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Abstract

This thesis studies the integration of a particular family of machine learning
methods into the analysis of high dimensional data sets from microarray and
mass spectrometry technologies. More precisely, the class of regularized
least squares methods and kernel-based machine learning methods are con-
sidered. Kernel-based methods integrate techniques from convex optimization,
functional analysis and statistical learning theory into a powerful yet simple
framework, and have enjoyed in the last decade great success over a wide range
of application tasks in bioinformatics, financial engineering, text mining, image
processing and time series prediction.

At the beginning of this thesis fundamentals and principles on regularized
learning and kernel-based methods are reviewed. After this, we concentrate on
support vector machines (SVM) methods and, particularly, the Least-Squares
Support Vector Machines (LS-SVM) formulations. Based on the structure of
the LS-SVM classifiers, we propose a novel algorithm for variable selection that
makes use of low rank matrices to update the LS-SVM parameters. This method
provides efficient simplifications for linear kernels that can scale up to thousands
of variables and it is therefore applicable in microarray analysis. Subsequently,
we provide extensions of this framework to polynomial kernels using additive
structures. Existing methods discard the use of resampling techniques due to its
computational complexity. We provide, however, efficient implementations of
the leave-one-out (LOO) estimator which is in turn the mechanism to assess the
relevance of the variables.

Later on we turn our point of interest on the application of regularized learning
methods to Mass Spectral Imaging (MSI) data. We present an approach to learn
sparse predictive models that integrate structural information from MSI data.
The goal is to develop (semi)-supervised models that use the labeled portions
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iv ABSTRACT

of the tissue to help predict the anatomical labels for the unlabeled regions.
The medical objective of such models would be, for instance, to provide the
pathologist with insight in interpreting molecular tissue content of areas that
do not lend themselves for straightforward human classification. Particularly
we address issues regarding inherent ordering of the model variables and the
spatial relationships of the data points. Furthermore, to overcome the lack of
labeled data points we exploit the prior assumption that nearby spectra are
likely to have the same label. Numerically, the proposed model is shown to be
equivalent to a LASSO formulation and therefore can be efficiently solved via
the LARS (Least Angle Regression) algorithm. Moreover, each component in
our optimization problem clearly embodies the structural information of MSI
data.

As a last application of kernel methods in this thesis, we deal with the problem
of clustering genes from microarray data. To this end, we explore the use of a
spectral clustering formulation that incorporates an extension for out-of-sample
points. In our approach, an informative small subset genes is first selected via
entropy maximization, and subsequently the clustering model is used to infer
cluster memberships for the remaining genes.
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CH Caliński and Harabasz index
CV Cross-Validation

ENET Elastic Net algorithm

FDA Fisher Discriminant Analysis

GRN Gene Regulatory Network

KKT Karush-Kuhn-Tucker

LARS Least Angle RegreSsion
LASSO Least Absolute Shrinkage Selection Operator
LOO Leave-One-Out
LRLSVM Low Ranked LS-SVM
LS-SVM Least Squares Support Vector Machine

MS Mass Spectrometry
MSE Mean Square Error
MSI Mass Spectral Imaging

Ncut Normalized Cut

v



vi ABBREVIATIONS

OLS Ordinary Least Squares
OrLS Orthogonal Least Squares

PCA Principal Component Analysis
PRESS Predicted Residual Sum of Squares

QP Quadratic Programming

RBF Radial Basis Function
RFE Recursive Feature Elimination
RLS Regularized Least Squares
ROC Receiver Operating Characteristic curve

SBE Sequential Backward Elimination
SFS Sequential Forward Selection
SMW Sherman-Morrison-Woodbury formula
SVM Support Vector Machine

TF Transcription Factor



List of Symbols

argminxf(x) Minimization over x, optimal value of x returned

1n n-dimensional vector with entries equal to 1

In n× n identity matrix

L Lower triangular Cholesky factor

w = [w1, . . . , wd]> ∈ Rd Weight vector

xk = [xk1, xk2, . . . , xkn]> Describes the variable k

x> Transpose of the vector x

L Laplacian matrix

D = {xi, yi}ni=1,xi ∈ Rd Training data set of n input-output data points

F Feature space of dimension dh

S Set of objects (e.g. set of vectors, indices)

X Input space of dimension d

minx f(x) Minimization over x, minimal function value returned

diag(X) Diagonal of matrix X

ϕ(·) Feature map

vii



viii LIST OF SYMBOLS

|S| Number of elements in set S

Ω> Transpose of the matrix Ω

Ωij ij-th entry of the matrix Ω

K(xi,xj) Mercer kernel evaluated between data points xi,xj

m/z mass-to-charge ratio

xki ∈ R k-th component of xi



Contents

Abstract iii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Goals of this thesis . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Chapter by Chapter Overview . . . . . . . . . . . . . . . . . 7
1.5 Contributions of this thesis . . . . . . . . . . . . . . . . . . . 9

2 Regularized learning and kernel methods 13
2.1 Ridge regression and the LASSO . . . . . . . . . . . . . . . . 14
2.2 Kernel based learning . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Mercer kernels . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Kernel functions . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Support Vector Machines for Classification . . . . . . 18
2.2.4 Least-squares support vector machines . . . . . . . . . 21

2.3 Variable selection . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Model selection and Leave-one-out estimator . . . . . . . . . 26
2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Classification of mass spectra . . . . . . . . . . . . . 27
2.5.2 Prediction of transcription factors . . . . . . . . . . . 29

ix



x CONTENTS

3 Low rank updated LS-SVM classifiers for variable selection 33
3.1 Variable selection . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Least squares support vector machine classifiers . . . . . . . . 34
3.3 Leave-One-Out estimator for LS-SVM . . . . . . . . . . . . . 35
3.4 Low rank modifications . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 SMW formula and rank-one modifications . . . . . . . 39
3.4.2 Cholesky factorization . . . . . . . . . . . . . . . . . 40

3.5 Low rank updated LS-SVM . . . . . . . . . . . . . . . . . . . 41
3.5.1 Forward update . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Backward downdate . . . . . . . . . . . . . . . . . . 43

3.6 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.1 Computational performance . . . . . . . . . . . . . . 46
3.6.2 Benchmarking data . . . . . . . . . . . . . . . . . . . 50
3.6.3 Microarray data . . . . . . . . . . . . . . . . . . . . . 54
3.6.4 Model selection . . . . . . . . . . . . . . . . . . . . . 56

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Polynomial componentwise LS-SVM: variable selection us-
ing low rank updates 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Componentwise support vector machines . . . . . . . . . . . 61
4.3 Polynomial updates . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Low rank modifications . . . . . . . . . . . . . . . . . . . . . 64
4.5 Efficient leave-one-out computation . . . . . . . . . . . . . . 66
4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Model selection . . . . . . . . . . . . . . . . . . . . . 66
4.6.2 Toy Data . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.3 Real world data . . . . . . . . . . . . . . . . . . . . . 70

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Learning of Sparse Linear Models in Mass Spectral Imaging 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Penalized regression . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Structure Encoding via the Graph Laplacian . . . . . . . . . . 79

5.3.1 Encoding ordered variables . . . . . . . . . . . . . . . 79
5.3.2 Encoding prior spatial information . . . . . . . . . . . 80

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . 82
5.4.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . 82



CONTENTS xi

5.4.2 Numerical results . . . . . . . . . . . . . . . . . . . . 82
5.4.3 Visualization . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Entropy based selection for spectral clustering 89
6.1 Kernel k-means and Spectral Clustering . . . . . . . . . . . . 90

6.1.1 The kernel k-means algorithm . . . . . . . . . . . . . 90
6.1.2 Spectral clustering . . . . . . . . . . . . . . . . . . . 92

6.2 Selecting informative data points . . . . . . . . . . . . . . . . 96
6.2.1 Model selection . . . . . . . . . . . . . . . . . . . . . 97

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.1 Toy data . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.2 Non-linear cluster structures . . . . . . . . . . . . . . 101
6.3.3 Simulated and real data gene expression data . . . . . 103
6.3.4 The NCI60 data set . . . . . . . . . . . . . . . . . . . 105

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 General Conclusions 113
7.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Future research and open issues . . . . . . . . . . . . . . . . . 115

A Benchmark results for linear low ranked LS-SVM 117

B Benchmark results for polynomial componentwise LS-SVM 125

Bibliography 131

List of publications 145

Curriculum 149





List of Figures

1.1 Structure of the thesis. . . . . . . . . . . . . . . . . . . . . . 8

2.1 Illustration of the kernel trick. . . . . . . . . . . . . . . . . . 19
2.2 Effect of varying the hyperparameter σ in the RBF kernel. . . 21
2.3 Average mass spectrum of Control and Disease groups. . . . . 27
2.4 Test set ROC for Ovarian and Prostate cancer data sets. . . . . 29
2.5 Scheme representation of a gene regulatory network (GNR). . 30
2.6 Yeast GNR using LS-SVM classifiers. . . . . . . . . . . . . . 32

3.1 Time complexity of low rank updates vs low rank downdates
using synthetic data. . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Time complexity comparison on the SPLICE data set. . . . . . 48
3.3 Time complexity comparison of low rank updated LS-SVM to

other approaches. . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Time complexity comparison of low rank downdated LS-SVM

to other approaches . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 FLARE data set. Test error boxplots. . . . . . . . . . . . . . . 53
3.6 Variable selection on SPLICE data set. RBF vs linear kernel. . 53
3.7 Test error on the Colon data set. Low rank updated LS-SVM. . 55
3.8 Test error on the Leukemia data set. Low rank downdated

LS-SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.9 HEART data set. Test error boxplot. . . . . . . . . . . . . . . . 57
3.10 HEART data set. Effect of the modified PRESS statistic. . . . . 57

4.1 Time complexity of low rank updates with respect to polyno-
mial degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Synthetic data. LOO with respect to polynomial degree. . . . . 69

xiii



xiv LIST OF FIGURES

4.3 SPLICE data set. Selection of the number of ranked variables. . 73

5.1 Schematic representation of the MSI data structure. . . . . . . 76
5.2 Structural information of MSI data. . . . . . . . . . . . . . . . 80
5.3 Visualization of the predicted tissue regions on the mouse brain

MSI data set. . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Ion image visualization of top three selected m/z variables

discriminating the (cc) and (vl) tissue regions. . . . . . . . . . 86

6.1 Scheme of spectral clustering for microarray data. . . . . . . . 95
6.2 Synthetic data set. Spectral clustering with entropy selection. . 100
6.3 Non-linear synthetic data set. Spectral clustering with entropy

selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 YEASTG data sets. Affinity matrices revealing the clustering

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 NCI60 microarray data set. average CH index with respect to

the number of clusters and subset size. . . . . . . . . . . . . . 106
6.6 NCI60 data set. Spectral clustering hierarchical structure. . . 108
6.7 NCI60 data set. Gene ontology tree structure for the most

significant terms of the genes in cluster 38. . . . . . . . . . . . 111

A.1 BREAST CANCER . . . . . . . . . . . . . . . . . . . . . . . . 118
A.2 DIABETES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3 FLARE SOLAR . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.4 GERMAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.5 HEART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.6 SPLICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.7 WAVEFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



List of Tables

2.1 Confusion matrix for Ovarian and Prostate cancer data sets. . . 28

3.1 Data sets used in benchmark study. . . . . . . . . . . . . . . . 46
3.2 Low rank LS-SVM benchmark results. . . . . . . . . . . . . . 51
3.3 LS-SVM benchmark results with RBF kernel. . . . . . . . . . 52

4.1 Polynomial componentwise LS-SVM. Synthetic data set results. 71
4.2 Polynomial componentwise LS-SVM. Benchmark data results. 72

5.1 Multi-class one-vs-one results on mouse brain MSI data set. . 83
5.2 LASSO and ENET Multi-class one-vs-one results. . . . . . . . 83
5.3 Combined multi-class results on the mouse brain MSI data set. 84

6.1 Non-linear synthetic data set. Numerical results. . . . . . . . . 101
6.2 SIMULATED1000 data set. Numerical results. . . . . . . . . . 103
6.3 YEASTG microarray data set. Numerical results. . . . . . . . 104
6.4 ARI numerical results for SIMULATED1000 and YEASTG data

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5 NCI60 data set. Significant functional terms associated to each

the clusters. I. . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.6 NCI60 data set. Significant functional terms associated to each

the clusters. II. . . . . . . . . . . . . . . . . . . . . . . . . . 110

xv





Chapter 1

Introduction

1.1 Background

The general scope of this thesis mainly refers to the application of existing
kernel-based methods and their subsequent adaptation to learning problems with
low number of data points and high dimensional number of measured variables.
Kernel learning methods and regularization techniques cover a wide range
of advanced and powerful mathematical techniques within a sound statistical
framework. These methodologies attempt to view the learning problem using
general building blocks whose flexibility allows the construction of non-linear
models for classification, regression, feature extraction, variable selection and
clustering among others. Our main interest lies in developing efficient, yet
simple, algorithms to deal with few number of data points, large number of
measured variables, partially labeled data points and large-scale clustering.
Such type of data sets arise very frequently from biological systems and high-
throughput technologies.

Active research on regularized kernel methods during the last decade has
brought together concepts from statistics and optimization theory, into a
large variety of successful applications in areas such as medicine, biology,
economics and earth sciences. In particular, the joint work of molecular
biology, engineering and computer science communities has given place to
a new emerging field: bioinformatics. The term bioinformatics refers to
the development of algorithms, computational and statistical techniques as
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2 INTRODUCTION

well as mathematical theory to solve formal and practical problems inspired
from the management and analysis of biological data. In particular, the
development of microarray technologies has urged more and more the demand
for efficient algorithms and robust data analysis. Microarray chips are capable
of measuring the expression levels of thousands of genes simultaneously.
Parallel measurements of these gene expression levels result in data vectors
containing thousands of values, referred as expression patterns. Likewise, mass
spectrometry technologies generate large amounts of data measuring the activity
and/or expression of thousands of proteins, on a given set of biological samples.
Moreover, mass spectral imaging (MSI) adds yet another dimension to the
data structure by preserving the spatial information and therefore introducing
a valuable source of prior information that should not be disregarded but
rather incorporated into the learning problem. There are, nevertheless, several
common problems to all these high-throughput technologies and they relate
to: large number of variables, low number of examples, low signal-to-noise
ratio, irrelevant variables and the presence of missing values and outliers. For
this purpose, methods and algorithms capable of handling high-dimensional
data vectors and capable of working under a minimal set of assumptions are
required. Through this work, we attempt to propose alternatives to tackle the
mentioned issues.

To a large extent, this thesis is about Support Vector Machine (SVM) type
classifiers [111] and, more generally Regularized Least Squares Models, which
include a larger family of techniques. A particular class of kernel machines is the
least squares support vector machines (LS-SVM) [100, 101], which simplifies
the classical SVM formulation. Besides, LS-SVMs cover a wide range of
learning algorithms that can be formulated within a primal-dual framework.
The development of algorithms and mathematical models that can learn from
data involves, however, careful parameter tuning and complexity control of the
statistical models. Throughout this work, model selection will play a central
role in the construction of reliable and reproducible algorithms. We focus
primarily on the use of regularized linear models and kernel based techniques
and orient our approach from the algorithm’s design point of view, before
moving gradually to customized learning tasks involving either microarray or
mass spectrometry data.
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Consequently, the general objective in this work concerns the application of
existing kernel-based methods to particular problems in the areas of microarray
and (imaging) mass spectrometry data analysis. First, we consider the problem
of selecting relevant genes for prediction in microarray data analysis, widely
acknowledged as the variable selection problem. Secondly, we deal with the
incorporation of prior knowledge from MSI experiments and semi-supervised
learning for partially labeled data. Finally, we address the question of
clustering similar genes through non-linear clustering algorithms for large
scale microarrays. Overall, we touch on the topics of clustering, prediction and
classification models, variable selection and incorporation of prior knowledge.

1.2 Challenges

The current challenges and problems are described as follows:

• Microarray data: A common characteristic in “omics" data is the high
dimensionality and relatively low number of data points. Microarray
and mass spectrometry technologies are designed to understand how
the whole set of genes and proteins of a particular biological sample is
functioning. Indeed, on a single microarray experiment, thousands of
spots, each related to a single gene, are used to simultaneously detect
gene expression levels while varying several experimental conditions [16].
Parallel measurements of these expression levels result in data vectors
that contain thousands of values. These data vectors are called expression
patterns. Traditional data analysis techniques cannot directly deal with
high dimensional data vectors and a pre-processing step is usually needed.
Therefore, the new direction is put into methods and algorithms capable
of handling high dimensional data vectors and work under a minimal set
of assumptions.

• Mass spectrometry data: Due to modifications and regulation of
biologically active molecules, microarrays do not capture all relevant
phenomena in the cell at the molecular level. Hence, the study of the
proteome (analogous term to genome for the global set of proteins) allows
to obtain additional information about the molecular biology of tissues
and samples. A proteomics study typically tries to capture a snapshot of
the current protein content in the cell. In this setting, selective separation
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techniques such as liquid chromatography, gel electrophoresis and mass
spectrometry represent the principal techniques behind high-throughput
proteomics. In particular, mass spectrometry (MS) has become the
central driving force to quantify the presence of a large subset of proteins
in a given sample. Within the MS category, mass spectral imaging
additionally provides extra information about the spatial distribution of
biomolecules in the organic tissue. Quantitatively, these technologies
deliver mass spectra containing thousands of discrete peak intensities,
each associated with a mass-to-charge (m/z) value, which in turn is
associated with a (unknown) protein or a fragment thereof. The final data
output, similarly to microarray data, consists of huge data vectors, where
each component quantifies the presence in amount of an unspecified
protein (or fragment) in the sample at hand.

• Variable selection: As mentioned earlier, the high dimensionality and
low number of data points in typical microarray or mass spectrometry
experiments, let alone the likely presence of irrelevant measurements,
demand efficient mechanisms to select informative genes or mass-to-
charge regions. Such problem can be seen as finding the needle(s) in a
huge haystack. Variable selection techniques aim at finding a subset of
variables that results in more accurate and compact set of predictors. The
goal is then to filter out those inputs that are irrelevant to the specific
model. However, there is no single definition for the best subset and
different algorithms will produce different subsets. In practice, one needs
to define (i) how to search in the space of all possible variable subsets and
(ii) how to assess the prediction performance of the learning machine.
We shall consider the LS-SVM learning algorithm as a black box to score
subsets of variables according to their predictive power.

• Model selection: In practice, the chosen statistical model might be too
complex for the application at hand and thus over fitting phenomena can
easily occur. For this reason, model and parameter selection are key issues
in the design of learning models. In this context, regularization techniques
and disciplined parameter selection is of utmost importance. Resampling
techniques such as leave-one-out (LOO) and cross-validation are standard
approaches to select parameters and assess the model’s complexity. We
emphasize in the use of fast and efficient resampling techniques during
the model building phase.
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• Lack of labeled data: The labor of manually labeling data is not a
trivial task. Besides, not only is manual labeling time consuming and
expensive but it might also be highly sensitive to human error. The label
completion task consists then in using effectively a small amount of a
priori labeled data points, for instance tissue regions on a biological
sample, while providing a way to propagate or spread these labels over
the unmarked regions. This task is usually accomplished through semi-
supervised methodologies, in which the labeled data points constitute
side information and impose a prior structure for the remaining unlabeled
data points. The final labeling should be consistent with respect to the
initial imposed restrictions.

• Incorporating prior information: In real-life applications, additional
side information is typically available together with the data. This prior
information might come from expert knowledge, inherent data structure,
or even redundancy. Therefore, it becomes important to have a flexible
methodology as to incorporate this extra source of information in a
systematic manner. For instance, the spatial distribution present in MSI
experiments suggests another information component and should not be
disregarded.

• Large-scale problems: During the last 10 years, the amount of
data available being produced in areas such as bioinformatics, text
mining, computer vision, information retrieval, process industry has been
increasing at exponential rate. Large-scale problems become a challenge
for any type of machine learning technique. In order to extract useful
information from this tsunami of data, approximation techniques, reduced
set methods, subsampling schemes and sparse models are required to
deal with the large-scale data while using standard hardware.
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1.3 Goals of this thesis

The objectives of this thesis are summarized as follows:

1. Extend the core LS-SVM methodologies to cope with variable selection
in high dimensional settings. Not only should the algorithms be efficient,
but they should also include mechanisms for model selection. A full
methodology integrating variable selection, parameter selection within
a single efficient framework represents a major milestone through this
work.

2. Adapt and exploit the structure of the LS-SVM classifiers as to efficiently
update the model parameters, such that these algorithms can be employed
with microarray data sets.

3. Incorporate additional side information from mass spectrometry and
mass spectral imaging mass spectrometry. Sources of information refer
to the high redundancy at the m/z level and the spatial location within
the biological sample. Mass spectrometry data reveals a highly sparse
structure and consequently large portions of the m/z domain do not
provide any contribution. We aim at building sparse models that can
disregard the contribution of these m/z values.

4. Use the partially labeled regions in MSI experiments in conjunction with
semi-supervised models as to complete the unlabeled tissue regions and
differentiate among them based on their m/z signature. By considering
the spatial relationships and proximity of spectra within the tissue, we
attempt to model the spatial distribution of the spectra.

5. Develop kernel algorithms for clustering capable of handling large-
scale microarray data sets. The clustering algorithm should incorporate
mechanisms to select a reduced number of genes and infer the cluster
membership of the left-out genes. Additionally, a hierarchical structure
will help elucidate subtle clusters in this large scale setting, that are
otherwise obfuscated by the presence of large prominent clusters.
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1.4 Chapter by Chapter Overview

This thesis is organized in six main chapters. Figure 1.1 visually illustrates the
structure of this work. The content of the chapters is organized as follows:

• Chapter 2 provides general introduction to regularized methods for
learning as well as kernel-based methods. We present applications to
microarray and mass spectrometry data sets using the LS-SVM method
and highlight its benefits. Of particular interest is the application of
Transcription Factor (TF) prediction which requires training of multiple
LS-SVM in order to infer the missing information of this ill-posed task.
Effective model selection and algorithms’ efficiency favor LS-SVMs.

• Chapter 3 presents LS-SVM formulations for the problem of variable
selection. To overcome the computational burden of the variable selection
problem, we develop algorithms using LS-SVM classifiers with linear
kernels. The model parameters are efficiently updated at every stage
by using low rank matrix updates. The proposed approach is applied
to several benchmark data sets as well as two microarray data sets,
comparing favorably to existing methodologies.

• Chapter 4 extends the work presented in Chapter 3 to more general
kernels. Starting from component-wise (additive) models, we construct
non-linear algorithms for variable selection. In the case of component-
wise polynomial kernels, we demonstrate that a finite-dimension feature
map yields low rank matrices which, as in the case of the linear kernels,
can be efficiently updated.

• Chapter 5 describes a learning approach for Mass Spectral Imaging (MSI)
data. Taking into account the special structure of MSI data, we devise
sparse predictive models that simultaneously perform variable selection
in the spirit of `1 penalized formulations. We explore the use of a smooth
quadratic penalty to model the natural ordering of the physical variables
of MSI data, that is, the ordered sequence of m/z values. To overcome
the lack of labeled data, we model the spatial proximity among spectra
by means of a connectivity graph over the set of predicted labels.

• Chapter 6 covers the use of spectral clustering and out-of-sample
extension as first proposed in [9]. This approach offers the possibility
to train and validate the clustering model within the standard learning
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setting of supervised models [8, 9]. We make use of this algorithm to
cluster genes in groups based on their expression values. Firstly, the
clustering model is built upon a selected subset of informative genes
and, in a second stage the model is used to infer cluster memberships
for the remaining genes. Informative genes are selected via entropy
maximization, related to the underlying density distribution of the data
set. This subsampling scheme greatly reduces the computational burden
for large number of genes while the out-of-sample extension provides
a clustering model for new data points. In addition, we provide a
hierarchical implementation that allows to refine the clustering partitions
at different levels of resolution.

Chapter I
Introduction

Chapter II
Regularized learning
and kernel methods

Chapter III
Low rank up-
dated LS-SVM

Chapter IV
Componentwise

LS-SVM

Chapter V
Sparse linear

models for IMS

Chapter VI
Spectral clustering

with entropy selection

Conclusions

General background,
objectives and motiva-
tion of this work.

Overview of LS-SVM classifiers and
kernel methods. Application to TF
prediction with microarray data.

Regularized linear methods
that will form the basis to learn
sparse models.

Presents low rank updates
for linear LS-SVM and effi-
cient variable selection for
microarray data.

Extends low rank updates
to Polynomial component-
wise LS-SVM.

Extends regularized linear mo-
dels to incoroporate structural
prior knowledge from IMS data.

Introduces entropy sub-
sampling to learn spec-
tral clustering on large
gene data sets.

Conclusions and future
research directions.

Figure 1.1: Structure of the thesis. Arrows suggest the reading order of the
chapters. Chapters III, IV and V constitute the main contributions of this thesis.
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1.5 Contributions of this thesis

The main contributions of this thesis are summarized as follows:

• Efficient variable selection. The use of LS-SVM classifiers as learning
algorithm, is motivated on the basis of its special structure. The
leave-one-out (LOO) estimator, directly obtained as a by-product of
the basic training algorithm [19, 20, 109], is taken as the basis of the
variable selection criterion. Moreover, considerable savings in terms
of computational complexity can be achieved with a particular case of
low rank modifications on the LS-SVM solution. Simplifications that
eventually allow the practical implementation of forward and backward
search strategies even for a relatively high number of variables [74, 75].

– F. Ojeda, J.A.K. Suykens, and B. De Moor. Variable selection
by rank-one updates for least squares support vector machines.
In Proceedings of the International Joint Conference on Neural
Networks (IJCNN’07), pages 2283–2288, Orlando, U.S.A., 2007.

– F. Ojeda, J.A.K. Suykens, and B. De Moor. Low rank updated
LS-SVM classifiers for fast variable selection. Neural Networks,
21(2-3):437–449, 2008.

• Non-linear variable selection and component-wise models. Using the
framework of Low-ranked updated LS-SVM, we present an extension
to more general type of kernels. We start from additive/componentwise
kernels that in the case of polynomial kernels yield low rank matrices.
Based on this observation, we develop algorithms for sequential variable
selection that can be efficiently trained and updated [72].

– F. Ojeda, T. Falck, B. De Moor, and J.A.K Suykens. Polynomial
componentwise LS-SVM: fast variable selection using low rank
updates. In International Joint Conference on Neural Networks
(IJCNN 2010), pages 3291–3297, July 2010.

• Sparse linear models for MSI. We address issues regarding inherent
ordering of the model variables and the spatial relationships of the data
points. In a first step, we start from regularized models that impose
sparsity on the solution of coefficients. In the problem of interest,
variables possess a natural ordering due to their physical meaning.
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Therefore, we enforce that the estimated coefficients of nearby variables
should smoothly vary in terms of m/z.

• Incorporation of prior knowledge. We develop semi-supervised
models that use the labeled portions of the tissue coming from MSI
experiments to help predict the anatomical labels of the unlabeled regions
of the tissue. The medical objective of such models would be, for instance,
to provide the pathologist with insight in interpreting molecular tissue
content of areas that do not lend themselves for straightforward human
classification.

• Partially labeled data and semi-supervised learning. Our approach
encodes the spatial proximity among spectra by means of a graph
and hence can be seen as a semi-supervised method. The resulting
proposed model is shown to be equivalent to a LASSO formulation. Each
component in our optimization problem clearly embodies the structural
information of MSI data, whereas regularization parameters trade off the
complexity of the model in terms of sparsity, smoothness and unlabeled
data points [73].

– F. Ojeda, M. Signoretto, R. Van de Plas, E. Waelkens, B. De Moor,
and J.A.K Suykens. Semi-supervised learning of sparse linear
models in mass spectral imaging. In T. Dijkstra, E. Tsivtsivadze,
E. Marchiori, and T. Heskes, editors, Pattern Recognition in
Bioinformatics, volume 6282 of Lecture Notes in Computer Science,
pages 325–334. Springer Berlin / Heidelberg, 2010. 10.1007/978-
3-642-16001-1_28.

• Spectral clustering and entropy based selection. We consider the
problem of subset selection in spectral clustering with application to
large set of genes coming from microarray experiments. Starting from
a small subset of genes actively selected via entropy maximization, the
spectral clustering model is first trained and then validated. Once the
final cluster model is provided, the remaining data points are assigned
using the out-of-sample extension method. This subsampling scheme
greatly reduces the computational burden in large-scale gene expression
data while the out-of-sample extension provides a clustering model for
new data points. Moreover, in order to detect subtle clusters in large scale
data sets and therefore avoid forming oversimplified clusters, we adapt
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our methodology to work in a hierarchical fashion with clusters being
refined at each level [70, 71, 83].

– N. Pochet, F. Ojeda, F. De Smet, T. De Bie, J.A.K Suykens, and
B. De Moor. Kernel clustering for knowledge discovery in clinical
microarray data analysis, chapter III, pages 64–92. Kernel Methods
in Bioengineering, Signal and Image Processing. Idea Group Inc.,
Hershey, Pennsylvania, 2007.

– F. Ojeda, C. Alzate, J.A.K. Suykens, and B. De Moor. A large
scale spectral clustering with out-of-sample extension: application
to gene expression data. 15th Annual International Conference
on Intelligent Systems for Molecular Biology (ISMB) and 6th
European Conference on Computational Biology (ECCB), July
2007. Outstanding poster award.

– F. Ojeda, C. Alzate, B. De Moor, J.A.K Suykens. Entropy based
selection for spectral clustering. Internal Report 11-83, ESAT-
SISTA K.U. Leuven, Leuven, Belgium, 2011.





Chapter 2

Regularized learning and
kernel methods

This chapter reviews the main concepts in regularized learning
methods and kernel-based learning for classification problems.
Starting from the general framework of regularized least squares,
we move into concepts about kernel functions and how they
allow for a more flexible data representation in high-dimensional
spaces. Particularly, the support vector machine (SVM) method
for classification is discussed and compared to the LS-SVM (Least-
squares support vector machine) formulation. Throughout most of
this thesis, the primal-dual formulations of LS-SVM methods play
a central role in the construction of predictive models due to their
simplicity. To illustrate the flexibility and modeling capabilities of
(LS)-SVM, we consider two applications in bioinformatics namely,
classification of mass spectrometry from the Clinical Proteomics
Program Databank, and transcription factor prediction using
microarray and Chip-CHip data sources.

13
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2.1 Ridge regression and the LASSO

In standard prediction problems, one is presented with a set of training data
D = {(xi, yi)}ni=1, where the input xi ∈ Rd, is described by d variables, and
the corresponding output yi ∈ R. Usually, one seeks to construct a prediction
rule from the training data, so that given a new input xi, one can estimate an
output yi for it. The goal consists then in estimating a model of the form

yi = w>xi + εi , εi ∼ N (0, σ̂2) . (2.1)

Equivalently, stacking all the data points into a matrix X ∈ Rn×d one may
write

y = Xw + ε. (2.2)

The vectors w ∈ Rd, y ∈ Rn, contain the model weights (to be estimated)
and output values respectively. In ridge regression, the weight vector w =
[w1, w2, . . . , wj , . . . , wd]>, is estimated by minimizing the training error and
controlling the norm ‖w‖22, that is how large the coefficients may grow below a
given upper bound η > 0. The objective function is formulated as:

min
w

n∑
i=1

(
yi −w>xi

)2
(2.3)

s.t.
d∑
j=1

w2
j ≤ η .

Or alternatively, in matrix notation

min
w
‖y−Xw‖22

s.t. w>w ≤ η ,

which is equivalent to the optimization problem

min
w
‖y−Xw‖22 + λw>w , (2.4)

where λ > 0. This objective function is minimized for

w =
(
X>X + λId

)−1
X>y . (2.5)
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The first term in (2.4) measures how well the prediction function fits the training
data. The second term trades off between the loss on the training set and the
complexity of the prediction function. Hence λ is called the regularization
parameter. For λ = 0, the ordinary least squares (OLS) solution is recovered in
which the wj’s are left unconstrained. In that case, the weights may take very
large values and hence are susceptible to very high variance. Solution (2.5) is
indexed by the tuning parameter λ > 0. Inclusion of λ makes the problem non-
singular even if X>X is not invertible, which is in fact the original motivation
for ridge regression with respect to OLS. For each λ, there exists a solution
controlling the size of the coefficients and amount of regularization. Ridge
regression includes thus all predictors but with smaller coefficients compared
to ordinary least squares (OLS).

In contrast to ridge regression, the use of a `1 penalty does reduce coefficients to
zero, thus producing models that are sparse. This approach yields least absolute
shrinkage and selection operator (LASSO) [104]. Similarly to regularized least
squares, the LASSO algorithm minimizes the sum of squared errors but instead
it imposes a fixed bound η on the sum of the absolute values of the regression
coefficients.

min
w
‖y−Xw‖22 (2.6)

s.t.
d∑
j=1
|wj | ≤ η .

where η > 0. By varying η, LASSO regression gives solutions ranging from
sparse estimates of the least squares estimates to the OLS solution (η →∞).
Alternatively, one may also write the LASSO problem as in the form of a
penalized residual sum of squares:

min
w
‖y−Xw‖22 + λ

d∑
j=1
|wj | . (2.7)

There exists a λ > 0 such that solutions to problems (2.6) and (2.7) become
equivalent. For all the algorithms so far exposed, one needs a disciplined way of
selecting λ, that is, one requires to tune or find a suitable value for λ. Although
there exist many heuristics to select a suitable value for λ, the standard practice
is to use cross-validation. Contrary to ridge regression, there is no closed form
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solution to solve (2.7). Nevertheless, a wide variety of techniques ranging from
sequential quadratic programming [53], coordinate descent methods [35], and
homotopy methods [77]. An interesting approach to solve the LASSO problem
is the LARS (Least Angle Regression) algorithm [28]. LARS involves solving
a sequence of least-squares problems on an increasingly large subspace, defined
by the active set of variables. We explore the use of this algorithm for Imaging
Mass Spectrometry in Chapter 5.

2.2 Kernel based learning

2.2.1 Mercer kernels

A positive definite kernel (also called Mercer kernel) on a space X is defined
as a symmetric continuous function K : X × X → R such that for any set of
points {x1, . . . ,xn} ∈ X , and any value n, the n× n kernel matrix Ω defined
by Ωij = K(xi,xj), i, j = 1, . . . , n is positive definite. A Mercer kernel
induces a high dimensional feature space F and a mapping ϕ(·) from X to F
such that K(x, z) equals the dot product between ϕ(x) and ϕ(z). The latter
property was introduced in 1909 in Mercer’s theorem:

Theorem 2.1. Mercer [13] Suppose X ⊆ Rd and K is a symmetric continuous
function such that the integral operator

TK : L2(X )→ L2(X )

(TKf)(·) =
∫
X
K(·,x)f(x)dx ,

is positive, which means that for all f ∈ L2(X )∫
X×X

K(x, z)f(x)f(z)dxdz ≥ 0 .

Let φj ∈ L2(X ) be normalized orthogonal eigenfunctions of TK with
corresponding eigenvalues λj > 0. Then K(x, z) can be expanded as

K(x, z) =
∞∑
j=1

λjφj(x)φj(z) . (2.8)
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For a number of finite terms, dϕ, (2.8) can be written as

K(x, z) =
dϕ∑
j=1

√
λjφj(x)

√
λjφj(z) = ϕ(x)>ϕ(z) , (2.9)

where ϕ(x) =
[√
λ1φ1(x),

√
λ2φ2(x), . . . ,

√
λdϕφdϕ(x)

]> represents the
feature vector. Thus, a positive definite kernel induces a nonlinear mapping
ϕ(·) to a high dimensional feature space F ∈ Rdϕ (which can be infinite
dimensional) without explicitly computing this space. The kernel evaluation
provides the dot product of the mapped points in F .

Consider as a simple example, computing the Euclidean distance of the points x
and z in a kernel-induced feature space: ||ϕ(x)−ϕ(z)||2. Expanding the norm,
one can write

(
ϕ(x)>ϕ(x)−2ϕ(x)>ϕ(z)+ϕ(z)>ϕ(z)

)1/2 and applying (2.9)

leads to
(
K(x,x)− 2K(x, z) +K(z, z)

)1/2. The use of (2.9) for interpreting
kernels as dot products in a feature space was coined as the kernel trick and
introduced into pattern recognition in 1964 [2]. After the SVM, other classical
linear algorithms such as PCA, Fisher discriminant analysis (FDA), k-means,
and ridge regression have been also kernelized.

2.2.2 Kernel functions

Typical choices of positive definite kernel functions when X ⊆ Rd are:

• Linear kernel:

K(x, z) = x>z . (2.10)

• Polynomial kernel:

K(x, z) = (x>z + τ)p , (2.11)

where p ∈ N is the degree and τ ≥ 0. The feature space induced by the
polynomial kernel has dimensionality

(d+p
p

)
[111].

• Radial Basis Function (RBF) kernel:

K(x, z) = exp(−‖x− z‖22/σ2) , (2.12)

where σ ∈ R is the kernel width. The feature space induced by the RBF
kernel is infinite-dimensional for every value of σ [111].
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Remark 2.1 (Parameter tuning). The kernel parameters (e.g. τ, p, σ) should
be chosen carefully in order to ensure good generalization. This is particularly
important for very flexible kernels such as the RBF kernel where too small
values of σ will result in ill-conditioning and over fitting. On the other hand,
very large values of σ will make the RBF kernel function behave like a constant
function and hence providing no information.

Remark 2.2 (Normalized kernels). Consider the cosine of the angle of the
points x and z in the input space: cos (θ) = x>z/(||x||2||z||2). Performing
this operation in the feature space leads to:

cos (θϕ) = ϕ(x)>ϕ(z)
||ϕ(x)||2||ϕ(z)||2

= K(x, z)√
K(x,x)K(z, z)

= Kn(x, z) ,

where Kn(x, z) denotes a normalized kernel. Normalizing the kernel matrix
can be achieved via

Ωn = MnΩMn ,

where Mn = diag
(
[1/
√

Ω11, 1/
√

Ω22, . . . , 1/
√

Ωnn]
)
. Normalized kernels

play a key role for robustness in the context of robust statistics.

2.2.3 Support Vector Machines for Classification

Support vector machines [111], provide a solution to the binary classification
problem from the statistical learning theory viewpoint. The algorithm separates
the two classes by a hyperplane that maximizes the distance between the
hyperplane and the nearest data point of each class. Finding such a hyperplane
involves the solution of a convex quadratic programming (QP) problem [15].
In the SVM algorithm, the inputs xi, are first mapped to a high (and possibly)
infinite dimensional feature space through the ϕ(·) : Rd → Rdϕ , and the
separating hyperplane is constructed in this new feature space (see Figure 2.1).

The convex primal problem is formulated as [111]:

min
w,b,ξ

1
2w>w + C

n∑
i=1

ξi (2.13)

s.t. yi(w>ϕ(xi) + b) ≥ 1− ξi ,

ξi ≥ 0 , i = 1, . . . , n ,
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Figure 2.1: Left. Kernel trick allows SVMs to map the data from the input space
X to a high-dimensional feature space F where a linear separation is obtained.
Right. SVMs then construct a hyperplane that maximizes the margin.

where C ∈ R+ is a penalty (cost) parameter for the training error. The slack
variables ξi ≥ 0, represent penalization for the misclassified data points. The
dual formulation is summarized by the following lemma.

Lemma 2.1. [112] Given a positive definite kernel K : Rd × Rd → R with
K(x, z) = ϕ(x)>ϕ(z) and regularization constant C ∈ R+, the dual problem
to (2.13) is given by:

max
αi

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjK(xi,xj) (2.14)

s.t.
n∑
i=1

αiyi = 0 , 0 ≤ αi ≤ C , i = 1, . . . , n .

Proof. The Lagrangian of problem (2.13) is

L(w, b, ξi;αi, νi) =1
2w>w + C

n∑
i=1

ξi + . . .

−
n∑
i=1

αi(yi(w>ϕ(xi) + b)− 1 + ξi)−
n∑
i=1

νiξi ,

(2.15)
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where αi ≥ 0 and νi ≥ 0 are the Lagrange multipliers. The solution is given by
the saddle point of the Lagrangian:

max
αi,νi

min
w,b,ξi

L(w, b, ξi;αi, νi) . (2.16)

One obtains

∂L
∂w = 0→ w =

n∑
i=1

αiyiϕ(xi)

∂L
∂b

= 0→
n∑
i=1

αiyi = 0

∂L
∂ξi

= 0→ 0 ≤ αi ≤ C, i = 1, . . . , n

(2.17)

Expressing the problem in terms of αi and applying the kernel trick
ϕ(xi)>ϕ(xj) = K(xi,xj), leads to the convex QP problem in (2.14).

The classifier for a new input x, takes now the form

f(x) = sign
(
nSV∑
i=1

αiyiK(x,xi) + b

)
, (2.18)

where nSV ≤ n is the number of support vectors which are training points with
corresponding nonzero αi. The sparseness property follows from solving the
QP problem in (2.14). A number of interesting properties of the SVM algorithm
are summarized as follows:

? Global solution. The solution to the convex QP problem in (2.14) is
global and unique when a positive definite kernel is used. For a positive
semi-definite kernel the solution is global but not necessarily unique.

? Sparsity. A number of the resulting Lagrange multipliers, αi, equals zero.
As such, the sum in the in (2.18) should only be taken over all nonzero
αi values, i.e. support values, instead of all data points.

? Geometry. The corresponding vectors xi with nonzero αi > 0, are
referred to as the support vectors. These data points are located close to
the decision boundary and contribute to the construction of the separating
hyperplane (see Figure 2.2).
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Figure 2.2: The influence of varying the RBF kernel width parameter σ for a
fixed value of C = 10. From left to right and top to bottom, the parameter σ is
changed from 0.1 (top left) to 10 (bottom right). Encircled points represent the
support vectors. Increasing σ results in smoother decision boundaries, changing
from nonlinear to almost linear.

2.2.4 Least-squares support vector machines

Another class of SVM, are that of the Least-Squares Support Vector Machine
(LS-SVM) classifiers [100,101]. These are modifications of the standard support
vector machine algorithm and are closely related to regularized least squares
(RLS) and ridge regression. With respect to the standard SVM method, the
use of equality constraints and an explicit squared loss function in the primal
objective. As a result, the solution follows directly from solving a set of linear
equations, instead of quadratic programming.
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The LS-SVM algorithm considers the following constrained optimization
problem [101]

min
w,b,e

1
2w>w + γ

1
2

n∑
i=1

e2
i (2.19)

s.t. yi = w>ϕ(xi) + b+ ei , i = 1, . . . , n ,

where γ ∈ R+ is a regularization parameter controlling the bias-variance trade-
off. The variables ei ∈ R, are viewed as normal distributed errors of the outputs
yi. Solution to (2.19) is formalized in the following lemma.

Lemma 2.2. [101] Given a positive definite kernel K : Rd × Rd → R with
K(x, z) = ϕ(x)>ϕ(z) and regularization constant γ ∈ R+, the dual problem
to (2.19) is given by the following set of linear equations:[

Ω + γ−1In 1
1> 0

] [
α

b

]
=
[

y
0

]
. (2.20)

where y = [y1; . . . ; yn], α = [α1; . . . ;αn] and Ωij = K(xi,xj).

Proof. The Lagrangian of problem (2.19) is

L(w, ei, b;αi) = 1
2w>w+γ 1

2

n∑
i=1

e2
i−

n∑
i=1

αi(w>ϕ(xi)+b+ei−yi), (2.21)

where αi ∈ R are the Lagrange multipliers. The conditions for optimality are
given by

∂L
∂w = 0→ w =

n∑
i=1

αiϕ(xi)

∂L
∂ei

= 0→ αi = γei, i = 1, . . . , n

∂L
∂b

= 0→
n∑
i=1

αi = 0

∂L
∂αi

= 0→ w>ϕ(xi) + b+ ei − yi = 0, i = 1, . . . , n.

(2.22)
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Eliminating the primal variables, w, ei, leads to

αi
γ

+
n∑
j=1

αjϕ(xj)>ϕ(xi) + b = yi, i = 1, . . . , n

n∑
i=1

αi = 0 ,

(2.23)

With the application of Mercer’s theorem, or the kernel trick ϕ(xi)>ϕ(xj) =
K(xi,xj), it is possible to form the kernel matrix Ωij = K(xi,xj) and express
the above equations in matrix notation as to obtain the linear system in (2.20).

For a new given input x, the least-squares support vector machine classifier is
given by

f(x) = sign
(

n∑
i=1

αiK(x,xi) + b

)
. (2.24)

The main characteristics of the LS-SVM method are summarized as follows:

? Linear system. Optimal parameters, α, b, can be obtained with a
computational complexity of O(n3) operations [39].

? `2 cost function. While in classical SVM many support values are zero
(nonzero values correspond to support vectors) in LS-SVM, the support
values are proportional to the errors.

? Ridge regression. A support vector interpretation of ridge regression was
proposed for the function estimation problem considering equality type
constraints. [90]

The empirical study presented in [110], shows that LS-SVM classifiers achieve
comparable performance to standard SVM. Note that the size of the kernel
matrix in both the QP problem (2.14) and the system of linear equations (2.20)
grows with the number of training data points n. On the other hand, they are
independent of the dimension d of the input space. This property makes the dual
formulations more convenient for applications with large number of variables.
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Remark 2.3 (Primal and dual representations). In case the feature map ϕ(·) is
finite dimensional and explicitly known one has the choice between solving the
primal or the dual problem. However, for the RBF kernel on the other hand one
can only solve the dual. Consider, for instance, the case of the linear parametric
regression model y = w>x + b with w ∈ Rd . The dual representation of the
linear model is y =

∑n
i=1 αix>i x + b, with α ∈ Rn. One distinguishes then

between the following cases:

• Case d small, n large: solving the primal problem in w ∈ Rd is more
convenient.

• Case d large, n small: solving the dual problem in α ∈ Rn is more
convenient.

Therefore within a setting of primal and dual model representations, the mod-
eling approach can be tailored towards the given data problem. While kernel
methods offer flexible representations in the dual, parametric interpretations
preserve the global picture in the primal. In Chapter 3, this dual view is further
exploited for variable selection with LS-SVM and linear kernels in problems
with large number of input variables.

2.3 Variable selection

In general, the major aims of variable selection for classification are finding a
subset of input variables that result in more accurate classifiers and therefore
more compact models. An amount of variables can be redundant to the
classification problem and thus can variable selection filter out those variables
irrelevant for the model. Three major types of variable selection methods are
distinguished, namely filter, wrapper and embedded methods [3, 54, 103, 115].

• Filter methods consider variables independently of the learning algorithm.
A simple filtering technique ranks or scores each variable based on some
measures like information gain criterion, mutual information, or t-tests.
Since the learning algorithm (e.g. the classifier) is not involved, their
main advantage is the low computational cost [54]. Ignoring the impact
of the learning algorithm, however, constitutes their weakest point.
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• Wrapper methods [54], take into account different subsets of variables
that are tested using the learning algorithm. The performance of each
subset is measured using a scoring function like n-fold cross-validation or
leave-one-out cross-validation. Since the size of the search space scales
with the number of variables as 2d, exhaustive search through the input
space unfeasible. Therefore, heuristic search methods such as backward
elimination or forward selection are often used. Backward elimination
starts from all variables and consecutively removing the least significant,
until all variables in the model satisfy a level of significance. Forward
selection includes variables until a level of significance is reached. In
general wrapper methods provide higher accuracy, their disadvantage is
the high computational cost of the search nevertheless [54].

• Embedded methods aim to integrate the variable selection within the
learning algorithm. Gradient-based algorithms are typically used in
minimizing generalization error bounds. For instance in [114] the radius-
margin bound for SVM is optimized with respect to individual variable
scaling factors, while in [22] derivations for several SVM generalization
bounds in terms of the variable scaling factors are provided. Within
this category automatic relevance determination (ARD), aims to identify
informative input variables as a natural result of optimizing the model
selection criterion [22, 86]. In general, these methods use an elliptical
RBF kernel K(·, ·) that depends on d tuning parameters θ = [θ1...θd]>.
The decision function is thus parametrized by αi, b and θ and takes the
form

f(x) = sign

(
n∑
i=1

αiyiKθ(x,xi) + b

)
,

where the k-th component of x is denoted by xk ∈ R with

Kθ(x, z) = exp
(
−

d∑
k=1

θk
(
xk − zk

)2
)

. (2.25)

Partial derivatives with respect to the kernel parameters provide the
necessary information to perform gradient-based optimization. In this
setting upper bounds on the LOO error (e.g. radius-margin bound) can
be minimized to optimize the kernel parameter assigned to each variable.
Large θk’s indicate relevant variables.
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2.4 Model selection and Leave-one-out estimator

The leave-one-out error is referred to as an almost unbiased estimator of the
generalization error and it is frequently used to estimate the performance of a
learning algorithm [56]. The basic procedure consists in training the learning
algorithm from n− 1 examples, testing the remaining one (leave-out data point)
and repeating until all elements have served as test example. The leave-one-out
error is defined as

error = 1
n

n∑
i=1

`(f (−i)(xi), yi) , (2.26)

where f (−i)(xi) = ŷi is the prediction made for xi by the classifier when
trained on all the examples except xi. The loss function `(·) weights the cost
(error) when f(x) is predicted instead of y. A typical loss used in classification
settings is the so-called zero-one function

error0/1 = 1
n

n∑
i=1

Ψ
(
yi − ŷ(−i)

i

)
, (2.27)

where Ψ(x) = 1, x ≥ 0 is the step function. Alternatively to the step function
for the leave-one-out error, continuous functions or upper bounds on the error
rate appear to be more tractable for numerical routines. The simplest criterion
is the leave-one-out estimate of the sum of squares error, or predicted residual
sum of squares (PRESS) statistic, as suggested in [6, 19]

errorpress = 1
n

n∑
i=1

(
yi − ŷ(−i)

i

)2
. (2.28)

Exact computation of (2.26) requires n runs of the learning algorithm. In
the case of LS-SVM classifiers, the overall complexity is thus O(n4). Such
approach becomes quickly prohibitive for a large number of data points.
In the context of SVM, particularly, many works have focused in deriving
approximations and upper bounds for the leave-one-out error [112]. The main
reason is the high computational cost involved when solving n-QP problems.
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2.5 Applications

In this section we present applications to microarray and mass-spectrometry
data using some of the methods exposed through this chapter. The flexibility
of kernel based methods and regularized models is demonstrated through three
different tasks. In each of them, model selection plays a crucial role let alone
the efficiency of the algorithms for large-scale data sets or high dimensional
scenarios.

2.5.1 Classification of mass spectra

Mass spectrometry technologies (SELDI, MALDI) allow to study proteins
over a wide range of molecular weights in small biological samples such as
serum or tissues. Protein profiles may reflect the pathological changes within
an organ of a cancerous subject [81, 82]. Data resulting from MS consist of
paired m/z ratio values versus intensities and it is characterized by containing
large number of variables and few number of data points (see Figure 2.3). The
Clinical Proteomics Program Databank [1] has made publicly available a set of
databases for ovarian and prostate cancer. The goal is to build predictive models
since the early detection of cancer has the potential to dramatically reduce the
mortality associated with this disease.
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Figure 2.3: Average spectrum of Control and Disease groups [81]
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• Ovarian cancer data set. This data set consists of serum mass spectra
profiles obtained from nD = 253 subjects, 162 with diagnosed ovarian
cancer and 91 non-cancer control subjects [81]. Intensities at 14,554
distinct m/z values were available for analysis. The training subset has
been composed by 50 cancer patients and 50 controls, randomly chosen
from the complete set.

• Prostate cancer data set. This data set corresponds to serum mass
spectra profiles from men with a histopathologic diagnosis of prostate
cancer (PSA1 > 4 ng/mL) from those men without prostate cancer (PSA
< 1 ng/mL) [82]. A total of nD = 322 subjects, 69 with histopathologic
diagnosis of prostate cancer and 253 control subjects. The training subset
is composed by 25 control samples and 31 cancer patients randomly
chosen from the initial set.

We report classification accuracies for the LS-SVM classifier in Table 2.1. Both
linear and RBF kernels are tested with kernel parameters (γ, σ) selected via
cross-validation. Results indicate the average over 10 different permutations of
the data sets with standard deviation between brackets. Disease (cancer) class
is indicated by y = +1 whereas y = −1 refers to the control class.

Ovarian cancer Prostate cancer

LS-SVM (linear) ŷ = −1 ŷ = +1 LS-SVM (linear) ŷ = −1 ŷ = +1

y = −1 0.995 (0.001) 0.005 y = −1 0.799 (0.112) 0.210
y = +1 0.006 0.994 (0.002) y = +1 0.100 0.900 (0.037)

LS-SVM (RBF) ŷ = −1 ŷ = +1 LS-SVM (RBF) ŷ = −1 ŷ = +1

y = −1 0.981 (0.047) 0.019 y = −1 0.840 (0.041) 0.160
y = +1 0.012 0.988 (0.025) y = +1 0.071 0.930 (0.035)

Table 2.1: Confusion matrix results using 10 different permutations of the test
set. Standard deviations are indicated between brackets.

Additionally, the area under receiver operating characteristic curve (AUC) [51]
is computed using the LS-SVM predictions on the test data. Figure 2.4(a)
compares the AUCs given by LS-SVM classifiers with linear and RBF kernel
on the ovarian cancer data. Figure 2.4(b) does it for the prostate cancer data.

1PSA: Prostate-specific antigen
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Figure 2.4: Test set ROC for Ovarian and Prostate cancer data sets.

2.5.2 Prediction of transcription factors

Genes working together in certain biological processes are assumed to have
similar expression patterns. Therefore, finding similar patterns of genes,
having related functions, can deliver evidence to infer the structure of gene
networks [36]. Identification of transcription factors (TFs) binding sites in
the genome remains incomplete and often difficult solely through chemical
techniques. Therefore machine learning approaches constitute a potential
alternative with respect to complex experimental methods. Assuming that the
full genome of a certain species is given, a particular gene g starts transcription
for protein production when a TF t (a protein) chemically binds to it. The
machine learning approach to this problem can be summarized as: given a gene
g, determine whether TF t binds to it. SVMs can then be used to categorize
new genes assuming one provides a set of genes known to be regulated by a
certain TF and a set known to be not co-regulated. Figure 2.5 illustrates this
concept for a small gene regulatory network.

In this case study microarray data sets, describing the gene expression profiles
of yeast under several experimental conditions, are considered [16, 36]. The
Spellman data set contains 77 experiments describing the dynamic changes
of yeast genes during the cell cycle, while the Gasch data set consists of
177 experiments, examining gene expression behavior during various stress
conditions [16, 36]. In order to construct positive and negative data points, a
list of known regulation relationships between known TFs and a set of genes is
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Figure 2.5: Gene regulatory network (GRN) scheme representing known
interactions (solid lines) between TF (red circles) and target genes (green
circles). Dashed lines represent noninteracting TF-gene pairs. For instance,
given the expression levels [e1e2 . . . e5] of a particular gene g, the learning
task aims to determine whether the TF t6 binds to it. Learning new TF-gene
interactions and building gene regulatory networks (center) is based on gene
expression data (left) and known TF-gene interactions (right).

required. Such regulatory information is derived from ChIP-chip interactions
data collecting binding information of 204 regulators to their respective target
genes [43]. This information has previously been used to correlate regulatory
programs with regulators and corresponding motifs to a set of co-expressed
genes [57]. Values in this regulatory information data set are given in terms of
p-values, indicating whether a TF binds to the set of considered genes in yeast.
Positive data points are then defined from interactions with a high confidence
value, i.e. a p-value ≤ 0.001 [43, 45]. However, the choice of negative data
points, i.e. pairs of TF and genes without reported regulatory relationships, is
not straightforward since there are few data published establishing that a given
TF is found not to regulate a given target gene. Instead of taking a random set of
pairs with unknown interaction, negative data points are selected as those genes
with a p-value ≥ 0.8 as indicated by the ChIP-chip interaction data. Such genes
are less likely to be bound by the TF. After some preprocessing steps (finding
common genes and TFs across data sets, removing rows or columns with too
many missing values, considering only those TFs with at least 5 known positive
interactions), the final expression data consist of a matrix with 5295 genes
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[g1g2 . . . g5295] measured over 250 experimental conditions [e1e2 . . . e250] and
the target matrix with 118 TFs [t1t2 . . . t118] accounting for about 4000 positive
interactions.

Similar to the applications reported in [45,67,84], this case study designs SVM-
based classifiers (i.e. LS-SVM with RBF kernel) for each TF. The learning
problem is highly unbalanced in all cases with the number of positive data
points being outnumbered. Therefore, the following weighted cost function is
used for the LS-SVM classifiers

min
w,e,b

1
2w>w + γ

2

n∑
i=1

vi e
2
i , (2.29)

yi = w>ϕ(xi) + b+ ei , (2.30)

with class specific weights defined as

vi =
{

n
2n+

, if yi = +1 ,
n

2n−
, if yi = −1 ,

(2.31)

and where n+ and n−, represent the number of positive and negative data points,
respectively. Asymptotically this weighting is equivalent to resampling of the
data such that there is an equal number of positive and negative data points.

Training multiple classifiers and tuning their parameters (γ, σ) pose a
computational burden, hence, the fast cross-validation implementation for
LS-SVM is considered [11, 19]. Figure 2.6 shows the gene regulatory network
inferred by the LS-SVM algorithm. Visualization is done using VisAnt
software [47]. TF-gene interactions are obtained based on the output of the
method by Platt, which is used to assign a probability value based on the LS-
SVM output [52]. TFs with at least 5 new interactions with cutoff probability
value greater than 0.95 are shown in the regulatory network.
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Chapter 3

Low rank updated LS-SVM
classifiers for variable
selection

This chapter presents one of the contributions of this thesis.
In order to tackle the computational burden posed by the large
number of input variables of the variable selection problem, we
develop algorithms using LS-SVM classifiers with linear kernels.
The model parameters are efficiently updated at every stage by
using low rank matrix updates. In general, the inclusion of a
candidate variable into the current model results in a low rank
modification to the kernel matrix of the LS-SVM classifiers. In
this way, the LS-SVM solution can be updated rather than being
recomputed, which improves the efficiency of the overall variable
selection process. Relevant variables are selected according to a
closed form of the leave-one-out (LOO) error estimator, which is
obtained as a by-product of the low rank modifications.

33
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3.1 Variable selection

In the context of classification, variable selection aims at finding a subset of
variables that results in more accurate and compact classifiers. Typically, the
error of the designed classifier will drop as more variables are added and after
reaching some optimal number, it increases again. The goal is then to filter out
those inputs that are irrelevant to the specific model. Moreover, the selected
variables should not overfit the data. In the ideal case, one would find a unique
best subset of variables. However, there is no single definition for the best
subset and besides different algorithms will return different subsets. In general,
variable selection comprises three elements: (i) search mechanism, (ii) learning
algorithm and (iii) ranking criterion.

Starting from the set of training data points D = {(xi, yi)}ni=1, xi ∈
Rd, yi ∈ {−1,+1}. Denote by xki the k-th component of xi. Thus, xk =
[xk1, xk2, . . . , xkn]> describes the variable k. Thereby, S =

{
x1, . . . ,xk, . . . ,xd

}
is the collection of all d variables. The goal of variable selection is to choose
from the full set of all variables S , a reduced subset S∗ ⊂ S,S∗ ∈ Rm, m < d,
such that an objective function, e.g. cross-validation error, JS∗ ≤ JS defined
over the set of variables is minimized.

In this chapter we will use the prediction performance of the LS-SVM classifier
to assess the relative usefulness of subsets of variables. The learning machine, in
fact, is considered as a black box to rank variables according to their predictive
power. In practice, one needs to define (i) how to search in the space of all
possible variable subsets and (ii) how to assess the prediction performance of
the learning machine. We employ therefore both sequential forward selection
(SFS) and sequential backward elimination algorithms [54].

3.2 Least squares support vector machine classi-
fiers

From section 2.2.4, we have seen that the dual problem of the LS-SVM method
is expressed by the set of n+ 1 linear equations ( [101]):[

Ω + γ−1In 1
1> 0

] [
α

b

]
=
[

y
0

]
, (3.1)
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where y = [y1; . . . ; yn] and α = [α1; . . . ;αn] and Ωij = K(xi,xj). The
optimal parameters, α, b, can be obtained with a computational complexity
of O(n3) operations. Alternatively, (3.1) can be factorized into the form of a
positive definite system[

H 0
0 1>H−11

] [
α+ H−11b

b

]
=
[

y
1>H−1y

]
, (3.2)

Since 1>H−11 > 0, and H is positive definite, the overall matrix is also
positive definite. Model parameters of the LS-SVM system are now given
solely in terms of H−1 by

b = 1>H−1y
(
1>H−11

)−1
(3.3)

α = H−1 (y− b1) . (3.4)

This form is very suitable for efficient iterative algorithms involving positive
definite matrices [100]. Moreover, this factorization allows us to better describe
the efficient LOO estimator in the next section.

3.3 Leave-One-Out estimator for LS-SVM

As described in Section 2.4, the exact computation of the LOO estimator
requires n runs of the learning algorithm. Fortunately, for regularized least
squares and thus LS-SVM classifiers too, the LOO error can be exactly obtained
in closed form with a computational complexity of onlyO(n3) operations. This
is equivalent to the time complexity of a single LS-SVM classifier [19, 20, 109].
The systems of linear equations given by (3.1) can be represented in the form
of an arbitrary block structured matrix A ∈ R(n+1)×(n+1) as[

H 1
1> 0

]
=
[
a11 a>1
a1 A1

]
= A , (3.5)

where a1, is a column vector and a11 a scalar. The inverse of a block structured
matrix is given by [39][

a11 a>1
a1 A1

]−1

=
[

κ−1 −κ−1a>1 A−1
1

−κ−1A−1
1 a1 A−1

1 + κ−1A−1
1 a1a>1 A−1

1

]
, (3.6)
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where κ = a11 − a>1 A−1
1 a1. According to [109] and [19], by exploiting the

block structure on (3.1), the LOO PRESS error for the i-th training data point
can be expressed in a closed form. Given the inverse of A and the model
parameters α solving (3.1) for the full training set are known, the residual of
the LOO error for the i-th training data point is [19, 109]:

r
(−i)
i = yi − ŷ

(−i)
i = αi

(A−1)ii
. (3.7)

Proof. Following [19], let [α(−i); b(−i)] represent the LS-SVM parameters at
the i-th iteration of the LOO procedure. In the first iteration the first training
data point is excluded, thus one obtains[

α(−1)

b(−1)

]
= A−1

1 [y2, . . . , yn, 0]> .

The LOO prediction for the first training data point is then given by

ŷ
(−1)
1 = a>1

[
α(−1)

b(−1)

]
= a>1 A−1

1 [y2, . . . , yn, 0]> .

From the last n equations in (3.1), it is clear that

[a1A1][α1, . . . , αn, b]> = [y2, . . . , yn, 0]> ,

and hence

ŷ
(−1)
1 = a>1 A−1

1 [a1A1][α>, b]> = a>1 A−1
1 a1α1 + a>1 [α2, . . . , αn, b]> .

According to the notation in (3.5), the first equation in (3.1) can be stated as
y1 = a11α1 + a>1 [α2, . . . , αn, b]>, therefore

ŷ
(−1)
1 = y1 − α1(a11 − a>1 A−1

1 a1) .

From (3.6), κ = a11 − a>1 A−1
1 a1, thus

y1 − ŷ
(−1)
1 = α1

(A11)−1 .

Noting that (3.1) is insensitive to permutations of the ordering of the equations
and unknowns, one can write (3.7) ∀i = 1, . . . , n.
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Therefore, the LOO error is now computed using information already available
from the training phase of the LS-SVM. This is far more efficient than solving
n times the system of linear equations given in (3.1). Given the solution to the
basic training algorithm, the complexity of this efficient LOO error computation
reduces to O(n).

Moreover, one can readily notice that only the diagonal elements of A−1 need
to be determined. Using (3.6), the inverse of A can be expressed in terms of
H−1

A−1 =
[

H−1 + 1
sH
−111>H−1 −1

sH
−11

−1
s1
>H−1 1

s

]
, (3.8)

where the Schur complement s = −1>H−11 is a scalar. Since only the first
n diagonal elements of A−1 ∈ Rn+1×n+1 are relevant in computing (3.7) and
given that H−1 ∈ Rn×n is already known, then using the upper left block in
(3.8) one obtains

(A−1)ii = (H−1)ii + ν2
i

s
, i = 1, . . . , n , (3.9)

with ν = H−11, ν ∈ Rn×1. Alternatively, (3.9) can be defined in terms of
the Cholesky factorization of H = LL> [19]. In summary, the procedure to
compute the efficient LOO error is presented in Algorithm (1).

Algorithm 1 Efficient LOO for LS-SVM classifiers. The LOO error is obtained
as a by-product after a single run of the LS-SVM classifier.

1: Construct kernel matrix and obtain H−1.
2: Solve for b and α using (3.4).
3: Compute diagonal elements (A−1)ii with (3.9).
4: Compute prediction residuals using (3.7).

To summarize, the LS-SVM classifiers can be efficiently trained by solving just
one system of linear equations. Additionally, a simple training of the LS-SVM
is sufficient to obtain the LOO estimator with less computational burden than a
naive implementation. Such LOO error criterion is used to evaluate whether
potential variables must be included or discarded.
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Remark 3.1 (Complexity of the naive approach). Naive computation of the
LOO estimator requires n trainings. If the forward selection goes through O(d)
variables in each iteration, and that m variables are selected, the overall time
complexity of the forward selection with LOO criterion is O(m2n3d).

Remark 3.2 (Complexity using the efficient LOO implementation). If the
efficient LOO computation is instead used, the overall complexity reduces to
O(m2n2d).

In the work by [40], the SVM is solved only once with the full set of variables.
Although the selection criterion used is the change on the norm weight cost
function, the support vectors α remain fixed throughout the whole search. Such
strategy reduces the complexity of such approach from n-QP problems to just
one. Although efficient, such approach violates the optimality conditions and
relies in a bound on the generalization performance. In the next sections, the
use of low rank modifications is motivated as to exploit the structure of the
LS-SVM classifiers. We will show how the computational complexity can be
still reduced to O(mn2d), thus alleviating the computational load of wrapper
algorithms for a large number of variables.

3.4 Low rank modifications

In many applications it is often desired to solve a sequence of modified least
squares problems where in each step rows of data are added, deleted, or
both. This need arises, for instance, when data are arriving sequentially. In
other applications columns of the data matrix may be added or deleted. Such
modifications are usually referred to as updating or downdating the least squares
solutions. Important applications where modified least squares problems arise
include statistics, optimization, and signal processing.

In the case that the inverse of a general matrix A ∈ Rn×n is known, it may
also be useful to know how the inverse changes upon addition of a matrix of
small rank [39]. This section motivates that in this particular situation, it is
much more efficient to update the inverse of A than to generate it again from
scratch. We are interested in the generic system of linear equations Ax = b,
where A is n× n matrix and b is a n-vector. Once x has been computed, it is
often necessary to solve the modified system Ãx̃ = b̃. Clearly, we should be
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able to modify A to obtain factors for Ã, from which x̃ may be computed as
before. In this section, special attention is devoted to one type of modification,
in which Ã has the form Ã = A + uu>, where u ∈ mathbbRn. The matrix
uu> is a matrix of rank-one [39], and the problem is usually described as that
of updating the factors of A following a rank-one modification. Such type of
modifications have been extensively studied in [37].

There exist mainly two methods that efficiently solve this problem. The first
approach is based on the Sherman-Morrison-Woodbury (SMW) formula [39]
for a low rank update of the inverse of a matrix. The second approach is
based on the Cholesky factorization of the matrix A. The Sherman-Morrison-
Woodbury formula has been used widely in the context of interior point methods
(IPM) for linear programming (LP). In that context, however, the method may
run into numerical difficulties. The Cholesky factorization is somewhat more
expensive than the SMW method, with two times the workload and about three
times storage requirement of the SMW method [27, 93]. On the other hand,
the Cholesky method is numerically more stable [39]. In SVM, the Cholesky
factorization has been previously used to efficiently solve the IPM [32] and for
incremental training [96]. Also in [93], the use of Cholesky decompositions is
motivated for low rank modifications.

3.4.1 SMW formula and rank-one modifications

The SMW formula gives the inverse of a matrix modified by an arbitrary rank.
Let H ∈ Rn×n be a square invertible matrix, whereas U,V ∈ Rn×q are two
matrices with q ≤ n. Assume also that R = Iq + βV>H−1U, R ∈ Rq×q is
invertible, where Iq ∈ Rq×q denotes the identity matrix and β ∈ R a arbitrary
scalar. Then the following holds [118]

(H + βUV>)−1 = H> − βH−1UR−1V>H−1 . (3.10)

The motivation for this formula resides in the fact that if q is much smaller than
n, then R is easier to invert than H + βUV>. If the modification to H has
rank q = 1, then U = u ∈ Rn and V = v ∈ Rn, in which case R = ρ is a
scalar, ρ = 1 + βv>H−1u 6= 0. Hence (3.10) becomes [94](

H + βuv>
)−1

= H−1 − β

ρ
H−1uv>H−1 , (3.11)
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Since any rank-one correction to H can be written as βuv>, then (3.11) gives
the rank-one change to its inverse. The proof is by direct multiplication. Setting
β = +1 corresponds to an rank-one update to H, whereas β = −1 refers to
a rank-one downdate. In the case of symmetric modifications, we distinguish
between H + uu> (positive rank-1, update) and H − uu> (negative rank-
1, downdate). These two instances are fundamentally different in that, for a
positive update the modified matrix remains positive definite if the initial H is
positive definite. On the other hand, negative downdates may break down and
can result in large errors if H is close to singularity [27, 39]. Low rank updates
of the form H̃ = H ± UU>, U ∈ Rn×q, can be performed by applying q
updates/downdates sequentially [93]. For practical computation of (3.11), one
solves the linear systems Ha = u and Hb = v for a and b, using the known
H−1. Compute ρ = 1 + βv>a. If ρ 6= 0, the change to H−1 is −(β/ρ)ab>.

3.4.2 Cholesky factorization

Let us consider again a general matrix A ∈ Rn×n, being symmetric and positive
definite. Then, for A there exists a lower triangular matrix L with positive
diagonal elements such that A = LL>. The matrix L is unique and is known
as the Cholesky factor of A [39]. Several computations involving A can be
done using L. For instance, the system Ax = b, can be solved by means of
two triangular systems as Lt = b, L>x = t.

Suppose now that we use a representation based on a Cholesky decomposition
for the matrix H ∈ Rn×n as H = LL>, and we further consider the case where
H is modified by a symmetric matrix of rank-one, i.e., we have H̃ = H + uu>.
Assuming that the Cholesky factors of H are known, we are now interested in
the factors of

H̃ = L̃L̃> . (3.12)

The method that calculates L̃ from L and u is called a rank-one update
algorithm. One way of performing such update is by applying a series of
orthogonal Givens rotations of the form

Gn−1 . . .Gk . . .G1 [u,L]> =
[
0, L̃

]>
, (3.13)

leading to L̃L̃> = LL> + uu>. The algorithm proceeds k = 1, . . . , n − 1.
The matrix Gk is chosen based on the k-th column, namely Gk[uk,Lkk]> =
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[0, L̃kk]>. Appropriate algorithms can be found in standard texts [37, 39] and
software packages such as the LAPACK library [12]. Additionally, the routine
cholupdate from MATLAB © [61] also performs such operation.

In the next section we will concentrate our attention to the use of the SMW
method and its application to the LS-SVM classifiers. The reason behind this
choice is related to the algorithm’s simplicity to update the LS-SVM classifier.
Nevertheless, the Cholesky update counterparts are equally applicable to the
LS-SVM classifier and with respect to a rank-one modification.

3.5 Low rank updated LS-SVM

In this section, we describe how to perform low rank modifications to the
system of linear equations (3.1) for the LS-SVM classifier. In fact, we refer to
modifications involving H or its corresponding inverse H−1. To ensure positive-
definiteness of H, we rely on an adequate selection of the hyper-parameter
γ.

Recalling the basic mechanism of wrapper search methods described earlier on
section 3.1, it is clear that a repetitive evaluation of the learning machine would
be required each time a new variable is tested. For instance, in the LS-SVM
classifier, the calculation of H−1 for each candidate would be demanded. Such
alternative becomes prohibitive for large data sets with high number of variables.
However, there exists a way to circumvent such repetitive matrix inversions in
the case of a linear kernel.

Consider again the training dataD = {(xi, yi)}ni=1, xi ∈ Rd which is described
by the set of variables S = {xk}dk=1,xk ∈ Rn×1, and given that H−1 is known
and positive definite, then for a linear kernel we can write

H = Ω + γ−1In

=
d∑

k=1
xkxk> + γ−1In . (3.14)
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Splitting the sum at the level of variable k, and grouping back the first two
terms, we have

Hk =
k−1∑
j=1

xjxj> + γ−1In + xkxk>

Hk = Hk−1 + xkxk> . (3.15)

Direct application of (3.11) to (3.15) results in

H−1
k = H−1

k−1 −
H−1
k−1xkxk

>H−1
k−1

1 + xk>H−1
k−1xk

. (3.16)

The previous set of equations explain us that, for a linear kernel and a given
variable uk to be tested for inclusion, the inverse of H−1 can be updated from
the inverse of the previous step. Combination of this rank-one update procedure
with the LOO error given in section 3.3, provides an efficient algorithm for
variable selection. With the use of such low rank modifications, algorithms for
forward and backward search can be devised by direct application of updates
and downdates operations respectively. There is no computation cost incurred
other than matrix vector multiplications. Moreover, the updated matrix at
each step, can be immediately used to compute the efficient LOO error earlier
outlined in Algorithm 1.

3.5.1 Forward update

In forward selection, we start from the empty set of variables. In the case
of LS-SVM this translates into H0 = γ−1In, and so the initial inverse being
H−1

0 = γIn. Therefore, we keep updating this matrix when testing the variable
xk for inclusion. Notice that no matrix inversions are required at all since the
by-product of the rank-one update is directly used to compute the LOO error. In
short, the goal is to compute H−1

k at selection step k from H−1
k−1 at step k − 1,

upon addition of variable xk

H−1
k = H−1

k−1 −
H−1
k−1xkxk

>H−1
k−1

1 + xk>H−1
k−1xk

. (3.17)
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3.5.2 Backward downdate

Along the same lines of the forward update algorithm and using the elements
we have described in the previous sections, we can come up with an efficient
algorithm for backward elimination of variables. Since we start from the full set
of all variables, the inverse of the matrix H is required only once to initialize the
algorithm. Afterwards, at every elimination step the inverse H−1, is downdated.
The basic idea is to compute H−1

k at elimination step k, from H−1
k+1 at step

k + 1, upon removal of variable xk, that is

H−1
k = H−1

k+1 +
H−1
k+1xkxk

>H−1
k+1

1− xk>H−1
k+1xk

. (3.18)

Since the formulations given in this section refer to the linear kernel, the rank-
one modifications expressions are restricted to this case. The use of a non-linear
kernel strictly requires the computation of H−1 at each selection step. The
algorithm for forward updates is summarized in Algorithm 2. The backward
downdate version possesses a similar structure and is given in Algorithm 3.

Remark 3.3 (Complexity of the proposed algorithm). To select m variables,
the outermost loop requires m runs. The middle loop evaluates in turn the
LOO for each of the remaining c variables. Using equations (3.9)-(3.7), the
LOO predictions demand only O(n) operations. Thereby, the complexity is
dominated by O(n2) matrix-vector operations to update H−1 in line 8. Thus,
the overall complexity is O(mn2d).

Similar efficient derivations for the PRESS statistic have been previously
described in the literature. For instance the authors in [46], derive a recursive
computation formula for PRESS errors in the regularized orthogonal least
squares (OrLS) and forward regression. The PRESS statistic is then based on an
orthogonal model with a diagonal Hessian matrix. There, the matrix inversion
lemma avoids matrix inversions and further reduces computations. Nevertheless,
these parametric models depend on the number of variables d, and hence the
design matrix and weight vector w ∈ Rd grow as more variables enter model.
In contrast, the dual formulation of the PRESS statistic in (3.7) is independent
of the number of variables, since both the model parametersα ∈ Rn and matrix
H scale with the number of data points n. Hence, working in a primal-dual
offers wider modeling flexibility (cf. Remark 2.3). Further improvements to our
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methods have been recently proposed in [78], where primal-dual formulations
are alternatively used to yield algorithms that scale linearly with n. In the
following section, we present results of these two algorithms when applied on a
series of benchmark data sets provided in [87]. The computational efficiency is
compared with respect to existing approaches for variable selection.

Algorithm 2 Algorithm for forward variable selection. We apply rank-one
updates into the linear kernel matrix, to obtain a sequential forward selection
(SFS) algorithm. Such modification avoids completely the use of matrix
inversion type of operations.
Require: D = {(xi, yi}ni=1: training set; n: number of data points; d: number

of variables.; m: number of variables to select.
Ensure: Selected variables S 6= ∅.

1: S = ∅ {final set of selected variables}
2: P = {x1, . . . ,xk, . . . ,xd}, k = 1, . . . , d. {full set of variables}
3: H−1 ← γ × In {Initial inverse when no variables}
4: for k = 1 to m do
5: loo←∞
6: c← card{P} {Variables yet to evaluate}
7: for l = 1 to c do
8: H−1

l ← H−1−(H−1xlxl>H−1)/(1+xl>H−1xl) {Update inverse}

9: Solve for bl , αl using H−1
l and (3.4). {Solve LS-SVM system}

10: Compute lool using first (3.9), then (3.7) and (2.28). {Efficient LOO
error}

11: if lool < loo then
12: {Save the lool, index variable l and H−1

l for next comparison}
13: loo← lool
14: l∗ ← l
15: H−1

∗ ← H−1
l

16: end if
17: end for
18: H−1 ← H−1

∗ {Store inverse for next selection procedure}
19: S ← S ∪ xl∗ {Update selected variables}
20: P ← P \ xl∗ {Remove selected variable from the full set}
21: end for
22: return S
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Algorithm 3 Algorithm for sequential backward elimination. We apply rank-
one downdates into the linear kernel matrix, to obtain a fast sequential backward
elimination (SBE) algorithm. In this algorithm, we require to compute the
inverse of the matrix H just one time. Downdates are performed iteratively on
this matrix.
Require: D = {(xi, yi}ni=1: training set; n: number of data points; d: number

of variables.
Ensure: S 6= ∅: selected variables.

1: S = {x1, . . . ,xk, . . . ,xd}, k = 1, . . . , d. {full set of candidates}
2: P = ∅. {variables to remove}
3: Compute H−1 = (Ω + γ−1In)−1 with all variables. {Initial inverse}
4: while S 6= ∅ do
5: c← card{S} {Variables yet to evaluate}
6: for l = 1 to c do
7: H−1

l ← H−1 + (H−1xlxl>H−1)/(1 − xl>H−1xl) {Downdate
inverse}

8: Solve for bl , αl using H−1
l and (3.4). {Solve LS-SVM system}

9: Compute lool using first (3.9), then (3.7) and (2.28). {Efficient LOO
error}

10: end for
11: loo∗ ← min lool, l = 1, . . . , c {Lowest LOO error}
12: xl∗ ← arg min lool, l = 1, . . . , c {Variable to be definitely removed}
13: H−1 ← H−1 + (H−1xl∗xl∗>H−1)/(1 − xl∗>H−1xl∗) {Downdate

inverse with respect to xl∗}
14: S ← S \ xl∗ {Remove selected variable from the full set}
15: P ← P ∪ xl∗ {Add removed variable to set of removed variables}
16: end while
17: return S

3.6 Empirical Results

In this section, experimental results demonstrate the benefits on the use of low
rank updates for LS-SVM classifiers. This approach overcomes, and reduces,
the high computational cost incurred during variable selection. Table 3.6 shows
a selection of seven public domain benchmark data sets used in [87]. For six out
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of seven data sets, one hundred random partitions of training and test sets are
available. The SPLICE data set contains only twenty. Linear and RBF kernels
are considered in combination with the two search algorithms: forward and
backward search. The use of low rank updates/downdates is only applicable for
the case of linear kernel. The selection criterion is based on the PRESS statistic
derived from the efficient LOO estimator. Additionally, results in two public
available microarray data are also included.

Data set Training Test Number of Input
data data randomizations variables

BREAST CANCER 200 77 100 9
DIABETES 468 300 100 8
FLARE SOLAR 666 400 100 9
GERMAN 700 300 100 20
HEART 170 100 100 13
SPLICE 1000 2175 20 60
WAVEFORM 400 4600 100 21

Table 3.1: Data sets used in benchmark study.

3.6.1 Computational performance

First, we compare the computational cost incurred when using either of the
two proposed algorithms on the same data set. Algorithms 2 and 3 are tested
on a balanced two-class synthetic data set with five hundred data points and
one thousand variables, that is {n = 500, d = 1000}. The main computational
difference between both approaches is the initial inverse matrix H−1

0 . Therefore,
this n× n, n = 500, kernel matrix needs to be first computed and then inverted
in the rank-one downdates algorithm (Refer to line 3 in Algorithm 3). Clearly,
such situation harms the performance of the rank-one downdate algorithm
over its update counterpart. Figure 3.1 shows the computational time for both
algorithms with respect to the number of variables. The gap between both
algorithms clearly appears in the very first iteration, which represents the effect
of the initialization scheme.

Additionally, to assess the computational complexity of the variable selection
problem and to show the improvements especially in the use of low rank updates,
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Figure 3.1: Computational time for the update (Solid line) and downdate
(Dashed line) algorithms on a balanced two-class synthetic data set with n =
500 data points and d = 1000 variables. The main computational difference
between both approaches is the initial inverse matrix H−1

0 . The gap between
both algorithms clearly appears in the very first iteration, which represents the
effect of the initialization scheme. In the downdate algorithm we require first
to compute the matrix H = Ω + In, and its associated inverse; whereas in the
update algorithm we start simply from the diagonal matrix H = γ−1In.

we consider two experiments. First, the SPLICE data set is used to see the impact
of having a moderate number of data points (1000 training) and variables (60
variables). The second experiment constitutes the opposite case, that is a very
small number of data points and a large number of variables. For this purpose
the Colon cancer data set [7] is employed. It is clear that the use of a wrapper
method pose difficulties in both the number of data points and the number of
variables of the data set under consideration. The computational performance
on each of the examples mentioned is shown in Figure 3.2 and Figure 3.3. In the
SPLICE data set we want to see the effect of inverting a reasonable big matrix,
therefore we consider a naive implementation where all the required matrix
inversions are performed. The inversion at the first iteration already pushes
up the computational load. A dramatic reduction is immediately appreciated
when using the low rank updated algorithm even for selecting a small number
of variables. In the Colon cancer data set, the efficiency of the rank-update
algorithm, is compared with other two variants that also employ the LS-SVM
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classifier. The first algorithm presented in [102], uses a closed-form to compute
the LOO error. Matrix inversions are, however, still required to solve the LS-
SVM system for each new potential subset of variables. The second approach,
given in [122], makes use of a span-based [112] upper bound on the LOO error.
The expensive part of the algorithm in [122] is mainly the computation of a
n× n distance matrix each time a new subset of variables is tested. We stop
the three algorithms when 200 out of the 2000 variables have been selected
in the Colon cancer data set and compare the computational time. Clearly,
it can be drawn that the proposed algorithm scales very nicely even for high
dimensional data sets. The time gap with respect to the approach in [102] is
readily appreciable (around two orders of magnitude). When compared to the
bound approach [122], our proposed method is still faster, despite we compute
an exact form of LOO error.
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Figure 3.2: Computational time of the low rank update (Solid line) algorithm
when compared to a naive implementation (Dashed line) where all matrix
inversions are performed. The simulations are done with the SPLICE data set.
Although the number of variables is 60, we can immediately see a dramatic
reduction in the time needed to select even a small number of variables.
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Figure 3.3: Computational time for the low rank update algorithm (∗) when
compared to other two variable selection algorithms also based on the LS-SVM
classifier. The first algorithm (◦) by [102] requires of matrix inversions during
the variable selection phase. The second variant (�) proposed in [122] makes
use of an upper bound on the LOO error but requires of an n × n distance
matrix to be computed at every selection step. We test the three algorithms in
the Colon cancer data set and show their performance to select 200 out of a
total of 2000 variables. The gap with respect to the approach in [102] is readily
appreciable (around two orders of magnitude). When compared to the bound
approach [122], our proposed method is still faster, despite we compute an
exact form of LOO error.

Likewise, the downdate algorithm is applied to the Colon data and it is compared
to two variants of the SVM-RFE algorithm [40]. The first variant (SVM-
RFE1), computes the support vectors at each step of the elimination phase
(retraining), whereas in the second variant (SVM-RFE2) the support vectors
remain fixed from the first iteration (no retraining). Figure 3.4 shows the
computational time required in the elimination of 500 variables out of 2000. The
QP problem involved in the standard SVM, as mentioned earlier in section 3.2,
is more computationally expensive than the LS-SVM solution. The sequential
nature of the backward search increases the volume of computations. The
proposed backward approach is even faster than the SVM-RFE2, which avoids a
considerable number of operations by keeping support vectors fixed throughout
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the whole elimination phase.

0 50 100 150 200 250 300 350 400 450
10

−1

10
0

10
1

10
2

10
3

10
4

 

 

Number of variables

C
P
U

ti
m
e
(s
e
c
o
n
d
s)

Figure 3.4: Computational time for the low rank downdate algorithm (∗) when
compared with two SVM-RFE ( [40]) based algorithms. The first variant, SVM-
RFE1 (◦), computes the support vectors at each step of the elimination phase
(retraining), whereas in the second variant,SVM-RFE2 (�), support vectors are
fixed as from the first iteration (no retraining). We stop the algorithm when
500 variables of a total of 2000 are removed in the Colon cancer data set.
Our proposed approach is even faster than the SVM-RFE2, which avoids a
considerable number of operations by keeping fixed the support vectors through
the whole elimination phase.

Clearly, the combination of the low rank updates and the closed-form expression
of the LOO error benefits the LS-SVM classifiers for the task of variable
selection. It is important to emphasize that low rank update modifications for
the linear kernel does not require matrix inversions. Instead it simply uses
matrix-vector operations. Similar results are obtained for the linear kernel in
combination with the backward downdate.

3.6.2 Benchmarking data

The final performance of any of the possible strategies (and combinations) is
heavily subjected to the hyperparameter selection, i.e. a correct choice for
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θ = (γ, σ) when using an RBF kernel or simply γ for the linear kernel. In
this work, the hyperparameters are tuned as to minimize the PRESS statistic.
For each of the 100 realizations of the data sets (20 for the SPLICE data
set), we select the pair (γ∗, σ∗) minimizing the LOO PRESS statistic. Such
pair is then used during the variable selection procedure. Tables 3.2 and 3.3
show the performance of the LS-SVM with respect to the error rate over the
corresponding number of realization per data set. The basic LS-SVM classifiers
with no variable selection, but appropriate hyperparameter tuning, constitutes
the baseline classifier. Linear kernel and RBF kernel are used.

Data set LS-SVM LS-SVM+SFS LS-SVM+SBE

BREAST CANCER 0.268 (0.044) 0.268 (0.052) {2} 0.264 (0.049) {2}
DIABETES 0.221 (0.013) 0.234 (0.017) {6} 0.234 (0.017) {6}
FLARE SOLAR 0.334 (0.014) 0.329 (0.018) {2} 0.326 (0.019) {2}
GERMAN 0.252 (0.020) 0.245 (0.021) 0.242 (0.022) {16}
HEART 0.151 (0.026) 0.157 (0.032) 0.157 (0.032)
SPLICE 0.161 (0.007) 0.161 (0.006) {27} 0.161 (0.007) {28}
WAVEFORM 0.133 (0.006) 0.132 (0.006) 0.147 (0.009)

Table 3.2: Error rates of LS-SVM classifier with a linear kernel. We apply rank-
one updates into the linear kernel matrix to perform fast sequential forward
selection (SFS) of variables. Similarly rank-one downdates into the linear kernel
matrix allows for fast sequential backward elimination (SBE) of variables. The
results for each method correspond to the mean error rate over test data for
100 realizations of each data set (20 for the splice data set). Whenever a lower
number of variables can be selected without degrading the performance of the
classifier, this number is indicated between curly brackets .

In general terms, there seems to be little difference in the performances
regardless the search methodology chosen. Both forward and backward search
methods provide very similar results across all data sets when combined either
with the linear kernel or the RBF kernel. The number of selected variables
tends to be the same number as well. The computational cost, however, when
combined with linear kernels is significantly several orders of magnitude lower
thanks to the low rank modifications introduced. Additionally, in three of the
data sets, namely: BREAST, DIABETES and FLARE SOLAR, there is apparently
no gain in performance with respect to the baseline LS-SVM. There is, however,
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Data set LS-SVM LS-SVM+SFS LS-SVM+SBE

BREAST CANCER 0.258 (0.064) 0.250 (0.047) {2} 0.258 (0.047) {2}
DIABETES 0.235 (0.015) 0.233 (0.019) {7} 0.233 (0.019) {7}
FLARE SOLAR 0.344 (0.011) 0.326 (0.019) {2} 0.326 (0.019) {2}
GERMAN 0.232 (0.025) 0.235 (0.022) 0.235 (0.022)
HEART 0.155 (0.034) 0.167 (0.034) 0.167 (0.034)
SPLICE 0.107 (0.007) 0.075 (0.006) {15} 0.077 (0.006) {14}
WAVEFORM 0.096 (0.004) 0.099 (0.005) {16} 0.098 (0.004)

Table 3.3: Error rates of LS-SVM classifier with RBF kernel. The purpose
of this experiment is for completeness. Although we can not apply low rank
modifications as in the case of the linear kernel, it is interesting to see how
does the RBF kernel behaves in variable selection problems. To implement
sequential forward selection (SFS) and sequential backward elimination (SBE)
with the RBF kernel we do require of matrix inversions at every stage. The
results for each method correspond to the mean error rate over test data for
100 realizations of each data set (20 for the splice data set). Whenever a lower
number of variables can be selected without degrading the performance of the
classifier, this number is indicated between curly brackets.

a consistent tendency of the other LS-SVM variants to select a lower number
of variables with no substantial increase of the test error. Since the number of
parameters is relatively small in all of these three data sets and the number of
data points is not that large, the search space appears to be well covered. We
show in Figure 3.5 the test error on the FLARE data set. Boxplots are generated
from the available 100 realizations, explaining an almost constant variance
remains with median value clearly low at two variables. The low rank downdate
algorithm was used.

On the other hand, for the SPLICE data set, the RBF kernel performs significantly
better than any other alternative. Additionally, the RBF kernel tends to select
less variables. Such an improvement, however, is attained at a much higher
computational cost mainly because of the large number of data points (n =
1000). The low ranked LS-SVM with linear kernel is obviously faster than
the RBF kernel setting, but produces slightly higher error when using the top-
selected 28 variables. Indeed, Figure 3.6 explains, in terms of the test error, our
previous comments on the SPLICE data set.
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Figure 3.5: FLARE data set. Test error boxplots averaged over 100 realizations.
The low rank downdate algorithm was used.
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Figure 3.6: SPLICE data set test error averaged over 20 realizations. (Solid)
Linear kernel with low rank downdates. (Dashed) RBF kernel with explicit
matrix inversion.
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Another interesting example is the HEART data set. This data set tends to
produce the same results regardless of the method used. In fact the basic LS-
SVM, with no variable selection, appears more consistent for this data set. A
plausible explanation could be the small size of this data set, thus a high risk of
overfitting is present.

3.6.3 Microarray data

To assess the performance in classification, the full data set is partitioned into
(nearly balanced) training and test sets. An external 10-fold cross-validation,
as mentioned in [10], is applied to the training set. On each fold the variable
selection is done using the LOO error. This methodology aims at reducing
the selection bias given the low number of data points. Variables consistently
selected in different folds comprise the set used to compute the test error.

Figure 3.7, shows the test error (with respect to the number of selected variables)
of the proposed low rank update algorithm when applied to the Colon data set.
Additionally, we make comparisons with respect to the methods for variable
selection cited earlier in [122] and [102]. Our proposed algorithm exhibits
better stability than the bound [122] approach. The tightness of such bound
is heavily Dependant on the stability of the LS-SVM to perturbations in the
training data. The exact computation of the LOO has therefore a direct impact
on the test error. The variance of the cross-validation is depicted as error bars.
Differences are less remarkable as the number of variable increases.

The low rank downdate algorithm is compared using the Leukemia cancer data
set. We again use the two SVM-RFE algorithms [40]. The test error for 1000
out of 2000 selected variables is shown in Figure 3.8. The use of the LOO
error is clearly superior to the margin criterion used in the SVM-RFE algorithm
for eliminating variables. This was expected since the margin is a bound on
the generalization error. In addition, the test error is remarkably lower around
200 variables. The latter observation suggest of a more compact and accurate
representation of the Leukemia data.
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Figure 3.7: Test error on the Colon data set. We compare the performance of
our low rank update algorithm (Solid) with the algorithm by [122] (Dashed).
Error bars shows the variance of the external 10-fold cross-validation. We stop
both algorithms when 100 variables out of 2000 were selected.
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Figure 3.8: Test error on the Leukemia data set. We compare the low rank
downdate algorithm (∗) with the two SVM-RFE ( [40]) based algorithms: SVM-
RFE1 (•) and SVM-RFE2 (�). Test error is shown when 1000 variables (out of
2000) have been removed. The use of the LOO error is clearly superior to the
margin criterion used in the SVM-RFE algorithm for eliminating variables.
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3.6.4 Model selection

In the experiments reported in earlier sections, we tuned the hyperparameters
with the full set of variables and leave them unmodified during the variable
selection process. The main reason for this was, in principle, to avoid more
degrees of freedom within the variable selection loop, as well as to reduce
the computational load. However, performing a careful adjustment of the
hyperparameters, once a variable is definitely added or removed to the final
set, may result in a more robust and consistent set of variables. Instead of
considering a grid search approach, we chose for a direct optimization of the
PRESS statistic with respect to the LS-SVM parameters θ = (γ, σ) (or simply
γ for a linear kernel). Since the PRESS statistic is a continuous function, we can
make use of standard simplex-search algorithm, such as the MATLAB routine
fminunc. An adequate practice when using unconstrained optimization
routines, is that of transforming the hyperparameters into a logarithmic scale.
Another alternative to ensure correct values for the parameters, e.g. γ > 0,
is the fmincon function with the additional non-negative constraint for θ.
Additionally, extreme values for the hyperparameters may introduce instabilities
and singularities into the kernel matrix, and consequently numerical problems
in the low rank updates/downdates. Alternatively to the use of the PRESS
statistic, the authors in [21] propose to add a regularization/penalization term to
prevent overfitting and perform a subsequent optimization within a Bayesian
framework. Instead, we simply add a second term to the PRESS statistic that
accounts for the norm of the hyperparameters

errorpressreg = 1
n

n∑
i=1

(
r

(−i)
i

)2
+ 1

2

nθ∑
j=1

θ2
j , (3.19)

where nθ denotes the number of parameters. We test the modified PRESS
criterion in the HEART data set. The reduced number of training data points
of the HEART data set supports it as a good example. In Figure 3.9 and 3.10,
the test error box plots for the HEART data with the PRESS statistic and the
modified version are shown respectively. Both results were obtained using the
LS-SVM with RBF kernel and the forward search. Although the true error
seems to increase as we add more and more variables, the modified PRESS
estimator did capture the trend of the true error. The sharp point, in Figure 3.10,
of the error is a clear indicator of a good candidate model with less number of
variables.
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Figure 3.9: Boxplot for the HEART data set. Test error is averaged over 100
realizations. We use the LS-SVM with RBF kernel in a forward selection search.
Hyperparameters (σ, γ) are tuned with the PRESS statistic.
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Figure 3.10: Boxplot for the HEART data set. Test error (solid line) is averaged
over 100 realizations. We use the LS-SVM with RBF kernel. Hyperparameters
(σ, γ) are tuned with the modified PRESS statistic. We additionally show the
Error estimation (Dashed).
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3.7 Summary

In this chapter, the application of low rank updates/downdates to the structure
(linear kernel) of the LS-SVM classifiers was found to be very suitable for
variable selection wrapper-like algorithms. By exploiting the inherent block
structure of the LS-SVM solution, an efficient method for computing the LOO
error enabled us to evaluate the performance of potentially relevant subsets
of variables. Furthermore, in the special case of the linear kernel, algorithms
for fast forward and backward search are devised such that matrix inversions
are at most completely avoided. Our proposed methodology proceeds then by
updating the LS-SVM classifiers every time a variable is tested for inclusion
(or removal) into the set of candidate variables. Such strategy constitutes
a major improvement in the efficiency of the algorithms presented here. In
particular, matrix inversions are avoided at any cost in the low rank update
algorithm, while the rank downdate version requires only a single matrix
inversion. Experiments on microarray data provide us with evidence of the
particular usefulness of our methods in high dimensional scenarios. Moreover,
the use of a continuous function in the LOO estimator, the PRESS statistic,
enables us to use optimization routines in the model selection, contrary to
grid search approaches. Yet, alternatives to the LOO estimator based on
continuous functions may provide more refined sets of variables, especially for
data sets with reduced number of data points. Comparison with other related
algorithms delivered satisfactory results in terms of efficiency and generalization
performance.



Chapter 4

Polynomial componentwise
LS-SVM: variable selection
using low rank updates

In this chapter we present a LS-SVM approach to estimate
additive models as a sum of non-linear components. In particular,
this chapter considers low rank matrix modifications for componen-
twise polynomial kernels, which allow the factors of the modified
kernel-matrix to be directly updated. The main concept refers to
the use of a valid explicit feature map for polynomial kernels in an
additive setting. By exploiting the structure of such feature map
the model parameters of the classification/regression problem can
be easily modified and updated when new variables are added.
Therefore, the low rank updates constitute an algorithmic tool to
efficiently obtain the model parameters once the system has been
altered in some minimal sense. Such strategy allows, for instance,
the development of algorithms for sequential variable ranking
in high dimensional settings, while non-linearity is provided by
the polynomial feature map. Moreover relevant variables can be
robustly ranked using the closed form of the leave-one-out error
estimator, obtained as a by-product of the low rank modifications.

59
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4.1 Introduction

Additive models are very useful techniques for approximating high dimensional
nonlinear functions [44]. These methods are widely used as nonparametric
techniques as they offer a compromise between flexibility, dimensionality and
interpretation. Estimation of the nonlinear components is usually performed by
the iterative backfitting algorithm. Basically, in each step part of the unknown
components are fixed while optimizing the remaining components. Another
category of techniques for non-linear classification and function approximation
are those based on regularization and kernel methods. In this context, smoothing
splines [113], Gaussian processes [60], Support Vector Machines [111] all
represent non-parametric techniques attempting to overcome problem of the
curse of dimensionality. We have seen in previous chapters, that the success
of kernel based methods relies on the indirect construction of feature spaces
through positive-definite kernel functions. The main concept in this chapter
however, resides on the use of an explicit finite dimensional feature map ϕ(·) ∈
Rdϕ , for additive polynomial kernels. By exploiting the structure of this feature
map, the model parameters of the LS-SVM method can be easily modified and
updated when a new variable enters the current model. Such strategy allows, for
instance, the construction of efficient algorithms for sequential variable ranking
in high dimensional settings.

Our approach considers LS-SVM as core classifiers and in particular the
componentwise LS-SVM proposed in [79, 80], where an additive structure
is imposed as a sum of nonlinear components. The primal-dual derivations
characterizing LS-SVMs for the estimation of the additive model result in
a single set of linear equations with size growing in the number of data-
points. Furthermore, the use of low rank modifications in the LS-SVM
structure, previously discussed in Chapter 3, provides efficient algorithms
for sequential variable ranking wherein model parameters are updated instead
of recalculated [75]. Nevertheless, the analysis was restricted to the use of
linear kernels. This chapter advances precisely in this direction. Firstly, we
incorporate non-linearity to the componentwise LS-SVM using an explicit
feature map for the polynomial kernel. Secondly, we demonstrate how the
factors of the modified componentwise LS-SVM can be efficiently updated.
Within the model specification three purposes are recognized: (i) sequential
variable selection using componentwise LS-SVM, (ii) efficient model updating
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for linear and componentwise polynomial kernels, (iii) model interpretation
with the imposed additive structure.

This chapter is organized as follows. Section 4.2 presents the componentwise
extension to LS-SVM models. Section 4.3 outlines the explicit feature map for
polynomial kernels and shows how low rank matrices result from the imposed
additive structure. To update the componentwise LS-SVM parameters, methods
based on the Cholesky decomposition are given in section 4.4. Experimental
results of the proposed methodology are presented in section 4.6.

4.2 Componentwise support vector machines

This section considers the class of models that are additive in every input. Let
the superscript for xk, denote the k-th component of an input vector x ∈ Rd,
for all k = 1, . . . , d. To represent the collection of a single component the
following notation is used xk = [xk1, . . . , xki , . . . , xkn]>. Following the LS-SVM
formulation given in Chapter 2, the componentwise regression/classification
model takes the form f(x) =

∑d
k=1 w>k ϕk(xk) + b, where for the k-th

component ϕk(·) : R → Rdϕ is a possibly infinite dimensional mapping
and wk ∈ Rdϕ the corresponding vector of model parameters. Therefore, the
penalized sum of squares function, in contrast to (2.19), becomes [79]

min
wk,b,e

1
2

d∑
k=1

w>k wk + γ
1
2

n∑
i=1

e2
i (4.1)

s.t. yi =
d∑

k=1
w>k ϕk(xki ) + b+ ei , i = 1, . . . , n .

Along the lines of standard LS-SVM, by taking the conditions for optimality and
application of the kernel trick Kk(xki , xkj ) = ϕk(xki )>ϕk(xkj ), the following
set of linear equations is obtained[

Ωd + γ−1In 1
1> 0

] [
α

b

]
=
[

y
0

]
, (4.2)

where as before Ωd =
∑d
k=1 Ωk ∈ Rn×n, and Ωk

ij = Kk(xki , xkj ), is the kernel
evaluation at the k-th component between the i-th and the j-th data points. Note
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that the main difference between the dual models in (2.20) and (4.2), is in fact
expressed solely in terms of the used kernels [80]. Componentwise models of
this type have been also used in the context of survival models [106]. A new
data point x ∈ Rd can be evaluated as

f(x) = sign
(

n∑
i=1

αi

d∑
k=1

Kk(xk,xki ) + b

)
. (4.3)

Remark 4.1. Without loss of generality, the elements of the Gram matrices
associated to kernel functions can be expressed as Ωij = ϕ(xi)>ϕ(xj) =
K(xi,xj), with i, j = 1, . . . , n. By defining Φ = [ϕ(x1), . . . , ϕ(xn)] ∈
Rdϕ×n, the Gram matrix Ω ∈ Rn×n becomes

Ω =

 ϕ(x1)>
...

ϕ(xn)>

 [ϕ(x1), . . . , ϕ(xn)] = Φ>Φ . (4.4)

4.3 Polynomial updates

In this section, a more detailed description of the type of kernels considered
in this work is given. The key idea is to view the overall kernel matrix as
the sum of individual contributions of kernels when applied individually on
every input. These kernels are denoted as componentwise kernels and in the
case of polynomial functions, their structure provides low rank kernel matrices
where their rank, for a univariate input, is determined by the polynomial degree.
Starting from the linear kernel (2.10), the associated Gram matrix Ω in (4.4)
can alternatively be written in the form of outer products, that is

Ω =
[
x1, . . . ,xd

]  x1

...
xd


>

=
d∑

k=1
xkxk> = XX> , (4.5)

with X =
[
x1, . . . ,xd

]
. However, for more general kernels such as the

polynomial or RBF kernel, the Gram matrix cannot be simply computed as
the sum of outer products. Therefore, the family of kernels that are additive in
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every input is instead considered. That is

Kd(xi,xj) =
d∑

k=1
Kk(xki , xkj ) . (4.6)

In this context, the individual kernels are defined on a single univariate input
and hence functions of two scalar variables. The elements of the corresponding
Gram matrix are Ωk

ij = K(xki , xkj ), that is, the kernel evaluated in the k-th
component between the i-th and the j-th data points. The overall Gram matrix
in this additive setting then takes the form [79]

Ωd =
d∑

k=1
Ωk . (4.7)

It is clear that for the linear kernel Ωd = Ω, that is the outer product definition
given above in (4.5) and consequently also equivalent to that in (4.4).

For the polynomial kernel of degree p with τ = 1 (cf. (2.11)), Kp : R×R→ R,
a valid explicit feature map ϕp(·) for a given z is [17, 91]:

ϕp(z) =

1,

√√√√(p
1

)
z, . . . ,

√√√√( p

p− 1

)
zp−1, zp

> , (4.8)

with ϕp(·) : R→ Rp+1. The Gram matrix for the additive polynomial kernel is
then

Ωd
p =

d∑
k=1

Ωk
p with Ωk

p =
p∑
l=0

(ϕl ◦ xk)(ϕl ◦ xk)> , (4.9)

where (ϕl ◦ xk) corresponds to the elementwise application of the function
ϕl =

√(p
l

)
zl to the elements of vector xk. In matrix notation it reads

Ωk
p = Φk

pΦk
p
>
, (4.10)

where Φk
p =

[
(ϕ0 ◦ xk), . . . , (ϕp ◦ xk)

]
is a n × (p + 1) matrix. Since for a

Gram matrix the following holds

rank
(
Φk
p

)
= rank

(
Φk
pΦk

p
>) = rank

(
Ωk
p

)
, (4.11)



64 POLYNOMIAL COMPONENTWISE LS-SVM: VARIABLE SELECTION USING LOW
RANK UPDATES

then for the additive model based on the polynomial kernel, the rank of Ωk
p for

an input variable xk is at most p+ 1. As a consequence, the polynomial kernel
matrix Ωd

p for all inputs, k = 1, . . . , d, and constant degree p can be written as
the sum of d rank-(p+ 1) matrices

rank
(
Ωd
p

)
= rank

(
d∑

k=1
Ωk
p

)
≤

d∑
k=1

rank
(
Ωk
p

)
. (4.12)

The use of these componentwise (additive) models for input variable ranking is
presented in the following sections. Moreover efficient algorithms are proposed
along the lines of the earlier work in [75].

Remark 4.2. Rank-one linear kernel. Setting τ = 0 and p = 1 in the
inhomogeneous polynomial kernel (cf. (2.11)) gives the linear kernel and
therefore the rank of the mapping Φ(xk) for a single variable xk equals 1 [75].

Remark 4.3. Rank-one homogeneous polynomial kernel. For a given p ∈ Z+

and setting τ = 0, the inhomogeneous polynomial kernel (cf. (2.11)) reduces
to the homogeneous kernel [92]. The rank of the matrix Φp(xk) for a single
variable xk reduces also to 1, for the lower order monomials receive a zero
weighting coefficient.

4.4 Low rank modifications

The system of linear equations in (4.2) can be alternatively factorized into a
positive-definite system and hence the Cholesky decomposition can be used
to obtain its solution [39]. In order to obtain the model parameters α, b, the
solution of the two triangular systems LL>χ = y and LL>ν = 1, is required.
The matrix L denotes the Cholesky factor of the positive-definite matrix LL> =
Ω + γ−1In. The model parameters in (4.2) are then given by

b = 1>χ(1>ν)−1 , α = χ− bν . (4.13)

Adding a new variable xk to the system of linear equations represents, in the
simplest case, a rank-one modification to the Cholesky factor L [38] (see also
Section 3.4)

L̃L̃> = LL> + xkxk> . (4.14)
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In the same line if the polynomial mapping ϕp(·) of the variable xk is
considered, then according to (4.10) and (4.11), the rank-(p+ 1) modification
of the Cholesky factor reads

L̃L̃> = LL> + Φk
pΦk

p
>
. (4.15)

Low rank updates of this form can always be done by applying (p+1) rank-one
updates sequentially with the columns of Φk

p . For the special rank-one case
denote u as the variable xk in the linear kernel, or a single column of Φk

p in the
polynomial kernel. The modified Cholesky factor is obtained as follows

L̃L̃> = LL> + uu> (4.16)

= L(I + qq>)L>

= LL̄L̄>L> ,

where q is the solution to the triangular system Lq = u, while the Cholesky
factor of the elementary matrix I + qq> is denoted by L̄. Since the product of
two lower-triangular matrices is also a lower-triangular matrix, then the matrix
LL̄ is consequently the triangular factor required. The modified matrix L̃ can
be directly computed from L [38], which is simpler and cheaper to compute
than starting from scratch. Therefore, the updated model parameters can be
obtained from:

b̃ = 1>χ̃(1>ν̃)−1 , α̃ = χ̃− b̃ν̃ . (4.17)

where L̃L̃>χ̃ = y and L̃L̃>ν̃ = 1. For a positive update L̃ remains positive-
definite (L̃ � 0) if the initial L is also positive definite. On the other hand,
negative downdates may break down if LL> − uu> is not positive definite,
which may lead to numerical errors and instability [39]. In this chapter we
restrict ourselves to positive updates. Similar versions of the algorithms
presented here can be derived using stable downdating procedures [38] and
along the lines of Chapter 3.
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4.5 Efficient leave-one-out computation

We have seen in Section 3.3 that the residual for the leave-one-out prediction of
the i-th training data point is [19, 109]:

r
(−i)
i = yi − ŷ(−i)

i = αi
(A−1)ii

, (4.18)

where the diagonal elements of A−1 are as defined in (3.9). However,
computing the leave-one-out error from the Cholesky factor L of H comprises
numerically a more stable approach to obtain the residuals r(−i)

i . Let S = L−1

be the (lower triangular) inverse of the Cholesky factor, thus H−1 = S>S. The
diagonal elements of A−1 are then expressed (see [19] for more details).

(A−1)ii =
i∑

j=1
(Sij)2 + ν2

i

s
, i = 1, . . . , n . (4.19)

The implementation of the proposed approach is outlined in Algorithm 4. In
step 9, the MATLAB routine cholupdate or the code fragment in [38, pg.
43] can be used to update the Cholesky factor. Alternatively, the methods
exposed earlier in Section 3.4.1 that make use of the SWM formula are also
valid to update the model parameters.

4.6 Experimental results

In this section, experimental results illustrate the use of low rank updates
when using componentswise LS-SVM classifiers and polynomial kernels. This
approach overcomes, and reduces the high computational cost incurred during
variable selection. Synthetic data and the benchmark dataset collected by [87]
are employed to compare the usefulness of the methodology hereby exposed.

4.6.1 Model selection

The final performance of any learning strategy might be heavily influenced
by the hyperparameter selection, i.e. a correct choice for (γ, τ). These
hyperparameters are tuned as to minimize the PRESS statistic. For each
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realization of the data sets, the pair (γ∗, τ∗) minimizing the leave-one-out
PRESS statistic is chosen. In turn, that pair is used during the variable selection
procedure. The model selection is performed independently for each realization
of the data set, such that the standard errors would reflect the variability of
the training algorithm and the model selection with respect to changes in the
sampling of the data.

Algorithm 4 Variable ranking with componentwise polynomial kernels and
low rank updates.
Input: Training set D = {xi, yi}ni=1,xi ∈ Rd, yi ∈ R, regu-
larization and polynomial kernel hyperparameters (γ, p, τ), number of
variables to rank m. Output: Ranked variables S, ranking criteria
J .

1: Initialize set of active variables A = {x1, . . . ,xd}.
2: Initialize set of ranked variables S = ∅.
3: Initialize Cholesky factor L0 = diag(

√
1/γ, . . . ,

√
1/γ) ∈ Rn×n.

4: for l = 1 to m do
5: for k = 1 to |A| do
6: Lk ← L0
7: Compute for xk ∈ Rn×1, the feature map Φp ∈ Rn×p+1 using (4.8).
8: for r = 1 to p+ 1 do {For every column of Φp}
9: Update Cholesky factor Lk ← cholupdate(Lk,Φp(:, r)).

10: end for
11: Solve for α using (4.13).
12: Compute errorpress(k) using (4.19) and (4.18).
13: end for
14: Select variable xc such that c = argmink∈{1,...,|A|}errorpress(k).
15: Ranking cost J(l) = errorpress(c).
16: Ranked variables S ← S ∪ xc.
17: Active variables A ← A \ xc.
18: Set Cholesky factor for next iteration L0 ← Lc.
19: end for
20: return S, J
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4.6.2 Toy Data

A synthetic toy data set drawn from an uniform distribution is generated
according to the model yi = 10 sinc(x1

i ) + 20(x2
i − 0.5)2 + 10x3

i + 5x4
i + εi,

where εi ∼ N (0, 1) [44]. A data set with n = 100 data points and d = 500
variables is generated to test the algorithm computational efficiency. For several
degrees of the polynomial kernel (p = 1, . . . , 10) the total time needed to
compute 50 updates is measured. In Figure 4.1, each update corresponds
to a new variable xj , j = 1, . . . , d, added to set of linear equations. In
addition, comparisons with respect to the time to compute the inverse from
scratch (dotted line) are shown. A first alternative for efficiency is the use of
the eigendecomposition method (dashed line) for the componentwise additive
polynomial kernel. The eigendecomposition of the kernel matrix for each
variable is first computed, and then a direct rank (p+ 1) update is performed
to obtain the inverse. The second method (solid line) corresponds to the main
methodology introduced in this work, that is, the explicit feature map of the
polynomial kernel for a single variable. Using this product form factorization,
one can also directly apply a rank (p + 1) update to compute the inverse.
Figure 4.2, presents the average LOO PRESS with respect to the number of
variables ranked and the degree of the polynomial kernel.
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Figure 4.1: Computational time for the updates of the regularized Gram matrix
when varying the degree of the componentwise additive polynomial kernel.
Methods: full inverse (dotted line), eigendecomposition (dashed line), proposed
(solid line).
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Figure 4.2: Leave-one-out PRESS for the synthetic data when different degrees
in the componentwise polynomial kernel (p = 1, . . . , 5) are tested. In all but
two of the different models (p = 1, 2) the minimum averaged LOO PRESS
value is attained at 4 variables, which in turn corresponds to the true number
of components. Moreover, the polynomial kernel of degree 1 retrieves one
spurious variable.

In a second experiment a number of 100 different training and test set partitions
are simulated. The size of the data set n is varied from 10 to 100, and it is
randomly chosen from the interval [0, 1]100, thus d = 100. The degree of the
polynomial kernel is varied p = 1, 2, 3 while τ ∈ {0, 1}. In order to avoid some
bias in the sequential forward algorithm, the 4 relevant variables are placed
at random positions. In this setting, the goal is to check the capacity of the
algorithm to retrieve the relevant variables giving them the highest rank. The
regularization parameter γ is fixed to a value of 1 and the results are presented
in Table 4.1. In the cases that τ is fixed to zero and the polynomial degree is
higher, the lower order terms are discarded. The resulting non-linear mapping
may not obey order restrictions, that is linear terms might be dropped while
corresponding higher order terms are selected into the model. In fact the best
entry for τ = 0 corresponds to that of the linear model [75].
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4.6.3 Real world data

In this section a selection of eleven UCI public domain benchmark data sets
used in [87] are considered to evaluate the usefulness of the methodology
here exposed. The use of low rank updates/downdates is demonstrated for
linear and additive polynomial kernels. The ranking criterion for the variables
is based on the PRESS statistic, which is derived from the efficient leave-
one-out estimator [19, 21, 75]. Results obtained using standard LS-SVM and
LS-SVM with automatic relevance determination (ARD) are taken from [21].
For standard SVM with different bounds, results were collected (though not
complete) from previous studies in [22, 24, 85]. Results for each method are
presented in the form of the mean error rate over test data for 100 realizations
of each dataset (20 in the case of the image and splice datasets), along with
the associated standard deviation of the error. Table 4.2 summarizes the results
obtained, while Figure 4.3 illustrates the mechanism selecting the number of
variables based on the LOO PRESS criterion.



EX
PERIM

EN
TA

L
RESU

LT
S

71

Algorithm
Training set size

10 20 30 40 50 100
τ

=
0

LowR-lin
44.64 (23.77) 9.85 (12.05) 3.96 (2.15) 3.61 (2.94) 3.11 (0.27) 2.72 (0.12)

17.5% 61% 74.75% 74.25% 75.75% 75.25%

LowR-poly2
106.64 (147.30) 60.66 (25.21) 44.58 (12.23) 37.96 (7.61) 34.50 (5.75) 26.28 (2.80)

6.25% 7.25% 11% 13.25% 12.50% 23.25%

LowR-poly3
113.52 (182.46) 35.75 (19.06) 16.87 (10.50) 10.69 (3.10) 9.19 (1.74) 7.34 (0.78)

13.75% 30% 52.50% 63% 69.25% 74.25%

τ
=

1

LowR-lin
40.97 (24.21) 10.44 (12.96) 4.44 (3.78) 3.25 (0.36) 3.07 (0.26) 2.73 (0.17)

17.50% 60% 71.50% 75.50% 75% 76.25%

LowR-poly2
75.45 (89.61) 21.04 (26.87) 1.14 (5.76) 0.19 (0.93) 0.05 (0.01) 0.05 (0.00)

12.50% 57% 96.25% 99% 100% 100%

LowR-poly3
120.00 (221.74) 40.70(39.84) 7.11 (15.05) 0.06 (0.57) 0.05 (0.47) 0.00 (0.00)

8% 39.75% 82% 99.75% 99.75% 100%

Table 4.1: Synthetic problem. Average generalization performance over 100 partitions of the data set. Standard
deviations are indicated between brackets. The capacity to recover the four relevant components in this non-linear
problem is expressed as the average success rate over 100 partitions. The larger the percentage value, the more variables
were correctly recovered.
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LS-SVM LowR LS-SVM SVM

Kernel RBF Linear Polynomial RBF

Algorithm LS-SVM LS-SVM ARD LowR-lin LowR-poly2 LowR-poly3 R‖w‖22 Span ‖w‖22
BREAST 26.73 (0.47) 29.08 (0.41) 27.88 (5.14) 33.34 (4.82) 34.06 (4.90) 26.84 (4.71) 25.59 (4.18) −
DIABETES 23.34 (0.17) 24.35 (0.19) 23.55 (1.71) 25.46 (2.20) 25.45 (1.93) 23.25 (1.70) 23.19 (1.67) 28.50
FLARE 34.22 (0.17) 34.39 (0.19) 33.49 (1.70) 33.82 (1.65) 33.31 (1.78) − − −
GERMAN 23.55 (0.22) 26.10 (0.26) 24.97 (2.17) 28.29 (2.69) 28.89 (2.59) − − −

HEART 16.64 (0.36) 23.65 (0.35) 16.41 (3.14) 16.83 (3.25) 17.85 (3.72) 15.92 (3.18) 16.13 3.11 27.00
IMAGE 3.00 (0.16) 1.96 (0.11) 18.44 (0.72) 10.56 (1.03) 7.99 (0.78) − − −
RINGNORM 1.61 (0.01) 2.11 (0.04) 25.43 (0.55) 5.48 (0.54) 6.18 (0.53) − − 8.40
SPLICE 10.97 (0.16) 5.86 (0.18) 16.13 (0.66) 10.55 (0.41) 6.91 (0.50) − − −

THYROID 4.68 (0.23) 4.68 (0.20) 20.24 (5.05) 18.57 (4.61) 11.87 (4.13) 4.62 (2.03) 4.56 (1.97) −
TWONORM 2.84 (0.02) 5.18 (0.07) 2.53 (0.18) 2.67 (0.21) 3.43 (0.27) − − 9.30
WAVEFORM 9.79 (0.04) 13.56 (0.14) 14.69 (0.10) 11.13 (0.57) 11.41 (0.56) − − −

Table 4.2: Benchmark data: Error rates of the compared methods. The results of each method are presented in the form
of the mean error rate averaged over 100 test data realizations. Standard deviations are indicated between brackets. −:
results not available in the literature.
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Figure 4.3: Selecting the number of ranked variables in the Splice data set based
on the averaged LOO PRESS. A number of 27 variables out of 60 attain the
lowest LOO PRESS averaged over 100 partitions. The degree of the polynomial
kernel is set to a value of 3, whit the hyperparameters (τ, γ) tuned as described
in the section over model selection. Top: Average LOO PRESS over 100
realizations. Bottom: Average test error over 100 realizations. Dashed lines
represent the standard error deviation. The vertical dashed line points the
model that achieves the lowest LOO PRESS and its corresponding test error
performance.
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4.7 Summary

The work presented in [40] proposes to solve the SVM algorithm only once with
the full set of variables. Although the ranking criterion used there depends on the
weight norm in the cost function, the support vectors α remain fixed throughout
the whole variable ranking. Moreover, even thought such strategy reduces
efficiently the computational complexity of the approach from n-QP problems to
merely one, it does violate however the optimality conditions in the optimization
problem. In this work, the core learning algorithm is the (componentwise) LS-
SVM classifier that can be efficiently trained by solving just a single system
of linear equations. The main concept presented here, however concerns the
the use of a valid explicit feature map for polynomial kernels in an additive
construction. By exploiting the structure of the feature map, it is demonstrated
how the model parameters of the classification/regression problem can be easily
modified and updated when new variables enter the current model, while still
providing non-linear modeling capabilities. This is achieved by the use of low
rank updates which in turn constitutes an algorithmic tool for the design of
sequential variable ranking algorithms in high dimensional settings. Moreover
relevant variables can be robustly ranked using the closed form of the leave-
one-out (LOO) error estimator directly obtained as a by-product of the low rank
modifications.



Chapter 5

Learning of Sparse Linear
Models in Mass Spectral
Imaging

We present an approach to learn predictive models and perform
variable selection by incorporating structural information from
mass spectral imaging data. We explore the use of a smooth
quadratic penalty to model the natural ordering of the physical
variables, that is the mass-to-charge ratios. Thereby, estimated
model parameters for nearby variables are enforced to vary
smoothly. Similarly to overcome the lack of labeled data, we model
the spatial proximity among spectra by means of a connectivity
graph over the set of predicted labels. We explore the usefulness of
this approach in a mouse brain MSI data set.
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5.1 Introduction

Mass spectral imaging is a developing technology that accomplishes the
detection of biomolecules such as proteins, peptides, and metabolites directly
from organic tissue while retaining their spatial origin [99]. Thus, MSI
allows to study the spatial distribution throughout the tissue of any detectable
molecule that falls within a specified molecular mass range [63]. A typical
MSI experiment consists of a grid of measurement locations or pixels covering
the tissue section, with an individual mass spectrum attached to each pixel.
The resulting data structure can be considered as a three-dimensional array or
tensor with two spatial dimensions (h and w) and a mass-over-charge (m/z)
dimension as shown in Figure 5.1.

Figure 5.1: A schematic representation of the MSI data structure. Individual
mass spectra are collected from the tissue area of interest retaining their spatial
relationships (h,w). The data is collected into a three-mode array where each
slide corresponds to a particular (m/z) value and every point in the grid is
linked to a spectrum.

These characteristics pose challenges in the statistical analysis of MSI data. On
the one hand, the high molecular specificity of MSI delivers huge dimensional
data sets with thousands of measured variables that usually exceed the number
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of spectra (data points), which are often limited to a few hundreds. On the
other hand, the spatial coordinates (h,w) associated with each spectrum define
physiological or anatomical areas of interest and their spatial relationships
should thus not be neglected either. In practice several machine learning
methods have already been applied to MSI data sets, including but not limited
to principal component analysis [107], clustering and multivariate analysis [62],
and supervised classification [42], [59]. Besides the relatively low number of
spectra, only a small fraction of them is labeled. This hinders many statistical
methods and further limits the validation of the obtained results. Manual
labeling requires dedicated histological expertise which can be time consuming,
costly and in some cases inaccurate.

In the present chapter, the goal is to develop semi-supervised models that use the
labeled portions of the tissue to help predict the anatomical labels and biological
functions of the unlabeled portions of the tissue. The medical objective of
such models would be, for instance, to provide the pathologist with insight in
interpreting molecular tissue content of areas that do not lend themselves for
straightforward human classification. Particularly, we address issues regarding
inherent ordering of the model variables and the spatial relationships of the
samples. In a first step, we start from regularized models that impose sparsity
on the solution of coefficients. In the problem of interest, variables possess
a natural ordering due to their physical meaning. Therefore, we enforce that
the estimated coefficients of nearby variables should smoothly vary in terms of
m/z.

Unlike the so called fused LASSO [105] where the absolute value of the
differences is used, we employ a smooth quadratic penalty. Furthermore, to
overcome the lack of labeled spectra we exploit the prior assumption that nearby
spectra are likely to have the same label. This is a meaningful assumption for
many types of data: for instance a tumor is more likely to affect nearby cells
than erratically affect disconnected regions of tissue. Our approach encodes
the spatial proximity among spectra by means of a graph and hence can be
seen as a semi-supervised method. The resulting proposed model is shown to
be equivalent to a LASSO formulation and therefore can be efficiently solved
via the LARS (Least Angle Regression) [28] algorithm. Each component in
our optimization problem clearly embodies the structural information of MSI
data, whereas regularization parameters trade off the complexity of the model
in terms of sparsity, smoothness and unlabeled data points.
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This chapter is organized as follows. Section 5.2 introduces the notions about
regularized linear models and the required notation with respect to MSI data.
The general concept of encoding structural information via the graph Laplacian
is presented in Section 5.3, while Section 5.3.1 deals in detail with the modeling
of the ordering of the m/z variables and the resulting optimization problem.
Section 5.3.2, elaborates on the encoding of spatial information using unlabeled
spectra and states the final proposed approach. Preliminary results on a mouse
brain MSI data set are given in Section 5.4. Comparisons to related algorithms
are reported along with visualization and interpretation of the obtained results.

5.2 Penalized regression

The MSI data set can be represented by a collection of n data points (spectra)
measured over d variables (mass-to-charge ratios). The set of labeled spectra
is D` = {(xi, yi)}ni=1, with xi ∈ Rd, yi ∈ R, where yi is the associated
label to spectrum xi ∈ Rd. Denote by xki the k-th component of xi. Therefore
xk = [xk1, xk2 . . . , xki , . . . , xkn]> indicates the vector of measurements of a single
variable collected at different locations across the tissue. We deal with the
problem of predicting the response y, from a corresponding data point x. In
this setting, we consider the standard linear regression model

yi =
d∑

k=1
wkx

k
i + εi , (5.1)

with errors εi ∼ N (0, σ̂2). The variables are assumed to be standardized and
the output to be centered. The vector of coefficients w = (w1, . . . , wd)> ∈ Rd
is usually obtained by penalized empirical risk minimization:

min
w
‖y−Xw‖22 + λP (w) . (5.2)

Common examples of penalized models are ridge regression with P (w) =
‖w‖22 = w>w, or the LASSO with P (w) = ‖w‖1. The LASSO penalty
encourages sparse solutions while ridge regression keeps all the coefficients
in the model. In general, a priori assumptions encoded via P (·) are needed to
make the problem well-posed. In the following sections we aim at modeling
the specific features of MSI data by translating them into useful structural
information in the general optimization problem described in (5.2).
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5.3 Structure Encoding via the Graph Laplacian

In order to incorporate structural information in our model fitting approach, we
consider an undirected connectivity graph G = (V,E), where V is the set of
nodes and E the set of edges. An edge between given nodes u and v (u 6= v)
exists if the entities represented by u and v are linked. Denoting du as the
degree of a node u, the normalized Laplacian matrix L associated to the graph
G is given by [23]

L(u, v) =


1 if u = v and du 6= 0 ,

− 1/
√
dudv if u 6= v ,

0 otherwise .
(5.3)

The Laplacian is a symmetric semi-positive definite matrix which can be
interpreted as an operator on functions of the type f : V → R namely vectors
indexed by elements of V . It can be shown that [23]

f>Lf =
∑
u∼v

(
fu√
du
− fv√

dv

)2
, (5.4)

and hence the quadratic term on the left-hand side of (5.4) can be used to define
a penalty enforcing smooth variation over neighboring nodes. We use this fact
to incorporate structural information of MSI into the learning framework.

5.3.1 Encoding ordered variables

In order to account for the natural ordering of the m/z measurements, we
impose a graph Gd over the set of variables. The set of nodes are associated
to the d input variables xk, k = 1, ..., d, thus modeling neighboring variables
via the Laplacian matrix of the graph. The structure imposed is visualized in
the left panel in Figure 5.2, where every m/z variable xk is connected to the
preceding xk−1 and the subsequent xk+1. One might also consider second
order relationships and so forth. By defining Lw ∈ Rd×d as the Laplacian over
the set of variables (cf. (5.3)) and considering the squared norm in (5.4) for w,
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Figure 5.2: Left: First order (solid) and second order (dashed) connectivity
structure over the set of the variables. We consider first order connectivity
to impose local smoothness on the coefficients. Right: Cross-like spatial
neighborhood imposed over the set of spectra.

our regularized optimization problem takes then the form:

min
w
‖y−Xw‖22 + λ1

d∑
k=1
|wk|+ λ2w>Lww , (5.5)

with λ1, λ2 > 0. While the second term enforces sparsity on the w, the last term
smooths the solution of w on the network. This is similar to the formulations
in [58] and [97]. In the case that no structure is assumed in the network, that
is taking Lw = I, the optimization problem resorts to the elastic net (ENET)
approach [123].

5.3.2 Encoding prior spatial information

Along the same lines of reasoning, we aim to impose a smooth structure on
the predicted labels ŷj , j = 1, ..., ns. The spatial distribution of the spectra in
the square grid (see Figure 5.1) suggests that nearby spectra should correspond
either to the same tissue area or, might represent connectivity tissues. In
essence our goal is to extend the framework presented in the previous section
by additionally incorporating the information of the spatial structure of the MSI
data. In order to get an empirical estimate of spectra distribution we make use
of the full set of examples: labeled and unlabeled spectra [14]. Denoting by
ŷ = (ŷ1, . . . , ŷns)>, ns ≥ n, the vector of predicted responses and, assigning
each ŷj to a node in a graph Gs, we construct the corresponding Laplacian
matrix Ls ∈ Rns×ns using (5.3). The entries of Ls(h,w) are defined according
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to the cross-like neighborhood pattern shown on the right hand side of Figure 5.2.
Likewise, we consider a similar quadratic form for the predicted responses as
in (5.4), that is ŷ>Lsŷ, which is bounded by parameter ξ > 0. Including this
constraint into our optimization problem, we have

min
w
‖y−Xw‖22 + λ1

d∑
k=1
|wk|+ λ2w>Lww (5.6)

s.t. ŷ>Lsŷ ≤ ξ (5.7)

ŷj =
d∑

k=1
wkx

k
j , j = 1, . . . , ns . (5.8)

Expressing the vector of equality constraints in matrix form ŷs = Xsw, and
replacing this term in the inequality constraint we get w>(Xs)>Ls(Xs)w =
w>Gsw. By introducing a Lagrange multiplier λ3 > 0 for the latter constraint,
we write (5.6) as the following unconstrained optimization problem

min
w
‖y−Xw‖22 + λ1

d∑
k=1
|wk|+ λ2w>Lww + λ3w>Gsw . (5.9)

By grouping the quadratic terms of w and defining Hλ3 = Lw + λ3
λ2

Gs, we
can further cast the optimization problem into a LASSO type formulation

min
w
‖y−Xw‖22 + |+ ‖0d×1 −

√
λ2H1/2

λ3
w‖22 + λ1

d∑
k=1
|wk| , or

min
w

∥∥∥∥∥
[

y
0d×1

]
−
[

X√
λ2H1/2

λ3

]
w
∥∥∥∥∥

2

2
+ λ1

d∑
k=1
|wk| . (5.10)

This modified problem has dimensions (n+ d)× d, and can be solved using
the LARS (Least Angle Regression) algorithm [28] up to fixing λ2 and solving
the regularization path for the constrained version using a bound ‖w‖1 ≤ η
instead of λ1. This equation is our final proposed method to incorporate spatial
information and to impose neighboring structure in the ordered variables.

By setting λ3 = 0, we can relate our method to similar existing approaches.
For instance, the ENET [123] is obtained by setting Lw = I. The network
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constrained-regularization (NET) [58] and the multiple NET [97] are not
restricted to ordered variables and instead they impose prior groupings through
graphs. The fused LASSO algorithm in [105] penalized the absolute difference
between adjacent coefficients whereas the the group LASSO [119] assumes in
advance groups of variables.

5.4 Experimental results

In this section we explore the usefulness and applicability of the proposed
method to include the structural information of MSI data. While numerical
validation of the obtained results is assessed via 10-fold cross-validation, visual
interpretation and comparison appear more intuitive by translating the results
into exploratory ion images. This visual aid largely compensates for the limited
availability of ground truth information.

5.4.1 Data set

The data set, acquired at University Hospital Leuven, comes from a sagittal
section of mouse brain [108]. The spatial grid covering the tissue has 51
× 34 measurement locations (i.e. 1734 pixels). Each measurement spans a
mass range from 2800 to 25000 Dalton in 6490 mass-to-charge (m/z) bins.
Therefore, the data structure contains 1734 mass spectra measuring 6490 m/z
variables per spectrum. Partial labeling information of 279 spectra is provided
by a pathologist corresponding to four anatomical regions within the tissue. The
labeled regions are the cerebellar cortex (cc), Ammon’s horn in the hippocampus
(ca), the cauda-putamen (cp), and the lateral ventricle (vl) area. Figure 5.3(a)
depicts the four partially labeled regions overlaid on a gray level microscopic
image of the mouse brain section. The set of spectra is normalized with respect
to the total ion current and is baseline corrected.

5.4.2 Numerical results

In order to set suitable values for the three regularization parameters, we first
define a grid of values over the parameters λ2 and λ3. Secondly, for every pair
of values we approximate the regularization path for the parameter η (associated
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to λ1) and pick the best combination via 10-fold cross-validation. In Table 5.1,
we report the results of the proposed approach among pairwise classes. Chosen
values for the regularization parameters are reported along with the average
10-fold cross-validation accuracy and the number of non-zero w coefficients.
Similarly, the performance of the LASSO and elastic net algorithms are reported
in Table 5.2.

Classes η∗ λ∗2 λ∗3 Non-zero w 10-fold mse 10-fold accuracy

cc vs ca 0.165 100 0.001 64 1.0529 (0.5482) 1 (0)
cc vs cp 0.213 100 0.001 106 1.3783 (0.3739) 0.9288 (0.1076)
cc vs vl 0.249 1 0.001 56 1.7588 (0.9709) 0.8938 (0.1719)
ca vs cp 0.162 1 0.001 54 2.3778 (0.9005) 0.9758 (0.0319)
ca vs vl 0.1640 100 0.01 102 3.2342 (1.2151) 0.9446 (0.0447)
cp vs vl 0.0460 10 0.1 14 5.9332 (1.6775) 0.9288 (0.0580)

Table 5.1: Multi-class one-vs-one results of the proposed approach.
Regularization parameters associated to the quadratic penalties (λ2, λ3) are
chosen from the grid [10−3, 10−2, 10−1, 1, 10, 100]2. The regularization
path for parameter η (bound on the `1 norm) associated to λ1 is optimized via
10-fold crossvalidation on the labeled data.

LASSO ENET

Classes Non-zero w η∗ 10-fold accuracy Non-zero w η∗ λ∗2 10-fold accuracy

cc vs ca 14 0.29 1.0000 (0.0) 17 0.211 0.001 1.0000 (0.0)
cc vs cp 10 0.16 0.9738 (0.0532) 15 0.136 0.01 0.9905 (0.0202)
cc vs vl 34 0.374 0.9250 (0.1208) 17 0.145 0.01 0.9333 (0.1097)
ca vs cp 31 0.212 0.9740 (0.0436) 18 0.1 0.001 0.9687 (0.0477)
ca vs vl 11 0.085 0.9143 (0.0732) 19 0.076 0.1 0.9330 (0.0549)
cp vs vl 5 0.031 0.9142 (0.0739) 6 0.033 0.001 0.9123 (0.0766)

Table 5.2: Multi-class one-vs-one results of the LASSO and ENET algorithms.

Additionally, the performance for the combined one-versus-one predictions is
presented in Table 5.4.2. All the three methods perform slightly similar with
appreciable differences in the average number of coefficients. The proposed
method tends to select more coefficients due to the effect of the two square
penalties.



84 LEARNING OF SPARSE LINEAR MODELS IN MASS SPECTRAL IMAGING

Method Avg. Non-zero w Avg. ‖w‖1 10-fold accuracy

LASSO 17 1.0303 0.9453 (0.0690)
ENET 16 0.9608 0.9563 (0.0515)
proposed 66 1.6647 0.9502 (0.0608)

Table 5.3: Combined multi-class results on the mouse brain MSI data set.

5.4.3 Visualization

By translating the predicted labels back to their position in the spatial domain,
one can directly assess the performance of the algorithm via visual inspection.
Figure 5.3 displays the combined one-vs-one predicted labels corresponding
to the compared methods. All the three models effectively separate the lateral
ventricle (vl) and cauda-putamen (cp) from the surrounding tissue. The
classification for the ventricle area additionally draws in the elongated corpus
callosum and cerebellar nucleus regions as well, as these regions share a panel
of common molecules within the measured mass range. The cerebellar cortex
(cc) label exceeds its intended boundaries due to the small number of labeled
spectra (21 data points). The remaining hippocampus label (ca) extends to
capture the complete hippocampus and most of the remaining unlabeled areas
of the tissue. Furthermore, to visualize important selected variables, we look at
the top three variables associated to the largest w coefficients. In particular we
take those differentiating the lateral ventricle (vl) from the cauda-putamen (cc).
In Figure 5.4, ion images highlight the presence of three of the top selected
m/z in these two anatomical regions.
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(a) cc (green), ca (yellow), cp (red), vl (cyan) (b) LASSO

(c) ENET (d) proposed

Figure 5.3: Labeled areas and corresponding predicted labels by the algorithms.
Visualization of the predicted tissue regions on the mouse brain MSI data set.
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(a) m/z = 7.34 × 103 (b) m/z = 7.43 × 103

(c) m/z = 1.65 × 104

Figure 5.4: Ion image visualization for the top three selected m/z variables discriminating the (cc) and (vl) tissue
regions. The first two are common to the three compared methods, whereas the third variable at m/z = 1.65× 104 Da
that delineates the (vl) area only appears in the proposed model.
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5.5 Summary

In this chapter we have presented a methodology to learn semi-supervised
sparse linear models in MSI data. Starting from regularized learning models
and structural information inherent to MSI data, we make use of the graph
Laplacian to embed first, the natural ordering of them/z variables and, secondly
the spatial location of the spectra. Thereby, smooth quadratic penalties are
imposed over neighboring nodes representing in the first case variables and
in the second one data points. These penalties modify the standard learning
algorithm resulting in an equivalent LASSO formulation that can be solved
efficiently. Moreover the lack of labeled data, typical of MSI experiments, is
circumvented through modeling the predicted responses via the graph Laplacian.
The applicability of the proposed approach is explored in a mouse brain MSI
data set to distinguish amongst four anatomical regions, and it is compared
to other learning models that do not, or partially, incorporate the structural
information of MSI data. The presented case study shows that sparse linear
models can already provide significant informative insight to assess tissue type,
structure, and content. Additionally, our approach also holds value for more
fundamental exploratory studies of tissue as it can highlight similarity in content
between different tissue areas. Further work in this direction seems promising
and should find applicability as more MSI data sets become available.





Chapter 6

Entropy based selection for
spectral clustering

Although many clustering algorithms have been proposed
for the analysis of gene expression data [98], the validity of
the generated partitions is often assessed using the full data set.
Therefore future test genes from a subsequent stage, lack of a model
assigning them to one of the initial clusters. In this context, we
explore the use of a particular spectral clustering formulation that
incorporates an extension for out-of-sample points [9]. A clear
advantage of the proposed method is the possibility to train and
validate the clustering model [8, 9]. We make use of this algorithm
to cluster genes in groups based on their expression values. Firstly,
the clustering model is built upon a selected subset of informative
genes and, in a second stage the model is used to infer cluster
memberships for the remaining genes. Informative genes are
selected via entropy maximization, related to the underlying density
distribution of the data set. This subsampling scheme greatly
reduces the computational burden in large number of genes while
the out-of-sample extension provides a clustering model for new
data points. Application on both synthetic and real gene expression
data supports the usefulness of this approach.

89
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6.1 Kernel k-means and Spectral Clustering

In contrast to the classification or regression tasks earlier discussed, the goal
of clustering consists in partitioning a given data set into groups or clusters
such that the data points belonging to the same group or cluster, will be more
similar to each other than points in different clusters. This process is achieved
by discovering groups and identifying interesting distributions and patterns in
the underlying data in an unsupervised manner, that is by forming separated
groups of data points within the complete dataset. In this scenario, given data
D = {xni } the goal is to learn a function f : X → {1, . . . , k}, which assigns
each data point xi to a corresponding cluster. The data set D is then broken
down into a number of k ≤ n clusters C = {π1, . . . , πk}, where data points
falling into the same cluster have a high within-cluster similarity and at the
same time low similarity to all other data points not in the same cluster.

The assumption behind traditional linear clustering techniques is that the data
space consists of elliptical regions. Consequently, these methods can not
detect clusters that are non-linearly separable in the input space. The problem
of non-linear separability of classes, can be circumvented by mapping the
observed data to a higher dimensional space in a nonlinear way so that each
cluster for each class unfolds into a simple form. A first approach to tackle
non-linearity is kernel k-means [26, 121], where points are first mapped to
a higher-dimensional feature space using a non-linear function, and the data
points are then partitioned in this new space. Spectral clustering [8, 9, 69, 95] is
another alternative that has strong connections with graph theory [23]. The core
algorithm uses the eigenvectors of an affinity matrix to group the data points.
These two methodologies can nevertheless be formulated in terms of kernel
functions. Introducing these techniques in microarray data analysis allows for
dealing with both high-dimensional data and nonlinear relationships in the data,
since the kernel trick enables computations for high-dimensional input spaces.

6.1.1 The kernel k-means algorithm

Kernel k-means clustering can be considered as a generalization of the k-means
clustering algorithm. As usual, we assume our original data to be mapped to
some feature space F via the function ϕ(·) : X → F . Hereby, we follow the
formulation earlier exposed in [83]. Given a set of data points {x1, . . . ,xn},
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where each data point is represented in a d dimensional space, a smooth,
continuous non-linear mapping ϕ(·) from the input space to the feature space,
the goal is then to partition the data set into k clusters C = {πc}kc=1, while
minimizing the within-cluster sum of squares, that is:

min
C

k∑
c=1

n∑
i=1

Iic‖ϕ(xi)− µϕc ‖22 , (6.1)

where Iic = 1 if xi ∈ πc and zero otherwise. For each cluster, µ1, . . . ,µk
represent the centers or centroids. Contrary to k-means, here the centroids are
implicitly defined in the feature space as

µϕc = 1
|πc|

n∑
i=1

Iicϕ(xi) ,

where |πc| denotes the size of clusters πc. Application of the kernel trick results
in

‖ϕ(xi)− µϕc ‖22 =K(xi,xi)−
2
|πj |

n∑
j=1

IjcK(xi,xj) + . . .

+ 1
|πc|2

n∑
j,l=1

IjcIlcK(xj ,xl) .

(6.2)

The key issue in extending traditional k-means to kernel k-means simplifies to
computation of distance in the kernel induced space. Assigning a data point xi
to a cluster is

Iic =
{

1 ‖ϕ(xi)− µϕc ‖22 ≤ ‖ϕ(xi)− µϕq ‖22, ∀c 6= q, c, q = 1, . . . , k
0 otherwise .

(6.3)

With respect to standard k-means clustering, the general structure of algorithm
is preserved in the kernel version. Nevertheless, there are two main differences
between both schemes, namely the non-linear mapping via the kernel trick and
the lack of an explicit centroid in the feature space. The mapping from the
feature space back to the input space is called the pre-image problem. Typically
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the exact pre-image of a given ϕ(x) does not exist and therefore one can only
approximate it [55]. Instead, we consider a pseudo-centroid defined as the data
point that is closest to the centroid in the feature space [83], i.e.

min
µc, xi∈πc

‖ϕ(xi)− µϕc ‖22 , (1 ≤ c ≤ k) . (6.4)

Similar to standard k-means, convergence to the global optimum for kernel k-
means is not guaranteed. The non-convexity nature of the optimization problem
(6.1) is sensible to the initialization. Multiple runs are thus often required.

6.1.2 Spectral clustering

To overcome the non-convexity in greedy k-means algorithms, spectral
clustering methods relax the original problem in a way that global optimal
solutions can be found. Spectral clustering techniques can be regarded as
relaxations of graph cut problems, with nodes representing data points and
edges the pairwise similarity among them. Clustering then corresponds to
partitioning the nodes in the graph into groups. Such a division of the graph
nodes in two disjoint sets is called a graph cut [23].

In the special case of a partitioning of the data into two groups, we aim to
learn a clustering function f : X → {+1,−1}. The set of data points is
represented by graph G = (V,E) and similarity matrix Wij = wij ≥ 0, where
wij can be interpreted as the weights on the edges connecting nodes i and j
in a graph. For wij = 0, there is no edge from i to j, i.e. W plays the role
of an adjacency matrix often taken as the RBF kernel K(xi,xj) = Wij =
exp(−‖xi − xj‖22/σ2).

In this way, the problem of clustering consists in minimizing the cost of cutting
the graph into k disjoint sets π1, ..., πk. Let di =

∑
j wij , called the degree

of node i, and D ∈ Rn×n a diagonal matrix with Dii = di. Furthermore, let
y = [y1, . . . , yn]> ∈ {+1,−1}n a vector of labels that are assigned to the data
items by the clustering algorithm. Then the cut-cost of splitting the graph in
two partitions according to a given clustering is given as

n∑
yi 6=yj

wij = 1
2

 n∑
i,j=1

wij−
n∑

i,j=1
yiyjwij

= 1
2
(
1>W1−y>Wy

)
= 1

2y>(D−W)y .
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(6.5)

In order to favor balanced clusters Shi and Malik [95] proposed the so-
called normalized cut NCUT. Minimizing cut-like costs is known to be NP
complete [23]. Nevertheless, allowing y to take real values, an optimal y∗ can
be computed as the solution of the following optimization problem:

min
y

y>(D−W)y (6.6)

s.t. y>Dy = 1 .

The relaxed solution corresponds to the eigenvector associated to the second
smallest eigenvalue of the generalized eigenvector problem

(D−W)y = λDy . (6.7)

Clustering is then performed by thresholding y∗ appropriately. The matrix
L = D −W, is the so-called Laplacian matrix of the graph. The top k
eigenvectors provide relaxed clustering indicators y ∈ Rn. In this setting,
however, there is no clear way as how test data points (out-of-sample) should
be assigned to the initial clusters, since the embedding eigenvectors are only
defined for the full data set. In [33] the authors employed the Nyström method
in order to approximate eigenvectors and reduce the computational load for
large scale applications. In contrast to this approach, the authors in [8,9] present
the spectral clustering methods within a primal-dual optimization framework.
This way, the clustering model obtained can be readily applied to new data.
Such formulation arises from the context of Weighted Kernel PCA and LS-
SVMs [100], where the projected variables zi = w>ϕ(xi), i = 1, . . . , n have
maximal variance and clusters structures become tighter. For a symmetric
positive definite weighting matrix V (typically chosen to be diagonal) the
following primal problem [8, 9]

min
w,z

γ
1
2z>Vz− 1

2w>w (6.8)

s.t. z = Φw , V = V> > 0 , (6.9)

where z = [z1, . . . , zn]> is the compact form of the projected variables
zi = w>ϕ(xi), V = diag([v1, . . . , vn]) is the weighting matrix and Φ =
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[ϕ(x1)>; ...;ϕ(xn)>] is the n× dh feature matrix. An eigenvalue problem is
obtained after elimination of primal variables

VΩα = λα , (6.10)

where Ωij = K(xi,xj) = ϕ(xi)>ϕ(xj) and λ = 1/γ. Note that, if the
weighting matrix V is set to the inverse of the graph degree matrix V = D−1,
the eigenvalue problem (6.10) is equivalent to the binary NCUT (c.f. (6.7)) and
random walk spectral clustering [64]. For a new test point x, its projection

z(x) =
n∑
i=1

αiK(xi,x) ,

defines the extension to out-of-sample data points. To project on more
eigenvectors

z(r)(x) =
∑
i=1

α
(r)
i K(xi,x), r = 1, . . . , k . (6.11)

The top k eigenvectors α, of D−1Ω provide an embedding that contains the
clustering information of the original data points. One of the main advantages
of this formulation is the possibility to evaluate the model on out-of-sample
data points. This is important for predictive capabilities, model selection and
even large-scale data analysis. Other techniques such as the Nyström method
approximate the eigenvectors for out-of-sample data points. In general, the
relaxed solutions provided by spectral clustering methods are real-valued and
do not provide cluster indicators. In [95], the authors propose to apply the
normalized cut in a recursive way, that is the current partition is subsequently
divided if the NCUT is below some pre-specified value. The process is repeated
until k clusters have been found. Another alternative to obtain k clusters is
called re-clustering. This approach consists of computing the top k eigenvectors
of the eigenvalue problem in (6.7) or (6.10) and then performing k-means onto
the eigenvector space. The general approach of spectral methods for clustering
of genes expression data is summarized in Figure 6.1.
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Figure 6.1: Top row: Gene similarities induce a graph. Middle row: Genes
embedding via K(·, ·) similarity function. Bottom row: Eigenvectors or score
variables provide clustering.
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6.2 Selecting informative data points

A major drawback in kernel-based learning is that the amount of computation
required to find the solution scales with the number of data points n. Hence,
using the entire data setD to compute the clustering model becomes prohibitive
for large values of n. Approximation to the eigendecomposition of the Gram
matrix can be computed by the Nyström method (which is used for the
numerical solution of eigenproblems) [117]. This is achieved by carrying
out an eigendecomposition on a smaller system of size m � n, and then
expanding the results back up to n dimensions.

In the context of estimation in the primal space [100,116], it has been motivated
to use a subset m� n to compute an approximation of the feature map ϕ̂. In
general, the selection of the subset of size m, is performed before the model
estimation. Here, instead of directly approximating ϕ̂, we aim at selecting a
subset of informative data points (genes) to construct the clustering model in
(6.10). This approach leads to a reduced eigenvalue problem. In order to select
the working subset, we seek to maximize the quadratic Renyi HR [100]. In this
case, given a fixed-size m, the goal is to select informative genes maximizing

HS = − log
∫
p(x)2dx

HS ≈ HR =
∫
p̂(x)2dx = 1

m2 1>Ωh1 . (6.12)

The use of this active selection procedure can be quite important for large scale
problems, as it is related to the underlying density distribution of the data set.
Here, Ωh is a m×m Parzen kernel estimator of width ĥ. The entropy criterion
ensures that the selected subset is spread over the entire data region and not
only concentrated on a certain area of the data set. The kernel bandwidth of
the entropy based selection criterion is determined using a plug-in method as
described in [25]. Criterion (6.12) can be iteratively maximized through the
greedy strategy summarized in Algorithm 5.
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Algorithm 5 Subset selection maximizing Renyi’s entropy.
Input: Training set D = {xi}ni=1,xi ∈ Rd, size of subset m. Output: Active
set A = {xj}mj=1 ⊂ D.

1: Select randomly an initial active set of size m, A = {xj}mj=1 ⊂ D.
2: repeat
3: Compute HR(A).
4: Randomly pick two data points as x∗ ∈ A, and x+ ∈ D \ A
5: LetW = {A \ {x∗}} ∪ {x+}
6: if HR(W) > HR(A) then
7: swap(x+,x∗)
8: end if
9: until change in HR value is too small

10: return A

It has been extensively reported that this strategy performs far better
than random picking, often requiring a smaller working set [25, 30, 100].
Alternatively, similar to Radial Basis Networks (RBF) applications [68, 76], we
also consider the k-means algorithm to select the working subset. That is, first
we perform k-means clustering on the input space and secondly use the centroids
(such as in equation (6.4)) as the working subset A. The final proposed spectral
clustering algorithm combined with working subset is described in Algorithm
6. For the re-clustering phase, we follow the k-means implementation in [29]
which uses the triangle inequality to speed up computations1.

6.2.1 Model selection

Opposite to standard clustering settings, we consider in all our simulations a
full learning framework. That is, we made a clear distinction between training,
validation and test phases. The number of clusters k and the kernel parameter
σ2 are chosen such that the resulting partition of data points into clusters
C = {π1, . . . , πk} is optimal with respect to a certain index. To validate
our results we compute the Caliński and Harabasz (CH) index [18], which is
reported to perform consistently among several other indexes [66]. The CH

1MATLAB code available at http://cseweb.ucsd.edu/~elkan/fastkmeans.
html

http://cseweb.ucsd.edu/~elkan/fastkmeans.html
http://cseweb.ucsd.edu/~elkan/fastkmeans.html
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Algorithm 6 Spectral clustering
Input: Training set D = {xi}ni=1,xi ∈ Rd, active set A = {xj}mj=1 ⊂ D.
Number of clusters k. Kernel parameter σ2. Ouput: Clustering partitions
C = {πc}kc=1 .

1: For A, compute Ωjl=K(xj ,xl)∈Rm×m, j, l = 1, . . . ,m.
2: Obtain top k eigenvectors α(r) ∈ Rm×1, r = 1, . . . , k from (6.10).
3: ∀xj ∈ A, compute the score variables z(r)

j =
∑m
l=1 α

(r)
l K(xl,xi).

4: Denote zj = [z(1)
j . . . z

(k)
j ] and Z = [z(1) . . . z(k)] ∈ Rm×k, as the score

variables space.
5: Perform standard k-means on Z to obtain cluster centroids µc ∈ Rk, and

partitions C = {π1, . . . , πk}, c = 1, . . . , k.
6: Obtain ẑ(r)

i =
∑m
j=1 α

(r)
j K(xj ,xi), for out-of-sample data points, xi ∈ D.

7: Assign xi to πc∗ ∈ C, where c∗=argminc‖ẑi − µc‖22.
8: return C = {πc}kc=1.

index is defined as:

CH(k) = trace(SB)/(k − 1)
trace(SW )/(n− k) , (6.13)

where SB represents the between-cluster dispersion matrix and SW the within-
group dispersion matrix. The value of k, which maximizes CH(k), is regarded
as specifying the number of clusters [31]. Contrary to the standard approach in
clustering of selecting the parameters on the basis of the full data set, we make
use of a randomly selected validation set. Using the out-of-sample extension
in (6.11), we can readily compute the CH on the score variables space Z.
Additionally, we tune the value of the σ2 parameter as well, thus choosing the
pair (σ2∗, k∗) that maximizes CH on the validation score variables.

A wide number of clustering quality measures [41] can be readily used in
combination with the spectral clustering algorithm [83]. The only difference
resides in that computation for such indexes is carried on the projected variables
Z (also on eigenvectors [69, 83]), rather than in the original data set X. In the
case of kernel k-means, however, clustering indexes can not be directly used as
they are defined for finite dimensional spaces. To evaluate clustering indexes in
more general feature spaces, one must rewrite them first in terms of dot products.
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In fact, we have previously extended the CH index along with the silhouette
score [89] to more generalized versions in terms of kernel evaluations [83].

6.3 Experiments

In order to test the proposed methodology, we first create a set of toy examples
both including linear and nonlinear clustering problems. Such problems allow
us to observe the impact that the subsampling method, subset size m, number of
clusters k and kernel parameter σ2, have on the clustering output and to refine
the general approach. Additionally, we test our methodology on a standard
yeast microarray data set [16] to cluster genes based on their expression value.
In general, we will observe that we can set m < n without any significant
decrease in the accuracy and quality of the clustering solution.

6.3.1 Toy data

We consider first a two-dimensional artificially generated data set with k = 15
pre-defined clusters and n = 5000 total number of data points. This data set
(S1)2 presents a varying complexity in terms of data distribution, overlap and
noise [34]. Secondly, we vary the subset size m ∈ {100, 300, 500, 1000} and
the number of clusters in the range k = 2, . . . , 20. Finally, we calculate the
average maximum CH index over 20 randomizations on validation data. In
Figure 6.2, the original data set S1 is shown, along with the entropy selected
data points. Clustering partitions k = 2, 3, 15, with maximum CH index are
also illustrated. Optimal values of the CH index are consistently attained
k = 2, 3, 15, hence indicating the multi-scale nature of the data set. After
k = 15 clusters, there is an evident decrease in the index performance.

2http://cs.joensuu.fi/sipu/datasets/

http://cs.joensuu.fi/sipu/datasets/


100 ENTROPY BASED SELECTION FOR SPECTRAL CLUSTERING

m = 500 Model selection

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16 18 20
10

2

10
3

10
4

 

 
m = 100
m = 300
m = 500
m = 1000

Number of clusters k

A
v
e
ra

g
e
m
a
x
im

u
m

C
H

in
d
e
x
.

k = 2 k = 3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

k = 13 k = 15

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 6.2: S1 data set clustering results. Top row:(left) Full data set and
entropy selection with m = 500 data points. (right) Average maximal CH
index for varying subset size m and number of clusters k. Optimal values are
consistently attained at k = 2, 3, 15 clusters. Performance falls clearly off after
k = 15 clusters. Middle row: Cluster partitions with average maximum CH
index for k = 2, 3. Bottom row: Cluster partitions with average maximum
CH index for k = 13, 15.
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6.3.2 Non-linear cluster structures

In order to illustrate the benefit of using a kernel-based method and quantify
whether the entropy subsampling is effective or not, we consider a classical
non-linear data set in spectral clustering. The data set consists of a highly dense
Gaussian cloud enclosed by two concentric rings-type clusters of lower density.
We refer to this data set as CLOUD&RINGS. In the first stage, we vary the
subset size from m ∈ {100, 300, 500, 1000} from a total number of n = 5000
data points. Finally, we compare three subsampling methods namely: random,
k-means and entropy, reporting performance in terms of the CH index and the
adjusted rand index (ARI) with respect to the true clusters [49]. The expected
value of the adjusted Rand index has value zero and the maximum value of
the adjusted Rand index is 1, that is a perfect agreement between the produced
clustering and the reference. Table 6.1 summarizes the obtained results and
Figure 6.3 represents the data structure along with the selected data points.

m random k-means entropy

CH ARI CH ARI CH ARI

100 1.86E+05 0.531 2.16E+05 0.582 2.28E+05 1
300 2.17E+05 0.507 1.39E+05 0.588 3.04E+05 1
500 1.96E+05 0.566 2.1E+05 0.571 4.16E+05 1
1000 2.1E+05 0.561 1.99E+05 0.581 4.43E+05 1

Table 6.1: Numerical performance on the CLOUD&RINGS problem with with
n = 5000, k = 3 and σ2 = 1.8. The entropy subsampling attains a perfect
agreement (ARI = 1) with as few as m = 100 data points. Neither random
subsampling nor k-means reach good performance.

Clearly the entropy selection provides a superior estimation of the underlying
data distribution, therefore allowing a better final clustering. The selected
data points are nicely spread over the data set. Interestingly, the highly dense
Gaussian cloud requires few number of data points to be represented, hence
we could think of it as a compressed codebook. On the contrary, random and
k-means subsampling are somewhat fooled by the Gaussian cloud as they select
almost all the data points from this high density region. These two approaches
fail thus at capturing the structure of the two rings (cf. Figure 6.3).
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Figure 6.3: Comparison of three subsampling schemes for different subset size
m on the CLOUD&RINGS problem. Bottom row: Best clustering result for
each subsampling scheme.
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6.3.3 Simulated and real data gene expression data

In order to test our kernel-based clustering approach, we consider a simulated
data and a yeast galactose microarray data set that have been extensively
reported in previous studies. The simulated data (SIMULATED1000) set
consists of four clusters of 1000 genes under 100 conditions [65]. The yeast
galactose microarray data set (YEASTG) represents a time series showing the
expression profiles of yeast growing with 205 genes measured under 20 different
perturbations for the GAL pathway [50]. Given that information over the true
partitions is known, we employ the adjusted rand index (ARI) to compare
our clustering approach against previously reported methods [120]. Table 6.2
summarizes the results of the synthetic data set for different subset sizes. We
report the CH index for both the entropy subset and the final projected set of
genes.

m CH CH ARI
subset projected

100 2.4E+10 3.3E+11 0.99
200 4.9E+10 3.3E+11 0.99
300 7.4E+10 3.3E+11 0.99
400 9.9E+10 3.3E+11 0.99
500 1.2E+11 3.3E+11 0.99

Table 6.2: SIMULATED1000 data set. CH index for the entropy subset and the
full projected set of genes and ARI. The size of the subset m is varied, whence
only 100 entropy selected genes suffice to attain an almost perfect agreement
(ARI = 0.99) with respect to the true partition.

Similarly to the simulated data case, we examine the effect of the subset size
on the YEASTG microarray data set. Again, values for the CH index in both
the entropy selected genes and the full set of projected genes are reported along
with the ARI scores. Results are summarized on Table 6.3.
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m CH CH ARI
subset projected

50 58 1.5E+02 0.14
100 2.1E+03 1.5E+04 0.92
150 3E+03 4.6E+03 0.92
200 1.7E+04 1.1E+04 0.92

Table 6.3: YEASTG microarray data set. CH index for the entropy subset and
the full projected set of genes and ARI. The size of the subset m is varied,
whence 100 entropy selected genes suffice to attain an adjusted rand index ARI
= 0.92 with respect to the true partition.

Comparison with other clustering algorithms [120] are reported in Table 6.4.
Note, however, that we employed only half of the genes to construct the
clustering model.

Simulated Yeast galactose
(1000, 100, 4) (205, 20,4)

proposed 0.99 (4) 0.92 (4)
CLIC 1 (4) 0.97 (4)
k-means 0.68 (4) 0.87 (4)
HPCluster 1 (4) 0.83 (4)
CRC 0.90 (6) 0.97 (4)
MCLUST 1 (4) 0.97 (4)
k-boost 0.72 (3) 0.95 (4)
CLICK NA (1) 0.81 (2)

Table 6.4: Adjusted rand indexes of several clustering algorithms for the
SIMULATED1000 data set and the YEASTG microarray data set.

In order to illustrate the final ordering of the genes and reveal the cluster
structure, the affinity (kernel) matrices of the entropy selected genes and the
full set of projected are shown in Figure 6.4. On the left hand side, every row
represents each of the 100 entropy selected genes used to build the spectral
clustering model. Genes assigned to each of the 4 clusters identified by spectral
clustering are shown on the right hand side. We appreciate two prominent
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clusters, whence particularly cluster (4) reveals a large homogeneous group of
under-expressed genes.

Figure 6.4: Affinity matrices revealing the clustering structure that is preserved
both in the entropy selection phase and the extension to the full group of genes.
Left: Entropy selected genes. Right: Full set of genes. The lower block
represents the homogeneous cluster (4) of under-expressed genes.

6.3.4 The NCI60 data set

An example study is presented that uses NCI60 cell line data [88]. This large-
scale data set consists of n = 22283 gene probes and d = 108 biological
samples collected from various human cancer cell lines. As suggested by the
authors, before clustering we centered in the gene direction as to make the
subsequent analysis independent of the amount of each gene’s mRNA in the
reference pool. In a first attempt to cluster this large dataset, we let the subset
size to take values m ∈ {100, 200, 500, 1000, 2000, 3000}, and construct a
grid for the parameters k ∈ [2, ..., 20], σ ∈ [10−3, ..., 500]×

√
d. Under these

settings, we report in Figure 6.5, CH values averaged over 20 randomizations.
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Figure 6.5: NCI60 microarray data set. We report the average CH index with respect to the number of clusters k and
the subset size m ∈ {100, 200, 500, 1000, 2000, 3000}. In all cases, the CH index peaks at k = 2, hence suggesting
the presence of large groups of genes organized in a hierarchical structure.
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The monotonic decrease of the average CH values indicates the presence of
two large prominent groups of genes. In turn, these results suggest that a
global clustering approach might not be enough to reveal other smaller clusters.
Moreover, given the relatively noisy character of microarray expression data,
the more subtle clusters are likely to be indistinguishable from the noise. To
this end, we adapt our algorithm to work in a hierarchical divisive fashion, that
is, starting from the full set of genes we recursively partition it into smaller
groups forming a tree. At each node of this tree, we construct first a subset
using the entropy method, tune the parameters and finally cluster the remaining
genes. A maximum depth of 10 levels is fixed and we restrict our search to
a maximum of number of clusters kmax = 5. Since clustering of the data
occurs at different levels, and thus different resolutions, we reduce the range
for σ at each level. The size of the subset is fixed to half of the data points
at each level with mmin = 100 and mmax = 1000 as extreme values. Again,
the best pair (k, σ) is selected according to the average maximum CH over 20
randomizations.

Our procedure delivers a hierarchical tree with 40 leaves. At each level the
average maximum CH was once more attained at k = 2, hence we end up
having a binary tree. Figure 6.6 displays the tree organization in the form of a
dendrogram. Leave nodes indicate each of the 40 clusters found by our method,
with the top-most node representing the full data set. The lower panel illustrates
the distribution of the genes into the 40 clusters. We can readily appreciate
three big clusters accounting for about 33% of the data set.

Further, we narrow down our analysis to those cluster groups containing less
than 200 genes and perform a standard functional enrichment analysis using
the web-tools DAVID3 [48] and Babelomics4 [4, 5]. The most statistically
significant terms involving biological processes are listed in Tables 6.5 and 6.6.
Notice that the clusters analysis reveals meaningful GO annotation associations
and, in general, they tend to contain genes which represent specific biological
processes. For example, the genes which are members of cluster 38 are involved
in immune response mediated by leukocyte activation. Likewise, the members
of cluster 23 are also involved in immune response, however, their mode of
action is more specific to antigen mediated immune response, as is evident
from inspection of the terms presented in Table 6.5. Cluster 19 contains genes

3http://david.abcc.ncifcrf.gov/
4http://babelomics.bioinfo.cipf.es/

http://david.abcc.ncifcrf.gov/
http://babelomics.bioinfo.cipf.es/
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Figure 6.6: NCI60 data set. Top. Dendrogram representation of our
hierarchical approach. At each level the optimal number of partitions was
found to be k = 2. The result is then a binary tree with a total of 40 clusters
on the leaves. Bottom. Distribution of the genes across the 40 clusters. Three
major clusters can be easily distinguished as they account for about 33% of the
data set.

which are associated almost exclusively with neurological processes such as
neuron differentiation and cell communication. Cluster 30 is composed of genes
which are predominately involved in the cell cycle and its regulation. The genes
in Cluster 27 are involved in g-protein coupled signaling, whereas cluster 35
clearly represents genes exclusively associated to metabolism and catabolic
processes.

Finally, we look at the terms in cluster 38 involving immune response and
leukocyte activation, and explore how they relate to each other in the gene
ontology annotation. The corresponding tree structure is presented in Figure
6.7.
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Cluster
(size)

Term (p-value)

cluster
38 (50)

lymphocyte activation (2.2E-4), B cell differentiation (5.9E-
3), B cell activation (5.9E-3), T cell activation (5.9E-3), germ
cell development (5.9E-3), elevation of cytosolic calcium ion
concentration (8.5E-3), cytosolic calcium ion homeostasis
(9.9E-5), ameboidal cell migration (9.9E-3).

cluster
19 (55)

negative regulation of neuron differentiation (5.4E-3), synaptic
transmission (6.7E-3), multicellular organismal process (7.7E-
3), cell-cell signaling (9.7E-3), cell communication (1.0E-2),
localization (1.1E-2), transmission of nerve impulse (1.2E-
2), neurological system process (1.2E-2), anatomical structure
morphogenesis (1.4E-2), ion transport (1.5E-2).

cluster
23 (71)

antigen processing and presentation of peptide antigen via
MHC class I (3.5E-3), antigen processing and presentation of
peptide antigen (9.8E-3), antigen processing and presentation
of endogenous peptide antigen via MHC class I (3.3E-2),
antigen processing and presentation of endogenous peptide
antigen (3.3E-2), antigen processing and presentation (4.0E-2),
metabolic process (4.0E-2), primary metabolic process (4.3E-
2), regulation of cellular metabolic process (4.3E-2), antigen
processing and presentation of endogenous antigen (4.4E-2),
regulation of primary metabolic process (4.5E-2).

cluster
30 (78)

regulation of cell cycle process (1.9E-2), signal transduction
(2.1E-2), cell-cell signaling (2.7E-2), cell surface receptor
linked signal transduction (3.1E-2), cell communication (3.1E-
2), maintenance of protein location in nucleus (3.7E-2),
regulation of mitotic cell cycle (3.8E-2), intracellular signaling
cascade (5.8E-2), regulation of cell cycle (7.9E-2), protein
localization in nucleus (8.0E-2).

Table 6.5: NCI60 data set. Most significant functional terms associated to each
the clusters. Corresponding p-values are indicated between brackets.
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Cluster
(size)

Term (p-value)

cluster 27
(93)

G-protein coupled receptor protein signaling pathway (1.8E-
3), cell surface receptor linked signal transduction (3.6E-3),
second-messenger-mediated signaling (3.7E-3), secretion (8.1E-
3), behavior (2.4E-2), cation homeostasis (3.1E-2), cellular
metal ion homeostasis (3.6E-2), G-protein signaling, coupled to
cyclic nucleotide second messenger (3.8E-2), immune response
(3.9E-2), metal ion homeostasis (4.2E-2).

cluster
35 (106)

aminoglycan catabolic process (6.0E-3), polysaccharide
catabolic process (1.2E-2), carbohydrate catabolic process
(3.8E-2), translational elongation (3.8E-2), chitin metabolic
process (4.6E-2), detection of bacterium (4.6E-2), chitin
catabolic process (4.6E-2), translation (5.6E-2), aminoglycan
metabolic process (5.7E-2), immune response (7.9E-2)

cluster
33 (148)

behavior (7.5E-4), monocarboxylic acid metabolic process
(1.0E-2), regulation of synaptic transmission (1.2E-2),
associative learning (1.5E-2), cellular homeostasis (1.5E-
2), homeostatic process (1.6E-2), regulation of secretion
(1.6E-2), regulation of transmission of nerve impulse (1.7E-
2), carbohydrate metabolic process (1.9E-2), regulation of
neurological system process (2.1E-2)

cluster
40 (155)

nucleobase, nucleoside, nucleotide and nucleic acid metabolic
process (8.7E-17), cellular nitrogen compound metabolic
process (1.3E-14), nitrogen compound metabolic process
(7.2E-14), cellular macromolecule metabolic process (4.8E-13),
macromolecule metabolic process (1.1E-10), cellular metabolic
process (5.5E-9), cellular macromolecule biosynthetic process
(3.1E-8), primary metabolic process (3.8E-8), macromolecule
biosynthetic process (4.0E-8), DNA metabolic process (8.4E-8)

Table 6.6: NCI60 data set. Most significant functional terms associated to each
the clusters. Corresponding p-values are indicated between brackets.
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Figure 6.7: NCI60 data set. Gene ontology tree structure for the most
significant terms of the genes in cluster 38.
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6.4 Summary

With the ongoing availability of large microarray data sets, clustering algorithms
should move also forward to reduce large computational complexity and
memory requirements. This study presents a modified spectral clustering
approach, which handles large data sets and it is not limited to microarray data
sets. Our method is based on a novel concept in which informative genes (or
data points) are first selected using an entropy criterion. This selection step
leads to a more compact and better representation of the full data set than a
random selection. The entropy genes, in turn, form the support set upon which
the spectral clustering model is developed. Moreover, in order to detect subtle
clusters in large scale data sets and therefore avoid forming oversimplified
clusters, we adapt our methodology to work in a hierarchical fashion with
clusters being refined at each level.



Chapter 7

General Conclusions

7.1 Concluding Remarks

In this thesis we have discussed a series of methodologies for learning
regularized models and kernel based methods, mostly based on the least
squares support vector machine (LS-SVM) algorithm. Core LS-SVM models
in supervised learning are extended towards variable selection problems and
adapted to exploit the structure of the algorithms as well as incorporate prior
problem information. In particular the presented methodologies are aimed for
data sets with few number of data points and large number of variables, which
often appear in the context of microarray and mass spectrometry data analysis.
We explore the applicability of the proposed methodologies through a range of
problems in classification, variable selection, prediction and clustering, always
giving special attention to issues in model selection and algorithm efficiency.
The work presented the following topics:

• Low rank-updates for linear kernels. Application of low rank
updates/downdates to the structure (linear kernel) of the LS-SVM
classifiers was found to be very suitable for variable selection wrapper-
like algorithms. By exploiting the inherent block structure of the LS-SVM
solution, an efficient method for computing the leave-one-out enabled us
to evaluate the performance of potentially relevant subsets of variables.
Furthermore, in the special case of the linear kernel, algorithms for fast

113
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forward and backward search are devised such that matrix inversions are
at most completely avoided.

• Polynomial componentwise LS-SVM. The core learning algorithm is
the (componentwise) LS-SVM classifier that can be efficiently trained
by solving just one system of linear equations. The main concept
presented, however concerns the the use of a valid explicit feature map
for polynomial kernels in an additive construction. By exploiting the
structure of the feature map, it is demonstrated how the model parameters
of the classification/regression problem can be easily modified and
updated when new variables enter the current model, while still providing
non-linear modeling capabilities. This is achieved by the use of low
rank updates which in turn constitutes an algorithmic tool for the design
of sequential variable ranking algorithms in high dimensional settings.
Moreover relevant variables can be robustly ranked using the closed
form of the leave-one-out (LOO) error estimator directly obtained as a
by-product of the low rank modifications.

• Efficient model selection based on LOO estimator. We extend the use
of the efficient leave-one-out formulation of LS-SVM classifiers to the
domain of variable selection. In combination with low rank updates we
arrived at a very fast and robust methodology to rank important variables.

• Sparse linear models for structured data. Starting from regularized
learning models and structural information inherent to MSI data, we
make use of the graph Laplacian to embed first, the natural ordering
of the m/z variables and, secondly the spatial location of the spectra.
Thereby, smooth quadratic penalties are imposed over neighboring nodes
representing in the first case variables and in the second one data points.
These penalties modify the standard learning algorithm resulting in an
equivalent lasso formulation that can be solved efficiently.

• Unlabeled data. In order to cope with the lack of labeled data, typical to
MSI experiments, we proposed to model the predicted responses via the
graph Laplacian. The applicability of the proposed approach is explored
in a mouse brain MSI data set to distinguish amongst four anatomical
regions, and it is compared to other learning models that do not, or
partially, incorporate the structural information of MSI data.
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• Entropy selection for spectral clustering. For clustering of microarray
data involving thousands of genes, e.g. 22000, we have introduced
a subset selection mechanism based on entropy selection. Such
subsampling not only provides informative genes best representing the
underlying data set, but it also makes the spectral clustering tractable
for large scale problems. Additionally, we have shown how to perform
spectral clustering in a hierarchical fashion to unravel subtle clusters that
otherwise are difficult to detect using a global partitioning approach.

7.2 Future research and open issues

The work presented in this thesis drifts gradually from a theoretical perspective
towards practical examples and applications on real-life data. Nevertheless, it is
important to highlight some open issues and future directions.

• Through this thesis we have explored three different learning paradigms:
(i) supervised classification using LS-SVM, (ii) unsupervised learning
with spectral clustering and (iii) semi-supervised learning through sparse
linear models. The latter represents best scenarios in practice since
prior knowledge is often available. Incorporation of such information
into the learning models covers a major direction for future extensions.
As we have seen on the MSI application, the structural information is
introduced in the form of constraints or extra penalty terms. In the case of
clustering of genes, for instance, Gene Ontology (GO) databases would
help increase the correlation between the learning problem at hand, the
measured experiments and the background knowledge collected over
many years. Fully unsupervised modeling in bioinformatics is perhaps
overly optimistic.

• Successful application of a kernel method and/or regularized models
depends greatly on appropriate kernel functions and correct tuning of
associated hyper-parameters. We have shown how the fast leave-one-
out criteria for LS-SVM based model not only provides a statistically
sounded methodology but also enables efficiently algorithmic short-cuts.
Nevertheless, resampling techniques such as bootstrapping and boosting
could enhance robustness and deliver confidence intervals. Additionally,
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the derivation of tighter bounds on the generalization error could initially
provide a fast baseline approach.

• Extensions of the presented spectral clustering algorithm to more general
hierarchical models. For example, combination of top-down and bottom-
up schemes as a refinement step for the discovered clusters. Additionally,
the use of gene ontology could serve as a constraint set during the
refinement phase or even help determine the number of clustering levels.
This way, one might state the problem in a semi-supervised setting.

• Another direction for future research consists in extending many of the
presented algorithms to further incorporate structural information and
prior knowledge coming from heterogeneous sources of information.
If available, putting together genomic information from, for instance
microarray data, with mass spectrometry data sets should provide a dual
view at the gene and protein levels.

• Unfortunately, the lack of publicly available data sets in Mass Spectral
Imaging (MSI) represents a major obstacle for the development and,
more importantly, the validation of newer methodologies and learning
algorithms. Additionally, this absence also prevents from further spread
of recent advances in data mining into the MS/MSI communities.
Therefore, standardization and available repositories will not only boost
up new MS/MSI applications, but it will also bridge the gap among
different research communities.



Appendix A

Benchmark results for linear
low ranked LS-SVM

This appendix presents detailed results of the benchmarking study which
complement those earlier exposed in Chapter 3.
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Appendix B

Benchmark results for
polynomial componentwise
LS-SVM

This appendix presents detailed results of the benchmarking study which
complement those earlier exposed in Chapter 4.

125



126
B

EN
CH

M
A

RK
RESU

LT
S

FO
R

PO
LY

N
O

M
IA

L
CO

M
PO

N
EN

T
W

ISE
LS-SV

M

BREAST DIABETES FLARE

1 2 3 4 5 6 7 8 9
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Number of ranked variables

A
v
e
ra

g
e
L
O
O

P
R
E
S
S

1 2 3 4 5 6 7 8 9

0.3

0.32

0.34

0.36

0.38

0.4

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r

1 2 3 4 5 6 7 8

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of ranked variables

A
v
e
ra

g
e
L
O
O

P
R
E
S
S

1 2 3 4 5 6 7 8
0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r

1 2 3 4 5 6 7 8 9
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Number of ranked variables

A
v
e
ra

g
e
L
O
O

P
R
E
S
S

1 2 3 4 5 6 7 8 9

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r



B
EN

CH
M

A
RK

RESU
LT

S
FO

R
PO

LY
N

O
M

IA
L

CO
M

PO
N

EN
T

W
ISE

LS-SV
M

127

GERMAN HEART IMAGE

0 2 4 6 8 10 12 14 16 18 20
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Number of ranked variables

A
v
e
ra

g
e
L
O
O

P
R
E
S
S

0 2 4 6 8 10 12 14 16 18 20
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r

0 2 4 6 8 10 12 14
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of ranked variables

A
v
e
ra

g
e
L
O
O

P
R
E
S
S

0 2 4 6 8 10 12 14
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r

0 2 4 6 8 10 12 14 16 18

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of ranked variables

A
v
e
ra

g
e
L
O
O

P
R
E
S
S

0 2 4 6 8 10 12 14 16 18
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r



128
B

EN
CH

M
A

RK
RESU

LT
S

FO
R

PO
LY

N
O

M
IA

L
CO

M
PO

N
EN

T
W

ISE
LS-SV

M

RINGNORM SPLICE THYROID

0 2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of ranked variables

A
v
e
ra

g
e
L
O
O

P
R
E
S
S

0 2 4 6 8 10 12 14 16 18 20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r

0 10 20 30 40 50 60
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of ranked variables

A
v
e
ra

g
e
L
O
O

P
R
E
S
S

0 10 20 30 40 50 60
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r

1 2 3 4 5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of ranked variables

A
v
e
ra

g
e
L
O
O

P
R
E
S
S

1 2 3 4 5

0.2

0.25

0.3

0.35

0.4

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r



B
EN

CH
M

A
RK

RESU
LT

S
FO

R
PO

LY
N

O
M

IA
L

CO
M

PO
N

EN
T

W
ISE

LS-SV
M

129

TWONORM WAVEFORM

0 2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of ranked variables
A
v
e
ra

g
e
L
O
O

P
R
E
S
S

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r

0 5 10 15 20 25
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of ranked variables

A
v
e
ra

g
e
L
O
O

P
R
E
S
S

0 5 10 15 20 25
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of ranked variables

A
v
e
ra

g
e
te
st

e
rr
o
r





Bibliography

[1] FDA-NCI Clinical Proteomics Program Databank. National Cancer
Institute, 2002. pages 27

[2] M.A. Aizerman, E.M. Braverman, and L. Rozonoèr. Theoretical
foundations of the potential function method in pattern recognition
learning. Automation and remote control, 25(6):821–837, 1964. pages
17

[3] A.L. Blum and P. Langley. Selection of relevant features and examples
in machine learning. Artificial Intelligence, 97:245–271, 1997. pages 24

[4] F. Al-Shahrour, J. Carbonell, P. Minguez, S. Goetz, A. Conesa, J. Tárraga,
I. Medina, E. Alloza, D. Montaner, and J. Dopazo. BABELOMICS:
advanced functional profiling of transcriptomics, proteomics and
genomics experiments. Nucleic Acids Res, 36(Web Server issue):W341–
6, July 2008. pages 107

[5] F. Al-Shahrour, P. Minguez, J.M. Vaquerizas, L. Conde, and J. Dopazo.
BABELOMICS: a suite of web tools for functional annotation and
analysis of groups of genes in high-throughput experiments. Nucleic
Acids Res, 33(Web Server issue):W460–4, July 2005. pages 107

[6] D.M. Allen. The relationship between variable selection and data
agumentation and a method for prediction. Technometrics, 16(1):pp.
125–127, 1974. pages 26

[7] U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, and
A.J. Levine. Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. Proc Natl Acad Sci, 96(12):6745–6750, 1999. pages 47

131



132 BIBLIOGRAPHY

[8] C. Alzate and J.A.K. Suykens. A weighted kernel PCA formulation with
out-of-sample extensions for spectral clustering method. In Proceedings
of the International Joint Conference on Neural Networks (IJCNN’06),
pages 138–144, 2006. pages 8, 89, 90, 93

[9] C. Alzate and J.A.K. Suykens. Multiway spectral clustering with out-of-
sample extensions through weighted kernel pca. IEEE Trans. Pattern
Anal. Mach. Intell., 32(2):335–347, 2010. pages 7, 8, 89, 90, 93

[10] C. Ambroise and G. J. McLachaln. Selection bias in gene extraction on
the basis of microarray gene-expression data. PNAS, 99(10):6562–6566,
2002. pages 54

[11] S. An, W. Liu, and S. Venkatesh. Fast cross-validation algorithms for
least squares support vector machine and kernel ridge regression. Pattern
Recognition, 40(8):2154–2162, 2007. pages 31

[12] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK user’s guide. Software - Environments - Tools. 9.
Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics.
xxi, 407 p., 1999. pages 41

[13] N. Aronszajn. Theory of reproducing kernels. Transactions of the
American Mathematical Society, 68(3):337–404, May 1950. pages 16

[14] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples.
Journal of Machine Learning Research, 7:2399–2434, November 2006.
pages 80

[15] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge Univ
Pr, 2004. pages 18

[16] M.P.S. Brown, W. Noble, D. Lin, N. Cristianini, C.W. Sugnet, T.S. Furey,
M. Ares, and D. Haussler. Knowledge-based analysis of microarray gene
expression data by using support vector machines. Proceedings of the
National Academy of Sciences, 97(1):262–267, 2000. pages 3, 29, 99

[17] C.J.C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2:121–167, 1998.
pages 63



BIBLIOGRAPHY 133
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