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Voorwoord

Voor Opa.

De tekst van een proefschrift kan dan wel door velen beschouwd worden
als het orgelpunt van vier jaar zwoegen en zweten, in mijn ogen gaat
het om veel meer dan enkel dit eindwerk. De afgelegde weg is eens zo
belangrijk als het eindpunt van de tocht. Het samenwerken met mensen met
verschillende interesses en achtergronden, de vele (en verre) conferenties, de
didactische verantwoordelijkheden, de wetenschappelijke successen, maar ook
het samenwonen met medelotgenoten, de lange middaglunches met collega’s en
vrienden, de voetbalmatchen, drie maanden aan de andere kant van de wereld
gaan wonen alvorens te gaan samenwonen, trouwen en een eigen huis delen
met mijn hartsvriendin, peter worden van een schat van een ventje, iemand
moeten laten gaan die je heel dierbaar is. Het waren vier heel leerrijke jaren
die samengevat kunnen worden als een rollercoaster van emoties. En zoals u
kan lezen was het geen eenzame tocht. Ik heb de voorbije jaren kunnen genieten
van de steun van verschillende mensen. En dit is het gepaste moment om deze
mensen te bedanken.

In de eerste plaats bedank ik mijn promotor Prof. Bart De Moor. Tijdens het
volgen van het vak Computergestuurde Regeltechniek heeft uw enthousiasme
en geestdrift me overtuigd om bij u een masterproef te schrijven en vervolgens
om een doctoraatsstudie aan te vangen onder uw vleugels. Bart, ik zou je
willen bedanken voor je steun de voorbije vier jaar, zowel op inhoudelijk als
organisatorisch vlak. Ik kan me geen betere motivator voorstellen, vooral
de woorden “Geeft er een lap op!” of “Make it happen.” zullen me nog lang
bijblijven. Ik waardeer enorm de vrijheid die u mij heeft gegeven in het
uitzoeken van waar ik nu juist naar toe wou met dit doctoraat. Of de invalshoek
nu theoretisch of eerder praktisch van aard ging zijn, vanaf de eerste dag gaf
u me het vertrouwen dat het tot een goed einde ging komen, en met succes
zo blijkt. Daarnaast wens ik de verschillende leden van mijn doctoraatsjury
te bedanken. Prof. Patrick Willems, ik heb genoten van onze samenwerking
de voorbije jaren en ik dank u voor de geleverde data van de Demer. Het
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kunnen toepassen van de ontwikkelde technieken op een nauwkeurig model van
een bestaande rivier heeft voor een belangrijke toegevoegde waarde gezorgd
voor dit doctoraat. Daarnaast wil ik ook Prof. Moritz Diehl bedanken. Uw
kennis over predictieve controle en optimalisatie vormden een verrijking voor
mijn onderzoek. Ik bewonder uw kunde om verschillende mensen te doen
samenwerken en te motiveren. Prof. Bart De schutter en Dr. Bert Pluymers zou
ik willen bedanken voor het nalezen van dit proefschrift en voor de waardevolle
feedback die ik mocht ontvangen. Jullie opmerken en suggesties hebben tot
een verbetering van de tekst geleid. Tenslotte dank ik Prof. Yves Willems om
voorzitter te willen zijn van de jury.

Er is ook een woordje van dank op zijn plaats voor de verschillende mensen van
de administratie van SISTA (Ilse, Ida, John, . . . ) die ervoor gezorgd hebben
dat de administratieve “last” zeer beperkt is gebleven en ik me volledig op mijn
doctoraat heb kunnen concentreren.

Ik bedank de KU Leuven voor het verlenen van een opvangmandaat van een jaar.
Daarnaast ben ik ook het FWO erkentelijk voor de financiële ondersteuning
tijdens de laatste drie jaar van mijn doctoraat en de extra ondersteuning voor
mijn onderzoeksverblijf aan de University of California, Los Angeles.

Daarnaast wil ik mijn collega’s bedanken. In de eerste plaats is er een grote
dank u wel op zijn plaats voor de steun die ik van Mauricio de voorbije drie
jaar heb gekregen. Su apoyo durante los últimos años fue crucial para alcanzar
la meta. Aún cuando usted estaba muy ocupado, siempre encontró tiempo para
ayudarme. Mauro, muchas gracias! Daarnaast bedank ik Kim die samen met
mij het doctoraatsparcours heeft aangevat en vaak een luisterend oor was voor
mijn geklaag. Ik wil ook Carlos bedanken voor de introductie in de wonderlijke
Apple-wereld, de vele niet-Alma lunchen en de aangename sfeer op het eiland
samen met Mauricio en Rocco. Ik zou ook Toni willen bedanken die mij
het eerste jaar mee op weg gezet heeft. Tenslotte bedank ik al mijn andere
collega’s (Attila, Siamak, Marco, Philippe, Nico, Maarten, Liesbeth, Fabian,
Pieter, Dries, Raghvendra, Villen en vele anderen) voor de gezellige werksfeer.

Hanne en Emerik, onze etentjes tijdens de middagpauze zorgden voor een
aangename afwisseling met het bureauwerk en maakten het mogelijk de
dagelijkse beslommeringen rond het doctoraat te relativeren.

Ik zou ook mijn Bomma en Bompa, en Oma en Opa willen bedanken. Elk van
hen heeft een meer dan positieve invloed gehad op de persoon die ik nu ben
geworden. Ieder van hen heeft op zijn of haar manier een steentje bijgedragen
aan dit doctoraat. Ik weet hoe graag mijn Opa hier vandaag had willen bijzijn
en mijn publieke verdediging wenste bij te wonen, en ik zal nooit zijn oprechte
interesse in wetenschap en wiskunde in het algemeen en in mijn onderzoek
in het bijzonder vergeten. Daarom draag ik dit doctoraat met veel trots en
blijdschap aan hem op.
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Ellen, Alexander, Felix, Jeroen en Elien. Jullie hebben alle vijf, de ene al
wat langer dan de andere, voor de nodige afleiding gezorgd waardoor ik niet
constant aan het doctoraat en dit “boekje” heb liggen denken. Jullie hebben
altijd voor mij klaar gestaan om te helpen.

Daarnaast wil ik mijn ouders en schoonouders bedanken. Door jullie steun heb
ik mij de voorbije vier jaar onbezorgd kunnen concentreren op dit doctoraat.
Jullie aanmoedigingen hebben er mee voor gezorgd dat ik hier vandaag nu sta.

Stephanie, jij hebt meer dan iedereen ervoor gezorgd dat deze tocht alles
behalve eenzaam was. Meer dan eens heb je voor een glimlach gezorgd tijdens
de mindere momenten en de donkere wolken doen verdwijnen door het zonnetje
dat je bent. Je eindeloos geduld en vertrouwen in de goede afloop hebben er
eens te meer voor gezorgd dat ik de moed niet heb verloren. Jij was de drijvende
kracht waardoor ik de eindmeet heb gehaald. Dank je.

Maarten Breckpot
Leuven, juli 2013





Abstract

This dissertation explores the applicability of Model Predictive Control (MPC)
for the purpose of set-point control and flood control of river systems. The
first part of this work discusses the modelling aspects of river systems. The
dynamics of a single reach can be described with the well known hydrodynamic
equations of de Saint-Venant. Combining these hyperbolic Partial Differential
Equations (PDEs) for every reach, together with the nonlinear equations
modelling the hydraulic structures and the boundary conditions related to
junctions, mathematical models can be constructed for a wide range of river
systems. However, these models are typically too complex to be used directly in
the design of a controller. A new type of approximate model is proposed in this
dissertation. A significant reduction in computational complexity with respect
to using the full hydrodynamic model while still achieving accurate results can
be obtained by approximating the dynamics of every reach with a linear model
in combination with the nonlinear gate equations. Model reduction techniques
can be used to further decrease the computational complexity.

The main part of this dissertation focuses on the design of the predictive
controllers. The key ingredient is to work with the gate discharges as opti-
mization variables instead of the gate openings. A linear approximate model
is sufficiently accurate in this configuration and the resulting optimization
problem is a Quadratic Programming problem (QP). It is explained how this
controller can be used for set-point control and flood control at the same time
and how it can recover the used buffer capacity of the reservoirs in an efficient
way. Attention is paid to minimize the computation time needed to solve this
QP at every time step by decreasing the number of optimization variables
and the number of inequality constraints. The use of a Kalman filter as state
estimator is also discussed. All closed loop simulations are performed with the
full hydrodynamic models.

Besides some academic test examples, a mathematical model of the Demer
based on real field data is used to test the performance of the proposed control
scheme. It is discussed how the controller can deal with the irregular bed slope
and the irregular cross sectional profiles of the river system without having
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vi ABSTRACT

to rely on nonlinear advanced control techniques. The performance of the
predictive controller is tested for the historical rainfall data of the Demer for
the flood event of 2002 on the full hydrodynamic model and compared with the
control performance of the current controller installed. The proposed predictive
control scheme reduces significantly the number and the magnitude of floods,
leads to a better set-point tracking and recovers the buffer capacity in a faster
way than the current controller.



Beknopte samenvatting

Dit proefschrift onderzoekt of modelgebaseerde voorspellende regeling gebruikt
kan worden voor zowel instelpuntcontrole als overstromingsbeheersing van
rivieren. Het eerste deel van dit werk behandelt het modelleren van
rivieren. De dynamica van een riviertak wordt beschreven door de hydro-
dynamische vergelijkingen van de Saint-Venant. Dit is een stelsel van twee
hyperbolische partiële differentiaalvergelijkingen die het behoud van massa
en momentum modelleren. Door deze partiële differentiaalvergelijkingen te
gebruiken voor het modelleren van meerdere riviertakken, in combinatie
met de niet-lineaire modelvergelijkingen voor hydraulische structuren en
de randvoorwaarden gerelateerd aan knooppunten van riviertakken, kunnen
mathematische modellen opgesteld worden voor een diverse waaier van
riviernetwerken. Zulke modellen zijn typisch te complex om direct gebruikt
te worden voor het ontwerpen van een regelaar. In dit proefschrift wordt
een nieuw soort van benaderend model geïntroduceerd. Dit model combineert
een lineaire benadering van de verschillende partiële differentiaalvergelijkingen
met de niet-lineaire modelvergelijkingen voor de hydraulische structuren.
Simulatieresultaten tonen aan dat deze benaderende modellen een sterk
verminderde rekentijd vergen in vergelijking met de modellen op basis van de
Saint-Venant vergelijkingen en toch voldoende nauwkeurig zijn. Er wordt ook
uitgelegd dat een extra reductie in de rekentijd verkregen wordt bij het gebruik
van modelreductietechnieken toegepast op de gelineariseerde vergelijkingen.

Het belangrijkste deel van dit proefschrift concentreert zich op het ontwerp van
de modelgebaseerde voorspellende regelaar. Het kernidee bestaat erin om niet
te werken met de standen van de hydraulische structuren als controlevariabelen,
maar met het debiet vloeiend over deze structuren. In dit geval kan
de dynamica van de te controleren rivier voldoende nauwkeurig benaderd
worden met een lineair model. Hierdoor is het optimaliseringsprobleem een
kwadratisch programmeerprobleem. Dit programmeerprobleem wordt zodanig
geformuleerd dat de regelaar focust op overstromingsbeheersing tijdens kritieke
momenten en op instelpuntcontrole op de andere tijdstippen. Hetzelfde
optimaliseringsprobleem kan gebruikt worden om de gebruikte buffercapaciteit
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van reservoirs tijdens periodes van hevige regenval op een efficiënte manier te
recupereren. De regelaar kan gebruikt worden in combinatie met een Kalman
filter voor het schatten van de niet-gemeten waterstanden en debieten van
de verschillende riviertakken. Er wordt ook uitgelegd hoe de tijd nodig voor
het oplossen van het optimaliseringsprobleem gereduceerd kan worden door
het aantal optimalisatievariabelen en het aantal ongelijkheidsbeperkingen te
verminderen.

Naast enkele academische testvoorbeelden wordt een wiskundig model van
de Demer op basis van opgemeten data gebruikt om de regelkracht van de
regelaar te testen. Enkele aanpassingen aan de regelaar worden geformuleerd
zodat de regelaar overweg kan met de onregelmatigheden in de helling van
de rivierbedding en in de profielen van de dwarssecties van de rivier zonder
dat het nodig is om met een niet-lineaire regelstrategie te werken. Op basis
van de historische neerslagdata tijdens de overstroming van de Demer in
2002 wordt een vergelijking gemaakt tussen de regelkracht van de ontwikkelde
voorspellende regelaar en van de huidige regelaar geïnstalleerd langs de Demer.
De voorspellende regelaar resulteert in een kleiner aantal overstromingen met
een lagere maximale hoogte, een betere instelpuntregeling en een snellere
recuperatie van de gebruikte buffercapaciteit van een reservoir.



Acronyms

D-MPC Distributed Model Predictive Control

H-MPC Hierarchical Model Predictive Control
HIC Hydrologic Information Center

L-MPC Model Predictive Control based on a linear
approximate model

LN-model Linear-Nonlinear model
LN-MPC Model Predictive Control based on the Linear-

Nonlinear model
LQR Linear Quadratic Regulator

M-MPC Multiple Model Predictive Control
MHC Moving Horizon Control
MHE Moving Horizon Estimation
MPC Model Predictive Control or Model Predictive

Controller depending on the context

NLP Nonlinear Programming problem

ODE Ordinary Differential Equation

PDE Partial Differential Equation
PI-controller Proportional Integral controller

QP Quadratic Programming problem

RHC Receding Horizon Control
RMSE Root-Mean-Square Error

SSE Sum of Squared Error
SVD Singular Value Decomposition
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TAW reference height for altimetry in Belgium
(Tweede Algemene Waterpassing)

VMM Flemish Environment Agency (Vlaamse Milieu
Maatschappij)



Notation and list of symbols

Notation

x ∈ Rn a bold lower case symbol denotes a vector of variables
X ∈ Rn×m a bold upper case symbol denotes a matrix of

variables
xT the transpose of the vector x
XT the transpose of the matrix X
xi the ith component of the vector x

[x; y], x, y ∈ Rn stacked vectors:
[

xT, yT
]T ∈ R2n

〈x, y〉, x, y ∈ Rn the Euclidean inner product: yTx

‖x‖2 l2-norm of the vector x:
√

xTx

‖x‖Q weighted l2-norm of the vector x:
√

xTQx
X ∈ Rn×n & 0 a positive definite matrix: ∀x ∈ Rn \{0} : xTXx > 0
X ∈ Rn×n ( 0 a positive semidefinite matrix: ∀x ∈ Rn : xTXx ≥ 0
In identity matrix of size n × n
In,m a matrix of size n×m with ones on the main diagonal
0n,m a matrix of zeros of size n × m
0n a vector of zeros of size n
1n a vector of ones of size n
Rn the set of real n-tuples

General variables

g the gravitational acceleration constant
[

m · s−2
]

t the time variable [s]
z the spatial variable [m]

xi



xii NOTATION AND LIST OF SYMBOLS

Variables related to control theory

A, B, C, D, F the state space matrices of the discrete time model:
{

x(k + 1) = Ax(k) + Bu(k) + Fd(k)

y(k) = Cx(k) + Du(k)

d ∈ Rnd the nd disturbance variables of the system
u ∈ Rnu the nu input variables of the system
x ∈ Rnx the nx state variables of the system
y ∈ Rny the ny output variables of the system

L the Kalman gain matrix
x̂ the estimate of the state x

Channel specific variables

A the cross-sectional flow area
[

m2
]

B the bottom width of a trapezoidal channel [m]
h the water level [m]
L the channel length [m]
nmann the Manning coefficient

[

s · m−1/3
]

neqmann the equivalent Manning coefficient
[

s · m−1/3
]

P the wetted perimeter of a cross section [m]
Q the water discharge

[

m3 · s−1
]

R the hydraulic radius of a cross section [m]
S0 the bed slope [−]
S1, S2 the side slopes of a trapezoidal channel [−]
Sf the friction slope [−]

·(i) indicates the channel, gate or reservoir the variable or
parameter belongs to

nh total number of water levels of the entire river system

n(i)
h total number of water levels of reach i

nQ total number of discharges of the entire river system

n(i)
Q total number of discharges of reach i

nc the number of channels or reaches in a river system
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1

General Introduction

1.1 Introduction and motivation

From the earliest times floods have caused worldwide serious and vast problems.
Facts and figures show that floods are the most common natural disaster. The
number of heavy floods is increasing since the seventies of the 20th century on a
worldwide scale, in Europe and in Belgium (see Table 1.1). More than 100 large
floods occurred between 1998 and 2004 resulting in an insured economic loss of
more than 25 billion euro. More than 700 people lost their live and half a million
lost their homes. Floods are also a grave problem in Belgium. Recently very
large floods occurred in the winters of 1993-1994 and 1994-1995, August 1996,
September 1998, December 1999, February 2002, December/January 2003, July
2005, July 2007 and November 2010. One example of a river in Belgium with
a history of large floods is the Demer. The Demer is located in Flanders and

Table 1.1: Evolution of the number of heavy floods worldwide, in Europe and
in Belgium between 1970 and 2009. Source: [1].

1970-1979 1980-1989 1990-1999 2000-2009

worldwide 263 526 780 1729

Europe 23 38 94 239

Belgium 1 2 4 6

1
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is part of the catchment area of the Scheldt. The river is 85 km long and
originates in Ketsingen. It connects the cities Hasselt, Zichem and Aarschot
and it flows at Werchter into the river Dijle. The Demer is fed by water coming
from its many tributaries and from groundwater. Therefore, the Demer shows
high discharge peaks during heavy rainfall periods. Its average flow varies from
6.4 m3 ·s−1 during summer and periods of drought to 33.9 m3 ·s−1 during winter
or periods of heavy rainfall. Because of these large peak discharges, already
in the 17th century people started taking measures to prevent the river from
flooding. Dikes were constructed, the river was made wider and deepened, and
meanders were removed. This process of eliminating river bends continued until
1980. However, these large efforts could not prevent the river from flooding
during periods of heavy rainfall, e.g. in 1905, 1926, 1965, 1966, 1993-1994,
1995, 1998, 2002 and 2010. The flooding of 1998 resulted in a financial damage
of more than 16 million euro. Fig. 1.1 visualizes the total flooded area: the
floods are not limited to one particular location but occur along the entire river
system.

Up until the flood event of 1998, the adjustments made to the Demer were
considered to have a positive effect for flood prevention. However, people
started to realize that these adjustments actually increased the impact of the
floods. Constructing dikes and straightening the river resolve the problems
locally, but increase the risk at places further downstream the river. The
flooding problem is only relocated to other places along the river. For the
Demer this meant that the adjustments had the effect that the total damage
increased because more cities and villages are at the downstream side of the
river than at the upstream side. This awareness has completely shifted the
vision on how to deal with the flooding problem. It is impossible to prevent a
river from flooding at all times: floods are a natural element of rivers and will
always take place. Therefore the focus shifted from flood prevention to flood
control or flood management. There is a need of properly managing the floods
to limit the total damage. Floods are less dramatic if they occur in places
where they can cause only a limited amount of damage. The flooding of a
grassland is not a disaster compared to the flooding of a city. Solutions in line
with this new vision on flood control or flood management are the following
ones [27,167]:

• the preservation and if possible the restoration of the natural flood areas
of rivers,

• the construction of artificial reservoirs

• and a computer controlled management of river basins.

The start of this approach for a more intelligent flood regulation in Flanders
was given by the Flemish Environment Agency (VMM, Vlaamse Milieu
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Figure 1.1: Flooded area of the Demer for the flood event of 1998. Source:
Division Operational Water Management of the VMM and the engineering
and environmental consulting firm Antea Group.
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Maatschappij) and the Hydrologic Information Center (HIC). Three water
basins were installed along the Demer with a total buffer capacity of more
than 18 million m3 and hydraulic structures were constructed to control the
flow at different places along the river. Also a computer model of the Demer
was made which is currently used for flood prediction purposes [77]. The local
water administration implemented an advanced three-position controller for
controlling the hydraulic structures. This controller is in its essence a set of
logical rules based on the many years of experience of operators in controlling
these hydraulic structures. This controller has already reduced the flood risk,
but it has its limitations. New simulations performed by the local water
administration on historical rainfall data have demonstrated that the flooding
damage during the last decades could have been limited if a more advanced
control strategy would have been used.

On behalf of the Division Operational Water Management of the VMM,
the research group SISTA-SCD of the Department of Electrical Engineering
of the KU Leuven and the Hydraulics Laboratory of the Department of
Civil Engineering of the KU Leuven have conducted research to evaluate
the applicability of Model Predictive Control (MPC) as control strategy for
flood control of the Demer. This research resulted in the doctoral thesis of
T. Barjas Blanco [18]. Based on a conceptual model of the Demer [44, 189], it
demonstrates that MPC has some specific advantages compared to the three-
position controller concerning the application of flood control [18–20, 37, 38].
However there are some limitations related to the type of model used for
modelling the Demer and to the formulation of the predictive controller. The
conceptual model has already proven its strength, but some remarks can be
made:

• A conceptual model describes the dynamics of the water levels and
discharges of a river system at only a limited number of locations in
order to keep the computational burden low. E.g. the water levels of a
single reach are often modelled with one point. However for reaches with
irregular flood levels, this is not the optimal choice. It is not certain that
if the modelled water level is kept below its flood level, the entire water
profile of the reach is below its flood level. A conceptual model is the
right choice for testing a new control strategy for the first time, but before
it can be applied in reality, it should be tested on a full hydrodynamical
model of the river system modelling the water levels and discharges on a
very fine grid.

• The construction, calibration and validation of a conceptual model is
far from straightforward. It involves a very time-consuming process and
expert knowledge is required for determining the optimal model structure
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and the values of the many parameters. This process has to be redone
every time one wants to use MPC to control another river system.

Also some comments can be made related to the predictive controller presented
in these works:

• The control scheme needs to find multiple linear approximate models
based on the conceptual model at every time step. Because of the small
structure of this conceptual model, the impact of this operation on the
total computation time was limited. However if this technique is applied
to a much more detailed model, the computational burden would increase
significantly and the total time needed by the controller can become too
large to be applicable in practice.

• During periods of heavy rainfall, multiple optimization problems need
to be solved before new control actions can be found. This means that
the controller has the highest computation time during periods when the
situation is critical.

• The controller implemented in the thesis was only based and tested on the
conceptual model of the Demer. Due to the specific form and equations
used to construct this conceptual model, it is very difficult to make
conclusions on the applicability of MPC for flood control of river systems
in general.

1.2 Objectives

The main objective of this dissertation is to test whether Model Predictive
Control can be used for set-point control and flood control of river
systems in general. Taking the remarks at the end of the previous section
into account, this objective can be translated into the following tasks:

• Test an alternative approach to the use of conceptual models by setting
up a general modelling framework of river systems that can be used for
different types of river networks. The resulting model should describe the
dynamics of the water levels and discharges along the entire reach on a
fine grid.

• Based on this alternative modelling approach, find an approximate river
model that can be used inside the predictive controller. This river model
should approximate the dynamics of every reach along the entire profile.
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• Adapt the general principles of Model Predictive Control in order to
comply with the different objectives of controlling river systems:

– set-point control,

– in combination with flood control,

– and fast buffer capacity recovery of reservoirs.

• Keep the total computation time needed by the advanced controller as
small as possible at all times without reducing its control performance
related to set-point control, flood control and buffer capacity recovery:

– find an approach such that the same linear model can be used at
every time step

– and prevent the necessity of solving multiple optimization problems
before new control actions can be found.

1.3 Chapter by chapter overview

This dissertation consists of six chapters in total. Fig. 1.2 gives an overview of
the different chapters and the connections between them. A summary of each
of the chapters is given as follows:

• Chapter 2: This chapter introduces the fundamental concepts of some
well-known techniques that will be used in the subsequent chapters. It
first introduces a classical control strategy, namely the Linear Quadratic
Regulator theory. Afterwards it discusses the main principles of Model
Predictive Control. It also explains the basics of Kalman filtering and it
introduces how Proper Orthogonal Decomposition (POD) and Galerkin
projection can be used for deriving reduced order models.

• Chapter 3: The chapter presents a general framework for constructing
mathematical models of river systems. It first introduces the full
hydrodynamic equations of de Saint-Venant used to model the dynamics
of a single reach. Afterwards it explains how to model the dynamics
of river systems consisting of multiple reaches. Different types of
connections, like hydraulic structures and junctions, are discussed and it
is explained how these connections result in boundary conditions for each
of the reaches. Two approaches for modelling a reservoir are introduced.
The chapter explains into detail how a numerical solution method can be
constructed for simulating these complex river systems. Some examples
are given to show the accuracy of the simulator. The last part of
this chapter focusses on finding appropriate approximate models of the
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Chapter 1
General Introduction

Chapter 2
Predictive Control

MPC Kalman Model reduction

Chapter 3
Modelling of river systems

Full hydrodynamic
model

Approximate
model

Chapter 4
MPC used for set-point

control and flood control

Chapter 5
MPC applied to the Demer

Chapter 6
General Conclusions

Slack variables Gate discharges

Figure 1.2: Overview and connection between the different chapters in this
dissertation.

nonlinear river dynamics. The proposed approximate model combines a
linear approximation of the dynamics of every reach with the nonlinear
equations modelling the discharges over the hydraulic structures. The
performance of this approximate model is compared with the one of
the original nonlinear model. It is also explained how a reduction in
the computational load can be achieved with this approximate model by
applying POD and Galerkin projection [34].

• Chapter 4: This chapter addresses the control of some academic test
examples with Model Predictive Control. The chapter first explains why
Model Predictive Control is suitable for set-point control and flood control
of river systems in contrast to other control techniques. In the next three
sections, the design of a predictive controller for different test examples is
discussed in detail. The test system in every subsequent section is more
complex than the example in the previous one and it is explained how the
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design of the predictive controller can be adapted to deal with this extra
complexity. The first test example is a single reach. After introducing the
linear approximate process model used by the controller, the optimization
problem solved by the controller at every time step is formulated. It is
explained how slack variables ensure the feasibility of the optimization
problem at every time step and how the control objectives can be
translated into the different parameters of the optimization problem. The
performance of the proposed controller with respect to set-point control,
disturbance rejection and flood control is assessed, together with the
performance of a Linear Quadratic Regulator [32]. Also the influence of
a Kalman filter on the control performance is investigated. The next test
example contains a hydraulic structure. It is explained that by optimizing
over the gate discharge instead of the gate position, a linear approximate
model is accurate enough. Again the optimization problem is formulated
and discussed in detail. Extra elements are the translation of the physical
limits on the gate positions to limits on the gate discharges and a method
for preventing possible uncontrollability of the gates. Simulation results
show the performance of the predictive controller without and with a
Kalman filter as state estimator [33]. The last example is a complex river
network consisting of multiple reaches, hydraulic structures, junctions
and a reservoir. It is explained how the optimization problem can be
formulated to use the buffer capacity of the reservoir in an optimal way
and how the used buffer capacity can be recovered after a heavy rainfall
period [36]. Again the influence of the Kalman filter on the control
performance is checked. The last section discusses the implementation of
the optimization problem. It is explained how the time needed for solving
the optimization problem can be decreased by reducing the number of
optimization variables and the number of inequality constraints. Two
methods are discussed for both approaches. A first approach for reducing
the number of optimization variables uses POD and Galerkin projection
to reduce the number of states of the approximate model. This results
also in a smaller number of equality constraints. Another approach is
to use a condensed implementation: the water levels and discharges are
removed from the optimization problem by writing them as a function
of the control actions based on the linear approximate model. The
number of inequality constraints can be reduced by using a greedy
selection algorithm in combination with POD and Galerkin projection,
exploiting the similarity between the coefficients of consecutive water level
constraints. Another approach is to impose the water level constraints at
only a limited number of locations along every reach.

• Chapter 5: The chapter presents the application of the predictive
controller introduced in the previous chapter to a full hydrodynamic
model of the Demer build up from real field data. After introducing the
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study area of the Demer and giving its mathematical model formulation,
the disadvantages of the advanced three-position controller currently used
for regulating the Demer, are discussed. The next part explains the design
of the predictive controller and how it is influenced by the irregularity of
the river bed profile and the irregularity of the cross sectional profiles.
The irregular cross sectional profiles are approximated with a trapezoidal
shape in order to increase the range for which the linear approximate
model is accurate enough. A prediction step with a nonlinear model with
a low computational complexity is used to estimate the lower and upper
limits on the gate discharges. These nonlinear predictions are compared
with the predictions made with the linear approximate model. A simple
model update of the linear approximate model is performed based on
the difference between both predictions. It is explained how the number
of inequality constraints can be kept limited by working with only the
most critical flood levels. An adapted version of the Kalman filter is used
as state estimator. Based on only three water level measurements, the
entire state of the system is estimated. The performance of the predictive
controller is compared with the one of the three-position controller when
applied to a full hydrodynamic model of the Demer with the historical
rainfall data of the flood event of 2002. MPC succeeds in reducing the
number and the magnitude of the floods, it recovers the buffer capacity
almost two days earlier and it delivers a better set-point regulation [35].

• Chapter 6: This chapter presents the general conclusions of this thesis
and discusses some future research subjects.

The text of this dissertation has been written in such a way that it is possible
to reproduce the results obtained in this work. Chapter 3 explains in detail
how a numerical scheme for simulating river systems can be implemented by
discussing the discretization approach, the resulting discretized equations and
how numerical stability and accuracy can be achieved. Chapter 4 explains in
detail every aspect of the controller such that, it is possible to implement the
same type of controllers. The parameters of the river systems as well as the
values of the different tuning parameters of the controllers are always given in
order to make it possible to reproduce the results.

1.4 Contributions

The main contributions of this dissertation are the following ones:

• Linear-Nonlinear model. The first contribution is the proposed hybrid
model in Section 3.6.2.2. We have shown that the nonlinear river
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dynamics can be accurately approximated with a linear state space model
describing the dynamics of every reach with the gate discharges as input
variables, in combination with the nonlinear gate equations. The use of
the linear state space model reduces the computation time drastically.
This reduction can even be improved by reducing the model order of
the linear state space model with POD in combination with Galerkin
projection.

[34] Breckpot, M., Agudelo, O. M., and De Moor, B. Modelling
of a river system with multiple reaches. In Proc. of the 16th IFAC
Symposium on System Identification (Brussels, Belgium, July 2012),
pp. 1454-1459.

• Gate discharges as optimization variables. One of the major
contributions is the idea to use the hybrid model as approximate model
for the dynamics of a river system in the controller and to leave the
gate equations out of the optimization problem (Section 4.4.2). This
means that we are optimizing over the gate discharges instead of the gate
positions. Once the optimal gate discharges are found, a conversion step
is needed to translate the gate discharges to their corresponding gate
positions. This conversion step can easily be performed based on the full
nonlinear gate equations. This special choice of optimization variables has
as implication that we need to derive only one linear approximate model
for the river system and we do not need to work with a nonlinear advanced
process controller. Therefore the resulting optimization problem will be
a Quadratic Programming problem (QP) for which efficient solvers exist.

• Formulation of the optimization problem. Along Chapter 4 we
propose an optimization problem that effectively can be used for set-point
control and flood control of river systems:

– By imposing the flood levels as upper limits on the water levels,
the controller will try to avoid any flooding (flood control). By
minimizing over the deviation between the water levels and their set-
points, the controller will focus on set-point control. The upper
limits on the water levels are imposed as soft constraints in order to
keep the QP feasible at all times: only one QP needs to be solved
at every sampling time.

– In Section 4.4.3.1 we explain how the (known) lower and upper
limits on the gate positions and their maximal rate of change can
be translated to time-varying lower and upper limits on the gate
discharges along the prediction horizon. For river systems with a
smooth channel bed profile and trapezoidal cross sectional profiles,
this prediction step can be performed with a linear model. Therefore,
the total computation time of this step is limited.
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– One problem with flood control is the possibility of uncontrollability
of hydraulic structures. A gate can operate in different modes.
The discharge over a gate is independent of the gate position for
some of these modes. This means that the predictive controller can
not use this structure any more. Section 4.4.3.2 explains how this
uncontrollability can easily be prevented by keeping the gates always
in their controllable region or at least on their boundary.

– In Section 4.5.3.2 we explain how the used buffer capacity of a
reservoir can be recovered as fast as possible. We only need to
set the set-point of the water levels of the channels downstream of
the reservoir below the set-point of the reservoir, and increase the
weights related to the deviation of the set-point for these channels
inside the objective function.

[32] Breckpot, M., Agudelo, O. M., and De Moor, B. Control
of a single reach with model predictive control. In River Flow
2012 (Costa Rica, September 2012), R. E. Murillo Muñoz, Ed.,
Proc. of the International Conference on Fluvial Hydraulics, CRC
Press, Taylor & Francis Group, pp. 1021-1028.

[33] Breckpot, M., Agudelo, O. M., and De Moor, B. Model
Predictive Control of a river system with two reaches. In Proc. of
the 51st IEEE Conference on Decision and Control (Maui, Hawaii,
USA, December 2012), pp. 4549-4554.

[36] Breckpot, M., Agudelo, O. M., and De Moor, B. Flood
control with Model Predictive Control for river systems with water
reservoirs. Journal of Irrigation and Drainage Engineering 139, 7
(July 2013), 532-541.

• State estimator. For every test example in Chapter 4, we have shown
that a Kalman filter can be used for estimating the unknown states from
a very limited number of measurements.

• Speed-up of the controller. Section 4.6 discusses how the time
needed to solve the QP at every time step can be reduced by combining
a condensed implementation, reducing the number of optimization
variables and eliminating the equality constraints implementing the linear
approximate model, with a method for reducing the number of inequality
constraints. This last reduction can be achieved by imposing the upper
limits on the water levels at only a limited number of locations along
the channels, or by exploiting the fact that the coefficients of consecutive
constraints are similar when used in combination with POD and Galerkin
projection. The condensed implementation in combination with either
of the two techniques for reducing the number of inequality constraints,
results in a speed-up with a factor of 60 for the used optimization solver.
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• MPC applied to the Demer. In Chapter 5 we show that only minor
modifications of the controllers designed in Chapter 4 are needed such
that the controller can handle the irregularity in the field data of the
Demer. The only modifications are the use of a simple nonlinear model for
finding the lower and upper limits on the gate discharges and for finding
the state estimates with the Kalman filter, and a straightforward model
updating technique. The simulations performed for the rainfall data of
the flood event of the Demer in 2002 indicate that MPC outperforms the
advanced three-position controller.

[35] Breckpot, M., Agudelo, O. M., Meert, P., Willems, P.,
and De Moor, B. Flood control of the Demer by using Model
Predictive Control. Internal Report 13-24, ESAT-SISTA, KU
Leuven (Leuven, Belgium). Submitted for publication in Control
Engineering Practice (2013).

At the end we have demonstrated that MPC can be used for set-point control
and flood control of different complex river systems. The main idea is to
optimize over the gate discharges such that the linear approximate model has
to be derived only once. The resulting optimization problem is a QP that is at
all times feasible.

1.5 Comparison with previous work related to flood
control of the Demer

As mentioned at the end of Section 1.1 there exists previous work performed at
the KU Leuven with the focus on flood control of the Demer [18–20,37,38,189].
The work performed in this dissertation differs from these studies in multiple
ways:

• Process model. The previous works used a conceptual model with a
limited number of nodes for simulating the Demer. In this dissertation
a full hydrodynamic model of the Demer is used for testing the control
performance of the developed predictive controller. This mathematical
model makes use of the full Saint-Venant equations where field data of
the river is used regarding the (irregular) cross sectional profiles and
the varying slope of the river bedding at a large number of grid points.
Also different roughness coefficients related to the different parts of each
irregular cross sectional profiles are used to model the frictional bed
resistance.
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• Control strategy. Regarding the predictive controller, the main
difference lies in the choice of the control variables used inside the
optimization problem. In the previous works the authors worked with
the gate positions as optimization variables resulting in the requirement
to use nonlinear model based predictive control schemes in order to
achieve a good control performance. At every time step a new sequence
of time-varying linear state space models needs to be derived over the
prediction window based on the sequence of optimal control actions
calculated at the previous time step. Because of the limited accuracy
of the linear approximation of the gate equations, a trust region is
used inside the optimization problem in order to limit the difference
between the new optimal sequence of control actions and the previous one.
Furthermore a line search is used as post-processing step to increase the
effectiveness of the computed control actions. All these operations are not
needed in this work by working with the gate discharges as optimization
variables. Eliminating the gate equations out of the optimization problem
has as effect that the dynamics of the river systems can be accurately
approximated with one linear state space model: a linear predictive
control scheme can be used. There is no need to derive new linear state
space models, to work with trust regions or to perform a line search as
post-processing step.

Another difference lies in how the upper limits on the water levels
are imposed. The previous works impose these inequality constraints
as hard constraints, which can lead to infeasibilities during periods
of excessive rainfall. Therefore a constraint relaxation strategy is
implemented that iteratively drops inequality constraints until the
optimization problem becomes feasible. This approach can result in
solving multiple optimization problems. This disadvantage is prevented
in this dissertation by working with slack variables and imposing the
inequality constraints as soft constraints. Following this approach results
in an optimization problem that is always feasible.

• State estimator. The previous works as well as this work implement
a state estimator taking into account that in practice only a limited
number of water levels are measured. Because the previous works used
the gate positions as control variables, Moving Horizon Estimation (MHE)
was used as estimation technique. This technique results in solving an
optimization problem at every time step taking the measurements of
the last sampling times into account as well. By working with the gate
discharges as control variables in this dissertation, MHE is not required
to obtain accurate estimates of the unknown states. It is shown that
a Kalman filter is accurate enough requiring only a limited number of
mathematical operations at every time step.
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Predictive Control and Model
Reduction

2.1 Introduction

This chapter introduces Model Predictive Control (MPC), Linear Quadratic
Regulator theory (LQR), Kalman filtering and model reduction based on
Proper Orthogonal Decomposition (POD) and Galerkin projection. These
techniques will be used throughout this thesis in the next chapters.

The chapter has the following structure. LQR is discussed in Section 2.2.
Section 2.3 explains the basic concepts of MPC. Special attention is paid to
the case where a linear state space model is used to approximate the system
dynamics. This type of controller is the corner stone of this thesis. Section 2.4
introduces the Kalman filter which is used for estimating the states of the river
systems in the next chapters. Model reduction based on POD and Galerkin
projection is explained in Section 2.5. Section 2.6 concludes this chapter.

2.2 Linear Quadratic Regulator

In optimal control theory one wants to control a given dynamical system at
a minimum cost. One of the main results in optimal control theory is the
Linear Quadratic Regulator (LQR), which applies to the situation when the
system dynamics can be described with a linear differential equation or a linear

15
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difference equation. The derivation of LQR will be given for the linear state
space model in discrete time:

x(k + 1) = Ax(k) + Bu(k), (2.1)

y(k) = Cx(k) + Du(k),

with A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu the state space
matrices, nx the number of states, nu the number of inputs and ny the number
of outputs.

LQR minimizes the following cost function

∞
∑

k=0

(

x(k)TQx(k) + u(k)TRu(k)
)

, (2.2)

with Q ∈ Rnx×nx ( 0 and R ∈ Rnu×nu & 0 positive semidefinite and definite
weighting matrices. The higher the value of a diagonal element in any of these
matrices, the more important the corresponding variable is. E.g. if all the
elements in Q are much larger than the elements in R, then the controller
will mainly focus on steering the states as close as possible to the origin. The
solution of the optimization problem with Eq. (2.2) as cost function and with
the state equation Eq. (2.1) as constraint, is the linear feedback law [5,65,93]:

u(k) = −Kx(k) (2.3)

where the feedback matrix K ∈ Rnu×nx is given by

K =
(

R + BTSB
)−1

BTSA.

S ∈ Rnx×nx & 0 is the positive definite solution of the discrete time algebraic
Riccati equation

S = AT
(

S − SB
(

R + BTSB
)−1

BTS
)

A + Q.

More information on how to solve the discrete algebraic Riccati equation can be
found in [9]. If there is a rate of change constraint for the inputs or if the inputs
have some operational limits, then they have to be enforced using a saturator
after calculating the control actions with the feedback law. The saturation of
any of the control actions will destroy the optimality property of these control
actions.

Combining the state feedback law with the state equation results in

x(k + 1) = (A − BK)x(k).
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It can be shown that the state feedback matrix K places the eigenvalues of
the matrix A − BK inside the unit circle (if (A, B) is stabilizable) [93]. The
closed loop system is asymptotically stable and the controller will steer the
states (and the outputs) to the origin.

The control actions given by Eq. (2.3) will always try to steer the outputs back
to the origin. However in practice, it can be important that the outputs follow
a certain reference signal r(k). In this thesis this reference signal will only
contain step changes. It can be shown that a zero steady state error to this
step input r(k) is achieved by the following modification of the feedback control
law [65]:

u(k) = −Kx(k) + (Nu + KNx)r(k) (2.4)

where Nx ∈ Rnx×ny and Nu ∈ Rnu×ny can be found by solving
[

A − Inx B

C D

][

Nx

Nu

]

=

[

0nx,ny

Inu,ny

]

.

Just as the control laws in Eqs. (2.3) or (2.4) do not know the limits on the
control actions, the controller is also not aware of any possible constraints on
the outputs or the states. Therefore it is difficult to tune the weighting matrices
Q and R such that an LQR controller does not violate the process constraints.
This situation does not occur with MPC.

2.3 Model Predictive Control

Model Predictive Control was first reported in the seventies of the 20th century
and originates from the process industry [54, 140]. MPC was used to increase
the energy efficiency of power plants and petroleum refineries, and to comply
with the stricter environmental and safety regulations. Nowadays MPC, also
known as Receding Horizon Control (RHC) or Moving Horizon Control (MHC),
is one of the most advanced process control techniques successfully used in
practice in a wide range of applications, going from the chemical sector and
food processing to the automotive industry and aerospace applications [14, 15,
136,154]. Reviews regarding the theoretical and practical aspects of MPC can
be found in [66,94,124,125,128].

MPC does not refer to one specific control strategy, but to a collection of
control techniques that explicitly makes use of a process model to predict
the future system response and that optimizes the control actions within a
certain prediction window. MPC solves at every time step a finite horizon
open loop optimal control problem taking the current state of the process into
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account. The result is a sequence of optimal future control actions over the
entire prediction window from which only the first one is applied to the process.
After taking new measurements and observations to determine the new current
state of the system, the entire procedure is reiterated. In this way feedback is
introduced in the control loop.

Solving at every time step an on-line optimization problem gives some specific
advantages to MPC compared to conventional controllers that use a pre-
computed control law [125]. Constraints on the process inputs and outputs
can easily be taken into account by the controller improving the quality,
effectiveness and safety of the process. MPC can also efficiently control systems
with many internal interactions by using a multivariable process model in the
formulation of the optimization problem. This process model can also include
the effect of disturbances on the output of the system. Therefore, the controller
can react on (estimates of) future disturbances before they actually occur.
Another advantage is that the controller can easily be tailored to the specific
application purpose because of the generality of the optimization problem.
The only requirement is that the control problem should be formulated as an
optimization problem that can be solved efficiently with respect to the control
sampling time.

2.3.1 Linear Model Predictive Control

In theory there is no limitation on the type of the process model used in MPC.
Transfer function models, state space models and finite impulse response models
are the model types most often used with MPC [143]. For practical reasons
regarding the optimization problem, this process model will often be a linear
model. The model type used in combination with MPC throughout this thesis
is a discrete-time linear time-invariant state space model of the following form:

x(k + 1) = Ax(k) + Bu(k) + Fd(k),

y = Cx(k) + Du(k),

with x(k) ∈ Rnx the state vector, u(k) ∈ Rnu the input vector, y(k) ∈ Rny

the output vector, d(k) ∈ Rnd the disturbance vector and A ∈ Rnx×nx , B ∈
Rnx×nu , C ∈ Rny×nx , D ∈ Rny×nu and F ∈ Rnx×nd the state space matrices
modelling the system dynamics.

The receding horizon principle of MPC is visualized in Fig. 2.1. The linear
model is used by the controller to predict the future states of the plant x(k +
1), . . . , x(k +NP) over a prediction window with size NP from the current state
of the system x(k). The sequence of control actions u(k), . . . , u(k + NP − 1)
is determined in such a way that a predefined objective or cost function is
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prediction window at time k

prediction window at time k + 1

k k +NP samples

control action

past future

Figure 2.1: The receding horizon principle of MPC. At time step k the optimal
control actions are calculated over a prediction horizon of size NP. Only the first
element of this sequence is applied to the process. Afterwards the prediction
window is shifted one sampling step forward in time. Source: [133].

minimized. Only the first element of this sequence of optimal control actions is
applied to the process. The new state of the process is measured or estimated
at the sampling time k + 1, and the entire procedure is repeated.

In order to track a reference trajectory for the state vector, the optimization
problem within the MPC can be formulated as follows (e.g. at time step k equal
to 0):

min
u,x

NP∑

j=1

‖x(j) − rx(j)‖2
Q +

NP−1
∑

j=0

‖u(j) − u(j − 1)‖2
R

s.t. x(0) = x̂,

x(j + 1) = Ax(j) + Bu(j) + Fd(j), j = 0, . . . , NP − 1

u(−1) = uprev,

x(j) ∈ X , j = 1, . . . , NP (2.5)

u(j) ∈ U , j = 0, . . . , NP − 1 (2.6)
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with rx ∈ Rnx the reference vector for the states, Q ∈ Rnx×nx ( 0 and
R ∈ Rnu×nu & 0 positive semidefinite and definite weighting matrices, x̂ ∈ Rnx

the current state of the system, uprev ∈ Rnu the control actions applied in the

previous time step, ‖y‖2
Q = yTQy, Eqs. (2.5) and (2.6) the state and input

constraints and X and U convex sets satisfying the following definition [31]:

Definition 1. A set S ⊆ Rn is called convex iff all convex combinations for
any two points x, y ∈ S are also an element of the set S:

∀θ ∈ [0, 1], ∀x, y ∈ S : (1 − θ)x + θy ∈ S.

The formulated optimization problem is called a convex optimization problem
because a convex objective function is minimized over convex sets. The
important consequence of this convexity property is that any local minimum is
also the global minimum of the optimization problem [31,130]. In this thesis the
convex sets X and U are linear inequality constraints resulting in the following
optimization problem:

min
u,x

NP∑

j=1

‖x(j) − rx(j)‖2
Q +

NP−1
∑

j=0

‖u(j) − u(j − 1)‖2
R

s.t. x(0) = x̂,

x(j + 1) = Ax(j) + Bu(j) + Fd(j), j = 0, . . . , NP − 1

u(−1) = uprev,

x ≤ x(j) ≤ x, j = 1, . . . , NP

u ≤ u(j) ≤ u, j = 0, . . . , NP − 1

|u(j) − u(j − 1)| ≤ ∆u, j = 0, . . . , NP − 1

where x, x ∈ Rnx are the lower and upper limits of the states, u, u ∈ Rnu are
the lower and upper limits of the inputs and ∆u ∈ Rnu is the maximal rate of
change constraint for the inputs. The resulting optimization problem is called
a Quadratic Programming problem (QP). For a positive semidefinite Q and
a positive definite R it can be shown that this QP is strictly convex [31, 130].
Efficient solvers exist for solving convex QPs [7,76,123]. This is one of the main
reasons why it is recommended to work with a linear state space model if it is an
accurate enough approximation of the (possibly nonlinear) real process. Using
a nonlinear state space model inside the optimization problem will in general
destroy the convexity of the optimization problem resulting in a Nonlinear
Programming problem (NLP) instead of a QP. These NLPs are in general
much more difficult to solve and can suffer from multiple local minima.
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2.4 Kalman Filter

Both MPC and LQR require the knowledge of the current state of the system to
be able to generate proper control actions. In many applications it is practically
impossible to measure every element of the state vector x(k) and in some cases
the state vector does not even have a physical meaning. For the case of river
systems, it would require an infinite number of sensors to know the water
level profile and the discharge profile of every channel. However based on the
measured outputs, the applied control actions and a mathematical model of
the process, it is still possible to get an (accurate) estimate of the current state
of the system by using an observer or soft-sensor. The state estimate will be
denoted with x̂(k). In general the observer of a physical system is derived from
the mathematical model of the system, that is the linear state space model

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k).

Extra terms are included to ensure that, based on the measurements of the
inputs and outputs over time, the state estimate converges to the process states.
The so-called Luenberger observer [110] combines the plant model with the
difference between the predicted outputs and the measured outputs:

x̂(k + 1) = Ax̂(k) + Bu(k) + L(y(k) − ŷ(k)),

ŷ(k) = Cx̂(k) + Du(k),

with L ∈ Rnx×ny the feedback gain matrix or observer matrix. The first
term Ax̂(k) + Bu(k) can be considered as a prediction step or the open loop
estimation, while the second term L(y(k) − ŷ(k)) is a correction step. It can
be shown that the dynamics of the estimation error e(k) = x(k) − x̂(k) are
given by e(k + 1) = (A − LC)e(k). If the eigenvalues of A − LC are within
the unit circle, the observer is asymptotically stable and the estimation error
converges to zero for k going to infinity. The velocity of this convergence is
influenced by L.

One approach to calculate the observer matrix L is based on optimal estimation
techniques and is called the linear quadratic estimator, better known as the
Kalman filter. This filter was introduced by R. E. Kalman in 1960 [84]. The
so-called Kalman gain L minimizes the covariance of the estimation error x(k)−
x̂(k) given by

ε

{
∞
∑

k=0

‖x(k) − x̂(k)‖2
2

}
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for the following discrete-time process model

x(k + 1) = Ax(k) + Bu(k) + Gw(k),

y(k) = Cx(k) + Du(k) + v(k).

where ε{·} denotes expectation, ‖·‖2 the l2-norm or the Euclidean norm,
G ∈ Rnx×nw is a weighting matrix and w(k) ∈ Rnw and v(k) ∈ Rnv are random
variables representing the process noise and the measurement noise respectively.
Both random variables are assumed to be Gaussian white noise with zero
mean and a covariance matrix Rw ∈ Rnw×nw , Rv ∈ Rnv×nv respectively, and
uncorrelated to each other:

ε{w(k)} = 0nw ,

ε{v(k)} = 0nv ,

ε
{

w(k)w(k)T
}

= Rw,

ε
{

v(k)v(k)T
}

= Rv,

ε
{

v(k)w(k)T
}

= 0nv,nw .

The Kalman gain L is given by

L = APCT
(

Rv + CPCT
)−1

with P ∈ Rnx×nx ( 0 the positive semidefinite covariance matrix of the
estimation error satisfying the discrete algebraic Riccati equation

P = GRwGT + APAT − APCT
(

Rv + CPCT
)−1

CPAT.

More information about the derivation can be found in [65,93].

2.5 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition and Galerkin projection are well-known
techniques for deriving reduced order models of high-dimensional systems.
This high-dimensionality typically results from discretizing partial differential
equations in space. An orthonormal basis for modal decomposition is extracted
from a set of data called snapshots. These snapshots can be generated via
simulations or experiments [101, 155]. The resulting basis functions are called
POD basis vectors [96]. Besides providing the orthonormal basis, the POD
technique also gives a measure of the importance of each basis vector. Selecting
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the most relevant basis vectors and projecting (Galerkin projection) the high-
dimensional model on the space spanned by these vectors results in a reduced
order model of the process.

One can find many other names for POD. The most important ones are
Karhunen-Loève Decomposition [108], Singular Value Decomposition (SVD)
[8,42] and Principal Component Analysis [81]. Many people have contributed to
the development of POD [96]. POD dates back to the 1950’s with contributions
by Kosambi (1943) [90], Loève (1945), Karhunen (1946), Pougachev (1953)
and Obukhov (1954) [111]. PCA and SVD have even a longer history with
the work of Pearson introducing PCA in 1901 [132], and the contributions of
Beltrami (1873) [25], Jordan (1874) [82,83], Sylvester (1889) [165,166], Schmidt
(1907) [146] and Weyl (1912) [187] for developing the theory around SVD. POD
can be realized by performing the Karhunen-Loève Decomposition, via the
Principal Component Analysis or via the Singular Value Decomposition. Liang
et al. proved the equivalence of these three methods [96]. In this work the SVD
will be used to realize the POD decomposition.

POD has been applied with success in a broad range of applications, for
instance in studies of turbulence [26,88,112,155], vibration analysis [53,64], data
analysis or compression [89,156], signal analysis, process identification, control
in chemical engineering [2, 3, 11, 17, 87, 92], etc. Also contributions in the field
of water management can be found, e.g. for groundwater modelling [153, 190],
tsunami forecasting [68] and fluid control [137,192].

We will now explain how POD in combination with Galerkin projection can be
used to reduce the order of a linear state space model. The derivation in the
next two sections is based on [2].

2.5.1 POD basis vectors generation

The first step for finding the POD basis vectors is the generation of the snapshot
matrix X ∈ Rnx×M with nx the number of states and M the number of samples.
The snapshot matrix contains M samples of the state vector x ∈ Rnx :

X = [x(k), x(k + 1), . . . , x(k + M − 1)].

Each of these snapshots can be written as a linear combination of a set of
ordered orthonormal basis vectors ϕj ∈ Rnx , the so-called POD basis vectors:

x(k + i) =
nx∑

j=1

aj(k + i)ϕj , for i = 0, . . . , M − 1, (2.7)

with

aj(k + i) = 〈x(k + i), ϕj〉 = ϕT
j x(k + i), for j = 1, . . . , nx.
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〈·, ·〉 denotes the Euclidean inner product and aj(k + i) the POD coefficient,
which is the coordinate of x(k + i) with respect to the basis vector ϕj .
The reduction in model order is achieved by working with an nth order
approximation of x, which is constructed for the n most relevant basis vectors:

xn(k + i) =
n
∑

j=1

aj(k + i)ϕj , for i = 0, . . . , M − 1,

with n . nx. It can be shown that the orthonormal basis vectors ϕj calculated
with POD have the property that the first n most relevant basis vectors
reconstruct the snapshots in an optimal way: the Sum of Squared Error (SSE)
En between the original samples x(k + i) and their nth order approximation
xn(k + i)

En =
M−1
∑

i=0

‖x(k + i) − xn(k + i)‖2
2

is minimal. The POD basis vectors are the solution of the following
optimization problem:

min
ϕ1,...,ϕn

M−1
∑

i=0

∥
∥
∥x(k + i) −

n
∑

j=1

〈x(k + i), ϕj〉ϕj

∥
∥
∥

2

2

s.t. ϕT
i ϕj =

{

1 if i = j,

0 otherwise.

As shown in [92, 96], the solution of this optimization problem can be found
by calculating the SVD of the snapshot matrix X. The linear combination of
a set of ordered orthonormal basis vectors used to rewrite x(k + i) (Eq. (2.7)),
allows us to rewrite the snapshot matrix X in the following way:

[x(k), . . . , x(k + M − 1)]
︸ ︷︷ ︸

X

=
[

ϕ1, . . . , ϕnx

]

︸ ︷︷ ︸

Φ ∈ R
nx×nx







a1(k) . . . a1(k + M − 1)
...

. . .
...

anx(k) . . . anx(k + M − 1)







︸ ︷︷ ︸

Γ ∈ R
nx×M

with ΦTΦ = Inx . X = ΦΓ is the proper orthogonal decomposition of X
[8]. The matrix Φ contains the orthonormal basis vectors while the matrix Γ
contains the evolution of the POD coefficients. Both matrices can be found
from the SVD of the snapshot matrix X:

X = ΦΣΨT
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with Φ =
[

ϕ1, . . . , ϕnx

]

∈ Rnx×nx and Ψ = [ψ1, . . . ,ψM ] ∈ RM×M unitary
matrices, Σ ∈ Rnx×M a matrix containing the singular values σi, for i =
1, . . . , nx of X in decreasing order on its main diagonal and Γ = ΣΨT. These
singular values are positive real numbers. The orthonormal basis vectors are
the left singular vectors of X. The minimum value of the SSE is a function of
the singular values related to the unused POD basis vectors:

En =
nx∑

j=n+1

σ2
j .

The singular values quantify the importance of each of the POD basis vectors
in capturing the information present in the snapshot matrix. This means that
the first POD basis vector is the most relevant one and the last one is the
least important. It is important to note that the POD basis vectors can only
capture the information present in the snapshot matrix. Therefore it is of vital
importance that the snapshot matrix is built with representative data of the
process around the operating conditions of interest.

A criterion often used for selecting the value of n is the energy criterion [63].
This criterion checks the ratio between the modelled energy and the total energy
contained in X:

P̄n =

n∑

j=1
σ2

j

nx∑

j=1
σ2

j

, n = 1, . . . , nx.

The value for n should be chosen such that the fraction of the first singular
values is large enough to capture most of the energy in the data. The closer
P̄n is to 1, the better the approximation.

2.5.2 Model reduction via Galerkin projection

Model reduction based on the Galerkin projection will be explained for the
linear state space model

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k),

with x ∈ Rnx the state vector, u ∈ Rnu the input vector, y ∈ Rny the output
vector, A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu the state
space matrices.

The goal of model reduction is to approximate the linear state space model
with a model with a lower complexity. This means finding a model with a
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(much) smaller number of state variables. POD can be used to select the
n most relevant basis vectors. The most common method for deriving the
dynamical model for the POD coefficients aj , for j = 1, . . . , n associated with
the selected POD basis vectors is the Galerkin projection [2, 10, 16, 28, 79, 137]
and is used in this work. The method starts by defining the residual function
R(x(k + 1), x(k)) for the state space equation:

R(x(k + 1), x(k)) = x(k + 1) − (Ax(k) + Bu(k)).

R(xn(k + 1), xn(k)) is the residual for nth order approximation of the state
vector x

xn(k) =
n
∑

j=1

aj(k)ϕj = Φna(k), n . nx,

with Φn = [ϕ1, . . . , ϕn] and a(k) = [a1(k), . . . , an(k)]T. The projection of
the residual R(xn(k + 1), xn(k)) on the space spanned by the basis vectors Φn

vanishes (the Galerkin projection):

〈R(xn(k + 1), xn(k)), ϕj〉 = 0, for j = 1, . . . , n. (2.8)

The orthogonality of the residual to the span of the basis vectors means that
the residual is minimal [10]. The model for the POD coefficients is found by
replacing x with its nth order approximation xn = Φna in the linear state
space model:

Φna(k + 1) = AΦna(k) + Bu(k),

y(k) = CΦna + Du(k).

Applying the inner production criterion (Eq. (2.8))

〈Φna(k + 1), ϕj〉 = 〈AΦna(k) + Bu(k), ϕj〉, for j = 1 . . . , n,

ΦT
n Φna(k + 1) = ΦT

n AΦna(k) + ΦT
n Bu(k)

and using the orthonormality of the basis vectors ΦT
n Φn = In, the following

reduced order state space model in terms of the POD coefficients can be found:

a(k + 1) = Ara(k) + Bru(k),

y(k) = Cra(k) + Dru(k),

with Ar = ΦT
n AΦn ∈ Rn×n, Br = ΦT

n B ∈ Rn×nu , Cr = CΦn ∈ Rny×n and
Dr = D ∈ Rny×nu . The resulting reduced order model is of order n . nx.
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2.6 Conclusions

The Linear Quadratic Regulator theory has been introduced. Its disadvantages
related to the incapability of incorporating constraints on the states and inputs
have been discussed.

These disadvantages are not present with Model Predictive Control (MPC).
We have discussed the fundamentals of MPC, namely, the receding horizon
principle, the optimization problem and the process model. We have shown that
for a linear state space model with linear inequality constraints, the resulting
optimization problem is a Quadratic Programming problem.

Also the basic concepts of Kalman filtering have been explained. The Kalman
filter can be used to estimate the state of a system based on a limited number
of measurements.

The last section reviewed how model reduction can be achieved with Proper
Orthogonal Decomposition (POD) and Galerkin projection. POD is used to
approximate the states of a system based on only a limited number of basis
vectors. The reduced order model is derived by projecting (Galerkin projection)
the original high-dimensional state space model onto the space spanned by the
derived POD basis vectors.





3

Modelling of River Systems

3.1 Introduction

This chapter explains the different steps required to find an accurate model of a
reach or an entire river system with tributaries, hydraulic structures, junctions
and reservoirs. These modelling techniques will be used in the next chapters
to assess the performance of the Model Predictive Control (MPC) strategies.

Section 3.2 explains how the dynamics of a single reach can be modelled. Here,
the full hydrodynamic equations of de Saint-Venant will be introduced together
with possible resistance laws taking the boundary friction of a channel into
account. Section 3.3 explains how river systems can be built based on the
equations for a single reach. Most attention is paid on how hydraulic structures
can be modelled. Section 3.4 discusses two approaches usable for modelling
reservoirs. Because the equations of de Saint-Venant do not have an analytical
solution, numerical techniques are required to solve the model equations of
river systems. Section 3.5 introduces a method based on finite-differences and
on a staggered grid structure that can be used for simulating the dynamics
of river systems. Attention is paid to the ordering of the variables, and the
performance of the method is illustrated for the dam break problem. Due to the
complexity of the mathematical models of river systems, these models cannot
directly be used by MPC. Section 3.6 first gives a literature review of different
types of approximate models. The second part of this section introduces a
new type of approximate model, which is based on a linear approximation
of the equations of de Saint-Venant in combination with the nonlinear gate

29
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equations. The quality of the approximate model is evaluated based on two
examples. This section also shows how an extra computational speed-up can
be achieved by using Proper Orthogonal Decomposition in combination with
Galerkin projection to reduce the order of the linear part of the approximate
model. Section 3.7 concludes this chapter.

3.2 Modelling a single reach

3.2.1 The Saint-Venant equations

The full hydrodynamic equations of de Saint-Venant, or the so-called Saint-
Venant equations, are often used in practice to model the evolution of water
levels and discharges in river reaches. The equations are valid under the
following five assumptions [43,52,104,163]:

• The vertical pressure distribution is assumed to be hydrostatic. This is
a valid assumption if the streamlines do not have sharp curvatures.

• The channel bottom slope is small so that the flow depth measured
perpendicularly to the channel bottom or measured vertically are
approximately the same.

• The bedding of the channel is stable: the bed elevation does not change
with time.

• The flow is assumed to be one-dimensional: the water surface across any
cross section is horizontal (transverse velocities are negligible) and an
average boundary shear stress can be applied to the whole section.

• The frictional bed resistance is the same in unsteady flow as in steady
flow meaning that steady state resistance laws can be used to evaluate
the average boundary shear stress.

The Saint-Venant equations are the following set of hyperbolic partial
differential equations (PDEs) [43,52,104,163]:

∂A(z, t)

∂h(z, t)

∂h(z, t)

∂t
+
∂Q(z, t)

∂z
= 0, (3.1)

∂Q(z, t)

∂t
+

∂

∂z

Q(z, t)2

A(z, t)
+ gA(z, t)

(
∂h(z, t)

∂z
+ Sf(z, t) − S0

)

= 0, (3.2)

with
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Figure 3.1: Parameters of a trapezoidal channel.

• t the time variable [s],

• z the space variable [m],

• Q(z, t) the water discharge
[

m3 · s−1
]

,

• h(z, t) the water depth [m],

• A(z, t) the cross-sectional flow area
[

m2
]

,

• g the gravity acceleration
[

m · s−2
]

,

• S0 the bed slope [−]

• and Sf(z, t) the friction slope [−].

Equation (3.1) describes the conservation of mass and Eq. (3.2) the conservation
of momentum. The derivation of these two PDEs can be found in [43, 52].
Sf(z, t) represents the steady state resistance law that accounts for the frictional
bed resistance. Examples of this resistance law are given in the next subsection.

The channels used in Chapters 3 and 4 will have a trapezoidal cross sectional
shape and a constant bed slope S0. An example of such a channel is given in
Fig. 3.1, with L the length of the channel [m], B the bottom width [m], S1 and
S2 the side slopes and P the wetted perimeter of the cross section [m]. When
the control strategy is applied to the Demer in Chapter 5, the channels will
have an irregular bed slope and irregular cross sectional profiles. The modelling
of these channels is based on the data of the VMM of the Demer.

3.2.2 Modelling the friction slope Sf

The friction slope Sf is used to model the effect of the boundary friction of the
channels. The two empirical resistance laws which are used the most in the
literature are the resistance law of Chézy and the resistance law of Manning
and will be shortly discussed here.
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3.2.2.1 The resistance law of Chézy

The first resistance law was proposed in 1769 by the French engineer Antoine
Chézy and is commonly known as the resistance law of Chézy [45]:

Sf =
Q|Q|

C2A2R
(3.3)

with C the Chézy coefficient
[

m1/2 · s−1
]

and R = A/P the hydraulic radius [m].
The problem with the Chézy equation is the estimation of the Chézy coefficient
C. Because C depends on several parameters apart from the channel roughness,
the attempts to develop a rational procedure for estimating the value of C have
not been very successful [43].

3.2.2.2 The resistance law of Manning

A resistance law often used in practice is the resistance law of Manning [41,43,
45,163]:

Sf =
n2

mannQ|Q|
A2R1/3

(3.4)

with nmann the Manning coefficient
[

s · m−1/3
]

. Comparing Eqs. (3.3) and (3.4),
one can find the relation between the Chézy and the Manning coefficients:

C =
R1/6

nmann
.

The advantage of the Manning formula over the Chézy equation is that the
value of the Manning coefficient nmann is found to be a characteristic of
only the surface roughness of the channel, the amount of vegetation and
channel irregularity, and to a lesser degree by channel alignment, stage, scour
and deposition. One can find in [45] extensive tables with values of nmann

(maximum, minimum and normal) in function of the channel type and the
channel material. Some typical values as a function of the channel material for
natural streams are given in Table 3.1.

3.2.2.3 Equivalent Manning coefficient for channels with composite
roughness

When one is working with academic or artificial examples of river systems,
it is often assumed that the flow surface at every channel cross section
has the same roughness along the entire wetted perimeter: the Manning
coefficient is constant for every channel. However natural river systems have a
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Table 3.1: Typical values of the Manning coefficient nmann for natural streams
(Source: [45]).

Channel type
nmann

[

s · m−1/3
]

minimum normal maximum

clean and straight 0.025 0.030 0.033

+ more stones and weeds 0.030 0.035 0.040

clean and winding 0.033 0.040 0.045

+ some stones and weeds 0.035 0.045 0.050

+ more stones and weeds 0.045 0.050 0.060

varying roughness (and hence a varying nmann across their wetted perimeter).
E.g. the VMM has approximated the cross sectional profiles with piecewise-
linear functions at different locations along the Demer and its tributaries. A
specific Manning coefficient is determined for every linear segment for each of
these piecewise-linear approximations. The linear segments close to the bedding
of the river typically have a lower value than the segments close to the flood
levels because of the difference in vegetation. To simplify the computations one
needs to determine an equivalent Manning coefficient neqmann based on these
individual coefficients that is valid for the entire section and that can be used
in Eq. (3.4).

Different approaches can be found in the literature for finding these equivalent
coefficients. Consider an irregular cross section that can be divided in n
subareas having a wetted perimeter Pi, a hydraulic radius Ri and a Manning
constant nmann,i (i = 1, . . . , n). A first approach assumes that the mean flow
velocity in each of the segments is equal to the mean flow velocity in the entire
section [60,73]. This leads to the following equation:

neqmann =







n∑

i=1
Pin

3/2
mann,i

n∑

i=1
Pi







2/3

. (3.5)

Many other formulas can be derived for the equivalent roughness starting from
different assumptions. By assuming that the total force resisting the flow is
equal to the sum of the forces resisting the flow in each segment [61, 127], the
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following expression can be derived for the equivalent Manning constant:

neqmann =







n∑

i=1
Pin2

mann,i

n∑

i=1
Pi







1/2

.

Starting from the assumption that the total discharge is equal to the sum of
the discharge in each segment, the following formula is obtained [109]:

neqmann =
PR5/3

n∑

i=1

(

PiR5/3
i

nmann,i

) .

Assuming a logarithmic velocity distribution, [91] derived the following
equation:

ln neqmann =

n∑

i=1
Piy

3/2
i ln nmann,i

n∑

i=1
Piy

3/2
i

.

with yi the flow depth. Based on the data for 36 natural channel cross
sections obtained by U.S. Geological Survey, the equivalent Manning coefficient
calculated with Eq. (3.5) gives the least error of the four mentioned approaches
for calculating neqmann [126]. Therefore this equation will also be used for
simulating the dynamics of the Demer in Chapter 5.

3.2.3 Limitations of the Saint-Venant equations

The Saint-Venant equations are derived based on the assumptions mentioned
in Section 3.2.1. There are some cases for which these hypotheses do not
hold [104].

3.2.3.1 Two-dimensional flow

The Saint-Venant equations assume the flow is one-dimensional. However for
flood plains or large rivers, the flow cannot be considered to be one-dimensional
and they need to be modelled with the two-dimensional Saint-Venant equations
[43]. In this work we restrict ourselves to examples that can be reasonably
modelled with the one-dimensional Saint-Venant equations. This is a valid
assumption for most of the open channels that are controlled with hydraulic
structures, like irrigation or drainage canals, regulated rivers and sewers.
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3.2.3.2 Non-hydrostatic pressure distribution

For a non-hydrostatic pressure distribution the pressure term in the Saint-
Venant equations needs to be modified. The need for a non-hydrostatic pressure
distribution is usually linked to hydraulic phenomena with a small wave length
(due to geometric variations or hydraulic variations). A more accurate model is
provided by the Boussinesq equations which add a third order derivative term
to the Saint-Venant equations [30,172].

3.2.3.3 Sharp discontinuities

The Saint-Venant equations are not longer applicable when the flow encounters
sharp discontinuities. These discontinuities can be caused by hydraulic
structures. As it will be explained in the next section, these structures are
treated as boundary conditions for the Saint-Venant equations and are modelled
with a static algebraic relationship.

3.3 Boundary conditions

The Saint-Venant equations describe the dynamics of a channel. However one
can only simulate the evolution of the water level and the discharge along
the channel if these equations are combined with two boundary conditions.
Possibilities are

• a given discharge or water level,

• a rating curve,

• a hydraulic structure

• or a junction.

These four types of boundary conditions will now be discussed in more detail.

3.3.1 Given discharge or water level

The most simple boundary condition for a reach is where the upstream or
downstream discharge or water level is given. Examples when a discharge is
given are a pump extracting or adding water to a reach or the upstream inflow
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hres

∆

reservoir reach

Figure 3.2: Reservoir connected to a reach.

of a reach modelled as a disturbance signal. For this last case, the boundary
condition is equal to the following formulation:

Q(0, t) = Qdist(t)

with Qdist the (time-varying) disturbance signal. For the case of a given water
level, one can think of the example where the channel is connected to a very
large lake or reservoir. One can make an abstraction of this reservoir and
assume that its water level will be a (known) constant value. For the reach in
Fig. 3.2 this means that its upstream water level will be constant in time and
equal to the water level of the reservoir (with correction of the difference in the
height of their bed levels):

h(0, t) = hres − ∆.

3.3.2 Rating curves

A type of boundary condition often used at the downstream end of a reach are
rating curves. A rating curve defines a relationship between the downstream
water level and the downstream discharge. The rating curve can be determined
by fitting a predefined model equation on a data set of measured water levels
and discharges.

3.3.3 Hydraulic structures

3.3.3.1 Controllable hydraulic structures

In general

Hydraulic structures are installed in river systems to manipulate the discharges
and the water levels along reaches as well as to influence the flow of water
between the reaches and reservoirs. The predictive controllers designed in
Chapters 4 and 5 will determine the optimal flow for each of these hydraulic
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structures. Many types of hydraulic structures can be found in practice.
Examples are sluices, weirs, culverts, pipes and orifices. In general the discharge
through a gate can be modelled in the following way:

Qgate(t) = f̃(c(t), hup(t), hdown(t))

where Qgate(t) is the discharge controlled by the gate, c(t) is the gate position
[m], hup(t) is the water level on the upstream part of the gate, hdown(t) is the
water level on the downstream part and f̃ : R3 → R is a nonlinear function.

Given this equation, the boundary conditions for two channels i and j connected
to each other with a gate m can be formulated as follows:

Q(i)(L(i), t) = Q(m)
gate(t), (3.6)

Q(j)(0, t) = Q(m)
gate(t), (3.7)

Q(m)
gate(t) = f̃

(

c(m)(t), h(i)(L(i), t), h(j)(0, t)
)

(3.8)

where the notation with superscript ·(i) is used to indicate the channel, gate
or reservoir the variable or parameter belongs to. E.g. L(i) corresponds
with the length of channel i, while c(m) is the gate position of the gate m.
Equations (3.6)-(3.8) simply mean that the gate discharge is equal to the
discharge leaving the first channel and equal to the discharge entering the
second channel.

The specific form of the function f̃ depends on the type of the structure. Two
types of structures are used in this work and will be discussed in detail: the
underflow vertical sluice and the gated weir.

Underflow vertical sluice

Modelling the discharge controlled by an underflow vertical sluice is extensively
described in the literature. Most of the models make a distinction between
free flow and submerged flow (see Fig. 3.3). In the free flow condition the
downstream water level has no influence on the discharge. This can only happen
if this water level is sufficiently small. If this is not the case, then the sluice
is in the submerged flow condition and the downstream water level influences
the discharge together with the gate opening and the upstream water level.
A limit is needed to define the condition “small enough”. This boundary is
called the distinguishing condition and depends on the upstream water level,
the gate opening and the contraction coefficient CC . The contraction coefficient
is defined as the ratio of the water level at the vena contracta (the minimum
water depth in the downstream channel) to the gate opening. If the downstream
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hup

hdownc
CCc

(a) Free flow

hup
hdown

c

(b) Submerged flow

Figure 3.3: Free flow (a) and submerged flow (b) condition for a vertical sluice
with hup the upstream water level, hdown the downstream water level, c the
gate opening and CC the contraction coefficient.

water level exceeds this limit then the sluice is in the submerged flow condition,
in the other case it is in the free flow condition.

In the literature one can find different procedures for defining the discharge law
f̃ for a vertical sluice [21,23,69,70,80,98,100,117,147,152,164,195]. One way
is to start from conservation laws to find a theoretical discharge law which is
applicable in most cases. A second approach is to start from the theoretical
discharge law, but further refine it by incorporating experimental knowledge.

Theoretical discharge law. Based on theoretical results one can derive the
following expression for calculating the gate discharge for a vertical sluice with
a rectangular cross section [69,100,152,164,195]:

Qgate(t) = CD(t)wc(t)
√

2ghup(t) (3.9)

with CD the discharge coefficient and w the width of the sluice [m]. The specific
equation for the discharge coefficient depends on the flow condition:

free flow: CD(t) =
CC

√

1 + α(t)
, (3.10)

submerged flow: CD(t) = CC

[

β(t) −
√

β(t)2 −
(

1
α(t)2 − 1

)2(

1 − 1
γ(t)2

)
]1/2

1
α(t) − α(t)

(3.11)

with CC the contraction coefficient, β(t) = (1/α(t) − 1)2 + 2(γ(t) − 1), α(t) =
CCc(t)/hup(t) and γ(t) = hup(t)/hdown(t). In practice the contraction
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coefficient varies with the gate opening, the shape of the gate, the upstream
and downstream water level, etc. Theoretical reasoning indicates that CC

can vary between 0.598 and 0.611 for a sharp-edged vertical sluice, while
experimental results show a variation between 0.61 and 0.74 [195]. One can
take CC equal to 0.61 for engineering applications as a practical value with
adequate precision [69,98].

The following equation can be found for the distinguishing condition: [100,152,
195]:

hdown,max(t) =
CCc(t)

2

(√

1 +
16

α(t)(1 + α(t))

)

. (3.12)

The sluice is in free flow if hdown(t) is below hdown,max(t). Otherwise the sluice is
in the submerged flow condition. Given Eqs. (3.10)-(3.12) everything is known
to calculate the discharge for a vertical sluice with a rectangular cross section
with Eq. (3.9) given the upstream water level, the downstream water level and
the gate opening.

Until now it was assumed that hup ≥ hdown. Equation (3.9) can easily be
extended to the general case. If hdown(t) becomes larger than hup(t), the roles
of hup(t) and hdown(t) interchange and the discharge becomes negative.

Empirical discharge laws. In the literature other equations can be found
for describing the discharge controlled by an underflow vertical sluice. These
equations are often based on the theoretical discharge law (Eq. (3.9)) but some
adaptations are performed based on numerical experiments.

A first group of models uses exactly the theoretical discharge law (for free
flow and submerged flow) but determines the value for CD using experimental
results. E.g. in [70] the discharge coefficient is evaluated experimentally which
resulted in a nomogram which can be used to find the value of CD given the
current upstream and downstream water levels and the gate opening. Another
example can be found in [164] where a nonlinear regression is performed on
experimental data.

A second group of models uses an adapted version of the theoretical discharge
law for both the free flow condition and the submerged flow condition. A
vertical sluice is modelled in [147] by the equations

free flow: Qgate(t) = CDwCCc(t)
√

2g(hup(t) − CCc(t)),

submerged flow: Qgate(t) = CDwCCc(t)
√

2g(hup(t) − hdown(t)).
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Figure 3.4: Gated weir with hup the upstream water level, hdown the
downstream water level, c the height of the gate and zc the sill level.

Other modifications of the theoretical discharge law can be found in [21,23,80,
117], but all of them are very similar to each other.

One step further in using empirical discharge laws for modelling a vertical
sluice can be found in software packages like SIC, HEC-RAS [39], SOBEK
and InfoWorks. These packages use different equations for specific ranges
of the influencing variables resulting in accurate results but also many more
parameters to be tuned.

Equations used. In this work Eqs. (3.9)-(3.12) will be used for modelling the
vertical sluices. Experimental results indicate that this approach showed a high
performance consistency for three different real gates [152]. The experimental
discharge laws achieve equal or better results but require experimental data for
calibrating the different parameters.

Gated weir

One of the structures used to control the Demer is the gated weir and is shown
in Fig. 3.4 where zc is the bottom elevation of the weir [m], the so-called sill level.
The discharge passing over the gate can be influenced by changing the rotation
angle of the weir. There are two different operating modes depending on the
gate position and the upstream and downstream water level: the gate control
mode and the throat control mode. In the gate control mode the discharge over
the gate is influenced by the gate position: decreasing or increasing the gate
position will increase, respectively decrease the discharge over the gate. One
can reduce the rotation angle until the discharge over the gate is at its maximal
value (for a given upstream and downstream water level). Further decreasing
the rotation angle will not affect the discharge over the gate: the gate is in
throat control mode and the discharge is influenced by zc. Again just as for
the underflow vertical sluice both control modes can be further divided in a
free flow condition and a submerged flow condition. In the free flow condition
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the discharge is independent of the downstream water level, in the submerged
flow condition the downstream water level influences the discharge.

Equations describing the relation between the discharge over the weir, the
upstream and downstream water level and the gate position can be found in
[147]. For example, for the throat control mode the following equations are
typically used:

free flow: Qgate(t) = 0.5CDw
√

g

(
2

3
(hup − zc)

)1.5

, (3.13)

submerged flow: Qgate(t) = 0.5γCDw
√

g

(
2

3
(hup − zc)

)1.5

(3.14)

with γ a coefficient for correcting the effect of submerged flow. Similar
equations can be found for the gate control mode.

In this work the gated weirs are used when MPC is tested on the Demer.
The equations used to model these gated weirs are taken from the InfoWorks
model. These equations are similar to Eqs. (3.13) and (3.14) with some small
modifications based on measurement data. More information can be found in
Appendix A.1 and in the manual of the software InfoWorks-RS [78].

3.3.3.2 Fixed hydraulic structures

Many different types of structures exist in river systems for which the discharge
over the structure cannot be changed by an operator in contrast to e.g. a gated
weir. An example of such a structure is a spill. A spill provides the release of
flow from an upstream area to a downstream area over a jagged or irregular
weir. It can be used to model in-line flows over irregular weirs, as well as lateral
flows, such as those over embankments between two open channels or between
an open channel and a flooded area. The discharge over a spill can in general
be modelled with the following equation:

Qspill(t) = g̃(hup(t), hdown(t))

where Qspill(t) is the discharge over the spill, hup(t) is the water level on the
upstream part of the spill, hdown(t) is the water level on the downstream part
of the spill and g̃ : R2 → R is a nonlinear function.

This model structure will only be used in Chapter 5 where a mathematical
model is constructed for the Demer. The equations used to model the spill
are based on the equations used by the InfoWorks model of the Demer [78].
Internally the function g̃ splits the calculation of the flow over the irregular weir
into separate flows over segments. The equation calculating these separate flows
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Figure 3.5: Two examples of junctions where the white rectangle represents a
gate.

takes into account whether the weir is in free flow or in submerged flow and in
forward or reverse mode. These separate flows are summed together to give the
discharge of the entire spill. The equations are given in Appendix A.2. More
information can be found in the manual of the software InfoWorks-RS [78].

3.3.4 Junctions

Junctions are places where three or more reaches coincide or where a reach (or
reservoir) is connected via a hydraulic structure to two other reaches. At these
points all the water levels of the channels starting or ending in this junction
should be equal and the sum of the discharges entering the junction should be
equal to the sum of the discharges leaving the junction. Applying this to the
example on the left of Fig. 3.5, results in the following equations:

h(1)(L(1), t) = h(2)(0, t),

h(1)(L(1), t) = h(3)(0, t),

Q(1)(L(1), t) = Q(2)(0, t) + Q(3)(0, t).

The boundary conditions for the three channels of the example on the right are
a combination of the boundary conditions of the junction and the boundary
conditions of the gate:

h(1)(L(1), t) = h(2)(0, t),

Q(1)(L(1), t) + Qgate(t) = Q(2)(0, t),

Q(3)(L(3), t) = Qgate(t),

Qgate(t) = f̃
(

c(gate)(t), h(3)(L(3), t), h(2)(0, t)
)

.

The discharge through the gate is used as downstream boundary condition of
the third reach.
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channel 1
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Figure 3.6: Example of a reservoir connected to two reaches and one gate.

3.4 Modelling of reservoirs

Water reservoirs are used to temporally store the excess of water during periods
of heavy rainfall. One approach to describe the dynamics of such a water
reservoir is to model it as a storage node or as one big tank that maintains
water continuity. This means that the change in water volume of the reservoir
is related to the amount of water entering and leaving the reservoir at every
time instant:

dVres/dt = Qin(t) − Qout(t) (3.15)

with Vres the volume of the reservoir
[

m3
]

, Qin the sum of inflowing discharges
through gates or reaches and Qout the sum of outgoing discharges through
gates or reaches. Applying Eq. (3.15) to the system presented in Fig. 3.6, the
reservoir dynamics are described by

dVres/dt = Q(1)(L(1), t) + Qgate(t) − Q(2)(0, t).

The boundary condition of the reaches connected to the reservoir is given by
the water level of this reservoir. Also the discharge through gates directly
connected to a reservoir depends on the actual water level of the reservoir.
Therefore the relationship between the volume of the reservoir Vres and its
corresponding water level hres needs to be known. This relation can be derived
based on the actual shape of the reservoir and is typically nonlinear.

The advantage of modelling a reservoir as a tank is the simplicity of the model:
only one variable is needed to model the dynamics of the entire reservoir.
However it has as disadvantage that the time needed for water to travel from
one point to another is not included in the model. If the total inflowing
discharge Qin and the total outgoing discharge Qout increase with the same
amount at every time step, the water level of the reservoir will not change.
This means that the extra amount of water coming into the reservoir at one
point is instantaneously levelled out with the amount of water being removed at
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another point around the reservoir without taking into account the time needed
for the water to travel from the first point to the second. In reality there will be
a difference in the water levels at the point where water is added, the extraction
point and the middle of the reservoir. For small reservoirs, this effect could be
neglected, but for larger reservoirs these delay effects will increase and it can
become necessary to include them.

One approach to overcome this disadvantage is to model the dynamics of a
reservoir in the same way as a channel. This means that the Saint-Venant
equations (Eqs. (3.1) and (3.2)) will be used to model the dynamics of the water
levels and discharges along the reservoir. In this way the effect of adding and
extracting water of the reservoir at different places is automatically included
but at the cost of having a higher number of variables. Because one of the
assumptions of the Saint-Venant equations is that the flow is one-dimensional,
this approach is only suitable if the reservoir is not too wide. Wider reservoirs
can be modelled with the equations describing unsteady two-dimensional flows
or based on the one-dimensional equations in the main flow direction [43].
However this approach is considered to be beyond the scope of this work and
will therefore not be used.

3.5 Numerical solution method

Based on the modelling techniques seen in Sections 3.2, 3.3 and 3.4 a
mathematical model can be derived for a large class of river systems. However
because of the Saint-Venant equations, an analytical solution cannot be
found for the resulting system of equations, except for some simplified
cases. Therefore these equations need to be integrated numerically. Several
approaches can be found in the literature [18,43]:

• finite-difference methods [43,134,135,163],

• method of characteristics [43,121,122,158,159,163,191],

• finite-element methods [12,71,86],

• finite-volume methods [72,196]

• spectral methods [40]

• and boundary-element methods [97].

Because the first category is used the most in simulating the Saint-Venant
equations, we implemented a finite-difference method for simulating river
systems. The development of the specific finite-difference method used in this
work will be explained in the following subsections and is based on [157].



NUMERICAL SOLUTION METHOD 45

Q1 Q2 QnQ

h1 h2 h3 hnh

Figure 3.7: Grid structure used by the Preissmann scheme.

3.5.1 Preissmann scheme

3.5.1.1 The method

The Preissmann scheme is a numerical method for solving the Saint-Venant
equations which is often used in the literature [52, 99, 135]. The infinite
dimensional variables h and Q are approximated on a finite grid in space
and time. The spatial discretization is performed on a grid structure where
at every discretization point a water level and a discharge is modelled (see
Fig. 3.7 where the leftmost grid point coincides with the upstream part of the
reach and the rightmost grid point with the downstream part of the reach).
The total number of water levels nh is equal to the number of discharges nQ.
The partial derivatives are approximated with finite differences with respect to
space and time (where the following notation f(zj , tk) = fj,k is used for clarity
and ease of notation):

f(z, t) ∼= θ(φfj+1,k+1 + (1 − φ)fj,k+1)+ (3.16)

+ (1 − θ)(φfj+1,k + (1 − φ)fj,k)

∂f

∂z
∼=

1

∆z
(θ(fj+1,k+1 − fj,k+1) + (1 − θ)(fj+1,k − fj,k)) (3.17)

∂f

∂t
∼=

1

∆t
(φ(fj+1,k+1 − fj+1,k) + (1 − φ)(fj,k+1 − fj,k)) (3.18)

with ∆t the time step, ∆z the spatial discretization step, θ ∈ [0, 1] the
discretization parameter related to the time domain and φ ∈ [0, 1] the
discretization parameter related to the spatial domain. Equations (3.16)-(3.18)
are used for approximating the different terms in the two PDEs related to the
variables h, Q, A and Sf. The method is schematically visualized in Fig. 3.8. In
most situations φ is set equal to 0.5 for the ease of calculation. Depending on
the discretization parameter θ, one can find different schemes in the literature:

• θ = 0: explicit scheme,

• θ = 1/2: classic Preissmann,

• θ = 1: complete implicit scheme.
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Figure 3.8: Schematic presentation of the working procedure of the Preissmann
scheme (Source [52]).

Applying these approximations to the different terms in Eqs. (3.1) and (3.2), the
Saint-Venant equations are transformed into a system of nonlinear equations.
Combining these equations for every reach together with their boundary
conditions, gives rise to one big system of equations which has to be solved
for the water levels and discharges at the grid points at time tk+1 given their
values at time tk.

3.5.1.2 Stability analysis

One can show that for a linearized form of the Saint-Venant equations the
condition for numerical stability of the Preissmann scheme depends on θ [163].
For θ in the range between 0.5 and 1 the Preissmann scheme is unconditionally
stable [52]. For θ < 1

2 the solution grows with time and is always unstable.
The scheme is second order accurate for θ = 1

2 . In this case the scheme is
non-dissipative (the solution is not damped with time nor does it grow with
time) and it can cause numerical instability, solution failure or undesirable
oscillations in the solution [47, 50]. For these reasons, a value of θ > 0.5 is
needed to damp out the (numerically induced) oscillations. For θ = 1 the
output will have no oscillations but it may also have numerical diffusion which
reduces the accuracy [50]. Different ranges of values for θ are recommended in
the literature, e.g. 0.6 ≤ θ ≤ 1 [98], 0.55 ≤ θ ≤ 0.6 [50,160], 0.6 ≤ θ ≤ 0.67 [47],
while [49,80] uses θ = 0.6 and in [4] θ is set equal to 0.65.

Even though the Preissmann scheme is unconditionally stable for θ ∈ [0.5, 1],
not every ∆z and ∆t are appropriate for this implicit scheme to achieve a good
accuracy and numerical stability [160]. A high value of the Courant number
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typically leads to numerical instabilities [47], with the Courant number given
as the ratio between the actual wave velocity and the numerical wave velocity:

Cn =
|v| ± σ

∆z/∆t

with v = Q/A the flow velocity
[

m · s−1
]

and σ =
√

gD the wave celerity
[

m · s−1
]

with D the hydraulic depth (area over top width) [m]. Since it is
difficult to change ∆z during a simulation the only option to decrease Cn is
by decreasing ∆t. Numerical stability and accuracy are generally improved by
using smaller time steps. However this comes at the cost of greater computation
time and expense [47]. When one is simulating a river system, one should adapt
∆t during the simulation such that the maximum Courant number for all grid
points is close to 1 [52]. If Cn is too large, ∆t should be decreased, the equations
need to be resolved, the Courant number is recalculated for every grid point
and checked again. If the Courant number is too small, the simulation solution
can be accepted but ∆t can be increased to allow larger time steps in the future.

3.5.1.3 Disadvantage of the Preissmann scheme

One disadvantage of the Preissmann scheme is that one needs to make a choice
between using forward or backward differences for approximating the partial
derivatives. The best choice depends on the river characteristics, and the initial
and boundary conditions. In the next part we will introduce an approach that
does not suffer from this drawback.

3.5.2 Preissmann scheme applied to staggered grid structure
in combination with upwinding approach

3.5.2.1 The method

To overcome the disadvantage of the Preissmann scheme, the numerical scheme
that will be used throughout this dissertation, uses a staggered grid structure
for the spatial discretization (see Fig. 3.9) following the approach introduced
by Stelling and Duinmeijer [157, 193]. Every grid point now models only a
water level or a discharge, not both (except at the upstream and downstream
boundary). Following the approach of the standard Preissmann scheme, the
partial derivatives in the first PDE of the Saint-Venant equations (Eq. (3.1))

for a channel i are approximated in the following way (note Q(i)(zj , tk) = Q(i)
j,k
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Figure 3.9: Staggered grid structure used by the adapted Preissmann scheme.

and Q(i)
j,k+θ = θQ(i)

j,k+1 + (1 − θ)Q(i)
j,k):

∂h(i)
j,k

∂t
1

h(i)
j,k+1 − h(i)

j,k

∆t
,

∂Q(i)
j,k

∂z
1

Q(i)
j,k+θ − Q(i)

j−1,k+θ

∆z
,

∂A(i)
j,k

∂h
1
(
∂A

∂h

)(i)

j,k+θ

.

Notice that in the approximation of the partial derivative ∂Q/∂z, it is not
needed to make a choice between using forward or backward differences. The
reason is that the grid point modelling the water level lies in between two
grid points modelling a discharge (in contrast to the standard Preissmann
scheme). A similar approach is used for the terms ∂Q(z, t)/∂t, A(z, t),
∂h(z, t)/∂z and Sf(z, t) in the second PDE (Eq. (3.2)). The advection term
∂(Q2(z, t)/A(z, t))/∂z is approximated with an upwinding approach:

∂

∂z

(

Q(i)2

A(i)

)

j,k

1











1
∆z

(
(

Q(i)2

A(i)

)

j+1,k+θ
−
(

Q(i)2

A(i)

)

j,k+θ

)

Q(i)
j,k < 0,

1
∆z

(
(

Q(i)2

A(i)

)

j,k+θ
−
(

Q(i)2

A(i)

)

j−1,k+θ

)

Q(i)
j,k ≥ 0.

Fig. 3.10 visualizes the stencils used to approximate a term related to a water
level or a discharge at zj . In this way the two PDEs describing the dynamics
of a single channel i are transformed into a system of nonlinear equations. The
actual form of the staggered grid structure at its boundaries depends on the
boundary conditions of the reach. Fig. 3.11 shows the two possibilities for the
upstream boundary of a reach. A similar structure exists for the downstream
part of the reach. The left plot applies to the situation where the upstream
boundary condition is a given discharge, a rating curve, a hydraulic structure
or a junction and the right plot applies when the upstream water level is given
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Figure 3.10: Stencils used in the approximation of the Saint-Venant equations
for the terms related to water levels (left) and discharges (right).
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Figure 3.11: Possible boundaries of the staggered grid structure of a reach at
its upstream side. The left plot applies when the upstream boundary condition
is a given discharge, a rating curve, a hydraulic structure or a junction. The
right plot applies for a given upstream water level or when a reservoir is directly
connected to the upstream part of the reach.

or when a reservoir is directly connected to the upstream part of the reach.
For the situation where the upstream and downstream boundary conditions
are given discharges, the first PDE is transformed into the following equation:

∂A(z, t)

∂h(z, t)

∂h(z, t)

∂t
+
∂Q(z, t)

∂z
= 0

⇒ for j = 1, . . . , n(i)
h :

(
∂A

∂h

)(i)

j,k+θ

h(i)
j,k+1 − h(i)

j,k

∆t
+

Q(i)
j,k+θ − Q(i)

j−1,k+θ

∆z
= 0 (3.19)

where ∆z is replaced by ∆z/2 for j = 1 and j = n(i)
h . The second PDE is

approximated with the following equations:

∂Q(z, t)

∂t
+ gA(z, t)

(
∂h(z, t)

∂z
+ Sf(z, t) − S0

)

+
∂

∂z

Q(z, t)2

A(z, t)
= 0
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⇒ for j = 2, . . . , n(i)
Q − 1 :

Q(i)
j,k+1 − Q(i)

j,k

∆t
+ gA(i)

j,k+θ

(

h(i)
j,k+θ − h(i)
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(i)
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)
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


1
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(
(

Q(i)2

A(i)

)

j+1,k+θ
−
(

Q(i)2

A(i)

)

j,k+θ

)

Q(i)
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1
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(
(

Q(i)2

A(i)

)

j,k+θ
−
(

Q(i)2

A(i)

)

j−1,k+θ

)

Q(i)
j,k ≥ 0

= 0. (3.20)

This set of equations can be written more compactly as follows:

f
(

h(i)(tk+1), h(i)(tk), q(i)(tk+1), q(i)(tk)
)

= 0
n(i)

h +n(i)
Q −2

, (3.21)

with h(i)(tk) =

[

h(i)
1 (tk), . . . , h(i)

n(i)
h

(tk)

]T

, q(i)(tk) =

[

Q(i)
1 (tk), . . . , Q(i)

n(i)
Q

(tk)

]T

and f : R
2·
(

n(i)
h

+n(i)
Q

)

→ R
n(i)

h +n(i)
Q −2. The system of nonlinear equations

consisting of Eq. (3.21) for each channel together with all the boundary
conditions needs to be solved for h(i)(tk+1) and q(i)(tk+1) of every channel
given the values of these variables at time step tk. This can be done with the
Newton-Raphson method. The same limits on θ, ∆z and ∆t apply as the one
mentioned for the standard Preissmann scheme. In the remaining part of this
work θ is set equal to 0.6.

This discretization technique is also applied to the equations of Sections 3.3 and
3.4 describing the boundary conditions and the reservoir dynamics respectively.
E.g., when applied to Eq. (3.15), the resulting equation is as follows:

dVres/dt = Qin(t) − Qout(t)

⇒
Vres(tk+1) − Vres(tk)

∆t
= θ(Qin(tk+1) − Qout(tk+1))

+ (1 − θ)(Qin(tk) − Qout(tk)).

3.5.2.2 Structure exploitation

At every time step a nonlinear system of equations needs to be solved. One
important aspect to solve this system of equations in an efficient way is to
calculate the Jacobian J of the river equations in an analytical way (and not
e.g. by using finite differences):

J =
∂f

∂x
,
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Figure 3.12: Sparsity pattern of the Jacobian for the nonlinear system
(Eqs. (3.19)-(3.20)) for different ordering of the water levels and the discharges
and of the nonlinear equations.

with x the unknown water levels and discharges.

Another important aspect is to take care how the variables for every channel are
internally organized such that the Jacobian presents a well-defined structure.
One possible approach is to store for a reach i first all the water levels followed
by the discharges:

x(i) =

[

h(i)
1 , h(i)

2 , . . . , h(i)

n(i)
h

, Q(i)
1 , . . . , Q(i)

n(i)
Q

]T

. (3.22)

There is only a direct coupling via the discretized equations between the
variables on neighbouring grid points. However by storing the variables as in
Eq. (3.22) and sequentially handling the discretized equations of the first PDE,
the discretized equations of the second PDE and the boundary conditions, this
structure is not preserved in the matrix J. This can be seen in the left plot in
Fig. 3.12 where the sparsity pattern for J is shown. The gray and black dots
represent elements different from zero of the first and second PDE respectively
and the black circles represent elements different from zero associated with the
upstream and downstream boundary conditions. As we can see the structure
is totally destroyed. This is prevented by using a smarter ordering for the
variables:

x(i) =

[

Q(i)
1 , h(i)

1 , Q(i)
2 , h(i)

2 , Q(i)
3 , . . . , h(i)

n(i)
h

, Q(i)

n(i)
Q

]T

.

Using this ordering in combination with an intelligent ordering of the Eqs. (3.19)
and (3.20) and the boundary conditions, the structure is preserved and the
matrix J has a banded diagonal structure with bandwidth three (see the right
plot in Fig. 3.12).
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3.5.2.3 Steady state solution

For most of the simulation results shown in this dissertation the initial condition
of the river systems will be the steady state solution for a given set of initial
discharges and upstream or downstream water levels for some of the reaches.
In steady state, there is no change in the water levels or discharges:

∂Q(z, t)

∂t
= 0,

∂h(z, t)

∂t
= 0. (3.23)

Using this information in the first PDE of the Saint-Venant equations (Eq. (3.1))
results in:

∂Q(z, t)

∂z
= 0.

This means that in steady state the discharge along a reach is constant.
The corresponding steady state water levels can be found from substituting
Eq. (3.23) into the second PDE of the Saint-Venant equations (Eq. (3.2)):

∂

∂z

Q2
0

A(z, t)
+ gA(z, t)

(
∂h(z, t)

∂z
+ Sf(z, t) − S0

)

= 0 (3.24)

This is actually an Ordinary Differential Equation (ODE) for a given constant
value for the discharge Q0 along the reach. This ODE can be solved if the
water level at one grid point is known. This ODE can be rewritten as

∂h(z, t)

∂z
= ±

(
Q2

0

A(z, t)2

∂A

∂h
− gA(z, t)

)−1

gA(z, t)(Sf(z, t) − S0)

where the plus sign needs to be used to calculate the water levels downstream
of the given water level, and the minus sign for the water levels upstream of the
given water level. The water levels can be found by integrating this ODE with
e.g. a Runge-Kutta solver [58]. However the calculated steady state values are
not necessarily the steady state values of the discretized Saint-Venant equations.
Therefore the steady state values of the water levels are calculated by applying
the same finite difference approximations used for discretizing the Saint-Venant
equations to Eq. (3.24). This results in a system of nonlinear equations which
can be solved with a Newton-Raphson method. The advantage of this approach
is that the resulting water levels and discharges are steady state values of the
numerical approximation of the PDEs.
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3.5.3 Illustrative example: dam break problem

In this section the simulation results obtained with the implemented numerical
solution method for a dam break problem will be discussed. This example is
used to verify the correctness of the implementation, to illustrate the accuracy
of the numerical scheme and as didactic example to illustrate the process
dynamics of a river system. The simulation results for other test examples are
given in Appendix B. There it is shown that the maximal difference between
the numerical steady state solution and the analytic steady state solution for
two test cases is less than 1.6 mm. A mass conservation test indicates that the
fictitious amount of water added or removed during simulation is limited. Also
the effect of a time-varying given upstream and/or downstream discharge as
boundary conditions for a single reach is visualized. The last example consists
of two reaches connected to each other with a gated weir. In this example the
concept of “uncontrollability” related to hydraulic structures is explained. This
concept will return in Chapter 4.

A problem extensively studied in the literature is the dam break problem.
Initially the channel is in steady state with the water levels upstream of the dam
considerably larger than the water levels downstream of the dam. At a certain
time the dam breaks and the water flows from the upstream side of the dam
to the downstream side. For some simple cases an analytical solution can be
found [51,67]. Consider the example of a 4 km reach with a uniform rectangular
cross section, with a bottom width of 1 m, no friction and a horizontal bed slope.
The initial condition is defined as

h(0, z) =

{

hl z ≤ zdam,

hr z > zdam,

with zdam the position of the dam, while the flow is zero everywhere. For the
values hl = 8 m, hr = 2 m and zdam = 2000 m, Fig. 3.13 shows the analytic
solution together with the calculated solution at four different time instances.
For the formulation of the analytic solution, the reader is referred to [67]. In
spite of the large discontinuity in the initial condition, the formulated numerical
scheme gives a good approximation of the analytic solution. Fig. 3.14 shows
the evolution of the water levels after the dam break in space and time for the
first 100 seconds.
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Figure 3.13: Comparison of the water levels of the analytic solution of the dam
break example with the water levels calculated with the numerical simulator
at four different time instants.
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Figure 3.14: Simulation results for the test regarding the dam break problem
of the numerical simulator (nh = 101). The top plot shows the evolution of
the water levels in space and time for the first 100 seconds. The plane on
the bottom represents the bedding of the reach. The bottom plot shows the
evolution of the discharges in space and time for the first 100 seconds. The bold
lines correspond with the upstream and downstream boundary conditions. The
upstream discharge and downstream discharge are kept constant at 0 m3 · s−1.
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3.6 Linear-Nonlinear model & other approximate
models

One important aspect of MPC is the model used by the controller to predict the
future behavior of the system. This model should provide a good mathematical
characterization of the system dynamics but at the same time it should not
be too complex (cfr. Occam’s razor principle): the most simple model that
approximates the system behavior and is suitable for its purpose, should be
favored. After given a short review of the different types of approximate models
found in the literature for channels and reaches, a new type of approximate
model usable for flood control is proposed. This model is used throughout the
next chapters in this dissertation.

3.6.1 Literature review

In general there are three types of models for approximating a complex system:

• A white box or physical model is a model based on first principles.
E.g. based on the Newton equations one can model many different
mechanical systems.

• In many applications it can be too time consuming to derive a white box
model or the resulting white box model can be too complex. System
identification algorithms can be used in this situation to build a model
based on measurement or simulation data. In the domain of system
identification one can find two types of models. Black box models are
derived solely based on data and result in an empirical input-output
relationship [107]. Grey box modelling is based on both insight into
the system and experimental data. Some unknown free parameters can
be estimated with system identification techniques.

All three types of models can be found in the literature for finding approximate
models of river systems. White box models are based on the Saint-Venant
equations to describe the dynamics of a single reach. Based on measured
water levels and discharges, a black box model can be derived with system
identification techniques. Integrator-delay models and reservoir models are
examples of grey box models.
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3.6.1.1 Finite-difference method applied to linearized Saint-Venant equa-
tions

Different works can be found in the literature where finite-difference approx-
imations have been used for set-point control of irrigation canals or reaches
[13, 115, 138]. These methods start by linearizing the Saint-Venant equations
around a desired working point. These linearized equations are then discretized
in space and time by using a finite difference method in order to generate
discrete-time linear (white box) models. For a high number of grid points,
these models provide a good approximation of the original nonlinear dynamics
for small variations around their working points. However when gates are
present, these approximations deteriorate fast for larger variations.

3.6.1.2 System identification techniques

Several applications of system identification techniques for finding approximate
models for river systems can be found. E.g. the authors in [141] identified
different black box model structures based on experimental data to approximate
the dynamics of a canal pool. Linear and nonlinear grey box models were
proposed in [62, 131, 186] where the parameters of these models were found
with system identification techniques. Neural networks were used in [85, 194]
to model rivers.

3.6.1.3 Integrator-delay model

The finite-difference approximations are often too complex if one is only
interested in set-point control. To limit the computational burden for MPC,
model approximations were derived. The most popular approximate model in
literature for the purpose of set-point control is the integrator-delay model [148].
This model starts from the idea that the most common flow profile in controlled
open-channels is the backwater curve and divides a channel into two parts:
a part where the flow is uniform and a part that is affected by backwater.
Fig. 3.15 visualizes both parts: the water depth at the downstream end is above
the normal depth and decreases in the upstream direction until it reaches the
upstream end of the reach or until the water depth equals the normal depth.
Uniform flow is rarely present in open channels: geometrical irregularities of
the bed slope and the cross sectional profiles, backwater effects, etc. cause the
water depth to change over the distance [147]. However if the depth of flow
varies within a few percentages of the normal depth, it may be designated to
be uniform for practical purposes [46].
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Figure 3.15: Example of a backwater curve and variables for the integrator-
delay model (source: [147]).

The resulting integrator-delay model in continuous time is the following [147,
182]:

de

dt
=

1

As
(∆Q(0, t − τ) − ∆Q(L, t))

with e the deviation of the downstream water level from its operating point
[m], τ the time-delay of the normal depth portion of the channel [s], As the
surface of the backwater part

[

m2
]

and ∆Q(0, t) and ∆Q(0, L) the deviation
of the upstream, resp. downstream discharge from their operating point. The
time-delay τ and the surface area of the backwater part As are channel specific
and need to be estimated. More information about the determination of the
values of these parameters can be found in [147, 182]. Multiple examples can
be found in literature where integrator-delay models are successfully used for
set-point control of river systems [24,48,49,102,103,105,106,150,176,178,182,
184]. Although its successful application in many examples, the author in
[182] pointed out that MPC based on an integrator-delay model for set-point
control can result in a worse performance compared to more traditional control
techniques due to the simplifications made for generating the model.

3.6.1.4 Reservoir model

The use of integrator-delay models is limited to set-point regulation since they
are only accurate enough in a small region around the point for which they were
calibrated. Because periods of heavy rainfall will cause very large deviations
from the calibration point, these models are not usable for flood control. Also
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they approximate the water level only at the end of every reach, and not
along the entire reach. A model type successfully used for flood control by our
research group [18–20, 37, 38] is the reservoir model type [174]. These models
have the advantage that they are more accurate than integrator-delay models
and are computationally less intensive than models based on finite-differences.

The first step in constructing a reservoir model for a river system consists
of lumping the system in space. Different parts of the river are lumped into
relevant locations. The number of these relevant locations is typically some
orders of magnitude smaller than the order of the finite-difference models, which
explains the computational advantage. These relevant locations are locations
upstream and downstream of hydraulic structures and places where there is a
high risk of potential flooding. These locations divide the river in a connected
set of reaches. In each reach the water continuity is modelled based on the
reservoir model type. The dynamics of such a reservoir are similar to the
one described in Section 3.4 which corresponds with the conservation of mass:
the change in volume of the reservoir is equal to the difference between the
inflowing and outgoing discharges. By connecting all these small reservoirs,
one can approximate a river system with a limited number of nodes.

This approach has been applied to simulate sewer and river networks [173,188].
In particular this procedure has been used to develop a conceptual model of the
Demer by the Hydraulics Laboratory of the KU Leuven under the supervision
of Prof. P. Willems and has successfully been used in combination with MPC
in the PhD research of T. Barjas Blanco [18] and by the author [37, 38]. For
more information about the calibrated conceptual model and the calibration
process, the reader is referred to [18,20,44,189].

3.6.2 Linear-Nonlinear model

Every model type discussed in the previous section has its own advantages and
disadvantages. The finite-difference models have in general a high accuracy but
their accuracy deteriorates quickly once the state of the river systems starts
deviating from the working point. The black box models can be very efficient.
However they need to be derived and calibrated for every new river system. It
is also far from certain that the same identification algorithm can be used for
different examples. Furthermore these models are only a good approximation
of a river system for situations similar to their calibration data. That is why the
usage of these models is limited to set-point control. The same limitation holds
for the integrator-delay model because it models only the downstream water
level of a reach. The reservoir models used to construct a conceptual model
of a river system have already proven their strength: if well calibrated these



60 MODELLING OF RIVER SYSTEMS

models can give an accurate approximation of the water levels and discharges
of a river system. However this approach has some disadvantages:

• The water levels for an entire reach are often represented by only one
water level. If the flood level of reaches are very irregular, this does not
seem to be the optimal choice. For example, it is hard to guarantee that
even if the modelled water level of the reach is below its flood level, the
entire water profile of the reach is below the flood limit.

• Constructing, calibrating and validating these conceptual models is a
very time-consuming process and requires expert knowledge to make good
choices for the many parameters. Furthermore, every time one wants to
apply e.g. MPC to another river system, this entire procedure has to be
repeated.

Because in this work we want to find out whether MPC can be used for flood
control in general, the approximate model should therefore also have some
generality in its design. The conceptual model of the Demer is valid only for
the Demer and hence does not directly lead to any general conclusion.

Therefore to be able to make more general conclusions, the approximate model
used in this work is based directly on the Saint-Venant equations. This model
should accurately approximate the water levels and discharges of a river system
for a wide range of variables such that it can be used for flood control. The
approximate model proposed in this section is based on a linearization of the
discretized Saint-Venant equations but combines this with the nonlinear gate
equations and is called the “Linear-Nonlinear” model or in short the LN-model.
This model will now be discussed in more detail.

3.6.2.1 Single reach

As mentioned earlier the dynamics of a single reach will be approximated with
a linearization of the discretized Saint-Venant equations (Eq. (3.21)). Here, the
procedure will be explained for the situation where the boundary conditions
are given upstream and downstream discharges of the reach. Linearizing
these discretized Saint-Venant equations together with the boundary conditions
around a nominal operating point (hss ∈ Rnh for the water levels, qss ∈ RnQ

for the discharges and uss = [Qin,ss, Qout,ss]
T ∈ R2 for the discharges at the

boundaries), the following linear state space model can be found:

[

∆h(k + 1)

∆q(k + 1)

]

= A

[

∆h(k)

∆q(k)

]

+ B1∆u(k) + B2∆u(k + 1) (3.25)
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Figure 3.16: Evolution of the inflowing discharge Qin and outgoing discharge
Qout used to evaluate the quality of the linear approximation of the Saint-
Venant equations in a single reach.

with ∆h(k) = h(k) − hss, ∆q(k) = q(k) − qss, ∆u(k) = u(k) − uss, A ∈
R(nh+nQ)×(nh+nQ), B1 ∈ R(nh+nQ)×2 and B2 ∈ R(nh+nQ)×2. Note that ∆u(k +
1) is needed to predict ∆h(k+1) and ∆q(k+1) since we work with a linearized
version of an implicit nonlinear scheme. For a single reach this does not cause
a problem since the boundary discharges are assumed to be given.

The quality of this type of approximate models is tested on a channel with the
following characteristics:

• the length L of the channel is 4000 m,

• the channel has a bed slope S0 of 0.001,

• it has a Manning roughness coefficient of nmann 0.040,

• the channel cross sectional profile has a trapezoidal shape with a bottom
width B of 6.1 m and side slopes S1 and S2 of 0.5.

Initially the channel is in steady state with a downstream water level of
7 m and an initial flow of 20 m3 · s−1. Fig. 3.16 shows the evolution of
the upstream discharge Qin and the downstream discharge Qout. Fig. 3.17
visualizes the water level profile (left) and discharge profile (right) of the reach
at different time instants calculated with the Saint-Venant equations and its
linear approximation. Both have used the same value nh = 201 for discretizing
the spatial domain. The approximate profiles form a good approximation
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Figure 3.17: The water level profile (left column of plots) and discharge profiles
(right column of plots) calculated with the approximate linear model and the
Saint-Venant equations after 300 s, 960 s, 3000 s and 6000 s for a single reach.
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Figure 3.18: Maximum absolute error for the water levels and the discharges
between the Saint-Venant equations (nonlinear model) and their linear
approximation.

of the real profiles. This can also be concluded from Fig. 3.18. This plot
shows the maximum value of the absolute difference between the water levels,
resp. the discharges calculated with the nonlinear simulator and with the linear
approximate model at every time step. The larger the step change in any of
the discharges at the boundary, the larger the error will be. However this
error decreases rapidly in time. Even though the value of the discharges at the
boundaries at the end of the simulation differ from their linearization point,
the steady state error on the water levels and discharges is very small.

3.6.2.2 Multiple reaches

The approach followed in this part is very similar to the approach introduced
in the following publication:

[34] Breckpot, M., Agudelo, O. M., and De Moor, B. Modelling of a
river system with multiple reaches. In Proc. of the 16th IFAC Symposium
on System Identification (Brussels, Belgium, July 2012), pp. 1454-1459.

The main difference is the complexity of the example. The publication
worked with channels with a rectangular cross sectional profile while here the
approximate model is tested on channels with a trapezoidal cross sectional
shape.
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Linear model

The dynamics of a single reach can be accurately approximated with a linear
state space model if the upstream and downstream discharges are given. One
could use the same approximation for a river system consisting of a series of
multiple reaches with hydraulic structures in between. Linearizing the Saint-
Venant equations together with the gate equations and the boundary conditions
around a nominal operation point (hss ∈ Rnh for the water levels with nh =

n(1)
h + n(2)

h + . . . + n(nc)
h the total number of water levels, nc the number of

channels, qss ∈ RnQ for the discharges with nQ = n(1)
Q + n(2)

Q + . . . + n(nc)
Q the

total number of discharges and uss ∈ Rnu for the inputs with nu the number
of inputs), the following linear state space model can be found:

[

∆h(k + 1)

∆q(k + 1)

]

= Ā

[

∆h(k)

∆q(k)

]

+ B̄1∆u(k) + B̄2∆u(k + 1) (3.26)

with Ā ∈ R(nh+nQ)×(nh+nQ), B̄1 ∈ R(nh+nQ)×nu and B̄2 ∈ R(nh+nQ)×nu .
The input vector u contains the upstream and downstream river discharges

together with the gate positions: u =
[

Qup, c(1), c(2), . . . , c(nu−2), Qdown

]T
.

Again ∆u(k + 1) is needed to predict ∆h(k + 1) and ∆q(k + 1). This is
not a problem because in general one knows what the gate position will be at
time instant tk+1.

As will be shown, the performance of this linear model degrades if the
input values do not stay close to their linearization point. Because a good
performance was achieved with this model for a single reach, the addition of
hydraulic structures is responsible for this performance degradation if the gates
do not stay close to their nominal operation point.

Linear-Nonlinear model

A solution for this problem is to work with a combination of the linearized
version of the Saint-Venant equations of each reach together with the nonlinear
gate equations. This means that the effect of the gates on the water levels and
the discharges is “pulled” out of the linear model. From now on this system
will be referred to as the LN-model (Linear-Nonlinear model). The linear part
of the LN-model has the following form:

[

∆h(k + 1)

∆q(k + 1)

]

= A

[

∆h(k)

∆q(k)

]

+ B1∆u(k) + B2∆u(k + 1)

with A ∈ R(nh+nQ)×(nh+nQ), B1 ∈ R(nh+nQ)×nu and B2 ∈ R(nh+nQ)×nu .
Every reach has now a given discharge as boundary condition for the upstream
and downstream end. The state space matrices can be found by linearizing the
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Algorithm 1 Simulation of the LN-model.

for k = 1, . . . do
h(k + 1) = ∆h(k) + hss

for i = 1, . . . until convergence/max number of iterations do
for each gate j do

select h(j)
up and h(j)

down out of h(k + 1)

use gate equation to calculate Q(j)
gate(k + 1) given c(j)(k + 1), h(j)

up

and h(j)
down and build up ∆u(k + 1)

end for[

∆h(k + 1)

∆q(k + 1)

]

= A

[

∆h(k)

∆q(k)

]

+ B1∆u(k) + B2∆u(k + 1)

end for
end for

Saint-Venant equations for each reach in combination with these new boundary
conditions. The main difference with Eq. (3.26) is that u now contains the gate

discharges instead of the gate openings: u =
[

Qup, Q(1)
gate, . . . , Q(nu−2)

gate , Qdown

]T
.

Hence, the only extra work is to make the transformation from the gate

openings c(k) =
[

c(1), . . . , c(nu−2)
]T

and c(k + 1) to the discharges over the

gates qgate(k) =
[

Q(1)
gate, . . . , Q(nu−2)

gate

]T
and qgate(k + 1). At time step k the

current upstream and downstream water levels for each hydraulic structure are
known. Given these water levels together with the current gate opening c(k),
qgate(k) can be computed from the gate equations as defined in Section 3.3.3.
The only difficulty lies in making the transformation from c(k+1) to qgate(k+1)
since the water levels h(k + 1) are unknown. A solution is to work in an
iterative way (see Algorithm 1). The water levels h(k) are used in combination
with c(k + 1) to estimate qgate(k + 1). With this estimate of u(k + 1) we can
calculate h(k + 1) and q(k + 1). qgate(k + 1) can now be refined by using
h(k +1) and c(k +1), etc. The author does not claim that this algorithm has a
theoretical proof of convergence. However simulation results for different types
of channels indicate that this algorithm can be used in practice.

Reduced order LN-model

Notice that the LN-model has the same (high) number of states as the nonlinear
model. An extra gain in computation time can be obtained by reducing
the number of states while still achieving accurate results (see e.g. [59]).
One method successfully used in many applications is Proper Orthogonal
Decomposition (POD). POD is a data-driven method where a suitable set of
ordered orthonormal basis vectors are derived from simulation or experimental
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data. Reduced order models are typically found by projecting (Galerkin
projection) the full-order models on the most relevant basis vectors ( [10], [137]).

POD and Galerkin projection were introduced in Section 2.5. Based on the
snapshot matrices X̃ ∈ Rnh×M for the water levels and X̂ ∈ RnQ×M for the
discharges of M samples of simulation data obtained with the linear part of
the LN-model, POD is used to find a ñhth order approximation of ∆h(k) and
a n̂Qth order approximation of ∆q(k):

∆h(k) ≈ ∆hñh(k) =
ñh∑

j=1

aj(k)ϕ̃j = Φ̃ñha(k), ñh . nh,

∆q(k) ≈ ∆qn̂Q(k) =

n̂Q
∑

j=1

bj(k)ϕ̂j = Φ̂n̂Qb(k), n̂Q . nQ,

where ϕ̃j ∈ Rnh , for j = 1, . . . , ñh, and ϕ̂j ∈ RnQ , for j = 1, . . . , n̂Q, are the

ñh and n̂Q most relevant orthonormal basis vectors, Φ̃ñh =
[

ϕ̃1, . . . , ϕ̃ñh

]

∈
Rnh×ñh , a(k) = [a1(k), . . . , añh(k)]T ∈ Rñh , Φ̂n̂Q =

[

ϕ̂1, . . . , ϕ̂n̂Q

]

∈ RnQ×n̂Q

and b(k) =
[

b1(k), . . . , bn̂Q(k)
]T ∈ Rn̂Q . Combining this result with the

Galerkin projection for the linear part of the LN-model results in the following
reduced order model:

[

a(k + 1)

b(k + 1)

]

= Ar

[

a(k)

b(k)

]

+ B1,r∆u(k) + B2,r∆u(k + 1)

with Ar = ΦT
n AΦn ∈ R(ñh+n̂Q)×(ñh+n̂Q), B1,r = ΦT

n B1 ∈ R(ñh+n̂Q)×nu and
B2,r = ΦT

n B2 ∈ R(ñh+n̂Q)×nu . The matrix Φn is constructed from the ñh and

the n̂Q most relevant orthonormal basis vectors Φ̃ñh and Φ̂n̂Q respectively:

Φn =

[

Φ̃ñh

Φ̂n̂Q

]

.

More information on the derivation of the POD basis vectors and a criterion
to determine a value for ñh and n̂Q are given in Section 2.5.

The steps for simulating the POD model are described by Algorithm 2.

Test example

The linear model, the LN-model as well as the reduced order LN-model will
be tested to approximate a river system consisting of two reaches connected to
each other through an underflow vertical sluice. Both reaches are identical and
have the following parameters:
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Algorithm 2 Simulation of the POD based LN-model

build the snapshot matrices X̃ and X̂
use SVD to find Φ̃nh and Φ̂nQ and construct Φn
[

a(0)

b(0)

]

= Φn ·

([

h(0)

q(0)

]

−

[

hss

qss

])

for k = 1, . . . do
hñh(k + 1) = Φ̃T

ñh
a(k) + hss

for i = 1, . . . until convergence/max number of iterations do
for each gate j do

select h(j)
up and h(j)

down out of hñh(k + 1)

use gate equation to calculate Q(j)
gate(k + 1) given c(j)(k + 1), h(j)

up

and h(j)
down and build up ∆u(k + 1)

end for[

a(k + 1)

b(k + 1)

]

= Ar

[

a(k)

b(k)

]

+ B1,r∆u(k) + B2,r∆u(k + 1)

hñh(k + 1) = Φ̂T
ñh

a(k + 1) + hss

end for
end for

• a length L of 4 km,

• the cross-sectional profiles have a bottom width B of 6.1 m and side slopes
S1 and S2 of 0.5,

• a bed slope S0 of 0.001

• and a Manning roughness coefficient nmann of 0.040.

The underflow vertical sluice is modelled with the equations given in Section
3.3.3.1 and has the same width as the bottom width of the channels. The
number of grid points per reach was set to nh = 201. The POD basis
vectors of the reduced order LN-model are derived from the system response
of the linearized reach dynamics when applying step changes to the boundary
conditions of each reach (1000 samples were gathered). Based on the energy
criterion introduced in Section 2.5, a decision can be made to select the ñh

and n̂Q most relevant POD basis vectors. Fig. 3.19 shows the plot of 1 − P̄ñh

and 1 − P̄n̂Q for the first 200 basis vectors. Fig. 3.20 and Fig. 3.21 show the
basis vectors ϕ̃j , resp. ϕ̂j associated with the 10 largest singular values. The
first half of each basis vector is associated with the normalized deviations of
the water levels/discharges of the first reach, while the second half belongs
to the deviations for the second reach. Based on a truncation degree of
1 − P̄ñh = 2.83 · 10−4 (P̄ñh = 0.9997) and 1 − P̄n̂Q = 1.89 · 10−4 (P̄n̂Q = 0.9998),
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Figure 3.19: Logarithmic plot of 1 − P̄ñh (top) and 1 − P̄n̂Q (bottom) for
determining the truncation degree of the POD basis vectors.

the first ñh = 41 POD basis vectors were selected for the water levels and the
first n̂Q = 43 POD basis vectors were selected for the discharges. This means
a reduction from 806 states to 83 states.

Fig. 3.22 shows the evolution of the upstream and downstream discharges
together with the gate position. Fig. 3.23 visualizes the water level profile
(left) and discharge profile (right) of both reaches at different time instants
calculated with the full Saint-Venant equations and the three approximate
models. Fig. 3.24 shows the maximal absolute error on the water levels and
the discharges at every time step for the three approximate models. The
performance of the linear model is worse than the performance of the LN-
model and the POD based LN-model. The result after 10 000 seconds show
that there is a significant steady state error in the water levels for the linear
model. This is not the case for the LN-models. The figure also shows that
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Figure 3.20: First 10 POD basis vectors for the water levels: ϕ̃1, ϕ̃2, . . . ϕ̃10
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Figure 3.21: First 10 POD basis vectors for the discharges: ϕ̂1, ϕ̂2, . . . ϕ̂10
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Figure 3.22: Evolution of the inflowing discharge Qin, the outgoing discharge
Qout and the gate position c used to evaluate the performance of the
approximate models of the Saint-Venant equations.

Table 3.2: The RMSE for the three approximate models with respect to the
nonlinear model for the water levels and the discharges.

RMSEh [m] RMSEQ

[

m3 · s−1
]

linear model 0.0842 1.9743

LN-model 0.0095 0.5009

reduced order LN-model 0.0103 0.5511

the model reduction with POD has almost no influence on the simulated water
levels or discharges: there is no visual distinction between the profile of the
water levels and the discharges of the LN-model and the POD based LN-model
for the four time instants. If necessary, a higher accuracy for the water levels
or the discharges can always be achieved by taking more basis vectors into
account for modelling these variables. Table 3.2 gives the Root-Mean-Square
Error (RMSE) for the simulation results of the linear model, the LN-model and
the reduced order LN-model with respect to the nonlinear model for the water
levels and the discharges. The RMSE for the water levels is defined as

RMSEh =

√
√
√
√
√

nh∑

j=1

TN∑

k=1

(

ĥ(zj , tk) − h(zj , tk)
)2

TN · nh
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Figure 3.23: The water level (left column of plots) and discharge (right column
of plots) profiles calculated with the linear model, the LN-model, the reduced
order LN-model and the Saint-Venant equations after 300 s, 960 s, 3000 s and
6000 s for two reaches connected to each other through an underflow vertical
sluice.
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Figure 3.24: Maximum absolute error for the water levels (top) and the
discharges (bottom) between the approximate models and the Saint-Venant
equations.

with TN the total number of time steps, h the results obtained with the
nonlinear model and ĥ the results obtained with the linear model, the LN-
model or the reduced order LN-model. A similar formula is used for the
discharges. The RMSE for the water levels and for the discharges lead to
the same conclusions: the RMSE is much larger for the results obtained with
the linear model as for the results obtained with the LN-model, while the effect
of the model reduction with POD on the results is limited.

Table 3.3 gives the average total time for 20 runs needed to perform the
simulation for the nonlinear model, the linear model, the LN-model and
the reduced order LN-model for a simulation time of 10 000 seconds. The
computation time for the three approximate models are significantly lower
than the one of the nonlinear model. The effect of including the nonlinear
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Table 3.3: The average simulation time for 20 runs for the four different models
with a PC with a 2.8 GHz Intel Core i7 and 8 GB of RAM.

simulation time [s]

nonlinear model 59.03

linear model 2.95

LN-model 3.84

reduced order LN-model 0.71

gate equations into the LN-model has almost no effect on the simulation
time compared with the linear model. The time needed to calculate the gate
discharge for a gate position is ignorable. An extra reduction in computation
time is achieved by the model reduction technique. However the speed-up is
not as big as the reduction of states because of the loss of structure in the
system matrices. Although the matrices A, B1 and B2 are very sparse, their
sparsity is destroyed by the multiplications with ΦT

n and Φn.

3.7 Conclusions

In general, we have shown how to construct accurate mathematical models of
river systems. The dynamics of the water levels and discharges along a single
reach are modelled with the Saint-Venant equations. These are two partial
differential equations modelling the conservation of mass and momentum. One
particular element in these equations is the resistance law used to model the
boundary friction of the channel. We have explained how these resistance laws
can be used when channels have different roughness coefficients along its cross-
sectional profile. This will be important when a model is constructed for the
Demer in Chapter 5.

Different types of boundary conditions were used with the Saint-Venant
equations such that we can construct mathematical models of complex
river systems. The most important examples are the boundary conditions
determined by the presence of hydraulic structures and junctions. It is
also explained how reservoirs can be modelled. Based on these concepts,
mathematical models of many real life examples of river systems can be
constructed. A discretization scheme is introduced to solve these mathematical
models. A staggered grid structure is chosen in combination with an upwinding
approach. Multiple examples have been used to assess the performance of this
numerical scheme.
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The last part of this chapter dealt with finding computationally inexpensive
but accurate approximate models. Because we are interested in the application
of flood control, these models need to give accurate approximations for a wide
range of water levels and discharges. Furthermore it is highly recommended
for flood control that the approximate models give an approximation of the
water level profile along the entire length of every reach. However this is not
the case for many approximate models found in the literature (based on system
identification techniques, integrator-delay models, reservoir type models, . . .).
A new type of approximate model is presented in this chapter which is called the
Linear-Nonlinear model (LN-model). It uses a linear version of the Saint-
Venant equations to approximate the water levels and discharges along every
reach, while using the nonlinear gate equations for calculating the discharges
over the gates. The simulations have shown that this hybrid model provides
accurate results and it requires less computational power than the one needed
by the original nonlinear model. For one test example the RMSE for the
water levels is only 0.0095 m while the RMSE for the discharges is limited to
0.5009 m3 · s−1. The total simulation is decreased from 59.03 s to 3.84 s. This
computational gain can be further increased by using model order reduction
techniques. Proper Orthogonal Decomposition in combination with Galerkin
projection has been used to reduce the order of the linear part of the LN-
model. Simulation results showed an extra speed-up with only a limited effect
on the accuracy of the model: the total computation time is further reduced
to 0.71 s, while the RMSE for the water levels and the discharges increase to
only 0.0103 m, respectively 0.5511 m3 · s−1.





4

Model Predictive Control Used
for Set-point Control and Flood
Control

4.1 Introduction

The previous chapter explains how a dynamic model can be built for a river
system consisting of multiple reaches, hydraulic structures, junctions and
reservoirs. This chapter describes how Model Predictive Control (MPC) can
be used for set-point control and flood control at the same time for such
river systems. During no or little rainfall the controller should keep the
most important water levels close to their set-points without using the buffer
capacity of the reservoirs. When there is a risk of flooding, the controller should
automatically start using the water reservoirs to prevent the river from flooding.
Afterwards the controller should empty the water reservoirs as fast as possible.

In this chapter we will explain in detail how all these different objectives
can be fulfilled with MPC. There are two key concepts. The first one is
the approximate model used by the controller. By working with the LN-
model introduced in the previous chapter and considering the gate discharges
as control variables instead of the gate positions, we avoid working with an
approximation of the highly nonlinear gate equations. The second important
concept is the formulation of the optimization problem such that all different
control objectives can be achieved. Along the chapter, this optimization
problem will gradually be built up starting with a simple example of controlling

77
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a single reach, and ending with the control of a complex river system consisting
of multiple reaches, gates, junctions and a reservoir. Also the influence of a
Kalman filter as state estimator on the control performances will be assessed.
In practice only a limited number of water levels is measured. The Kalman
filter is used to get an estimate of the full state based on this small amount
of measurements. All closed loop simulations are performed with the full
hydrodynamic nonlinear model of the different test systems.

This chapter is organized as follows. In Section 4.2 we explain why we propose
to use MPC as control strategy for controlling river systems. A comparison
is made with existing controllers found in the literature and the advantages
of Model Predictive Control with respect to these existing techniques are
underlined. MPC is applied in Section 4.3 to a single reach. The optimization
problem is formulated such that the controller can track a time-varying
reference trajectory as well as prevent the reach from flooding. By working
with slack variables it is ensured that the optimization problem is feasible
at all times. Its performance will be compared with a classical controller, a
Linear Quadratic Regulator. Section 4.4 expands the proposed controller for
a single reach to a system consisting of two reaches and a gate. This section
explains the advantage of working with gate discharges as control variables
and how this affects the optimization problem. Also the problem of possible
uncontrollability of a gate is addressed and a solution is given. Section 4.5
shows how MPC can be used to control a more complex river system with
six channels, three gates, two junctions and one reservoir. The optimization
problem is further expanded such that the buffer capacity of the reservoir is
used and recovered in an optimal way. Attention is paid in Section 4.6 to the
implementation aspects of the controller. It is explained how the time needed to
solve the optimization problem at every iteration can be decreased by reducing
the number of optimization variables and the number of equality and inequality
constraints. Section 4.7 summarizes the main conclusions of this chapter.

The main sections of this chapter are based on the following publications:

[32] Breckpot, M., Agudelo, O. M., and De Moor, B. Control of
a single reach with model predictive control. In River Flow 2012
(Costa Rica, September 2012), R. E. Murillo Muñoz, Ed., Proc. of the
International Conference on Fluvial Hydraulics, CRC Press, Taylor &
Francis Group, pp. 1021-1028.

[33] Breckpot, M., Agudelo, O. M., and De Moor, B. Model
Predictive Control of a river system with two reaches. In Proc. of the
51st IEEE Conference on Decision and Control (Maui, Hawaii, USA,
December 2012), pp. 4549-4554.
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[36] Breckpot, M., Agudelo, O. M., and De Moor, B. Flood control
with Model Predictive Control for river systems with water reservoirs.
Journal of Irrigation and Drainage Engineering 139, 7 (July 2013), 532-
541.

4.2 Why using Model Predictive Control?

4.2.1 Literature review

Many different types of control strategies can be found in the literature that
address the control of reaches, irrigation canals or river systems. A classification
of the control strategies can be performed based on general control theory and
leads to the following classes [18,176]:

• feedback and feedforward control,

• optimal control,

• heuristic control,

• three-position control

• and Model Predictive Control.

4.2.1.1 Feedback and feedforward control

The objective of a feedback or a feedforward controller is to keep a water level
as close as possible to a given target level. For the case of feedback control,
this water level is measured at every sampling time and compared to its set-
point. Based on this deviation the feedback controller determines its control
action. This feedback controller is in practice often a Proportional Integral
controller (PI-controller) [119, 142]. If the PI-controller is well tuned, a good
performance for set-point control can be achieved. Examples where feedback
control is successfully applied can be found in [24,106,147,149,150,180,183].

In feedforward control measurements or predictions of a disturbance are used
in combination with an inverse model of the effect of this disturbance on the
water level to calculate the required control actions. In theory this would
result in a zero water deviation from the set-point [22]. However, due to
model inaccuracies and uncertainties on the model parameters as well as on the
measurements, this deviation will never be zero in practice. To compensate for
these model imperfections and uncertainties, a feedforward controller is often
used in combination with a feedback controller [175].
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4.2.1.2 Optimal control

Most of the optimal controllers used in water systems are based on the Linear
Quadratic Regulator (LQR) theory [93], which is presented in Section 2.2.
These controllers are called optimal controllers because the control actions are
based on the minimization of an objective function. This objective function is
a relative weighting between the sum of the square of the deviations between
the water levels and their set-points and the sum of the square of the change in
the structure settings. The higher the penalty on the water level deviation, the
faster the control will be. Increasing the weighting factor on the control actions,
the smoother the operation of the structures will be. Successful applications
can be found in [47,48,116,118,120,138,139].

4.2.1.3 Heuristic control

Unlike the first two deterministic control methods, heuristic controllers are
not based on physical laws but on a more heuristic approach. This group
can further be divided into control based on rules-of-thumb, neural networks
control [169,170], fuzzy logic control [161,162,181] and genetic algorithm control
[185]. One drawback is that these controllers need to be tuned on a complete
simulation model or on the real system because there exists no mathematical
formalism for this. Another drawback is that the dynamic behavior of water
systems is seen as a black box. These heuristic controllers are not frequently
applied in practice.

4.2.1.4 Three-position controller

A three-position controller is a combination of a feedback controller and a
heuristic controller [142]. It is used in practice for set-point control and it
consists of a set of simple if-then-else rules for increasing or decreasing the
gate position based on the deviation of the water level from its set-point.
These controllers have the advantage that they can easily be implemented in
practice and they require only a limited number of measurements. This type
of controller is installed at the Demer by the VMM (Flemish Environment
Agency). As we will show in Chapter 5, this controller will however not result
in a good flood control performance, even if these simple rules are replaced with
more advanced ones based on the experience of operators. More information
about this controller can be found in Section 5.3.
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4.2.1.5 Model Predictive Control

The general philosophy behind Model Predictive Control (MPC) was explained
in Chapter 2. MPC is a combination of feedback control, feedforward
control and optimal control. It is an optimal controller because it solves an
optimization problem in order to find the optimal control actions. Feedback
is introduced by solving this optimization problem at every time step and
considering measurements and estimates of the current water levels and
discharges. Feedforward control is achieved by taking predictions of future
rainfall into account inside the optimization problem. Successful applications
of MPC on water systems can be found in [144,176,177,179,182,193].

4.2.2 Advantages of Model Predictive Control

Any of the first four examples of controllers applied to river systems discussed in
the previous part have their own disadvantages regarding the problem of flood
control. Feedback and feedforward controllers determine the control actions
only based on measurements of water levels. A feedback controller does not
take the effect of future rainfall into account and both feedback and feedforward
controllers are not aware of flood levels. Optimal controllers based on the LQR
theory suffer from the drawback that constraints on the inputs and/or states are
not taken into account. Heuristic controllers have the drawback to be too site
specific and are hardly used in practice even for set-point control. The if-then-
else rules of a standard three-position controller are too simple for flood control
since they only focus on set-point control of one specific water level. Also the
advanced three-position controller used by the VMM for flood prevention has
its limitations because it does not take rain predictions into account and the
control actions are only based on local information.

MPC does not suffer from these drawbacks. In comparison to these different
type of controllers, MPC is suitable for flood control because of the following
reasons:

• MPC can take all types of constraints that are present in river systems
into account. Examples are the physical lower and upper limits on
gate positions as well as the maximal rate of change constraints on
the gate movement, which can be incorporated inside the optimization
problem as inequality constraints. The flood levels can be included in the
optimization problem as upper limits on the water levels.

• River systems are typically highly interactive multiple-input-multiple-
output systems. For such a system it is very difficult for traditional
controllers to find good control actions based on only local information.
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MPC however makes use of a mathematical model of the river system in
the optimization problem to predict the effect of the control actions on
all future water levels over a given prediction window. This allows MPC
to find control actions that are not just locally optimal but optimal for
the global river system.

• The use of a process model also allows MPC to take rain predictions into
account. The effect of future rainfall on the water levels and discharges
can be incorporated in this process model. Using this information in
combination with the flood levels allows the controller to take effective
actions in favor of flood prevention.

• MPC can be used at the same time for flood control as well as for set-point
control. By minimizing the deviation of the water levels with respect
to their references, MPC will try to keep these water levels as close as
possible to their set-point when there is no risk of violating the flood
levels.

One disadvantage in general of MPC is that it has to solve an on-line
optimization problem at every time step. Since solving an optimization
problem can be computationally intensive, MPC can only be used if the time
needed to solve the optimization problem is smaller than the sampling time
of the controller. Given that river systems have relatively slow dynamics, this
sampling time is typically big enough.

As it was already mentioned, there exists many studies where MPC is applied
to river systems. However most of these works focus on set-point control and
not on flood control. In [168] MPC is used for flood prevention. However
this work neglects the nonlinear behavior of hydraulic structures which is a big
oversimplification of the problem.

In previous work done by our research group a conceptual model was used to
model the Demer [18–20, 37, 38, 44, 189]. As mentioned in Section 3.6.2, this
approach has some limitations:

• The water levels and discharges are modelled only at a very limited
number of points. It is never certain that no floods are present along
the entire river just because the water level modelled at such a point is
not above its flood level.

• Building such a conceptual model is very time-consuming and requires
expert knowledge during the derivation. The resulting model is only
valid for that particular river system. It does not really allow you to
make general conclusions about the proposed control scheme for other
river systems.
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To overcome these drawbacks, the MPC proposed in this chapter will work
with the Linear-Nonlinear approximate model proposed in Section 3.6.2. In
the remaining of this chapter, MPC schemes usable for flood control and set-
point control of river systems will be presented.

4.3 Model Predictive Control applied to a single
reach

This section explains how MPC can be used for set-point control and flood
control of a single reach. The performance of the proposed control scheme will
be compared with the performance of a more classical controller, the Linear
Quadratic Regulator (LQR) which was introduced in Section 2.2. Also the
influence of adding a Kalman filter for estimating the states based on a very
limited number of measurements is assessed.

4.3.1 Mathematical model of a single reach

Based on the modelling concepts defined and explained in Section 3.2, a
mathematical model of a single reach can be defined. It is assumed that the
most upstream and most downstream discharge of the reach are given. They
will be either determined by the controller or they are a disturbance signal.
The resulting mathematical model describing the dynamics of a single reach is
the following one:

Q(0, t) = Qin(t), (4.1)

∂A(z, t)

∂h(z, t)

∂h(z, t)

∂t
+
∂Q(z, t)

∂z
= 0, (4.2)

∂Q(z, t)

∂t
+

∂

∂z

Q(z, t)2

A(z, t)
+ gA(z, t)

(
∂h(z, t)

∂z
+ Sf(z, t) − S0

)

= 0, (4.3)

Q(L, t) = Qout(t), (4.4)

where Qin and Qout are the given upstream, resp. downstream discharge. The
friction slope Sf is modelled with the resistance law of Manning:

Sf =
n2

mannQ|Q|
A2R1/3

.
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4.3.2 Approximate model

When using MPC a mathematical model of the process is required inside the
optimization problem. To keep this optimization problem as simple as possible,
the controller will not work with Eqs. (4.1)-(4.4). A linear state space model
will be used to approximate the dynamics of a single reach. Because we are
interested in flood control, this model should give an approximation of the
water levels and discharges along the entire reach. This linear state space
model will be based on a linear version of the Saint-Venant equations with a
fine spatial discretization. The quality of this model was assessed in Section
3.6.2. Linearizing the discretized version of the Eqs. (4.1)-(4.4) (by following the
approach mentioned in Section 3.5.2) around a steady state point (hss ∈ Rnh

for the nh water levels, qss ∈ RnQ for the nQ discharges, uss ∈ Rnu for the nu

control inputs and dss ∈ Rnd for the nd disturbances), results in the following
model:

∆x(k + 1) = A∆x(k) + B∆u(k) + F∆d(k), (4.5)

with ∆x(k) = x(k) − xss, x(k) = [h(k); q(k)], xss = [hss; qss], ∆u(k) = u(k) −
uss, ∆d(k) = d(k) − dss, A ∈ R(nh+nQ)×(nh+nQ), B ∈ R(nh+nQ)×nu and F ∈
R(nh+nQ)×nd . The input vector u(k) contains the controllable upstream and/or
downstream river discharges at time instant k while the disturbance vector d(k)
contains the uncontrollable ones. E.g. if only the upstream discharge can be
controlled, then we have that u(k) = Qin(tk) and d(k) = Qout(tk).

Notice that the linear state space model in Eq. (4.5) differs slightly from the
linear approximate model in Eq. (3.25). The matrices B1 and B2 are combined
into the matrix B and the term with ∆u(k+1) is dropped. This approximation
can be performed because the dynamics of river systems are much smaller than
the sampling time of the controller. Also the matrix F is added to the equation
to take the effect of the disturbance signals on the water levels and discharges
into account.

Equation (4.5) can be rewritten as a function of the nominal values for x, u
and d:

x(k + 1) = Ax(k) + Bu(k) + Fd(k) + β

with

β = xss − Axss − Buss − Fdss.
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4.3.3 Formulation of the optimization problem

At every time step, the controller solves following Quadratic Programming
problem (QP):

min
u,x,ζ

NP∑

j=1

‖x(j) − rx(j)‖2
W +

NP−1
∑

j=0

‖u(j) − u(j − 1)‖2
R + ‖ζ‖2

V + vTζ

s.t. x(0) = x̂,

x(j + 1) = Ax(j) + Bu(j) + Fd(j) + β, j = 0, . . . , NP − 1

u ≤ u(j) ≤ u, j = 0, . . . , NP − 1

|u(j) − u(j − 1)| ≤ ∆u, j = 0, . . . , NP − 1

u(−1) = uprev,

H̃x(j) ≤ hmax + η(j)ζ, j = 1, . . . , NP (4.6)

ζ ≥ 0, (4.7)

with NP the prediction horizon, W ∈ R(nh+nQ)×(nh+nQ) ( 0, R ∈ Rnu×nu & 0
and V ∈ Rnh×nh & 0 three diagonal weighting matrices, v ∈ Rnh a weighting
vector, rx ∈ Rnh+nQ a time-varying vector containing the set-points for all the
states, x̂ ∈ Rnx the current state of the process, u ∈ Rnu and u ∈ Rnu the
lower and upper limits on the inputs, ∆u ∈ Rnu a vector with the maximal
allowed rate of change for the inputs, uprev ∈ Rnu the control action applied in
the previous time step, H̃ ∈ Rnh×(nh+nQ) a matrix selecting the water levels
from the state vector x, hmax ∈ Rnh the flood levels, η(j) = 1/rj−1

c a time-
dependent inverse weight (with rc > 1) and ζ ∈ Rnh a vector of slack variables
(one slack variable per water level). It can be shown that for positive semi-
definite weighting matrices W and V, and a positive definite weighting matrix
R, the QP has only one (global) solution [130]. In this chapter we use quadprog

of the Optimization Toolbox of Matlab to solve the QP [123]. The reason to
work with slack variables and with extra terms in the objective function as
well as with weighting matrices and vectors will be explained in the next two
sections.

4.3.3.1 The use of slack variables

During periods of heavy rainfall, the flood limits can become too restrictive and
make the QP infeasible if they are imposed as hard constraints. This is avoided
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by working with a slack variable approach with l∞-norm and time-dependent
inverse weights [74, 75]. The flood limits are implemented as soft constraints
(Eq. (4.6)) by using the vector of slack variables ζ and imposing a positivity
constraint on the elements of this vector (Eq. (4.7)). To keep the violations
of these limits as small as possible, the slack variables are penalized in the
objective function by the terms ‖ζ‖2

V +vTζ. A sufficiently large v ensures that
the constraints will only be violated when no feasible solution exists for the hard
constrained optimization problem [74]. This means that the upper limits on
the water levels are enforced as exact soft constraints. If the constraints cannot
be prevented from being violated, the controller will minimize these violations
and hence reduce the flood risk. The quadratic term ‖ζ‖2

V is included to have
a well-posed QP and it is used as an additional tuning parameter [151]. A time-
dependent inverse weight η(j) is used to penalize future predicted constraint
violations increasingly to avoid long-lasting constraint violations [74].

It is also possible to impose the flood limits as hard constraints. If the QP
becomes infeasible for large disturbance signals, a solution can be to start
dropping some of these constraints in such a way that the QP becomes feasible
and new control actions can be found. In this situation one has to develop a
strategy to remove some of these hard constraints in combination with a change
of the values of the weighting matrices (in order to reduce possible violations of
these constraints). This strategy was applied in [18]. However during periods
when everything becomes critical, multiple QP’s have to be formulated and
solved. This is not needed when slack variables are used because they ensure
the feasibility of the QP at all times.

Notice that we use only one vector of slack variables ζ for the entire prediction
horizon. Another possibility could be to use a time-varying vector ζ(j) which
can have different values at every time step in the prediction horizon. However
this would increase the number of optimization variables with nh · (NP − 1)
extra variables. This increase can be avoided by working with the time-
dependent inverse weight η(j).

Remark. It should be noted that the use of the time-dependent inverse weight
η(j) can have a negative impact on the control performance. If it is not possible
to prevent the river from flooding at the end of the prediction horizon, then
the value of the corresponding entry of ζ will be very large due to the small
value of η(NP). This large value for the slack variable can give the controller
the freedom to allow large flooding at the beginning of the prediction horizon
that could have been avoided. This phenomenon did never occur for any of the
tests performed in this work. However, if this would occur, the solution is to
work with a time-varying vector of slack variables at the cost of an increase in
the number of optimization variables.
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4.3.3.2 Translating the control objectives to the weighting matrices and
vector

The weighting matrices W, R and V define the relative importance of the
difference between the states and their set-points, the changes of the control
actions and the vectors of slack variables ζ. To impose the flood levels as
exact soft constraints, the diagonal elements of V and the entries of v should
be sufficiently large compared to the diagonal elements of the other weighting
matrices W and R. This forces the controller to keep the violations of the flood
limits as small as possible or if possible equal to zero when a large disturbance
takes place (flood control). If there is no risk of flooding, the controller sets
ζ equal to zero and the third and the fourth term in the objective function
are eliminated. The controller needs to focus on set-point control in this
situation and start steering the different states towards their reference signal.
This is achieved by setting the elements in the vector rx associated with the
water levels equal to the set-point of these water levels. The most important
water levels get a higher weight in the matrix W. The water levels that are less
important get a smaller weight such that their deviation is allowed to increase
if this could result in a lower deviation of the more important water levels. As
we are only interested in set-point control of the water levels, the discharges get
a lower weight. R influences the control effort of the different input variables.
The higher the values in R the smaller the changes in the control actions will
be. This means that the controller will react slower and less aggressive than a
controller with smaller elements in R. However a less aggressive controller will
typically lead to less wear on the actuators and is more robust with respect to
model errors. A trade-off between the reaction speed of the controller and the
lifetime of the equipment has to be made.

4.3.3.3 Advantages of Model Predictive Control

The particular formulation of the optimization problem has some specific
advantages compared to other control techniques:

• The flood levels are incorporated as upper limits on the water levels.
Therefore the controller will try to avoid the violation of these upper
limits and hence reduce the risk of flooding.

• Future rainfall is incorporated in the model equations by means of the
matrix F. If accurate estimates exist of the future rainfall d(k), this will
increase the performance of the controller with respect to flood control.

• During periods of no or little rainfall, the controller will focus on set-point
control because it will try to minimize the deviation of the states from
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their set-points. It can even react on future set-point changes if they are
known in advance.

4.3.4 Simulation results

A single reach will be controlled with LQR and MPC and their performance
will be compared for three different test cases: set-point control, disturbance
rejection and flood control. The reach has a trapezoidal cross section with side
slopes S1 and S2 of 0.5 and a bottom width B equal to 4 m, it has a length L
of 4000 m, the channel slope S0 is equal to 0.0001 and the Manning coefficient
nmann is taken equal to 0.014 s·m−1/3. In all three test cases the reach is initially
in steady state with a downstream water level equal to 3 m and a discharge
of 1 m3 · s−1 at every point along the reach. The linear state space model is
derived based on this steady state condition. The reach is approximated by a
grid structure with nh = 91 water levels. The controllable discharges should
always stay between -7 m3 · s−1 (u) and 7 m3 · s−1 (u) and have a maximal rate
of change constraint of ∆u = 2 m3 · s−1. The controllers work with a sampling
time of 5 min, and the size of the prediction horizon NP is 15. In all the three
test cases we have assumed that we know at every time step the current state x̂
of the process and the disturbances along the prediction window. The control
actions provided by both controllers will be applied to the full hydrodynamical
model defined in Section 4.3.1.

The same values for the weighting matrices are used by the LQR and the
MPC in the three test cases (LQR makes only use of the matrices W and
R). Table 4.1 gives the numerical values of the weight matrices W, V and
R, as well as the entries of the weight vector v. Notice that the size of the
matrix R depends on the number of inputs that can be controlled. For the test
case of set-point control, it will be of size 2 × 2, while for the other two test
cases it will be a scalar because Qin is a disturbance signal. The weights are
chosen in such a way that flooding will be prevented (V, v 4 W, R) and that
the controllers will mainly focus on steering the most downstream water level
towards its reference value, and if possible also the other water levels.

The control law used by LQR does not take the constraints on the control
actions into account. In order to not violate these constraints, the control
actions will be saturated after their calculation.

Following the approach discussed in [18], performance indicators will be used in
order to quantify and compare the control performance of the different control
strategies used in this dissertation. A first performance indicator is used to
evaluate the cost with respect to the deviation of water levels from their set-



MODEL PREDICTIVE CONTROL APPLIED TO A SINGLE REACH 89

Table 4.1: Diagonal elements of the weight matrices W, V and R, and elements
of the weight vector v for set-point control, disturbance rejection and flood
control of a single reach.

reach

W ∈ R163×163

water levels

[

180

100

]

discharges 10−2 · 182

V ∈ R81×81

flood levels 104 · 181

v ∈ R81

flood levels 104 · 181

Qin Qout

R ∈ R2×2 or R1×1

control actions 1 1

points:

Jh =
TN∑

k=1

‖h(k) − rh(k)‖2,

with TN the length of the simulation and rh ∈ Rnh the time-varying set-
points for the water levels. This performance indicator will be called the set-
point deviation cost. The set-point deviation cost can also be calculated
for one specific water level based on its deviation from its set-point. A second
performance indicator is used to indicate how well the controller can prevent
the river from flooding and is called the flood cost:

Jhmax =
TN∑

k=1

‖max(h(k) − hmax, 0nh)‖2.

Only the water levels larger than their corresponding flood levels result in an
increase for the cost Jhmax .

4.3.4.1 Set-point control

The ability to track a time-varying reference trajectory for the water levels is
tested for both controllers. There is no risk of flooding (hmax is set to ∞) and
the controllers can control both the upstream and the downstream discharges.
There are no disturbances.
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Table 4.2: The set-point deviation cost Jh obtained with LQR and MPC when
tracking a time-varying set-point for a single reach for the set-point control test
case.

Simulation cost MPC LQR

Jh [m] 920 2117

Fig. 4.1 shows the evolution of the water levels in space and time relative to
the bottom of the reach for MPC and LQR. The reference trajectory for all the
water levels is shown by the thick lines. The references have a step change after
3 000 s and 13 000 s. The applied control actions together with their upper and
lower limits for both controllers can be seen in Fig. 4.2.

Both controllers succeed in tracking the reference trajectory. However because
MPC sees the step changes in the reference trajectory earlier due to its
prediction capabilities, it reaches the new set-point much earlier. LQR only
reacts when the step change effectively takes place. Both controllers satisfy the
limits on the inputs, LQR by using a saturator and MPC because it incorporates
these limits in its optimization problem. Notice that not only the downstream
water level is following its reference point, but actually all the water levels
are doing this. This is possible because the controllers can control both the
upstream and the downstream discharge. A quantitative comparison between
both controllers can be made by calculating the set-point deviation cost Jh.
Table 4.2 contains the cost Jh based on the closed loop simulation results with
MPC, respectively LQR. The cost Jh for LQR largely exceeds the cost for
MPC because of the predictive power of MPC: MPC can react on future set-
point changes and keeps therefore the deviation of the water levels from their
set-points overall smaller than the deviation obtained with LQR.

4.3.4.2 Disturbance rejection

This test case checks how the controllers react when a disturbance takes place.
The goal is to keep the most downstream water level as close as possible to
its steady state value. The controllers can now only change the downstream
discharge Qout, the upstream discharge Qin is the disturbance signal. After
6 000 s the upstream discharge jumps from 1 m3 · s−1 to 3 m3 · s−1 (e.g. a gate
upstream is opened). Because we only want to compare the performance of
both controllers for disturbance rejection, the flood levels hmax are set to ∞
such that they will not influence the control actions of the MPC.
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Figure 4.1: Evolution of the water levels in space and time together with the
time-varying reference trajectory for a single reach controlled by means of MPC
(top) and LQR (bottom). Both controllers succeed in tracking the changing
reference trajectory. MPC reacts in advance to a change in the reference
trajectory because of its predictive capabilities while LQR reacts only when
the change effectively takes place.
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Figure 4.2: Control actions Qin and Qout applied by MPC (top) and LQR
(bottom) to a single reach for tracking the changing set-points. The control
actions remain between their upper and lower limits (dotted lines): MPC
because of the incorporation of these limits inside the optimization problem,
LQR because of the use of a saturator. MPC changes the control actions earlier
than LQR because it sees a change in the reference trajectory in advance due
to the use of a prediction window.
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Table 4.3: The set-point deviation cost Jh calculated for the most downstream
water level controlled with LQR and MPC for the disturbance rejection test
case.

Simulation cost MPC LQR

Jh [m] 7 64

The results are visualized in Fig. 4.3. On top we have the reference signal for
the most downstream water level, the water level controlled by LQR and the
water level controlled by MPC. The bottom plot shows the disturbance signal
and the control action for both controllers. It is evident that MPC has better
disturbance rejection capabilities than LQR. At the end we have a deviation of
34 cm for the most downstream water level from the set-point for LQR, and a
deviation of only 0.8 cm for MPC. Table 4.3 contains the set-point deviation
cost Jh only for the most downstream water level of the reach. The cost Jh

confirms the conclusion that the use of MPC results in a better disturbance
rejection than when LQR is used.

4.3.4.3 Flood control

The last test case is very similar as the previous one, but now the disturbance
signal becomes so large that there is a risk of flooding. Again the upstream
discharge cannot be controlled, only the downstream discharge can be adjusted
by the controllers. The upstream discharge is given by the following function:

Qin(k) =

{

1 for k ≤ 5 000 or k ≥ 10 000,

1 + 15 · sin
(

π k−5 000
5 000

)

elsewhere.

There is a risk of flooding because Qin exceeds the upper limit of Qout for a
long period. The flood levels are taken equal to hmax = hss + 0.5.

Fig. 4.4 shows the results for the two controllers. The top plot visualizes the
evolution of the maximal flooding. The maximal flooding is defined as

m(k) = max(h(k) − hmax).

A negative m(k) means that none of the water levels violates the flood limit
at time k. The value of m corresponds in this case with the minimal margin
before a flood level is violated. If the reach is flooding, then m(k) is positive
and it indicates the maximal violation of a flood level. The middle plot shows
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Figure 4.3: The top plot shows the effect of a disturbance on the evolution of
the most downstream water level controlled by MPC and LQR together with
its set-point. The bottom plot shows the control actions (changes in Qout)
for both controllers together with the disturbance signal Qin. The steady state
error for the downstream water level with MPC is much smaller than the steady
state error with LQR: 8 mm vs. 34 cm.
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Figure 4.4: The top plot shows the maximal flooding along the reach for the
MPC and LQR. The most downstream water level is shown in the middle plot
while the bottom plot visualizes the control actions (changes in Qout) of the
two controllers together with the disturbance signal Qin. MPC outperforms
LQR because it takes rainfall predictions and flood levels into account: MPC
reacts before the disturbance takes place.



96 MODEL PREDICTIVE CONTROL USED FOR SET-POINT CONTROL AND FLOOD CONTROL

Table 4.4: The set-point deviation cost Jh and the flood cost Jhmax obtained
with LQR and MPC applied to a single reach for the flood control test case.

Simulation cost MPC LQR

Jh [m] 341 879

Jhmax [m] 0 224

the evolution of the most downstream water level for both controllers together
with its reference value and flood level. The bottom plot shows the disturbance
signal and the control actions for both controllers. Fig. 4.5 visualizes the
evolution of all the water levels controlled by means of the MPC and LQR.

LQR cannot prevent the reach from flooding: the maximal flooding m becomes
highly positive. The maximal violation of the flood levels is 0.5 m. This is not
the case for the MPC where m remains always negative. The reason for this
difference can be seen in the middle plot. Long before the increase in the
upstream discharge takes place, the MPC steers the downstream water level
below its reference value. MPC executes this preventive control action because
the prediction horizon allows it to see the big increase in the upstream discharge
before it actually happens, in combination with the flood levels imposed as
inequality constraints inside the optimization problem. The bottom plot clearly
shows how MPC reacts before the disturbance takes place, much earlier than
LQR. These control actions have as effect that all the water levels decrease and
make m more negative: the controller creates extra buffer capacity. After the
disturbance has taken place both controllers succeed in steering the downstream
water level back to its reference value.

Table 4.4 contains the set-point deviation cost Jh and the flood cost Jhmax for
both controllers. Because MPC can keep the water levels closer to their set-
points, the cost Jh with MPC is more than 2.5 times smaller than with LQR.
The cost Jhmax is equal to zero with MPC because flooding is prevented. This
is not the case with LQR.

4.3.5 Simulation results with state estimator

In the previous example it was assumed that all the states are known at every
time step. However this is practically impossible because this would require
a large amount of sensors for measuring the water levels and the discharges
along the entire reach. In practice only a limited number of measurements
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Figure 4.5: Evolution of the water levels in space and time together with their
reference trajectory (bold line) for a single reach controlled by means of MPC
(top) and LQR (bottom). The dashed lines represent the flood level of the reach.
MPC succeeds in keeping all the water levels below their flood level while this
is not the case with LQR. This is achieved by creating temporarily extra buffer
capacity by lowering the water levels of the reach before the disturbance takes
place.
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Table 4.5: The set-point deviation cost Jh obtained with MPC with full state
information and MPC in combination with a Kalman filter applied to a single
reach for the set-point control test case.

Simulation cost MPC MPC + Kalman

Jh [m] 920 877

are taken. Based on this little amount of information in combination with the
model equations it is still possible to get an accurate estimate of the entire
state of the system by using a state estimator. In this section a Kalman filter
is used to estimate the states of the reach when only the most downstream
water level is measured and the applied control actions and disturbances are
known [84]. The Kalman filter was introduced in Section 2.4.

The results of using MPC together with a Kalman filter will be discussed in
the next subsections. We will only consider the set-point and flood control test
cases. The Kalman filter will be based on the same linear state space model
as the one used by the controller (Eq. (4.5)). The following weighting matrices
were used to find the Kalman filter gain L:

Qest = 10−3 · Inh+nQ ,

Rest = 10−6 · Inu .

4.3.5.1 Set-point control

Fig. 4.6 compares the control actions for MPC with and without the Kalman
filter. The top plot shows the applied upstream discharges Qin of both
controllers, while the middle plot shows the applied downstream discharges
Qout. The difference between the applied control actions for both controllers
can be found in the bottom plot. It is clear that this difference is small. This
means that with measuring only one water level, MPC in combination with
the Kalman filter can effectively track the time-varying reference trajectory for
the water levels. This can also be seen in Fig. 4.7 where the evolution of the
water levels in space and time is shown. The figure shows also the evolution of
the most downstream water level when the reach is controlled with MPC and
MPC in combination with the Kalman Filter. The differences between both
controllers are very small. This is also confirmed by the set-point deviation
cost Jh given in Table 4.5. The costs for both controllers are almost the same.
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Figure 4.6: Comparison of the control actions Qin (top) and Qout (middle) for
MPC with and without a Kalman filter applied to a single reach for set-point
control. The bottom plot shows the difference for both control actions for both
controllers. The effect of estimating the states based on only one water level
measurement on the control actions is limited.
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Figure 4.7: The top figure shows the evolution of the water levels of the single
reach together with the time-varying reference trajectory when MPC together
with a Kalman filter is used. The bottom figure shows the downstream water
level for the MPC and Kalman-based MPC cases, together with its set-point.
The Kalman filter based MPC effectively tracks the reference trajectory. The
difference in tracking performance with the situation where all the states are
measured is very limited.
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Figure 4.8: Maximum estimation errors for the water levels and the discharges
when a Kalman filter is applied to a single reach for the set-point control test
case.

The estimation errors for the Kalman filter can be seen in Fig. 4.8. This
plot shows the maximal absolute estimation error for the water levels and the
discharges at every time step. Overall these estimation errors are small. They
increase when there is a change in the reference trajectory. However afterwards
the errors converge to a value close to zero.

4.3.5.2 Flood control

The same disturbance signal of Section 4.3.4.3 has been used to see the influence
of the state estimator on the flood control performance of MPC. Fig. 4.9 shows
the maximal flooding m and the control actions (Qout) of the MPC controller
with and without the Kalman filter. Both controllers succeed in avoiding any
flooding and keeping the maximal flooding below zero. The maximal value
for m is for both controllers very similar. The only difference is that MPC
starts decreasing the water levels earlier than the Kalman-based MPC. This
also can be seen from the control actions where Qout is increased faster to its
maximal value when no state estimator is needed. Table 4.6 gives the set-point
deviation cost Jh and the flood cost Jhmax for both controllers. The set-point
deviation cost for MPC in combination with the Kalman filter is slightly larger
than the set-point deviation cost for MPC with full state information. Both
controllers have a flood cost equal to zero because both controller succeed in
preventing the reach from flooding. The influence of the Kalman filter on the
control performance is very limited.
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Figure 4.9: The maximal flooding (top) and the control actions (bottom) for
MPC with and without the Kalman filter applied to a single reach. MPC
without a Kalman filter reacts a little more aggressive than when a Kalman
filter is needed. Both controllers succeed in avoiding any flooding of the reach.

The state estimation errors are given in Fig. 4.10. These errors increase during
the period of heavy rainfall. Afterwards they converge to a small value. The
estimation errors are larger than those of the previous test case. This is because
the variables deviate much more from their linearization point. However the
effect of these state estimation errors on the control performance is limited.
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Table 4.6: The set-point deviation cost Jh and the flood cost Jhmax obtained
with MPC with full state information and MPC in combination with a Kalman
filter applied to a single reach for the flood control test case.

Simulation cost MPC MPC + Kalman

Jh [m] 341 296

Jhmax [m] 0 0
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Figure 4.10: Maximum estimation errors for the water levels and the discharges
for a Kalman filter applied to a single reach for the flood control test case.

4.4 Model Predictive Control in combination with
gate equations

Until now the test system was very simple: the controller only needed to control
a single reach. In this section we will expand the MPC formulation given in
the previous section in such a way that it can effectively be used to control a
river system consisting of two reaches connected to each other by a hydraulic
structure. We will explain how the nonlinear gate equations can be taken into
account by the controller while the resulting optimization problem still remains
a QP.
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4.4.1 Mathematical model of the test system

The river system that will be used to test the control performance consists
of two consecutive trapezoidal reaches with a vertical sluice in between (see
Fig. 4.11). The most downstream discharge Qout can be directly controlled
(e.g. with a pump), the most upstream discharge Qin is either a disturbance
signal or also an input variable. A gate controls the discharge going from the
first reach to the second reach. The system dynamics are described by the
following mathematical model (for details check Chapter 3):

Q(1)(0, t) = Qin(t), (4.8)











∂A(1)

∂h

∂h(1)

∂t
+
∂Q(1)

∂z
= 0,

∂Q(1)

∂t
+

∂

∂z

Q(1)2

A(1)
+ gA(1)

(
∂h(1)

∂z
+ S(1)

f − S(1)
0

)

= 0,
(4.9)

{

Q(2)(0, t) = f̃(c(t), h(1)(L(1), t), h(2)(0, t)),

Q(1)(L(1), t) = Q(2)(0, t),
(4.10)











∂A(2)

∂h

∂h(2)

∂t
+
∂Q(2)

∂z
= 0,

∂Q(2)

∂t
+

∂

∂z

Q(2)2

A(2)
+ gA(2)

(
∂h(2)

∂z
+ S(2)

f − S(2)
0

)

= 0,
(4.11)

Q(2)(L(2), t) = Qout(t), (4.12)

where Eqs. (4.8) and (4.12) correspond to the upstream and downstream
boundary condition of the river system, Eq. (4.10) with the internal boundary
condition due to the presence of the gate and Eqs. (4.9) and (4.11) with
the Saint-Venant equations modelling the dynamics of the water levels and
discharges of both reaches. The function f̃ is given by Eq. (3.9), which
corresponds to the gate equation modelling the discharge over a vertical sluice.

4.4.2 Approximate model and the selection of control vari-
ables

The most logical choice for the control variables would be the gate position
c together with the upstream discharge Qin and the downstream discharge
Qout. At the same time we want to work with a linear state space model as
approximate model because then the optimization problem will be a QP. This
means that not only the Saint-Venant equations will be linearized, but also
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Figure 4.11: Schematic structure of the river system with Qin and Qout the
discharges at the boundaries, c the gate position, h the water levels, L(i) the
length of the ith reach and S0 the channel slope.

the nonlinear gate equations. However as we have shown in Section 3.6.2, a
linear state space model based on a linearized version of Eqs. (4.8)-(4.12) does
not accurately approximate the dynamics of the full nonlinear model. The
problem is that the gate equations are too complex to be approximated with
one linear model for a wide range of upstream and downstream water levels
and gate positions. The solution presented in that section is to use the Linear-
Nonlinear model (LN-model). This hybrid model combines a linear state space
model for approximating the dynamics of the reaches with the nonlinear gate
equations. The effect of the gates on the water levels and discharges is pulled
out of the linear model, which increases the accuracy of the resulting model.
The approximate model is the following one:

[

x(1)(k + 1)

x(2)(k + 1)

]

︸ ︷︷ ︸

x(k+1)

=

[

A(1)

A(2)

]

︸ ︷︷ ︸

A

[

x(1)(k)

x(2)(k)

]

+

[

B(1)

B(2)

]

︸ ︷︷ ︸

B

u(k)+

+

[

F(1)

F(2)

]

︸ ︷︷ ︸

F

d(k) +

[

β(1)

β(2)

]

︸ ︷︷ ︸

β

, (4.13)

Qgate(k) = f̃

(

c(k), h(1)

n(1)
h

(k), h(2)
1 (k)

)

, (4.14)

where x(i)(k) =
[

h(i)(k); q(i)(k)
]

. The matrices A(i) ∈ R
(n(i)

h +n(i)
Q )×(n(i)

h +n(i)
Q ),

B(i) ∈ R
(n(i)

h
+n(i)

Q )×nu and F(i) ∈ R
(n(i)

h
+n(i)

Q )×nd and the vector β(i) ∈ R
n(i)

h
+n(i)

Q

can be found in a similar way as for the approximate model for the single reach.
The input vector u(k) contains the controllable upstream and/or downstream
river discharges at time instant k together with the gate discharge Qgate(k).
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The disturbance vector d(k) contains the uncontrollable upstream and/or
downstream river discharges. E.g. for an uncontrollable upstream discharge,
we have that u(k) = [Qout(k), Qgate(k)]T and d(k) = Qin(k).

Using the linear state space model (Eq. (4.13)) together with the gate equation
(Eq. (4.14)) inside the optimization problem would not result in solving a QP,
but a Nonlinear Programming problem (NLP). As will be shown in the next
section, this NLP can be approximated with a QP if we do not work with the
gate positions c as optimization variables, but with the gate discharges Qgate.
The gate equations are excluded from the optimization problem. Instead of
finding a sequence of optimal gate positions, the optimizer will now search for
a sequence of optimal gate discharges. Therefore, the constraints on the
gate positions need to be translated to constraints on the gate discharges and
a conversion is needed from the optimal gate discharges to the corresponding
optimal gate positions once the QP is solved.

4.4.3 Formulation of the optimization problem

Using the LN-model directly inside the optimization problem results in solving
the following NLP at every time step:

min
u,x,ζ,c

NP∑

j=1

‖x(j) − rx(j)‖2
W +

NP−1
∑

j=0

‖u(j) − u(j − 1)‖2
R + ‖ζ‖2

V + vTζ

s.t. x(0) = x̂,

x(j + 1) = Ax(j) + Bu(j) + Fd(j) + β, j = 0, . . . , NP − 1

u(gate)(j) = f̄(c(j), x(j)), j = 0, . . . , NP − 1

u ≤ u(j) ≤ u j = 0, . . . , NP − 1

|u(j) − u(j − 1)| ≤ ∆u, j = 0, . . . , NP − 1

c ≤ c(j) ≤ c, j = 0, . . . , NP − 1

|c(j) − c(j − 1)| ≤ ∆c, j = 0, . . . , NP − 1

u(−1) = uprev,

c(−1) = cprev,

H̃x(j) ≤ hmax + η(j)ζ, j = 1, . . . , NP
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ζ ≥ 0,

with NP the prediction horizon, W ∈ Rnx×nx ( 0, R ∈ Rnu×nu & 0 and
V ∈ Rnh×nh & 0 three diagonal weighting matrices, v ∈ Rnh a weighting vector,

nx = nh + nQ the total number of states, nh = n(1)
h + n(2)

h the total number

of water levels, nQ = n(1)
Q + n(2)

Q the total number of discharges, rx ∈ Rnx

a (possible time-varying) vector containing the set-points for all the states,
x̂ ∈ Rnx the current state of the process (measured or estimated), u and u
the lower and upper limits on the controllable discharges, c and c the upper
and lower limit on the gate position, ∆u and ∆c the maximal allowed rate
of change for the controllable discharges, respectively the gate position, uprev

and cprev the discharges and gate position applied in the previous time step,
H̃ ∈ Rnh×(nh+nQ) a matrix selecting all the water levels from the state vector
x, hmax ∈ Rnh the flood levels, η(j) = 1/rj−1

c a time-dependent inverse weight
(with rc > 1) and ζ ∈ Rnh a vector of slack variables (one slack variable for each

water level). For ease of notation the gate equation f̃

(

c(j), h(1)

n(1)
h

(j), h(2)
1 (j)

)

is rewritten in a more compact form as f̄(c(j), x(j)).

This NLP can be rewritten without the gate position c as optimization variable
by exploiting the fact that there is (most of the time) a one-to-one relation ship
between the gate position and the gate discharge for given surrounding water
levels. The gate position c can be expressed as a function of the gate discharge
and the surrounding water levels:

c(j) = f̂
(

u(gate)(j), x(j)
)

.

Performing this substitution results in the following NLP:

min
u,x,ζ

NP∑

j=1

‖x(j) − rx(j)‖2
W +

NP−1
∑

j=0

‖u(j) − u(j − 1)‖2
R + ‖ζ‖2

V + vTζ

s.t. x(0) = x̂,

x(j + 1) = Ax(j) + Bu(j) + Fd(j) + β, j = 0, . . . , NP − 1

u ≤ u(j) ≤ u, j = 0, . . . , NP − 1

|u(j) − u(j − 1)| ≤ ∆u, j = 0, . . . , NP − 1

c ≤ f̂
(

u(gate)(j), x(j)
)

≤ c, j = 0, . . . , NP − 1

∣
∣
∣f̂
(

u(gate)(j), x(j)
)

+ j = 0, . . . , NP − 1
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−f̂
(

u(gate)(j − 1), x(j − 1)
)
∣
∣
∣ ≤ ∆c,

u(−1) = uprev,

H̃x(j) ≤ hmax + η(j)ζ, j = 1, . . . , NP

ζ ≥ 0.

This NLP does not contain c any more as an optimization variable. Following
an heuristic approach, which will be discussed in Section 4.4.3.1, the nonlinear
inequality constraints related to the gate position and to the change in the
gate position are translated into time-varying lower and upper limits on the
gate discharges. In this way the optimization problem that needs to be solved
at every time step becomes a QP with the following objective function and
constraints:

min
u,x,ζ

NP∑

j=1

‖x(j) − rx(j)‖2
W +

NP−1
∑

j=0

‖u(j) − u(j − 1)‖2
R + ‖ζ‖2

V + vTζ

s.t. x(0) = x̂,

x(j + 1) = Ax(j) + Bu(j) + Fd(j) + β, j = 0, . . . , NP − 1

u(j) ≤ u(j) ≤ u(j), j = 0, . . . , NP − 1

|u(j) − u(j − 1)| ≤ ∆u, j = 0, . . . , NP − 1

u(−1) = uprev,

H̃x(j) ≤ hmax + η(j)ζ, j = 1, . . . , NP

ζ ≥ 0.

The resulting QP is very similar to the QP formulated for controlling a single
reach in the previous section. Again the flood levels are implemented as soft
constraints to avoid possible infeasibilities such that only one QP has to be
solved at every time step (see Section 4.3.3.1). The different weights of the
matrices W, R and V, and the vector v are chosen in a similar fashion as
the weights used for controlling the single reach. More information is given in
Section 4.3.3.2. In the next subsections it is explained why the upper limits
and lower limits are time-varying and how they can be found. Also the issue
of possible uncontrollability of the gates and a solution is discussed.
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4.4.3.1 Time-varying lower and upper limits for gate discharges

The lower and upper limits for the controllable discharges at the upstream and
downstream end of the river are constant and assumed to be given. Because
the QP works with the gate discharges as optimization variables, the lower and
upper limit c and c, and the maximal rate of change ∆c for a gate need to be
converted to a lower and upper limit of the corresponding gate discharge at
every time step. This conversion will result in time-varying lower and upper
limits for the gate discharges because they depend on the gate position and on
the upstream and downstream water levels of the gate at every time step.

These lower and upper limits can be calculated with Algorithm 3. Assume
that a sequence of optimal control actions uopt(k − 1 + j) for j = 0, . . . , NP − 1
was found by the controller in the previous time step k − 1. Given the applied
control action for the gate c(k − 1) in the previous time step and (an estimate
of) the current state of the system, the maximal and minimal possible gate
discharges that can be achieved by an underflow vertical sluice at time step k
can be found with:

u(gate)(k) = f̃

(

c(k − 1) − ∆c, h(1)

n(1)
h

(k), h(2)
1 (k)

)

, (4.15)

u(gate)(k) = f̃

(

c(k − 1) + ∆c, h(1)

n(1)
h

(k), h(2)
1 (k)

)

. (4.16)

The maximal rate of change ∆c is incorporated in this way. For calculating
the lower and upper limit at time step k + 1, an estimation is needed of the
position of the gate at time step k and of the water levels at time step k + 1
in order to be able to reuse the same equations. Given the current water levels
at time step k and the optimal gate discharge of uopt calculated at time k, the
estimate of the corresponding gate position at time step k can be found. This is
possible because (most of the time) there is a one-to-one relationship between
the gate discharge and the gate position for a given upstream and downstream
water level. In the algorithm this conversion is performed with the function
l. More information about this function will be given in the next subsection.
The only thing missing for reusing Eqs. (4.15) and (4.16) are the water levels
at time k + 1. These can be found by performing a prediction step with the
linear state space model (Eq. (4.13)) of the LN-model:

x̃(k + 1) = Ax(k) + Buopt(k) + Fd(k) + β,

where x̃ represents the predicted states. The wanted water levels h(1)

n(1)
h

(k + 1)

and h(2)
1 (k+1) can be extracted from these predicted states (this is represented

with the function s in the algorithm), and Eqs. (4.15) and (4.16) can be used
in combination with c(k) to find an estimate of u(gate)(k + 1) and u(gate)(k + 1).
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Algorithm 3 Algorithm to find the time-varying limits u(gate)(j) and u(gate)(j)
for a vertical sluice. The function s selects the upstream and downstream water
levels of the gate while the function l calculates the gate position corresponding
to the desired discharge for the gate and a given upstream and downstream
water level. x̃ represents the predicted states based on the linear state space
model and uopt(k + j − 1), j = 1, . . . , NP is the sequence of optimal gate
discharges found in the previous time step at time k − 1.

% at time step tk

x̃ = x(k)
cprev = c(k − 1)
for j = 1, . . . , NP do

[hup, hdown] = s(x̃)
if hup ≥ hdown then

u(gate)(j) = f̃(max(cprev − ∆c, c), hup, hdown)
u(gate)(j) = f̃(min(cprev + ∆c, c), hup, hdown)

else
u(gate)(j) = −f̃(min(cprev + ∆c, c), hdown, hup)
u(gate)(j) = −f̃(max(cprev − ∆c, c), hdown, hup)

end if
cprev = l(u(gate)

opt (j), hup, hdown)
x̃(k + j) = Ax̃(k + j − 1) + Buopt(k + j − 1) + Fd(k + j − 1) + β

end for

The same procedure can be used to estimate the time-varying lower and upper
limits of the gate discharges for the entire prediction window. The algorithm
also takes the lower limit c and upper limit c of the gate position into account
when calculating the limits of the gate discharge.

The nonlinear model could also be used to perform the prediction step instead
of using the linear model. The predictions with the nonlinear model will be
more accurate but every prediction step will then also take much more time.
If the river data is not too irregular (cfr. the bed slope and cross sectional
profiles), the linear prediction step is accurate enough (in Chapter 5 where
MPC is applied to the Demer, it will be explained how a prediction step based
on the nonlinear model can be performed with only a little increase in the
computation time).

Because the upper and lower limits of the gate discharges depend on the water
levels and the gate positions, we should actually iterate over Algorithm 3 and
solving the optimization problem. The new sequence of optimal gate discharges
will typically be different from the solution sequence found in the previous time
step uopt. Therefore they will result in other future states and hence also other
upper and lower limits on the gate discharges. However simulation results show
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that this iteration is not needed because from one time step to the next the
optimal control actions do not change drastically. This strategy is similar to
real-time iteration in combination with feasibility improvement [29,55].

Notice that the formulated optimization problem puts a rate of change
constraint on all the control variables. For the controllable upstream and
downstream discharges these rates are given. For the gate discharge there
is no rate of change constraint because the rate of change constraint ∆c on
the gate position results in the time-varying upper and lower limit on the gate

discharge. Therefore ∆(gate)
u is set equal to ∞ for the gate discharge.

Equations (4.15) and (4.16) are valid for an underflow vertical sluice. The same
procedure can also be used for a gated weir if the signs in these equations for
∆c are changed. A discharge over a gated weir decreases when the gate position
increases and vice versa.

Remark. It should be noted that the solution found with the QP is not
necessarily a (local) minimum of the corresponding NLP, even if we would
iterate until convergence. The reason for this is that the inequality constraints
related to the gate positions are approximated with linear inequality constraints
without taking the dependency of these nonlinear inequality constraints on the
states into account. Another approach would be to follow the work done by
Q. Tran Dinh in [171] and approximate the nonlinear inequalities by linearizing
the function f̂ with respect to the gate discharge and the water levels. However
based on the simulation results shown in the remaining part of this dissertation,
we can conclude that this extra linearization step is not required for achieving
a good control performance related to flood control of river systems.

4.4.3.2 Controllability of the gates

The algorithm used to find the time-varying lower and upper limits on the gate
discharges over the prediction window, makes use of a function l to find the gate
position corresponding with a desired gate discharge for a given upstream and
downstream water level. Only when the gate is in its controllable region there
is a one-to-one relationship between the gate position and the gate discharge,
and the corresponding gate position can be easily found. A gate is considered
to be controllable if a change in its gate position results in a change in the
gate discharge, otherwise it is called uncontrollable. An underflow vertical
sluice is uncontrollable when its gate opening is larger than the upstream and
downstream water level: the sluice is lifted out of the water. A gated weir is
uncontrollable when the gate is completely closed or when it is in throat control
model (see Section 3.3.3.1 for more information).

This uncontrollability of the gates can degrade the control performance if this
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is not taken into account. Consider the situation where the gate opening of
a vertical sluice should be as large as the upstream water level to achieve a
desired positive gate discharge. The upstream and downstream water level
for the sluice can be decreased at the next time step such that increasing or
decreasing the gate opening over a distance ∆c will not affect the gate discharge:
the sluice is completely lifted out of the water. Hence Eqs. (4.15) and (4.16)
will return the same value. This can happen for every time step within the
prediction window and at the end the lower limit is equal to the upper limit
at all times. This means that the value for the gate discharge is fixed and the
controller will stop using this gate, losing in this way one degree of freedom. A
similar situation is possible with a gated weir.

This problem can easily be avoided if we make sure that the gate position
found by the function l is always within its controllable region or at least on
the borderline between both regions. In this way changing the gate opening
over a distance ∆c will always result in different values for the gate discharge.
For a vertical sluice this means that when a maximal possible gate discharge is
requested, the gate position returned by the function l will be just above the
upstream and downstream water level. Similarly if a zero flow is requested for
a gated weir, its returned gate position will be just above the upstream and
downstream water level. For a maximal discharge for a gated weir the function
l returns the gate position such that the gate is at the borderline between the
throat control mode and the gate control mode. In all other situations there is
a one-to-one relationship between the desired gate discharge and gate position,
and this gate position can be found with a simple bisection search method.

This function l is also used to make the conversion from the first discharge of
the sequence of optimal gate discharges to its corresponding gate position after
solving the QP. This gate position is then applied to the hydraulic structure.
This solution can be compared with the approach presented in [18] where the
author worked with the gate positions as optimization variables. First of all
the author of [18] had to work with nonlinear MPC to achieve a good control
performance. Based on the (time-varying) state space matrix B it is possible
to see whether the gate is controllable or not. If the gate is uncontrollable,
one has to use a reference value for the gate position inside the optimization
problem in combination with a large weight such that the controller will steer
this gate back to its controllable region. Checking at every time step over
the prediction window whether the gate is controllable or not, updating the
reference trajectory for uncontrollable gates and their corresponding weights in
the objective function is not needed in our approach. The problem of possible
uncontrollability of a gate is automatically solved by optimizing over the gate
discharges and the use of the function l.
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Table 4.7: Parameters for the two trapezoidal channels used to test the
performance of MPC.

L S0 nmann B S1, S2 nh

reach 1 1000 0.0004 0.045 6 0.5 10

reach 2 2000 0.0002 0.030 6 0.5 20

4.4.4 Simulation results

The proposed MPC will be tested on a river system for which the dynamics
are given in Section 4.4.1. The parameters for both trapezoidal reaches are
given in Table 4.7. The vertical sluice in between both channels is as wide
as the bottom of both channels. The performance of MPC with the gate
discharges as optimization variables proposed in the previous subsections will
be compared with an MPC with the gate positions as optimization variables.
The capabilities for set-point tracking and flood control will be tested for both
MPC formulations. The controller based on the LN-model will be denoted with
LN-MPC while L-MPC will be used for the controller based on the full linear
model. The closed loop simulations are performed with the full hydrodynamic
model of the river system.

Initially the flow is constant in both reaches and equal to 4 m3 · s−1. The gate
opening is 0.8 m and the most downstream water level is 4 m. The flood levels
of the first reach are 1 m above its initial water levels while for the second reach
they are only 40 cm above its initial water levels. In order to prevent the second
reach from flooding, the controllers will have to use the extra buffer capacity of
the first reach. The gate opening c of the vertical sluice has to be between 0 m
and 2 m and can only move 20 cm every 15 min. The controllable upstream
discharge Qin and downstream discharge Qout have to remain between -7 and
7 m3 · s−1 and can only change with 5 m3 · s−1 every 15 min. Both controllers
have a prediction window size NP of 20. Table 4.8 shows the diagonal elements
of the weight matrices W, V and R, and the entries of the weight vector v. The
values for V and v are larger than the other weights such that the controllers
will focus on flood control when there is a risk of flooding. The highest weight
of the matrix W is used for the downstream water level of both reaches. During
set-point control the controllers will try to steer these water levels as close as
possible to their reference. The values for the matrix R are one order smaller
to give the controllers enough freedom to use the input variables.
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Table 4.8: Diagonal elements for the weight matrices W, V and R, and the
elements for the weight vector v for set-point control and flood control of two
reaches.

reach 1 reach 2

W ∈ R62×62

water levels

[

10−3 · 19

10

] [

10−3 · 119

10

]

discharges 10−3 · 111 10−3 · 121

V ∈ R30×30

flood levels 104 · 110 104 · 120

v ∈ R30

flood levels 104 · 110 104 · 120

Qin Qout Qgate or c

R ∈ R3×3 or R2×2

control actions 1 1 1

4.4.4.1 Set-point control

The first test case checks the tracking performance of LN-MPC with full state
information and L-MPC with full state information. In this test case both
controllers can use the upstream discharge Qin, the downstream discharge
Qout and the gate position c, and there is no risk of flooding (hmax = ∞).
Fig. 4.12 shows the evolution of the water levels for both controllers together
with the changing reference trajectory and the gate opening of the vertical
sluice. Fig. 4.13 shows the control actions applied to the upstream discharge
Qin, the downstream discharge Qout and the gate opening c. There is almost no
difference in the evolution of the water levels and the control actions between
both controller for the first three hours. Both controllers succeed in following
the first step change in the reference signal. The results for the second step
change in the reference signal are completely different. LN-MPC succeeds in
keeping the water levels of the first reach almost constant while it decreases
the water levels of the second reach towards their new set-point. This is not
the case with L-MPC: the water levels of the first reach increase while the
water levels of the second reach decrease below their set-point. The reason is
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Figure 4.12: Evolution of the water levels in space and time for both reaches
and the gate opening of the sluice together with the time-varying reference
trajectory for LN-MPC (top) and L-MPC (bottom). By optimizing the gate
discharges LN-MPC tracks the reference trajectory very well. L-MPC does not
follow the second change in the reference trajectory. The linear approximation
of the gate equation is only accurate if the difference between the upstream
and downstream water level of the gate does not change too much.
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Figure 4.13: The computed upstream discharge Qin (top), the downstream
discharge Qout (middle) and the gate position c (bottom) by the LN-MPC and
L-MPC controllers when applied to two reaches for set-point tracking. The
control actions for the first 3 hours are very similar. As long as the difference
between the upstream and downstream water level of the gate does not bring
the system far away from the linearization point, the linear approximation of
the gate equation is accurate enough. After 3 hours, this deviation increases
and the control actions of both controllers are not similar any more.
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Table 4.9: The set-point deviation cost Jh obtained with LN-MPC and L-MPC
when tracking a time-varying reference trajectory for the water levels off two
reaches connected to each other with a vertical sluice.

Simulation cost LN-MPC L-MPC

Jh [m] 194 2814

that the linear approximation of the nonlinear gate equations used by L-MPC
is really poor. This linear approximation is accurate enough if the difference
between the water level upstream and downstream of the gate is comparable
to the difference that is present around the linearization point. This is why
L-MPC succeeds in tracking the first change in the reference trajectory: the
water levels of both reaches have to increase with the same amount, hence the
difference between the water level upstream and downstream of the gate will not
deviate much from its initial value. Because the second change in the reference
trajectory applies only to the second reach, this difference increases and the
accuracy of the model decreases resulting in a bad control performance. LN-
MPC does not suffer from this problem because the gate equations are pulled
out of the optimization problem. The optimal gate positions are found by
converting the optimal gate discharges into the gate positions with the use of
the nonlinear gate equations. Because L-MPC does not succeed in tracking the
second change in the reference trajectory, its set-point deviation cost Jh given
in Table 4.9 is much larger than the cost for LN-MPC.

4.4.4.2 Flood control

The upstream discharge Qin is a disturbance signal and is given in Fig. 4.14.
Because it exceeds the upper limit of 7 m3 · s−1 for the downstream discharge
Qout for a long time, there is a risk of flooding. Fig. 4.15 shows the evolution
of the water levels of both reaches for LN-MPC with full state information and
L-MPC with full state information, while Fig. 4.16 shows the maximal flooding
and the control actions for both controllers. Again LN-MPC outperforms L-
MPC. By first optimizing over the gate discharges and then performing the
gate conversion based on the nonlinear gate equations, LN-MPC succeeds in
preventing both reaches from flooding. It successfully uses the extra amount of
buffer capacity of the first reach to prevent the second reach from flooding. This
is not the case with L-MPC. Because of the inaccuracy of the linear model once
the difference between the upstream and downstream water level of the gate
starts changing, the L-MPC makes the gate opening too small resulting in a
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Figure 4.14: Disturbance signal for the upstream discharge Qin used to test the
flood control performance of LN-MPC and L-MPC.

Table 4.10: The set-point deviation cost Jh and the flood cost Jhmax obtained
with LN-MPC and L-MPC controlling a river system consisting of two reaches
connected to each other with a vertical sluice.

Simulation cost LN-MPC L-MPC

Jh [m] 810 1972

Jhmax [m] 0 478

poor control performance and large floods for the first reach. These conclusions
are also confirmed by looking at the set-point deviation cost Jh and flood cost
Jhmax given in Table 4.10. Because LN-MPC keeps the water levels of both
reaches much closer to their set-points and below the flood levels at all times,
both costs are much smaller than the cost obtained with L-MPC.

Until now it was assumed that all the water levels and discharges of both
reaches are known at every time step. In this part this assumption is dropped
and only the downstream water level of every reach is measured. A Kalman
filter is used to estimate the unknown states. The Kalman gain matrix L is
computed from the linear state space model of the LN-Model (Eq. (4.13)) in
conjunction with the following weighting matrices:

Qest = 10−3 · Inx ,

Rest = 10−6 · Inu .

Fig. 4.17 shows the maximal flooding for both reaches together with the control
actions of LN-MPC with and without the Kalman filter. There is almost no
difference between the maximal flooding for both controllers. Both controllers
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Figure 4.15: Evolution of the water levels in space and time for both reaches
and the gate opening of the sluice together with the reference trajectory and the
flood levels for LN-MPC (top) and L-MPC (bottom). By optimizing over the
gate discharges, the LN-MPC succeeds in keeping all the water levels below
their flood levels. The L-MPC cannot prevent the first reach from flooding.
The linear approximation of the gate equation is not accurate if the difference
between the upstream and downstream water level of the gate increases. The
mismatch between the actual effect of changing the gate position and the
modelled effect is too large resulting in a bad control performance.
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Figure 4.16: The maximal flooding of the first reach (top left) and the second
reach (bottom left) together with the control actions for the gate position c
(top right) and the downstream discharge Qout (bottom right) applied with
LN-MPC and L-MPC used for flood control of the two reaches. The LN-MPC
succeeds in keeping the maximal flooding of both reaches below zero: there is
no flooding. The control actions applied by the L-MPC controller results in
very large floods for the first reach. The inaccurate approximation of the gate
equation results in making the gate opening too small.
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Figure 4.17: The maximal flooding of the first reach (top left) and the second
reach (bottom left) together with the control actions for the gate position c
(top right) and the downstream discharge Qout (bottom right) applied with LN-
MPC with full state information and LN-MPC in combination with a Kalman
filter used for flood control of the two reaches. The difference between both
controllers is very limited. Despite the limited number of measurements, the
LN-MPC in combination with the Kalman filter succeeds in preventing both
reaches from flooding. The remaining margin before a flood level is violated is
slightly smaller for both reaches when a Kalman filter is needed.
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Table 4.11: The set-point deviation cost Jh and the flood cost Jhmax obtained
with LN-MPC with full state information and LN-MPC used in combination a
Kalman filter controlling a river system consisting of two reaches connected to
each other with a vertical sluice.

Simulation cost LN-MPC LN-MPC + Kalman

Jh [m] 810 758

Jhmax [m] 0 0

can prevent the reaches from flooding. The margin before flooding is slightly
smaller when the Kalman filter is used. Also the difference for the downstream
discharge Qout is very small for both controllers. The biggest influence of the
limited number of measurements can be seen in the control actions for the
gate opening. These differences are caused by the estimation errors on the
downstream water level of the gate (only the upstream water level of the gate
is measured). However the effect on the control performance is small. The
same conclusions can be made based on the set-point deviation cost Jh and
flood cost Jhmax given in Table 4.11. Using the Kalman filter even lowers Jh

with a small amount.

4.5 Model Predictive Control applied to a river
system with a reservoir

Until now the examples used to explain and test MPC based on the LN-model
were very simple. In this section an artificial test example will be constructed
which resembles the upstream part of the Demer that will be controlled in the
next chapter. This river system contains a reservoir, which the controller is
only allowed to use for flood prevention. After introducing the river system
and the approximate model used by the controller, the optimization problem
will be formulated. The addition of this reservoir has its consequences for the
optimization problem: extra terms need to be added to the cost function and
a strategy is needed such that the buffer capacity is recovered in a fast way.
Again a Kalman filter will be used for estimation the unknown states.
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Figure 4.18: The river system to be prevented from flooding. The arrows
indicate the general flow direction from upstream to downstream. Channels 1
to 4 form the main part of the river. Channels 5 and 7 connect the river with
the reservoir (channel 6). The squares represent vertical sluices. The upstream
inflow is given by Qin while the outflow is determined by Qout. The controller
can control the position of the three sluices as well as the downstream discharge
Qout. The upstream discharge Qin is a disturbance signal.

4.5.1 The test example

4.5.1.1 The river system and control objectives

Fig. 4.18 gives a schematic overview of the river system used to test the control
performance. Channels 1 until 4 form the main part of the river while channels
5 and 7 connect the water reservoir (channel 6) with the river. The squares
represent vertical sluices which can be used to control the discharges locally.
Qin(t) is the discharge entering the river while Qout(t) corresponds with the
discharge leaving the river. The discharge Qin(t) entering the river system is
a disturbance signal. The controller can control the water levels with Qout(t)
and the three gates. Every control variable has an associated upper and lower
limit and the gates have a maximal rate of change constraint.

When there is no flooding risk, the controller should keep the water levels
of the first and the fourth channel as close as possible to their set-points.
During periods of heavy rainfall the controller needs to use the available buffer
capacity of the reservoir in an optimal way. The controller should also empty
the reservoir as fast as possible before focussing on set-point control again.
Each channel has a safety limit and a flood limit. Only when the water levels
risk violating their safety limits, the controller is allowed to use the buffer
capacity of the water reservoir up to its own safety limit. Once this limit is
reached, the channels are allowed to violate their safety levels. If the water
levels risk violating also the flood limits, then all the available buffer capacity
of the water reservoir can be used. The controller should also take into account
that only a very limited number of water levels are measured in practice: only
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the upstream and downstream water levels of every reach. It is assumed that
the future disturbances are known at every time step.

4.5.1.2 Mathematical model

Based on the equations and boundary conditions defined in the previous chapter
the mathematical model corresponding to this system consists of the following
set of equations:

• the Saint-Venant equations modelling the dynamics of every channel
individually (with i = 1, . . . , 7):











∂A(i)

∂h

∂h(i)

∂t
+
∂Q(i)

∂z
= 0,

∂Q(i)

∂t
+

∂

∂z

Q(i)2

A(i)
+ gA(i) ∂h(i)

∂z
+ gA(i)(S(i)

f − S(i)
0 ) = 0,

• the gate equations as boundary conditions between channels 2 and 3,
channels 5 and 6 and channels 6 and 7:

{

Q(2)(L(2), t) = f̃
(

c(1)(t), h(2)(L(2), t), h(3)(0, t)
)

,

Q(3)(0, t) = f̃
(

c(1)(t), h(2)(L(2), t), h(3)(0, t)
)

,

{

Q(5)(L(5), t) = f̃
(

c(2)(t), h(5)(L(5), t), h(6)(0, t)
)

,

Q(6)(0, t) = f̃
(

c(2)(t), h(5)(L(5), t), h(6)(0, t)
)

,

{

Q(6)(L(6), t) = f̃
(

c(3)(t), h(6)(L(6), t), h(7)(0, t)
)

,

Q(7)(0, t) = f̃
(

c(3)(t), h(6)(L(6), t), h(7)(0, t)
)

,

where the function f̃ is modelled with Eq. (3.9),

• the boundary conditions for all channels ending in or starting from a
junction:









h(1)(L(1), t) = h(2)(0, t),

h(1)(L(1), t) = h(5)(0, t),

Q(1)(L(1), t) = Q(2)(0, t) + Q(5)(0, t),









h(3)(L(3), t) = h(4)(0, t),

h(7)(L(7), t) = h(4)(0, t),

Q(3)(L(3), t) + Q(7)(L(7), t) = Q(4)(0, t),
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• and the following two last boundary conditions:

{

Q(1)(0, t) = Qin(t),

Q(4)(L(4), t) = Qout(t).

4.5.2 Approximate model

The approximate model that will be used inside the optimization problem is
very similar as the one used in Section 4.4.2 and is derived for a given steady
state of the river system:

x(k + 1) = Ax(k) + Bu(k) + Fd(k) + β,

with x ∈ Rnx the state vector containing all the water levels and discharges
of the reaches, A ∈ Rnx×nx , B ∈ Rnx×nu , F ∈ Rnx×nd , β ∈ Rnx the vector
containing the information related to the linearization point, u(k) ∈ R4 the
input vector containing the downstream river discharge Qout and the gate

discharges Q(1)
gate, Q(2)

gate and Q(3)
gate, and d ∈ R the disturbance signal Qin.

4.5.3 Formulation of the optimization problem

The optimization problem that needs to be solved at every time step is based
on the QP formulated in Section 4.4.3 and is defined as follows:

min
u,x,ξ,ζ

NP∑

j=1

‖x(j) − rx(j)‖2
W +

NP−1
∑

j=0

‖u(j) − u(j − 1)‖2
R+

+‖ξ‖2
S + sTξ + ‖ζ‖2

V + vTζ (4.17)

s.t. x(0) = x̂,

x(j + 1) = Ax(j) + Bu(j) + Fd(j) + β, j = 0, . . . , NP − 1

u(j) ≤ u(j) ≤ u(j), j = 0, . . . , NP − 1 (4.18)

|u(j) − u(j − 1)| ≤ ∆u, j = 0, . . . , NP − 1

u(−1) = uprev,

for i = 1, . . . , nc :

H̃(i)x(j) ≤ h(i)
max,1 + 1

n(i)
h

· η(j)ξi, j = 1, . . . , NP (4.19)
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H̃(i)x(j) ≤ h(i)
max,2 + 1

n(i)
h

· η(j)ζi, j = 1, . . . , NP (4.20)

ξ ≥ 0, (4.21)

ζ ≥ 0, (4.22)

with NP the prediction horizon, W ∈ Rnx×nx ( 0, R ∈ Rnu×nu & 0, S ∈
Rnc×nc & 0 and V ∈ Rnc×nc & 0 four diagonal weighting matrices, s ∈ Rnc

and v ∈ Rnc two weighting vectors, nc the total number of channels, rx ∈ Rnx

a (possible time-varying) vector containing the set-points for all the states,
x̂ ∈ Rnx the current state of the process (measured or estimated), u ∈ Rnu and
u ∈ Rnu the lower and upper limits on the inputs, ∆u ∈ Rnu a vector with the
maximal allowed rate of change for the inputs, uprev ∈ Rnu the control action

applied in the previous time step, H̃(i) ∈ Rn(i)
h ×(nh+nQ) a matrix selecting the

water levels of reach i from the state vector x, hmax,1 ∈ Rnh the safety levels,
hmax,2 ∈ Rnh the flood levels, η(j) = 1/rj−1

c a time-dependent inverse weight
(with rc > 1) and ξ, ζ ∈ Rnc two vectors of slack variables related to the safety
levels and flood levels respectively.

Most of the elements of this optimization problem have been explained in
previous sections:

• The safety levels and flood levels are imposed as soft constraints with the
slack variables ξ and ζ (Eqs. (4.19) and (4.20)) together with the addition
of these slack variables in the objective function (Eq. (4.17)) and positivity
constraints on these variables (Eqs. (4.21) and (4.22)). More information
is given in Section 4.3.3.1. Notice that only one slack variable is used for
every reach in contrast to the previous sections where one slack variable
was used for every water level of every reach. This reduces the number
of optimization variables and the complexity of the QP.

• Section 4.4.3.1 explains how the limits c, c and ∆c can be translated
to the time-varying limits u and u on the gate discharges (Eq. (4.18)).
Algorithm 3 can easily be extended from the case of a single gate to the
situation where multiple gates are present.

• Uncontrollability of the gates is avoided with the same approach discussed
in Section 4.4.3.2.

4.5.3.1 The weight matrix S and the weight vector s

Until now there were only flood levels for the water levels. Section 4.3.3.2
explains how the weighting matrices W, R, V and the weight vector v have to
be chosen such that the controller can be used for set-point control and flood
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control. This reasoning can simply be extended to the situation where there
are also safety levels present for the water levels. The elements in the matrix
V and v should be sufficiently large compared to the matrices W and R in
order to impose the flood levels as exact soft constraints. The same reasoning
holds for the matrix S and the vector s. Because the buffer capacity of the
reservoir above the safety limit may not be used for keeping the water levels of
all the other channels below their safety limits, the diagonal element of S and
the element of s corresponding to the reservoir are set higher than the elements
corresponding with the other channels. The diagonal elements of V and the
elements of v are set higher than all the elements of S and s: a violation of the
flood levels is penalized more than the violation of the safety levels. Therefore
the controller will use the remaining buffer capacity of the reservoir above the
safety level for flood prevention of all channels. The reasoning for the matrices
W and R is the same as before.

Remark. Another solution often used in industrial advanced process control
software packages to deal with the difference in importance between the
different safety and flood levels is to work with priorities. E.g. the flood
levels will have a higher priority than the safety levels. In a first step a
static optimization problem is solved looking for the optimal steady state
targets. Starting with the most important constraints (i.e. the constraints
with the highest priority), a series of QPs is solved adding every time the
next priority class of constraints to the optimization problem until it becomes
infeasible. Although multiple optimization problems have to be solved, the
total computation time is limited: the QPs are much smaller than the original
problem because we are only interested in the steady state targets. These
optimal steady state targets are then used as new set-points in the dynamic
optimization problem that has to be solved only once.

4.5.3.2 Buffer capacity recovery

After a period of heavy rainfall the controller should recover the buffer capacity
to handle future rainfall without flooding. This can be achieved by working
with two different weighting matrices W and reference signals rx. During
normal operation (set-point control), the diagonal elements of the matrix W
corresponding to the most important water levels will have the highest values
in comparison to the diagonal elements corresponding to the other water levels
and rx is set equal to the desired set-points. However when some of the buffer
capacity is used for flood prevention, the set-points of the water levels of the
most downstream channel (channel 4) are set lower than the set-point of the
reservoir and the diagonal elements of W corresponding to these water levels
are increased. By decreasing these water levels, the third gate can be used
to remove the excess of water in the reservoir. This change in W and rx is
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performed when one of the water levels in the reservoir is 20 cm above its
set-point. This is checked every time a new state estimate of the process is
computed. When the buffer capacity is recovered, W and rx are set equal to
their initial values (set-point control). This is done when all the water levels of
the reservoir are at the most 10 cm above their set-point for at least 2.5 hours.

4.5.4 Simulation results

In this section we show the simulations results when LN-MPC with full
state information and LN-MPC with a Kalman filter are applied to full
hydrodynamic model of the river system visualized in Fig. 4.18. The sampling
time of every controller is 15 min. A spatial discretization ∆z of 50 m is used
for all seven reaches. Initially the discharges in the main river part are all
equal to 3 m3 · s−1, while there is no flow in the reservoir and the two side
channels. This means that the second and the third gate are closed. The most
downstream water level of the second channel and of the fourth channel are
equal to 5 m, while the most downstream water level of the reservoir is equal
to 4 m. The set-points for all the water levels are equal to the initial water
levels. The downstream discharge Qout should remain between 0 m3 · s−1 and
5 m3 · s−1. All the gate openings should be between 0 m and 5 m and they
can only be changed over a maximum distance of 20 cm every 15 min. The
differences between the initial water levels and the safety levels for channels
1, 2 and 5 are equal to 0.6 m, for channels 3, 4 and 7 are equal to 0.6 m and
for the reservoir are equal to 1.2 m. The differences with respect to the flood
levels are 1 m, 0.8 m and 2 m respectively. Two tests will be performed. One
for a relative small disturbance signal in combination with a small reservoir,
and another one for a large disturbance signal together with a larger reservoir.
Table 4.12 shows the parameters for the different reaches. The first value for
the bottom width of the reservoir is used in the first test, the second value for
the second test. The width of every gate is equal to 6 m.

Table 4.13 shows the elements of the weight matrices W, S, V and R, and the
entries of the weight vectors s and v. As explained in the section describing the
problem formulation, during normal operation the water levels of the channels
1 and 4 and of the reservoir are the most important ones. Therefore the
weights of W corresponding to these water levels are set equal to 10, 1 and
1000 respectively. All the other weights for the other water levels are fixed to
0.001. The weights for the discharges for all the channels are set equal to 0.001.
If the buffer capacity is used to prevent the water levels from violating their
safety limits, the set-points for the most downstream water levels (channel 4)
are set below the set-point of the reservoir and the corresponding weights in
W are increased to 800 such that the buffer capacity can be recovered. All
the diagonal elements of R are set equal to 175 for the gate discharges and 10
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Table 4.12: Channel and gate parameters for the river system of Fig. 4.18. The
first value for the bottom width of the reservoir is used when the performance
of the controller is tested for a small reservoir, the second value for testing the
performance on a large reservoir.

channels

channel 1 channels 2-4 channels 5 & 7 reservoir

L [m] 800 1000 500 3000

S0 0.0002 0.0002 0.0001 0.0001

nmann

[

s · m−1/3
]

0.02 0.02 0.02 0.02

B [m] 6 6 6 6/50

S1, S2 1 1 1 1

for Qout, the weights in S and s for the slack variable ξ associated with the
reservoir are set to 106, the weights associated with the other channels are set
equal to 105, the weights in V and v for the slack variable ζ are taken equal
to 108. rc is set to 1.2 and the size of the prediction window NP is equal to 15.
The following weight matrices were used to compute the Kalman gain matrix
L:

Qest = 10−3 · Inx ,

Rest = 10−6 · Inu .

4.5.4.1 Small reservoir

The disturbance signal is depicted in Fig. 4.19. Initially the discharge entering
the river system is equal to 3 m3 · s−1, then after 4 hours it is increased to
12 m3 · s−1 and finally after 6 hours it is decreased back to 3 m3 · s−1.

Fig. 4.20 shows the evolution of the maximal difference between the water
levels and their set-points for LN-MPC with and without the Kalman filter.
In order to limit the number of plots, the results for the upstream part of
the river (channels 1, 2 and 5) are plotted together (the top plot) as well as
the results for the downstream part of the river (channels 3, 4 and 7, the
middle plot). The bottom plot shows the results for the reservoir (channel 6).
Fig. 4.21 shows the control actions applied to the three gates and Qout(t). The
control actions as well as the water levels have a similar general trend for both
controllers. The addition of the estimator in the control loop has only a limited
effect on the control performance. There is only a noticeable difference in the
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Figure 4.19: Disturbance signal Qin used to test the performance of LN-MPC
when applied to a river system with a small reservoir.

control actions for the two controllers during the period of heavy rainfall and
right after this period. However since the trend of the control actions for the
two controllers is similar, the water levels show the same behavior. Initially
the controllers try to avoid to use the water reservoir and react on the future
rainfall by decreasing the upstream water levels. This is done by increasing the
gate opening of the first gate and increasing the discharge at the end of the
river towards its maximal value. Once the water levels risk violating the safety
levels, the controllers start using the water reservoir by opening the second
and the third gate. Because of the magnitude of the upstream disturbance,
the controllers cannot avoid the violation of the safety levels for the upstream
part of the river, however they can prevent the violation of the flood levels
or in the worst case minimize their violation. Table 4.14 shows the maximal
difference between the water levels of each channel and their flood levels for
both controllers. A positive value corresponds to the maximal violation of
the flood levels, a negative value corresponds to the minimal margin before a
flood level is violated. There is almost no difference between both controllers.
The highest flooding is less than 9 mm without and with a Kalman filter.
The different floods last for less than 2 minutes. The water levels of the
downstream part can be kept below their safety levels at all times. Once the
disturbance is decreased again, the controllers first steer the upstream water
levels below their safety limits. Afterwards they keep these water levels close to
the safety limits (the opening of the first gate is decreased and the second gate
is completely closed) while the downstream water levels are further decreased
below their initial set-point because of the change in the matrix W and the
set-point rx. To decrease these water levels as fast as possible the controllers
keep the downstream discharge at its maximal value. Once the buffer capacity
is recovered, the matrix W and the set-point rx are set to their initial value.
The controllers close the second and the third gate to prevent the water levels
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Figure 4.20: Evolution of the maximal difference between water levels and their
set-points for LN-MPC and LN-MPC in combination with the Kalman filter.
The top plot shows the maximal deviation of the water levels of channels 1, 2
and 5 at every time step, the middle plot the maximal deviation of the water
levels of channels 3, 4 and 7 and the bottom plot the maximal deviation of
the water levels of channel 6. The flood levels correspond with the highest
horizontal lines, the safety levels with the lowest ones.
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Figure 4.21: Control actions of the LN-MPC with and without the Kalman
filter. The top plots and the bottom left plot show the evolution of the three
gates and the bottom right plot shows the discharge Qout(t) at the end of the
river system. There is almost no influence on the resulting control actions when
a state estimator is included in the control loop.
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Table 4.14: Maximal flooding of each channel for the two controllers in meters.
A negative value means that there is no flooding and some buffer capacity is
left for that channel.

LN-MPC
LN-MPC

+ Kalman

channel 1 [m] 0.0081 0.0090

channel 2 [m] 0.0018 0.0030

channel 3 [m] -0.2735 -0.2591

channel 4 [m] -0.2738 -0.2583

channel 5 [m] -0.0080 -0.0126

channel 6 [m]
-0.1992 -0.2057

(reservoir)

channel 7 [m] -0.2742 -0.2582

in the reservoir to increase. Immediately the controllers bring the upstream
water levels as well as the downstream water levels to their (original) set-point
by opening the first gate and changing Qout(t). Table 4.15 shows the average
deviation of the water levels of every channel from their set-points at the end of
the simulation. The controllers succeed in steering the water levels back to their
set-points. The largest deviations are for the reservoir with 1 cm and 2 cm for
LN-MPC used without and with the Kalman filter respectively. However these
differences are negligible. The same conclusions can be made by comparing
the set-point deviation cost Jh and the flood cost Jhmax for LN-MPC with full
state information and LN-MPC in combination with the Kalman filter given
in Table 4.16. Both costs are practically the same for both controllers: the
addition of the Kalman filter has almost no influence on the control performance
of the predictive controller.

Table 4.17 contains the mean, the minimal and the maximal computation time
needed for computing the control actions for each step (prediction, optimization,
conversion) separately and the total time. Also the timings for the Kalman filter
are given. The time needed by the LN-MPC at every time step is dominated
by the time needed to solve the optimization problem. Solving the QP during
the period of the large disturbance signal takes the most time because more
constraints become active (the safety levels, flood levels and upper limit on
Qout). The time needed by the estimator at every time step is negligible because
only a limited number of matrix-vector multiplications are required.
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Table 4.15: Average deviation of the water levels from their set-points at the
end of the simulation.

LN-MPC
LN-MPC

+ Kalman

channel 1 [m] 1.51·10−5 1.10·10−5

channel 2 [m] 1.54·10−5 1.10·10−5

channel 3 [m] 2.31·10−5 7.09·10−6

channel 4 [m] 2.27·10−5 6.88·10−6

channel 5 [m] 1.56·10−5 1.14·10−5

channel 6 [m]
0.01 0.02

(reservoir)

channel 7 [m] 2.24·10−5 6.48·10−6

Table 4.16: The set-point deviation cost Jh and the flood cost Jhmax obtained
with LN-MPC without and with a Kalman filter.

Simulation cost LN-MPC
LN-MPC

+ Kalman

Jh [m] 17590 17591

Jhmax [m] 0.010 0.012

Table 4.17: Average, minimal and maximal computation time (in seconds)
needed for each step separately of the controllers, for all steps together
performed by the controllers, and for the estimation step performed by the
Kalman filter. The simulation was performed on a PC with a 2.8 GHz Intel Core
i7 CPU and 8 GB of RAM. The QP is solved with quadprog of Matlab [123].

LN-MPC LN-MPC + Kalman

mean min max mean min max

prediction [s] 0.089 0.047 0.140 0.088 0.050 0.102

optimization [s] 4.747 3.270 8.282 4.633 3.306 7.791

conversion [s] 0.009 0.006 0.012 0.008 0.006 0.011

total [s] 4.844 3.363 8.367 4.730 3.399 7.878

estimation [s] – – – < 0.001 < 0.001 0.006
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Figure 4.22: Disturbance signal Qin used to test the performance of LN-MPC
applied to a river system with a large reservoir.

4.5.4.2 Large reservoir

A similar test has been conducted for a larger reservoir in combination with a
larger disturbance signal (Fig. 4.22). This time Qin increases after 4 hours to
24 m3 · s−1 and it decreases back to 3 m3 · s−1 6 hours later.

The results are very similar to the ones with the small reservoir. Fig. 4.23 shows
the evolution of the maximal difference between the water levels and their set-
points for LN-MPC with and without the Kalman filter for the upstream part
of the river, the downstream part and the reservoir. The control actions are
visualized in Fig. 4.24. There is again almost no difference between the results
without and with a Kalman filter. The controllers first create extra buffer
capacity by decreasing the water levels of the upstream part of the reach. This
is done by opening the first gate and increasing the downstream discharge Qout

towards its maximal value. Once there is a risk of violating the safety levels and
flood levels, the controllers open the second and the third gate to start using
the buffer capacity of the reservoir. Table 4.18 shows the maximal flooding for
the different channels for both controllers. LN-MPC without the Kalman filter
succeeds in keeping all the water levels at all times below their flood levels.
There is a flooding of the first, second and fifth channel when the Kalman filter
is included in the control loop. However these maximal floods are less than
3.8 cm and last for less than 10 minutes. Afterwards both controllers bring
the water levels below their safety levels and they start emptying the water
reservoir. Once the buffer capacity of the reservoir is recovered, the water
levels of the other channels are steered back to their set-points. Table 4.19
shows the average deviation between the water levels and their set-points for
every channel at the end of the simulation. These deviations are small enough
for both controllers. Table 4.20 contains the set-point deviation cost Jh and the
flood cost Jhmax for both controllers. The flood cost is equal to zero for the case
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Figure 4.23: Evolution of the maximal difference between the water levels and
their set-points for LN-MPC and LN-MPC in combination with the Kalman
filter. The top plot shows the maximal deviation of the water levels of channels
1, 2 and 5 at every time step, the middle plot the maximal deviation of the
water levels of channels 3, 4 and 7 and the bottom plot the maximal deviation
of the water levels of channel 6. The flood levels correspond with the highest
horizontal lines, the safety levels with the lowest ones.
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Figure 4.24: Control actions of the LN-MPC with and without the Kalman
filter. The top plots and the bottom left plot show the evolution of the three
gates and the bottom right plot shows the discharge Qout(t) at the end of the
river system.
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Table 4.18: Maximal flooding of each channel for the two controllers. A negative
value means that there is no flooding and some buffer capacity is left.

LN-MPC
LN-MPC

+ Kalman

channel 1 [m] -0.0251 0.0174

channel 2 [m] -0.0083 0.0371

channel 3 [m] -0.0546 -0.0596

channel 4 [m] -0.0502 -0.0565

channel 5 [m] -0.0258 0.0214

channel 6 [m]
-0.1248 -0.1318

(reservoir)

channel 7 [m] -0.0720 -0.0637

Table 4.19: Average deviation of the water levels from their set-points at the
end of the simulation.

LN-MPC
LN-MPC

+ Kalman

channel 1 [m] -6.24·10−5 -7.54·10−5

channel 2 [m] -6.24·10−5 -7.54·10−5

channel 3 [m] 6.40·10−6 -1.07·10−5

channel 4 [m] 6.42·10−6 -1.07·10−5

channel 5 [m] -6.24·10−5 -7.54·10−5

channel 6 [m]
4.34·10−3 9.67·10−3

(reservoir)

channel 7 [m] 6.42·10−6 -1.07·10−5

of full state information because all the reaches can be prevented from flooding.
This is not the case with the Kalman filter resulting in a flood cost different
from zero. However this value is still very small. The set-point deviation cost is
the same for both controllers. Both simulation costs indicate that the influence
of the Kalman filter on the control performance is very limited.

Table 4.21 shows the timing results for both controllers. The same conclusions
can be made as for LN-MPC applied to the small reservoir. Most time is spent
for solving the optimization problem. The time required for the other steps
can be neglected.
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Table 4.20: The set-point deviation cost Jh and the flood cost Jhmax obtained
with LN-MPC with full state information and LN-MPC in combination with a
Kalman filter.

Simulation cost LN-MPC
LN-MPC

+ Kalman

Jh [m] 39400 39400

Jhmax [m] 0 0.221

Table 4.21: Average, minimal and maximal computation time (in seconds)
needed for each step separately and all of them together by the controllers
and the state estimator at every time step. The simulation was performed on
a PC with a 2.8 GHz Intel Core i7 CPU and 8 GB of RAM. The QP is solved
with quadprog of Matlab [123].

LN-MPC LN-MPC + Kalman

mean min max mean min max

prediction [s] 0.088 0.047 0.123 0.087 0.051 0.137

optimization [s] 4.987 3.369 9.552 4.964 3.518 10.437

conversion [s] 0.006 0.006 0.009 0.006 0.006 0.015

total [s] 5.083 3.460 9.637 5.060 3.610 10.527

estimation [s] – – – < 0.001 < 0.001 0.009

4.6 Implementation aspects & speed-up of the
controller

It can be shown that the optimization problem given by Eqs. (4.17)-(4.22) can
be rewritten into the following general formulation of a QP [18]:

min
z

0.5 zTHz + fTz

s.t. Ainz ≤ bin,

Aeqz = beq,
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with z ∈ Rnz the vector containing the nz optimization variables, the Hessian
H ∈ Rnz×nz , f ∈ Rnz , Ain ∈ Rnin×nz and bin ∈ Rnin the matrix and the vector
defining the nin linear inequality constraints, Aeq ∈ Rneq×nz and beq ∈ Rneq

the matrix and vector defining the neq linear equality constraints.

In the expanded or uncondensed implementation of the QP, the vector z is
formed by stacking the states and inputs at every time instant of the prediction
horizon, together with the slack variables:

z = [x(1); x(2); . . . ; x(NP); u(0); . . . ; u(NP − 1); ξ; ζ].

The model equations are translated into the matrix Aeq and the vector beq,
while the flood levels, the safety levels, the time-varying lower and upper limits
and the rate of change constraint of the inputs and the positivity constraints
on the slack variables are contained in the matrix Ain and the vector bin.
The Hessian H is a block diagonal matrix with one block for the states, the
inputs and the two slack variables respectively. The diagonal blocks related
to the states and the slack variables have a diagonal structure while the block
related to the inputs contains elements on the main diagonal and on the nuth
and −nuth diagonal (because the difference between consecutive inputs u(k) −
u(k − 1) is weighted). It can be shown that the matrix Aeq only depends
on the state space matrices A and B and is independent of x̂, β, F and the
disturbances d(k). This means that every time the predictive controller has to
solve the QP, Aeq is the same in contrast to beq. Also the matrices Ain and
H remain unchanged, while the vectors bin and f change at every time step.
This property has been exploited in the implementation of the controller by
constructing the matrices Aeq, Ain and H only once [29]. This results in much
smaller computation times than if they would be rebuilt for every iteration.

The computation time needed to solve the QP for the river system is still
small compared to the sampling time of the controller (15 min). However this
computation time can quickly increase if we want to apply our controller to
more complex river systems with more variables and/or if we need to use a
longer prediction horizon. As seen in the previous section, on average 98 % of
the total computation time needed by the controller at every time step is spent
by solving the optimization problem. Some strategies will now be discussed
that can result in a decrease in the computation time. The first strategies
focus on decreasing the number of optimization variables, the other strategies
on reducing the number of inequality constraints.

Remark. The author does not claim that al the mentioned strategies will
always result in a reduction in computation time. Whether a reduction is
achieved as well as the amount of reduction depends on the specific solver
used for solving the QP. E.g. the approaches to decrease the number of
optimization variables will reduce the sparsity structure of the QP. State-
of-the-art QP solvers, like cplexqp of IBM [76], that exploit this sparsity
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can have larger computation times after reducing the number of optimization
variables. However, in combination with an approach to also reduce the number
of inequality constraints, it can still be possible to decrease the computation
time.

4.6.1 Reducing the number of optimization variables

The total number of optimization variables is very large due to the large number
of water levels and discharges. A first solution is to use POD and Galerkin
projection to reduce the order of the model. This will reduce the optimization
variables and at the same time decrease the number of equality constraints.
Another (and better) solution is to eliminate the equality constraints and the
water levels and discharges completely from the optimization problem by using
a condensed implementation.

4.6.1.1 Model reduction with POD

Reducing the model order of the linear state space model will decrease the
total number of optimization variables and decrease the number of equality
constraints. In a similar fashion as it was done in Section 3.6.2.2, POD and
Galerkin projection will be used for reducing the order of the linear state space
model.

POD is used to find the ñnth order approximation of ∆h(k) = h(k) − hss and
the n̂Qth order approximation of ∆q(k) = q(k) − qss:

∆h(k) ≈ ∆hñh(k) =
ñh∑

j=1

aj(k)ϕ̃j = Φ̃ñha(k), ñh . nh,

∆q(k) ≈ ∆qn̂Q(k) =

n̂Q
∑

j=1

bj(k)ϕ̂j = Φ̂n̂Qb(k), n̂Q . nQ,

where ϕ̃j ∈ Rnh , for j = 1, . . . , ñh and ϕ̂j ∈ RnQ , for j = 1, . . . , n̂Q are the

ñh and n̂Q most relevant orthonormal basis vectors, Φ̃ñh =
[

ϕ̃1, . . . , ϕ̃ñh

]

∈
Rnh×ñh , a(k) = [a1(k), . . . , añh(k)]T ∈ Rñh , Φ̂n̂Q =

[

ϕ̂1, . . . , ϕ̂n̂Q

]

∈ RnQ×n̂Q

and b(k) =
[

b1(k), . . . , bn̂Q(k)
]T ∈ Rn̂Q . The Galerkin projection performed

on the linear state space model results in the following reduced order model
describing the dynamics of the POD coefficients a and b:

[

a(k + 1)

b(k + 1)

]

= Ar

[

a(k)

b(k)

]

+ Br∆u(k) + Fr∆d(k)
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with Ar = ΦT
n AΦn ∈ R(ñh+n̂Q)×(ñh+n̂Q), Br = ΦT

n B ∈ R(ñh+n̂Q)×nu , Fr =
ΦT

n F ∈ R(ñh+n̂Q)×nd , ∆u(k) = u(k) − uss, ∆d(k) = d(k) − dss and

Φn =

[

Φ̃ñh

Φ̂n̂Q

]

.

More information on the derivation of the POD basis vectors and a criterion
to determine a value for ñh and n̂Q are given in Section 2.5.

This reduced order model can be used inside the optimization problem resulting
in the following QP:

min
u,a,b,

ξ,ζ

NP∑

j=1

∥
∥
∥
∥
∥

[

a(j)

b(j)

]

− ΦT
n (rx(j) − xss)

∥
∥
∥
∥
∥

2

ΦT
n WΦn

+

+
NP−1∑

j=0
‖u(j) − u(j − 1)‖2

R + ‖ξ‖2
S + sTξ + ‖ζ‖2

V + vTζ

s.t.

[

a(0)

b(0)

]

= ΦT
n (x̂ − xss),

[

a(j + 1)

b(j + 1)

]

= Ar

[

a(j)

b(j)

]

+ Br∆u(j) + Fr∆d(j), j = 0, . . . , NP − 1

u(j) ≤ u(j) ≤ u(j), j = 0, . . . , NP − 1

|u(j) − u(j − 1)| ≤ ∆u, j = 0, . . . , NP − 1

u(−1) = uprev,

for i = 1, . . . , nc :

H̃(i)ΦT
ñh

a(j) + h(i)
ss ≤ h(i)

max,1 + 1
n(i)

h
· η(j)ξi, j = 1, . . . , NP

H̃(i)ΦT
ñh

a(j) + h(i)
ss ≤ h(i)

max,2 + 1
n(i)

h
· η(j)ζi, j = 1, . . . , NP

ξ ≥ 0,

ζ ≥ 0.

The number of optimization variables is decreased from NP · (nh + nQ + nu) +
2 · nc to NP · (ñh + n̂Q + nu) + 2 · nc and the number of equality constraints
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decreases from NP · (nh + nQ) to NP · (ñh + n̂Q). The disadvantage is that
the diagonal structure of the matrix W is destroyed by the multiplication with
the dense matrices Φn and ΦT

n . Also the structure of the state space matrices
A, B and F is destroyed for the same reason when they are replaced with the
reduced order state space matrices Ar, Br and Fr.

4.6.1.2 Condensed implementation

The water levels and discharges, and the equality constraints coming from the
linear state space model can be completely eliminated from the optimization
problem by writing the states at every time step as a function of the current
state estimate x̂, the control actions u(0), . . . , u(NP − 1), the disturbances
d(0), . . . , d(NP − 1) and the vector β [29]. This results in the following
equations:









x(1)

x(2)
...

x(NP)









=









A

A2

...

ANP









x̂ +











Inx

A + Inx

...
NP−1∑

i=0
Ai











β+

+









B

AB B
...

...
. . .

ANP−1B ANP−2B · · · B

















u(0)

u(1)
...

u(NP − 1)









+

+









F

AF F
...

...
. . .

ANP−1F ANP−2F · · · F

















d(0)

d(1)
...

d(NP − 1)









.

By performing this substitution, the states are eliminated from the optimization
problem and the size of the vector of optimization variables is reduced from
(nu + nh + nQ) · NP + 2 · nc to nu · NP + 2 · nc. All the NP · (nh + nQ)
equality constraints have been removed from the optimization problem. This
substitution needs also to be performed on the Hessian H, which will destroy
the block diagonal structure of the Hessian. Also the sparsity present in the
matrix Ain is destroyed. This is the cost we have to pay to decrease the number
of optimization variables and eliminate the equality constraints.
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4.6.2 Reducing the number of inequality constraints

Notice that the number of inequalities remains the same after reducing the
number of optimization variables with one of the two approaches discussed in
the previous subsection. The total number of inequality constraints is very
large because of the safety and the flood levels for all the water levels. We will
now discuss two approaches for decreasing the number of inequality constraints.

4.6.2.1 Direct constraint selection approach

For the moment the safety and flood levels are imposed on every water level for
every channel. However if the channel bed slope, the safety levels and the flood
levels are very smooth, imposing these constraints on all the water levels can be
considered as unnecessary since the water level profile will not show big jumps
from one spatial grid point to the next one. Therefore it is sufficient to impose
these constraints on the water levels once every p grid points. The larger p,
the smaller the number of constraints and less time is needed for solving the
QP. However p cannot be taken too large because otherwise the guarantee of
avoiding any flooding vanishes. An appropriate p can be found by trail and
error.

This constraint selection approach can be used in a straightforward way in
combination with the condensed implementation discussed in the previous part.

The only difference is that in the optimization problem the matrix M(i)
red ∈

Rn(i)
con×n(i)

h is needed for selecting the n(i)
con chosen constraints for reach i:

M(i)
redH̃(i)x(j) ≤ M(i)

redh(i)
max,1 + 1

n(i)
con

· η(j)ξi,

M(i)
redH̃(i)x(j) ≤ M(i)

redh(i)
max,2 + 1

n(i)
con

· η(j)ζi.

4.6.2.2 Model reduction in combination with a greedy selection algorithm

Another method is to follow the approach presented in [2]. In this work a greedy
selection algorithm is proposed to reduce the number of inequality constraints
for a POD-based MPC controller applied to a tubular reactor. The reactor is
divided into a high number of grid points and the temperature at every grid
point should not exceed a given limit. It was observed that the coefficients of
consecutive temperature constraints are quite similar due to the fact that the
part of the POD vectors associated with the temperature profile are smooth.
An algorithm is proposed for selecting a reduced set of constraints from the
full set by comparing the coefficients of these constraints. The main idea of the
algorithm is the following. The mean absolute error between the coefficients



146 MODEL PREDICTIVE CONTROL USED FOR SET-POINT CONTROL AND FLOOD CONTROL

of two constraints is used as a measure to quantify the distance between two
constraints. The algorithm consists of two operations: dropping a constraint
and reducing the feasible region after dropping a constraint. If a constraint
c2 is within a predefined distance of constraint c1, then constraint c2 can be
dropped. The new feasible region delimited by the reduced set of constraints
can now contain a small area that was not part of the feasible region of the
original problem. In order to reduce the size of this extra area, a shrinking
parameter γ is introduced to tighten nonconsecutive constraints leading to a
reduction of the feasible region. This will reduce the extra area of the new
feasible region but has as drawback that a part of the original feasible region is
also removed. The author remarks that the algorithm does not guarantee that
the selected set of constraints is the optimal one, in the sense that it minimizes
the difference between the feasible regions delimited by the full and the reduced
set of constraints. However simulation results have shown that the number of
inequality constraints could significantly be reduced and the behavior of the
predictive controller was practically identical to the behavior of the controller
based on the complete set of constraints. More details can be found in [2].

Because the POD vectors associated with the water levels are smooth (see
e.g. the derived POD vectors in Fig. 3.20 on page 69), this approach can also
be used in our setting to reduce the number of inequality constraints related to
the water levels. This approach can be applied for the optimization problem
given in terms of the POD coefficients a and b in Section 4.6.1.1. The only
differences are the inequality constraints regarding the flood levels and safety
levels. They need to be replaced with

M(i)
POD

(

H̃(i)ΦT
ñh

a(j) + h(i)
ss

)

≤ M(i)
PODh(i)

max,1 + 1
n(i)

con
· η(j)ξi,

M(i)
POD

(

H̃(i)ΦT
ñh

a(j) + h(i)
ss

)

≤ M(i)
PODh(i)

max,2 + 1
n(i)

con
· η(j)ζi,

where M(i)
POD ∈ Rn(i)

con×n(i)
h is found by the greedy selection algorithm and it

selects n(i)
con constraints for reach i.

4.6.3 Application of the speeding-up techniques to a river
system with a small reservoir

The following combinations of the speeding-up techniques will be tested on the
full hydrodynamic model of the river system with the small reservoir described
in Section 4.5 for ∆z = 25 and NP = 15:

• a POD-based uncondensed implementation with all inequality con-
straints,
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• a condensed implementation with all inequality constraints,

• a POD-based condensed implementation together with the greedy
selection algorithm

• and a condensed implementation together with the direct constraint
selection approach.

Both constraint selection methods are used in combination with a condensed
implementation resulting in the minimal number of optimization variables,
no equality constraints and a limited number of inequality constraints. The
only difference between both methods besides the construction of the selection

matrices M(i)
r and M(i)

POD is that the optimization problem based on the direct
constraint selection is implemented with the original state space model (A, B
and F), while the optimization problem based on the greedy selection algorithm
is implemented with the reduced order state space model (Ar, Br and Fr).
The performance of the four different implementations will be compared with
the original uncondensed implementation. Quadprog is used to solve every
QP [123]. The interior-point algorithm of quadprog is used in the case of
the two uncondensed implementations, while the active-set algorithm is used
for the three condensed implementations. The first algorithm is a large-scale
algorithm, which exploits the sparsity structure present in the matrices H, Ain

and Aeq for the uncondensed implementations. The second algorithm is more
suitable for medium-scale problems with a dense structure and is therefore used
for the condensed implementations.

The POD basis vectors are found from 3000 samples. The energy criterion
is used to determine ñh and n̂Q. The plot of 1 − P̄ñh and 1 − P̄n̂Q for the
first 120 basis vectors are shown in Fig. 4.25. Based on the truncation degree
1 − P̄ñh = 6.22 · 10−5 and 1 − P̄n̂Q = 1.59 · 10−7, the first ñh = 11 and n̂Q = 27
POD basis vectors respectively are chosen. The shrinking parameter γ is set to
0.01, while the maximum distance before dropping a constraint is set to 0.02
for the greedy selection algorithm. The direct selection approach retains the
constraints on the water levels for every 250 meters (p = 10).

Table 4.22 shows the average, minimum and maximum time needed to solve
the QP together with the number of optimization variables and the number
of (in)equality constraints for the uncondensed implementation of the full
order model, the uncondensed implementation of the reduced order model, the
condensed implementation, the condensed implementation in combination with
the POD based greedy selection algorithm and the condensed implementation
combined with the direct constraint selection approach. There is a big gain
by using one of both techniques for reducing the number of optimization
variables. The biggest gain is achieved by using the condensed implementation.
The advantage of eliminating the water levels and discharges as optimization
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Figure 4.25: Logarithmic plot of 1 − P̄ñh (left) and 1 − P̄n̂Q (right) for
determining the truncation degree of the POD basis vectors.

variables and removing all equality constraints dominates over the disadvantage
of the loss in structure in the Hessian H and the matrix Ain. An extra
reduction is achieved in the average computation time by decreasing the
number of inequality constraints. The resulting optimization problems have
only 74 optimization variables, no equality constraints and 1304 or 1004
inequality constraints (compared to 9749 optimization variables, 9675 equality
constraints and 9734 inequality constraints for the original problem). The
average computation time is reduced from 12.7 seconds with a factor more than
60 to 0.18 seconds and 0.2 seconds. This reduction in computation time does
not affect the control performance of the predictive controller. Fig. 4.26 shows
the evolution of the maximal difference between the water levels and their set-
points for the upstream part of the river, the downstream part of the river and
the reservoir for LN-MPC implemented with the uncondensed approach taking
all constraints into account, the condensed approach in combination with the
POD based greedy selection algorithm and the condensed approach combined
with the direct constraint selection procedure. Fig. 4.27 shows the applied
control actions for the three different implementations. There is almost no
difference in the resulting evolution of the water levels and the control actions
between the three implementations. The reduction in computation time is
achieved without degrading the performance of the controller.

Remark. There is one disadvantage with the greedy selection algorithm. This
algorithm is based on the POD basis vectors of the reduced order model. It
can occur that the selected POD basis vectors are not accurate enough and
the performance of the controller is degraded. The solution is to construct new
snapshot matrices, select new POD basis vectors and repeat the algorithm.
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Figure 4.26: Evolution of the maximal difference between water levels and their
set-points obtained with three different implementations. The top plot shows
the maximal deviation of the water levels of channels 1, 2 and 5 at every time
step, the middle plot the maximal deviation of the water levels of channels 3, 4
and 7 and the bottom plot the maximal deviation of the water levels of channel
6. The flood levels correspond to the highest horizontal lines, the safety levels
with the lowest ones.
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Figure 4.27: Control actions for LN-MPC obtained with the uncondensed
implementation, the condensed implementation with the POD-based greedy
selection algorithm and the condensed implementation with the direct selection
approach. The top plots and the bottom left plot show the evolution of the
three gates and the bottom right plot shows the discharge Qout at the end of
the river system.
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Remark. A similar test has been performed with the QP-solver cplexqp

of IBM [76]. For this solver the results are a little bit different. If one of
the two strategies for reducing the number of optimization variables is used
without a reduction in the number of inequality constraints, the computation
time will increase instead of decrease. The loss in sparsity has a higher impact
than the advantage of reducing the number of optimization variables. However
the condensed implementation with any of the two methods for reducing the
number of inequality constraints leads to a reduction in the computation
time (with up to a factor of 16). And this reduction is larger then when
an uncondensed implementation is used with any of the two approaches for
reducing the number of inequality constraints.

4.7 Conclusions

In this chapter we have shown that MPC is suitable for flood control and
set-point control of river systems at the same time. MPC has some specific
advantages for controlling river systems compared to more classical control
schemes:

• it can take flood levels into account as inequality constraints,

• limitations on hydraulic structures can be incorporated,

• set-point control can be achieved by minimizing the deviation between
the water levels and their set-points,

• working with a process model results in finding optimal control actions
for the entire river system

• and working with a prediction window in combination with a process
model allows us to incorporate rain predictions.

MPC is first applied to the most simple example: the control of a single reach.
The dynamics of the reach are approximated with a linear state space model
such that the resulting optimization problem is a Quadratic Programming
problem (QP). The optimization problem makes use of slack variables to impose
the flood levels as soft constraints. This has the advantage that the QP remains
feasible at all times. These flood levels are imposed as exact soft constraints
by taking their corresponding weights in the objective function large enough.
Imposing the flood levels as inequality constraints and minimizing over the
deviation between the water levels and their set-points ensure that MPC can
be used for flood control and set-point control of the reach. Simulation results
have shown that MPC outperforms LQR, especially for the task of flood control.
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MPC reacts preventively on future rainfall because of its prediction window in
combination with the flood levels imposed as inequality constraints. These
preventive control actions lower the water levels of the reach resulting in extra
buffer capacity. This temporal extra buffer capacity prevents the reach from
flooding during the period of heavy rainfall. LQR reacts too late to prevent
the reach from flooding: the maximal violation of the flood levels is 0.5 m.

We have shown that the optimization problem formulated for set-point control
and flood control of a single reach can easily be extended to the case of two
reaches connected with each other through a hydraulic structure. However
one has to be careful how to deal with the nonlinear gate equations. Using
a linear approximate model for the Saint-Venant equations as well as for the
nonlinear gate equations results in a poor control performance. The solution
to overcome this problem is to work with the LN-model introduced in the
previous chapter as approximate model and keeping the gate equations out
of the optimization problem: the gate discharges are used as optimization
variables instead of the gate positions. The linear model of a river system based
on these gate discharges is accurate enough to be used such that the resulting
optimization problem is still a QP. The constraints on the gate positions can
be easily translated to (time-varying) constraints on the gate discharges by
performing a prediction step based on the linear model before solving the QP.
During this prediction step care has to be taken that the gate position always
has an influence on the gate discharge. Otherwise the lower and upper limits
of the gate discharge can become equal and the gate becomes uncontrollable:
the controller loses one control freedom. This uncontrollability is avoided by
keeping the gates always in their controllable region or at least on the boundary.
The simulation results show that the MPC scheme that optimizes over the
gate discharges and then performs a conversion step to find the corresponding
gate positions (LN-MPC) outperforms the MPC scheme that directly optimizes
over the gate positions (L-MPC). LN-MPC succeeds in tracking a time-varying
reference trajectory for two reaches which is not the case with L-MPC. The
simulation cost related to the deviation of the water levels with respect to their
set-points over the entire simulation is almost 15 times smaller with LN-MPC.
For the case of flood control LN-MPC succeeds in keeping all the water levels
below their flood levels at all times, while L-MPC results in floods up to 2 m.

MPC can also be used when a water reservoir is present in the river system.
The specific restrictions that the reservoir is only allowed to be used when
there is a flooding risk and that its buffer capacity should be recovered as fast
as possible, can easily be incorporated inside the optimization problem. Using
a large penalty factor on the deviation of the water levels of the reservoir from
their set-point ensures that the controller will not use the reservoir for a better
set-point control of the water levels of the other reaches during no or little
rainfall. Penalizing the violation of safety limits and flood limits has as effect
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that the controller will automatically use the buffer capacity of the reservoir to
minimize these violations. The buffer capacity is recovered by decreasing the
set-point for the water levels downstream of the reservoir such that the excess
of water in the reservoir can be released in a fast way. The simulation results
show that the proposed control scheme can be used for river systems with small
and large reservoirs. When there is no risk of flooding the water levels are kept
close to their set-points, when there is a risk of flooding the controller uses the
buffer capacity of the reservoir resulting in a maximal flooding of only 8 mm,
and afterwards it recovers the used buffer capacity almost completely (only 1
cm of excess of water is remaining in the reservoir) and steers the water levels
back to their set-points with deviations smaller than 2.5 · 10−2 mm.

For all the different test cases the influence of a Kalman filter as state estimator
on the control performance of MPC is found to be small. Based on measuring
only one or two water levels per reach, the Kalman filter gives an estimate of the
current state of the river system which is accurately enough to be used by the
controller. Comparison of the results of MPC with full state information and
MPC in combination with a Kalman filter reveals only small differences in the
control performance. Similar set-point deviations in the range of only 10−2 mm
are achieved at the end of the simulations. The simulation cost related to the
set-point deviations based on the entire simulation results is never increased
with more than 1 %, for some tests it is even reduced with more than 15 %.
For the test cases of controlling a single reach and a river system consisting of
two reaches, both MPC with full state information and MPC in combination
with a Kalman filter prevent any flooding resulting in a flood cost of 0. For
the first test case of MPC applied to a river system with a reservoir, MPC
could not prevent three reaches from flooding and the use the Kalman filter
increases the maximal flooding with (only) 0.9 mm to 9 mm. However these
floods last for less than 2 minutes. The set-point deviation cost and the flood
cost are almost identical compared to the test with full state information. The
biggest effect of the use of the Kalman filter on the flood control performance
is seen in the last test case. None of the reaches are flooding for the case of
full state information, while the use of the Kalman filter results in the flooding
of 3 reaches. However the total impact of these floods is limited because they
last less than 10 minutes and the maximal flooding is only 3.7 cm. The use of
the Kalman filter has no influence on the set-point deviation cost compared to
the results obtained with full state information.

Solving the QP at every time step takes the largest computation time when we
are working with the expanded formulation of the optimization problem. This
computation time can be reduced by decreasing the number of optimization
variables. One approach is to use POD in combination with Galerkin projection
to reduce the model order of the linear state space model. However a
better approach is to work with a condensed formulation of the optimization
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problem by writing the water levels and discharges as a function of the current
state estimate and the (future) inputs and disturbances. Performing this
substitution eliminates all the equality constraints and the (future) states from
the optimization problem. An extra reduction can be achieved by reducing the
number of inequality constraints. This reduction can be done by performing
a greedy constraint selection based on a reduced order model with POD.
By exploiting the similarity between the different coefficients related to the
constraints on the water levels, a large number of inequality constraints can
be removed. Another approach is to impose the safety levels and flood levels
at only a limited number of grid points. Both techniques in combination with
a condensed implementation reduced the average computation time needed to
solve the QP at every iteration with a factor more than 60 for the given case
study when quadprog of Matlab is used and with a factor more than 16 when
cplexqp of IBM is used, without losing any performance regarding flood control
and set-point control [76,123].





5

Model Predictive Control Applied
to the Demer

5.1 Introduction

The river systems used to evaluate the performance of the controllers in the
previous chapter can be considered as artificial academic examples. In this
chapter the proposed control scheme in Section 4.5 is applied to a mathematical
model of the Demer built from field data.

The current controller used for preventing the Demer from flooding is an
advanced three-position controller. Although the rules of this controller are
based on expert knowledge, the controller could not prevent the Demer from
flooding in 1998 and 2002. This is because the control actions are only based on
local information and therefore the control actions are not necessarily optimal
for the entire river system. Furthermore rainfall predictions are not taken into
account. Model Predictive Control does not suffer from these disadvantages.
By working with a process model and solving one large optimization problem
for all the hydraulic structures at the same time, the controller finds optimal
control actions for the entire river system. By imposing the flood levels as
upper limits on the water levels and combining the process model together
with future rainfall inside the optimization problem, the controller will react
preventively on future rainfall to avoid flooding or it will try to reduce the
amount of flooding.

The formulation of the optimization problem is very similar as the one used

157
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by the LN-MPC controller in the previous chapter. We optimize over the gate
discharges instead of the gate openings and a linear state space model is used
inside the optimization problem such that the resulting optimization problem
is a Quadratic Programming problem (QP). The use of slack variables for the
upper limits on the water levels ensures the feasibility of the QP at all times.
The weights related to the objective function are chosen in a similar fashion as
before and the used buffer capacity is recovered in the same manner. However,
the irregularities of the river bedding profile and the cross section profiles of
the Demer have their effect on the method for finding the limits on the gate
discharges. While previously a linear model was accurate enough, this is not
the case for the Demer during periods of heavy rainfall. A nonlinear model is
needed for the prediction step to get accurate enough estimates of the limits on
the gate discharges. However the computation time needed for performing this
prediction step can be kept limited. These predictions based on the nonlinear
model are also used to perform a simple model update of the linear state space
model to improve its accuracy over a wide range of operation conditions. The
irregularities also affect the Kalman filter used for estimating the unknown
states. The linear open loop prediction is replaced with a prediction based on
a nonlinear model.

In our research group, MPC has already been used for flood control of the
Demer [18–20,37,38,189]. There are three major distinctions with these works:

• Process model. In this work, the Demer is represented with a full
hydrodynamic model based on field data of the river, while previously a
much simpler conceptual model with a limited number of nodes was used
for modelling the Demer [18–20,37,38,189].

• Control strategy. Because the gate positions are used as optimization
variables, a nonlinear predictive controller is used in those works [18–20,
37, 38, 189]. At every iteration, the river dynamics are approximated
by a sequence of time-varying linear state space models. A trust
region is required inside the optimization problem in combination with
a line search method as post-processing step for finding good gate
positions. The upper limits on the water levels are imposed as hard
constraints. Therefore a constraint relaxation strategy is needed to make
the optimization problem feasible [18–20, 189]. During periods of heavy
rainfall this can result in the requirement of solving multiple optimization
problems at every time step. In this work, there is no need for working
with a nonlinear predictive controller because we optimize over the gate
discharges: no linearization step is required. By implementing the upper
limits on the water levels as soft constraints, the optimization problem
does not have infeasibility issues.
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• State estimator. The unknown water levels and discharges are found
by solving at every time step an optimization problem based on the recent
measurements in a window looking back in time [18–20,37,38,189]. This
state estimation technique is called Moving Horizon Estimation (MHE).
In this work, there was no need of using MHE since the Kalman filter
proved to be accurate enough.

This chapter has the following structure. Section 5.2 introduces the study
area of the Demer that will be used to test the controllers. In addition, a
mathematical model is derived for the upstream part of the Demer. The
working principles of the three-position controller is explained in Section 5.3.
Section 5.4 discusses how Model Predictive Control can be used for controlling
the Demer. This section presents how the irregularity of the field data of the
Demer affects the approximate model, the optimization problem and the state
estimator. Section 5.5 compares the performance of the proposed MPC control
strategy with the performance of the three-position controller for the historical
rainfall data of the Demer of the flood event of 2002. Section 5.6 summarizes
the main conclusions of this chapter.

This chapter is based on the following publication:

[35] Breckpot, M., Agudelo, O. M., Meert, P., Willems, P., and De
Moor, B. Flood control of the Demer by using Model Predictive Control.
Internal Report 13-24, ESAT-SISTA, KU Leuven (Leuven, Belgium).
Submitted for publication in Control Engineering Practice (2013).

5.2 The Demer

5.2.1 Study area of the Demer and control objectives

Fig. 5.1 gives a schematic overview of a large part of the Demer together with
its tributaries, water reservoirs and hydraulic structures. Because this is the
first time the LN-MPC controller is tested on real river data, this dissertation
focuses only on the upstream part of the Demer in the rectangle area of Fig. 5.1
with the assumption that the reservoir Schulensmeer is directly connected to the
Demer through gate D (similarly as the models used in [18,20,37,38]). Fig. 5.2
shows the part of the Demer that will be modelled and controlled in this work.
This upstream part contains the Demer and its tributary Mangelbeek, the
reservoir Schulensmeer and the gated weirs A, K7 and D. Gates A and D can
be used to control the water flowing between the Demer and the reservoir. Gate
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K7 can be used to control the water levels in the Demer and the Mangelbeek.
Historical data will be used to model the incoming discharges upstream of the
Demer and the Mangelbeek, respectively QDem and QMan. The Demer itself
consists of four reaches (Dem1 until Dem4) while the Mangelbeek contains one
reach (Man5).

During normal operation the controller should focus on set-point control by
keeping hup as close as possible to 21.5 m TAW (where TAW is the reference
height for altimetry in Belgium) without increasing the water level hs of the
reservoir. During a period of heavy rainfall, the buffer capacity of the reservoir
cannot be used as long as any of the water levels will stay below their given
safety limits. Once the model predicts a future violation of these safety
limits, the buffer capacity of the reservoir can be used until its own safety
limit is reached. In this situation the water levels of the reaches are allowed to
further increase until the moment that they violate their flood levels. At that
moment the last remaining buffer capacity can be used. After a period of heavy
rainfall the water level of the reservoir should be decreased as fast as possible to
its original height of 20.4 m TAW in order to have sufficient buffer capacity for
possible future rainfall. After recovering the buffer capacity the controller
should focus again on set-point control. Every hydraulic structure has an upper
and lower limit on the gate position together with a rate of change constraint.

5.2.2 Mathematical model

5.2.2.1 The Saint-Venant equations

The full hydrodynamic equations of de Saint-Venant introduced in Section 3.2.1
will be used to model the dynamics of reaches Dem1, Dem2, Dem3, Dem4 and
Man5:

∂A(i)(z, t)

∂h

∂h(i)(z, t)

∂t
+
∂Q(i)(z, t)

∂z
= 0,

∂Q(i)(z, t)

∂t
+

∂

∂z

Q(i)(z, t)2

A(i)(z, t)
+ gA(i)(z, t)

(
∂h(i)(z, t)

∂z
+ S(i)

f (z, t) − S(i)
0 (z)

)

= 0,

with i = 1, . . . , 5 and where the friction slope S(i)
f (z, t) is modelled with the

resistance law of Manning [45]:

S(i)
f (z, t) =

n(i)
eqmann(z)2Q(i)(z, t)|Q(i)(z, t)|

A(i)(z, t)2R(i)(z, t)1/3
. (5.1)

The reaches of the Demer have an irregular bed slope and an irregular cross
section as shown in Fig. 5.3 for the Mangelbeek. As will be explained in
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Figure 5.3: The bed level of the Mangelbeek (left) and an example of a cross
sectional profile (right).

Section 5.4.1, these cross sections will be approximated with a trapezoidal
shape with bottom width B and side slopes S1 and S2 for deriving the linear
state space models used by MPC inside the optimization problem.

Every irregular cross section consists of a piecewise-linear profile where one
specific Manning coefficient is defined for every linear segment. The Manning
coefficients for the segments in the lower part of the river bed are typically
smaller than the coefficients for the segments in the higher part or close to the
flood levels because of their difference in roughness. One needs to calculate an
equivalent Manning coefficient based on the current water level for every section
every time Eq. (5.1) is evaluated. Section 3.2.2.3 gives different methods for
calculating the equivalent Manning roughness coefficient neqmann. By assuming
that the mean flow velocity over every subdivision i is equal to the mean flow
velocity over the entire section [73], the equivalent Manning coefficient can be
calculated with

neqmann(z) =







m∑

i=1
Pinmann,i(z)3/2

m∑

i=1
Pi







2/3

where nmann,i(z) is the Manning coefficient at position z for the ith linear
segment with a wetted perimeter Pi and m the number of segments (partially)
under water.

5.2.2.2 Gated weirs

The hydraulic structures A, D and K7 are gated weirs, which were introduced
in Section 3.3.3.1. The discharge over the gate depends on the up- and
downstream water levels of the gate and the gate position c. The hydraulic
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structure equations used in this work are based on the equations used in an
existing full hydrodynamic model implemented in the InfoWorks-RS software
[78] built by order of the Flemish Environment Agency [189]. The gate
discharges are given with the following equation:

Qgate(t) = f̃(c(t), hup(t), hdown(t)),

where f̃ is a nonlinear scalar function, hup(t) and hdown(t) represent the
upstream and downstream water level of the gate respectively. The specific
form of this equation depends on the flow condition of the gate. If the gate
position c is too small in comparison with hup and hdown, the gate position
itself has no influence on the discharge over the gate, and the gate is said to be
in throat control mode. If the gate position has an influence on the discharge
over the gate, then the gate is said to be in gate control mode. The specific
form of this equation can be found in Appendix A.1. This gate equation can
be used to model the connection between Dem2 and Dem3 through gate K7:

Q(K7)
gate (t) = f̃

(

c(K7)(t), h(2)(L(2)t), h(3)(0, t)
)

,

Q(2)(L(2), t) = Q(K7)
gate (t),

Q(3)(0, t) = Q(K7)
gate (t).

This simply means that the discharge leaving Dem2 is equal to the discharge
entering Dem3 and they are equal to the gate discharge. Similar equations
holds for gates A and D.

5.2.2.3 (Artificial) spill

The Mangelbeek Man5 flows into the Demer at the end of Dem2. At this
connection point the bedding of the Mangelbeek is more than 1 m higher than
the bedding of the Demer. In order to take this significant height difference into
account, the connection of the Mangelbeek with the Demer is modelled with
a spill. The shape of the top of the spill is taken equal to the cross sectional
profile of the downstream end of the Mangelbeek. This means that the spill is
not really blocking any amount of water and is actually an artificial structure
used for modelling purposes only.

The flow over the spill depends in a nonlinear way on the downstream water
level of the Mangelbeek and the downstream water level of Dem2:

Qspill(t) = g̃(h(5)(L(5), t), h(2)(L(2), t)).

More details about the specific form of the nonlinear scalar function g̃ can be
found in Appendix A.2.
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5.2.2.4 Junctions

Junctions are places where three or more reaches coincide or where a reach or
reservoir is connected via a hydraulic structure to two other reaches. Examples
for the Demer are gate A connecting the reservoir with Dem1 and Dem2 and
gate D connecting the reservoir with Dem3 and Dem4. The water levels of
the reaches at these junctions should be equal and the sum of the discharges
entering the junction should be equal to the sum of the discharges leaving the
junction. Applying this to the first junction results in the following equations:

h(1)(L(1), t) = h(2)(0, t),

Q(1)(L(1), t) = Q(2)(0, t) + Q(A)
gate(t).

Similar equations can be derived for the other junction.

5.2.2.5 Reservoir Schulensmeer

The reservoir Schulensmeer is modelled as one large tank. The change in volume
is related to the water entering and leaving through gates A and D:

dVs/dt = Q(A)
gate(t) − Q(D)

gate(t)

with Vs the volume of the reservoir
[

m3
]

. This volume depends in a nonlinear
way on the water level hs of the reservoir. The nonlinear relation used in this
work is based on the conceptual model developed for this reservoir, based on
detailed topographical data, by Willems et al. [189] and Chiang and Willems
[44]. It has the following form:

Vs =

{

(hs − 20.38)/0.000771 hs < 20.38,

((hs − 20.38)/0.000771)1/0.838549 hs ≥ 20.38.

More information on how these equations are derived, can be found in [44].

5.2.2.6 Downstream boundary condition

The downstream boundary condition for Dem4 will be modelled with the
following rating curve

h(4)(L(4), t) = 0.9722 · Q(L(4), t)2.

This rating curve is derived based on the conceptual model of the Demer [189].
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5.3 Three-position controller

A standard three-position controller is often used in practice for set-point
control and its control actions are based on some very simple rules [142]:

• if the water level is between an upper and lower limit of the set-point,
the gate remains unchanged,

• if the water level exceeds the upper limit, then the gate is lowered with
a fixed step to lower the water level,

• and if the water level is below the lower limit, then the gate position is
increased to increase the water level.

These standard rules are used by the advanced three-position controller
installed by the Flemish Environment Agency for set-point control during
normal operation. During periods of heavy rainfall the working mode of the
controllers shifts towards flood control. These standard rules are replaced by
new if-then-else rules and were formulated by the local water administration.
Based on their many years of experience in controlling the Demer these rules
can be considered as expert knowledge. An advantage of this controller is that
the gate movement is limited, which restricts the wear of the gates. Another
advantage is that this type of controller is easily implementable in practice
and requires only a very limited number of measurements at every time step.
However, the performance of this controller is limited because rain predictions
are not taken into account. Furthermore the control actions are only based
on local information which has as a consequence that the control actions are
not globally optimal. Therefore the operators have to intervene often and set
the set-point for the hydraulic structures manually. This however introduces
subjectivity in the control loop and it means that the control actions depend
on the experience of the operator.

5.4 Design of Model Predictive Controller

MPC does not suffer from the drawbacks of the three-position controller. This
section explains how a Model Predictive Controller can be designed for flood
control and set-point control of the Demer. After introducing the approximate
model, attention is paid to all the concepts of the optimization problem solved
by the controller at every time step. Also the design of the Kalman filter as
state estimator is discussed.
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5.4.1 Approximate model

The model of the river system derived in Section 5.2.2 is too complex to be
directly used inside the optimization problem. Similar as the approach followed
in Sections 4.4 and 4.5, a linear state space model will be used to approximate

the river dynamics with the gate discharges Q(A)
gate, Q(K7)

gate and Q(D)
gate as input

variables instead of the gate positions c(A), c(K7) and c(D):

x(k + 1) − xss = A(x(k) − xss) + B(u(k) − uss) + F(d(k) − dss)

with x(k) =
[

x(1)(tk); . . . ; x(5)(tk); hs(tk)
]

, d(k) = [QDem(tk); QMan(tk)],

u(k) =
[

Q(A)
gate(tk); Q(K7)

gate (tk); Q(D)
gate(tk)

]

, A ∈ Rnx×nx , B ∈ Rnx×nu and

F ∈ Rnx×nd with nx the number of states, nu the number of inputs and
nd the number of disturbances. The state space matrices are derived for the
linearization points xss, uss and dss which correspond to the desired steady
state values of the water levels and discharges, the steady state gate discharges
and the nominal incoming discharges. The state space model can be rewritten
as

x(k + 1) = Ax(k) + Bu(k) + Fd(k) + β

with

β = xss − Axss − Buss − Fdss.

The irregular cross sectional data will not be used in the linearization procedure.
The resulting linear model would only be a good approximation of the nonlinear
dynamics locally around the linearization point. To have a linear model that
provides a good approximation for a wide range of water levels and discharges,
every irregular profile is first approximated with a trapezoidal profile. The
parameters B, S1 and S2 of every trapezoidal cross section can found in multiple
ways.

One approach is based on an example given in [31]. Boyd and Vandenberghe
show that the least-squares fit of a convex function to given data (xi, yi), i =
1, . . . , m formulated as the following infinite-dimensional problem

min
f

m
∑

i=1

(yi − f(xi))
2

s.t. f : R → R is convex, domf = R

is a convex piecewise-linear function, which can be formed from the solution of
the following QP:

min
ŷi,gi

m
∑

i=1

(yi − ŷi)
2
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s.t. ŷj ≥ ŷi + gi(xj − xi), i, j = 1, . . . , m.

The piecewise-linear function f is given by

f(x) = max
i=1,...,m

(yi + gi(x − xi)).

The variable gi corresponds to the slope of the function f at point xi. For
more information we refer the reader to [31]. This optimization problem can
be adapted in order to favor a convex function similar to a trapezoidal shape
as optimal solution in the following way:

min
ŷi,gi

m∑

i=1
(yi − ŷi)

2 + λ
m∑

i=2
(gi − gi−1)2

s.t. ŷj ≥ ŷi + gi(xj − xi), i, j = 1, . . . , m,

gk = 0, (5.2)

gi ≤ 0, i = 1, . . . , k − 1, (5.3)

gi ≥ 0, i = k + 1, . . . , m. (5.4)

with λ > 0 a regularization parameter and k the index corresponding with the
bed point of the cross sectional profile. A high value of λ will make the difference
between consecutive values of g small, which leads to a piecewise-linear function
f with a small number of line segments with different slopes. Equations (5.2)-
(5.4) ensure that the function f consists of a monotone decreasing convex
piecewise-linear function, followed by a horizontal segment and ending with a
monotone increasing convex piecewise-linear function. This reflects the general
trend of a trapezoidal shape. An extra post-processing step is required to reduce
the monotone decreasing convex piecewise-linear function to a decreasing linear
function followed by a horizontal segment. A similar reasoning applies to the
monotone increasing convex part of f . Furthermore these horizontal segments
should have the same height. The implementation of this post-processing step
is far from straightforward.

A much more simpler approach is to determine the values of the parameters B,
S1 and S2 of every trapezoidal cross section by solving the following constrained
least-squares problem

min
B,S

m
∑

i=1

(

Ai −
(

hiB + h2
i S
))2

s.t. B ≥ 0, S ≥ 0,

with Ai the cross sectional area corresponding with the water level hi, for i =
1, . . . , m and S1 = S2 = S. If one is interested in finding different values for
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Figure 5.4: An irregular cross sectional profile (left) together with its cross
sectional area as a function of the water level and its optimal approximation
in the least-squares sense via a trapezoidal shape (right).

the side slopes, a possible approach is to include the wetted perimeter inside
the optimization problem:

min
B,S1,S2

m
∑

i=1

(

Ai −
(

hiB + h2
i (S1 + S2)/2

))2
+

+ λ
m
∑

i=1

(

Pi −
(

B + h2
i

(√

1 + S2
1 +

√

1 + S2
2

)))2

s.t. B ≥ 0, S1 ≥ 0, S2 ≥ 0,

with Pi the wetted perimeter corresponding to the water level hi, for i =
1, . . . , m and λ > 0 a regularization parameter. However this turns the least-
squares problem into an NLP. It has been noticed that solving this more
complex optimization problem has only a minor influence on the resulting value
of the parameters and it suffers from local minima. On the right of Fig. 5.4,
the fitting result for an irregular cross section of Dem3, which is visualized on
the left of Fig. 5.4, can be observed. It is clear that the area of the irregular
profile can be approximated accurately with a trapezoidal shape.

As mentioned in Section 5.2.2, every irregular cross section can have different
Manning coefficients for every linear segment. The Manning coefficient for the
trapezoidal approximation is taken equal to the equivalent Manning coefficient
of the irregular cross section for a given steady state water level.
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5.4.2 Formulation of the optimization problem

The optimization problem that needs to be solved at every time step is the
following QP:

min
u,x,ξ,ζ

NP∑

j=1

‖x(j) − rx‖2
W +

NP−1
∑

j=0

‖u(j) − u(j − 1)‖2
R+

+
NP−1
∑

j=0

‖u(j) − ru‖2
U + ‖ξ‖2

S + sTξ + ‖ζ‖2
V + vTζ

s.t. x(0) = x̂,

x(j + 1) = Ax(j) + Bu(j) + Fd(j) + β̃(j), j = 0, . . . , NP − 1(5.5)

u(j) ≤ u(j) ≤ u(j), j = 0, . . . , NP − 1

u(−1) = uprev,

for i = 1, . . . , 5 :

M(i)H̃(i)x(j) ≤ M(i)h(i)
max,1 + 1

n(i)
con

· η(j)ξi, j = 1, . . . , NP

M(i)H̃(i)x(j) ≤ M(i)h(i)
max,2 + 1

n(i)
con

· η(j)ζi, j = 1, . . . , NP

H̃(schulen)x(j) ≤ h(schulen)
max,1 + η(j)ξ6, j = 1, . . . , NP

H̃(schulen)x(j) ≤ h(schulen)
max,2 + η(j)ζ6, j = 1, . . . , NP

ξ ≥ 0,

ζ ≥ 0,

with NP the prediction horizon, W ∈ Rnx×nx ( 0, R ∈ Rnu×nu & 0, U ∈
Rnu×nu ( 0, S ∈ R6×6 & 0 and V ∈ R6×6 & 0 five diagonal weighting matrices,
s ∈ R6 and v ∈ R6 two weighting vectors, rx ∈ Rnx a vector containing the
set-points for all the states, ru ∈ Rnu a vector containing the set-points for
the inputs, x̂ ∈ Rnx the current state of the process (measured or estimated),
β̃ ∈ Rnx (which will be defined in Section 5.4.2.3), u ∈ Rnu and u ∈ Rnu the
lower and upper limits on the inputs, uprev ∈ Rnu the control action applied in

the previous time step, H̃(i) ∈ Rn(i)
h

×(nh+nQ) a matrix for selecting the water

levels for the ith reach or the reservoir from the state vector x, h(i)
max,1 ∈ Rn(i)

h

the safety levels for the ith reach or the reservoir, h(i)
max,2 ∈ Rn(i)

h the flood
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levels for the ith reach or the reservoir, M(i) ∈ Rn(i)
con×n(i)

h a matrix for selecting

n(i)
con safety and flood levels for the ith reach, η(j) = 1/rj−1

c a time-dependent
inverse weight (with rc > 1) and ξ, ζ ∈ R6 two vectors of slack variables related
to the safety and flood levels respectively. This QP is solved with cplexqp of
IBM [76], which is a state-of-the-art QP solver. The different elements of the
QP will now be explained in more detail.

The safety limits and flood limits are imposed as soft constraints in combination
with the slack variables ξ and ζ to ensure that the QP is feasible at all times.
More information on the use of slack variables is given in Section 4.3.3.1.

5.4.2.1 Choice of the weighting matrices and vectors

The weighting matrices W, R, U, S and V and the weighting vectors s and v
define the relative importance of the difference between the states and their set-
points, the changes of the control actions, the difference between the inputs and
their set-points and the two vectors of slack variables ξ and ζ respectively. The
buffer capacity of the reservoir above its safety limit cannot be used for keeping
the water levels of the channels below their safety limits. Therefore the diagonal
element of S and the element of s corresponding to the reservoir will be set
higher than the elements associated with the channels. To allow the controller
to use the buffer capacity above the safety limit of the reservoir, hence to avoid
the river from being flooded, the diagonal elements of V and the elements of
v are set higher than all the elements of S and s. If there is no flood risk, the
controller needs to focus on set-point control. In this situation the controller
should avoid using the reservoir. This is achieved by setting the set-point for
the reservoir in rx equal to 20.4 m TAW in combination with a large weight in
the matrix W (but sufficiently smaller than the weights of the slack variables).
At the same time the set-point ru for the discharges controlled by gates A
and D are set equal to zero together with a large weight on the corresponding
diagonal elements of U to avoid any flow of water to the reservoir. To keep the
downstream water level hup of Dem1 close to its set-point, the corresponding
element in rx is set equal to 21.5 m TAW in combination with a high weight
in W. All the other entries in rx are set equal to their steady state values
but in combination with a small weighting value. This allows the controller
to let these water levels and discharges deviate from their set-points to react
on (future) disturbances and keep the effects on hup as small as possible. For
the same reason the reference for gate K7 is set equal to its steady state value
in combination with a small weighting element in U. R influences the control
effort of the different input variables.



DESIGN OF MODEL PREDICTIVE CONTROLLER 171

5.4.2.2 Nonlinear prediction step

Because the QP works with the gate discharges as optimization variables, the
lower and upper limit of the gates and the rate of change constraint need to
be converted to a lower and upper limit on the gate discharges. This can be
done in a similar way as in Section 4.4.3.1. Given the gate position for e.g. gate
A at time step k − 1 and its current upstream and downstream water level at
time step k, the lower and upper limit on the gate discharge for time step k
can easily be calculated with

u(A)(k) = f̃
(

c(A)(tk−1) + ∆(A)
c , hup(tk), hs(tk)

)

(5.6)

u(A)(k) = f̃
(

c(A)(tk−1) − ∆(A)
c , hup(tk), hs(tk)

)

, (5.7)

with ∆(A)
c the maximal rate of change for gate A. The same equations hold for

gates K7 and D. For calculating the lower and upper limit for the time step
k + 1, an estimation is needed for the states at this time step. In the previous
chapter, the linear approximate model was used to perform this prediction.
However simulations have shown that the prediction with the linear model
are not accurate enough when one is working with highly irregular river data
for both the bed slopes and the cross sectional profiles. Therefore in this
work a nonlinear prediction step is performed with the model of the Demer
defined in Section 5.2.2. To keep the computation time limited, this prediction
step performs only one Newton iteration and the internal time step ∆t of the
simulator is taken equal to the sampling time of the controller. This means
that only one linear system is solved in order to get an estimate of the states
at the next sampling time. Before performing this prediction step, the gate
positions corresponding with the optimal gate discharges for time step k found
by the optimizer in the previous iteration need to be calculated. Since there is in
most situations a one-to-one relationship between the gate position and the gate
discharge for a given upstream and downstream water level, the corresponding
gate position can be easily found by means of a bisection search method. These
gate positions are then used in combination with the current state of the system
to estimate the water levels and discharges at k+1 (denoted with xnonlin(k+1)).
Based on xnonlin(k + 1) and c(A)(k), c(D)(k) and c(K7)(k), Eqs. (5.6) and (5.7)
can now be used to determine u(k + 1) and u(k + 1). The same procedure
can be used to estimate the time-varying lower and upper limits of the gate
discharges for the entire prediction window.

When the conversion is performed from the gate discharge to the corresponding
gate position, it is ensured that the resulting gate position is always in its
controllable region or at least at the boundary. For a gated weir this means
that the gate will always be either in gate control mode or on the boundary. The
gates will never be in throat control mode or the gate positions will never be
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∆(gate)
c higher than their surrounding water levels. This ensures that Eqs. (5.6)

and (5.7) will always result in different values and the controller will not lose any
control freedom. More information on uncontrollability of hydraulic structures
is given in Section 4.4.3.2.

5.4.2.3 Updating of linear model

Simulation results show that the accuracy of the linear state space model is
good enough for the controller to handle disturbance signals 3.5 times larger
than their nominal value. However during periods of heavy rainfall, these
disturbance signals can become 8 times larger and the linear state space model
is not accurate enough. This problem can be overcome by performing an
update of the linear state space model along the prediction horizon based on the
nonlinear predictions xnonlin(k + 1), which are calculated for finding the limits
on the gate discharges. At every time step j along the prediction horizon, the
estimate of the next state based on the nonlinear model xnonlin(k + 1 + j) is
compared with the next state xlin(k + 1 + j) predicted with the linear model:

xlin(k + 1 + j) = Axnonlin(k + j) + Buopt(k + j) + Fd(k + j) + β,

with uopt(k + j), j = 0 . . . , NP − 1 the sequence of optimal gate discharges
found by the controller in the previous iteration. The simplest way to match
the prediction of the linear model with the prediction of the nonlinear model,
is to replace β with

β̃(k + j) = β + (xnonlin(k + 1 + j) − xlin(k + 1 + j)),

which will be used inside the optimization problem (Eq. (5.5)). Recall that β
corresponds with the local information contained in the linearization point. By
performing this update on β, this local information is corrected to match the
nonlinear state estimates along the prediction horizon.

This model update has only a minor influence on the total computation time
needed by the controller. For a condensed implementation of the QP, the model
update only affects the linear part of the objective function f and the right hand
side vector bin of the inequality constraints. Because we only need to update
two vectors, the total time needed for this operation is limited.

Another approach would be to use nonlinear MPC and work with time-
varying state space matrices A(k), B(k) and F(k) derived from linearizing
the nonlinear model along the nonlinear predicted state estimates. However
deriving these linear models at every iteration along the prediction horizon
takes a considerable amount of time. This also means that for a condensed
implementation of the QP, the Hessian matrix H of the objective function
and the matrix Ain containing the inequality constraint coefficients need to be
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reconstructed for every iteration. Furthermore the results shown in Section 5.5
indicate that MPC in combination with the proposed model updating yields
already a good performance.

5.4.2.4 Buffer capacity recovery

After a period of heavy rainfall the controller should recover the buffer capacity
as fast as possible to be able to deal with possible future rainfall. This recovery
is achieved by changing some of the values in the weighting matrices W and U
and the reference signal rx. Once a part of the buffer capacity of the reservoir
is used, the water levels of Dem3 and Dem4 get a set-point lower than the set-
point of the reservoir and their weights in the matrix W are increased. At the
same time the weight for hup is decreased. Also the weights of U corresponding
with the discharges over gates A and D are decreased. This means that the
controller is not forced to keep these discharges close to zero and the controller
has the freedom to use the buffer capacity if there is still a risk of flooding, or
to get rid of the excess of water in the reservoir via these gates. This change
in W, U and rx is performed when the water level in the reservoir is 20 cm
above its set-point. When the water level of the reservoir is at the most 20 cm
above its set-point for eight consecutive hours, W, U and rx are set back to
their original values.

5.4.2.5 Constraint selection

Not all the flood and safety levels are included inside the optimization problem

as an upper constraint on the water levels. A matrix M(i) ∈ Rn(i)
con×n(i)

h is used

to select n(i)
con safety levels and flood levels for the ith reach. The safety and

flood levels are very irregular along every reach. This can be seen in Fig. 5.5
for the flood levels of reach Dem3 together with its bedding and steady state
water levels. The flood levels contain jumps along the reach in contrast to
the smooth profile of the steady state water levels. Because of the irregularity
of the safety and flood levels, it is not required to impose all the safety and
flood levels as inequality constraints. Therefore, only the most critical ones
are used inside the optimization problem. This has the advantage that the
total number of inequality constraints, and hence the complexity of the QP,
is drastically reduced and the computation time needed for solving the QP is
decreased. The smaller the distance between the flood level and the water level
in steady state at a grid point, the more critical this flood level is. This approach
is very similar to the direct selection method proposed in Section 4.6.2.1.
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Figure 5.5: The bedding and the flood levels of the reach Dem3 of the Demer
together with the steady state water levels.

5.4.3 State estimator

The current state of the river system needs to be known before the optimization
problem defined in the previous subsection can be solved. Because only the
water levels hs, hup and hdown are measured in practice and none of the
discharges, a state estimator is needed. The estimator used in this study will
be a combination of a nonlinear prediction step together with a correction step
of the classical Kalman filter introduced in Section 2.4.

The classical Kalman filter corrects the state estimation based on the linear
state space model with the error between the estimated and the measured
water levels via a feedback gain matrix L:

∆x̂(k + 1) = L(∆y(k) − ∆ŷ(k)) + A∆x̂(k) + B∆u(k) + D∆d(k), (5.8)

∆ŷ(k) = C∆x̂(k)

with ∆x(k) = x(k) − xss, ∆x̂(k) = x̂(k) − xss, ∆u(k) = u(k) − uss, ∆y(k) =
y(k) − yss, ∆ŷ(k) = ŷ(k) − yss, y(k) the measured water levels, ŷ(k) the
estimated water levels and C a matrix which selects the measured water levels
from the states.

The accuracy of this state estimator is good enough for disturbance signals 3.5
times larger than their nominal value. However during periods of heavy rainfall,
the accuracy of the Kalman filter decreases. This problem can be overcome by
replacing the linear prediction step in Eq. (5.8) with a state estimate xnonlin(k+
1) based on the nonlinear model:

x̂(k + 1) = L(∆y(k) − ∆ŷ(k)) + xnonlin(k + 1). (5.9)
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Figure 5.6: The inflowing discharges of the Demer and the Mangelbeek based
on the historical rainfall data of the flood event of the Demer of 2002.

xnonlin(k + 1) is found in the same way as the approach mentioned in
Section 5.4.2.2.

5.5 Results

In this section the control performance of the proposed MPC is compared with
the performance of the currently used three-position controller. The sampling
time of both controllers is equal to 15 min. The disturbance signals are known
24 hours ahead in time. This means that the size of the prediction window NP

is taken equal to 96. The disturbance signals QDem(t) and QMan(t) are based
on the historical rainfall data of the flood event of 2002 and are visualized
in Fig. 5.6. It is assumed that there is no uncertainty on these disturbance
signals. Table 5.1 presents the limits on the three gates. The only variables
that are measured at every time step are hup, hs and hdown. For the MPC the
other state variables are estimated with the modified Kalman filter (Eq. (5.9)).
Unlike the MPC, the three-position controller requires only the measured three
water levels for determining the control actions. For Dem1, Dem3, Dem4 and
Man5 only the ten most critical flood levels and safety levels are selected, while
for Dem2 all the six flood and safety levels are taken into account. The full
hydrodynamic model of the Demer is used for the closed loop simulations.

Table 5.2 contains the diagonal elements for the weight matrices W, R, U,
S and V, and the entries of the weight vectors s and v. The chosen values



176 MODEL PREDICTIVE CONTROL APPLIED TO THE DEMER

Table 5.1: Upper and lower limits and maximum rate of change for the gates
A, K7 and D.

gate A gate K7 gate D

lower limit [m TAW] 20 20.03 18.9

upper limit [m TAW] 22.5 23 22.9

∆c [m] each 15 min 0.1 0.1 0.1

are in line with the reasoning given in Sections 5.4.2.1 and 5.4.2.4. During
normal operation the controller focuses on keeping the most downstream water
level of Dem1 close to its set-point without using the buffer capacity of the
reservoir. This is achieved with the matrices W and U. When there is a risk
of violating the safety or flood levels, the controller will automatically try to
minimize these violations because of the high values in S, s, V and v. The
fast recovery of the buffer capacity after a period of heavy rainfall is achieved
by replacing the elements in the matrices W and U with the marked values
as indicated in Table 5.2. The low values in R ensure that the controller has
sufficient freedom to achieve its objectives.

Fig. 5.7 shows the results for MPC in combination with the Kalman filter and
the results for the three-position controller for the water levels hup, hs and hdown.
The control actions for the three gates applied by both controllers are visualized
in Fig. 5.8. MPC succeeds in keeping hup closer to its set-point of 21.5 m TAW
by using gate K7 than the three-position controller. One reason is because
MPC can react on future disturbances. Another reason is that MPC keeps
gate K7 always inside or at the boundary of its controllable region. MPC has
the advantage that it can change the discharge over gate K7 at any time step,
which is not the case with the three-position controller. This controller keeps
e.g. decreasing the gate position of this gate when the water level is increasing
but without any effect on the resulting gate discharge. Overall MPC attenuates
the effect of the bumps in the disturbance signals on hup much better than the
three-position controller. Some of these bumps are completely absorbed with
MPC. At the beginning of the simulation MPC brings gates A and D, which
are initially uncontrollable, immediately at the boundary of their controllable
region, without letting water enter the reservoir. Gate A remains 8 cm above
hup, while gate D remains 8 cm above its surrounding water levels (hs and
hdown). The three-position controller however keeps gate A constant during
the first part of the simulation while it increases the position of gate D without
any effect.

Before the period of heavy rainfall starts, MPC lowers the position of the three
gates in order to decrease the water levels upstream of the Demer as much as
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Figure 5.7: The evolution of the water levels hup, hs and hdown for MPC
in combination with the Kalman filter (top) and the three-position controller
(bottom). The set-points for hup and hs are 21.5 m TAW and 20.4 m TAW
respectively. MPC keeps hup closer to its set-point, it results in a lower maximal
height of the water levels and it recovers the buffer capacity faster than the
three-position controller.
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Figure 5.8: The evolution of the gate positions c(A), c(K7) and c(D) for MPC
in combination with the Kalman filter (top) and the three-position controller
(bottom). MPC prevents the gated weirs from becoming uncontrollable. This
is not the case for the three-position controller.
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possible. During the period of heavy rainfall it uses the three gates to minimize
the floods along the five reaches. The three-position controller lowers gates A
and D to start using the buffer capacity. However because the positions of these
gates are too high at the beginning of the heavy rainfall period, the controller
reacts too late, which results in much higher water levels. Fig. 5.9 and 5.10
show the maximal water level for both controllers for the five reaches together
with their flood levels. The area between the flood levels and water levels has a
gray color when flooding takes place with MPC and the area is hatched when
flooding takes place with the three-position controller. The maximal water
levels obtained after using MPC are always lower than the maximal water
levels after the use of the three-position controller. Both controllers prevent
Dem2 and Dem4 from flooding. MPC prevents Dem1 from flooding at almost
every grid point while the three-position controller results in more and larger
floods along this reach. Dem3 shows flooding for both controllers at only one
point, while for Man5 the flood level overtoppings with MPC are much smaller
and at less locations than with the three-position controller. Table 5.3 shows
the maximal flooding, the total flooding (i.e. the sum of the difference between
the water level and the flood level, if positive, at each grid point for every reach
at every minute) and the flood duration for both controllers for every reach. A
negative value for the maximal flooding corresponds with the minimal margin
before a flood level is violated. MPC clearly outperforms the three-position
controller. The water levels for reaches Dem2 and Dem4 and the reservoir are
decreased as well as the maximal violation of the flood levels for the other
reaches. Also the total flooding and the flood duration improves when MPC is
used to control the hydraulic structures.

After the period of heavy rainfall both controllers start emptying the reservoir.
In order to recover the buffer capacity of the reservoir as fast as possible, MPC
allows the water levels upstream of the Demer to approach their safety limit
reducing the amount of water flowing to the reservoir and the downstream part
of the Demer. Once the buffer capacity is recovered, MPC starts focussing
again on steering hup back to its set-point. Further bumps in the disturbance
signals are completely absorbed by the controller: almost no variations can be
seen on hup. The three-position controller recovers the buffer capacity much
slower. It also allows hup to increase, however this increase is much smaller than
with MPC (keep in mind that the three-position controller does not make use
of the flood and safety levels). The decrease of the water level of the reservoir is
stalled for 80 hours before the last part of the buffer capacity is recovered: the
controller needs to wait before gate D becomes lower than the water level of
the reservoir. Afterwards the controller steers hup back to its set-point of 21.5
m TAW. However some variation in the water level is visible due to variation
in the disturbance signals. MPC succeeds in recovering the buffer capacity 38
hours earlier than the three-position controller and it steers hup back to its
set-point 13 hours earlier than the three-position controller.
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Figure 5.9: The maximal water levels for reaches Dem1, Dem2 and Dem3 for
MPC and the three-position controller together with their flood levels. The
area between the flood levels and water levels has a gray color when flooding
takes place with MPC and the area is hatched when flooding takes place with
the three-position controller.
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flood level MPC + Kalman three-pos. controller
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Figure 5.10: The maximal water levels for reaches Dem4 and Man5 for MPC
and the three-position controller together with their flood levels. The area
between the flood levels and water levels has a gray color when flooding takes
place with MPC and the area is hatched when flooding takes place with the
three-position controller.

The better set-point control and flood control capabilities of MPC in
comparison with the three-position controller can also be seen in the set-point
deviation cost Jh, calculated for the water level hup for the simulation results
before the period of heavy rainfall, and the flood cost Jhmax given in Table 5.4.
MPC reacts in a more optimal way on the variations present in the disturbance
signals for the first 250 hours resulting in a reduction of 15 % in the set-point
deviation cost for hup. The use of MPC results also in a reduction of the flood
cost with 20 % in comparison with the three-position controller.

Fig. 5.11 shows the time needed by the controller to perform the prediction step
and the time needed to solve the optimization problem at every sampling time
with cplexqp. The time needed to make the conversion step after solving the
optimization problem and the time needed for the Kalman filter are negligible
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Table 5.4: The set-point deviation cost Jh for the water level hup before the
period of heavy rainfall and the flood cost Jhmax obtained with MPC and the
three-position controller.

Simulation cost MPC three-pos. controller

Jh for hup [m] 2138 2544

Jhmax [m] 1192 1495

QP prediction

0 100 200 300 400 500 600 700
0

20

40

60

80

iteration

co
m
p
.
ti
m
e
[s
]

Figure 5.11: Computation time needed by the MPC controller to solve the
optimization problem with cplexqp and the nonlinear prediction step at every
sampling time (performed on a PC with a 3.1 GHz Intel Core i5 CPU and a
RAM of 4 GB).

(less than 0.015 s, resp. 0.46 s). One can see that the time needed to solve
the QP during the period of heavy rainfall stays well below the sampling time.
However during this simulation test the state of the Demer is somehow “frozen”:
while the optimization problem is being solved, the states of the system are not
changing in time while in reality they do. The larger the river system, the
bigger this effect will be because of the longer computation time needed to
solve the QP. The time for performing the prediction step is more or less the
same at every iteration because the nonlinear model is solved with a fixed time
step and with only one Newton iteration.

Table 5.5 shows the quantification of the total amount of control actions for
the three controllers. For each gate m the total gate movement is calculated
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Table 5.5: Total gate movement for the three gates for both controllers.

c(A) c(K7) c(D)

total gate movement [m]

three-pos. controller 5 14.75 9.63

MPC+Kalman 17.16 21.46 16.87

with the formula

γ(m) =
NT−1
∑

k=0

| c(m)(k + 1) − c(m)(k) |

where NT is the total number of time instants during the simulation. The
higher these numbers, the more demanding the controller is for the hydraulic
structures. One can see that the three-position controller moves the three gates
significantly less than MPC. This is the price that MPC has to pay to keep
the gates at all times close to their controllable region. One could reduce these
values for MPC by increasing the value of the diagonal elements in the weight
matrix R. However this will only effect the control actions when the gates
are in their controllable regions. If the gate is near to its controllable region
(e.g. gates A and D before and after the heavy rainfall period) then this gate
will not be kept constant. The gate will follow the evolution of the surrounding
water levels independently of the value used in R. One approach to solve these
“unnecessary” gate movements would be to first look at the predicted future
disturbance signals. If no heavy rainfall would be predicted for the future
period, then one could keep the gates connecting the river with the reservoir
constant. Once a heavy rainfall event is predicted, the controller can also use
these gates for flood prevention. This has the advantage that the amount of
gate movement will drastically decrease for these gates.

5.6 Conclusions

In this chapter we have shown that Model Predictive Control can be used to
control river systems based on real river field data. The Demer is used as a
test example. The control scheme proposed in the previous chapter is adapted
such that the controller can handle the irregularities of the Demer related to its
bedding profile and the cross sectional profiles. The general working principle
of the controller remains the same. The optimization problem is formulated as
a function of the gate discharges instead of the gate openings in order to avoid
the need of approximating the nonlinear equations modelling the gated weirs
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installed at the Demer. The resulting optimization problem is a Quadratic
Programming problem (QP). The use of slack variables for the safety and flood
limits on the water levels ensures the feasibility of the QP at all times. The
different weights related to the objective function can be chosen in such a way
that the controller will focus on set-point control if possible, it will try to avoid
any flooding and it will recover any used buffer capacity.

While in the previous chapter the lower and upper limits on the gate discharges
along the prediction horizon could be found by performing a prediction step
with the linear approximate model, this is not possible in this chapter due to
the irregular river bedding and the irregular channel cross sections. This linear
approximate model is accurate enough during periods of little rainfall, however
its predictive power decreases during a heavy rainfall period. This problem
is overcome by working with the nonlinear mathematical model of the Demer
at the moment of performing this prediction. To keep the computation time
limited, this nonlinear model works with an internal time step equal to the
sampling time of the controller and performs only one Newton iteration. This
means that for every time instant in the prediction window the nonlinear system
of equations is linearized and solved only once (in contrast to the numerical
solver used to simulate the river system). The simulation results indicate that
these predictions are accurate enough to be used by the controller. These
nonlinear predictions are also used to update the linear state space model along
the prediction horizon used inside the optimization problem. The nonlinear
prediction is compared to the prediction based on the linear model, and the
vector containing the information related to the linearization point is updated
to make the linear prediction match with the nonlinear one.

Because the flood and safety levels are not smooth along the river profile, not
all the flood and safety levels are imposed as upper limits on the water levels.
Only the most critical limits are included inside the optimization problem. The
smaller the distance between the steady state water level and flood level, the
more critical this flood level is considered to be. This constraint selection
approach has the advantage that the number of inequality constraints can be
reduced to a very small amount.

A Kalman filter is used to estimate the water levels and discharges of the
entire river systems based on only three measured water levels. Just as we
needed to perform the prediction step with a nonlinear model instead of a
linear model, the Kalman filter needs to be adapted in a similar fashion. The
classical Kalman filter combines a prediction step performed with the linear
model with a correction step based on the difference between the measured
outputs and the predicted outputs. The prediction step performed with the
linear model is replaced with a prediction step based on the same nonlinear
model used to find the lower and upper limits on the gate discharges.
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The control performance was tested on a full hydrodynamical model of the
Demer based on field data for the roughness coefficients, the river bedding, the
cross sectional profiles and the gated weirs. The disturbances were modelled
with the historical rainfall data of the floods of the Demer in 2002. The
simulation results show that Model Predictive Control outperforms the three-
position controller currently used for controlling the Demer:

• the water levels are kept closer to their set-points resulting in an improved
set-point deviation cost with 15 %,

• the number of floods and their magnitude are reduced resulting in a
reduction of the total flooding with 60 % and a reduction in the flood
cost with 20 %

• and the buffer capacity is recovered in a fast way 38 hours earlier.

Another advantage of MPC is that the gated weirs are always in their gate
control mode. This means that if a human operator wants to intervene
manually, the change in the gate position will immediately have an effect on
the gate discharge. This is not the case with the three-position controller where
the gated weirs are often in an uncontrollable mode.





6

General Conclusions

6.1 Concluding remarks

The main goal of this dissertation was to test whether Model Predictive Control
(MPC) can be used for set-point control and flood control of river systems in
general. Regarding this research objective, the following concluding remarks
can be made:

• In order to find a general approach for applying MPC to river systems, a
general modelling framework was given for deriving a hydrodynamic
model for river networks. Based on this framework, a new type of
approximate model was introduced, the so-called Linear-Nonlinear
model (LN-model). By approximating the dynamics of every reach
with a linear state space model in combination with the nonlinear gate
dynamics, the computational complexity of this LN-model is very low
in contrast to the full hydrodynamic model, but it still achieves a high
accuracy in approximating the original dynamics. In addition, Proper
Orthogonal Decomposition (POD) and Galerkin projection can be used
to reduce the computational complexity even further.

• Throughout Chapter 4 we have shown that MPC can be used for set-point
control and flood control of different examples of river systems. Set-point
control is achieved by minimizing the deviation of the most important
water levels from their set-points, while flood control is ensured by
imposing flood levels as upper limits on the water levels and incorporating

189
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the effect of future rainfall predictions on the water levels over a prediction
window. One key element of the proposed controllers is to work with
the gate discharges as optimization variables instead of the gate
positions. In this case a linear approximate model is accurate enough
resulting in a linear predictive controller. The limits on the gate positions
can be translated to limits on the gate discharges via a simple prediction
procedure based on the linear state space model used by the controller.
The optimization problem can be formulated in such a way that it remains
feasible at all times (by using slack variables), the buffer capacity of
reservoirs is only used when there is a risk of flooding and the used
buffer capacity can be recovered in a fast way. At the end the controller
needs to solve only one Quadratic Program at every time step.

• In practice only a limited number of water levels are measured and none
of the discharges. We have shown that a classical Kalman filter can
be used in most cases for finding an estimate of the current state of the
systems based on these measurements.

• Different approaches have been introduced to limit the time needed to
solve the optimization problem at every time step. The number of
optimization variables can be reduced by working with a condensed
implementation: all the states are eliminated as well as the model
equations. The number of inequality constraints related to the upper
limits on the water levels can be reduced in different ways. One approach
simply imposes these upper limits on a coarser grid in contrast to the
grid used for deriving the discretized equations. Another approach is to
work with only the p most critical flood levels. A last approach works
with a greedy selection algorithm exploiting the similarities between the
coefficients of consecutive inequality constraints when we are working
with a POD-based linear state space model. These approaches resulted
in a significant reduction in the number of optimization variables and
inequality constraints, leading to a significant saving of computation time
while still achieving a good control performance. For one test example
the number of optimization variables decreased from 9749 to 74 and the
number of inequality constraints decreased from 9734 to 1004, resulting
in a reduction of the total computation time with a factor more than 60.

• The effect of irregularities in the bed slope of reaches and in their cross
sectional profiles on the control performance was tested by applying
the proposed predictive control scheme to a hydrodynamic model of
the Demer using real field data. A modified version of the predictive
linear controller has been proposed in Chapter 5 in order to handle
these irregularities: a nonlinear prediction step for finding the limits
on the gate discharges, a simple updating technique of the linear
models and a nonlinear prediction step used inside the Kalman filter
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for estimating the unknown states. Simulation results for the historical
rainfall data of the flood event of the Demer in 2002 clearly show that
MPC outperforms the current three-position controller installed at the
Demer:

– a better set-point control is achieved: the set-point deviation cost is
improved with 15 %,

– the number and height of the floods is reduced resulting in a
reduction of the total flooding with 60 % and a reduction of the
flood cost with 20 %

– and the used buffer capacity is recovered 38 hours earlier.

6.2 Future research

Some important research objectives have already been achieved for the
applicability of Model Predictive Control for flood control of river systems.
However before this technique can be applied in practice, some remaining
research challenges need to be tackled first:

• In this work the predictive controller is only applied to the upstream
part of the Demer. A logical next step is to apply this technique to
a much larger part of the Demer containing multiple reservoirs, more
hydraulic structures, different types of hydraulic structures and more
disturbance signals. The river system in Fig. 6.1 contains approximately
seven times more state variables and four times more control variables
compared to the river model used in Chapter 5. Due to the large increase
in the number of optimization variables and the number of inequality
constraints, the total computation time needed by the controller at every
time step will become too large compared to the sampling time of 15
min. One approach to reduce this computation time, besides working
with a faster QP solver, is to work with Distributed MPC (D-MPC)
instead of using one centralized controller [6, 56, 57, 95, 129, 145]. In D-
MPC, there are multiple agents/controllers solving at every time step a
local MPC control problem. Interconnecting constraints are used to link
the neighbouring agents to each other. An iteration scheme is needed to
agree on the values of the interconnecting variables between the different
controllers such that control actions that are optimal for the entire system
can be found. Each of these local control problems are much smaller in
size than the original control problem and they are solved in parallel,
which reduces the total computation time at every time step.

A river network can easily be divided into different subsystems. The
Demer can be split into multiple subsystems where each subsystem
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Figure 6.1: D-MPC strategy applied to the Demer. One local predictive
controller controls the downstream part of the Demer containing the reservoir
Webbekom, while another controller handles the upstream part of the Demer
with the reservoir Schulensmeer.

contains one water reservoir. For example the river system in Fig. 6.1
can be divided into two systems where the number of interconnections
between both systems is kept minimal. The hydraulic structures in each
subsystem are controlled by a local MPC.

• The water flowing through the Demer ends up in the Dijle and eventually
in the Scheldt. Just as we can develop a (possibly distributed) predictive
controller for the Demer, we can develop a similar controller for the Dijle
and the Scheldt. However, it is important that the control actions applied
to the Demer does not lead to flooding problems along the Dijle or the
Scheldt. Just as communication is needed between the local agents of a
D-MPC, communication is needed between the predictive controllers for
the different water basins. A solution is to work with Hierarchical
MPC (H-MPC) [56, 57, 197]. H-MPC consists of different layers of
controllers. The top layer consists of one high-level supervisor. This
supervisor coordinates the entire network of river basins and sets the set-
points and references for the controllers on the lower layer based on global
information. This high-level supervisor controls the slowest dynamics of
the entire river network. Each of the controllers in the lower layer can
be designated to control one particular water basin, for example one
controller for the Demer and another one for the Dijle. Such a controller
can supervise on its turn the predictive controllers on the lowest layer,
each one controlling one part of the water basin. These decentralized
controllers use only local information and control the faster dynamics of
a particular subsystem of the entire river network. The decentralized
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controllers can work with the LN-models, while the controllers on the
higher levels can work for example with conceptual models.

• In Chapter 5 we used the historical data of the flood event of 2002 to
model the disturbance signals entering the Demer. It was assumed that
the rainfall predictions over the prediction horizon are exactly known at
every time step. However in reality these predictions are never 100 %
accurate. Furthermore these predictions can be found in multiple ways
resulting in different values. The further the predictions are ahead in
time, the larger the uncertainty on these predictions. Before the LN-
MPC can be applied in practice, it is necessary to asses the robustness
of the controller against uncertainty on the rainfall predictions. A
first approach would be to add noise on the rainfall predictions used by
the controller. This noise should be correlated from one time step to
the next in the prediction window: a time series predicting the rainfall
too high at time k will typically also predict a too high value at time
k+1. If simulation results would indicate a bad performance, one solution
could be to work with Multiple Model Predictive Control (M-MPC) [179].
M-MPC solves one optimization problem taking a nominal, maximal and
minimal prediction of the rainfall into account.

• Besides the robustness against uncertainty on the rainfall predictions, it
is also important to asses the robustness of the controller with respect
to plant-model-mismatches. The obtained simulation results in this
work already indicate that the controller is robust against changes in
the Manning roughness coefficient: one equivalent Manning coefficient
was used for every grid point for deriving the linear state space model,
while the nonlinear model used for simulating the Demer changes the
used equivalent Manning coefficient depending on the current water level.
However a simplified version of this nonlinear model is used for performing
model updates, finding the upper limits on the gate discharges and inside
the state estimator. To check the robustness of the controller, one could
use different roughness coefficients for the nonlinear model used by the
controller and the nonlinear model used for simulating the river system.
Another step to test the robustness of the controller would be to connect
the controller with the highly accurate InfoWorks model of the Demer.





A

Modelling of Hydraulic Structures

This chapter shows the equations used to model the discharge controlled with
a gated weir or the discharge flowing over a spill. These equations are used in
Chapter 5 where a mathematical model is derived for the Demer. Section A.1
gives the equations and the parameters for a gated weir, while Section A.2
shows the equations and the parameters for a spill. The equations are based
on the manual of the InfoWorks-RS software [78].

A.1 Gated weir

The working principles of a gated weir are introduced in Section 3.3.3.1. The
gate discharge can be modelled with the following equation:

Qgate(t) = f̃(c(t), hup(t), hdown(t)),

with c the gate position, hup the upstream water level, hdown the downstream
water level and f̃ a scalar nonlinear function. Every gated weir has the following
parameters:

• w: the width of the sluice [m],

• zc: the sill level [m TAW],

• hg: the gate depth [m],

• m: the modular limit [−],

195
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• ct: throat discharge coefficient [−],

• cg: gate discharge coefficient [−],

• bup: the height of the bedding upstream of the gate [m TAW],

• bdown: the height of the bedding downstream of the gate [m TAW].

The algorithm for implementing the function f̃ first transforms the water levels
and the gate opening to the reference height for altimetry in Belgium:

yup = hup + bup,

ydown = hdown + bdown,

yc = c + zc.

The exact formula used for calculating the gate discharge depends on the flow
condition and the control mode (where we assume that yup > ydown):

• no flow (if yup < yc):

Qgate = 0.

• free weir flow - throat control mode:

ft =

{ (

1 − ydown−zc

yup−zc

)

/(0.3 · (1 − m)), if ydown−zc

yup−zc
> m

1, otherwise

Qgate = 0.5 · ct · w ·
√

g · (yup − zc)1.5 · ft.

• drowned weir flow - throat control mode:

ft =

√
(

1 −
ydown − zc

yup − zc

)

/(1 − m),

Qgate = 0.5 · ct · w ·
√

g · (yup − zc)1.5 · ft.

• free weir flow - gate control mode:

fg =

{ (

(1 − ydown−yc

yup−yc

)

/(0.3 · (1 − m)), if ydown−yc

yup−yc
> m

1, otherwise

hp =
yup − yc

yc − zc
,
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θ = 57.3 · asin

(
yc − zc

hg

)

,

φ =
θ − 30

60
,

ψ =

{

0.711 · (1 − φ) + 0.58 · φ · (1 + 0.13 · hp), if θ ≥ 30

0.711, otherwise

Qgate = cg · w ·
√

g · ψ · (yup − yc)1.5 · fg.

• drowned weir flow - gate control mode:

fg =

√
(

1 −
ydown − yc

yup − yc

)

/(1 − m),

hp =
yup − yc

yc − zc
,

θ = 57.3 · asin

(
yc − zc

hg

)

,

φ =
θ − 30

60
,

ψ =

{

0.711 · (1 − φ) + 0.58 · φ · (1 + 0.13 · hp), if θ ≥ 30

0.711, otherwise

Qgate = cg · w ·
√

g · ψ · (yup − yc)1.5 · fg.

The gated weir in throat control mode is in free flow condition if (ydown −
zc)/(yup −zc) < m, otherwise it is in submerged flow condition. If the structure
is in gate control mode, then it is in free flow condition if (ydown − yc)/(yup −
yc) < m, otherwise it is in submerged flow condition. The gate is in throat
control mode if the discharge calculated with the formula for the throat control
mode (for the correct flow condition) is smaller than the discharge calculated
for the gate control mode (for the correct flow condition). Otherwise it is in
gate control mode. Similar functions are used when the flow is in the opposite
direction (yup < ydown). More information can be found in [78].
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A.2 Spill

Section 3.3.3.2 introduces a spill as an example of an hydraulic structure for
which the discharge cannot be influenced by an operator. The discharge over
a spill can be modelled with the scalar nonlinear function g̃:

Qspill(t) = g̃(hup(t), hdown(t))

with hup the upstream water level and hdown the downstream water level.
Depending on the upstream and downstream water level and the shape of
the crest of the spill, the width of the spill is divided into multiple segments.
The flows over each of these segments are calculated separately and are added
together to get the total flow Qspill over the spill.

Each of these segments has the following parameters:

• w: the width of the segment [m],

• m: the modular limit [−],

• cw: the weir coefficient [−],

• k1: the height of the lowest part of the top of the segment [m TAW],

• k2: the height of the highest part of the top of the segment [m TAW].

Given the water levels yup = hup + bup and ydown = hdown + bdown with bup and
bdown the heights of the bedding at the upstream and downstream side of the
spill respectively, the following variables are calculated:

yup,1 = yup − k1,

yup,2 = yup − k2,

ydown,1 = ydown − k1,

ydown,2 = ydown − k2,

and are used to determine the flow over the segment. The flow over such a
segment depends on the flow condition:

• no flow (if yup,1 < 0, ydown,1 < 0):

Qsegment = 0.
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• free flow:

Qsegment = 2 · cw · w ·
y5/2

up,2 − y5/2
up,1

5 · (yup,2 − yup,1)
.

• submerged flow:

yk = yup,2 − yup,1 − ydown,2 + ydown,1,

A = −
cw/y2

k√
1 − m

,

yi = yup,2 − yup,1,

ddown,1 = (yup,2 − ydown,2)1.5,

ddown,2 = (yup,2 − ydown,2)2.5,

dup,1 = (yup,1 − ydown,1)1.5,

dup,2 = (yup,1 − ydown,1)2.5,

D = yup,2 · ddown,1 − yup,1 · dup,1,

Qsegment = A · w ·
(

2

3
· yk · D −

4

15
· yi · (ddown,2 + dup,2))

)

.

The segment is considered to be in free flow if ydown,1+ydown,2

yup,1+yup,2
≤ m, otherwise it

is in submerged flow. More information can be found in [78].





B

Test examples

This chapter shows the simulation results for the numerical scheme defined
in Section 3.5.2. Section B.1 focusses on test systems consisting of only one
reach. First the steady state solution calculated with the numerical scheme is
compared with the analytic solution for two examples. Afterwards a mass
conservation test is performed. The last two examples visualize the effect
of a time-varying given upstream and/or downstream discharge as boundary
conditions on the dynamics of a reach. Section B.2 gives one result for two
reaches connected to each other with a hydraulic structure. In this example
the concept of “uncontrollability” related to hydraulic structures is explained.

B.1 Single reach

B.1.1 Steady state problem with analytic solution

In the literature one can find problem descriptions where an analytic solution
exists for the steady state case. E.g. different examples are given in [113, 114].
In those reports a method is presented for constructing test problems with
known analytic solutions to the full steady Saint-Venant equation (Eq. (3.24)).
The presented method is actually an “inverse” method. Based on a chosen
hypothetical water level profile, a bed slope can be found which makes this
profile a solution of the steady Saint-Venant equation. This method will be
used here to test how far the steady state water level profile calculated with
the numerical simulator differs from the analytic steady state values.
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Consider a 1 km long and 10 m wide rectangular channel, with a Manning
roughness coefficient of 0.03. For the water level profile

h(z) =

(
4

g

)1/3
(

1 +
1

2
exp

(

−16

(
z

1000
−

1

2

)2
))

(B.1)

and its spatial derivative

dh(z)

dz
= −

(
4

g

)1/3 2

125

(
z

1000
−

1

2

)

exp

(

−16

(
z

1000
−

1

2

)2
)

its corresponding bed slope that makes this water level profile the steady state
solution of the channel with a steady state discharge of 20 m3 · s−1 is given by

S0(z) =

(

1 −
4

gh(z)3

)
dh(z)

dz
+ 0.36

(2h(z) + 10)4/3

(10h(z))10/3
.

Fig. B.1 compares the analytic solution for the water level profile (Eq. (B.1))
with the one calculated by means of the procedure explained in Section 3.5.2.3,
where the downstream water level was used as boundary condition and nh was
set to 101. The top plot visualizes the analytic solution and the calculated
solution, while the middle plot shows the absolute error between both profiles.
The maximal error is smaller than 1.6 mm. The bottom plot shows the
calculated steady state water profile in combination with the bed slope of the
channel.

The second example is derived for a 5 km long trapezoidal channel with a
bottom width B of 10 m and side slopes S1 and S2 equal to 2. Its Manning
roughness coefficient is equal to 0.03. The channel has a bed slope given by

S0(z) =

(

1 −
400(10 + 4h(z))

g(10 + 2h(z))3h(z)3

)

dh(z)

dz
+ 0.36

(

10 + 2h(z)
√

5
)4/3

(10 + 2h(z))10/3h(z)10/3

with

h(z) =
9

8
+

1

4
sin
( πz

500

)

,

dh(z)

dz
=

π

2000
cos
( πz

500

)

.

A comparison between the analytic solution and the calculated solution (for
nh = 501) is given in Fig. B.2. The top plot and the middle plot show that the
calculated steady state water levels are good approximations of the analytic
steady state water levels. The maximal error is less than 1.5 mm. The bottom
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Figure B.1: Comparison between the analytic steady state water level profile
and the profile calculated by the numerical simulator (nh = 101) for the

bed slope S0(z) =
(

1 − 4
gh(z)3

)
dh(z)

dz + 0.36 (2h(z)+10)4/3

(10h(z))10/3 . The top plot shows

both profiles while the middle plot shows the absolute difference between both
profiles. The bottom plot visualizes the water profile together with the channel
bedding.
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Figure B.2: Comparison between the analytic steady state water level profile
and the profile calculated by the numerical simulator (nh = 501) for the bed

slope S0(z) =
(

1 − 400(10+4h(z))
g(10+2h(z))3h(z)3

)
dh(z)

dz + 0.36
(10+2h(z)

√
5)4/3

(10+2h(z))10/3h(z)10/3 . The top

plot shows both profiles while the middle plot shows the absolute difference
between both profiles. The bottom plot visualizes the water profile together
with the channel bedding.
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plot shows the calculated steady state water profile together with the channel
bed slope.

Both examples indicate that the steady state solution of the discretized Saint-
Venant equations is a good approximation of the steady state solution of the
original full set of equations.

B.1.2 Mass conservation test

This test checks whether the scheme conserves mass and hence volume [50]. An
horizontal trapezoidal channel is used with as initial condition no flow and a
constant water depth h0. At the upstream end the discharge varies sinusoidally
for one period T while at the downstream end the discharge remains zero at
all times. Since the inflow results in a zero net volume flux, the total volume
should not be changed after a period T . When the channel is back in steady
state, the water depth should again be equal to h0. The following parameters
are used [50]:

• Canal geometry: a horizontal canal of 10 km (L) with a trapezoidal
section with a bottom width B of 10 m and side slopes S1, S2 equal to 2.
The Manning coefficient nmann is taken equal to 0.04 s · m−1/3.

• Initial condition: there is no flow along the entire channel and its water
depth h0 is equal to 7 m.

• Boundary conditions: the downstream discharge is equal to 0 m3 · s−1

while the upstream discharge varies for the first 6 hours sinusoidally in
time Q = 200 sin(2πt/21600), afterwards it is kept equal to 0 m3 · s−1 for
the rest of the simulation.

The simulation results for nh = 51 for the upwind scheme for the first 6 hours
are visualized in Fig. B.3. The maximal relative difference between the water
levels after 200 hours and their analytical steady state values is 3.08 · 10−5,
which is satisfactory small.

B.1.3 Linear increase of downstream discharge and constant
upstream water level

The last two tests are used to visualize the behavior of the water levels and
discharges of a single reach for some simple boundary conditions. The first
test is applied to a trapezoidal channel with bottom width B equal to 2 m and
side slopes S1 and S2 of 1.5, the channel is 1520 m long and has a Manning
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Figure B.3: Simulation results for the test regarding the conservation of mass
of the numerical simulator for nh = 51. The top plot shows the evolution
of the water levels in space and time for the first 6 hours. The plane on
the bottom represents the bedding of the reach. The bottom plot shows the
evolution of the discharges in space and time for the first 6 hours. The bold lines
corresponds with the upstream and downstream boundary conditions. The
upstream discharge varies sinusoidally in time Q = 200 sin(2πt/21600) while
the downstream discharge is kept constant at 0 m3 · s−1.
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coefficient of 0.015 s · m−1/3. The bed slope of the channel is equal to 0.0002.
Initially there is no flow in the channel and its upstream water level is equal to
3.5 m. The channel is connected to a reservoir at its upstream side, resulting
in a constant water level of 3.5 m during the simulation. The downstream side
is connected to a pump which is initially off. At time t = 0 the pump starts
working and its flow rate increases linearly to its maximal value of 28.3 m3 · s−1

after 60 s. Afterwards it remains constant at this value:

Qout(t) =









0 t < 0,

28.3 t/60 0 ≤ t < 60,

28.3 60 ≤ t.

Fig. B.4 shows the evolution of the water levels and discharges along the channel
in space and time for the first 4000 s. These water levels and discharges are
calculated for nh = 51. The bold lines represent the boundary conditions. The
increase in the discharge at the downstream end of the channel results in a
wave (with negative amplitude) travelling towards the upstream side of the
channel. This wave is reflected at the upstream side. To keep the upstream
water level constant, the upstream discharge is increased which cause a second
wave towards the downstream end of the channel.

B.1.4 Changing upstream and downstream discharges

The last test performed on a single reach is where the upstream and downstream
discharges are changing in time. The rectangular channel is 4 km long and 2 m
wide. It has a Manning roughness coefficient of 0.05 s · m−1/3 and a bed slope
of 0.001. Fig. B.5 shows the time-varying boundary discharges. The effect of
these boundary conditions on the channel water levels and channel discharges
for nh = 51 are visualized in Fig. B.6.

B.2 Multiple reaches

Until now all the given examples were for a single reach. In this part one result
will be shown for a simple river system. More advanced examples are given in
Chapters 4 and 5.

The example consists of two reaches connected with each other through a gated
weir. The characteristics of both channels are given in Table B.1. The gated
weir has the same width as the bottom width of both channels and its sill level
is 0.5 m above the bedding at the downstream end of the first channel and 0.8
m above the bedding at the upstream side of the second channel. This means
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Figure B.4: Evolution of the water levels (top) and discharges (bottom)
calculated with the numerical simulator for the situation where the upstream
water level is kept constant (bold line) and the downstream discharges increases
linearly from 0 to 28.3 m3 · s−1 in 60 seconds and remains constant afterwards
(bold line).



MULTIPLE REACHES 209

Qup Qdown

0 200 400 600 800 1000 1200 1400 1600 1800 2000

5

10

time [s]

d
is
ch
ar
ge

[

m
3
·s

−
1
]

Figure B.5: Time-varying upstream Qup(t) and downstream Qout(t) discharges
used as boundary conditions.

Table B.1: Parameters of the channels of a simple river system.

channel 1 channel 2

L 200 100

B 1 1

S1, S2 1.5 1.5

nmann 0.012 0.014

S0 0.0005 0.002

that there is a drop of 0.3 m in the bedding of the second reach just after the
gate.

Initially the gate position is equal to 0.5 m, the discharge over the gate Qgate is
10 m3 · s−1 and the water level downstream of the gate is 2.3 m. This is enough
information to calculate the steady state of both channels. The boundary
conditions of the river system are a given time-varying inflowing discharge
Qin for channel 1 and a given constant outgoing discharge Qout for channel
2. Also the gate position is changing in time. The top plot of Fig. B.7 shows
the time-varying gate position together with the evolution of the water level
upstream and downstream of the gate. The bottom plot shows the inflowing
discharge Qin and the outgoing discharge of Qout together with the discharge
over the gate Qgate. Fig. B.8 visualizes the evolution of all the water levels
of both reaches together with the gate position (top plot) and the evolution
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Figure B.6: Evolution of the water levels (top) and discharges (bottom)
calculated with the numerical simulator for the situation where the upstream
and downstream discharges are step functions in time (bold lines).
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Figure B.7: Evolution of the water levels upstream hup and downstream hdown

of the gate together with its gate position c (top plot), and the evolution of the
time-varying upstream Qup and downstream Qout discharges used as boundary
conditions together with the gate discharge Qgate (bottom plot). Because the
gate is initially in throat control mode, there is only a change in the gate
discharge after 400 seconds while the gate position is already increasing after
300 seconds. The gate discharge decreases, which has as effect that the water
levels upstream of the gate will increase (less water is getting out) and the
water levels downstream of the gate will decrease (less water is coming in).
Once the gate position is kept constant the increased upstream water levels
cause the gate discharge to increase. This effect is enforced by increasing the
inflowing discharge Qin. Once the inflowing discharge is set to its original value,
the discharge over the gate starts converging to its initial value. The ripples in
Qgate are caused by waves reflected by the upstream and downstream boundary
conditions.
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Figure B.8: Evolution of the water levels of both channels and the gate position
(top plot) and the discharges of both channels (bottom plot) in space and time.
Because the gate is initially in throat control mode, there is only a change in the
gate discharge after 400 seconds while the gate position is already increasing
after 300 seconds. Increasing the gate position results in an increase of the water
levels upstream of the gate and a decrease of the water levels downstream of
the gate. Once the gate position is kept constant the increased upstream water
levels cause the gate discharge to increase. This effect is enforced by increasing
the inflowing discharge Qin. When the inflowing discharge is set to its original
value, the system converges to a new steady state.
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of the discharges (bottom plot). Although the gate position changes after 300
seconds, there is only a change in the gate discharge (and hence the water levels
of both channels) after more than 400 seconds. This means that the gate was
initially in throat control mode. This mode will be called uncontrollable in
this dissertation: although the gate position is changed, there is no effect on
the gate discharge. Only when the gate position is increased enough, the gated
weir comes in gate control mode and the discharge over the gate can be reduced.
This has as effect that the water levels upstream of the gate increase (less water
is getting out) and the water levels downstream of the gate decrease (less water
is coming in). This increase of the upstream water levels lead eventually to
an increment in the gate discharge once the gate position is not changing any
more (after 600 seconds). This effect is amplified by increasing the inflowing
discharge Qin after 800 seconds. After 1200 seconds the inflowing discharge is
set to its original value and the discharge over the gate starts converging to its
initial value. As can be seen in Fig. B.7 and B.8 there is a ripple present in
the gate discharge as well as in the discharges and the water levels of the two
reaches after 900 s. These ripples are not caused by the numerical solver. The
boundary conditions keep the upstream and downstream discharge constant
for long time intervals resulting in reflections at the upstream and downstream
boundaries causing the ripples in the water levels and discharges of the two
reaches. Because these water levels determine also the discharge over the gate,
this ripple is also present in the gate discharge.
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