 6.2 and Corollary 6.5 can be used to aid the choice of 𝜂.
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loss, are valid choices. In these cases the derivation of the dual problem are
straightforward extensions of the previously presented material. However,
the recovery of the mixing term𝑴 is more involved and requires solving a
semidefinite programming problem in the primal. Basically the form (6.16)
along with 𝑪 = 𝜱𝑨𝑇 has to substituted into a primal problem analogous to
(6.6) and solved for 𝑯𝜂 as well as 𝒃. Due to the mostly technical nature of the
re-derivation this is left as an exercise for the interested reader.

An important alternation in the context of this thesis is the application to
overparametrized models as found in Chapters 7 and 8. For these, the model
formulation is closer to the one given in (6.3), however the special structure
of the regression vector allows reducing the computational complexity to a
level only slightly larger than for the simpler (6.2).

6.6.1 Variable input and output data

For this subsection the model stated in (6.3) will be considered as well as
possibly incompletely measured data. The data given by {{𝒙(𝑖)𝑡 , 𝑦

(𝑖)
𝑡 }𝑡∈𝕊𝑖}

𝑀
𝑖=􀁮,

where |𝕊𝑖| = 𝑁𝑖 and 𝕊𝑖 = {𝑠𝑖}
𝑁𝑖
𝑖=􀁮.

Both generalizations are formalized in the modified primal estimation prob-
lem

min
𝑾,𝒃,𝒆(𝑖)

𝜂‖𝑾‖∗ +
1
2

𝑀

∑
𝑖=􀁮

𝑡𝑖𝒆(𝑖)𝑇𝒆(𝑖)

subject to
𝒚(𝑖) = 𝜱𝑇

𝑖 𝒘𝑖 + 𝑏𝑖𝟏𝑁𝑖 + 𝒆
(𝑖), 𝑖 = 1, … ,𝑀,

(6.21)

where 𝒚(𝑖) = [𝑦(𝑖)𝑠􀁸 , … , 𝑦
(𝑖)
𝑠𝑁𝑖]

𝑇 ∈ ℝ𝑁𝑖 , 𝜱𝑖 = [𝝋(𝒙(𝑖)𝑠􀁸 ), … , 𝝋(𝒙
(𝑖)
𝑠𝑁𝑖)] ∈ ℝ𝑛ℎ×𝑁𝑖 , 𝒆(𝑖) =

[𝑒(𝑖)𝑠􀁸 , … , 𝑒
(𝑖)
𝑠𝑁𝑖]

𝑇 ∈ ℝ𝑁𝑖 and 𝒘𝑖 the 𝑖-th column of𝑾 .

Remark 6.4. Note that the weighting matrix 𝑻 has to be reduced to simple
weighting factors 𝑡𝑖 > 0with respect to the original problem formulation given
by (6.6). This is necessary as the residuals 𝒆(𝑖) can have different dimensions. A
possible mitigation to restore a completely flexible weighting matrix 𝑻 would
be padding the vectors 𝒆(𝑖) with zeros to equalize their lengths. This however
will not be considered further.

Remark 6.5. Also note that the equality constraint in (6.21) is transposed with
respect to the one in (6.6). It is also written in terms of the target variables
(𝑀 constraints) instead of the samples (𝑁 constraints). This is again triggered
by the possible different dimensionalities of the considered quantities.
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The dual optimization problem for (6.21) is given in the following lemma
which generalizes Lemma 6.3.

Lemma 6.13. The solution to (6.21) is equivalent to the solution of its Lagrange
dual

max
𝜶𝑖

𝑀

∑
𝑖=􀁮

𝜶𝑇
𝑖 𝒚(𝑖) −

1
2

𝑀

∑
𝑖=􀁮

1
𝑡𝑖
𝜶𝑇
𝑖 𝜶𝑖

subject to
𝜶𝑇
𝑖 𝟏𝑁𝑖 = 0, 𝑖 = 1, … ,𝑀,

‖􀈸𝑮􀈸𝑨‖􀁯 ≤ 𝜂

(6.22)

with 𝜶𝑖 ∈ ℝ𝑁𝑖 and the 𝑁̃ × 𝑀 block structured matrix 􀈸𝑨 with 𝑁̃ = ∑𝑀
𝑖=􀁮𝑁𝑖,

􀈸𝑨𝑖𝑖 = 𝜶𝑖 and 􀈸𝑨𝑖𝑗 = 𝟎𝑁𝑖 for 𝑖 ≠ 𝑗. The matrix 􀈸𝑮 is defined as a matrix square
root such that 􀈸𝑮𝑇 􀈸𝑮 = 􀈸𝜴. The 𝑁̃ × 𝑁̃ Gram matrix is block structured with
(􀈸𝜴)𝑖𝑗 = 􀈸𝜴𝑖𝑗 ∈ ℝ𝑁𝑖×𝑁𝑗 for 𝑖, 𝑗 = 1, … ,𝑀 and (􀈸𝜴𝑖𝑗)𝑘𝑛 = 𝐾(𝒙(𝑖)𝑘 , 𝒙

(𝑗)
𝑛 ) for 𝑘 = 1, … ,𝑁𝑖

and 𝑛 = 1,… ,𝑁𝑗.

Proof. Taking the KKT conditions as in Lemma 6.3 one obtains 𝒄𝑖 = 𝜱𝑖𝜶𝒊 for
𝒘𝑖, 𝑡𝑖𝒆(𝑖) = 𝜶𝑖 for 𝒆(𝑖) and 𝟏𝑇𝑁𝑖

𝜶𝑖 = 0 for 𝑏𝑖. The vector 𝒄𝑖 is the 𝑖-th column of
the matrix 𝑪 introduced in Lemma 6.3 and 𝜶𝑖 are the Lagrange multipliers
corresponding to the equality constraints in (6.21). To kernelize the constraint
‖𝑪‖􀁯 ≤ 𝜂, let 􀈸𝜱 = [𝜱􀁮, … ,𝜱𝑀]. This allows 𝑪 to be written as 􀈸𝜱􀈸𝑨. The kernel
trick can again be applied by squaring the constraint. The final expression
with a linear argument follows by taking a matrix square root. ⬜

In the following corollaries, the results from Section 6.5 are adapted to the
extended problem formulation.

Corollary 6.14. Given the optimal solution 𝜶􀁮, … , 𝜶𝑀 to problem (6.22), the
optimal value for ‖𝑾‖∗ in (6.21) is given by

‖𝑾‖∗ = 𝜂−􀁮
⎛
⎜
⎝

𝑀

∑
𝑖=􀁮

𝜶𝑇
𝑖 𝒚(𝑖) −

𝑀

∑
𝑖=􀁮

𝑡−􀁮𝑖 𝜶𝑇
𝑖 𝜶𝑖

⎞
⎟
⎠
. (6.23)

Proof. The proof is a straightforward adaption of the proof to Lemma 6.7. ⬜
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Corollary 6.15. The matrix 𝑯𝜂 introduced in Corollary 6.9 can be determined
by solving the semidefinite programming problem

find 𝑯𝜂

subject to
𝑯𝜂 ⪰ 0, tr(𝑯𝜂) = 𝜉

𝒚(𝑖) = [𝜴𝑖,􀁮𝜶􀁮, … ,𝜴𝑖,𝑀𝜶𝑀]𝑽𝜂𝑯𝜂𝑽 𝑇
𝜂 𝜺𝑖 + 𝑏𝑖𝟏𝑁𝑖 + 𝑡

−􀁮
𝑖 𝜶𝑖, 𝑖 = 1, … ,𝑀,

(6.24)

where the 𝜺𝑖’s form the standard basis for ℝ𝑀 and 𝜉 = 𝜂−􀁮‖𝑾‖∗.

Proof. The first two constraints follow directly from Corollary 6.9. The re-
maining constraints can be derived in a fashion similar to Lemma 6.10.

Let 𝒘𝑖 = 𝑾𝜺𝑖. Then the equality constraints of (6.21) can be expressed in
terms of the dual variables by further using (6.16), describing the form of𝑾 ,
and 𝒆(𝑖) = 𝑡−􀁮𝑖 𝜶𝑖, following form the KKT condition for 𝒆(𝑖). This yields

𝒚(𝑖) = 𝜱𝑇
𝑖 [𝜱􀁮𝜶􀁮, … ,𝜱𝑀𝜶𝑀]𝑽𝜂𝑯𝜂𝑽 𝑇

𝜂 𝜺𝑖 + 𝑏𝑖𝟏𝑁𝑖 + 𝑡
−􀁮
𝑖 𝜶𝑖, (6.25)

for 𝑖 = 1, … ,𝑀. Application of the kernel trick then results in the problem
given above. ⬜

Corollary 6.16. Given the matrix 𝑯𝜂, along with the optimal dual solution
𝜶􀁮, … , 𝜶𝑀, the primal optimal variables 𝒘􀁮, … ,𝒘𝑀 and 𝑏􀁮, … , 𝑏𝑀 can be repre-
sented as

𝒘𝑖 =
𝑀

∑
𝑗=􀁮

𝑄𝑗𝑖𝜱𝑗𝜶𝑗 and 𝑏𝑖 =
1
𝑁𝑖

⎛
⎜
⎜
⎝
𝟏𝑇𝑁𝑖
𝒚(𝑖) −

𝑀

∑
𝑗=􀁮

𝑄𝑗𝑖𝟏𝑇𝑁𝑖
𝜴𝑖𝑗𝜶𝑗

⎞
⎟
⎟
⎠
, (6.26)

for 𝑖 = 1, … ,𝑀 and with (𝑸)𝑖𝑗 = 𝑄𝑖𝑗 and 𝑸 = 𝑽𝜂𝑯𝜂𝑽 𝑇
𝜂 .

Proof. The form of 𝒘𝑖 is given by 𝒘𝑖 = 𝑾𝜺𝑖 and Corollary 6.9. Along with
the definition of 𝑪 = [𝜱􀁮𝜶􀁮, … ,𝜱𝑀𝜶𝑀] one obtains

𝒘𝑖 = [𝜱􀁮𝜶􀁮, … ,𝜱𝑀𝜶𝑀]𝑽𝜂𝑯𝜂𝑽 𝑇
𝜂 𝜺𝑖.

Careful inspection reveals that this is identical to the first expression in (6.26).
In analogy to Corollary 6.8 one can derive

𝑏𝑖 =
1
𝑁𝑖
􀊂𝟏𝑇𝑁𝑖

𝒚(𝑖) − 𝟏𝑇𝑁𝑖
𝜱𝑇

𝑖 𝒘𝑖􀊅 ,

for 𝑖 = 1, … ,𝑀. The substitution of the previously derived expression for 𝒘𝑖
into the form of 𝑏𝑖 and the application of the kernel trick finally yields the
second half of (6.26). ⬜
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Table 6.2: Size of data matrices for joint multiple output regression.

model dimension of𝜱 dimension of 𝜴

basic (6.6) 𝑛ℎ × 𝑁 𝑁 × 𝑁
extended (6.21) 𝑛ℎ × (𝑀 ⋅ 𝑁) (𝑀 ⋅ 𝑁) × (𝑀 ⋅ 𝑁)

Finally combining all of the above, one can once more state a predictive model.

Corollary 6.17. With the definitions from Corollary 6.16 the predictive model
for a new point (𝒛(􀁮), … , 𝒛(𝑀)), in terms of the dual variables, is given by

􀈴𝑦𝑖 = 𝑓(𝒛(𝑖)) =
𝑀

∑
𝑗=􀁮

𝑄𝑗𝑖𝒌𝑗(𝒛(𝑖))𝑇𝜶𝑗 + 𝑏𝑖, (6.27)

with 𝒌𝑗(𝜻) = [𝐾(𝜻, 𝒙
(𝑗)
􀁮 ), … , 𝐾(𝜻, 𝒙

(𝑗)
𝑁𝑗
)]𝑇 for 𝑖 = 1, … ,𝑀.

Proof. The predictive equation (6.27) directly follows from substituting (6.26)
into (6.3) and applying the kernel trick. ⬜

Remark 6.6 (Numerical complexity). The extended model (6.21) presented
in this section is a generalization of the basic model (6.6) discussed before.
Hence, the question arises, how much more expensive is solving the more
general, and consequently more powerful, problem. To aid this comparison it
is assumed that 𝑁𝑖 ≡ 𝑁 for 𝑖 = 1, … ,𝑀.

Careful inspection of the referenced problems reveals that the number of
unknowns, in the primal as well as in the dual problems, is identical for both
model formulations. However, looking at the data, significant differences
become evident. In the primal, the data is transformed using the feature
map 𝝋 and stored in the matrix𝜱. The corresponding roles in the dual are
taken over by kernel function 𝐾 along with the Gram matrix 𝜴. As shown
in Table 6.2, the extended model uses a data representation that is𝑀 times
larger in the primal, and even𝑀􀁯 larger in the dual, than the one of the basic
model.

However, this should not come as surprise, as the amount of input data
processed by the extended model is also 𝑀 times larger. Yet, it should be
carefully considered when choosing one model or the other.
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6.6.2 Overparametrized models

Consider a dynamical model of the form

𝑦̂𝑡 = 𝑓(𝒙𝑡−􀁮, … , 𝒙𝑡−𝑀𝑦) =
𝑀𝑦

∑
𝑖=􀁮

𝒘𝑇
𝑖 𝝋(𝒙𝑡−𝑖) + 𝑏 (6.28)

for 𝑖 = 1, … ,𝑀𝑦. In essence this is close to using a linear filter on top of a
nonlinear structure. In fact in the following two chapters expressions of the
form 𝛽𝑖𝑓(𝒙𝑡−𝑖) will be relaxed to form 𝒘𝑖𝝋(𝒙𝑡−𝑖) introduced above. The model
derivation however is closely related to the other models introduced in this
chapter, which is why it will be discussed at this point.

In contrast to the remainder of this chapter, a model of this form only has
a single output variable. Nevertheless the most important property, a linear
relation between the 𝒘𝑖’s is present. Besides being limited to a single output
problem, the formulation has another peculiarity, namely a special structure of
the regressors. At time 𝑡 the output is a function of 𝒙𝑡−􀁮 up to 𝒙𝑡−𝑀𝑦 . Therefore
the difference between 𝑡 and 𝑡+1 is given by a single element of this sequence.
This special structure has the advantage that the computational complexity,
as well as the size of the matrices, is much closer to the basic model (6.4) than
the extended one (6.3), c.f. Table 6.2.

Based on the model given above, the estimation problem can be formalized
as

min
𝑾,𝒃,𝒆

𝜂‖𝑾‖∗ +
1
2
𝒆𝑇𝒆

subject to

𝒚 =
𝑀𝑦

∑
𝑖=􀁮

𝜱𝑇
𝑖 𝒘𝑖 + 𝑏𝟏𝑁−𝑀𝑦 + 𝒆,

(6.29)

where 𝒚 = [𝑦𝑀𝑦+􀁮, … , 𝑦𝑁 ]
𝑇 ∈ ℝ𝑁−𝑀𝑦 , 𝒆 = [𝑒𝑀𝑦+􀁮, … , 𝑒𝑁 ]

𝑇 ∈ ℝ𝑁−𝑀𝑦 , 𝜱𝑖 =
[𝝋(𝒙􀁮+(𝑀𝑦−𝑖)), … ,𝝋(𝒙𝑁−𝑖+􀁮)] and 𝒘𝑖 the 𝑖-th column of𝑾 .

In the following the previously derived results will be tailored to this newly
defined optimization problem. First of all, the solution can still be obtained in
the finite dimensional dual domain.
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Lemma 6.18. The solution to (6.29) can be equivalently obtained from its
Lagrange dual

max
𝜶

𝜶𝑇𝒚 −
1
2
𝜶𝑇𝜶

subject to
𝟏𝑇𝑁−𝑀𝑦

𝜶 = 0, ‖𝑮ℬ(𝜶)‖􀁯 ≤ 𝜂.

(6.30)

Here 𝜶 ∈ ℝ𝑁−𝑀𝑦 denotes the Lagrange multipliers for the equality constraints of
(6.29). The linear operator ℬ ∶ ℝ𝑁−𝑀𝑦 → ℝ𝑁×𝑀𝑦 maps the vector 𝜶 to a block
structured matrix. It is given by

ℬ(𝜶) =
⎡
⎢
⎢
⎣

𝜶 𝟎𝑀𝑦

𝟎𝑀𝑦

⋱
𝜶

⎤
⎥
⎥
⎦
. (6.31)

Proof. The derivation is a straightforward extension to the proof given for
Lemma 6.3. In the first step, variables 𝒄𝑖 = 𝜱𝑖𝜶 can be introduced. Note that
stacking them as columns into a matrix 𝑪 is equivalent to 𝑪 = 𝜱ℬ(𝜶). Here
the definition for the matrix𝜱 = [𝝋(𝒙􀁮), … ,𝝋(𝒙𝑁 )] ∈ ℝ𝑛ℎ×𝑁 is the same as in
Lemma 6.3.

Furthermore the KKT conditions for 𝑏 and 𝒆 take on simpler forms

𝜕ℒ
𝜕𝑏

= 0 ∶ 𝟏𝑇𝑁−𝑀𝑦
𝜶 = 0,

𝜕ℒ
𝜕𝒆

= 0 ∶ 𝒆 = 𝜶.

The remainder of the proof contains no notable differences. ⬜

Recovering a predictive model follows the same path as before and is summa-
rized in the following corollaries.

Corollary 6.19. Given the optimal solution 𝜶 to problem (6.30), the optimal
value for ‖𝑾‖∗ in (6.29) is given by

‖𝑾‖∗ = 𝜂−􀁮 􀊄𝜶𝑇𝒚 −
1
2
𝜶𝑇𝜶􀊇 . (6.32)

Proof. The proof is a straightforward adaption of the proof to Lemma 6.7. ⬜
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Corollary 6.20. Thematrix𝑯𝜂 introduced in Corollary 6.9, as well as the primal
variable 𝑏 can be determined by solving the semidefinite programming problem

find (𝑯𝜂, 𝑏)

subject to
𝑯𝜂 ⪰ 0, tr(𝑯𝜂) = 𝜉

𝒚 =
𝑀𝑦

∑
𝑖=􀁮
[𝜴𝑖,􀁮𝜶,… ,𝜴𝑖,𝑀𝑦𝜶]𝑽𝜂𝑯𝜂𝑽 𝑇

𝜂 𝜺𝑖 + 𝑏𝟏𝑁−𝑀𝑦 + 𝜶,

(6.33)

where the 𝜺𝑖’s’ form the standard basis for ℝ𝑀𝑦 and 𝜉 = 𝜂−􀁮‖𝑾‖∗. Furthermore
𝜴𝑖,𝑗 denotes the subblock of 𝜴 containing the 𝑖 through 𝑁 −𝑀𝑦 + 𝑖 rows and 𝑗
through 𝑁 −𝑀𝑦 + 𝑗 columns, respectively.

Proof. The first two constraints follow directly from Corollary 6.9. The re-
maining constraints can be derived in a fashion similar to Lemma 6.10.

Let 𝒘𝑖 = 𝑾𝜺𝑖. Then the equality constraints of (6.29) can be expressed in
terms of the dual variables by further using (6.16), describing the form of𝑾 .
This yields

𝒚 =
𝑀𝑦

∑
𝑖=􀁮

𝜱𝑇
𝑖 [𝜱􀁮𝜶,… ,𝜱𝑀𝜶]𝑽𝜂𝑯𝜂𝑽 𝑇

𝜂 𝜺𝑖 + 𝑏𝟏𝑁−𝑀𝑦 + 𝜶,

where additionally the KKT condition for 𝒆 has been used to substitute 𝒆 with
𝜶. Application of the kernel trick directly yields the aforementioned feasibility
problem. ⬜

Corollary 6.21. Given the matrix 𝑯𝜂, along with the optimal dual solution 𝜶,
the primal optimal variable𝑾 can be represented as

𝑾 = 𝜱ℬ(𝜶)𝑸 (6.34)

with 𝑸 = 𝑽𝜂𝑯𝜂𝑽 𝑇
𝜂 .

Proof. The matrix 𝑪 is given by 𝑪 = 𝜱ℬ(𝜶). The expression for 𝑾 can be
immediately obtained by combining this with Corollary 6.9. ⬜

Finally combining all of the above, one can once more state a predictive model.
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Corollary 6.22. With the definition of 𝑸 from Corollary 6.21 the predictive
model for a new point (𝒛𝑡−􀁮, … , 𝒛𝑡−𝑀𝑦), in terms of the dual variables, is given by

􀈴𝑦𝑡 = 𝑓(𝒛𝑡−􀁮, … , 𝒛𝑡−𝑀𝑦) =
𝑀𝑦

∑
𝑖,𝑗=􀁮

𝑄𝑗𝑖𝒌𝑗(𝒛𝑡−𝑖)𝑇𝜶 + 𝑏, (6.35)

with 𝒌𝑗(𝜻) = [𝐾(𝜻, 𝒙𝑀𝑦−𝑗+􀁮), … , 𝐾(𝜻, 𝒙𝑁−𝑗)]𝑇 for 𝑖 = 1, … ,𝑀 and 𝑄𝑖𝑗 = (𝑸)𝑖𝑗.

Proof. The predictive equation (6.35) directly follows from substituting (6.34)
into (6.28) and applying the kernel trick. ⬜

6.7 Numerical solution

In the previous sections several primal optimization problemswere formulated
and converted into the respective dual formulations. However, all these
different formulations are only meaningful if they can be solved on actual
data. As suggested in the introduction of this chapter, there are several
possibilities to pick from, when deciding how and which problem is to be
solved.

On the one hand there are the primal formulations (6.6), (6.21) & (6.29) with
direct reference to the feature map 𝝋 and on the other hand one has the
respective dual representations (6.11), (6.22) & (6.30). Which representation
is more advantageous to solve depends on several factors. In case the feature
map consists of only a few explicitly known basis function, the dimension 𝑛ℎ
is most likely much smaller than the number of data. In this case solving the
primal problem is not only much more straightforward, it is also much more
efficient. In case the basis functions are not known explicitly or their number
𝑛ℎ is larger than the amount of data, the dual should be considered.

However, in contrast to the LS-SVM case with a single target variable as
introduced in Chapter 4, the advantage of the dual representation is not so
clear. Note that solving the dual problem (6.11) requires (i) computing a
matrix square root and (ii) additional computations to transform the dual
solution back to the primal space. Both these steps require additional work not
necessary for plain LS-SVMs. One attractive alternative can be the Nyström
method outlined in Section 4.3.1. The main cost involved in this procedure is
computing the eigenvalue decomposition of the kernel matrix. However, also
solving the dual requires computing a matrix square root. Hence, depending
on the chosenmethod to obtain this square root, the eigenvalue decomposition
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needed for the Nyström approximation is at most a constant factor more
expensive.

Regardless of the ultimately chosen representation of the problem, the next
subsection will highlight some possible choices to obtain numerical solutions
for either of the two representations. In case efficiency is not a concern, any
of the optimization problems stated in this chapter can be directly modeled as
it is, using a modeling tool like CVX [Grant and Boyd, 2011]. As the extension
to related model formulations is straightforward, only the basic problem (6.6)
and its dual (6.11) will be discussed.

6.7.1 Semi-definite programming representation

As stated in Section 3.3.3 the nuclear norm can be represented by the SDP
problem (3.12). Relying on this result, a representation suitable for a general
purpose SDP solver is as follows.

Corollary 6.23. The optimization problem stated in (6.6) can be reformulated
using linear matrix inequalities (LMIs) as

min
𝒁􀁸,𝒁􀁹,𝑾 ,𝒃,𝜏𝑛

𝜂(tr(𝒁􀁮) + tr(𝒁􀁯)) +
𝑁

∑
𝑡=􀁮

𝜏𝑡

subject to

􀉾
𝒁􀁮 𝑾
𝑾 𝑇 𝒁􀁯

􀊁 ⪰ 0, 𝒁􀁮, 𝒁􀁯 ⪰ 0,

􀉾
𝑻−􀁮 𝒜𝑡(𝑾, 𝒃)

𝒜𝑡(𝑾, 𝒃)𝑇 𝜏𝑛
􀊁 ⪰ 0, 𝑡 = 1, … ,𝑁.

The affine operators 𝒜𝑡 from ℝ𝑛ℎ×𝑀 × ℝ𝑀 to ℝ𝑀 are defined as 𝒜𝑡(𝑾, 𝒃) =
𝒚𝑡 −𝑾 𝑇𝝋(𝒙𝑡) − 𝒃 for 𝑡 = 1, … ,𝑁 .

Proof. To obtain a linear objective function, first rewrite the nuclear norm
according to Equation 3.12. Furthermore the quadratic forms 𝒆𝑇𝑡 𝑻𝒆𝑡 of the
residuals 𝒆𝑡 can be replaced by additional constraints 𝒆𝑇𝑡 𝑻𝒆𝑡 ≤ 𝜏𝑡 and then
summing over 𝜏𝑡 in the objective. Applying the Schur complement [Boyd
and Vandenberghe, 2004] to the newly introduced constraint one obtains
􀉽 𝑻

−􀁸 𝒆𝑡
𝒆𝑇𝑡 𝜏𝑡

􀊀 ⪰ 0. The residuals 𝒆𝑡 can be eliminated by rewriting the equality
constraints of (6.6) as 𝒆𝑡 = 𝒜𝑡(𝑾, 𝒃). ⬜

Remark 6.7. Note that the reformulation of the residual term 𝒆𝑡 = 𝒜𝑡(𝑾, 𝒃)
as an LMI constraint is not very efficient. While some SDP solvers, like
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CVXOPT [Dahl and Vandenberghe, 2011], support the solution of quadratic
cost functions directly, other popular ones, like SDPT3 [Toh et al., 1999],
require the reduction to a linear objective.
Similarly to the nuclear norm, the spectral norm is also SDP representable
[Boyd and Vandenberghe, 2004]. The necessary derivations to transform (6.11)
into a LMI are detailed below.

Corollary 6.24. The solution for (6.11) can be obtained from the LMI problem

max
𝑨,𝜏𝑡

tr(𝑨𝑇𝒀) −
1
2

𝑁

∑
𝑡=􀁮

𝜏𝑡

subject to

􀉾
𝑻 𝜶𝑡
𝜶𝑇
𝑡 𝜏𝑡

􀊁 ⪰ 0, 𝑡 = 1, … ,𝑁,

􀉾
𝜂𝑰𝑁 𝑮𝑨𝑇

𝑨𝑮𝑇 𝜂𝑰𝑀
􀊁 ⪰ 0, 𝑨𝟏𝑁 = 𝟎𝑀,

with 𝜶𝑡 being the 𝑡-th column of 𝑨.

Proof. The spectral norm term ‖𝑮𝑨𝑇‖􀁯 ≤ 𝜂 is equal to ‖𝑨𝑮𝑇𝑮𝑨𝑇‖􀁯 ≤ 𝜂􀁯. Us-
ing the Schur complement [Boyd and Vandenberghe, 2004] it can be rewritten
as the second LMI constraint in the optimization problem above. Note
that tr(𝑨𝑇𝑻−􀁮𝑨) = ∑𝑁

𝑡=􀁮 𝜶
𝑇
𝑡 𝑻−􀁮𝜶𝑡. Then the 𝑁 LMI constraints represent-

ing 𝜶𝑇
𝑛𝑻−􀁮𝜶𝑡 are derived using the Schur complement in the same fashion as

for 𝒆𝑇𝑡 𝑻𝒆𝑡 in Corollary 6.23. ⬜

The main drawback of general purpose SDP solvers is that they do not
scale to larger problem sizes which severely limits their practical use. The
performance can be improved by exploiting the specific problem structure
and tailoring a custom SDP solver as done in [Liu and Vandenberghe, 2009]
for a nuclear norm regularized problem. Yet when doing this several of the
advantages have to be sacrificed and the scaling issue has only been reduced
but is still present.

6.7.2 First order methods

An alternative to interior point algorithms has been driven from efforts mainly
in the compressed sensing area. These first-order algorithms have already
been briefly outlined in Subsection 3.4.2. Problems with nuclear norm regular-
ization have gained serious interest as evident by the number of publications
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dedicated to it, [Tseng, 2010; Ji and Ye, 2009; Toh and Yun, 2010; Pong et al.,
2010; Cai et al., 2010; Jaggi and Sulovský, 2010]. Most of these algorithms
are based on gradient projection. The crucial aspect for all algorithms are
efficient projections, which for the nuclear norms were first derived in [Cai
et al., 2010]. This result and a similar one for spectral norms are given in the
next paragraphs.

Projections and proximal minimization

With 𝑔(𝒙) being the nuclear norm ‖𝑿‖∗, the proximal minimization problem
𝒫(𝒀 ) given by

𝒫(𝒚) = argmin
𝒙

1
2
‖𝒙 − 𝒚‖􀁯􀁯 + 𝜂𝑔(𝒙) (6.36)

can be solved based on the SVD of 𝒀 .

Theorem 6.25 (Singular value thresholding [Cai et al., 2010, Section 2.1]). Let
𝒀 ∈ ℝ𝑀×𝑁 have the thin SVD [Golub and Van Loan, 1996] 𝒀 = 𝑼𝜮𝑽 𝑇 with rank
𝑟 and 𝜮 = diag(𝜎􀁮, … , 𝜎𝑟). Also define the singular value thresholding operator
(𝜮)+ = diag({max(0, 𝜎𝑖 − 𝜂)}𝑟𝑖=􀁮) for 𝜂 > 0. Then

𝒫𝑆𝑉𝑇 (𝒀 ) = 𝑼(𝜮)+𝑽 𝑇 (6.37)

is the solution of the proximal minimization problem (6.36) with 𝑔 being the
nuclear norm.

The proof for this result is given in [Cai et al., 2010, Section 2.1]. A similar
result can be obtained for the spectral norm.

Theorem 6.26 (Singular value clipping). Let 𝒀 ∈ ℝ𝑀×𝑁 have rank 𝑟 such
that the thin SVD [Golub and Van Loan, 1996] is given by 𝒀 = 𝑼𝜮𝑽 𝑇 with
𝜮 = diag(𝜎􀁮, … , 𝜎𝑟). Define the piecewise linear map𝑚𝜮(𝜎) = ∑𝑟

𝑖=􀁮max(0, 𝜎𝑖−𝜎).
For 𝜂 > 0 let 𝜎𝐶 = 𝑚−􀁮

𝜮 (𝜂) if ∑𝑟
𝑖=􀁮 𝜎𝑖 > 𝜂 and 𝜎𝐶 = 0 otherwise. Finally define the

singular value clipping operator (𝜮)− = diag({min(𝜎𝐶, 𝜎𝑖)}𝑟𝑖=􀁮). Then

𝒫𝑆𝑉𝐶(𝒀 ) = 𝑼(𝜮)−𝑽 𝑇 (6.38)

is the solution of the proximal minimization problem (6.36) with 𝑔 being the
spectral norm.

For a proof see Appendix A.2. Note that the dual problem (6.11) is not stated
in the regularized formmin𝒙 𝑓(𝒙)+𝑔(𝒙) but in constrained form. The following
corollary links both problems for 𝑔 being the spectral norm.
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Corollary 6.27. For 0 < 𝜂′ ≤ ‖𝒀‖􀁯 the constrained problem

min
𝑿

1
2
‖𝑿 − 𝒀‖􀁯𝐹 subject to ‖𝑿‖􀁯 ≤ 𝜂′,

is solved by the singular value clipping operation (6.38) with 𝜂 = 𝑚𝜮(𝜂′) where
𝑚𝜮 is defined as in Theorem 6.26.

Proof. The Lagrangian for the constrained problem isℒ(𝑿, 𝛼) = 􀁮
􀁯
‖𝑿 − 𝒀‖􀁯𝐹 +

𝛼(‖𝑿‖􀁯 − 𝜂′). The minimum in 𝑿 can be obtained from Theorem 6.26 for
𝜂 = 𝛼. The KKT condition for 𝛼 is 𝜂′ = ‖𝑿‖􀁯 as the constraint is always
active. Therefore one has 𝜎􀁭 = 𝑚−􀁮

𝜮 (𝛼). From Theorem 6.26 one also has
‖𝑿‖􀁯 = ‖𝒫𝑆𝑉𝐶(𝒀 )‖􀁯 = 𝜎􀁭. Therefore 𝜎􀁭 = 𝜂′ and 𝛼 = 𝑚𝜮(𝜂′) follow. ⬜

Remark 6.8. For 𝜂 ≥ 𝜂𝑆𝑉𝑇,􀁭 = ‖𝒀‖􀁯 the singular value thresholding operation
yields 𝒫𝑆𝑉𝑇 (𝒀 ) = 𝟎. Similarly for 𝜂 ≤ 𝜂𝑆𝑉𝐶,􀁭 = ‖𝒀‖∗ the singular value clipping
operation yields 𝒫𝑆𝑉𝐶(𝒀 ) = 𝟎.

Implementation

The interest in the compressed sensing community is mainly for problems of
the form

min
𝑿

1
2
‖𝒜(𝑿) − 𝒚‖􀁯􀁯 + 𝜂‖𝑿‖∗,

where 𝒜 is a linear operator. For problems in this form, several implemen-
tations of first order algorithms are publicly available, like SLEP [Liu and
Vandenberghe, 2009; Ji and Ye, 2009; Pong et al., 2010], NNLS [Toh and Yun,
2010] and in principle FPCA [Goldfarb and Ma, 2009]. Rewriting (6.6) to the
form given above is possible by eliminating the residuals 𝒆𝑡. Then only minor
modifications are necessary to account for the fact that only𝑾 and not 𝒃 is
subject to the nuclear norm penalty.

For the dual optimization problem (6.11) these algorithms cannot be applied
directly. However, it is possible to come up with a gradient projection algo-
rithm as outlined in 3.4.2 using the projection for the spectral norm as given
in Theorem 6.26. Therefore it is needed to apply a a variable transformation
𝑴 = 𝑮𝑨𝑇 to (6.11) such that the spectral norm constraint becomes ‖𝑴‖􀁯 ≤ 𝜂.
The drawback of this approach is that (at least implicitly) the square root of
the kernel matrix 𝑮 needs to be inverted. In case the kernel matrix is not well
conditioned this yields algorithms that are numerically not robust.
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Remark 6.9 (Alternatives). A numerically more robust scheme can be obtained
by adding a smoothing term 𝜇‖𝑨 − 𝑨􀁭‖􀁯𝐹 with 𝜇 > 0 and 𝑨􀁭 ∈ ℝ𝑀×𝑁 to
the optimization objective. However, the bias introduced by the smoothing
destroys the relations needed to reconstruct a predictive model.

A second alternative, that allows using the existing solvers for the primal
problem, is solving the dual of the dual. Although the derivation as well as
recovery of the dual solution are straightforward, this approach has no real
benefit over using the Nyström approximation for directly solving the primal.
This latter approach has to solve the same optimization problem with very
similar or identical sizes for the data matrices. However, it is much easier to
derive and does not require additional work to employ the dual solution in a
predictive equation.

6.8 Numerical validation

Due to the numerical complexity only small scale problems can be considered
in reasonable time. Therefore a simple toy example is used to illustrate the
basic method.

6.8.1 Experimental setup

To validate the derived dual formulation versus the primal alternative the
example is chosen with an explicitly known feature map. The data is generated
according to the model

𝒚𝑡 = 𝑾 𝑇
􀁭 𝝋(𝒙𝑡) + 𝒃􀁭 + 𝒗𝑡. (6.39)

The dimension of 𝒚𝑡, i.e. the number of outputs, is chosen as𝑀 = 20, while
the rank of 𝑾𝟎, i.e. the number of independent components, is set to 3.
The dimension of the feature map is selected as 𝑛ℎ = 50. Finally the matrix
𝑾􀁭 is generated as the product of one 𝑛ℎ × 3 and another 3 ×𝑀 dimensional
matrix, denoted by𝑾􀁭,𝐵 and𝑾􀁭,𝑀 respectively. The elements of both matrices
are drawn from a standard normal distribution. For simplicity 𝒃􀁭 is chosen
identically zero.

The total number of generated data is 300. This data is split into three
independent sets. 50 samples are used to solve the estimation problems (6.6)
and (6.11) respectively. Another 100 samples are used as validation set to
select the regularization parameter 𝜂. The remaining 150 samples are used
for final model assessment.
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Instead of choosing some featuremap𝝋 and evaluating it on data𝒟 = {𝒙𝑡}􀁰􀁭􀁭𝑡=􀁮
to obtain the matrix𝜱 containing evaluations of the feature map on the data,
the matrix𝜱 is generated directly for the sake of simplicity. Once more the
elements of the matrix𝜱 are drawn from a standard normal distribution.

To make the problem nontrivial, the data is corrupted by additive white
Gaussian noise, in the form of 𝒗𝑡 which is generated with a standard deviation
of 0.1.

The proposed method, denoted by MIMO, corresponding to (6.6) is com-
pared to three alternatives.

OLS Ordinary least squares:

min
𝑾

𝑁

∑
𝑡=􀁮

‖𝒚𝑡 −𝑾 𝑇𝝋(𝒙𝑡)‖􀁯􀁯,

with𝑾 ∈ ℝ𝑛ℎ×𝑀,

OLS + Oracle Ordinary least squares coupled with an oracle which provides
exact and complete information for the structure of𝑾􀁭. Recall that𝑾􀁭
is generated as𝑾􀁭,𝐵 ⋅ 𝑾􀁭,𝑀. The oracle specifies𝑾􀁭,𝑀 as used during
the construction of𝑾􀁭 such that the problem is reduced to estimating
the parameters of the three independent components in𝑾􀁭,𝐵. For doing
so,𝑀 = 20 measurements can be utilized.

min
𝑾𝐵

𝑁

∑
𝑡=􀁮

‖𝒚𝑡 −𝑾 𝑇
𝑀,􀁭𝑾 𝑇

𝐵𝝋(𝒙𝑡)‖􀁯􀁯,

with𝑾𝐵 ∈ ℝ𝑛ℎ×􀁰.

RR Ridge regression. Ridge regression has no means to take advantage of
the known low rank structure. Furthermore the estimation problem
can be split into𝑀 independent estimation problems. To enable a fair
comparison, the regularization parameter for each of the problems is
chosen independently. Therefore for each of the 𝑀 components one
has to solve the problem

min
𝒘𝑚

𝜂𝑚 𝒘𝑇
𝑚𝒘𝑚 +

𝑁

∑
𝑡=􀁮
(𝑦(𝑚)𝑡 − 𝒘𝑇

𝑚𝝋(𝒙𝑡))􀁯.
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Figure 6.1: Validation performance of different multivariate model structures
for toy dataset. The predictive performance is shown as a function
of the regularization parameter. The root mean squared error in
this figure is computed with respect to time 𝑡 and component 𝑚.

6.8.2 Results

Using this simple example, three experiments are conducted. The first one
considers the prediction performances of the different models and compares
them. Another performance measure for the compared methods is their ability
to reconstruct the true parameters 𝑾􀁭 used to generate the data. The last
experiment looks at the numerical difference between solving the primal and
dual problems as shown in Table 6.1.

Prediction performance

Figure 6.1 shows the root mean squared error for the four different models on
the validation set as a function of the regularization parameter 𝜂. Note that
the models OLS and OLS + Oracle are not regularized and thus are constant
over the whole parameters range. The model obtained by ridge regression
has 20 different regularization parameters, one for each output. To simplify
the presentation the best parameter for each of the outputs is chosen and the
resulting overall best model is illustrated by the third constant. The reported
performance is the RMSE not only with respect to time but also with respect
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Table 6.3: Predictive performance for multivariate toy dataset. All given quan-
tities are RMSE values with respect to time and the output, for
different partitions of the data.

training validation test

OLS 0 0.8633 0.8459
OLS + Oracle 0.0920 0.2885 0.2981
RR 0.0175 0.7644 0.7867
MIMO 0.0184 0.4716 0.4974

to the outputs, i.e.

RMSE =
􀇻
⃓
⃓
⎷

1
𝑁 ⋅ 𝑀

𝑁

∑
𝑡=􀁮

𝑀

∑
𝑚=􀁮

(𝑦(𝑚)𝑡 − 𝑦̂(𝑚)𝑡 )􀁯.

Table 6.3 shows the performance on training, validation and test set, for the
best model of each type.

One can see that ridge regression is slightly better than ordinary least
squares. It is also evident that providing exact structural information as in
OLS + Oracle greatly improves the prediction performance of the model.
The proposed scheme clearly outperforms OLS as well as RR in predictive
performance. However, it is still significantly worse than OLS + Oracle. This
is to be expected as MIMO only has the prior information that there is some
low rank structure in the parameters while the OLS + Oracle is supplied with
the exact dependencies linking the different outputs.

Reconstruction performance

A second test for the considered models is the accuracy at which the matrix
𝑾􀁭 is reconstructed. The relative accuracy is measured as

‖𝑾􀁭 −􀈶𝑾‖𝐹
‖𝑾􀁭‖𝐹

.

Figure 6.2 depicts the accuracy as function of the regularization parameter.
The absolute performances for the best models are: 5.97% for OLS, 2.01% for
OLS + Oracle, 5.48% for RR and 3.42% for MIMO. The overall picture is very
similar to that of the predictive performance. The most notable difference is



128 Modeling systems with multiple outputs

􀁮􀁭−􀁺 􀁮􀁭−􀁹 􀁮􀁭−􀁸 􀁮􀁭􀁷 􀁮􀁭􀁸
􀁭

􀁲

􀁮􀁭

􀁮􀁲

􀁯􀁭

⋅􀁮􀁭−􀁹

regularization 𝜂

re
la
ti
ve

ap
pr
ox
im

at
io
n
of

𝑾
􀁭

MIMO RR OLS OLS + Oracle

Figure 6.2: The relative approximation error is computed as ‖􀈶𝑾−𝑾􀁭‖𝐹/‖𝑾􀁭‖𝐹.
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Figure 6.3: Relative duality gap between optimal values of (6.6) and (6.11) for
toy example. Denote the primal optimal value by 𝑝∗ and the dual
optimal value by 𝑑∗ respectively. Then the reported quantity is
(𝑝∗ − 𝑑∗)/𝑝∗.

that the advantage of the proposed method is a bit bigger here than it was for
the predictive performance.

One interesting observation is that the optimal regularization parameter
coincides for both performance measures. However, in a real application𝑾􀁭
is unknown. Hence, only the predictive performance can be used for selection
of the regularization parameter.
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Figure 6.4: Relative accuracy of parameter estimate 􀈶𝑾 for toy example. For
the primal problem (6.6) the value𝑾𝑝𝑟𝑖𝑚𝑎𝑙 is a direct result of the
optimization problem. For the dual (6.11) the optimal parameter
𝑾𝑑𝑢𝑎𝑙 is recovered using the equation from Corollary 6.11. The
reported quantity is ‖𝑾𝑝𝑟𝑖𝑚𝑎𝑙 −𝑾𝑑𝑢𝑎𝑙‖𝐹/‖𝑾𝑝𝑟𝑖𝑚𝑎𝑙‖𝐹.

Numerical comparison of primal and dual solutions

One major claim of this chapter to verify numerically is the equivalence of
the derived primal and dual solutions as summarized in Table 6.1. Therefore
consider the duality gap as a function of the regularization parameter as shown
in Figure 6.3. With an overall scale of 10−􀁴 it is evident that, within the limits
of the solver, the achieved duality gap is zero. Note that the obtained negative
values of the gap can most likely be accounted to numerical imprecisions of
the solver. The values are strictly positive for 𝜂 ⪆ 0.1.

A more demanding quality check is depicted in Figure 6.4, namely the
agreement of the estimated parameter 􀈶𝑾 . While for the primal problem, the
parameter can be directly extracted from the optimization problem, in case of
the dual an additional set of equations as stated in Corollary 6.11 has to be
evaluated. Again the solutions of primal and dual problems are in very good
agreement with an overall scale of the results of 10−􀁰. Except for the three
visible peaks the majority of the curve is even on a scale of 10−􀁲.

A second numerical example, based on the overparametrized formulation
outlined in Subsection 6.6.2, is given in next chapters Subsection 7.4.3. There
also some timing results are given.

6.9 Conclusions

This chapter considered a regularization scheme suitable for systems with
multiple outputs. By encouraging linear dependence between the model
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parameters for different outputs, information can flow from one model part to
another. After giving a thorough motivation in Subsections 6.1 and 6.2, some
important properties of the proposed problem are studied in the following
section. Themain contribution is the derivation of the kernel based estimation
problem in a primal-dual setting, which is discussed in Section 6.4. The second
crucial result worked out as part of this chapter in Section 6.5 is the form
of the predictive model in terms of the dual solution. Whereas for LS-SVMs
it is straightforwardly obtained from the KKT condition for 𝒘, in the case
considered here several auxiliary problems have to be solved. The chapter
continues in Section 6.6 and presents extensions of the basic formulation used
in the remainder of this chapter. In particular it generalizes the estimation
problem to be applicable to a larger class of systems. Furthermore it is tailored
to a specific model structure that will be used in the following chapters. The
chapter continues by reviewing different possibilities to obtain numerical
solutions. To validate the presented material the proposed method is finally
studied on a numerical example.
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Based on the publications

• Falck, T., Dreesen, P., De Brabanter, K., Pelckmans, K., De Moor, B.,
and Suykens, J. A. K. (Nov. 2012). “Least-Squares Support Vector
Machines for the Identification of Wiener-Hammerstein Systems”.
In: Control Engineering Practice 20(11), pp. 1165–1174,

• Falck, T., Suykens, J. A. K., Schoukens, J., and De Moor, B. (Dec. 2010).
“Nuclear Norm Regularization for Overparametrized Hammerstein
Systems”. In: Proceedings of the 49th IEEE Conference on Decision and
Control. (Atlanta, GA, USA, Dec. 15–17, 2010), pp. 7202–7207.

Further publications within this context [Falck, Pelckmans, et al., 2009;
Goethals et al., 2010].

7.1 Introduction

Prior knowledge about a nonlinear system is often available in the form of its
structure. For example a sensor or an actuator might have nonlinear character-
istics, like saturation, while the remainder of the system can be approximated
well by a linear system. Models that contain linear dynamical and static
nonlinear blocks are referred to as Hammerstein and Wiener systems. If the
first element of a system is a nonlinear function followed by a linear block
it is denoted as Hammerstein system. In case the order is reversed and a
linear system is followed by a static nonlinearity the concatenation is known
as Wiener system. Combinations like Hammerstein-Wiener and Wiener-
Hammerstein systems generalize these basic building blocks. An example for
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𝐺(𝓏) 𝑓(⋅) 𝐻(𝓏)

Wiener Hammerstein

Figure 7.1: General structure of a Wiener-Hammerstein system with linear
blocks 𝐺(𝓏) and 𝐻(𝓏) and static nonlinearity 𝑓(⋅). The dashed
and dotted boxes indicate subsystems of Wiener and Hammerstein
type respectively.

a block structured Wiener-Hammerstein model is shown in Figure 7.1. This
chapter will focus on Wiener-Hammerstein systems which will be treated by
extending an existing model for Hammerstein systems.

One of the first identification techniques for Wiener-Hammerstein struc-
tured systems was proposed by Billings and Fakhouri [1978]. Since then there
has been a large interest in the identification of block structured models. A
recent monograph that presents several state of the art approaches is [Giri
and Bai, 2010]. However most attention so far has been paid to Wiener and
Hammerstein systems while their combinations were subject to relatively
little research [Tan and Godfrey, 2002; Bershad et al., 2001; Enqvist and Ljung,
2005; Greblicki and Pawlak, 2008]. More recently this has changed partially
due to a dedicated special session at SYSID2009 [Schoukens et al., 2009].

The work presented in this chapter is founded on the identification ap-
proach for Hammerstein systems introduced by Goethals [Goethals et al.,
2005b,a, 2010]. There LS-SVM based models are modified such that they incor-
porate knowledge about the structure of the underlying system. The major
advantage of the proposed technique over many others is that it is based
on convex optimization and therefore gives consistent results regardless of
the initialization. In the work of Goethals the starting point is a noncon-
vex optimization problem that is then approximated by a convex problem.
The approach taken is known as overparametrization and has been briefly
introduced in Subsection 3.5.2.

Structure of this chapter The new contributions in this chapter are given
in the following sections. At first in Section 7.2 the overparametrization
approach for the identification of Hammerstein systems using LS-SVMs pro-
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𝑢𝑡 𝐺(𝓏) 𝑓(⋅)
𝑦𝐺,𝑡

𝐻(𝓏)
𝑢𝐻,𝑡 𝑦𝑡

Figure 7.2: General structure of aWiener-Hammerstein systemwithmeasured
input signal 𝑢𝑡 and output signal 𝑦𝑡. The intermediate signals 𝑦𝐺,𝑡
and 𝑢𝐻,𝑡 are assumed to be unobserved.

posed by Goethals is presented. Along with the basic technique, the necessary
modifications for handling the Wiener-Hammerstein structure as an extended
version of Hammerstein systems are outlined. Furthermore the projection
step that is required to go from the overparametrized model back to the origi-
nal model structure is revisited and an improved scheme is presented. The
next section puts the focus on handling of large scale data sets using ideas
presented in Section 7.3 that have already been proven to work well for NARX
models. The approximation that is carried out to obtain a convex problem
is based on dropping a rank constraint from the optimization problem that
captures all the nonconvexity. In Section 7.4 the results from Chapter 6 are
used to obtain an improved convex approximation based on the nuclear norm.
Finally the proposed methods are studied on a large scale real life data set
in Section 7.5. For the high quality measurements of a nonlinear electrical
circuit, which constitutes the Wiener-Hammerstein benchmark [Schoukens
et al., 2009] data set, the structured models introduced in this chapter are
compared to unstructured NARX models. The chapter is then concluded in
Section 7.6.

7.2 Exploiting information on the model structure

In this section it is demonstrated how to integrate structural information
in a LS-SVM model. As outlined earlier it is based on the work of Goethals
et al. [2005a, 2010] carried out for Hammerstein systems. However the key
idea to obtain a convex problem formulation goes back to [Chang and Luus,
1971; Bai, 1998] which proposed overparametrization for the identification of
Hammerstein systems.

This section first proposes a suitable parametrization of the Wiener-Ham-
merstein structure depicted in Figure 7.2. For this aim the linear blocks are
represented by rational transfer functions and the static nonlinearity is de-
scribed by a LS-SVM model. This parametrization gives rise to a nonconvex
optimization problem. The next subsection simplifies the model so far that
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the overparametrization technique can be applied to it. This allows captur-
ing all nonconvexity of the problem in a rank-1 constraint. Subsection 7.2.3
then derives a kernel based representation for a convex approximation of
this problem. Approaches to recover a block structured model class from the
approximation are discussed in the following subsection. The final subsection
introduces a toy data set which will be used to provide numerical results in
this as well as in later sections.

7.2.1 Model parametrization and nonlinear estimation
problem

Assume that the linear blocks 𝐺(𝓏) and 𝐻(𝓏) can be described by rational
transfer functions. Let the first block 𝐺(𝓏) have 𝑝𝐺 poles and 𝑞𝐺 zeros while
the second linear block 𝐻(𝓏) has 𝑝𝐻 poles and 𝑞𝐻 zeros respectively. The
signal 𝑦𝐺,𝑡 at the output of the first block as depicted in Figure 7.2 is unobserved.
The same holds true for 𝑢𝐻,𝑡, the unobserved input of the linear system 𝐻(𝓏),
shown in the same figure. Based on these definitions the output signals for
both systems can be written as

𝑦𝐺,𝑡 =
𝑞𝐺

∑
𝑘=􀁭

𝑏𝐺,𝑘𝑢𝑡−𝑘 −
𝑝𝐺

∑
𝑘=􀁮

𝑎𝐺,𝑘𝑦𝐺,𝑡−𝑘, (7.1)

𝑦̂𝑡 =
𝑞𝐻

∑
𝑘=􀁭

𝑏𝐻,𝑘𝑢𝐻,𝑡−𝑘 −
𝑝𝐻

∑
𝑘=􀁮

𝑎𝐻,𝑘𝑦𝑡−𝑘, (7.2)

with parameters {𝑎𝐺,𝑘}
𝑝𝐺
𝑘=􀁮 and {𝑏𝐺,𝑘}

𝑞𝐺
𝑘=􀁭 for 𝐺(𝓏) and {𝑎𝐻,𝑘}

𝑝𝐻
𝑘=􀁮 and {𝑏𝐻,𝑘}

𝑞𝐻
𝑘=􀁭 for

𝐻(𝓏) respectively. The relation between the unobserved output 𝑦𝐺,𝑡 of 𝐺(𝓏)
and the unobserved input 𝑢𝐻,𝑡 of𝐻(𝓏) is given by the static nonlinearity, such
that

𝑢𝐻,𝑡 = 𝑓(𝑦𝐺,𝑡). (7.3)

Choosing a LS-SVM structure as explained in Chapter 4 as parametrization
for 𝑓(⋅), the nonlinearity can be expressed as

𝑓(𝑥) = 𝒘𝑇𝝋(𝑥) + 𝑐. (7.4)

Note that the regression variable 𝑥 is scalar and accordingly 𝝋 ∶ ℝ → ℝ𝑛ℎ .
To allow compact formulations the following notation is introduced for
the model parameters 𝒂𝐺 = [𝑎𝐺,􀁮, … , 𝑎𝐺,𝑝𝐺]

𝑇 ∈ ℝ𝑝𝐺 , 𝒃𝐺 = [𝑏𝐺,􀁭, … , 𝑏𝐺,𝑞𝐺]
𝑇 ∈

ℝ𝑞𝐺+􀁮, 𝒂𝐻 = [𝑎𝐻,􀁮, … , 𝑎𝐻,𝑝𝐻 ]
𝑇 ∈ ℝ𝑝𝐻 and 𝒃𝐻 = [𝑏𝐻,􀁭, … , 𝑏𝐻,𝑞𝐻 ]

𝑇 ∈ ℝ𝑞𝐻+􀁮.
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Furthermore matching vectors of lagged inputs and outputs are defined as
𝒖𝑡 = [𝑢𝑡, … , 𝑢𝑡−𝑞𝐺]

𝑇 ∈ ℝ𝑞𝐺+􀁮, 𝒚𝑡−􀁮 = [𝑦𝑡−􀁮, … , 𝑦𝑡−𝑝𝐻 ]
𝑇 ∈ ℝ𝑝𝐻 and similarly for

the unobserved intermediate signals 𝒚𝐺,𝑡−􀁮 = [𝑦𝐺,𝑡−􀁮, … , 𝑦𝐺,𝑡−𝑝𝐺]
𝑇 ∈ ℝ𝑝𝐺 and

𝒖𝐻,𝑡 = [𝑢𝐻,𝑡, … , 𝑢𝐻,𝑡−𝑞𝐻 ]
𝑇 ∈ ℝ𝑞𝐻+􀁮. Then all parameters can be estimated from

a nonlinear least squares problem

min
𝒂𝐺,𝒃𝐺,𝒂𝐻 ,𝒃𝐻 ,𝒘,𝑐,𝑦𝐺,𝑡,𝑢𝐻,𝑡,𝑒𝑡

1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=𝐷𝐻

𝑒􀁯𝑡

subject to 𝑦𝑡 = 𝒃𝑇𝐻𝒖𝐻,𝑡 − 𝒂𝑇𝐻𝒚𝑡−􀁮 + 𝑒𝑡, 𝑡 = 𝐷𝐻 , … ,𝑁,
𝑢𝐻,𝑡 = 𝒘𝑇𝝋(𝑦𝐺,𝑡) + 𝑐, 𝑡 = 𝐷𝐺, … ,𝑁,
𝑦𝐺,𝑡 = 𝒃𝑇𝐺𝒖𝑡 − 𝒂𝑇𝐺𝒚𝐺,𝑡−􀁮, 𝑡 = 𝐷𝐺, … ,𝑁,
‖𝒃𝐺‖􀁯 = 1, ‖𝒃𝐻‖􀁯 = 1,

(7.5)

with 𝐷𝐺 = max(𝑝𝐺, 𝑞𝐺) + 1 and 𝐷𝐻 = max(𝑝𝐻 + 1, 𝑞𝐻 + 𝐷𝐺). The last two
scaling constraints remove an ambiguity, as a constant gain can be shuffled
between the linear blocks 𝐺(𝓏) and 𝐻(𝓏) and the nonlinearity 𝑓(⋅) [Boyd and
Chua, 1983, 1985].

7.2.2 Overparametrization of a simplified model

Problem (7.5) is strongly nonlinear and nonconvex, hence it has to be sim-
plified to allow an efficient solution. The modified model will then enable
a convex relaxation. The procedure operates in two steps to eliminate all
references to the unobserved signals 𝑦𝐺,𝑡 and 𝑢𝐻,𝑡 from (7.5). Otherwise the
optimization problem would contain products of the unknown signals with
unknown model parameters resulting in nonconvex bilinear expressions.

1. In order to eliminate the dependency on 𝑦𝐺,𝑡 one can relax the model
structure from Wiener-Hammerstein to an extended Hammerstein
model. In this structure the first linear block 𝐺(𝓏) and the static non-
linearity 𝑓(⋅) are jointly modeled.

2. In a second step all remaining nonconvexity due to 𝑢𝐻,𝑡 is captured in a
rank constraint. This is achieved by introducing new variables for each
product of 𝑏𝐻,𝑘 with 𝒘. To ensure that the number of free parameters
stays constant, a rank-1 constraint is placed on a suitably defined matrix
containing the new variables.

To carry out the first step, one is restricted to model parametrizations which
only make use of the measured input signal 𝑢𝑡. Otherwise the unknown signal
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𝑦𝐺,𝑡 would remain present and the problem nonconvex. Therefore a NFIR
model structure is chosen to jointly model the first linear block 𝐺(𝓏) and the
static nonlinearity 𝑓(⋅). Hence the static variable 𝑥 in (7.4) is replaced by a
vector of lagged inputs 𝒖𝑓,𝑡 = [𝑢𝑡, … , 𝑢𝑡−𝑞𝑓 ]

𝑇 ∈ ℝ𝑞𝑓+􀁮. Here 𝑞𝑓 has to be chosen
large enough to approximate the impulse response of 𝐺(𝓏). Then the joint
model can be written as

𝑢𝐻,𝑡 = 𝑓(𝒖𝑓,𝑡) = 𝒘𝑇𝝋(𝒖𝑓,𝑡) + 𝑐, (7.6)

where now 𝝋 ∶ ℝ𝑞𝑓 → ℝ𝑛ℎ .
Note that the modified model still depends on 𝑢𝐻,𝑡. Thus a second step is

needed to also eliminate this signal from the modified model. This is achieved
by substituting (7.6) into the model (7.2) for 𝐻(𝓏), yielding

𝑦𝑡 =
𝑞𝐻

∑
𝑘=􀁭

𝑏𝐻,𝑘(𝒘𝑇𝝋(𝒖𝑓,𝑡−𝑘) + 𝑐) − 𝒂𝑇𝐻𝒚𝑡−􀁮 + 𝑒𝑡. (7.7)

Note that now the only remaining nonconvexity of the problem is due to the
bilinear products of 𝑏𝐻,𝑘 with 𝒘 and 𝑐. The latter one is straightforwardly
removed by introducing a new variable 𝑑 with 𝑑 = 𝑐∑𝑞𝐻

𝑘=􀁭 𝑏𝐻,𝑘. For the former
let 𝜱𝑡 = [𝝋(𝒖𝑓,𝑡), … ,𝝋(𝒖𝑓,𝑡−𝑞𝐻 )], then the sum ∑𝑞𝐻

𝑘=􀁭 𝑏𝐻,𝑘𝒘𝑇𝝋(𝒖𝑓,𝑡−𝑘) can be
rewritten as 𝒃𝑇𝐻𝜱𝑇

𝑡 𝒘. As this is scalar it can be replaced by tr(𝒃𝑇𝐻𝜱𝑇
𝑡 𝒘). Using

the cyclic property of the trace this is also equivalent to tr(𝜱𝑇𝒘𝒃𝑇𝐻 ). Now the
rank-1 product 𝒘𝒃𝑇𝐻 can be replaced by𝑾 , a matrix of free variables and the
additional constraint rank(𝑾) = 1. This leads to a new optimization problem

min
𝑾,𝑑,𝒂𝐻 ,𝑒𝑡

1
2
‖𝑾‖􀁯𝐹 +

1
2
𝛾

𝑁

∑
𝑡=𝐷

𝑒􀁯𝑡

subject to
𝑦𝑡 = tr(𝜱𝑇

𝑡 𝑾) + 𝑑 − 𝒂𝑇𝐻𝒚𝑡−􀁮 + 𝑒𝑡, 𝑡 = 𝐷,… ,𝑁,
rank(𝑾) = 1,

(7.8)

with 𝐷 = max(𝑝𝐻 , 𝑞𝑓 + 𝑞𝐻 ) + 1. The constraints are a reformulation of (7.7).
This is also the case for the regularization term 𝒘𝑇𝒘 of (7.5). Note that it can
be rewritten as tr(𝒘𝒘𝑇 ). Due to the scaling constraints 𝒃𝑇𝐻𝒃𝐻 = 1, one can
further write 𝒘𝑇𝒘 = tr(𝒘(𝒃𝑇𝐻𝒃𝐻 )𝒘𝑇 ) = tr(𝑾𝑾 𝑇 ) = ‖𝑾‖􀁯𝐹.

7.2.3 Convex relaxation and dual model representation

Starting from the nonconvex optimization problem (7.5), based on a straight-
forward parametrization of a Wiener-Hammerstein system, an alternative
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optimization problem (7.8) for a simplified model has been derived. The
only nonconvex term in this alternative formulation is the rank-1 constraint.
Hence, a convex approximation of the problem can be obtained by dropping
the rank constraint from the problem.

In [Goethals et al., 2005a, 2010] it has been noted that model performance
can be improved by centering the nonlinear contributions 𝒘𝑇

𝑘𝜱(𝑘) for 𝑘 =
0,… , 𝑞𝐻 , where𝑾 = [𝒘􀁭, … ,𝒘𝑞𝐻 ],𝜱(𝑘) = [𝝋(𝒖𝑓,𝐷−𝑞𝐻+𝑘), … ,𝝋(𝒖𝑓,𝑁−𝑞𝐻+𝑘)] and
𝑁̃ = 𝑁 − 𝐷 + 1. This can be ensured by the introduction of new constraints
𝒘𝑇

𝑘𝜱(𝑘)𝟏𝑁̃ = 0 for 𝑘 = 0,… , 𝑞𝐻 . In view of Chapter 5 this ensures that the
kernel based models are orthogonal to a constant which is already modeled
by 𝑑. Not including the constraints might therefore result in an ambiguity.

Dropping the rank constraint and complementing the problem by these
centering constraints yields a convex relaxation of (7.8) which is given by

min
𝑾,𝑑,𝒂𝐻 ,𝑒𝑡

1
2

𝑞ℎ

∑
𝑘=􀁭

𝒘𝑇
𝑘𝒘𝑘 +

1
2
𝛾

𝑁

∑
𝑡=𝐷

𝑒􀁯𝑡

subject to 𝒚 =
𝑞ℎ

∑
𝑘=􀁭

𝜱𝑇
(𝑘)𝒘𝑘 + 𝟏𝑁̃𝑑 − 𝒀𝑇𝒂𝐻 + 𝒆,

𝒘𝑇
𝑘𝜱(𝑘)𝟏𝑁̃ = 0, 𝑘 = 0, … , 𝑞𝐻 ,

(7.9)

where 𝒚 = [𝑦𝐷, … , 𝑦𝑁 ]𝑇 , 𝒆 = [𝑒𝐷, … , 𝑒𝑁 ]𝑇 and 𝒀 = [𝒚𝐷−􀁮, … , 𝒚𝑁−􀁮]. Here the
trace tr(𝜱𝑡𝑾) has once more been rewritten as summation and the squared
Frobenius norm of𝑾 is expressed in terms of its columns as ∑𝑞ℎ

𝑘=􀁭𝒘
𝑇
𝑘𝒘𝑘.

Problem (7.9) is now in the form of a primal kernel based model like in
Subsection 4.1.1. Treated in that way the primal formulation needs to be
replaced by the dual, because in many cases an explicit and low dimensional
expression of the feature map 𝝋 is not available. Therefore, in analogy to
Lemma 4.2, the Lagrange dual containing only references to the known kernel
𝐾 is derived.

Lemma 7.1. Let 𝜶 ∈ ℝ𝑁̃ denote the Lagrange multipliers for the first equality
constraint of (7.9) and 𝜷 = [𝛽􀁭, … , 𝛽𝑞𝐻 ] denote the Lagrange multipliers for the
centering constraints. Then the solution of (7.9) can be obtained in the dual from
the linear system

⎡
⎢
⎢
⎢
⎢
⎣

𝜴𝐴 +
􀁮
𝛾
𝑰𝑁̃ 𝜴𝐶 𝟏𝑁̃ −𝒀𝑇

𝜴𝑇
𝐶 𝜴𝐷 𝟎(𝑞𝐻+􀁮) 𝟎⊠

𝟏𝑇𝑁̃ 𝟎𝑇(𝑞𝐻+􀁮) 0 𝟎𝑇𝑝𝐻
−𝒀 𝟎⊠ 𝟎𝑝𝐻 𝟎⊠

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜶
𝜷
𝑑
𝒂𝐻

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

𝒚
𝟎(𝑞𝐻+􀁮)
0
𝟎𝑝𝐻

⎤
⎥
⎥
⎥
⎦

(7.10)
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where 𝜴𝐴 = ∑𝑞ℎ
𝑘=􀁭𝜴𝑘, 𝜴𝐶 = [𝜴􀁭𝟏𝑁̃ , … ,𝜴𝑞𝐻𝟏𝑁̃ ], 𝜴𝐷 = diag(𝟏𝑇𝑁̃𝜴􀁭𝟏𝑁̃ , … ,

𝟏𝑇𝑁̃𝜴𝑞𝐻𝟏𝑁̃ ) and (𝜴𝑘)𝑖𝑗 = 𝐾(𝒖𝑓,𝑁+(𝑖−𝑁̃)+(𝑘−𝑞𝐻 ), 𝒖𝑓,𝑁+(𝑗−𝑁̃)+(𝑘−𝑞𝐻 )) for 𝑖, 𝑗 = 1, … , 𝑁̃ .

Proof. The Lagrangian for (7.9) is given by

ℒ(𝒘𝑘, 𝒂𝐻 , 𝑑, 𝒆, 𝜶, 𝛽𝑘) =
𝑞ℎ

∑
𝑘=􀁭

𝒘𝑇
𝑘𝒘𝑘 +

1
2
𝛾

𝑁

∑
𝑡=𝐷

𝑒􀁯𝑡

− 𝜶𝑇 ⎛⎜
⎝

𝑞ℎ

∑
𝑘=􀁭

𝜱𝑇
(𝑘)𝒘𝑘 + 𝟏𝑁̃𝑑 − 𝒀𝑇𝒂𝐻 + 𝒆 − 𝒚

⎞
⎟
⎠
−

𝑞𝐻

∑
𝑘=􀁭

𝛽𝑘𝒘𝑇
𝑘𝜱(𝑘)𝟏𝑁̃ .

The KKT condition for 𝒆 is the same as in the proof of Lemma 4.2. The
conditions for optimality for the dual variables are the constraints of the
primal problem. The remaining conditions for the primal variables are given
by

𝟎𝑛ℎ =
𝜕ℒ
𝜕𝒘𝑘

= 𝒘𝑘 −𝜱(𝑘)(𝜶 + 𝛽𝑘𝟏𝑁̃ ), 𝑘 = 0, … , 𝑞𝐻

𝟎(𝑞𝐻+􀁮) =
𝜕ℒ
𝜕𝒂𝐻

= 𝒀𝜶,

0 =
𝜕ℒ
𝜕𝑑

= −𝜶𝑇𝟏𝑁̃ .

Therefore the primal vectors𝒘𝑘 can be expressed in terms of the dual variables
as 𝜱(𝑘)(𝜶 + 𝛽𝑘𝟏𝑁̃ ). This allows to write 𝜱𝑇

(𝑘)𝒘𝑘 as 𝜴𝑘𝜶 + 𝛽𝑘𝜴𝑘𝟏𝑁̃ where the
kernel trick has been applied to𝜱𝑇

(𝑘)𝜱(𝑘) replacing it by the kernel matrix 𝜴𝑘.
Substituting this relation into the KKT conditions for the dual variables, i.e.
the constraints of the dual problem, and combining those with the conditions
for 𝒂𝐻 and 𝑑 yields the dual system stated in (7.10). ⬜

The corresponding model can be evaluated at a new point (𝒖𝑓,𝑡, … , 𝒖𝑓,𝑡−𝑞𝐻 , 𝒚𝑡−􀁮)
using the one-step-ahead predictive equation

𝑦̂𝑡 =
𝑞𝐻

∑
𝑘=􀁭

𝒌𝑘(𝒖𝑓,𝑡−𝑘)𝑇 (𝜶 + 𝟏𝑁̃𝛽𝑘) + 𝑑 − 𝒂𝑇𝐻𝒚𝑡−􀁮, (7.11)

where 𝒌𝑘(𝒛) = [𝐾(𝒖𝑓,𝐷+(𝑘−𝑞𝐻 ), 𝒛), … , 𝐾(𝒖𝑓,𝑁+(𝑘−𝑞𝐻 ), 𝒛)]
𝑇 ∈ ℝ𝑁̃ .

7.2.4 Recovery of the original model class

Problem (7.8) is guaranteed to have a rank-1 solution such that the original
parametrization in terms of 𝒘 and 𝒃𝐻 can be easily obtained by computing a
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rank-1 factorization of𝑾 . However this is not the case for the relaxed problem
(7.9). Therefore one has to resort to approximations. Explicitly recovering 𝒘
from the matrix𝑾 is impossible if 𝝋 is only defined implicitly which is often
the case. However if a factor 𝒃𝐻 that corresponds to𝑾 can be found, then
it can be fixed and used to estimate 𝒘. This can be achieved using (7.7) as
modeling constraint and the standard LS-SVM cost function 􀁮

􀁯
𝒘𝑇𝒘 + 􀁮

􀁯
𝛾𝒆𝑇𝒆.

In the following two approaches to recover an estimate for 𝒃𝐻 are discussed.
The first one exploits only the kernel matrix while the second one is based on
the analysis of model predictions.

1. Assume that𝑾 has the singular value decomposition 𝑼𝜮𝑽 𝑇 . Then a
possible approximation for 𝒃𝐻 is given by the right singular vector cor-
responding to largest singular value as𝑾 is the relaxation of the rank-1
product 𝒘𝒃𝑇𝐻 . Note that the matrix 𝑽 containing the right singular
vectors is finite dimensional and can be obtained from the eigenvalue
decomposition of𝑾 𝑇𝑾 = 𝑽𝜮􀁯𝑽 𝑇 . This matrix can be computed as

𝑾 𝑇𝑾 =
⎡
⎢
⎢
⎣

𝜶𝑇
􀁭𝜴􀁭,􀁭𝜶􀁭 ⋯ 𝜶𝑇

􀁭𝜴􀁭,𝑞𝐻𝜶𝑞𝐻
⋮ ⋱ ⋮

𝜶𝑇
𝑞𝐻𝜴𝑞𝐻 ,􀁭𝜶􀁭 ⋯ 𝜶𝑇

𝑞𝐻𝜴𝑞𝐻 ,𝑞𝐻𝜶𝑞𝐻

⎤
⎥
⎥
⎦

(7.12)

where 𝜶𝑘 = 𝜶 + 𝟏𝑁̃𝛽𝑘, 𝜴𝑘,𝑙 = 𝜱𝑇
(𝑘)𝜱(𝑙) and (𝜴𝑘,𝑙)𝑖𝑗 = 𝐾(𝒖𝑓,𝑁+(𝑖−𝑁̃)+(𝑘−𝑞𝐻 ),

𝒖𝑓,𝑁+(𝑗−𝑁̃)+(𝑙−𝑞𝐻 )). This follows from expressing the 𝑖𝑗-th element of
𝑾 𝑇𝑾 as 𝒘𝑇

𝑖 𝒘𝑗 and the expansion of 𝒘𝑘 in terms of the dual variables
as given in the proof of Lemma 7.1.

2. Instead of working with 𝑾 one can also analyze the predictions 𝒘𝑇
𝑘

𝝋(𝒖𝑓,𝑡) as done by Goethals et al. [2005a, 2010]. Here one has to notice
that 𝒘𝑘 is a relaxation of 𝑏𝑘𝒘. Hence, the vector of predictions gener-
ated by the components of the model 𝒚̂𝐶,𝑡 = [𝒘𝑇

􀁭𝝋(𝒖𝑓,𝑡), … ,𝒘𝑇
𝑞𝐻𝝋(𝒖𝑓,𝑡)]

should be equal to 𝒃𝑇𝐻 scaled by 𝒘𝑇𝝋(𝒖𝑓,𝑡). This has to hold for all 𝑡 of
the training data set. As only finite data is available and all components
have to be evaluated, this can only be done for 𝑡 = 𝐷,… ,𝑁 − 𝑞𝐻 . If this
is carried out for all available data, the matrix 𝒀𝐶 = [𝒚̂𝐷, … , 𝒚̂𝑁−𝑞𝐻 ]

𝑇 can
be formed. As each row should be a scaled version of 𝒃𝐻 , once more
the dominant right singular vector of 𝒀𝐶 is an estimate for 𝒃𝐻 .

Here in both approaches only the dominant singular vector has been used.
Hence, all information contained in the remaining singular vectors is ne-
glected. Instead of solely relying on the dominant information one can also
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consider a randomized approach that is able to take all information into ac-
count. Therefore a vector 𝒗 is drawn from a zero mean Gaussian distribution
with covariance matrix 𝑽𝜮􀁯𝑽 𝑇 . Then one can generate estimates for 𝒃𝐻 by
choosing 𝒃𝐻 = 𝒗/‖𝒗‖􀁯. These are then candidate values which have to be
tested for their applicability on the data.

Below a complete algorithm is summarized to estimate an overparametrized
LS-SVM Wiener-Hammerstein model and project it back onto the original
model class.

Algorithm 7.1 (Estimation of structured LS-SVM model).

1. Choose model orders 𝑝𝐻 , 𝑞𝐻 and 𝑞𝑓 .
2. Select a regularization parameter 𝛾 and a kernel function 𝐾 (and its

parameters).
3. Compute the kernel matrices 𝜴𝑘, its average 𝜴𝐴, sums 𝜴𝐷 and row

sums 𝜴𝐶 as defined in Lemma 7.1.
4. Solve the dual linear system (7.10).

Projection onto original model class:
5. Obtain estimate for 𝒃𝐻 by one of the techniques described in Subsec-

tion 7.2.4.
6. Estimate a model with min𝒘,𝑐,𝒂𝐻 ,𝒆

􀁮
􀁯
𝒘𝑇𝒘 + 􀁮

􀁯
𝛾𝒆𝑇𝒆 subject to (7.7) for

𝑡 = 𝐷,… ,𝑁 .

7.2.5 Numerical example

In the following an artificial data set is used to evaluate the advantages of
using the proposed structured modeling approach over an unstructured NARX
type model. The compared model classes are

NARX LS-SVM model with NARX structure,
STRCTRD-1 structured model with projection based on𝑾 (method 1),
STRCTRD-2 structured model with projection based on component-wise

predictions (method 2) and
OVERPRZD overparametrized model, i.e. model without projection.

The corresponding model equations and algorithms are referenced in Table 7.1.
The example system used for the evaluation is defined in the following.

System 7.1 (Wiener-Hammerstein system). The first linear block 𝐺(𝓏) is
given by a fourth order Chebychev type II digital low-pass filter with a stop-
band edge frequency 0.5 (normalized) and a stopband ripple of 40 dB. Its
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Table 7.1: List of considered model structures, the corresponding one-step-
ahead predictors and the algorithms needed for their estimation.

Model Model eqation Algorithm

NARX (4.6) 4.1
STRCTRD-1 (7.7)† 7.1 with projection 1
STRCTRD-2 (7.7)† 7.1 with projection 2
OVRPRZD (7.11) 7.1 without projection

†with 𝒘𝑇𝝋(𝒖𝑓,𝑡−𝑘) = ∑𝑃
𝑙=􀁷

𝑏𝐻,𝑙 ∑
𝑁̃
𝑛=􀁸

𝛼𝑛𝐾(𝒖𝑓,𝑡−𝑘, 𝒖𝑓,𝑛−𝑙).

transfer function is given by

𝐺(𝓏) =
0.0458 + 0.0755𝓏−􀁮 + 0.1024𝓏−􀁯 + 0.0754𝓏−􀁰 + 0.0458𝓏−􀁱

1 − 1.5233𝓏−􀁮 + 1.2537𝓏−􀁯 − 0.4602𝓏−􀁰 + 0.0747𝓏−􀁱 ,

where all coefficients have been truncated to four significant digits. The static
nonlinearity is a hyperbolic tangent, 𝑓(⋅) = tanh(⋅), representing a mildly
nonlinear saturation characteristic. The second linear block is given by a 6th
order comb filter with transfer function

𝐻(𝓏) =
∏􀁰

𝑘=􀁮(𝓏
􀁯 − 2𝑚𝜁,𝑘 cos(𝜁𝑘)𝓏 + 𝑚􀁯

𝜁,𝑘)
∏􀁰

𝑘=􀁮(𝓏
􀁯 − 2𝑚𝜉,𝑘 cos(𝜉𝑘)𝓏 + 𝑚􀁯

𝜉,𝑘)

with 𝜁𝑘 =
􀁯
􀁰􀁭
(2𝑘)𝜋, 𝜉𝑘 =

􀁯
􀁰􀁭
(2𝑘−1)𝜋 and𝑚𝜁,𝑘 = (0.9, 0.9, 0.8),𝑚𝜉,𝑘 = (0.7, 0.9, 0.9).

The frequency response of 𝐻(𝓏) is also shown in Figure 7.3.
The input data is generated from a standard normal distribution and the

output is corrupted with additive white Gaussian noise having a standard
deviation of 0.01. To suppress transient effects the first 500 samples are always
discarded.

Unless noted otherwise a training set of size 1000 is used to estimate all
models. As kernel the RBF kernel is used throughout this chapter. The
bandwidth parameter 𝜎 of the kernel and the regularization parameter 𝛾 are
selected such that the RMSE for one-step-ahead predictions on a validation
set with 1000 samples is minimized. The candidate values for 𝜎 and 𝛾 are
taken from a grid. The performance is always evaluated on an independent
test data set of 1000 samples.
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Figure 7.3: Transfer function of the second linear block in the Wiener-
Hammerstein structure of System 7.1.

Model selection

The NARX models as well as the structured models introduced in this section
have several parameters specifying their model order. In case of NARXmodels
these are 𝑝 and 𝑞 while for the structured models 𝑞𝑓 , 𝑝𝐻 and 𝑞𝐻 have to be
selected. To keep the computational burden small, the parameters are chosen
such that 𝑝 = 𝑞 and 𝑝𝐻 = 𝑞𝐻 . The optimal model order is selected by estimating
models for different model orders and choosing the one with lowest RMSE
for one-step-ahead predictions on an independent test set. Carrying this out
for the NARX structure yields a model order of 𝑝 = 𝑞 = 12 as can be seen
from Figure 7.4. In case of the structured models, model order selection is
performed based on OVRPRZD, the model without projection. The obtained
model orders are 𝑝𝐻 = 𝑞𝐻 = 15 and 𝑞𝑓 = 5which follow from the performances
shown in Figure 7.5.

Comparison of projection schemes

In Subsection 7.2.4 two projection schemes were introduced to obtain a model
within the original model class. Based on the system described at the begin-
ning of this section, 100 realizations of data are generated and used to estimate
models with the optimal model orders as obtained in the last subsection. For
each realization both projection schemes are used to obtain models. These
are then evaluated on an independent test set. The used evaluation criterion
is the root mean squared error for one-step-ahead predictions as well as for
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Figure 7.4: Model order selection for NARX model of Wiener-Hammerstein
System 7.1. The RMSE is computed for one-step-ahead predictions
on an independent test set.
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Figure 7.5: Model selection for Wiener-Hammerstein System 7.1 based on
OVRPRZD. The RMSE for one-step-ahead prediction on an inde-
pendent test set is shown. The cross marks the optimal model
order 𝑝𝐻 = 𝑞𝐻 = 15 and 𝑞𝑓 = 5.
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Table 7.2: Root mean squared error on an independent test set for System 7.1
comparing the different projection schemes and the unprojected
model. The training set size is 1000 samples. All shown values are
scaled by 100. In total 100 realizations of the data are generated and
the reported values correspond to mean and standard deviation.

model/estimation one-step-ahead simulation

OVRPRZD 3.86 (0.23) 7.38 (1.37)
STRCTRD-1 4.65 (0.35) 9.45 (1.10)
STRCTRD-2 4.95 (0.45) 9.93 (1.85)

fully simulated values. The performances are summarized in Table 7.2. It
can be concluded that both projection schemes result in a degradation of
predictive performance when compared to the unprojected model. However,
STRCTRD-1 does slightly better than STRCTRD-2.

Besides the predictive performance the projection also gives insight into the
quality of the convex approximation. Given a perfect solution the matrices
𝑾 and 𝒀 would be of rank one, i.e. with all energy concentrated in the
largest eigenvalue. For the projection based on𝑾 60% (± 2%) of the energy is
concentrated in the largest eigenvalue. In case of working with the matrix
of predictions 𝒀𝐶 85% (± 8%) of the energy is concentrated in the largest
singular value. From the values based on 𝑾 it can be clearly seen that the
approximation is far from the optimal rank-1 solution.

The structured models allow the extraction of the parameters 𝒂𝐻 and 𝒃𝐻
of the second linear block 𝐻(𝓏). Based on the 100 data realizations the
covariance matrix of these parameters can be computed for both projection
schemes as well as their average values. For ease of comparison the transfer
function of 𝐻(𝓏) is visualized in Figure 7.6 in the frequency domain. While
both methods are not able to identify the true transfer function correctly,
STRCTRD-1 does a little better on average. However the variance of the
parameters for STRCTRD-2 is so large that it cannot be visualized, while for
STRCTRD-1 the confidence regions are very small.

Behavior for different number of support vectors

To study the advantages of the structured models over their unstructured
counterparts, models with different numbers of support vectors have been
estimated. The considered training set sizes are 100, 250, 500, 1000 and 2500.
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Figure 7.6: Estimated transfer function of the second linear block 𝐻(𝓏) of
System 7.1. The solid line is true underlying system, the dashed
and the dotted lines are obtained by STRCTRD-1 and STRCTRD-2
respectively. The shown transfer functions are computed from the
mean of the parameters estimated from 100 different realizations
of the data. All transfer functions are scaled to unit gain. The gray
area indicates 2.45 standard deviations of the parameter estimates
transferred to frequency domain. For STRCTRD-2 the parameter
variance is too large to be visualized.

Note that in the dual formulation each training sample corresponds to a
support vector. The results are summarized in Table 7.3.

It can be concluded that the one-step-ahead predictions are in general quite
good. The prediction error in simulation mode is roughly twice as big as for
the one-step-ahead predictions independent of the considered model structure
and the number of support vectors. While for sample sizes up to 500 SVs the
model structure STRCTRD-1 outperforms all other models, the advantage
shifts to the OVRPRZD models for sample sizes of at least 1000 SVs.

7.3 Handling of large data sets

Standard LS-SVMs for NARXmodels can be extended to handle large data sets
as described in Section 4.3. These ideas can also be extended to the structured
models described in this chapter. One possibility is to use the fixed-size
approach which has the advantage that no modifications have to be made to
the problem, but the disadvantage that it cannot handle as much data as in
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Table 7.3: Root mean squared error on an independent test set for System
7.1 comparing the different model structures for varying numbers
of support vectors. All shown values are scaled by 100. In total
100 realizations of the data were generated and the reported values
correspond their mean. The first value is for predictions generated
in simulation mode while the value in parenthesis corresponds to
predictive performance for one-step-ahead predictions.

number of SVs NARX OVRPRZD STRCTRD-1

100 17.75 (8.71) 19.22 (7.32) 16.96 (6.76)
250 15.31 (7.03) 14.63 (6.24) 12.68 (5.83)
500 15.12 (6.60) 10.14 (5.14) 9.92 (4.98)
1000 13.69 (5.69) 7.27 (3.82) 9.22 (4.57)
2500 9.80 (4.20) 5.24 (3.15) 8.06 (4.41)

the unstructured case. The second approach is also based on the Nyström
approximation, but still solves the problem in the dual domain. This way it
is possible to handle as much data as for the unstructured models. However,
incorporating the centering constraints and a reconstruction of the original
model class as described in the previous section is impossible.

7.3.1 A fixed-size structured model

Using the approximate feature map 𝝋̂ from Subsection 4.3 to form the matrices
𝜱(𝑘) one can state the following corollary.

Corollary 7.2. Let 𝜱𝐶 = [𝜱𝑇
(􀁭), … ,𝜱𝑇

(𝑞𝐻 )]
𝑇 , and 𝜱𝑆 be a block matrix with

(𝜱𝑆)𝑘𝑘 = 𝜱(𝑘)𝟏𝑁̃ ∈ ℝ𝑀×􀁮 for 𝑘 = 0, … , 𝑞𝐻 and all other blocks zero. Also define
𝑺 = [𝜱𝑇

𝐶, −𝒀𝑇 , 𝟏𝑁̃ ], 𝝎 = [𝒘𝑇
􀁭 , … ,𝒘𝑇

𝑞𝐻 , 𝒂
𝑇
𝐻 , 𝑑] and 𝑷 = [𝜱𝑆, 𝟎⊠]𝑇 where the block

of zeros is of dimension (𝑞𝐻 + 1) × (𝑝𝐻 + 1). Then the extension of (4.19) to the
structured model (7.9) is given by

􀉾
𝑺𝑇𝑺 + 𝛾−􀁮𝑰𝑀,𝑞𝐻 ,􀁭 𝑷

𝑷𝑇 𝟎⊠
􀊁 􀉾
𝝎
𝜷􀊁 = 􀉾

𝑺𝑇𝒚
𝟎(𝑞𝐻+􀁮)

􀊁 (7.13)

where 𝜷 are the Lagrange multipliers for the centering constraints and 𝑰𝑀,𝑞𝐻 ,􀁭
is a diagonal matrix of dimension (𝑀 ⋅ 𝑞𝐻 + 𝑝𝐻 + 1) × (𝑀 ⋅ 𝑞𝐻 + 𝑝𝐻 + 1) whose
first𝑀 ⋅ 𝑞𝐻 elements are one and all others are zero.



7.3 Handling of large data sets 147

The one-step-ahead predictor for this overparametrized form is given by

𝑦̂𝑡 = tr(𝜱𝑇
𝑡 𝑾) + 𝒂𝑇𝐻𝒚𝑡−􀁮 + 𝑑, (7.14)

where𝑾 = [𝒘􀁭, … ,𝒘𝑞𝐻 ].
Whereas an unstructured model (4.1) can be solved from a linear system

(4.19) in𝑀+ 1 variables, the structured model (7.9) corresponds to a linear
system (7.13) in (𝑀 + 1) ⋅ 𝑞𝐻 + 𝑝𝐻 + 1 variables. Therefore even for a sub-
sample with 𝑀 ≪ 𝑁̃ , the solution can be computationally infeasible. The
projection onto the original model class is straightforward as the matrix𝑾 is
finite dimensional and explicitly known. Then the estimation procedure is a
combination of Algorithms 4.3 & 7.1.

Algorithm 7.2 (Estimation of structured fixed-size model).

1. Choose model orders 𝑝𝐻 , 𝑞𝐻 and 𝑞𝑓 .
2. Select a subset 𝑆𝑀 ⊂ {𝒖𝑓,𝑡}𝑁𝑡=𝑞𝑓+􀁮 of 𝑀 ≪ 𝑁̃ data points from the full

data set.
3. Select a regularization parameter 𝛾 and a kernel function 𝐾 (and its

parameters).
4. Build the kernel matrix 𝜴𝑀 evaluated on 𝑆𝑀 and compute its eigende-

composition 𝑼𝜮􀁯𝑼𝑇 .
5. Use (4.16) to form𝜱𝑘 by evaluating 𝝋̂ for all 𝒖𝑓,𝑡.
6. Solve the primal linear system (7.13).
7. Obtain estimates for 𝒘 and 𝒃𝐻 from the dominant singular vectors of
𝑾 .

8. Optional: Fix 𝒃𝐻 and estimate a refined model with min𝒘,𝑐,𝒂𝐻 ,𝒆
􀁮
􀁯
𝒘𝑇𝒘+

􀁮
􀁯
𝛾𝒆𝑇𝒆 subject to (7.7) for 𝑡 = 𝐷,… ,𝑁 .

7.3.2 A large-scale overparametrized model

An alternative approach is to use the original idea of Williams and Seeger
[2001] to compute an approximate low rank factorization of the kernel matrix
as described in Subsection 4.3.2. Therefore a new kernel function has to be
defined summing up the individual contributions. This is only feasible without
considering the centering constraints in (7.9) as these act on the individual
submodels 𝒘𝑇

𝑘𝝋(⋅). Therefore they are dropped from the problem.

Lemma 7.3. Define a new kernel 𝐾𝐴 􀊂(𝒖𝑓,𝑡, … , 𝒖𝑓,𝑡−𝑞𝑓 ), (𝒖𝑓,𝑛, … , 𝒖𝑓,𝑛−𝑞𝑓 )􀊅 =
∑𝑝

𝑘=􀁭 𝐾(𝒖𝑓,𝑡−𝑘, 𝒖𝑓,𝑛−𝑘). Let 𝜴𝐴,𝑀 denote the kernel matrix on a subsample of
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size𝑀 such that (𝜴𝐴,𝑀)𝑖𝑗 = 𝐾𝐴(𝒙𝑖, 𝒙𝑗) for 𝑖, 𝑗 = 1, … ,𝑀. Then the kernel matrix
𝜴𝐴 has the approximate low rank factorization

𝜴𝐴 ≃ 𝜴𝑇
𝐴,𝑀𝑁̃𝜴

−􀁮
𝐴,𝑀𝜴𝐴,𝑀𝑁̃ , (7.15)

where (𝜴𝐴,𝑀𝑁 )𝑖𝑗 = 𝐾𝐴(𝒙𝑖, 𝒙𝑗) for 𝑖 = 1, … ,𝑀 and 𝑗 = 1, … , 𝑁̃ .

Then (7.10) can be solved efficiently by exploiting this low rank factorization
and the matrix inversion lemma.

Corollary 7.4. Let 𝜴𝐴,𝑀 have a factorization such that 𝜴𝐴,𝑀 = 𝑮𝑇𝑮 and
define 𝑭 = 𝑮−􀁮𝜴𝐴,𝑀𝑁̃ . Then an approximate solution of (7.10) without the
centering constraints is given in terms of the dual variables as

𝜶 ≃ 𝑨−􀁮(𝒚 − 𝒀𝒂𝐻 − 𝟏𝑁̃𝑑), (7.16a)

􀉾
𝒂𝐻
𝑑 􀊁 ≃ 𝑪

−􀁮[−𝒀𝑇 , 𝟏𝑁̃ ]𝑇𝑨−􀁮𝒚 (7.16b)

where 𝑨−􀁮 ≃ 𝛾𝑰𝑁̃ − 𝛾𝑭𝑇 (𝛾−􀁮𝑰𝑀 + 𝑭𝑭𝑇 )−􀁮𝑭 and 𝑪 = [−𝒀𝑇 , 𝟏𝑁̃ ]𝑇𝑨−􀁮[−𝒀𝑇 , 𝟏𝑁̃ ].

Proof. Without the centering constraints (7.10) can be written as

􀉾
𝑨 𝑩
𝑩𝑇 𝟎⊠

􀊁 􀉾
𝜶
𝜽􀊁 = 􀉾

𝒚
𝟎(𝑝𝐻+􀁮)

􀊁 (7.17)

where 𝑨 = 𝜴𝐴 +𝛾−􀁮𝑰𝑁̃ , 𝑩 = [−𝒀𝑇 , 𝟏𝑁̃ ] and 𝜽 = [𝒂𝑇𝐻 , 𝑑]𝑇 . Solving the system in
block form one obtains 𝜶 = 𝑨−􀁮(𝒚−𝑩𝜽) and 𝜽 = 𝑪−􀁮𝑩𝑇𝑨−􀁮𝒚with𝑪 = 𝑩𝑇𝑨−􀁮𝑩.
Using the Nyström approximation of 𝜴𝐴 the matrix 𝑨 can be approximated
as 𝛾−􀁮𝑰𝑁̃ + 𝑭𝑇𝑭 . The expression for 𝑨−􀁮 is a result from this approximation
and the matrix inversion lemma exploiting its low rank factorization. ⬜

Note that the most expensive operation is to solve linear systems in𝑀 vari-
ables. Therefore this approach scales as good as the fixed-size approach for
the unstructured models. Finally the one-step-ahead predictor is given in
terms of the new kernel function 𝐾𝐴

𝑦̂𝑡 = 𝜶𝑇𝒌𝐴((𝒖𝑓,𝑡, … , 𝒖𝑓,𝑡−𝑞𝐻 )) + 𝑑 − 𝒂
𝑇
𝐻𝒚𝑡−􀁮, (7.18)

where 𝒌𝐴(𝒛) = [𝐾𝐴(𝒙𝑓,𝐷, 𝒛), … , 𝐾(𝒙𝑓,𝑁 , 𝒛)]𝑇 ∈ ℝ𝑁̃ and 𝒙𝑓,𝑡 = (𝒖𝑓,𝑡, … , 𝒖𝑓,𝑡−𝑞𝐻 ).
The drawback of this approach is that from the modified kernel function 𝐾𝐴,
the product𝑾 𝑇𝑾 cannot be computed. Therefore it is impossible to project
the model back onto the original model class.
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Table 7.4: List of considered model structures, the corresponding one-step-
ahead predictors and the algorithms needed for their estimation.

Model Model eqation Algorithm

FS-NARX (4.20) 4.3
FS-STRCTRD (7.7) 7.2
FS-OVRPRZD (7.14) 7.2 without projection
LS-OVRPRZD (7.18) 7.3

Algorithm 7.3 (Estimation of large-scale overparametrized model).

1. Choose model orders 𝑝𝐻 , 𝑞𝐻 and 𝑞𝑓 .
2. Select a subset 𝑆𝑀 ⊂ {𝒙𝑓,𝑡}𝑁𝑡=𝐷 of𝑀≪ 𝑁̃ data points from the data set.
3. Select a regularization parameter 𝛾 and a kernel function 𝐾 (and its

parameters).
4. Build the kernel matrix𝜴𝐴,𝑀 evaluated on 𝑆𝑀 and compute for example

its Cholesky decomposition 𝑮𝑇𝑮. Also compute 𝜴𝐴,𝑀𝑁̃ .
5. Solve the dual linear system (7.10) (without centering constraints, i.e.

(7.17)) via (7.16).

7.3.3 Numerical example

This subsection complements Subsection 7.2.5 with numerical examples for
large scale data sets. Therefore the same system is considered but the size of
the training set is increased to 10,000. Based on this, the following large scale
model structures are compared with each other:

FS-NARX fixed-size LS-SVM model with NARX structure,
FS-STRCTRD fixed-size structured model,
FS-OVRPRZD fixed-size overparametrized model and
LS-OVRPRZD large-scale overparametrized model.

For reference the model equations and estimation algorithms are summarized
in Table 7.4. Due to the computational complexity that scales with 𝑞𝐻 , the
model order is adapted. The optimal model order according to Figure 7.5 is
𝑝𝐻 = 𝑞𝐻 = 15. Yet the degradation when choosing 𝑝𝐻 = 𝑞𝐻 = 12 is quite small,
therefore it is chosen to reduce the computational complexity. The values
for 𝑞𝑓 and the model orders 𝑝, 𝑞 of the NARX structure are kept fixed. Model
performances are evaluated for different numbers of support vectors, namely
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Table 7.5: Root mean squared error on an independent test set for System 7.1
comparing the different model structures for varying numbers of
support vectors. All shown values are scaled by 100. In total 100
realizations of the data were generated and the reported values cor-
respond to their mean. The first value is for predictions generated
in simulation mode while the value in parenthesis corresponds to
predictive performance for one-step-ahead predictions.

Model 100 SVs 250 SVs 500 SVs 1000 SVs

FS-NARX 13.64 (5.86) 12.82 (5.78) 12.28 (4.99) 7.86 (3.44)
FS-STRCTRD 6.92 (4.29) 7.55 (4.40) 7.44 (4.35) 7.22 (4.40)
FS-OVRPRZD 4.63 (3.05) 4.70 (3.08) 4.67 (3.01) 4.52 (3.04)
LS-OVRPRZD 11.64 (5.56) 8.86 (4.61) 5.24 (3.22) 4.75 (3.13)

100, 250, 500 and 1000. The results are reported in Table 7.5. In general the
fixed size overparametrized model yields the best performance regardless of
the number of support vectors. For small amounts of support vectors the fixed
size structured model is also better than the remaining ones. With increasing
numbers of support vectors the large-scale overparametrized model gains
advantage.

7.4 Improved convex relaxation based on nuclear
norms

In the next subsection a nuclear norm based convex relaxation is introduced
in a parametric setting. The following subsection considers the corresponding
kernel based model. Finally some numerical examples are studied using the
parametric formulation in the last subsection.

7.4.1 Parametric approach based on the fixed size formulation

In Subsection 7.2.2 it has been argued that in the transition from 𝒘 to 𝑾
the regularization term 𝒘𝑇𝒘 can be replaced by ‖𝑾‖􀁯𝐹 without changing the
problem. Actually the same holds for some other matrix norms as well. In
particular consider the nuclear norm which can be computed as the sum of
the singular values. Assuming that𝑾 is a rank-1 matrix there is only a single
nonzero singular value. Multiplying𝑾 from the right with 𝒃𝐻 one obtains
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𝑾𝒃𝐻 = 𝒘𝒃𝑇𝐻𝒃𝐻 = 𝒘 as 𝒃𝐻 was chosen to have unit norm to avoid modeling
ambiguities. Therefore the single singular value of 𝑾 is ‖𝒘‖􀁯 and hence
‖𝑾‖∗ = ‖𝒘‖􀁯. Squaring both sides of the equation then yields the desired
equivalence ‖𝑾‖􀁯∗ = 𝒘𝑇𝒘. Hence, the Frobenius norm, in the nonconvex
problem (7.8) including the rank constraint, can be replaced by the nuclear
norm. Now by dropping the rank constraint a tighter convex relaxation is
obtained due to the property of the nuclear norm being the convex envelope of
the rank function. For algorithmic reasons it is easier to work with unsquared
norms than their squared counterparts. Therefore the convex relaxation based
on the nuclear norm will drop the square, however as shown in Lemma 9.6 for
a similar problem, both forms can be transformed into each other by scaling
the regularization term.

Proposition 7.5. An improved convex relaxation for (7.8) is given by

min
𝑾,𝑑,𝒂𝐻 ,𝑒𝑡

𝜂‖𝑾‖∗ +
1
2

𝑁

∑
𝑡=𝐷

𝑒􀁯𝑡

subject to 𝒚 =
𝑞ℎ

∑
𝑘=􀁭

𝜱𝑇
(𝑘)𝒘𝑘 + 𝟏𝑁̃𝑑 − 𝒀𝑇𝒂𝐻 + 𝒆.

(7.19)

In a purely parametric setting one could choose any set of basis functions to
define the feature map 𝝋. In kernel based setting the most natural choice for
the basis functions is to follow Subsection 7.3.1 and extract them from a fixed
size primal approximation of the kernel function.

7.4.2 Kernel based approach

As shown in Chapter 6 it is possible to formulate kernel based models based
on nuclear norms. Applying those results to the Hammerstein identification
problem in (7.19) yields the following formulation.

Lemma 7.6. Let 𝑁̄ = 𝑁 − 𝑞𝑓 + 1 and define the kernel matrix 𝜴 as 𝛺𝑖𝑗 =
𝐾(𝒖𝑓,𝑁+(𝑖−𝑁̄), 𝒖𝑓,𝑁+(𝑗−𝑁̄)) for 𝑖, 𝑗 = 1, … , 𝑁̄ . Furthermore let the kernel matrix
have a factorization such that 𝜴 = 𝑮𝑇𝑮. Then the kernel based model for (7.19)
is

max
𝜶

−𝜶𝑇𝒚 −
1
2
𝜶𝑇𝜶

subject to 𝟏𝑇𝑁̄𝜶 = 0, 𝒀𝜶 = 𝟎𝑝𝐻 , ‖𝑮ℬ(𝜶)‖􀁯 ≤ 𝜂,
(7.20)

with 𝜶 ∈ ℝ𝑁̃ and 𝑁̃ , 𝒚 defined as before in Subsection 7.2.3. The operator ℬ is
defined as in Lemma 6.18.
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Proof. Only one aspect has to be considered in this proof as this lemma is a
minor extension of Lemma 6.18. For the remainder the proof of Lemma 6.18
holds without modification. As only additional element the KKT conditions
have to be extended for the variable 𝒂𝐻 ,

𝜕ℒ
𝜕𝒂𝐻

= 0 ∶ 𝒀𝜶 = 𝟎𝑝𝐻 .

The inclusion of this additional constraint in the dual problem concludes the
derivation. ⬜

Based upon the results derived in Subsection 6.6.2, a one-step-ahead predictive
equation for a new point can be stated. Whereas Corollary 6.21 can be used
unaltered, the necessary modifications to Corollary 6.20 are carried out in the
following derived result.

Corollary 7.7. The matrix 𝑯𝜂 introduced in Corollary 6.9, as well as the primal
variables 𝒂𝐻 and 𝑑, can be determined by solving the semidefinite programming
problem

find (𝑯𝜂, 𝒂𝐻 , 𝑑)

subject to
𝑯𝜂 ⪰ 0, tr(𝑯𝜂) = 𝜉

𝒚 =
𝑞𝐻

∑
𝑖=􀁭
[𝜴𝑖,􀁭𝜶,… ,𝜴𝑖,𝑞𝐻𝜶]𝑽𝜂𝑯𝜂𝑽 𝑇

𝜂 𝜺𝑖+􀁮 + 𝑑𝟏𝑁̄ − 𝒀𝑇𝒂𝐻 + 𝜶,

(7.21)

where 𝜺𝑖 form the standard basis for ℝ𝑞𝐻+􀁮 and 𝜉 = 𝜂−􀁮‖𝑾‖∗.

Proof. Besides adapting the notation, the only necessary change with respect
to the proof of Corollary 6.20 is the inclusion of the variable 𝒂𝐻 . ⬜

Corollary 7.8. With the definition of 𝑸 from Corollary 6.21 the predictive
model for a new point (𝒖𝑓,𝑡, … , 𝒖𝑓,𝑡−𝑞𝐻 , 𝒚𝑡−􀁮), in terms of the dual variables, is
given by

􀈴𝑦𝑡 =
𝑞𝐻

∑
𝑖,𝑗=􀁭

𝑄𝑗𝑖𝒌𝑗(𝒖𝑓,𝑡−𝑖)𝑇𝜶 − 𝒚𝑇𝑡−􀁮𝒂𝐻 + 𝑑, (7.22)

with 𝑄𝑖𝑗 = (𝑸)𝑖+􀁮,𝑗+􀁮 and 𝒌𝑗(𝒛) defined as for (7.11).

Proof. The predictive equation (7.22) directly follows from substituting (6.34)
into the convex relaxation of (7.7) and applying the kernel trick. ⬜
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7.4.3 Numerical example

To study the effects of the proposed regularization scheme, some key proper-
ties are evaluated on a toy example. Due to the numerical complexity only
the primal formulation is used with very few basis functions and data. The
methods that are compared are

RR the model estimated by (7.9) which essentially facilitates ridge regression
and,

NUC the nuclear norm based relaxation (7.19) proposed in this section.

To illustrate possible dependence on the choice of basis functions, two different
bases are used.

Hinge Hinge functions. Defined as

𝜓𝐻
􀁮 (𝑥) = 1,

𝜓𝐻
􀁯 (𝑥) = 𝑥 and

𝜓𝐻
𝑚 (𝑥) =

⎧⎪
⎨⎪⎩

𝑥 − 𝑏𝑚, for 𝑥 ≥ 𝑏𝑚 and
0, otherwise,

for 𝑚 = 3,… ,𝑀. The location of the kinks is given by the parameters 𝑏𝑚
which are assumed given. For the experiments in this section a uniform
distribution is used.

RBFN Gaussian Radial Basis Functions. The definition is 𝜓𝑅𝐵𝐹
𝑚 (𝒙) = 𝐾(𝒙, 𝒛𝑚),

where 𝐾 is the RBF kernel. For the experiments the bandwidth 𝜎 is
fixed to 𝜎 = 1. The supporting points 𝒛𝑚 are drawn from a uniform
distribution.

As test systems several Hammerstein systems with 𝑓(𝑢𝑡) = sinc(𝑢𝑡) as non-
linearity are generated. The linear block 𝐻(𝑧) is given by randomly chosen
minimum phase systems with 5 poles and zeros. To obtain a slightly more
challenging estimation problem, the input signal 𝑢𝑡 is correlated. It is gener-
ated by filtering the white Gaussian noise process 𝑣𝑡 ∼ 𝒩(0, 1) according to
𝑢𝑡 = 0.9𝑢𝑡−􀁮 + 𝑣𝑡. For each example 300 samples corrupted by additive white
Gaussian noise with variance 𝜎􀁯 = 0.2􀁯 are computed. The data is split into
three equal parts for training, validation and test. All examples are carried
out with 30 basis functions and use the true model orders for the linear block.
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RR NUC RR NUC

􀁭.􀁳

􀁭.􀁴

􀁭.􀁵

􀁭.􀁶

􀁮

RBFN Hinge

regularizer

‖𝑾
‖ 􀁯
/‖
𝑾

‖ 𝐹

Figure 7.7: Analysis of rank one constraint violation for the different regular-
ization schemes. The statistics are generated from 100 consecutive
runs. The experimental conditions are according to Subsection
7.4.3.

Rank constraint violation The ratio ‖𝑾‖􀁯/‖𝑾‖𝐹 is ameasure for the close-
ness of𝑾 to rank one. Therefore it is an indication how close the relaxation is
to the true solution. From the results shown in Figure 7.7 it can be concluded
that the nuclear norm is superior to ridge regression in terms of low rank
solutions. This trend is more pronounced for the Hinge basis.

Projection schemes Themain performance criterion however is prediction
performance. One interesting aspect in this regard is the performance after
a projection from the full matrix 𝑾 onto a factored solution in terms of 𝒘
and 𝒃𝐻 . A beneficial step to improve prediction performance can be to fix
either 𝒘 or 𝒃𝐻 while re-estimating the other along with 𝒂𝐻 . To illustrate the
differences, four scenarios are compared.

OVER The overparametrized model using𝑾 and 𝒂𝐻 .
DIRECT The structured model with 𝒘 and 𝒃𝐻 chosen as the dominant sin-

gular vectors of𝑾 along with 𝒂𝐻 .
FIX-W The structured model, however only 𝒘 is obtained from the SVD of

𝑾 , while 𝒃𝐻 and 𝒂𝐻 are obtained by fixing 𝒘 and estimating the other
two.
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Figure 7.8: Comparison of different projection schemes applied to Hinge basis
functions. The plots depict generalization performances for the
unprojected model, as well as for the different projections listed in
Subsection 7.4.3. The statistics are generated from 100 consecutive
runs.

RR NUC RR NUC RR NUC RR NUC

􀁭.􀁯

􀁭.􀁰

􀁭.􀁱

􀁭.􀁲

􀁭.􀁳

OVER DIRECT FIX-B FIX-W

regularizer

R
M
SE

on
te
st
se
t

Figure 7.9: Comparison of different projection schemes applied to RBFN basis.
The plots depict generalization performances for the unprojected
model, as well as for the different projections listed in Subsection
7.4.3. The statistics are generated from 100 consecutive runs.
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FIX-B The structured model, however only 𝒃𝐻 is obtained from the SVD of
𝑾 , while 𝒘 and 𝒂𝐻 are obtained by fixing 𝒃𝐻 and estimating the other
two.

The results are shown in Figures 7.8 & 7.9. While FIX-W and FIX-B usually
improve the generalization performance, DIRECT leads to a degradation. Fur-
thermore using the estimate for 𝒃𝐻 to re-estimate the remaining parameters is
slightly better than using 􀈵𝒘 for that purpose. In general the projection levels
the performance of the regularization schemes. Even though the differences
are small, the nuclear norm usually has a small advantage.

Parameter estimates Figure 7.10 shows the angle between the true co-
efficients for 𝐻(𝓏) and their estimated values. The parameter estimates are
compared for the unprojected estimates and their values after projection and
re-estimation. The best correlation is obtained for FIX-W. Using FIX-B yields
only small improvements. This is in contrast to the result for generalization
performance in the previous section where the refined model FIX-B was best.
Comparing ridge regression and nuclear norm in the upper and lower panel
of Figure 7.10 respectively, shows that the nuclear norm is slightly better in
recovering the parameters.

Numerical complexity In Figure 7.11 the runtime of a single nuclear norm
based estimation problem (7.19) is shown. The measurements were taken on a
single node of the VIC3 supercomputer1 at the KU Leuven. Only a single core
of a Xeon 5420 with 2.5 GHz was used for the simulation. It can be seen that
the computation time increases on a linear scale in the number of training
samples 𝑁 and approximately exponentially in the number of basis functions
𝑀 and numerator coefficients 𝑞𝐻 . The high computational cost is partially due
to using CVX [Grant and Boyd, 2011] in combination with a general purpose
SDP solver.

A test based on a real world data set is given as part of the next Section in
particular Subsection 7.5.4.

1https://vscentrum.be/

https://vscentrum.be/
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Figure 7.10: Comparison of parameter estimates for coefficients of the linear
block 𝐻(𝓏) as defined in Subsection 7.4.3. The estimates are
compared for the unprojected as well as the projected models.
The statistics are generated from 100 consecutive runs.
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Figure 7.11: Time to estimate a single instance of (7.19) as a function of train-
ing samples𝑁 , of basis functions𝑀 and of numerator coefficients
𝑞𝐻 while fixing the other quantities. The plots show average CPU
times for 20 executions of the same problem.
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7.5 Results on the Wiener-Hammerstein
benchmark data set

7.5.1 Description of data set

This section describes results of all developed methods applied on the Wiener-
Hammerstein benchmark data set [Schoukens et al., 2009]. The Wiener-
Hammerstein benchmark data set consists of input and output data {(𝑢𝑡,
𝑦𝑡)}

􀁮􀁵􀁵,􀁭􀁭􀁭
𝑡=􀁮 which were obtained from measurements of a real-life electronic

nonlinear system.
The available data are obtained with a low noise level. As the real system

is of Wiener-Hammerstein type one can expect that exploiting the system
structure will be advantageous. Moreover, the availability of a large num-
ber of measurements suggests the use of fixed-size and large-scale methods.
Along with NARX, STRCTRD and OVRPRZD from Section 7.2 the fixed-size
model structures FS-NARX, FS-STRCTRD and FS-OVRPRZD as introduced in
Section 7.3 are compared. In order to compare their predictive powers, the
number of support vectors (SVs) is varied. In case of the fixed size models the
number of data used for estimation is always 𝑁̃ ≃ 50,000 and the number of
support vectors corresponds to the dimension of the approximated feature
map𝑀. For all other models the number of support vectors is equal to the
number of estimation data 𝑁̃ .

The data set containing 188,000 measurements is split into several parts.
The first 10,000 data points are discarded. The remaining 90,000 data points
of the estimation data are then split up into blocks of 50,000 data points
for model estimation, 20,000 data points as validation set 𝒱􀁮 to select the
regularization parameter 𝛾 and bandwidth 𝜎 of the RBF kernel and 20,000
data points as additional validation set 𝒱􀁯 to select the model orders 𝑝, 𝑞 and
𝑝𝐻 , 𝑞𝐻 , 𝑞𝑓 respectively. The remaining 88,000 data points from the complete
data set are left untouched during the whole model selection and estimation
process. They are only used to assess the quality of the finally obtained
models.

7.5.2 Model order selection

Model order selection and selection of the regularization parameter 𝛾 and
the kernel bandwidth 𝜎 of the RBF kernel are performed as outlined in the
previous section. For the NARX model the result is shown in Figure 7.12,
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Figure 7.12: Model order selection for NARX model for the Wiener-
Hammerstein benchmark data set. The RMSE is computed for
one-step-ahead predictions on the independent test set 𝒱􀁯.
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Figure 7.13: Model selection for structured Wiener-Hammerstein model. The
RMSE for one-step-ahead prediction on the independent test set
𝒱􀁯 is shown. The cross marks the optimal model order 𝑝𝐻 = 𝑞𝐻 =
18 and 𝑞𝑓 = 12.

the optimal model order is 𝑝 = 𝑞 = 16. In case of the structured models one
obtains 𝑞𝑓 = 12 and 𝑝𝐻 = 𝑞𝐻 = 18 as shown in Figure 7.13.

One can conclude that both the structured as well as the unstructured
models achieve similar (good) performance over a wide range of model orders.
For the fixed-size structured models the computational cost scales with 𝑞𝐻 .
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Table 7.6: RMSE ×10􀁰 on test set for the Wiener-Hammerstein benchmark
data set and different number of support vectors. The first value
gives the performance of the model in recursive simulation mode;
the value between parentheses is its one-step-ahead performance.
The methods reported in this table have access to a number of data
points equal to the number of support vectors (# SVs = 𝑁̃).

# SVs NARX STRCTRD OVRPRZD

100 41.33 (5.54) 20.44 (0.74) 57.04 (0.86)
250 52.27 (1.59) 15.09 (0.67) 27.84 (0.66)
500 29.31 (0.75) 13.27 (0.61) 13.99 (0.57)

1,000 12.75 (0.56) 13.17 (0.57) 10.94 (0.51)
2,500 10.04 (0.52) 7.95 (0.50) 10.00 (0.48)
5,000 9.50 (0.50) 6.22 (0.48) 6.06 (0.43)

10,000 8.89 (0.49) 5.84 (0.47) 4.60 (0.40)

Table 7.7: RMSE ×10􀁰 for recursive simulation on test set for the Wiener-
Hammerstein benchmark data set and different number of support
vectors. The number of data used for estimation in the so-called
fixed-size models is always 𝑁̃ ≃ 50,000 and the number of support
vectors corresponds to the dimension of the approximated map
(# SVs = 𝑀 ≪ 𝑁̃). The estimate for 𝑏𝐻 used for FS-STRCTRD with
2,500 SVs is obtained from FS-OVRPRZD with 1,000 SVs.

# SVs FS-NARX FS-STRCTRD FS-OVRPRZD

100 23.46 (0.65) 8.74 (0.51) 7.00 (0.43)
250 9.38 (0.52) 5.65 (0.54) 4.51 (0.40)
500 8.85 (0.48) 4.46 (0.45) 3.90 (0.39)

1,000 8.41 (0.47) 4.27 (0.44) 3.85 (0.38)
2,500 5.08 (0.43) 4.18 (0.44) —

Therefore the model orders are chosen as 𝑝𝐻 = 𝑞𝐻 = 12 and 𝑞𝑓 = 14 as these
only result in a slight drop of the prediction performance.
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Table 7.8: Generalization performance and rank one constraint violation for
the Wiener-Hammerstein benchmark data. Comparison of ridge
regression RR and nuclear norm NUC as defined in Section 7.4.

10􀁰 ⋅ RMSE, using
regularization OVER DIRECT FIX-B FIX-W ‖𝑾‖􀁯/‖𝑾‖𝐹
ridge regression (RR) 2.41 43.2 3.33 5.09 0.62
nuclear norm (NUC) 2.38 19.0 2.75 4.72 0.77

7.5.3 Performance for different number of support vectors

The main results in terms of prediction performance for different number of
support vectors are given in Tables 7.6 and 7.7. For the recursively simulated
values one can see that including structural information is able to increase
the performance substantially over the NARX model. In case of the struc-
tured models STRCTRD is much better than OVRPRZD for small numbers
of support vectors (𝑁̃ < 500). In contrast to all other models, the fixed-size
models use 50,000 data points for the estimation. The results clearly indicate
that in the presence of many measurements the prediction performance can
be significantly improved. As with the previous models, including model
structure yields better models than the simple NARX structure. Time domain
and frequency domain plots of the residual signal are given in Figures 7.14
through 7.17. These are presented for the best models shown in Tables 7.6
and 7.7.

Note that for all models shown here, the modeling errors are dominant.
Several other techniques presented in the benchmark session [Schoukens
et al., 2009; Hjalmarsson et al., 2012] were able to reduce RMSE value roughly
one order of magnitude further. One source for modeling errors in the over-
parametrized model formulations is the approximation of the first linear block
by a finite impulse response.

7.5.4 Performance based on nuclear norm regularization

This subsection picks up the improved convex relaxation presented in Section
7.4. Note that the objective is only to evaluate the nuclear norm regularization
scheme on a real world data set. Without special solvers this problem can
only be solved for a small number of basis functions. Therefore the absolute
performances are much lower than that in the previous subsection.
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Figure 7.14: Time domain plots for prediction error 𝑦𝑡 − 𝑦̂𝑡 for the NARX and
structured models on the Wiener-Hammerstein benchmark data
set. All values are computed for recursive simulations of 𝑦̂𝑡. The
best models from Table 7.6 are shown.
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Figure 7.15: Frequency domain plots for prediction error 𝑦𝑡 − 𝑦̂𝑡 for the NARX
and structured models on the Wiener-Hammerstein benchmark
data set. All values are computed for recursive simulations of 𝑦̂𝑡.
The best models from Table 7.6 are shown.

As previously a validation set is used for model selection along with an
independent test set for the final evaluations. However, training, validation
and test set are reduced to 1000 samples long consecutive parts of the complete
time series starting from sample 10,000. The simulations are carried out with
just 30 RBFN basis functions, which are drawn from a normal distribution.
The bandwidth of these basis functions, the standard deviation of the normal
distribution as well as the model orders 𝑝𝐻 , 𝑞𝐻 , 𝑞𝐹 and the regularization pa-
rameter 𝜂 are selected based on performance on the validation set. For timing
reasons, the selection procedure is run for the model with ridge regression
RR. The selected model orders are 𝑝̂𝐻 = 13, 𝑞̂𝐻 = 20 and 𝑞̂𝐹 = 2.

Table 7.8 summarizes the results. It can be seen that the results for the arti-
ficial problems analyzed in Subsection 7.4.3 can be transferred to a real data
set. Notably, the nuclear norm regularization results in a much better approx-
imation of the rank-1 constraint. Yet in terms of generalization performance
the model obtained by ridge regression yields very similar values.

The overall poor performance and the decrease in performance after pro-
jection are due to the low number of basis functions. As the model order
𝑞𝐹 grows, the fixed number of basis functions have to cover a larger space.
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Figure 7.16: Time domain plots for prediction error 𝑦𝑡 − 𝑦̂𝑡 for the fixed-size
models on the Wiener-Hammerstein benchmark data set. All
values are computed for recursive simulations of 𝑦̂𝑡. The best
models from Table 7.7 are shown.
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Figure 7.17: Frequency domain plots for prediction error 𝑦𝑡 − 𝑦̂𝑡 for the fixed-
size models on the Wiener-Hammerstein benchmark data set. All
values are computed for recursive simulations of 𝑦̂𝑡. The best
models from Table 7.7 are shown.

Therefore the selected model orders are chosen suboptimally. The estimate
for 𝑞𝐹 is selected small enough to be described by 30 basis functions. Then
the orders 𝑝𝐻 and 𝑞𝐻 are chosen high such that they can compensate for the
loss of expressive power.

7.6 Conclusions

This chapter describes the tailoring of LS-SVM based models to Wiener-
Hammerstein systems. Section 7.2 starts by gradually deriving a kernel based
convex approximation for an initially nonconvex estimation problem. Besides
discussing the convex relaxation itself, the projection back onto the original
model class is subject of some attention. The section concludes by validating
different aspects of the problem on numerical examples.

The following section is dedicated to extensions for handling large scale data
sets. The proposed methods are directly compared on a numerical example at
the end of this section. Picking up the results from the last chapter, Section 7.4,
derives an improved convex relaxation based on nuclear norm regularization.
Again some general properties are analyzed using numerical examples.
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In Section 7.5 all proposed methods are validated on the Wiener-Hammer-
stein benchmark problem. The first conclusion that can be drawn from this,
as well as the artificial examples studied earlier, is that all models converge
quite fast as the number of support vectors grows. Due to the large size of
the data set, tests with fixed-size models were performed. By making use
of the whole data set, improved prediction performances are obtained when
compared to their classical counterparts. As before incorporating structure
into the model is beneficial for the prediction performance of the models.
Finally the evaluation of the improved convex relaxation based on nuclear
norm regularization suffers from its inability to scale to larger problem sizes.
However, it shows promising results and it would be insightful to benchmark
its performance once the computational complexity can be handled.





8Linear noise models

Based on the publication Falck, T., Suykens, J. A. K., and De Moor, B. (Dec.
2010). “Linear Parametric Noise Models for Least Squares Support Vector
Machines”. In: Proceedings of the 49th IEEE Conference on Decision and
Control. (Atlanta, GA, USA, Dec. 15–17, 2010), pp. 6389–6394.

In the previous chapters the dominant quality measure for all models has been
their prediction performance on unknown data. This measure has several
advantages like being the quality of interest for many applications and hav-
ing a simple representation and interpretation as a single number. However
knowing only the predictive performance has the major disadvantage, that
there is no insight how far the current model is from the best model. In this
context the best model is a model that produces a sequence of residuals 𝑒𝑡 that
is mutually independent and also independent of the inputs 𝑢𝑡. Hence, such a
model captures all information in the data as no more predictable information
is contained in the residuals. This insight gives rise to two tests, known as
residual tests, capable of analyzing a given model with respect to its distance
to the best model. True statistical independence is impossible to test. There-
fore one mostly considers correlation. For a linear system with linear noise
dynamics and Gaussian noise this is equivalent to independence. The first
test checks that the cross-correlation between the inputs 𝑢𝑡 and the residuals
𝑒𝑡 is (approximately) zero. If this is not the case, this is a strong indicator
that the model order is not sufficient to describe the system dynamics. In
the second iteration one should check that the autocorrelation of the residual
signal is (approximately) equal to a Kronecker delta function 𝜎 𝛿(𝑡), where

169
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Nonlinear system
𝑢(𝑡)

𝐶(𝓏)
𝐷(𝓏)

𝑒(𝑡)

𝑦(𝑡)

Figure 8.1: Nonlinear system with linear parametric noise model.

𝜎􀁯 is the variance of the corresponding unpredictable innovation sequence.
This general scheme can be extended by also testing higher order statistics as
these capture nonlinear behavior up to a certain degree. In the context of this
chapter only linear correlations of the noise will be analyzed however.

In case the residuals are not white, one can improve the model by not only
describing the system dynamics but by also trying to capture the dynamic
behavior of the noise process. This yields noise models which, in case of
polynomial models as described in Subsection 2.3.2, are described by the 𝐴, 𝐶
and 𝐷 polynomials. Here the 𝐴 polynomial has to be handled with care as it
represents only the particular case in which the system and the noise share
the same denominator dynamics.

Under this aspect, the Box-Jenkins model structure is optimal as it offers the
greatest flexibility for model as well as noise dynamics. However, as with all
model structures apart from ARX and FIR, the corresponding estimation prob-
lem is nonconvex. For linear system identification this problem is less severe
as there are several techniques to obtain good initial estimates. These can then
be refined by nonlinear optimization. For nonlinear systems the situation is
much more involved as there is no universal low order parametrization for
general nonlinear systems. Therefore, on the one hand good initial estimates
are even more important as the models are more prone to local minima and
on the other hand useful initial estimates are harder to obtain. The results
in [Suykens and Vandewalle, 2000] on a recurrent formulation of LS-SVMs
indicate the capabilities of such an approach but also its limitations.

Noise models in a nonlinear setting can come in different flavors. The most
general formulations are given in Table 2.2. This basically covers the casewhen
the autocorrelation test of the residuals, introduced in the first paragraph, fails.
In imitation of the model structures defined in Subsection 2.3.2 this model
structure will be denoted as ARMA-NARX here. In the next section of this
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chapter it is briefly shown how to integrate an a priori known ARMA noise
model with a LS-SVM based NARX model to obtain an improved predictive
performance. As the assumption of having an a priori known noise model is
very restrictive, the remainder of the chapter discusses how to jointly estimate
a noise model and a LS-SVM model. To make the estimation tractable the
model class for the noise model is reduced to purely autoregressive models.
The estimation is based on the idea of overparametrization that has already
been used in Chapter 7 for the identification of Hammerstein systems. The
proposed methods are then evaluated on numerical examples in Section 8.3.
This is done for an artificial data set as well as for real world data representing
loads in a large computer network.

Structure of the chapter The first section of this chapter reviews several
possibilities to incorporate a linear parametric noise model with a LS-SVM
model for the system dynamics. Section 8.2 builds upon the same ideas as
Chapter 7, namely overparametrization, to jointly estimate nonlinear system
dynamics and linear noise model via a convex relaxation. Before concluding
the chapter in the last section, some numerical results are given in Section 8.3.

8.1 Incorporating linear noise models in LS-SVMs

For the scope of this section assume that a noise model with polynomials 𝐶(𝓏)
and 𝐷(𝓏) of orders 𝑛𝑐 and 𝑛𝑑 respectively is given. Without loss of generality
one can further assume that both polynomials are monic, i.e. the coefficient of
the highest power is one. Based on this, a correlated noise process 𝑟𝑡 can be
defined as 𝐷(𝓏)𝑟𝑡 = 𝐶(𝓏)𝑒𝑡 where 𝑒𝑡 is a white noise process. Then the basic
model given by (4.1) can be augmented with a colored noise process such that

𝑦𝑡 = 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑟𝑡. (8.1)

Integrating this model in the primal LS-SVM formulation (4.2) yields

min
𝒘,𝑏,𝑒𝑡,𝑟𝑡

1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡

subject to 𝑦𝑡 = 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑟𝑡, 𝑡 = 1, … ,𝑁,
𝐷(𝓏)𝑟𝑡 = 𝐶(𝓏)𝑒𝑡, 𝑡 = 𝜏, … ,𝑁.

(8.2)

Here two choices for 𝜏 are considered i) 𝜏 = 1 with zero initial conditions for
𝑒𝑡 and 𝑟𝑡 for 𝑡 ≤ 0 and ii) 𝜏 = max(𝑛𝑐, 𝑛𝑑) + 1. The first choice is simpler in its
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formulation, however as the second option does not need an assumption on
the initial conditions it is more powerful. For an AR noise model structure,
i.e. 𝐶(𝓏) = 1, this model has already been considered in [Espinoza et al.,
2005b]. There the authors suggest that if 𝐶(𝓏) and 𝐷(𝓏) are not known
a priori, they can be seen as additional hyper-parameters to the problem. As
such, the coefficients of 𝐶 and 𝐷 then have to be selected for example by
cross-validation. Due to the associated computational cost this is only feasible
for very low order noise models. An alternative more efficient but restricted
approach is proposed in the next section. The remainder of this section keeps
on assuming full knowledge of the polynomials 𝐶 and 𝐷. Note that in case
𝐶(𝓏) and 𝐷(𝓏) correspond to the true noise model, the residual 𝑒𝑡 is white
and formulation (8.2) becomes optimal.

For the sake of simplicity assume that 𝑛𝑐 = 𝑛𝑑 = 𝑃, then the constraint
𝐷(𝓏)𝑟𝑡 = 𝐶(𝓏)𝑒𝑡 for 𝑡 = 𝑃 + 1,… ,𝑁 can be written in matrix notation as
𝑫𝒓 = 𝑪𝒆 with

𝑪 =
⎡
⎢
⎢
⎣

𝑐𝑃 ⋯ 𝑐􀁮 1
⋱ ⋱

𝑐𝑃 ⋯ 𝑐􀁮 1

⎤
⎥
⎥
⎦
, 𝑫 =

⎡
⎢
⎢
⎣

𝑑𝑃 ⋯ 𝑑􀁮 1
⋱ ⋱

𝑑𝑃 ⋯ 𝑑􀁮 1

⎤
⎥
⎥
⎦
,

with 𝑪, 𝑫 ∈ ℝ(𝑁−𝑃)×𝑁 , 𝒆 = [𝑒􀁮, … , 𝑒𝑁 ]𝑇 and 𝒓 = [𝑟􀁮, … , 𝑟𝑁 ]𝑇 . For zero initial
conditions and 𝜏 = 1 these matrices can be extended to square matrices.
Therefore define

𝑪􀁭 =

⎡
⎢
⎢
⎢
⎣

1
𝑐􀁮 1
⋮ ⋱

𝑐𝑛𝑐−􀁮 ⋯ 𝑐􀁮 1

⎤
⎥
⎥
⎥
⎦

, 𝑫􀁭 =

⎡
⎢
⎢
⎢
⎣

1
𝑑􀁮 1
⋮ ⋱

𝑑𝑛𝑑−􀁮 ⋯ 𝑑􀁮 1

⎤
⎥
⎥
⎥
⎦

.

Then

𝑪̅􀁭 = 􀉾
𝑪􀁭 𝟎⊠
— 𝑪 —􀊁 , 𝑫̅􀁭 = 􀉾

𝑫􀁭 𝟎⊠
— 𝑫 — 􀊁

are square. Hence, for zero initial conditions, the constraint reads 𝑫̅􀁭𝒓 = 𝑪̅􀁭𝒆.
Using this, it is straightforward to show that (8.2) can be solved by reweighting
the residuals in the standard LS-SVM formulation (4.2). Note that reweighting
the residuals can also be used for various other purposes, such as obtaining a
robust or a sparse solution as shown in [Suykens, Van Gestel, et al., 2002].

Proposition 8.1. Solving the standard LS-SVM problem (4.2) with weighted
residuals 𝒆𝑇𝑹𝒆 and 𝑹 = 𝑫̅𝑇

􀁭 𝑪̅−𝑇
􀁭 𝑪̅−􀁮

􀁭 𝑫̅􀁭 in place of 𝒆𝑇𝒆 is equivalent to solving
(8.2) with 𝜏 = 1 and zero initial conditions for 𝑟𝑡 and 𝑒𝑡.
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The solution to the weighted problem is given by the linear system

􀉾
𝜴 + 𝛾−􀁮𝑹−􀁮 𝟏

𝟏𝑇 0􀊁 􀉾
𝜶
𝑏􀊁 = 􀉾

𝒚
0􀊁 (8.3)

in terms of the dual variables 𝜶 and with 𝛺𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗).

Proof. The noise model can be rewritten as 𝒆 = 𝑪̅−􀁮
􀁭 𝑫̅􀁭𝒓 as the matrix 𝑪̅􀁭 is

invertible. Substitution of this relation into the objective function of (8.2)
yields the weighting matrix 𝑹. Note that 𝑫̅􀁭 is also invertible and thus 𝑹 as
well. This is needed for the solution in the dual domain.

Deriving the dual system relies on Lagrangian duality and the kernel trick
𝐾(𝒙𝑖, 𝒙𝑗) = 𝝋(𝒙𝑖)𝑇𝝋(𝒙𝑗). The details are given in [Suykens, De Brabanter, et al.,
2002]. ⬜

As the procedure outlined above requires the invertibility of 𝑪̅􀁭 and 𝑫̅􀁭 it
does not apply to the case with unknown initial conditions. To nevertheless
obtain the optimal solution one could just write down the Lagrangian and solve
it, but in this case it is easier to solve the nonlinear model 𝑦𝑡 = 𝒘𝑇𝝋(𝒙𝑡)+𝑏+𝑟𝑡
for 𝑟𝑡. Then substitution into𝐷(𝓏)𝑟𝑡 = 𝐶(𝓏)𝑒𝑡 yields a new combinedmodeling
equation

𝑦𝑡 = 𝒘𝑇
𝑛𝑑

∑
𝑘=􀁭

𝑑𝑘𝝋(𝒙𝑡−𝑘) + 𝑏
𝑛𝑑

∑
𝑘=􀁮

𝑑𝑘 −
𝑛𝑑

∑
𝑘=􀁮

𝑑𝑘𝑦𝑡−𝑘 + 𝐶(𝓏)𝑒𝑡 (8.4)

with 𝑑􀁭 ≔ 1. This relation can also be written more compactly using the
matrix notation introduced above as 𝑫𝒚 = 𝑫𝜱𝑇𝒘 + 𝑏𝑫𝟏 + 𝑪𝒆 where 𝜱 =
[𝝋(𝒙􀁮), … ,𝝋(𝒙𝑁 )].

Then an alternative to the dual system (8.3) for Problem (8.2), using the
combined modeling equation, is

􀉾
𝑫𝜴𝑫𝑇 + 𝛾−􀁮𝑪𝑪𝑇 𝑫𝟏

𝟏𝑇𝑫𝑇 0 􀊁 􀉾
𝜼
𝑏􀊁 = 􀉾

𝑫𝒚
0 􀊁 . (8.5)

This formulation has the advantage that no explicit inverse has to be computed.
Of course it can also be used in case zero initial conditions are assumed, in
that case one can relate the dual variables in (8.3) and (8.5) (with 𝑪̅􀁭 and 𝑫̅􀁭
in place of 𝑪 and 𝑫 respectively) through 𝜶 = 𝑫̅𝑇

􀁭 𝜼.
The system in (8.5) not only has a modified regularization term 𝑪𝑪𝑇 but

also a different kernel matrix, i.e. 𝑫𝜴𝑫𝑇 . Showing that this matrix is positive
semidefinite is straightforward. Let 𝒛 be an arbitrary vector in ℝ𝑁−𝑃 and
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define 𝒛′ = 𝑫𝑇𝒛. Then 𝒛𝑇𝑫𝜴𝑫𝑇𝒛 = 𝒛′𝑇𝜴𝒛′. Therefore the modified matrix
is positive semidefinite as long as the original kernel matrix is. Given that
the problem (8.2) can be solved by considering a modified kernel matrix, an
important question is whether the information of the noise model can be
directly embedded into the kernel function. The answer is given by Espinoza
et al. [2005b] where an equivalent kernel is defined as 𝐾􀂒􀂞(𝒙̄𝑖, 𝒙̄𝑗) = 𝐾(𝒙𝑖, 𝒙𝑗) +
∑𝑃

𝑘,𝑙=􀁮 𝑑𝑘𝑑𝑙𝐾(𝒙𝑖−𝑘, 𝒙𝑗−𝑙) with 𝒙̄𝑡 = (𝒙𝑡, … , 𝒙𝑡−𝑃). The equivalent kernel can be
extracted from (8.4) by defining an equivalent feature map 𝝋􀂒􀂞(𝒙̄𝑡) = 𝝋(𝒙𝑡) +
∑𝑃

𝑘=􀁮 𝑑𝑘𝝋(𝒙𝑡−𝑘) and forming the inner product 𝝋􀂒􀂞(𝒙̄𝑖)𝑇𝝋􀂒􀂞(𝒙̄𝑗).
The combination of the dual problem (8.5) and the equivalent kernel function

yields the one-step-ahead predictor for a new point (𝒛𝑡, … , 𝒛𝑡−𝑛𝑑, 𝑦𝑡−􀁮, … , 𝑦𝑡−𝑛𝑑)
at time 𝑡. It is given by

𝑦̂𝑡 =
𝑁

∑
𝑛=􀁮

𝜂𝑛𝐾􀂒􀂞(𝒙̄𝑛, 𝒛𝑡) + 𝑏
𝑛𝑑

∑
𝑘=􀁮

𝑑𝑘 −
𝑛𝑑

∑
𝑘=􀁮

𝑑𝑘𝑦𝑡−𝑘. (8.6)

To obtain a model with good generalization performance model selection
is needed. If the parameters 𝑐𝑘 and 𝑑𝑘 of the noise model are not known
a priori, they have to be included in the model selection. In that case the
regularization parameter 𝛾, parameters of the kernel function and the noise
model coefficients have to be tuned according to a validation scheme. This
is computationally very demanding for all but very low order noise models.
Therefore the next sections propose a convex relaxation that is able to estimate
noise model coefficients jointly with the parameters of the nonlinear model
𝒘 and 𝑏.

8.2 Estimation of parametric noise models

In the following, only purely autoregressive noise models will be considered,
i.e. 𝐶(𝓏) = 1. The studied model structure is denoted AR(𝑃)-NARX where
𝑃 is the model order, i.e. 𝑛𝑑 = 𝑃. This simplifies the estimation problem as
the nonconvex product of unknowns 𝑐𝑘𝑒𝑡−𝑘 in 𝐶(𝓏)𝑒𝑡 does not have to be
considered. It also simplifies the prediction because the sequence 𝑒𝑡 does not
have to be estimated.

8.2.1 Primal model

The problem of jointly estimating the nonlinear model with its parameters 𝒘
and 𝑏 and a linear parametric noise model, defined by the coefficients {𝑑𝑘}𝑃𝑘=􀁮,
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is formalized in the following nonconvex optimization problem

min
𝒘,𝑏,𝑑𝑘,𝑒𝑡,𝑟𝑡

1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=𝑃+􀁮

𝑒􀁯𝑡

subject to 𝑦𝑡 = 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑟𝑡, 𝑡 = 1, … ,𝑁,

𝑟𝑡 = 𝑒𝑡 −
𝑃

∑
𝑘=􀁮

𝑑𝑘𝑟𝑡−𝑘, 𝑡 = 𝑃 + 1,… ,𝑁.

(8.7)

The nonconvexity is due to the bilinear term 𝑑𝑘𝑟𝑡−𝑘. Based on the idea of
overparametrization as in Chapter 7 the problem can be cast into a formwhere
the nonconvexity is concentrated in a rank constraint. Therefore in analogy
to Subsection 7.2.2 one can introduce new variables 𝒘𝑘 = 𝑑𝑘𝒘 for 𝑘 = 0, … , 𝑃.
These can also be written in matrix form as 𝑾 = [𝒘􀁭, … ,𝒘𝑃] = 𝒘𝒅𝑇 with
𝒅 = [1, 𝑑􀁭, … , 𝑑𝑃]𝑇 . Then, as in (7.8), an equivalent optimization problem can be
stated based on a rank-1 constraint on𝑾 . In contrast to (7.8) for Hammerstein
problems where all references to the variables 𝑏𝐻,𝑘 have been absorbed by
the new variables 𝒘𝑘, here references to the variables 𝑑𝑘 are still present in
the problem. Therefore one has to ensure collinearity between 𝒅 and the
columns of𝑾 which can be achieved by augmenting the rank constraint to
rank([𝑾 𝑇 , 𝒅]) = 1. Similar to Subsection 7.2.2 one can state an equivalent
optimization problem with all nonconvexity concentrated in a rank constraint,

min
𝒘𝑘,𝑏̄,𝑑𝑘,𝑒𝑡

1
2

𝑃

∑
𝑘=􀁭

𝒘𝑇
𝑘𝒘𝑘 +

1
2
𝛾

𝑁

∑
𝑡=𝑃+􀁮

𝑒􀁯𝑡

subject to 𝑦𝑡 +
𝑃

∑
𝑘=􀁮

𝑑𝑘𝑦𝑡−𝑘 =
𝑃

∑
𝑘=􀁭

𝒘𝑇
𝑘𝝋(𝒙𝑡−𝑘) + 𝑏̄ + 𝑒𝑡,

𝑡 = 𝑃 + 1,… ,𝑁,
rank([𝑾 𝑇 , 𝒅]) = 1.

(8.8)

Based on this equivalent problem formulation a convex approximation is
straightforwardly obtained by dropping the rank constraint. Note that in
the formulation above the expression 𝑏∑𝑃

𝑘=􀁭 𝑑𝑘 has been — without loss of
generality — replaced by 𝑏̄.

8.2.2 Solution in dual domain

Due to the often implicit definition of the feature map𝝋 in LS-SVMs, the solu-
tion has to be obtained in the dual domain for which only the kernel function
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needs to be known. To facilitate a compact notation the effective number of
constraints 𝑁 − 𝑃 is denoted as 𝑁̃ . The dual solution of the approximation of
(8.8) is formalized in the following Lemma.

Lemma 8.2. The solution of (8.8) without rank constraint is given in the dual
domain by

⎡
⎢
⎢
⎣

∑𝑃
𝑘=􀁭𝜴𝑘 + 𝛾−􀁮𝑰𝑁̃ 𝒀𝑇 𝟏𝑁̃

𝒀 𝟎 𝟎
𝟏𝑇𝑁̃ 𝟎 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝜶
𝒅
𝑏̄

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝒚􀁭
𝟎
0

⎤
⎥
⎥
⎦

(8.9)

with (𝜴𝑘)𝑖𝑗 = 𝐾(𝒙𝑖−𝑘, 𝒙𝑗−𝑘), 𝑃 + 1 ≤ 𝑖, 𝑗 ≤ 𝑁 where (𝜴𝑘)𝑖𝑗 is the 𝑖𝑗-th element of
𝜴𝑘. Furthermore 𝜶 are the Lagrange multipliers corresponding to the equality
constraints, 𝒚􀁭 = [𝑦𝑃+􀁮, … , 𝑦𝑁 ]𝑇 , 𝒚𝑡 = [𝑦𝑡−􀁮, … , 𝑦𝑡−𝑃]𝑇 for 𝑡 = 𝑃 + 1,… ,𝑁 and
𝒀 = [𝒚𝑃+􀁮, … , 𝒚𝑁 ].

Proof. The Lagrangian for (8.8) without the rank constraint is

ℒ(𝒘𝑘, 𝑏̄, 𝑑𝑘, 𝑒𝑡, 𝜶) =
1
2

𝑃

∑
𝑘=􀁭

𝒘𝑇
𝑘𝒘𝑘 +

1
2
𝛾

𝑁

∑
𝑡=𝑃+􀁮

𝑒􀁯𝑡

−
𝑁

∑
𝑡=𝑃+􀁮

𝛼𝑡
⎛
⎜
⎝

𝑃

∑
𝑘=􀁭

𝒘𝑇
𝑘𝝋(𝒙𝑡−𝑘) + 𝑏̄ + 𝑒𝑡 − 𝑦𝑡 −

𝑃

∑
𝑘=􀁮

𝑑𝑘𝑦𝑡−𝑘
⎞
⎟
⎠
. (8.10)

The KKT conditions are similar to those of Lemma 7.1 and also extensions of
the ones found in Lemma 4.2. The most important conditions are

𝟎𝑛ℎ =
𝜕ℒ
𝜕𝒘𝑘

= 𝒘𝑘 −
𝑁

∑
𝑡=𝑃+􀁮

𝛼𝑡𝝋(𝒙𝑡−𝑘), 𝑘 = 0, … , 𝑃, (8.11a)

0 =
𝜕ℒ
𝜕𝑑𝑘

=
𝑁

∑
𝑡=𝑃+􀁮

𝛼𝑡𝑦𝑡−𝑘, 𝑘 = 1, … , 𝑃, (8.11b)

Substituting the above relations for 𝒘𝑘 and 𝑒𝑘 = 𝛾−􀁮𝛼𝑘 into the modeling
constraint yields

𝑃

∑
𝑘=􀁭

𝑁

∑
𝑛=𝑃+􀁮

𝛼𝑛𝐾(𝒙𝑛−𝑘, 𝒙𝑡−𝑘) + 𝑏̄ + 𝛾−􀁮𝛼𝑡 = ∑𝑃
𝑘=􀁭 𝑑𝑘𝑦𝑡−𝑘

after applying the kernel trick 𝐾(𝒙𝑛−𝑘, 𝒙𝑡−𝑘) = 𝝋(𝒙𝑛−𝑘)𝑇𝝋(𝒙𝑡−𝑘). Expressing this,
𝜕ℒ/𝜕𝑏̄ = ∑𝑁

𝑡=𝑃+􀁮 𝛼𝑡 = 0 and 𝜕ℒ/𝜕𝑑𝑘 = 0 in matrix notation yields (8.9). ⬜
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Evaluating the overparametrized model at a new point (𝑦𝑡−􀁮, … , 𝑦𝑡−𝑃, 𝒙𝑡, … ,
𝒙𝑡−𝑃) in terms of the dual variables 𝜶 and primal variables 𝑏̄ and {𝑑𝑘}𝑃𝑘=􀁮 is done
using the one step ahead predictor

𝑦̂𝑡 =
𝑁

∑
𝑛=𝑃+􀁮

𝛼𝑛
𝑃

∑
𝑘=􀁭

𝐾(𝒙𝑡𝑟𝑎𝑖𝑛𝑛−𝑘 , 𝒙𝑡−𝑘) + 𝑏̄ −
𝑃

∑
𝑘=􀁮

𝑎𝑘𝑦𝑡−𝑘. (8.12)

Note that the solution obtained from (8.9) contains one direct estimate of
𝒅. However embedded into 𝜶 is information that is capable of providing a
second estimate for 𝒅. The procedure to exploit this information is closely
related to Subsection 7.2.4. However, in the setting here there is an additional
complication. The two estimates for 𝒅 are independent of each other as the
collinearity constraint implemented by the rank constraint has been dropped
from the problem.

8.2.3 Projection onto original class

Themodel obtained from (8.9) is only an approximation for the AR(𝑃)-LS-SVM
model stated in (8.7) and its rewritten form (8.8). This is due to neglecting
the rank constraint which results in the relation𝑾 = 𝒘𝒅𝑇 not to be satisfied
anymore. Hence the model structure is not AR(𝑃)-NARX anymore but a
relaxation. Furthermore, as the model has been dualized there is no direct
access to 𝑾 anymore. Note that the Hammerstein systems discussed in
Chapter 7 face the same problem. In their case the recovery of the original
model structure has been addressed in Subsection 7.2.4. Here the first method
described in that subsection is adapted. It is used to obtain a second estimate
for 𝒅 that gives rise to the best (in a least squares sense) rank-1 factorization
of𝑾 .

To recover a rank-1 factorization of𝑾 one can make use of its SVD 𝑼𝜮𝑽 𝑇

and only consider the dominant singular vectors. The columns of𝑾 are given
by (8.11a), but involve the usually implicitly defined feature map 𝝋. As the
objective is to estimate a value for 𝒅 it is however sufficient to consider the
eigenvalue decomposition𝑽𝜮􀁯𝑽 𝑇 of𝑾 𝑇𝑾 . Scaling the dominant eigenvector
such that its first component is one, gives an estimate for 𝒅. Applying the
kernel trick on𝑾 𝑇𝑾 one obtains

⎡
⎢
⎢
⎣

𝜶𝑇𝜴􀁭,􀁭𝜶 ⋯ 𝜶𝑇𝜴􀁭,𝑃𝜶
⋮ ⋱ ⋮

𝜶𝑇𝜴𝑃,􀁭𝜶 ⋯ 𝜶𝑇𝜴𝑃,𝑃𝜶

⎤
⎥
⎥
⎦

with (𝜴𝑘,𝑙)𝑖𝑗 = 𝐾(𝒙𝑖−𝑘, 𝒙𝑗−𝑙) for 𝑘, 𝑙 = 0, … , 𝑃 and 𝑖, 𝑗 = 𝑃 + 1,… ,𝑁 .
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Remark 8.1. The projection onto the class AR(𝑃)-LS-SVM is incomplete as two
independent estimates for 𝑑𝑘 are obtained, one following directly from the
solution of the dual system (8.9) and the other from the rank-1 approximation
of𝑾 as outlined in this section. Therefore both estimates will be compared
with respected to their predictive performance in the experimental section.

Algorithm 8.1 (Overparametrized model (OVER)).
Training:

1. compute kernel matrix 𝜴 = ∑𝑃
𝑘=􀁭𝜴𝑘

2. solve (8.9) to obtain estimates for 𝜶, 𝑏 and 𝒂
Prediction:

Generate estimates with the predictor given by (8.12).

Algorithm 8.2 (Model with direct estimate for the noise model (DIRECT)).
Training:

1. compute kernel matrix 𝜴 = ∑𝑃
𝑘=􀁭𝜴𝑘

2. solve (8.9) to obtain estimates for 𝜶, 𝑏 and 𝒂, denote the estimate for 𝒂
by 𝒂̂𝐿𝑆

3. compute final model by solving (8.2) given 𝒂̂𝐿𝑆
Prediction:

Estimates are generated according to (8.6)

Algorithm 8.3 (Model with projection based estimate for the noise model
(SVD)).
Training:

1. compute kernel matrix 𝜴 = ∑𝑃
𝑘=􀁭𝜴𝑘

2. solve (8.9) to obtain estimates for 𝜶, 𝑏 and 𝒂
3. compute𝑾 𝑇𝑾 as in Section 8.2.3
4. 𝜎􀁭, 𝒗􀁭 ← largest eigenvalue and eigenvector of𝑾 𝑇𝑾
5. 𝒂̂𝑆𝑉𝐷 ← 𝒗􀁭/(𝒗􀁭)􀁭
6. compute final model by solving (8.2) given 𝒂̂𝑆𝑉𝐷

Prediction:
Estimates are generated according to (8.6)

This results in three possible algorithms to obtain a predictive model. The
first possibility is described in Algorithm 8.1 and uses the overparametrized
model for projections. The second model uses the direct estimate for 𝒂 to
estimate an AR(P) model as explained in Algorithm 8.2. Finally another AR(P)
model can be obtained by using the estimate for 𝒂 obtained from the projection.
This is outlined in Algorithm 8.3.
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8.3 Numerical experiments

TheRBF kernel is used for all considered models. Model selection is performed
using an independent validation set. The regularization parameter 𝛾 and the
kernel bandwidth 𝜎 are selected using grid search. Performance measures are
reported on independent test sets in both cases.

As synthetic examples the nonlinear systems given in [Espinoza et al.,
2005b] are considered,

1. 𝑦𝑡 = 𝑓􀁮(𝑢𝑡) = 0.2(1 − 6𝑢𝑡 + 36𝑢􀁯𝑡 − 53𝑢􀁰𝑡 + 22𝑢􀁲𝑡 ) + 𝑟𝑡 with 𝑢𝑡 uniformly
distributed on [−0.5, 1.3] and

2. 𝑦𝑡 = 𝑓􀁯(𝑦𝑡−􀁮) = sinc(𝑦𝑡−􀁮) + 𝑟𝑡.

The noise term 𝑟𝑡 is generated with a linear AR(P) noise model according to
𝑟𝑡 = ∑𝑃

𝑝=􀁮 𝑎𝑘𝑟𝑡−𝑘 + 𝑒𝑡. For the experiments models of order 𝑃 = 2𝑝 are used,
with 𝑝 pairs of conjugate complex poles on the unit disc and gain one. The
excitation signal 𝑒𝑡 is white Gaussian noise with standard deviation 𝜎𝑟 = 0.3.

8.3.1 Model order selection

In Figure 8.2 the validation performance of an overparametrized model is
shown as a function of the model order 𝑃. The two particular examples are
generated for 𝑓􀁮 and show that a model order can be selected based on the
validation performance. Yet it is not necessarily the case that the true model
order is revealed. From these simple experiments it appears that the model
order tends to be underestimated.

An alternative approach to the method outlined here is presented in [De
Brabanter et al., 2011]. There a cross-validation scheme is modified such that
good hyper-parameters are selected for a standard LS-SVM formulation in the
presence of correlated errors. The advantage is that no knowledge about the
noise structure or its order is necessary a priori. The disadvantage is that no in-
formation on the noise process is gathered and as such the noise characteristic
can for example not be taken into account in simulated predictions.

8.3.2 Correlation of estimated parameters with true noise
model

Solving (8.9) one obtains 𝒂̂𝐿𝑆 as an estimate for 𝑎𝑘. Projecting the model as
described in Section 8.2.3 yields a second estimate for 𝑎𝑘 which is denoted by
𝒂̂𝑆𝑉𝐷. To assess the quality of the overparametrized model, several quantities
are investigated
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Figure 8.2: Validation performance as a function of the noise model order
𝑃. Tested for 𝑓􀁮. The solid line is the validation performance of
an overparametrized model of order 𝑃. The dotted line gives the
performance of an AR(P)-LS-SVMmodel with the true noise model
while the dashed line indicates the performance of a standard
LS-SVM model.
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Figure 8.3: Correlation of true noise model parameters 𝒂 with estimates 𝒂̂𝐿𝑆
and 𝒂̂𝑆𝑉𝐷 based on 50 Monte Carlo simulations for 𝑓􀁮.

1. the agreement of the two different estimates, given by the angle between
them ∢(𝒂̂𝐿𝑆, 𝒂̂𝑆𝑉𝐷),

2. the distance of true parameters to the plane spanned by the estimates
∢(𝒂, [𝒂̂𝐿𝑆, 𝒂̂𝑆𝑉𝐷]) and

3. the individual agreements between the true noise model and its esti-
mates ∢(𝒂, 𝒂̂𝐿𝑆), ∢(𝒂, 𝒂̂𝑆𝑉𝐷).

Figures 8.3 and 8.4 show the result of 50Monte Carlo simulations with different
realizations of the noise model for orders 𝑃 = 4 and 𝑃 = 8. Figure 8.3 depicts
results for 𝑓􀁮 while Figure 8.4 shows results obtained with 𝑓􀁯. Especially for
the lower order models the correlation of the different quantities are mostly
below 10 degrees. Even for a model order of 𝑃 = 8 the median angle is
about 20 degrees which corresponds to a correlation coefficient of about 0.94.
It seems that with the overparametrized formulation, the true noise model
coefficients cannot be recovered. Yet the approximation is good enough to
obtain predictive models that significantly outperform standard LS-SVM as
shown in the next section.

8.3.3 Performance of projected models

The same experiments as in the previous section are performed but now the
prediction performance is analyzed. The compared projection schemes are:
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Figure 8.4: Correlation of true noise model parameters 𝒂 with estimates 𝒂̂𝐿𝑆
and 𝒂̂𝑆𝑉𝐷 based on 50 Monte Carlo simulations for 𝑓􀁯.

LS-SVM standard LS-SVM without noise model,
AR(P) AR(P)-LS-SVM given the true noise model,
OVER overparametrized LS-SVM (Algorithm 8.1),
DIRECT AR(P)-LS-SVM with 𝒂̂𝐿𝑆 estimate (Algorithm 8.2) and
SVD AR(P)-LS-SVM with 𝒂̂𝑆𝑉𝐷 estimate (Algorithm 8.3).

Results for Monte Carlo simulations are shown in Figure 8.5.
One can observe that the AR(P)-LS-SVM significantly outperforms stan-

dard LS-SVMs in a lot of cases. The overparametrized model is much better
than LS-SVMs but does not perform as well as AR(P)-LS-SVM with the true
parameters. For the projected model the estimate obtained by (8.9) is much
more reliable than the one obtained by the rank one approximation. In most
cases the projected model slightly outperforms the overparametrized model.

8.3.4 Projection quality

For the models evaluated in the previous sections, one can also analyze the
quality of the projection step. As a measure to assess how close𝑾 is to rank-1
the ratio of the largest singular value to the power in the whole matrix is
used, i.e. ‖𝑾‖􀁯/‖𝑾‖𝐹. Thus a value close to one in Figure 8.6 corresponds to a
matrix that is close to rank one. Based on that figure, one can conclude that
most of the energy is successfully concentrated in the largest singular value.
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Figure 8.5: Performance of different model structures (cf. Section 8.3.3) evalu-
ated for different nonlinearities in 50 Monte Carlo runs. The true
noise model order for the used nonlinearity 𝑓􀁯 is 𝑃 = 8.
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Figure 8.6: Quality measure for the rank of𝑾 . Values close to one indicate a
solution dominated by the largest singular value. Results are given
for both nonlinear models and different noise model orders and
compared for 50 Monte Carlo simulations.
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Figure 8.7: Test performance for ESTSP08 [Lendasse et al., 2010] data set 2. The
RMSE is reported on an independent test set. The model order 0
corresponds to a LS-SVM model.

8.3.5 Real data

For a test on real data the second data set from the ESTSP08 benchmark
[Lendasse et al., 2010] is used. The data set has one variable and contains
1300 hourly measurements of internet traffic in an academic network. To
select the model order, a standard LS-SVM model with 𝒙𝑡 = [𝑦𝑡−􀁮, … , 𝑦𝑡−𝑚]𝑇
for 𝑚 = 1,… , 30 is trained. The model with order 𝑚 = 17 has the smallest
validation error and is used as basis for tests with additional noise models.
Figure 8.7 shows the performance on the last 10% of the data. These have
not been used for estimating or selecting the model. It can be seen that the
performance on this independent test set can be improved by considering a
noise model.

8.4 Conclusions

It has been shown how to integrate a noise model with LS-SVM based models
and that doing so is beneficial in presence of colored noise. For the case that
the noise model is not known a priori a novel convex relaxation, based on
overparametrization to solve the otherwise nonconvex problem, has been
proposed. This makes it viable to identify high order noise models without a
significant increase in computational complexity. The identified coefficients
of the noise model clearly deviate from the true parameters. Nevertheless the
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prediction capability of the identified models is superior to standard LS-SVM
and can, in some cases, come close to the performance of a model given the
true noise model parameters. Finally the applicability on a real world data set
has been demonstrated.





9Sensitivity of kernel based models

Based on the publication Falck, T., Pelckmans, K., Suykens, J. A. K., and
De Moor, B. (July 2009). “Identification of Wiener-Hammerstein Systems
using LS-SVMs”. In: Proceedings of the 15th IFAC Symposium on System
Identification. (Saint-Malo, France, July 6–8, 2009), pp. 820–825.

This thesis primarily discusses nonlinear, implicitly defined and nonparametric
models. An inherent problem of these black-box models is that they offer only
very limited insight about their properties besides predictive performance.
This chapter attempts to gather some more information of a model in terms
of its sensitivity to certain input variables. Due to the complex nature of
the problem, even this limited analysis relies on several approximations.
One advantage of the methodology described here is that it will result in a
predictive model that is able to generate predictions for the case where the
input data is not known exactly but only known to be within an interval.

The work is inspired by results in robust regression [El Ghaoui and Lebret,
1997; Chandrasekaran et al., 1999] and is in essence an approximate extension
of these methods to nonlinear and nonparametric models. In case of the linear
models considered in these references there is a close relation to classical
regularization schemes as used in Total Least Squares (TLS) [Van Huffel and
Vandewalle, 1991]. An iterative algorithm to solve TLS like problems in a
nonlinear setting has for example been proposed by Rosen et al. [1998]. This
chapter is however more similar to [Watson, 2003, 2007] and differs mainly
by its use of kernel based models. The primary new contribution is to show

187
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that the primal SOCP can be recast as another cone optimization problem in
the dual that depends only on the kernel function.

Further related work with regard to robust solutions for SVMs in terms of
SOCP problems are given in [Shivaswamy et al., 2006; Huang et al., 2012] in a
probabilistic setting while Trafalis and Gilbert [2006] look at the deterministic
case. A result for the related TLS problem in a LS-SVM context can be found
in [Renault et al., 2005].

In addition to stating the computationally intensive SOCP problem, this
chapter shows how a related least squares problem can be constructed and
how it is connected to the original SOCP formulation. This allows for a more
efficient solution of the problem and avoids the need to investigate advanced
optimization schemes like those considered in some of the previous chapters.

Structure of the chapter The following section briefly restates LS-SVMs
as an equivalent SOCP problem. This enables Section 9.2 to derive a kernel
based regression model that is robust with respect to bounded perturbations.
To facilitate an efficient solution Section 9.3 reverts the robustified SOCP
problem back to a least squares estimation problem. Due to the large size of
the problem, some approximations to cope with large amounts of data are
tailored to the specific needs in Section 9.4. Before concluding remarks in the
last section, Section 9.5 presents results on several numerical examples.

9.1 LS-SVM models in SOCP form

In this section several results relevant later on in this chapter are derived.
They establish an equivalence between the solutions of standard LS-SVMs
on the one hand and a modified version on the other hand. Here standard
LS-SVM denotes the formulation introduced in Chapter 4 which is in QP
form and in particular a least squares problem. The modified formulation in
essence changes the objective function from squared norms to their unsquared
counterparts, yielding a SOCP problem. For reference the dual problem as
well as the form of the predictive model in terms of the dual variables are
given for the SOCP based LS-SVM model.

Lemma 9.1 (Kernel based model in SOCP form). The kernel based estimation
problem

min
𝒘,𝑏,𝑒𝑡

‖𝒘‖􀁯 + 𝛾′‖𝒆‖􀁯

subject to 𝑦𝑡 = 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑒𝑡, 𝑡 = 1, … ,𝑁,
(9.1)
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with 𝒆 = [𝑒􀁮, … , 𝑒𝑁 ]𝑇 is equivalent to a LS-SVM model (4.2) for 𝛾′ = 𝛾‖𝒆‖􀁯/‖𝒘‖􀁯.

Proof. Substitution of 𝛾′ into (9.1) and scaling the objective by 􀁮
􀁯
‖𝒘‖􀁯 yields

(4.2). ⬜

Lemma 9.2 (Dual of kernel based model in SOCP form). The dual of the kernel
based model introduced in Lemma 9.1 is

max
𝜶

𝜶𝑇𝒚

subject to 𝟏𝑇𝑁𝜶 = 0,
‖𝑮𝜶‖􀁯 ≤ 1, ‖𝜶‖􀁯 ≤ 𝛾′,

(9.2)

where 𝒚 = [𝑦􀁮, … , 𝑦𝑁 ]𝑇 and 𝜶 ∈ ℝ𝑁 contains the Lagrange multipliers of the
equality constraints in (9.1). Furthermore 𝑮 is a matrix square root of the kernel
matrix 𝜴 such that 𝜴 = 𝑮𝑇𝑮.

Proof. Using conic constraints (9.1) can be written as

min
𝒘,𝑏,𝑒𝑡,𝑣􀁸,𝑣􀁹

𝑣􀁮 + 𝛾′𝑣􀁯

subject to 𝑦𝑡 = 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑒𝑡, 𝑡 = 1, … ,𝑁,
‖𝒘‖􀁯 ≤ 𝑣􀁮, ‖𝒆‖􀁯 ≤ 𝑣􀁯.

(9.3)

Let 𝜱 = [𝝋(𝒙􀁮), … ,𝝋(𝒙𝑁 )], then the Lagrangian of the above optimization
problem can be written as

ℒ(𝒘, 𝑏, 𝑒𝑡, 𝑣􀁮, 𝑣􀁯, 𝒖􀁮, 𝒖􀁯, 𝑣′􀁮, 𝑣′􀁯, 𝜶) = 𝑣􀁮 + 𝛾′𝑣􀁯
+ 𝒖𝑇􀁮𝒘 − 𝑣􀁮𝑣′􀁮 + 𝒖𝑇􀁯 𝒆 − 𝑣􀁯𝑣′􀁯 − 𝜶𝑇 (𝜱𝑇𝒘 + 𝑏𝟏𝑁 + 𝒆 − 𝒚), (9.4)

with ‖𝒖􀁮‖􀁯 ≤ 𝑣′􀁮 and ‖𝒖􀁯‖􀁯 ≤ 𝑣′􀁯. Computing the KKT conditions for optimality
one obtains

𝜕ℒ
𝜕𝒘

= 𝟎𝑛ℎ ⇒ 𝒖􀁮 = 𝜱𝜶,

𝜕ℒ
𝜕𝒆

= 𝟎𝑁 ⇒ 𝒖􀁯 = 𝜶,

𝜕ℒ
𝜕𝑣􀁮

= 0 ⇒ 𝑣′􀁮 = 1,

𝜕ℒ
𝜕𝑣􀁯

= 0 ⇒ 𝑣′􀁯 = 𝛾′,

𝜕ℒ
𝜕𝑏

= 0 ⇒ 𝟏𝑇𝑁𝜶 = 0.
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Substitution of these relations into the Lagrangian reduce it to 𝜶𝑇𝒚. This gives
the objective of the dual problem. The equality constraint is directly taken
from the KKT conditions. The norm ‖𝜶‖􀁯 ≤ 𝛾′ is a consequence of substituting
the KKT conditions in the dual conic constraint ‖𝒖􀁯‖􀁯 ≤ 𝑣′􀁯. The second conic
constraint follows in the same way and is ‖𝜱𝜶‖􀁯 ≤ 1 after substitution. To
obtain a kernel based expression one can first square the constraint to obtain
𝜶𝑇𝜴𝜶 ≤ 1 where 𝜴 = 𝜱𝑇𝜱 is the kernel matrix. Finally using a matrix
square root, the constraint can be converted back into a norm constraint. ⬜

Corollary 9.3. (Model representation for kernel model in SOCP form) Let 𝜶
denote the dual variables computed from Lemma 9.2 and assume that the con-
straints of (9.2) are active. Then the form of the predictive model for a kernel
model in SOCP form as specified in Lemma 9.1 is given by

𝑦̂(𝒛) = 𝑣􀁮
𝑁

∑
𝑡=􀁮

𝛼𝑡𝐾(𝒙𝑡, 𝒛) + 𝑏 (9.5)

where 𝑏 = 𝑁−􀁮(𝟏𝑇𝑁𝒚−𝑣􀁮𝟏𝑇𝑁𝜴𝜶), 𝑣􀁮 = 𝜶𝑇𝒚−𝛾′􀁯𝑣􀁯 and 𝑣􀁯 can be determined from

𝒚 − 𝑷𝛼𝒚 − 𝑷􀁮𝒚 = 𝑣􀁯(𝜴 − 􀁮
𝛾′􀁹
𝑰𝑁 − 𝑷􀁮𝜴)𝜶, where 𝑷𝛼 =

𝜶𝜶𝑇

𝜶𝑇𝜶
and 𝑷􀁮 =

􀁮
𝑁
𝟏𝑁𝟏𝑇𝑁 .

Proof. Note that one has 𝒖􀁮 = 𝜱𝜶 and 𝒖􀁯 = 𝜶. Due to complementary
slackness and since the constraints are active, it holds that 𝒖𝑇􀁮𝒘−𝑣􀁮𝑣′􀁮 = 0 and
𝒖𝑇􀁯 𝒆 − 𝑣􀁯𝑣′􀁯 = 0. Combining both relations one obtains 𝒘 = 𝑣􀁮𝜱𝜶 + 𝒘⟂ and
𝒆 = 𝑣􀁯𝜶 + 𝒆⟂, where 𝒘⟂ and 𝒆⟂ are arbitrary vectors that satisfy 𝒖𝑇􀁮𝒘⟂ = 0
and 𝒖𝑇􀁯 𝒆⟂ = 0, respectively. Hence, the primal objective can be written as
𝑣􀁮‖𝜱𝜶‖􀁯 + 𝛾′𝑣􀁯‖𝜶‖􀁯 + ‖𝒘⟂‖􀁯 + ‖𝒆⟂‖􀁯 = 𝑣􀁮 + 𝛾′􀁯𝑣􀁯 + ‖𝒘⟂‖􀁯 + ‖𝒆⟂‖􀁯. Similarly
the equality constraint becomes 𝒚 = 𝑣􀁮𝜴𝜶 + 𝟏𝑁𝑏 + 𝑣􀁯𝜶 + 𝜱𝑇𝒘⟂ + 𝒆⟂. In
particular this also has to hold if both sides are multiplied by 𝜶𝑇 . Therefore
𝜶𝑇𝒚 = 𝑣􀁮 + 𝛾′􀁯𝑣􀁯. Assuming that the duality gap is zero, one obtains that 𝒘⟂
and 𝒆⟂ are equal to zero.

Furthermore multiplying the equality constraint by 𝟏𝑇𝑁 one obtains 𝟏𝑇𝑁𝒚 =
𝑣􀁮𝟏𝑇𝑁𝜴𝜶 + 𝑁𝑏. Solving this relation for 𝑏 and 𝜶𝑇𝒚 = 𝑣􀁮 + 𝛾′􀁯𝑣􀁯 for 𝑣􀁯 and
substituting those values into the equality constraint, one obtains the relations
for 𝑏 and 𝑣􀁮. ⬜

9.2 Robust kernel based regression

The material in this chapter is different from the rest of this thesis in that it
considers a setting in which the regression variable 𝒙 is not known exactly.
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Instead it is assumed that the regression variable is within a simple set, in
particular a norm ball. Then the objective is to find the best model when
always picking the worst possible element.

9.2.1 Problem setting

Based on a set of measurements {(𝒙̃𝑡, 𝑦𝑡)}𝑁𝑡=􀁮, where the inputs 𝒙̃𝑡 = 𝒙𝑡 + 𝜹𝑡 ∈
ℝ𝑑 are corrupted by unstructured perturbations 𝜹𝑡 and the outputs 𝑦𝑡 ∈ ℝ
are subject to additive noise 𝑒𝑡 with bounded variance, a nonlinear model
shall be estimated. Within the scope of this chapter it is assumed that these
perturbations are bounded ‖𝜹𝑡‖􀁯 ≤ 𝜚 for all 𝑡 where 𝜚 is a given value. The
form of the estimator 𝑦̂ ∶ ℝ𝑑 → ℝ is given by

𝑦̂(𝒙̃) = 𝒘𝑇𝝋(𝒙̃) + 𝑏 (9.6)

with the model parameters 𝒘 ∈ ℝ𝑛ℎ and 𝑏 ∈ ℝ and the feature map 𝝋 ∶ ℝ𝑑 →
ℝ𝑛ℎ .

The estimation objective is to fit the model in (9.6) to the perturbed data as
formalized by the following optimization problem

min
𝒘,𝑏,𝑒𝑡,𝜹𝑡

1
2
𝒘𝑇𝒘 +

1
2
𝛾

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡 +
𝑁

∑
𝑡=􀁮

𝑙(𝜹𝑡)

subject to 𝑦𝑡 = 𝒘𝑇𝝋(𝒙̃𝑡 − 𝜹𝑡) + 𝑏 + 𝑒𝑡, 𝑡 = 1, … ,𝑁.
(9.7)

In case of a TLS-like setting the loss 𝑙(𝜹) would be 􀁮
􀁯
‖𝜹‖􀁯􀁯. Solving this problem

is difficult as the constraints in (9.7) are nonlinear in 𝜹𝑡 and possibly nonconvex.
If the 𝒙𝑡 were unperturbed, i.e. 𝜹𝑡 = 𝟎, this problem corresponds to standard
LS-SVM regression, c.f. Chapter 4.

9.2.2 Linearization

To make the problem tractable it has to be simplified. In the scope of this
chapter the goal is to solve a related convex problem. Therefore the feature
map 𝝋 is linearized with respect to the perturbations 𝜹 on its argument 𝒙̃

𝝋(𝒙̃ − 𝜹) ≃ 𝝋(𝒙̃) −
𝑑

∑
𝑖=􀁮
(𝜕𝑥𝑖𝝋)(𝒙̃)𝛿𝑖 (9.8)

using the shorthand notation (𝜕𝑥𝑓)(𝑥􀁭, 𝑦􀁭) =
𝜕𝑓(𝑥,𝑦)
𝜕𝑥

􀉦
𝑥􀁷,𝑦􀁷

. Also define 𝜱′
𝑡 =

[(𝜕𝑥􀁸𝝋)(𝒙̃𝑡), … , (𝜕𝑥𝑑𝝋)(𝒙̃𝑡)] ∈ ℝ
𝑛ℎ×𝑑. Then the modeling constraint in (9.7) can
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be compactly approximated as

𝑦𝑡 ≃ 𝒘𝑇𝝋(𝒙̃𝑡) − 𝒘𝑇𝜱′
𝑡𝜹𝑡 + 𝑏 + 𝑒𝑡. (9.9)

The term 𝒘𝑇𝜱′
𝑡𝜹𝑡 is bilinear in the unknowns 𝒘 and 𝜹𝑡 and thus the corre-

sponding optimization problem is still nonconvex.
For the integration in a kernel based model the derivatives of the feature

map have to be expressed in terms of the kernel function [Lázaro et al., 2005].
The theoretical foundation as well as an example for the Gaussian RBF kernel
are given in the following.

Lemma 9.4 (Kernelizing derivatives of the feature map). For any positive
definite kernel 𝐾 ∶ ℝ𝐷 × [𝑎, 𝑏]𝐷 → [𝑎, 𝑏]𝐷 and 𝒙, 𝒚 ∈ [𝑎, 𝑏]𝐷 for 𝑎, 𝑏 ∈ ℝ and 𝑎 < 𝑏
one has

𝜕
𝜕𝑥𝑖

𝐾(𝒙, 𝒚) = 􀈙
𝜕
𝜕𝑥𝑖

𝝋(𝒙),𝝋(𝒚)􀈌 , (9.10)

𝜕􀁯

𝜕𝑥𝑖𝜕𝑦𝑗
𝐾(𝒙, 𝒚) = 􀈙

𝜕
𝜕𝑥𝑖

𝝋(𝒙),
𝜕
𝜕𝑦𝑗

𝝋(𝒚)􀈌 . (9.11)

Proof. According to Mercer’s theorem a positive definite kernel can be written
as 𝐾(𝒙, 𝒚) = ∑∞

𝑖=􀁮 𝜑𝑖(𝒙)𝜑𝑗(𝒚). Furthermore the series is uniformly and abso-
lutely convergent. Therefore the differentiation can be performed element-
wise. ⬜

Remark 9.1 (Derivative of Gaussian RBF kernel). The Gaussian RBF kernel
has the following derivatives:

𝜕
𝜕𝑥𝑖

𝐾(𝒙, 𝒚) = −
2
𝜎􀁯
(𝑥𝑖 − 𝑦𝑖)𝐾(𝒙, 𝒚), (9.12)

𝜕
𝜕𝑥𝑖

𝜕
𝜕𝑦𝑗

𝐾(𝒙, 𝒚) =
⎧⎪
⎨⎪⎩

− 􀁱
𝜎􀁻
(𝑥𝑖 − 𝑦𝑖)(𝑥𝑗 − 𝑦𝑗)𝐾(𝒙, 𝒚), 𝑖 ≠ 𝑗

− 􀁱
𝜎􀁻
(𝑥𝑖 − 𝑦𝑖)􀁯𝐾(𝒙, 𝒚) +

􀁯
𝜎􀁹
𝐾(𝒙, 𝒚), 𝑖 = 𝑗

(9.13)

9.2.3 Convexification

In the literature for robust solutions of linear systems [El Ghaoui and Lebret,
1997] similar problems are solved by robustifying with respect to bounded
perturbations ‖𝜹𝑘‖􀁯 ≤ 𝜚 . Based on the equivalence established in Section 9.1
and for the sake of this argument, a related ℓ􀁯-problem will be considered
instead of the least squares problem (9.7) .
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For the worst case scenario over all ‖𝜹𝑘‖ ≤ 𝜚 , the ℓ􀁯-formulation of (9.7)
with the linearized modeling constraint (9.9) is given by

min
𝒘,𝑏,𝑒𝑘

max
‖𝜹𝑘‖􀁹≤𝜚

‖𝒘‖􀁯 + 𝛾‖𝒆‖􀁯

subject to 𝑦𝑘 = 𝒘𝑇𝝋(𝒙𝑘) − 𝒘𝑇𝜱′
𝑘𝜹𝑘 + 𝑏 + 𝑒𝑘, 𝑘 = 1, … ,𝑁.

(9.14)

Based on El Ghaoui and Lebret [1997, Theorem 3.1] the following lemma states
a convex SOCP problem that approximates (9.14). In the original result by El
Ghaoui and Lebret for linear systems it can even be shown that the relation is
exact.

Lemma 9.5 (Robust SOCP). An upper bound for the solution of (9.14) can be
obtained by adding an additional regularization term to the objective function

min
𝒘,𝑏,𝑒𝑡

‖𝒘‖􀁯 + 𝛾‖𝒆‖􀁯 + 𝛾𝜚‖𝜱′𝑇𝒘‖􀁯

subject to 𝑦𝑡 = 𝒘𝑇𝝋(𝒙𝑡) + 𝑏 + 𝑒𝑡, 𝑡 = 1, … ,𝑁.
(9.15)

Proof. Consider the subproblem

max
‖𝜹𝑡‖􀁹≤𝜚

‖𝒆‖􀁯

subject to 𝑒𝑡 = 𝑦𝑡 − 𝒘𝑇𝝋(𝒙𝑡) + 𝒘𝑇𝜱′
𝑡𝜹𝑡 − 𝑏, 𝑡 = 1, … ,𝑁

(9.16)

and define the matrices𝜱 = [𝝋(𝒙􀁮), … ,𝝋(𝒙𝑁 )] and𝜱′ = [𝜱′
􀁮, … ,𝜱′

𝑁 ]. Then
an upper bound for the maximum in (9.16) can be computed. Therefore let
[𝑥𝑡]𝑁𝑡=􀁮 define a 𝑁 dimensional column vector such that the 𝑡-th element of the
vector is given by 𝑥𝑡. Splitting off contributions independent of 𝜹𝑘 yields

max
‖𝜹𝑡‖􀁹≤𝜚

‖𝒆‖􀁯 = max
‖𝜹𝑡‖􀁹≤𝜚

􀉞𝒚 −𝜱𝑇𝒘 − 𝑏𝟏 + 􀉼𝒘𝑇𝜱′
𝑡𝜹𝑡􀉿

𝑁

𝑡=􀁮
􀉞
􀁯

≤ ‖𝒚 − 𝜱𝑇𝒘 − 𝑏𝟏‖􀁯 + max
‖𝜹𝑡‖􀁹≤𝜚

􀉞􀉼𝒘𝑇𝜱′
𝑡𝜹𝑡􀉿

𝑁

𝑡=􀁮
􀉞
􀁯
.

The remainder can be simplified as follows

max
‖𝜹𝑡‖􀁹≤𝜚

􀉞􀉼𝒘𝑇𝜱′
𝑡𝜹𝑡􀉿

𝑁

𝑡=􀁮
􀉞
􀁯

􀁯
= max

‖𝜹𝑡‖􀁹≤𝜚

𝑁

∑
𝑡=􀁮

􀊂𝒘𝑇𝜱′
𝑡𝜹𝑡􀊅

􀁯

≤ max
‖𝜹𝑡‖􀁹≤𝜚

𝑁

∑
𝑡=􀁮

‖𝒘𝑇𝜱′
𝑡‖􀁯􀁯‖𝜹𝑡‖􀁯􀁯 ≤ 𝜚􀁯

𝑁

∑
𝑡=􀁮

‖𝒘𝑇𝜱′
𝑡‖􀁯􀁯 = 𝜚􀁯‖𝜱′𝑇𝒘‖􀁯􀁯.
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Thus an upper bound for (9.16) is given by ‖𝒆‖􀁯 + 𝜚‖𝜱𝑇𝒘‖􀁯 subject to 𝑒𝑡 =
𝑦𝑡 − 𝒘𝑇𝝋(𝒙𝑡) − 𝑏. Substitution shows that second chain of inequalities is an
equality for 𝜹𝑡 = 𝜚 sign(𝒘𝑇𝝋(𝒙𝑡) + 𝑏 − 𝑦𝑡) 􀊂𝒘𝑇𝜱′

𝑡􀊅 /‖𝒘𝑇𝜱′
𝑡‖􀁯. However, the

triangle inequality used in the first part remains an upper bound. ⬜

Remark 9.2. It is straightforward to generalize this technique to incorporate
simple prior knowledge on the perturbations 𝜹𝑡. If known a priori that only
some components of 𝒙𝑡 are perturbed, i.e. that 𝜹𝑡 is sparse, one should modify
the approximation in (9.8) to consider only derivatives in non-sparse com-
ponents ∑𝑑

𝑖=􀁮,𝛿𝑖≠􀁭
(𝜕𝑥𝑖𝝋)(𝒙)𝛿𝑖. The bounded perturbations may also be used

to specify some belief in the accuracy of the components of 𝒙𝑡. If known
a priori that some components are much more precise than others, define a
nonsingular matrix 𝑫 and maximize (9.14) with respect to ‖𝑫𝜹𝑡‖􀁯 ≤ 𝜚 instead
of the unweighted norm. This is equivalent to solving the original problem
with modified derivative information𝜱

′
𝑡 = 𝜱′

𝑡𝑫−􀁮.

9.3 Least squares kernel based model

9.3.1 Problem statement & solution

The SOCP in (9.15) gives a robust convex approximation to the original prob-
lem in (9.7). In kernel based regression, the solution is usually not obtained
in the parametric primal formulation but in the nonparametric dual where
the kernel function takes the place of the feature map. In that way the very
high or even infinite dimensional estimation problem is cast into a problem
of estimating a finite number of parameters. Although it is possible to derive
a dual formulation of (9.15) in terms of the kernel it is not advisable as the
computational costs with solving an SOCP are quite high. Therefore consider
the following lemma.

Lemma 9.6. For

𝛾′ =
‖𝒘‖􀁯
‖𝒆‖􀁯

𝛾 and 𝜚′ =
‖𝒆‖􀁯

‖𝜱′𝑇𝒘‖􀁯
𝜚 (9.17)

the solution of the SOCP problem (9.15) coincides with the solution of the follow-
ing LS-SVM problem

min
𝒘,𝑏,𝑒𝑘

1
2
𝒘𝑇𝒘 +

1
2
𝛾′𝜚′𝒘𝑇𝜱′𝜱′𝑇𝒘 +

1
2
𝛾′

𝑁

∑
𝑘=􀁮

𝑒􀁯𝑘

subject to 𝑦𝑘 = 𝒘𝑇𝝋(𝒙𝑘) + 𝑏 + 𝑒𝑘, 𝑘 = 1, … ,𝑁.
(9.18)
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Proof. Substituting (9.17) into (9.18) yields (9.15). ⬜

Define 𝜴𝑥 = 𝜱′𝑇𝜱 and 𝜴𝑥𝑦 = 𝜱′𝑇𝜱′. Note that these matrices can then be
directly computed using the kernel function and Lemma 9.4. 𝜴𝑥 ∈ ℝ(𝑁𝑑)×𝑁

has block structure with blocks defined by (𝜴𝑥)𝑘 = 𝝎𝑘𝑙
𝑥 ∈ ℝ𝑑×􀁮 where (𝝎𝑘𝑙

𝑥 )𝑖 =
(𝜕/𝜕𝑥𝑖𝐾)(𝒙𝑘, 𝒙𝑙). 𝜴𝑥𝑦 ∈ ℝ(𝑁𝑑)×(𝑁𝑑) is also block structured and its blocks are
defined by (𝜴𝑥𝑦)𝑘𝑙 = 𝜴𝑘𝑙

𝑥𝑦 ∈ ℝ𝑑×𝑑 where (𝜴𝑘𝑙
𝑥𝑦)𝑖𝑗 = (𝜕􀁯/(𝜕𝑥𝑖𝜕𝑦𝑗)𝐾)(𝒙𝑘, 𝒙𝑙). Using

these definitions the solution for (9.18) is stated in the following lemma.

Lemma 9.7. For the estimation problem described by (9.18) the solution is given
in the dual by

􀉾
𝜴′ + 𝑰𝑁 /𝛾′ 𝟏

𝟏𝑇 0􀊁 􀉾
𝜶
𝑏􀊁 = 􀉾

𝒚
0􀊁 (9.19)

where 𝜶 ∈ ℝ𝑁 are the dual variables. 𝜴′ is positive semidefinite and defined as

𝜴′ = 𝜴 − 𝜴𝑇
𝑥 􀊂𝜴𝑥𝑦 + (𝛾′𝜚′)−􀁮𝑰(𝑁𝑑)􀊅

−􀁮
𝜴𝑥. (9.20)

Proof. The Lagrangian for (9.18) is

ℒ(𝒘, 𝑏, 𝑒𝑘, 𝛼𝑘) =
1
2
𝒘𝑇𝒘 +

1
2
𝛾′𝜚′𝒘𝑇𝜱′𝜱′𝑇𝒘

+
1
2
𝛾′

𝑁

∑
𝑘=􀁮

𝑒􀁯𝑘 −
𝑁

∑
𝑘=􀁮

𝛼𝑘 􀊂𝒘𝑇𝝋(𝒙𝑘) + 𝑏 + 𝑒𝑘 − 𝑦𝑘􀊅 (9.21)

and the corresponding KKT conditions for optimality are

𝟎𝑛ℎ =
𝜕ℒ
𝜕𝒘

⇒ 𝜱𝜶 = 􀊂𝑰𝑛ℎ + 𝛾
′𝜚′𝜱′𝜱′𝑇􀊅𝒘,

0 =
𝜕ℒ
𝜕𝑏

⇒ 𝟏𝑇𝜶 = 0,

0 =
𝜕ℒ
𝜕𝑒𝑘

⇒ 𝛾′𝑒𝑘 = 𝛼𝑘, 𝑘 = 1, … ,𝑁,

0 =
𝜕ℒ
𝜕𝛼𝑘

⇒ 𝒘𝑇𝝋(𝒙𝑘) + 𝑏 + 𝑒𝑘 = 𝑦𝑘, 𝑘 = 1, … ,𝑁.

The combination of ∇𝒘ℒ = 𝟎, 𝜕𝑒𝑘ℒ = 0 and 𝜕𝛼𝑘ℒ = 0 yields

𝒚 = 𝜱𝑇 􀊂𝛾′𝜚′𝜱′𝜱′𝑇 + 𝑰𝑛ℎ􀊅
−􀁮
𝜱𝜶 +

1
𝛾′
𝜶 + 𝑏𝟏. (9.22)
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The modified kernel matrix (9.20) is a consequence of the matrix inversion
lemma applied to the term 𝜱𝑇 􀊂𝛾′𝜚′𝜱′𝜱′𝑇 + 𝑰𝑛ℎ􀊅

−􀁮
𝜱. To show that 𝜴′ is

positive semidefinite, note that𝜱′𝜱′𝑇 is positive semidefinite (psd) as 𝜴𝑥𝑦 =
𝜱′𝑇𝜱′ is psd. Furthermore as𝜱′𝜱′𝑇 is psd, the regularizedmatrix 𝛾′𝜚′𝜱′𝜱′𝑇

+ 𝑰𝑛ℎ is positive definite and so is its inverse. Then with 𝒛 ∶= 𝜱𝒙 and for any
𝒙 ∈ ℝ𝑁 the following holds

𝒙𝑇𝜴′𝒙 = 𝒙𝑇𝜱𝑇 􀊂𝛾′𝜚′𝜱𝜱𝑇 + 𝑰𝑛ℎ􀊅
−􀁮
𝜱𝒙 = 𝒛𝑇 􀊂𝛾′𝜚′𝜱𝜱𝑇 + 𝑰𝑛ℎ􀊅

−􀁮
𝒛 ≥ 0.

(9.23)

Finally the linear system (9.19) follows from the combination of (9.22) and
𝜕𝑏ℒ = 0. ⬜

Remark 9.3. It is possible to express the relations between the regularization
constants in (9.17) in terms of the dual variables. The norms of 𝒘 and 𝒆 can
be rewritten using the expansions following from ∇𝒘ℒ = 𝟎 and 𝜕𝑒𝑘ℒ = 0
respectively. The resulting expressions then are

‖𝒆‖􀁯 =
1
𝛾′
‖𝜶‖􀁯, (9.24a)

‖𝜱′𝑇𝒘‖􀁯 = 􀉞𝜴𝑥𝑦 􀊂𝜴𝑥𝑦 + (𝛾′𝜚′)−􀁮𝑰(𝑁𝑑)􀊅
−􀁮
𝜴𝑥𝜶 − 𝜴𝑥𝜶􀉞

􀁯
(9.24b)

and

‖𝒘‖􀁯􀁯 = (𝛾′𝜚′)􀁯𝜶𝑇𝜴𝑇
𝑥𝜴𝑥𝑦 􀊂𝜴𝑥𝑦 + (𝛾′𝜚′)−􀁮𝑰(𝑁𝑑)􀊅

−􀁯
𝜴𝑥𝜶

+𝜶𝑇𝜴𝜶 − 2𝜶𝑇𝜴𝑇
𝑥 􀊂𝜴𝑥𝑦 + (𝛾′𝜚′)−􀁮𝑰(𝑁𝑑)􀊅

−􀁮
𝜴𝑥𝜶.

(9.24c)

Note that given a solution for a particular pair of 𝛾′, 𝜚′ these expressions only
allow to recover the corresponding original constants 𝛾 and 𝜚 . Going from
the original constants to the new ones is however not possible. Neverthe-
less especially the original constant 𝜚 is of great interest as it carries some
direct information on the perturbations. It is the user defined bound on the
perturbation in ‖𝜹𝑘‖􀁯 ≤ 𝜚 .

9.3.2 Predictive model

For out of sample extensions a predictive equation has to be derived. Therefore
the value for𝒘 obtained from 𝜕ℒ

𝜕𝒘
= 𝟎𝑛ℎ is substituted into the predictive model
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(9.6). For a new point 𝒛 this yields

𝑦̂(𝒛) =
𝑁

∑
𝑘=􀁮

𝛼𝑘𝐾(𝒙𝑘, 𝒛) + 𝑏 − 𝒌𝑇𝑥 (𝒛) 􀊂𝜴𝑥𝑦 + (𝛾′𝜚′)−􀁮𝑰(𝑁𝑑)􀊅
−􀁮
𝜴𝑥𝜶 (9.25)

where 𝒌𝑥 ∶ ℝ𝑑 → ℝ𝑁𝑑 is defined as 𝒌𝑥(𝒛) = [(𝜕/𝜕𝑥􀁸𝐾)(𝒙􀁮, 𝒛), … , (𝜕/𝜕𝑥𝑑𝐾)(𝒙𝑁 , 𝒛)]
𝑇 .

9.4 Numerical implementation

The computational burden of solving the SOCP problem (9.15) has been greatly
reduced to solving a linear system (9.19). However, the solution still requires
the solution of a very large linear system to compute the modified gram
matrix (9.20). To be able to solve a moderately sized problem with for example
𝑁 = 1000 data points and 𝑑 = 10 dimensions, auxiliary linear systems in
10,000 variables have to be solved. Storing as well solving such systems is
expensive. Therefore ways to approximate the solution of (9.20) are needed.
Note that the matrix 𝜴𝑥𝑦 is a gram matrix i.e. it contains inner products and is
therefore at least positive semidefinite. In the literature several approximation
techniques have been proposed for kernel based learning settings like the
Nyström approximation [Williams and Seeger, 2001], discussed in Section 4.3.1,
or the incomplete Cholesky decomposition [Fine and Scheinberg, 2002]. In
the following the Nyström approximation is applied to 𝜴𝑥𝑦 to reduce the
computational complexity.

9.4.1 Optimizations

Given an (approximate) factorization 𝜴𝑥𝑦 ≃ 𝑭𝑫𝑭𝑇 with 𝑫 diagonal and of
size 𝑎 × 𝑎 and 𝑭 of size (𝑁𝑑) × 𝑎 one can simplify the computation in (9.20)
using the matrix inversion lemma, namely 𝜴𝑇

𝑥 (𝜴𝑥𝑦 + (𝛾′𝜚′)−􀁮𝑰(𝑁𝑑))−􀁮𝜴𝑥 =
𝛾′𝜚′(𝜴𝑇

𝑥𝜴𝑥 − 𝜴𝑇
𝑥 𝑭((𝛾′𝜚′)−􀁮𝑫−􀁮 + 𝑭𝑇𝑭)−􀁮𝑭𝑇𝜴𝑥).

Depending on the application, the modified Gram matrix in (9.20) has to
be computed for many different values of 𝛾′𝜚′. In that case it is beneficial to
transform the factorization into a real eigenvalue decomposition. Therefore
the matrix 𝑭 can be orthogonalized by means of a QR factorization 𝑭 = 𝑸𝑹.
Then the eigenvalue decomposition is computed of 𝑹𝑫𝑹𝑇 = 𝑼̃𝑽̃ 𝑼̃𝑇 . Based
on this define a new factorization as 𝜴𝑥𝑦 = 𝑼𝑽𝑼𝑇 with 𝑽 = 𝑽̃ and 𝑼 = 𝑸𝑼̃ .
Using this factorization the expression for (9.20) simplifies much better to
𝜴𝑇

𝑥𝑼(𝑽 + (𝛾′𝜚′)−􀁮𝑰𝑎)−􀁮𝑼𝑇𝜴𝑥.The remaining matrix inversion is trivial as the
matrix is diagonal. The cost of repeated evaluations of 𝜴′ for different values
of 𝛾′𝜚′ is now reduced to a single matrix multiplication.
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9.5 Numerical experiments

In the following section the proposed method is evaluated on several artificial
data sets. In total six aspects are analyzed. One subsection is dedicated to the
sensitivity of a given kernel based model with respect to its inputs and with
respect to the utilized kernel, respectively. One experiment looks at the impli-
cations of model sensitivity at a point estimate. The remaining subsections
consider more technical aspects. Subsection 9.5.4 shows an example for the
dependency between the regularization parameters of the model in SOCP and
in LS forms. Finally the proposed approximation scheme is analyzed, once as
is and once integrated into the estimation problem.

Model selection The setting outlined above exhibits three parameters that
define the model, the bound on the perturbations 𝜚 , the level of regularization
𝛾 and the choice of the kernel 𝐾 (and its parameters). These parameters have
to be selected in some optimal way. The perturbation level 𝜚 is considered
a user defined variable that is given and does not have to be selected. The
regularization parameter 𝛾 is selected with cross-validation.

To reduce the computational burden, the model selection is carried out on
a LS-SVM model (corresponding to 𝜚′ = 0). Then, based on these parame-
ters the effects when increasing 𝜚 are studied. The procedure is outlined in
Algorithm 9.1.

Algorithm 9.1 (Experimental procedure for Section 9.5).

1. estimate a LS-SVM model: solve (9.19) with 𝜚′ = 0

• select model with best prediction performance on the training set
based on cross validation

• this yields a regularization parameter 𝛾′ and a bandwidth 𝜎

2. translate 𝛾′ to 𝛾 using (9.17) and fix it
3. for 𝜚 in a set of candidates

a) determine 𝛾′ and 𝜚′ corresponding to the chosen 𝛾 and 𝜚 using
the relations in (9.17), see Remark 9.3 and Section 9.5.4

b) solve (9.19)
c) compute predictions using (9.25)

Data generation Let {𝑥𝑘}𝑁+𝑑−􀁮
𝑘=􀁮 be independent draws from a normal distri-

bution 𝒩(0, 1). Then define regressors 𝒙𝑘 = [𝑥𝑘, … , 𝑥𝑘+𝑑−􀁮]𝑇 with FIR structure
and a training set 𝕋 = {𝒙𝑘}𝑁𝑘=􀁮. Unless stated otherwise the experiments use a
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Gaussian RBF kernel. For the matrix approximation experiments in Sections
9.5.5 and 9.5.6 a fixed bandwidth 𝜎 = √𝑑 is used.

9.5.1 Sensitivity of inputs

For experimental design it can be interesting to analyze a given model with
respect to which of its input variables are most important to its prediction
performance. This can support the decision where to concentrate the effort
to acquire good data or aid variable selection. This is done by considering
perturbations only on a single input at a time using Remark 9.2. Consider the
following two toy systems

(a) 𝑓(𝒙) = ∑􀁲
𝑘=􀁮(𝑘 − 1) sinc(𝑥𝑘) with 𝑁 = 1000 and

(b) 𝑦𝑙 = sinc(∑􀁴
𝑘=􀁮 𝑎𝑘𝑥𝑙−𝑘) + ∑􀁰

𝑘=􀁮 𝑏𝑘𝑦𝑙−𝑘 with 𝒂 = [−6.30, 8.66, 4.15, −6.40,
1.46, 0.77, −2.19]𝑇 , 𝒃 = [−1.54, 1.43, −0.78]𝑇 and 𝑁 = 1000.

The importance of the inputs of function (a) is clearly increasing with their
index, this is consistent with the analysis as shown in Figure 9.1’s top panel.
In the bottom panel the dynamical model (b) is analyzed. It can indeed be seen
that the model performance depends nonuniformly on the used variables, the
nonlinear variables have a much higher weight than the linear ones.

9.5.2 Sensitivity of kernels

In model selection one often selects the model achieving the best prediction
performance. In case one has several models achieving a similar performance
one can consider trading off performance versus robustness. Therefore sacri-
ficing a bit of performance one can gain stability with a slightly more conserva-
tive model. This is demonstrated with the following system 𝑦𝑙 = ℎ(∑

􀁲
𝑘=􀁮 𝑐𝑘𝑥𝑙−𝑘)

with 𝒄 = [−0.48, 1.67, −1.14, −0.13, 1.87]𝑇 , ℎ(𝑥) = 𝑥􀁰 − 3𝑥􀁯 + 𝑥 − 5 and 𝑁 = 500.
The nonlinearity is clearly polynomial. Therefore the performance of the poly-
nomial kernel is compared with a Gaussian RBF kernel. Figure 9.2 shows that
the best model with a polynomial kernel outperforms the RBF based model,
yet the model employing the Gaussian kernel is more robust to perturbation.
Depending on the application one might select one or the other.

9.5.3 Confidence of point estimates

Consider the evolution of point estimates 𝑦̂(𝑥) for a simple one-dimensional
sinc function as a function of 𝜚 . For 𝜚 sufficiently small the solution is that
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Figure 9.1: Sensitivity of the prediction performance ofmodel (a) — top panel —
and model (b) — bottom panel — in Section 9.5.1 with respect to
their input variables.

of a LS-SVM estimator. For large 𝜚 the function will be driven to have zero
derivatives at the training points i.e. the constant function. Figure 9.3 shows
the sensitivity of point estimates for increasing levels of potential perturba-
tions. If a point estimate stays close to the initial LS-SVM estimate for a wide
range of 𝜚 , two conclusions can be drawn. Firstly the point possesses only
little new information about the function and secondly with high confidence
the predicted value is reliable. Both conclusions follow from the fact that
even if the precise location of 𝒙𝑘 is unknown, the estimate will not be affected.
Figure 9.4 depicts the estimated function over the domain [−4, 4] showing the
interpolation behavior as a function of the perturbation parameter 𝜚 .



9.5 Numerical experiments 201

􀁭 􀁭.􀁮 􀁭.􀁯 􀁭.􀁰 􀁭.􀁱 􀁭.􀁲 􀁭.􀁳 􀁭.􀁴
􀁭

􀁭.􀁭􀁲

􀁭.􀁮

􀁭.􀁮􀁲

􀁭.􀁯

𝜌

R
M
S
E
o
n
te
st
se
t

Figure 9.2: Sensitivity of the NARX model in Section 9.5.2 with respect to
chosen kernel function. The dashed and the solid lines mark the
polynomial kernel of order 4 (𝑐􀁯 = 4) and the Gaussian RBF respec-
tively.
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Figure 9.3: Examples for sensitivity of pointwise predictions 𝑦̂(𝑥) of a simple
one-dimensional sinc for 𝑁 = 80 training data. The predictions
for particular samples 𝑥𝑘 are shown as a function of 𝜚 . The dashed
lines represent points not taken from the training sample whereas
the solid lines correspond to predictions for samples utilized during
model estimate.
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Figure 9.4: The estimate of a simple one-dimensional sinc function estimated
using 𝑁 = 80 training data. The shape of the function is shown
for different values of 𝜚 .

9.5.4 Relation between regularization parameters

The parameter 𝜚 has a direct physical interpretation as the bound on the
perturbations and therefore one would like to fix it. Yet the relation between
the regularization parameters for the initial SOCP problem (9.14) and the LS
problem (9.18) as given by (9.17) is only explicit once a solution has been
computed. Therefore it is only possible to choose a pair 𝜚′, 𝛾′, solve (9.18) and
then map these parameters onto 𝛾 and 𝜚 . An example is shown in Figure 9.5
(top panel).

While the parameter 𝜚′ varies on a logarithmic scale the parameters 𝜚 and
𝛾 are well represented on a linear scale. The variation of 𝛾 with respect to 𝜚′
has to be considered significant therefore it is necessary to search for a pair of
𝛾′, 𝜚′ that results in a constant 𝛾 and a desired 𝜚 . This nonlinear optimization
problem in two variables is quite sensitive. Figure 9.5 (bottom panel) shows
the result of such a conversion. Such a mapping is only possible for reasonable
ranges of 10−􀁱 ≤ 𝛾′, 𝜚′ ≤ 10􀁱, otherwise the problem gets numerically unstable.

9.5.5 Approximation performance of 𝜴𝑥𝑦

The matrix 𝜴𝑥𝑦 is approximated using the Nyström approximation. Therefore
a randomly chosen subset 𝕊 ⊂ 𝕋 of size 𝑠 = |𝕊| is used. Table 9.1 reports the
performances for different approximation dimensions 𝑎 = 𝑠 ⋅ 𝑑. The approxi-
mation performance is measured as PERF(𝜴𝑥𝑦, 𝑠) = 100 ‖𝜴𝑥𝑦 − 𝜴

(𝑠)
𝑥𝑦‖𝐹/‖𝜴𝑥𝑦‖𝐹.
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Figure 9.5: Relation of regularization parameters 𝛾 (dashed lines), 𝜚 (solid
line), 𝛾′ (dotted line) and 𝜚′ (solid line). The upper panel shows
the relations as a function of 𝜚′ with 𝛾′ fixed, whereas in the
lower panel 𝜚 is varied for 𝛾 as constant as possible. The analyzed
function is 𝑦(𝒙) = ∑𝑑

𝑖=􀁮 sinc(𝑥𝑖), 𝑁 = 500.
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Table 9.1: Performance of Nyström approximation 𝜴(𝑠)
𝑥𝑦 for 𝑁 = 1000 and

𝑑 = 10 and different subsample sizes 𝑠. The fit is defined as
100‖𝜴𝑥𝑦 − 𝜴

(𝑠)
𝑥𝑦‖𝐹/‖𝜴𝑥𝑦‖𝐹. The values in parenthesis indicate stan-

dard deviations computed for different draws of the subsample.

subsample size fit runtime

100 7.67 (0.67) 4.0 s
250 2.92 (0.30) 36.2 s
500 1.16 (0.12) 205.6 s
750 0.56 (0.15) 621.0 s

Each approximation is carried out for five different initial sets 𝕋 and each one
of them for three different subset selections.

From the numerical data it can be seen that the approximation performance
is quite good even for low order approximations and gets better if larger
subsamples are used. The Nyström approximation is based on an eigenvalue
decomposition of a gram matrix for the subset 𝕊. This matrix is of dimension
(𝑠 ⋅ 𝑑)􀁯. Therefore the approximation dimensions may not be too large as
otherwise the computation time gets increasingly long.

9.5.6 Composite approximation performance

The general setting is identical to before but now approximation performance
of 𝜴𝑇

𝑥 (𝜴𝑥𝑦 + (𝛾′𝜚′)−􀁮𝑰𝑁𝑑)−􀁮𝜴𝑥 is studied as a function of 𝛾′𝜚′. The results are
illustrated in Figure 9.6 for different subset sizes. As can be expected for small
values of 𝛾′𝜚′ the approximation dimension is secondary and even small scale
approximations do well. Yet for very large values of 𝛾′𝜚′ it becomes necessary
to use very accurate approximations to obtain low approximation errors. In
the transition phase the user is able to trade off accuracy versus admissible
speed.

9.6 Conclusions

Based on the assumption of bounded unstructured perturbations on the inputs,
a scheme for robustness analysis of nonlinear black box models has been
derived. The estimation problem is convex and can be recast from a SOCP
problem into a linear system. For this large linear system an approximate
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Figure 9.6: Composite approximation performance for 𝑁 = 500 and 𝑑 = 5 of
𝜴𝑇

𝑥 (𝜴𝑥𝑦 + (𝛾′𝜚′)−􀁮𝑰𝑁𝑑)−􀁮𝜴𝑥.

solution has been outlined. It has been shown on simple examples that
existing models, based on the LS-SVM estimator, can be analyzed employing
this methodology.





10Segmentation of nonlinear time
series

Based on the publication Falck, T., Ohlsson, H., Ljung, L., Suykens, J. A. K.,
and De Moor, B. (Aug. 2011). “Segmentation of time series from nonlinear
dynamical systems”. In: Proceedings of the 18th IFAC World Congress.
(Milan, Italy, Aug. 28–11, 2011), pp. 13209–13214.

All systems studied in the previous chapters have in common that they are
time invariant. In practice however it is possible that system dynamics change
subject to auxiliary influence. Gradual changes can for example be effects of
temperature or time dependent degradation. More abrupt changes in behavior
can be caused by faults in sensors, actuators or the system itself. Depending
on the application one has information on the origin of the time dependence
and can directly use this for the identification of the model. This is for example
considered in linear parameter varying (LPV) system identification. Another
possibility is that there are a limited number of known behaviors that should
be detected. In that case one can identify a time invariant model for each
behavior and then use these to detect which regime is active [Bodenstein
and Praetorius, 1977; Lindgren, 1978; Tugnait, 1982; Andersson, 1985]. The
studied setting is the generalization of both. The main three assumptions are
that i) there is no direct information about the times at which the system
changes its behavior, ii) there is no a priori known model for the system and
iii) the change is large enough to be reflected in the parameters of the to be
identified model. In summary the objective is, given just measured data, to
estimate times at which the model changes. As a side product one obtains

207
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approximate models that describe the system in between the change points.
In contrast to all other chapters the objective of these approximate models is
not the best predictive performance, but only a predictive performance that is
good enough to detect changes in the system dynamics.

The goal to detect changes in the system dynamics without explicit knowl-
edge of the system, as in e.g. a priori known models, is in general a combinato-
rial problem. Therefore any polynomial time algorithm aimed at solving this
problem is a heuristic. Themethod proposed in this chapter is based on convex
optimization and LS-SVM core models. The cornerstone for segmentation is
given by a particular group ℓ􀁮-regularization while the support of nonlinear
dynamics is contributed by LS-SVMs.

The key idea is to exploit the fact that the LS-SVM primal formulation is
linear-in-parameters. This allows the introduction of new a parameter vector
at each time 𝑡. In the next step the difference between two adjacent parameter
vectors can then be penalized. This concept as heuristic for segmentation
problems has initially been proposed by [Kim et al., 2009] for static linear
regression to detect trends in economic data. It has recently been extended
by Ohlsson et al. [2010] to also handle piecewise constant linear dynamical
systems. An alternative name for the group ℓ􀁮-regularization technique used
in this chapter as well as in the two references is sum-of-norms regularization.
This regularization scheme can also be seen as an application of total-variation
known from image processing [Rudin et al., 1992; Candès et al., 2006a] in
high dimensional parameter instead of signal spaces. The main contribution
of this chapter is the extension of the convex heuristic introduced in the two
references to nonlinear systems in a kernel based framework.

Structure of the chapter The next section will state the general setting
while Section 10.2 gives further information on the sum-of-norms regulariza-
tion. A kernel based model is derived in Section 10.3 while model selection is
briefly discussed in Section 10.4. A short overview on algorithmic considera-
tions is given in Section 10.5. The chapter ends with an application to two
motivational data sets in Section 10.7 and concludes in the last section.

10.1 Problem Formulation

The objective in this chapter is to segment time series generated by piecewise
constant nonlinear dynamical systems. The only given information is mea-
sured data {(𝒙𝑡, 𝑦𝑡)}𝑁𝑡=􀁮 where 𝒙𝑡 will usually have ARX structure. In absence of
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𝑢𝑡 NL SYS𝑠𝑡
𝑦𝑡

𝑠𝑡 ∈ {1, … ,𝑆}

Figure 10.1: Nonlinear dynamical system with inputs 𝑢𝑡, outputs 𝑦𝑡 and (un-
known) scheduling variable 𝑠𝑡.

a priori known models they have to be estimated from the data. Therefore
the starting point is once more the LS-SVM core model given by (4.1). For the
problem considered here it will be of advantage that all model parameters
are subject to regularization. Note that the offset parameter 𝑏 is usually not
regularized. As it will be easier to drop the offset 𝑏 than to extend the regular-
ization to it, the former will be assumed for the remainder of this chapter. To
better motivate the approach, assume that the time instances {𝑡𝑐}𝐶𝑐=􀁮 at which
the system changes its dynamics are given. Then using the LS-SVM core
model in each segment one has

𝑓𝑐(𝒙𝑡) = 𝒘𝑇
𝑐 𝝋𝑐(𝒙𝑡), 𝑡 = 𝑡𝑐−􀁮, … , 𝑡𝑐 − 1, (10.1)

where 𝒙𝑡 are ARX like regressors such that 𝒙𝑡 = [𝑦𝑡−􀁮, … , 𝑦𝑡−𝑝, 𝑢𝑡, … , 𝑢𝑡−𝑞]. This
extends the linear ARX model

𝑓𝑐(𝒙𝑡) = 𝒘𝑇
𝑐 𝒙𝑡, 𝑡 = 𝑡𝑐−􀁮, … , 𝑡𝑐 − 1, (10.2)

in [Ohlsson et al., 2010] by considering nonlinear basis functions 𝝋𝑐. The
model parameters are 𝒘𝑐 ∈ ℝ𝑛ℎ and the components of the nonlinear maps
𝝋𝑐(⋅) = [𝜑􀁮

𝑐 (⋅), … , 𝜑
𝑛ℎ
𝑐 (⋅)]𝑇 ∶ ℝ𝐷 → ℝ𝑛ℎ are the corresponding basis functions.

Both are defined for 𝑐 = 1, … , 𝐶where𝐶 < 𝑁 and 𝑡􀁭 = 1 is assumed throughout
this chapter without loss of generality. In this case a separate model can be
estimated for each of the piecewise constant segments by solving

min
𝒘𝑐,𝑒𝑡

1
2
𝒘𝑇

𝑐 𝒘𝑐 +
1
2
𝛾

𝑡𝑐−􀁮

∑
𝑡=𝑡𝑐−􀁸

𝑒􀁯𝑡

subject to 𝑦𝑡 = 𝒘𝑇
𝑐 𝝋𝑐(𝒙𝑡) + 𝑒𝑡, 𝑡 = 𝑡𝑐−􀁮, … , 𝑡𝑐 − 1.

(10.3)

Note that, as in most of the preceding chapters, the regularization parameter
𝛾 trades off the model fit, measured by the squared residuals, versus the model
complexity, quantified using the quadratic penalty term 𝒘𝑇

𝑐 𝒘𝑐. While the 𝐶
estimation problems given by (10.3) above give rise to models for the system
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in each of the segments, their solution neither estimates the number of change
points 𝐶 nor their positions 𝑡𝑐. However, for the extension introduced in the
following section that tackles these problems it is a necessary condition that
the simpler problem given by (10.3) gives (reasonably) good results.

10.2 Piecewise Nonlinear Modeling

In this section an approach is introduced that is able to estimate the number of
change points 𝐶 as well as their positions 𝑡𝑐 by means of a convex relaxation.
The methodology followed here is based on [Ohlsson et al., 2010], which uses
the same convex relaxation technique to segment linear ARX type models. In
contrast to [Ohlsson et al., 2010] the objective here is to segment a nonlinear
model of the form given by (10.1). First, to make the problem tractable, the
basis functions are fixed across all segments, namely 𝝋𝑐 = 𝝋∀𝑐. Therefore
the basis functions have to be chosen rich enough to represent the dynamics
of all segments. Then, in order to deal with the unknown change points
𝑡𝑐, 𝑐 = 1, … , 𝐶, the parameter vectors 𝒘𝑐 are overparametrized by introducing
a new parameter vector 𝒘𝑡 for each time instant 𝑡. Hence, one assumes a
model of the form

𝑓𝑡(𝒙𝑡) = 𝒘𝑇
𝑡 𝝋(𝒙𝑡), 𝑡 = 1, … ,𝑁. (10.4)

For an exact representation of the modeling goal, the segmentation of the
analyzed time series, one can define a vector 𝝂 whose elements 𝜈𝑡 quantify
the model change between two adjacent time instances, i.e. 𝜈𝑡 = ‖𝒘𝑡 − 𝒘𝑡−􀁮‖􀁯
for 𝑡 = 2, … ,𝑁 . It is convenient to also define 𝜈􀁮 = ‖𝒘􀁮‖􀁯. In principle any
norm could be used to quantify the change in the model, however, as kernel
based models are considered the ℓ􀁯-norm is the most natural choice and later
on crucial to obtain a fully kernelized problem. With the vector of changes 𝝂
one can augment the problem with an additional penalty ‖𝝂‖􀁭 to minimize
the cardinality of the change vector and therefore model changes. Depending
on the size of the corresponding regularization parameter “many” of the
regularized variables come out as zero. On the one hand this avoids a severe
overfit and on the other hand this solves the overall goal of the proposed
methodology, namely the segmentation of a time series based on a series of
constant models.

As mentioned in Chapter 3 the cardinality function leads to combinatorial
optimization problems. However, the ℓ􀁮-heuristic has been shown to be a
powerful surrogate in many applications. Replacing the “ℓ􀁭-norm” by the
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ℓ􀁮-norm one arrives at a sum-of-norms regularization scheme ∑𝑁
𝑡=􀁯 ‖𝒘𝑡 −

𝒘𝑡−􀁮‖􀁯. Combining this with the overparametrized model (10.4) a convex
relaxation for the segmentation problem is

min
𝒘𝑡,𝑒𝑡

𝜆𝑚‖𝒘􀁮‖􀁯 + 𝜆𝑠
𝑁

∑
𝑡=􀁯

‖𝒘𝑡 − 𝒘𝑡−􀁮‖􀁯 +
1
2

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡

subject to 𝑦𝑡 = 𝒘𝑇
𝑡 𝝋(𝒙𝑡) + 𝑒𝑡, 𝑡 = 1, … ,𝑁.

(10.5)

In this problem the number of changes is roughly controlled by the regular-
ization parameter 𝜆𝑠, while 𝜆𝑚 defines the (initial) model complexity.

10.3 Nonparametric kernel based formulation

In the framework of LS-SVMs one can identify (10.5) as a combination of a
LS-SVM core model with a special regularization scheme. This allows one
to utilize the power of support vector machines for the modeling part of the
problem. One key advantage is that the usually difficult choice of a good
set of basis functions 𝝋 to model all different segments is simplified by this
kernel based method.

10.3.1 Dual formulation

Due to the ℓ􀁯-norms (which are not squared) in (10.5), the overparametrized
problem has to be solved as a second order cone programming problem (SOCP)
instead of a simple linear system as for (10.3). Therefore the results obtained
in Section 9.1 can be exploited which yield the following dual problem.

Lemma 10.1. Let𝑮 be amatrix square root of the kernel matrix𝜴 ∈ ℝ𝑁×𝑁 with
𝛺𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗). Furthermore for 𝜶 ∈ ℝ𝑁 define 𝜶[𝑡] ∈ ℝ𝑁 such that (𝜶[𝑡])𝑖 = 𝛼𝑖
for 𝑖 ≥ 𝑡 and zero otherwise. Then the dual problem of (10.5) is

max
𝜶

𝜶𝑇𝒚 −
1
2
𝜶𝑇𝜶

subject to ‖𝑮𝜶[𝑡]‖􀁯 ≤ 𝜆𝑡, 𝑡 = 1, … ,𝑁,
(10.6)

where 𝒚 = [𝑦􀁮, … , 𝑦𝑁 ]𝑇 , 𝜶 = [𝛼􀁮, … , 𝛼𝑁 ]𝑇 are the Lagrange multipliers cor-
responding to the equality constraints in (10.5), 𝜆􀁮 = 𝜆𝑚 and 𝜆𝑡 = 𝜆𝑠 for
𝑡 = 2, … ,𝑁 .
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Proof. Let 𝒦 = {(𝒙, 𝑠) | ‖𝒙‖􀁯 ≤ 𝑠} be the second order cone [Boyd and Van-
denberghe, 2004] then the objective function (10.5) can be reformulated as
∑𝑁

𝑡=􀁮 𝜆𝑡𝜔𝑡 +
􀁮
􀁯

∑𝑁
𝑡=􀁮 𝑒

􀁯
𝑡 with additional constraints (𝒘􀁮, 𝜔􀁮) ∈ 𝒦 and (𝒘𝑡 −

𝒘𝑡−􀁮, 𝜔𝑡) ∈ 𝒦 for 𝑡 = 2, … ,𝑁 . Using conic duality and noting that the second
order cone is self-dual, the corresponding Lagrangian is

ℒ(𝒘𝑡, 𝒗𝑡, 𝑒𝑡, 𝛼𝑡, 𝜔𝑡, 𝜏𝑡) =
𝑁

∑
𝑡=􀁮

𝜆𝑡𝜔𝑡 +
1
2

𝑁

∑
𝑡=􀁮

𝑒􀁯𝑡 −
𝑁

∑
𝑡=􀁮

𝜔𝑡𝜏𝑡

− 𝒗𝑇􀁮𝒘􀁮 −
𝑁

∑
𝑡=􀁯

𝒗𝑇𝑡 (𝒘𝑡 − 𝒘𝑡−􀁮) +
𝑁

∑
𝑡=􀁮

𝛼𝑡(𝑦𝑡 − 𝒘𝑇
𝑡 𝝋(𝒙𝑡) − 𝑒𝑡) (10.7)

with (𝒗𝑡, 𝜏𝑡) ∈ 𝒦 for 𝑡 = 1, … ,𝑁 . The corresponding KKT conditions for
optimality [see e.g. Boyd and Vandenberghe, 2004] are

𝜕ℒ
𝜕𝒘𝑡

= 𝟎 ∶ 𝒗𝑡 − 𝒗𝑡+􀁮 = −𝛼𝑘𝝋(𝒙𝑡), 𝑡 = 1, … ,𝑁 − 1,

𝜕ℒ
𝜕𝒘𝑁

= 𝟎 ∶ 𝒗𝑁 = −𝛼𝑁𝝋(𝒙𝑁 ),

𝜕ℒ
𝜕𝑒𝑡

= 0 ∶ 𝑒𝑡 = 𝛼𝑡, 𝑡 = 1, … ,𝑁,

𝜕ℒ
𝜕𝜔𝑡

= 0 ∶ 𝜏𝑡 = 𝜆𝑡, 𝑡 = 1, … ,𝑁.

Note that applying the first KKT condition recursively to the second one yields
𝒗𝑡 = −∑𝑁

𝑘=𝑡 𝛼𝑘𝝋(𝒙𝑘) = −𝜱𝜶[𝑡] where 𝜱 = [𝝋(𝒙􀁮), … ,𝝋(𝒙𝑁 )]. Then substitu-
tion of the KKT conditions into the Lagrangian yields the dual optimization
problem

max
𝒗𝑡,𝜶

𝜶𝑇𝒚 −
1
2
𝜶𝑇𝜶

subject to ‖𝜱𝜶[𝑡]‖􀁯 ≤ 𝜆𝑡, 𝑡 = 1, … ,𝑁.
(10.8)

Depending on the feature map this problem may still be infinite dimensional.
To obtain a finite dimensional problem, note that the constraints of (10.8)
in squared form are 𝜶𝑇

[𝑡]𝜴𝜶[𝑡] ≤ 𝜆􀁯𝑡 as 𝜱𝑇𝜱 = 𝜴. This allows writing the
possibly infinite dimensional problem (10.8) in terms of the finite number of
Lagrange multipliers 𝜶 and a matrix square root 𝑮 of the kernel matrix 𝜴 as
in (10.6). ⬜
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10.3.2 Recovery of sparsity pattern and predictive model

Instead of a problem in 𝑁 ⋅ 𝑛ℎ variables 𝒘𝑡 as in (10.5) the problem has been
reduced to just𝑁 variables in (10.6). Yet to use the solution for prediction, one
also needs to rewrite the model (10.1) in terms of the dual variables. As the
primal problem is sparse one would also like to recover its sparsity pattern.

Lemma 10.2. Let 𝒜 = {𝑡 | ‖𝑮𝜶[𝑡]‖􀁯 = 𝜆𝑡, 𝑡 = 1, … ,𝑁} denote the ordered set of
active constraints and 𝒜𝑐 its complement. Denote the 𝑘-th element of 𝒜 by 𝑡𝑘
where 𝑘 runs from 1 to |𝒜|, the cardinality of 𝒜. For ease of notation also define
𝑡|𭒜|+􀁮 = 𝑁 + 1. Finally define the function

idx(𝑡) = argmin
𝑘

𝑘 − 1 subject to 𝑡 < 𝑡𝑘

and denote the value of ‖𝒘𝑡 − 𝒘𝑡−􀁮‖􀁯 by 𝜌𝑡𝜆𝑡.
Then the sparsity pattern is given by

1. 𝜌𝑡 = 0 for 𝑡 ∈ 𝒜𝑐 and

2. the solution of the linear system in 𝜌𝑡 for 𝑡 ∈ 𝒜:

𝑦𝑡 − 𝛼𝑡 = 𝒌(𝒙𝑡)𝑇
􀂖􀂑􀂥(𝑡)

∑
𝑘=􀁮

𝜶[𝑡𝑘]𝜌𝑡𝑘, 𝑡 = 1, … ,𝑁, (10.9a)

𝜶𝑇𝒚 − 𝜶𝑇𝜶 =
|𭒜|

∑
𝑘=􀁮

𝜆􀁯𝑡𝑘𝜌𝑡𝑘, (10.9b)

where 𝒌(𝒛) = [𝐾(𝒙􀁮, 𝒛), … , 𝐾(𝒙𝑁 , 𝒛)]𝑇 .

Proof. The fact that 𝜌𝑡 = 0 for 𝑡 ∈ 𝒜𝑐 is a direct result from complimentary
slackness. To obtain the linear system let 𝜹𝑡 = 𝒘𝑡−􀁮 − 𝒘𝑡 for 𝑡 = 2, … ,𝑁 and
𝜹􀁮 = 𝒘􀁮. Then by applying the definition of complementary slackness one has
𝒗𝑇𝑡 𝜹𝑡 + 𝜏𝑡𝜔𝑡 = 0. After substitution of the optimal values for 𝜏𝑡 and 𝒗𝑡 into this
relation, it is straightforward to check that it is only satisfied by 𝜹𝑡 = −𝜌𝑡𝒗𝑡
for (𝜹𝑡, 𝜔𝑡) ∈ 𝒦.

To recover 𝒘𝑡 one has 𝒘𝑡 = ∑𝑁
𝑘=􀁮 𝜹𝑡. Due to the sparsity pattern it is

sufficient to sum over the nonzero differences which correspond to the time
instances in 𝒜. Substituting the optimal parameters into the constraint of
(10.5) then yields (10.9a). Equation (10.9b) follows from plugging the optimal
parameters into the objective functions of primal (10.5) and dual (10.6) and
exploiting that the duality gap is zero. ⬜
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Finally one can state a predictive equation in terms of the dual variables.

Corollary 10.3. The prediction at a new point 𝒛𝑡 at time 𝑡 ∈ {1, … ,𝑁} is obtained
as

𝑓𝑡(𝒛𝑡) = 𝒌(𝒛𝑡)𝑇
􀂖􀂑􀂥(𝑡)

∑
𝑘=􀁮

𝜌𝑡𝑘𝜶[𝑡𝑘]. (10.10)

Proof. First substitute the expressions for 𝒘𝑡 obtained in the proof of Lem-
ma 10.2 into the model equation (10.1). Then the dual model (10.10) follows
from replacing the inner products of the feature map by the kernel func-
tion. ⬜

Remark 10.1. Note that the predictions obtained from (10.10) depend on the
time instant 𝑡 at which a new point 𝒛𝑡 is acquired. This requirement could
be relaxed if the operation region 𝑐 that generated the new point would be
known. In general this will not be the case, therefore the primary use of
this model is in validation schemes for model selection. This is in contrast to
all other models in this thesis whose predictions are independent of time or
system state.

In the following the steps needed to obtain a predictive model in the dual are
summarized.

Algorithm 10.1 (Model estimation).

1. Choose regularization constants 𝜆𝑚 and 𝜆𝑠.
2. Compute the kernel matrix 𝛺𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗) and its matrix square root 𝑮

such that 𝜴 = 𝑮𝑇𝑮.
3. Solve the dual estimation problem (10.6) for the optimal Lagrange mul-

tipliers 𝜶.
4. Solve (10.9) for 𝜌𝑡 with 𝑡 ∈ 𝒜 to recover the sparsity pattern of the

primal problem.
5. Evaluate (10.10) to obtain predictions.

10.4 Model selection

To obtain a good segmentation the model complexity as well as its sparsity
need to be tuned. Therefore suitable values for the regularization constants
𝜆𝑚 and 𝜆𝑠 have to be selected. Additionally in the primal formulation (10.5)
the basis functions need to be fixed or in the dual (10.6) a kernel function
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needs to be chosen. In the nonlinear setting described here the regularization
parameter 𝜆𝑚 is crucial to control the complexity of the initial nonlinear
model whereas 𝜆𝑠 controls the sparsity such that the change points {𝑡𝑐}𝐶𝑐=􀁮 can
be discovered.

The main objective within this chapter is to identify the correct change
points. Estimating a single model on a known segment using (10.3) will always
be able to outperform the joint model obtained from (10.5). A model specific
to a single segment has better control over the complexity versus fit trade-off
and is also able to select a better suited set of basis functions (or kernel in
the dual). Therefore, if predictive performance is important, it is suggested to
re-estimate models on the individual segments using (10.3) once the change
points are identified.

The modeling power of the global description (10.5) needs to be powerful
enough to capture the nonlinear dynamics to a large extent to be able to
detect changes. Therefore the selection 𝜆𝑚 and 𝜆𝑠 is performed according to
generalization performance of the models using a validation scheme [see e.g.
Hastie et al., 2009]. Once model parameters have been estimated they can
be visualized as ‖𝒘𝑡 − 𝒘𝑡−􀁮‖􀁯 over 𝑡 (see Figure 10.2). In case sparsity is not
perfect one can either perform thresholding, clustering [Alzate, 2009] or a
combination thereof.

To help with the parameter selection process consider the following lemma
and its corollary.

Lemma 10.4. Let 𝜶 correspond to the solution without any changes. It can
be obtained from (10.5) without the sparsity inducing term ∑𝑁

𝑡=􀁯 ‖𝒘𝑡 − 𝒘𝑡−􀁮‖􀁯
and the corresponding variables 𝒘𝑡 for 𝑡 = 2, … ,𝑁 . Alternatively (10.6) can be
solved with a single constraint for 𝑡 = 1. Then for 𝜆𝑠 ≥ 𝜆𝑠,􀂚􀂎􀂥 where

𝜆𝑠,􀂚􀂎􀂥 = max
𝑡=􀁯,…,𝑁􀇽𝜶

𝑇
[𝑡]𝜴𝜶[𝑡], (10.11)

the solution of (10.5) is also constant, i.e. 𝒘􀁮 = ⋯ = 𝒘𝑁 .

Proof. For a nonsmooth problem a necessary condition for optimality is that
𝟎 is in the subgradient at the solution. Eliminating 𝑒𝑡 from (10.5) one obtains
𝒥(𝜹􀁮, … , 𝜹𝑁 ) = ∑𝑁

𝑡=􀁮 𝜆𝑡‖𝜹𝑡‖􀁯 +
􀁮
􀁯

∑𝑁
𝑡=􀁮(𝑦𝑡 −∑𝑡

𝑘=􀁮 𝜹
𝑇
𝑘𝝋(𝒙𝑡))􀁯. The subgradient of

𝒥 at 𝜹𝑡 is 𝜆𝑡𝜕𝜹𝑡‖𝜹𝑡‖􀁯−∑𝑁
𝑘=𝑡𝝋(𝒙𝑘)(𝒚𝑘−∑𝑘

𝑙=􀁮 𝜹
𝑇
𝑙 𝝋(𝒙𝑘)). Note that the subgradient

of the ℓ􀁯-norm at zero is the unit norm ball. Therefore one needs to satisfy
that 𝜕𝜹𝑡𝒥|𝜹􀁹=….𝜹𝑁=𝟎 = 𝜆𝑠𝝁𝑡 − ∑𝑁

𝑘=𝑡𝝋(𝒙𝑘)(𝑦𝑘 − 𝒘
𝑇
􀁮𝝋(𝒙𝑘)) ∈ 𝟎 for 𝑡 = 2, … ,𝑁

with ‖𝝁𝑡‖􀁯 ≤ 1. Note that 𝑦𝑘 − 𝒘𝑇
􀁮𝝋(𝒙𝑘) = 𝑒𝑘 = 𝛼𝑘. Then the last expression
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can be rewritten in matrix notation as ‖𝜱𝜶[𝑡]‖􀁯 ≤ 𝜆𝑠. Squaring this relation
one obtains the quadratic form 𝜶𝑇

[𝑡]𝜴𝜶[𝑡]. As the relation has to hold for all
𝑡 = 2, … ,𝑁 the condition stated in the Lemma follows. ⬜

Corollary 10.5. Let 𝜆𝑠 ≥ 𝜆𝑠,􀂚􀂎􀂥 and additionally 𝜆𝑚 ≥ 𝜆𝑚,􀂚􀂎􀂥 = 􀇼𝒚𝑇𝜴𝒚 then
𝒘􀁮 = 𝟎.

Proof. The proof is analogous to the one of Lemma 10.4. ⬜

10.5 Algorithm

The kernel based dual problem (10.8) can be solved using general purpose
Second Order Cone Programming (SOCP) solvers like Sedumi [Sturm, 1999].
The same holds for the primal problem (10.5), if it is finite dimensional and
an explicit expression for the feature map 𝝋 is given. This is especially
straightforward with modeling tools like CVX [Grant and Boyd, 2011]. Yet,
the large number of constraints of any of the two problems makes their
solution slow or even infeasible. In the following several ways to accelerate
the solution are discussed. This also makes the procedure applicable to larger
problem sizes.

10.5.1 Active set strategy

The dual problem (10.6) suggests that depending on the value of the regular-
ization constant 𝜆𝑠, many of its constraints will not be active, i.e. ‖𝑮𝜶[𝑡]‖􀁯 < 𝜆𝑠.
Therefore omitting these constraints does not change the solution. This moti-
vates the use of an active set strategy. Starting with a single constraint, the
most violating constraint is successively added to the set of active constraints
as formalized in the following procedure.

Algorithm 10.2 (Active set strategy).

1. Initialize 𝒜 = {1} and 𝑘 = 1.
2. Solve

min
𝜶

𝒚𝑇𝜶 −
1
2
𝜶𝑇𝜶 subject to ‖𝑮𝜶[𝑡]‖ ≤ 𝜆𝑡, 𝑡 ∈ 𝒜. (10.12)

3. Compute 𝑡𝑘 = argmax􀁯≤𝑡≤𝑁 {‖𝑮𝜶[𝑡]‖􀁯}.
4. If ‖𝑮𝜶[𝑡𝑘]‖ ≤ 𝜆𝑠 then terminate.
5. Else 𝒜 ∶= 𝒜 ∪ {𝑡𝑘}, 𝑘 ∶= 𝑘 + 1 and goto (2).
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In the experiments (for an example see Figure 10.7) it can observed that only
a small fraction of the whole number of constraints is needed to define the
final solution. A similar approach has been presented in [Jenatton et al., 2009;
Bach et al., 2011].

10.5.2 First order algorithms

After an initial solution for (10.12) has been obtained, the optimal solution
will likely change only gradually over the iterations needed to satisfy all
constraints. Therefore a good initial guess for the new solution is given by
the solution of the last iteration. Interior-point solvers like Sedumi are in
general hard to warm start such that there is no benefit of having a good
initial guess. In contrast first order schemes are very easy to warm start.

After a change of variables (𝒘𝑡 − 𝒘𝑡−􀁮 = 𝜹𝑡) the primal problem (10.5) can
be solved with efficient software like SPGL1 [Van Den Berg and Friedlander,
2008], NESTA [Becker et al., 2009] or SLEP [Liu et al., 2009]). However
this is not true for the dual problem (10.12) as most first order schemes are
based on the idea of projected gradients. The main requirement of these
algorithms is that the projection onto the constraint set is cheap. In the
current form of (10.12) this is not the case. There are at least three ways
to treat this problem: (i) use a framework like TFOCS [Becker et al., 2011]
which is able to compute approximate solutions for (10.12) using smoothing,
(ii) augment the Lagrangian as described in [Falck et al., 2011] and (iii) solving
the dual of (10.12) with the afore mentioned software. Here the last possibility
is described.

Lemma 10.6. The dual of (10.12) is

min
𝒔𝑡∈ℝ𝑁 ∑

𝑡∈𭒜
𝜆𝑡‖𝒔𝑡‖􀁯 +

1
2
􀉟
􀉟
𝒚 −∑

𝑡∈𭒜
(𝑮𝑇𝒔𝑡)[𝑡]

􀉟
􀉟

􀁯

􀁯

, (10.13)

where the 𝑖-th element of (𝑮𝑇𝒔𝑡)[𝑡] is zero if 𝑖 < 𝑡 and unchanged otherwise.
The original variables can be recovered with 𝜶 = 𝒚 −∑

𝑡∈𭒜(𝑮
𝑇𝒔𝑡)[𝑡].

Proof. In conic form the constraints of (10.12) can be written as (𝑮𝜶[𝑡], 𝜆𝑡) ∈ 𝒦.
This gives rise to the Lagrangianℒ(𝜶, 𝒔𝑡, 𝜁𝑡) = 𝜶𝑇𝒚 − 􀁮

􀁯
𝜶𝑇𝜶 −∑

𝑡∈𭒜 𝒔𝑇𝑡 𝑮𝜶[𝑡] −
∑

𝑡∈𭒜 𝜆𝑡𝜁𝑡, with (𝒔𝑡, 𝜁𝑡) ∈ 𝒦 for 𝑡 ∈ 𝒜. Taking the condition for optimality
for 𝜶 one obtains 𝜶 = 𝒚 − ∑

𝑡∈𭒜(𝑮
𝑇𝒔𝑡)[𝑡]. Note that the conic constraints

‖𝒔𝑡‖􀁯 ≤ 𝜁𝑡 are always active and therefore can be moved into the objective.
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Now substitution of 𝜶 into the Lagrangian yields the dual problem given in
(10.13). ⬜

10.6 Extension to different loss functions

The modification of (10.5) to different convex loss functions such as 𝜀-insen-
sitive loss function is straightforward. For the 𝜀-insensitive loss function
𝐿𝜀(𝑥) = |𝑥| − 𝜀 for |𝑥| ≥ 𝜀 and zero otherwise as used in Support Vector
Machines [Vapnik, 1998; Schölkopf and Smola, 2002], the modified primal
problem is given by

min
𝒘𝑡,𝜉±𝑡

𝜆𝑚‖𝒘􀁮‖􀁯 + 𝜆𝑠
𝑁

∑
𝑡=􀁯

‖𝒘𝑡 − 𝒘𝑡−􀁮‖􀁯 +
𝑁

∑
𝑡=􀁮
(𝜉+𝑡 − 𝜉−𝑡 )

subject to 𝑦𝑡 − 𝒘𝑇
𝑡 𝝋(𝒙𝑡) ≤ 𝜀 + 𝜉+𝑡 , 𝑡 = 1, … ,𝑁

𝒘𝑇
𝑡 𝝋(𝒙𝑡) − 𝑦𝑡 ≤ 𝜀 + 𝜉−𝑡 , 𝑡 = 1, … ,𝑁

𝜉±𝑡 ≥ 0, 𝑡 = 1, … ,𝑁.

Lemma 10.7. The solution of the primal problem with 𝜀-insensitive loss can be
obtained from the kernel based dual

max
𝛼𝑡

𝑁

∑
𝑡=􀁮

𝛼𝑡𝑦𝑡 − 𝜀
𝑁

∑
𝑡=􀁮

|𝛼𝑡|

subject to ‖𝑮𝜶[𝑡]‖􀁯 ≤ 𝜆𝑡, 𝑡 = 1, … ,𝑁
− 1 ≤ 𝛼𝑡 ≤ 1, 𝑡 = 1, … ,𝑁.

Proof. The proof of the 𝜀-insensitive loss is a straightforward extension of the
one of Lemma 10.1 for the ℓ􀁯-loss. The corresponding Lagrangian is

ℒ(𝒘𝑡, 𝒗𝑡, 𝜉±𝑡 , 𝛼±𝑡 , 𝜂±𝑡 , 𝜔𝑡, 𝜏𝑡) =
𝑁

∑
𝑡=􀁮

𝜆𝑡𝜔𝑡 +
𝑁

∑
𝑡=􀁮
(𝜉+𝑡 + 𝜉−𝑡 )

−
𝑁

∑
𝑡=􀁮

𝜔𝑡𝜏𝑡 − 𝒗𝑇􀁮𝒘􀁮 −
𝑁

∑
𝑡=􀁯

𝒗𝑇𝑡 (𝒘𝑡 − 𝒘𝑡−􀁮) −
𝑁

∑
𝑡=􀁮

𝜉+𝑡 𝜂+𝑡 −
𝑁

∑
𝑡=􀁮

𝜉−𝑡 𝜂−𝑡

+
𝑁

∑
𝑡=􀁮

𝛼+𝑡 (𝑦𝑡 − 𝒘𝑇
𝑡 𝝋(𝒙𝑡) − 𝜀 − 𝜉+𝑡 ) +

𝑁

∑
𝑡=􀁮

𝛼−𝑡 (𝒘𝑇
𝑡 𝝋(𝒙𝑡) − 𝑦𝑡 − 𝜀 − 𝜉−𝑡 ),

with 𝛼±𝑡 , 𝜂±𝑡 ≥ 0, (𝒘𝑡, 𝜔𝑡) ∈ 𝒦 and (𝒗𝑡, 𝜏𝑡) ∈ 𝒦 for 𝑡 = 1, … ,𝑁 . Let 𝛼𝑡 =
𝛼+𝑡 − 𝛼−𝑡 then KKT conditions for 𝒘𝑡 are the same as in Lemma 10.1 and the
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kernelization can be performed as before. The KKT conditions for the residuals
𝜉±𝑡 are 0 = 𝜕ℒ/𝜕𝜉±𝑡 = 1 − 𝛼±𝑡 − 𝜂±𝑡 . Exploiting the positivity constraints for
the Lagrange multipliers 𝛼±𝑡 and 𝜂±𝑡 this can be simplified to 0 ≤ 𝛼±𝑡 ≤ 1.
Finally substitution of the KKT conditions into the Lagrangian then yields
the objective function of the dual optimization problem. ⬜

10.7 Experiments

10.7.1 NFIR Hammerstein system

As first example a simple Hammerstein type system with 𝑦𝑡 = [𝑏􀁮,𝑡 𝑏􀁯,𝑡] sinc(𝒙𝑡)
+ 𝑒𝑡, 𝒙𝑡 = [𝑢𝑡, 𝑢𝑡−􀁮]𝑇 with sinc(⋅) applied element-wise is considered. The input
signal 𝑢𝑡 and the noise 𝑒𝑡 are white and Gaussian. The noise is scaled such
that the data has a signal to noise ratio of 10 dB, while the input signal has
unit variance. The parameters are chosen as

(𝑏􀁮,𝑡, 𝑏􀁯,𝑡) =
⎧⎪
⎨⎪⎩

(5, −2), 100 < 𝑡 ≤ 200,
(1, 2), otherwise.

In total 900 equally spaced samples in the time interval 1 ≤ 𝑡 ≤ 300 are
generated. These are split into three parts by taking every third sample, one
for estimation, one for model selection and one for the final evaluation of
the model performance. The model is used in its dual formulation (10.6) and
a RBF kernel is applied with the bandwidth 𝜎 fixed to 1. The regularization
parameter 𝛾 is selected according to prediction performance on the validation
set. The obtained sparsity pattern is shown in Figure 10.2. Note that the
procedure correctly isolated the two change points and the initial model.
However, especially close to the change points, there are some small spurious
components. In Figure 10.3 the pairwise norms ‖𝒘𝑘 − 𝒘𝑙‖􀁯 for all differences
‖𝒘𝑡 − 𝒘𝑡−􀁮‖􀁯 that are at least as big as 10−􀁰 times the largest one are shown.
One can clearly see only three segments are really significant and that the
first and the third segment share the same dynamics.

The predictions on the independent test data as well as the residuals are
shown in Figure 10.4. The root mean squared error on the whole test data is
0.1905 for the piecewise nonlinear model. As a reference a LS-SVM trained
on the whole data (without knowledge of the segments) achieves a RMSE of
0.6638 on the test set.

To illustrate the advantage of using a nonlinear model, the results are
compared with a segmented ARX model. Using the same scheme as proposed
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Figure 10.2: Sparsity pattern obtained from Lemma 10.2 for the nonlinear sys-
tem described in Section 10.7.1 switching to a different dynamic
at 𝑡􀁮 = 100 and switching back to the initial dynamics at 𝑡􀁯 = 200.

􀁲 􀁮􀁭 􀁮􀁲 􀁯􀁭 􀁯􀁲

􀁲

􀁮􀁭

􀁮􀁲

􀁯􀁭

􀁯􀁲

𝑘

𝑙

􀁭

􀁮􀁭

􀁯􀁭

􀁰􀁭

Figure 10.3: Norm ‖𝒘𝑘−𝒘𝑙‖􀁯 for 𝑘, 𝑙 ∈ {𝑡 ∶ ‖𝒘𝑡−𝒘𝑡−􀁮‖􀁯 ≥ 10−􀁰max𝑡 ‖𝒘𝑡−𝒘𝑡−􀁮‖􀁯}.
The corresponding nonlinear system is specified in Section 10.7.1.
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Figure 10.4: Predictions (top panel) of the model described in Section 10.7.1
on independent test data and the corresponding modeling errors
(bottom panel). The vertical dashed lines indicate the positions
of the change points.

in [Ohlsson et al., 2010], a model (10.2) with 𝒙𝑡 = [𝑢𝑡 𝑢𝑡−􀁮]𝑇 , is estimated. If
the prediction performance on the validation set is used to find the number
of segments, no change points are found. The estimated ARX parameters
are therefore equivalent to those of a least squares estimate on the whole
estimation data set. The prediction performance on the test data yields a root
mean squared error of 1.060.

To obtain an indication of the best case performance, a LS-SVM (10.3) model
given the true segmentation is trained. For optimal performance full model
selection is carried out, i.e. the bandwidth 𝜎 as well as the regularization
parameter 𝛾 are selected based on prediction performance. The implemen-
tation trains one model for the second segment and another model with the
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Table 10.1: Root mean squared error (RMSE) on independent test data for
different sections (I: 1 ≤ 𝑡 < 100, II: 100 ≤ 𝑡 < 200, III: 200 ≤ 𝑡 <
300) of Example 1. Piecewise nonlinear model Algorithm 10.1 (PW
NL), piecewise ARX model (PW ARX), LS-SVM given the true
change points (10.3).

PW NL (Algorithm 10.1) PW ARX LS-SVM (Eq. 10.3)
RMSE 𝜎 = 1, 𝛾 RMSE RMSE (𝜎, 𝛾)

I 0.206 0.468 1.045 0.163 (1.274, 33.6)
II 0.185 0.468 1.003 0.140 (1.274, 297.6)
III 0.180 0.468 1.118 0.126 (1.274, 33.6)

combined data of the remaining two. The results of the piecewise nonlinear
model, the piecewise ARX model and the segment-wise LS-SVM are reported
in Table 10.1.

10.7.2 NARXWiener system

As second example a Wiener type system with ARX structure is considered.
It is defined by 𝑦𝑡 = sin(𝜋

􀁯
𝜽𝑇𝑡 𝒙𝑡) + 𝑒𝑡 and 𝒙𝑡 = [𝑦𝑡−􀁮, 𝑦𝑡−􀁯, 𝑢𝑡, 𝑢𝑡−􀁮, 𝑢𝑡−􀁯]𝑇 . The

input signal 𝑢𝑡 and the noise term 𝑒𝑡 are zero mean white Gaussian. The
noise has variance 0.1􀁯 and the input is scaled such that it is in the interval
[−1, 1]. The parameter vector 𝜽𝑡 is scaled to unit mean and chosen as 𝜽𝑡|􀁱􀁭􀁭𝑡=􀁮 =
[−0.525, 0.096, 01.585, −0.562, 0.542, −0.135]𝑇 and 𝜽𝑡|􀁳􀁭􀁭𝑡=􀁱􀁭􀁮 = [−1.168, −1.401,
2.178, 1.334, 0.247, −0.190]𝑇 . Again the data is split into three parts by taking
every third sample. Therefore the estimation data at position 134 (𝑡 = 400) is
governed by a different system than the corresponding sample (𝑡 = 401) in the
validation data. The kernel function is again a RBF kernel with fixed bandwidth
𝜎 = 1 and the regularization parameter 𝛾 is selected based on validation
performance. The resulting sparsity pattern is depicted in Figure 10.5. The
initial model at position 1 is clearly visible. Around position 134 one can
observe two significant peaks. The energy of this change is spread over
two positions as there is a mismatch of dynamics in the estimation and the
validation data sets at position 134. This can also be seen from the pairwise
differences in Figure 10.6. One can clearly see two blocks that share the same
dynamics, but the model at one position correlates well with the models before
and after it. The root mean squared errors on an independent test set are for
segment I: 0.223 (0.190), segment II: 0.592 (0.485) and total: 0.390 (0.319). The
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Figure 10.5: Sparsity pattern obtained from Lemma 10.2 for the nonlinear sys-
tem described in Section 10.7.2 switching to a different dynamic
between positions 133 and 135.
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Figure 10.6: Norm ‖𝒘𝑘−𝒘𝑙‖􀁯 for 𝑘, 𝑙 ∈ {𝑡 ∶ ‖𝒘𝑡−𝒘𝑡−􀁮‖􀁯 ≥ 10−􀁰max𝑡 ‖𝒘𝑡−𝒘𝑡−􀁮‖􀁯}.
The corresponding nonlinear system is specified in Section 10.7.2.
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Figure 10.7: Active constraints as a function of iterations in the active set
scheme described in Section 10.5.1. Black pixels indicate that a
constraint belongs to the active set.

values given in parenthesis are the performances of a LS-SVM model given
the true segmentation (10.3) and using a full model selection.

Once more the model is compared to a segmented ARX model. The scheme
proposed by Ohlsson et al. [2010] is used to estimate a piecewise ARX model
(10.2) with 𝒙𝑡 = [𝑦𝑡−􀁮, 𝑦𝑡−􀁯, 𝑢𝑡, 𝑢𝑡−􀁮, 𝑢𝑡−􀁯]. The change point at 134 is correctly
detected and the root mean squared errors on an independent test set is for
segment I: 0.310, segment II: 0.600 and total: 0.428, which is slightly worse
than the proposed method.

10.7.3 Algorithm

For the example in Subsection 10.7.1 and the optimal value for 𝛾 the evolution
of the active set along the iterations is shown in Figure 10.7. It can be observed
that only a fraction of all constraints determine the optimal solution, in this
case 34 out of 300. Also note that the first constraints that are included in the
active set are the ones at 𝑡 = 100 and 𝑡 = 200 namely the positions of the two
change points.

10.8 Conclusions

This chapter introduced a novel method for segmenting time-series from
nonlinear dynamical systems. The proposed method uses sum-of-norms
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regularization to trade-off the number of segments and fit. Two examples
motivate the use of a nonlinear underlying model instead of a linear one used
in previous work. The fact that the method only has one design parameter, the
regularization parameter, makes it user friendly and attractive for e.g. change
detection, diagnosis and fault detection.





11Conclusions

The threemain themes of this thesis are nonlinear system identification, kernel
based modeling and convex optimization. The goal was to explore how far
the combination of the latter two can be taken to tackle problems posed by
the first. From the modeling perspective a lot of work has been invested into
ways to incorporate prior knowledge into the estimation problem. Shifting
the perspective to an optimization point of view the foremost objective was
to find convex approximations to nonconvex problems.

Overparametrization and regularization

Condensing this thesis to twomain conclusions, one obtains i) that the concept
of overparametrization can be applied to a large number of problems and ii)
the possibilities are even larger once overparametrization is combined with
new regularization schemes. To support these claims note that the relevant
chapters of this text are just examples and many more applications can be
found. However, some major challenges need to be solved within this context
to make it even more effective.

Numerical complexity As soon as more elaborate regularization schemes
are incorporated one faces two problems. On the one hand it is much more
involved to obtain a dual finite dimensional estimation problem and the
corresponding predictive model than it is for standard LS-SVMs. On the
other hand, there is the associated numerical complexity. Besides being

227
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relatively straightforward to work with, LS-SVMs have the major advantage
that the basic formulation “just” needs to solve a linear system. A method
for their numerical solution is therefore usually of no concern. For many
of the more interesting, and usually more powerful, optimization problems,
the numerical solution is however still a very active and dynamic field. This
provides confidence that all presented techniques can scale to real world
problems in the future, even though they might not do so right now.

To put these statements into perspective, in classical parametric identifica-
tion it often can be feasible to handle millions or tens of millions of data points
while the order of computational effort for a single optimization problem can
still be measured in minutes. In case of kernel based models for NARX mod-
els, estimation problems with several 100,000 data points can be solved in a
similar time frame when solved with the fixed size approach. The exact limit
depends on the amount of memory at one’s disposal, the implementation and
most importantly the number of support vectors one considers. In case of
overparametrized models this limit is a bit lower as the number of data points
is effectively multiplied by the amount of overparametrization. In practice this
means one to two orders of magnitude compared to plain fixed size models.
In the scope of the Wiener-Hammerstein benchmark, overparametrized mod-
els with 50,000 data points and 2,500 support vectors were estimated. Note
however that while a single estimation problem is usually solved in minutes,
the model selection process as well as tuning the model hyper-parameters
often requires the estimation of hundreds of individual models. However, this
applies to all identification techniques at least to some extent.

The scale of problems is much more limiting for the advanced regularization
techniques. In case of the sum-of-norms formulation used to segment time
series, the relevant optimization problem is a second order cone programming
problem. The main complexity here is in the number of constraints. Another
important factor is the number of detected segments as this determines how
many of the constraints are active at the solution. Note that the model
selection process will also evaluate models that give rise to far too many
segments, which has to be taken into account. With general purpose solvers
a reasonable limit for the number of data points is a few thousand at most.
Finally the nuclear norm regularized models pose the biggest challenge in
terms of computation. When solving these problems with general purpose
SDP solvers, the practical limit is on the order of 1,000 data points. In this
case some other crucial factors are the decision to solve the primal or the dual
problem and in case of the primal the number of basis functions as well as the
number of target variables. The computational complexity for this problem is
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briefly studied for Wiener-Hammerstein identification.

Model representation The second methodological challenge is finding the
form of the kernel based estimation problem as well as the corresponding
predictive model. This thesis provides several examples how the dual opti-
mization problem can be derived in a straightforward manner. Although the
presentation is different, these examples can serve as templates for finding
dual problems for most convex, norm based regularization schemes. Solutions
are also given for the predictive model. However, these have not yet reached
the desired simplicity in all cases. Therefore, the results cannot necessarily be
transferred to new problems in a straightforward manner. Improvements in
this area would certainly improve the generality and adoption of these ideas.

Relatively straightforward cases that are already well studied are for in-
stance the orthogonality constraint in case of partially linear models which
gives rise to an equivalent kernel, embedding the additional information.
Another slightly more complex example are the overparametrized models for
Wiener-Hammerstein systems as well as the nonlinear models complemented
by a linear noise model. For these models several representations are available,
each having its own advantages and disadvantages. The original formulations
are the most truthful representations of the underlying system, however they
are difficult to identify numerically. The overparametrized formulations are
suitable for numerical solution and often have good predictive performance
but lack the direct physical interpretation of the original models. In between
are the projected models that try to combine as many advantages as possible.

The most complicated as well as most novel results are with respect to
models with nonquadratic regularization. The LS-SVM formulation based on
the ℓ􀁯-norm as used for the sensitivity analysis already provides good insight
how a kernel based optimization problem can be derived. An interesting
open question in this context, which applies to all nonquadratic regularization
schemes considered in this thesis, is whether it is possible to avoid factorizing
the kernel matrix as this imposes an additional computational burden. Some
simple answers to this exist, but these relate to solutions that are not any more
attractive computationally. In case of the sensitivity analysis, the recovery of a
model representation in terms of the kernel function is still mostly straightfor-
ward. This changes significantly for the sum-of-norms formulation and even
more so for the nuclear norm regularization. In these cases in depth analysis
of the relations between primal and dual variables is required to establish a
link between the parametric and the kernel based model representations. A
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reassuring result in this context is that the final model representations are
simple linear combinations of kernel functions. Therefore they are no more
complex than a basic LS-SVM model. The whole complexity is in establishing
the correct weights for each of the kernel functions.

Knowledge from other domains

As outlined above, one key point of this thesis is the application of a particular
set of methods to a variety of problems. Next to this, knowledge is taken
from the well-established linear identification domain and integrated with
nonlinear concepts. In one way or another, this is part of most chapters. The
most prominent example is the chapter on partially linear systems. Here
a complete estimate obtained using linear methods is used to improve a
nonlinear model. Even though the predictive performance of the model
is not improved over classical partially linear models, it is assured that an
interpretation attached to it remains valid. This can be achieved with minimal
additional computational cost.

The chapter on block structured systems provides valuable insight into a
particular application. To succeed, it uses information on the partial linearity
of the studied system. By doing so, the described method is able to improve
the quality of the nonlinear model. The main new contributions here are the
systematic comparison of different approaches on a large scale real world data
set. On this data it can be shown that taking prior information into account can
reduce the error by more than 50%. This comparison has only been possible
as the scope of the basic idea is extended to include a more general class of
systems, from Hammerstein to Wiener-Hammerstein. Furthermore, to handle
large datasets, additional techniques are incorporated and everything has
been implemented in an efficient manner.

Handling broader model classes

Incorporation of existing knowledge into kernel based models is only one of
the applications considered in this thesis. The second area of applications is the
treatment of broader model classes. Themost general example in this direction
is the work on models with multiple outputs. While handling multiple outputs
can be straightforwardly done in a kernel based framework, however most
approaches can be reduced to estimating independent models for each output.
In a lot of cases such an approach clearly does not facilitate all available
information. With the introduction of nuclear norm regularization it could be
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illustrated that the predictive performance can be improved by considering
the information from all outputs. Due to the theoretical complexity of this
model formulation, the main contributions of this part are in the derivation
of the model representation.

In cases where the noise corrupting a measurement is not a white process,
it is necessary to also model the noise dynamics. In a kernel based setting
that so far meant that a nonconvex problem had to be solved. With the
work presented in this text it is now possible to obtain noise model estimates
directly from a convex optimization problem. Also the feasible order for the
noise model increased by an order of magnitude compared to some previously
proposed methods.

Furthermore, it could be demonstrated that even for time dependent systems,
kernel based models can be estimated without specific knowledge on the time
dependence. For an unknown nonlinear system that switches its dynamics at
unknown instances of time, approximate models for the system dynamics as
well as time instances at which this systems switches can now be estimated
from a convex optimization problem.

Future work and final outlook

Extensions to more problem classes Interesting topics for future work
are the application of the proposed techniques to more model classes or ex-
tending the existing methodologies. In case of partially linear systems, one
could derive nonlinear models that are coupled to linear models identified
in different working points. Such an approach could also utilize the idea of
linearizing kernel based models as used in the chapter on model sensitivity.
In case of block structured systems a natural extension would be parallel
cascades of Hammerstein systems and the analysis of their modeling power
with respect to general nonlinear systems. Such a structure would be espe-
cially intriguing in combination with nuclear norm regularization that could
provide an automatic selection of the number of parallel branches. In case of
linear noise models one could evaluate the advantages and disadvantages of
using a nonparametric model for the noise instead of a parametric one. The
sum-of-norms formulation was used only to segment a model in time. An
interesting question could be which other segmentations would be useful and
whether these could be mapped onto a similar formulation. For the nuclear
norm regularization there is vast amount of possible applications. For once
every application of overparametrization can probably be enhanced by the
use of nuclear norm regularization. It might also give rise to interesting
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segmentations, where a model is able to choose a combination of several
“submodels” at each time instance. Furthermore, LS-SVM based models have
been used for a lot more than system identification, it would be interesting to
evaluate whether some of these formulations would benefit from a low rank
assumption.

Application on real world problems Besides the application of the tech-
niques utilized within this thesis to more problems, the most interesting and
challenging task is the evaluation of the proposed models on more real world
data sets. The next step from a mere evaluation would then be the applica-
tion on real world problems. This requires a further in-depth analysis of the
strengths as well as the weaknesses of the proposed models. Furthermore,
an open mind is needed when looking for suitable applications. The field
of nonlinear identification is very broad and the techniques covered in this
thesis only consider very small subsets. Also the application of nonlinear
identification techniques in practical applications is still in its infancy. The
adoption of state of the art techniques could most likely be improved if easy
to use software were available that does not require a large amount of expert
knowledge as well as tuning from the potential user.

Scaling to larger problem sizes A major effort is needed to work on the
scalability of the proposed methods. Some of them are already applicable to
realistic problem sizes, while others still have to gain orders of magnitude
before they can be considered suitable for real world problems. All advances
in this respect directly improve the chances for real world applications as
discussed in the previous paragraph. There are many potential avenues in the
direction of better scaling. One could study the performance of approximate
solutions. Tailored algorithms could be written to replace general purpose
software. With the rise of multi-core and in case of graphics cards many-core
computational architectures, the investigation of parallel processing is of
increasing importance. Work in this direction has already started and methods
like the alternating direction method of multipliers show promising results.
On a modeling level ideas from compressed sensing might be incorporated to
solve problems with even sparser data representations than with the fixed size
approach. This paragraph gives a few possible directions but most likely many
more are at least as suitable to tackle large problem sizes as those mentioned
here.
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Improved model representations As last topic for more investigation
the work on model representations shall be mentioned. Although model
representations have been derived for all models presented in this thesis, the
interpretation of these links is only at a very basic level. More insight into
these links might provide interesting knowledge on the problems themselves.
Maybe this work would then also provide more compact formulations that
establish the link between primal and dual.

Final outlook With the increase of computational power and advances in
the algorithms for numerical optimizations, the application of all proposed
methods on large scale problemswill get within reach. At that point, especially
the models based on nuclear norms for multiple output systems can be applied
in many scenarios. It very naturally generalizes the single output to the
multiple output problem, which in a nonlinear setting is not possible for many
alternatives. In the introduction, the study of nonlinear identification has
been motivated by the fact that real world problems are nonlinear. However,
the same can be said for the number of outputs of most real world systems,
only few have just one.





AAppendix

A.1 Proof of Theorem 6.6

The theorem is stated on page 107 and characterizes the set of all matrices 𝒁
that satisfy the relation tr(𝒁𝑇𝑿) = ‖𝑿‖∗.

Denote the thin SVD of 𝒁 by 𝑼𝜮𝑽 𝑇 . Note that the diagonal matrix of
singular values 𝜮 is block structured such that 𝜮 = diag(𝑰𝑟, 𝜮􀁯) where 𝜮􀁯
contains all singular values strictly smaller than one. In a first step it will be
shown that every element of the set given by the left side of 6.13 is contained
in the set given by the right side. The second part then shows the reverse and
establishes the proof.

Let 𝑼𝑋𝜮𝑋𝑽 𝑇
𝑋 be the thin SVD of the matrix 𝑿 and 𝑼𝑋 = [𝒖𝑋,􀁮, … , 𝒖𝑋,𝑃],

𝑽𝑋 = [𝒗𝑋,􀁮, … , 𝒗𝑋,𝑃] and 𝜮𝑋 = diag(𝜎𝑋,􀁮, … , 𝜎𝑋,𝑃) where 𝑃 = max(𝑀,𝑁).
Then, from the definition of the set {𝑿 ∶ tr(𝑿𝑇𝒁) = 𝜉, ‖𝑿‖∗ = 𝜉}, the following
relations can be derived

𝜉 = tr(𝑿𝑇𝒁) = tr(𝑽𝑋𝜮𝑋𝑼𝑇
𝑋𝒁)

=
𝑃

∑
𝑖=􀁮

tr(𝜎𝑋,𝑖𝒗𝑋,𝑖𝒖𝑇𝑋,𝑖𝒁) (formulation using rank-1 products)

=
𝑃

∑
𝑖=􀁮

𝜎𝑋,𝑖 tr(𝒖𝑇𝑋,𝑖𝒁𝒗𝑋,𝑖) (using cyclic property and linearity of trace)

≤
𝑃

∑
𝑖=􀁮

𝜎𝑋,𝑖 max
‖𝒖‖􀁹,‖𝒗‖􀁹≤􀁮

tr(𝒖𝑇𝒁𝒗) (largest singular value of 𝒁)

=
𝑃

∑
𝑖=􀁮

𝜎𝑋,𝑖‖𝒁‖􀁯 (definition of spectral norm)

= tr(𝜮𝑋) = ‖𝑿‖∗ = 𝜉. (‖𝒁‖􀁯 = 1; definition of trace norm)
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The first and the last equalities are directly taken from the definition of the set.
As both sides of the inequality are identical, the inequality has to be satisfied
with equality. This proves that 𝒖𝑋,𝑖 and 𝒗𝑋,𝑖 corresponding to nonzero 𝜎𝑋,𝑖 are
singular vectors of 𝒀 corresponding to its largest singular value, one. Hence,
for these one has 𝒖𝑋,𝑖 ∈ span(𝑼􀁮) and 𝒗𝑋,𝑖 ∈ span(𝑽􀁮) respectively. Therefore
one can construct 𝑿 as 𝑼􀁮𝑯􀁮𝑽 𝑇

􀁮 as desired.
To verify the reverse direction ‖𝑼􀁮𝑯􀁮𝑽 𝑇

􀁮 ‖∗ as well as tr(𝑽􀁮𝑯􀁮𝑼𝑇
􀁮 𝒁) have to

equal 𝜉. The former is established by the unitary invariance of the nuclear
norm, which provides ‖𝑼􀁮𝑯􀁮𝑽 𝑇

􀁮 ‖∗ = ‖𝑯􀁮‖∗. The nuclear norm of a positive
semidefinite matrix like𝑯􀁮 is directly given by its trace, which per definition is
equal to 𝜉. For the second condition note that tr(𝑽􀁮𝑯􀁮𝑼𝑇

􀁮 𝒁) = tr(𝑽􀁮𝑯􀁮𝑽 𝑇
􀁮 ) =

tr(𝑯􀁮) = 𝜉. The second equation can for example be argued with the cyclic
invariance of the trace, while the last just states the definition.

A.2 Proof of Theorem 6.26: Singular value clipping

In the following the characterization of the subdifferential of the spectral
norm is needed. Therefore it is reproduced here for reference.

Theorem A.1. Let 𝑿 be a rank 𝑟 matrix. Denote its largest singular value by
𝜎􀁮 and let 𝐶 denote the multiplicity of 𝜎􀁮. Furthermore let 𝑼􀁮 and 𝑽􀁮 contain the
corresponding left and right singular vectors. Then the subdifferential of ‖𝑿‖􀁯,
the spectral norm of 𝑿 , can be written as

𝜕‖𝑿‖􀁯 = {𝑼􀁮𝑯􀁮𝑽 𝑇
􀁮 ∶ 𝑯􀁮 ⪰ 𝟎𝐶×𝐶, tr(𝑯􀁮) = 1}. (A.1)

Proof. The proof is given by Watson [1992]. ⬜

Relying on this characterization of the spectral norm, it will be shown that

𝑿 ∗ = 𝑼(𝜮)−𝑽 𝑇

with 𝑼 , 𝑽 and (𝜮)− defined as in Theorem 6.26, is the solution to the proximal
problem

min
𝑿

1
2
‖𝑿 − 𝒀‖􀁯𝐹 + 𝜂‖𝑿‖􀁯. (A.2)

Note that the ‖𝑿 −𝒀‖􀁯𝐹 is strongly convex. Therefore the optimization problem
(A.2) has a unique solution. It remains to be shown that 𝑿 ∗ is a solution of
(A.2). According to [Nesterov, 2004] a necessary and sufficient condition is
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that the zero element is in the subdifferential of the objective function at 𝑿 ∗

or

𝟎 ∈ 𝑿 ∗ − 𝒀 + 𝜂𝜕‖𝑿 ∗‖􀁯.

Therefore it is sufficient to show that −𝜂−􀁮(𝑿 ∗ − 𝒀) ∈ 𝜕‖𝑿 ∗‖􀁯. Note that the
largest singular value of 𝑿 ∗ is 𝜎𝐶 and denote its multiplicity by 𝑟𝐶. Also note
that all singular values less than or equal to 𝜎𝐶 are not affected by the clipping
operation.

Hence, by Theorem A.1, the subdifferential of ‖ ⋅ ‖􀁯 at 𝑿 ∗ is

𝜕‖𝑿 ∗‖􀁯 = {𝑼􀁮𝑯􀁮𝑽 𝑇
􀁮 ∶ 𝑯􀁮 ⪰ 𝟎𝑟𝐶×𝑟𝐶, tr(𝑯􀁮) = 1},

where 𝑼􀁮 and 𝑽􀁮 contain the singular vectors corresponding to 𝜎𝐶.
Now, evaluating 𝒀 − 𝑿 ∗ one obtains 𝑼(𝜮 − (𝜮)−)𝑽 𝑇 . As the singular values

less than or equal to 𝜎𝐶 are not affected by the clipping operation, 𝜮 − (𝜮)−
will have at most 𝑟𝐶 nonzero singular values, i.e. those singular values of 𝒀
that are strictly larger than 𝜎𝐶. Therefore 𝒀 − 𝑿 ∗ = 𝑼􀁮𝜮̃𝑽 𝑇

􀁮 where 𝜮̃ contains
the first 𝑟𝐶 singular values of 𝜮 − (𝜮)−.

What remains to be shown is that 𝜮̃ satisfies the conditions on 𝑯􀁮. By its
construction it is straightforward to see that 𝜮̃ is positive semidefinite. Finally
its trace can be computed as

tr(𝜮̃) =
𝑟𝐶

∑
𝑖=􀁮

𝜎𝑖 − 𝜎𝐶 = 𝑚𝛴(𝜎𝐶) = 𝜂.

This concludes the proof.
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