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oefeningen niet moest onderbreken, dit is slechts één voorbeeldje van hoe je altijd 
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ik me heel erg thuis gevoeld in onze onderzoeksgroep en ben ik zelfs voor de eeste maal 

mee op groeps-weekend geweest. Dankje Riet, Aminael, Kristof, Carolina, Inge, Peyman, 

Sunny, Fu, Lore, Yan, Pieter, Ivan, Tim, Hui, Lyn, Abeer en Wouter. Marleen, ook jij 

was een heel fijne collega, ik heb veel van jou geleerd en bewonder je aanpak en moed 

om vanuit Qatar je onderzoek te doen. Ik hoop dat je volhoudt en je welverdiende 

doctoraatstitel behaalt.  
 

Verder wens ik ook mijn co-promoter Prof. Bart De Moor en mijn assessoren Prof. Jan 

Michiels en Yves Moreau te bedanken voor hun opvolging van mijn doctoraatswerk en 

het kritisch evalueren van mijn doctoraatstekst. Prof. Robert Schoonheydt wil ik 

bedanken om mijn jury voor te zitten. 
 

Een belangrijk deel van mijn doctoraat kwam tot stand dankzij de samenwerking met 

Legendo. Dankje Prof. Annemieke Verstuyf, Lieve Verlinden, Guy Eelen en Els 
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Vanoirbeek voor de leerrijke discussies. Het was voor mij heel fijn om op een biologische 

dataset onderzoek te doen en de resultaten met jullie te bespreken. Lieve, fijn dat je tijd 

kon maken om mijn manuscript na te lezen en in mijn jury te zetelen.  
 

Mama en papa, Vicky, Daan en Alexis, jullie steun en liefde is alles voor mij! Vicky, jij 

was mijn vurigste supporter, mijn bondgenootje in dit leven. Hoe ver je ook bent, je bent 

voor altijd bij mij. Liesje, ik hou van je, dankje om er altijd te zijn. Aurelie, Myriam et 
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genieten. 
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Abstract 
 

Unraveling the mechanisms that regulate gene expression is a major challenge in biology. 

An important task in this challenge is to identify regulatory motifs or short sequences in 

the DNA that serve as binding sites for transcription factors (TFs). The first 

computational methods developed for the discovery of regulatory motifs searched for an 

overrepresented motif in a set of genes that were believed to contain several binding sites 

for the same TF (e.g. a set of coregulated genes from a single genome). But with the 

growing number of sequenced genomes, detecting motifs through ‘phylogenetic 

footprinting’ became feasible and the next generation of motif discovery algorithms has 

therefore integrated the use of orthology evidence in addition to coregulation information. 

Moreover, the more advanced motif discovery algorithms explicitly model the 

phylogenetic relatedness between the orthologous input sequences and thus should be 

well adapted towards using orthologous information.  
 

In a first part of the study we evaluated the conditions under which complementing 

coregulation with orthologous information improves motif discovery for the class of 

probabilistic motif discovery algorithms with an explicit evolutionary model. We 

designed specific datasets, both synthetic and real, essential for the benchmarking of 

motif discovery algorithms that integrate orthologous information. Our results show that 

the nature of the used algorithm is crucial in determining how to exploit multiple species 

data in the best way to improve motif discovery performance. The use of an integrated 

evolutionary model that depends on reliable alignments of hard to align intergenic 

sequences seems to be the major bottleneck. 
 

In a second part of the study we developed a complete workflow for motif discovery in 

eukaryotes: PHYLO-MOTIF-WEB. This workflow is unique as it allows for integrating 

epigenetic information (e.g. nucleosome occupancy and histone modifications) to guide 

the motif search to putative regulatory regions in the DNA, a necessary step considering 

the long non-coding sequences in eukaryotes. An asymmetric clustering algorithm, 

FuzzyClustering, was developed to summarize the results of multiple advanced motif 

discovery algorithms into an ensemble solution. PHYLO-MOTIF-WEB is easy accessible 

for non-expert users through a web server.  
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Finally, we applied PHYLO-MOTIF-WEB on a biological case to investigate the 

molecular mechanisms underlying the antiproliferative effects of vitamin D3 on both 

human and mouse cell lines. We predicted de novo the regulatory motifs of some known 

TFs that possibly can be involved in the vitamin D3 induced pathway. Further research is 

necessary to validate those predictions. Our results also show the potential of combining 

the results of multiple motif discovery algorithms, as a consequence of the diversity in 

their predictions. 
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Korte inhoud 
 

Het ontrafelen van de mechanismen die genexpressie regelen is een grote uitdaging in de 

biologie. Een belangrijke taak binnen deze uitdaging is het identificeren van 

regulatorische motieven of korte DNA-sequenties die dienen als herkeningsplaats voor 

transcriptionele regulatoreiwitten. De eerste computationele methoden ontwikkeld voor 

de detectie van regulatorische motieven zochten naar een overgerepresenteerd motief in 

een reeks genen die verondersteld werden meerdere herkeningsplaatsen voor éénzelfde 

regulator te bevatten (bv. cogereguleerde genen afkomstig uit één organisme). Maar door 

de toename van het aantal gesequenste genomen werd het mogelijk om fylogenetic 

footprinting toe te passen voor het detecteren van motieven, met als gevolg dat de 

volgende generatie motiefdetectie-algoritmen orthologe informatie integreert naast het 

gebruik van coregulatie informatie. De meest geavanceerde motiefdetectie-algoritmen 

modeleren ook de fylogenetische verwantschap tussen de orthologe inputsequenties 

waardoor deze algoritmen geschikt zouden moeten zijn voor het integreren van orthologe 

informatie. 
 

In een eerste deel van de studie werden de voorwaarden geëvalueerd waaronder het 

combineren van coregulatie met orthologe informatie motiefdetectie verbetert voor de 

groep van probabilistische motiefdetectie-algoritmen met een expliciet evolutiemodel. 

Hiervoor werden nieuwe, geschikte datasets ontwikkeld, zowel synthetische als 

biologische, essentieel voor de benchmarking van motiefdetectie-algoritmen die 

orthologe informatie integreren. Onze resultaten illustreren dat de aard van het gebruikte 

motiefdetectie-algoritme essentieel is om mee te bepalen hoe orthologe informatie van 

meerdere organismen kan gebruikt worden om motiefdetectie te optimaliseren. Het 

gebruik van een geïntegreerd evolutiemodel dat afhangt van een betrouwbare alignering 

van moeilijk te aligneren intergenische sequenties schijnt het belangrijkste knelpunt te 

zijn.  
 

In een tweede deel van de studie werd een volledig werkschema ontwikkeld voor 

motiefdetectie in eukaryoten: PHYLO-MOTIF-WEB. Dit werkschema is uniek aangezien 

het de integratie van epigenetische informatie mogelijk maakt (b.v. nucleosoom bezetting 

en histon modificaties) om op die manier de zoektocht naar motieven te sturen naar  

regio’s in het DNA die mogelijk een regulatorische functie hebben, een noodzakelijke 

stap in eukaryoten omwille van de lange intergenische regio’s. Een asymmetrisch 

clustering-algoritme, FuzzyClustering, werd ontwikkeld om de resultaten van meerdere 

geavanceerde motiefdetectie-algoritmen samen te vatten in een ensemble oplossing. 

PHYLO-MOTIF-WEB is via een webserver gemakkelijk toegankelijk voor gebruikers 

onervaren in motiefdetectie. 
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Tot slot hebben we PHYLO-MOTIF-WEB toegepast op een biologische dataset om het 

moleculair mechanisme onderliggend het antiproliferatieve effect van vitamine D3 op 

zowel humane als muis cellijnen te onderzoeken. We voorspelden de novo de 

regulatorische motieven van enkele gekende regulators die mogelijk een rol spelen in de 

door vitamine D3 geïnduceerde pathways. Verder onderzoek is nodig om deze predicties 

te valideren. Onze resultaten tonen het potentieel van het combineren van de resultaten 

van meerdere motiefdetectie-algoritmen, als gevolg van hun predicitieve diversiteit. 
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Chapter 1 Introduction 

1.1 Context of this thesis 

All cells of a living multi-cellular organism share the same DNA. Yet, they manifest 

tremendous variability in their structure, activities and interactions. The same applies for 

single-cell organisms, such as prokaryotes, since they can manifest many different 

phenotypes in response to environmental cues. Those variations arise through the 

differential deployment of the cell’s genetic toolkit, namely differences in the expression 

of the genes. For most protein-coding genes the level of gene expression is mainly 

controlled at the level of transcription (Roeder, 2003). Specialized proteins, called 

transcription factors (TFs), bind regulatory DNA elements in a sequence-specific manner 

and, once bound, modulate the expression of neighboring genes. As straightforward as 

this may sound, years after sequencing the first genome, we still know very little about 

how this regulatory information is actually encoded in the genome. Deciphering the basic 

principles of transcriptional regulation underlying a living cell is a major challenge in 

biology. Such knowledge would allow us to better understand how cells work, how they 

respond to external stimuli and what goes wrong in diseases like cancer (which often 

involves disruption of gene regulation), and how they can be fought. 

1.2 Main players in transcriptional regulation 

Transcription is the process during which genetic information is transcribed from DNA to 

RNA. In all species, transcription begins with the binding of the RNA polymerase 

complex to a special DNA sequence at the beginning of the gene, known as the promoter. 

In this section we discuss the activation and repression of the RNA polymerase complex 

in both prokaryotes and eukaryotes (§ 1.2.1). TFs appear to be the main players in 

transcriptional regulation for both groups of organisms. As TFs act by binding to specific 

regions in the DNA we introduce the ‘regulatory motif’ as the TF binding specificity 

model (§ 1.2.2) and refer to high-throughput experimental methods to identify TF binding 

sites across the genome (§ 1.2.3).  

1.2.1 Prokaryotes versus eukaryotes 

In prokaryotes, all transcription is performed by a single type of RNA polymerase. This 

RNA polymerase contains four catalytic subunits and a single regulatory subunit, known 

as the sigma factor. Interestingly, several distinct sigma factors have been identified, and 

each of these oversees transcription of a unique set of genes. Sigma factors are thus 

discriminatory, as each binds a particular set of promoter sequences by recognizing a 
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specific DNA binding location. For example the major vegetative sigma 70 factor of 

Escherichia coli recognizes two conserved hexamers located at nucleotide positions -10 

and -35 relative to the gene transcription start site (TSS), while the promoter regions 

recognized by sigma 54 (a sigma factor involved in i.a. nitrogen fixation) contain two 

conserved hexamers at positions -26 and -11 (also referred to as -24/-12 promoters) 

(Fischer, 1994). Therefore, while prokaryotes accomplish transcription of all genes using 

a single kind of RNA polymerase, the use of different sigma factor subunits provides an 

extra level of control that permits the cell to induce and repress different gene expression 

programs. However, this global regulation mechanism only permits to respond to general 

conditions, while often a more specific reaction is required. Therefore, in addition to the 

RNA polymerase, TFs that respond to specific conditions in the environment, can bind 

specific regions in the promoter region and facilitate or inhibit the binding and opening of 

the RNA polymerase and thus influence the transcription rate of the corresponding gene.  
 

In prokaryotes genes are organized into operons, or clusters of coregulated genes. In 

addition to being physically close on the genome, these genes are regulated by the same 

promoter such that they are all turned on or off together. Grouping related genes under a 

common control mechanism allows prokaryotes to rapidly adapt to changes in the 

environment. 
 

Eukaryotic cells are more complex than prokaryotes in many ways, including 

transcriptional regulation. In eukaryotic cells the DNA is wrapped around nucleosomes, 

globular complexes of histone proteins, to form the tightly packed chromatin (Luger et 

al., 1997). Chromatin structure plays a functional role in transcriptional regulation, by 

modulating the affinity of DNA to the transcriptional machinery (see § 1.4). Because of 

this tight packaging of DNA, RNA polymerase II, which is responsible for the 

transcription of protein-coding genes in eukaryotes, does not directly recognize the 

transcription start site (TSS) of the gene it will transcribe (Lee and Young, 2000). To 

guide the DNA binding of RNA polymerase II, other factors called general TFs (GTFs), 

will first assemble on the core promoter region, which includes the TSS of the gene as 

well as other binding sites recognized by different subunits of the GTFs (e.g. the TATA 

box) (Thomas and Chiang, 2006). After the GTFs form a complex with the core 

promoter, RNA polymerase II binds to it, forming a transcription initiation complex 

(TIC).  
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The main players regulating the formation and activity of the TIC can be classified into 

two groups based on their mode of activity (Narlikar and Ovcharenko, 2009): 
 

� Trans-acting factors (not part of the DNA) are TFs, like activators and repressors 

that bind the DNA directly, usually in a sequence-specific manner, and influence 

the rate of transcription. Also non-DNA-binding proteins, like co-activators and 

co-repressors, recruited to the DNA by protein-protein-interactions, can act in a 

trans-manner to influence transcription e.g. chromatin remodeling proteins. 
 

� Cis-acting elements are regions along the DNA that facilitate the binding of 

activators or repressors, or are responsible for changing the chromatin structure to 

either activate or repress transcription. Promoters, enhancers, silencers and 

insulators constitute the cis-acting elements in eukaryotic DNA. Those regulatory 

elements can be located thousands of bases away from the TSS, making it much 

more complex to identify them compared to the regulatory elements in 

prokaryotes. 
 

Transcriptional regulation in eukaryotes is thus a collaborative effort between different 

TFs, chromatin remodeling complexes and other non-DNA-binding co-factors. These 

proteins can be either ubiquitous or cell type specific, but together activate or repress 

genes by targeting specific regulatory elements. 

1.2.2 Modeling TF-DNA interactions 

There are many ways of modeling the sequence specificity by which a TF binds to the 

DNA. Such a TF binding site model is also called a regulatory motif. To build a 

regulatory motif one usually starts from an alignment of experimentally defined TF 

binding sites that can be extracted from databases like TRANSFAC (Matys et al., 2006) 

and JASPAR (Bryne et al., 2008) (see Figure 1.1 A). The simplest representation of a 

regulatory motif is the consensus sequence, a string representation that contains at each 

position the most frequent nucleotide (see Figure 1.1 B) (Stormo, 2000). To allow for 

degeneracy at a specific position, the consensus sequence representation uses the IUPAC 

codes (Cornish-Bowden, 1985) for polymorphic nucleotides (see Table S1 in the 

Supplementary Materials). To capture variability of TF binding sites in a quantitative 

manner, the regulatory motif can also be represented as a matrix model. The simplest 

form of the matrix model is a count matrix that contains the nucleotide counts at each 

position of the binding site alignment (see Figure 1.1 C). From this count matrix other 

types of matrices can be deduced like the position probability matrix described by Thijs 

et al. (Thijs et al., 2002a) or the position weight matrix (PWM) also known as the 

position specific scoring matrix (PSSM) described by Stormo (Stormo, 2000).  
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Consensus sequences and simple matrix models like the PWM, ignore some of the 

complexities of protein–DNA interactions as they assume that positions within the 

binding site are independent (Stormo, 2000). While it is possible to use more complex 

matrix models to capture such inner dependencies, like in the study of King and Roth 

(King and Roth, 2003), this requires more TF binding site data to estimate the model’s 

parameters. In case the data are limited, the risk exists that those complex models over fit 

the data and yield a poor representation of TF binding specificity. An important study by 

Benos et al. (Benos et al., 2002) suggested that while the consensus sequence and PWM 

may not fully capture all the subtleties of a protein’s binding specificity, these simple and 

easily interpretable models usually provide a very good approximation to reality. 
 

A more visual representation of a regulatory motif is a sequence logo (see Figure 1.1 D). 

A sequence logo consists of stacks of letters, one stack for each position in the alignment 

of binding sites. The overall height of each stack indicates the sequence conservation at 

that position (measured in bits), whereas the height of symbols within the stack reflects 

the relative frequency of the corresponding nucleotide at that position (Crooks et al., 

2004). 
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Experimentally defined TF binding sites 

 

 
Consensus sequence 

 

                   Count matrix 

 

                                         Sequence logo 

 

Figure 1.1 Modeling TF binding sites. (A) The aligned set of experimentally defined binding sites used to 

build a regulatory motif. The regulatory motif can be represented as (B) a consensus sequence, (C) a matrix 

model which represents the number of times each nucleotide is counted at each position of the alignment or 

(D) by a sequence logo, visually showing the information content and conservation at each of the alignment 

positions. Adapted from (Wasserman and Sandelin, 2004). 

1.2.3 High-throughput experimental methods to uncover TF-DNA interactions  

The classical experimental approach to characterize transcriptional regulatory elements in 

the DNA uses reporter gene assays and has been successful in various animal models 

(Allende et al., 2006; Muller et al., 1997). But assay-based methods are usually time-

consuming and expensive. The development of less expensive, high-throughput 

experimental methods allows mapping of regulatory elements on a genome-wide scale 

and allows a global view of their biological roles. In this paragraph we highlight 

‘chromatin immunoprecipitation’ (ChIP) as a high-throughput experimental method that 

can be used to map regulatory elements. 
 

ChIP is a common method for detecting interactions between a protein and a DNA 

sequence in vivo (Kim and Ren, 2006). In recent years, this method has been combined 

with DNA microarrays (Derisi et al., 1997) and other high-throughput technologies to 

enable genome-wide identification of DNA-binding sites for various nuclear proteins. 

A 

B 

C 

D 
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The ChIP method treats living cells with a cross-linking agent, usually formaldehyde, 

which fixes proteins to their DNA substrates inside cells (Figure 1.2 a). Chromosomes are 

then extracted and fragmented by physical shearing or enzymatic digestion. Specific 

DNA sequences associated with a particular protein are isolated by immuno-affinity 

purification using a specific antibody against the protein (Figure 1.2 b). The purified 

DNA fragments are then assayed by microarrays or direct sequencing strategies (Figure 

1.2 c). Combining ChIP and DNA microarrays (also referred to as ChIP-chip) has some 

limitations as the microarrays (mostly tiled genomic microarrays) do not contain 

repetitive DNA and they are affected by problems with cross-hybridization and varying 

oligomer affinities that cause background noise. 
 

To overcome these problems, coupling ChIP with massively parallel sequencing of the 

recovered DNA fragments has been developed as a preferred strategy. Compared to 

ChIP-chip, ChIP followed by sequencing has an increased resolution in the detected 

binding sites and is much cheaper, especially for large genomes. Several forms of ChIP 

followed by sequencing have rapidly been developed and implemented e.g. Serial 

Analysis of Gene Expression (ChIP-SAGE) (Roh et al., 2005), Paired-End Tag (ChIP-

PET) (Wei et al., 2006) and most recently ChIP-seq (Robertson et al., 2007), a very cost-

effective strategy that makes use of the new sequencing technologies of Illumina 

(formerly Solexa) and Roche (454 Life Sciences). The main limitation of ChIP in general, 

is that a specific antibody needs to be created for the protein of interest; in many cases, 

such antibodies do not exist. Also the specificity of the antibody is critical for generating 

high-quality data. A major advantage is that the whole genome is tested for in vivo 

binding of the protein of interest, as in vitro experiments can never replicate in vivo 

conditions faithfully. 
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Figure 1.2 Overview of ChIP-chip and ChIP-seq. (a) Reversible cross-linking of DNA and protein is 

performed by treating the DNA–protein complex with formaldehyde. The cross-linked DNA–protein 

complex is fragmented by sonication. (b) An antibody specific to the protein of interest is used to enrich the 

DNA segments bound to the protein. (c) The purified DNA is profiled using a microarray (ChIP-chip) or 

direct sequencing (ChIP-seq). Adapted from (Kim and Park, 2011). 
 

Depending on the function of the profiled protein, ChIP can detect different kinds of 

regulatory elements. One of the applications is the identification of direct downstream 

targets of TFs like e.g. STAT1 in human HeLa S3 cells by ChIP-seq (Robertson et al., 

2007) or the binding sites of 203 transcriptional regulators in yeast by ChIP-chip 

(Harbison et al., 2004). These studies are revealing novel insights about general 

distribution of TF binding sites and complexity of regulatory mechanisms. ChIP-chip was 

also used to map active promoter regions in the human genome by profiling a component 

protein of the pre-initiation complex (PIC) (Kim et al., 2005a; Kim et al., 2005b). 

Insulator elements, which affect transcription by restricting enhancers from activating 

unrelated promoters, can be retrieved by ChIP-chip by profiling CTCF, a protein known 

to mediate insulator activity in vertebrates (Heintzman et al., 2009; Kim et al., 2007).  
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Human enhancers were located by targeting the transcriptional activator protein p300 

(Heintzman et al., 2009). ChIP also plays an important role in unraveling chromatin 

structure by targeting covalent chromatin modifications (Schones and Zhao, 2008) (see § 

1.4). 

1.3 Computational approaches towards identifying TF-DNA 

interactions 

As mentioned in the previous paragraph (§ 1.2) TFs bind DNA in a sequence-specific 

manner, and hence, detecting the binding specificities of individual TFs constitutes a first 

computational challenge: ‘de novo motif discovery’. These binding specificities or the 

regulatory motifs can then be used to determine genome-wide potential binding sites of 

the TF, which leads to a second computational challenge: ‘motif scanning’ (review article 

by (Wasserman and Sandelin, 2004)). In this paragraph we focus on the first challenge: 

identifying the locations of TF binding sites in a set of regulatory regions to define the TF 

target genes and its regulatory motif. Over the past few years, numerous computational 

strategies have become available for motif discovery and we classify them based on the 

information sources they use. Initially motif discovery started from a set of genes 

coregulated at the transcriptional level inferred from coexpression information or high-

throughput experimental approaches (§ 1.3.1). The use of evolutionary conservation, 

information that can be extracted by comparative genomics, proved to be a successful 

extension for motif discovery (§ 1.3.2). More recently, methods have been developed to 

analyze composite regulatory elements, i.e. modules consisting of multiple binding sites 

bound by different TFs (§ 1.3.3). This paragraph reflects the trends in de novo motif 

discovery with focus on the used information sources rather than a complete overview of 

all methods developed in the field. 

1.3.1 Algorithms based on transcriptional coregulation 

High-throughput gene expression measurements by micro-arrays and ChIP experiments 

allow the identification of coexpressed and coregulated genes, respectively. In case of 

coexpressed genes, it is assumed that coexpression arises mainly from transcriptional 

coregulation. As coregulated genes are known to share some similarities in their 

regulatory mechanism, possibly at the transcriptional level, their promoter regions might 

contain binding sites for a common TF. Usually, a user provides a collection of non-

coding regions of genes that are believed to be coregulated, and the computational tool 

identifies short DNA patterns (~ TF binding sites) that are statistically overrepresented in 

those regions (see Figure 1.3, on top). A statistically overrepresented pattern means a 

pattern that occurs more often than one would expect by chance, e.g. in the non-coding 

regions of a set of random genes (Figure 1.3, at the bottom).  



Chapter 1 - Introduction  

9 

 
Figure 1.3 Overrepresented patterns in the regulatory sequences of coregulated genes. A set of 

transcriptionally coregulated genes can be inferred from high-throughput coexpression or ChIP studies. 

Computational algorithms were developed to identify short patterns (red) enriched among the promoters of 

those groups (top), in comparison to a set of promoters from random genes (bottom). The arrow indicates 

the transcription start sites of the corresponding genes.  
 

We can categorize motif discovery algorithms into two major groups based on how they 

represent the regulatory motif: enumerative methods, representing the regulatory motif as 

a degenerated consensus sequence and probabilistic methods that represent the regulatory 

motif as a matrix model. There is also a smaller third group that represents regulatory 

motifs by using hidden Markov models. The latter models allow binding sites of varying 

length and correlations between bases at neighboring positions (Sandelin and Wasserman, 

2005) (not further discussed here).  
 

Enumerative algorithms examine the number of exact occurrences of all n-length patterns 

in the input sequences, and calculate which ones are most overrepresented (van Helden et 

al., 1998). But as the occurrence of exact patterns is too rigid for most real-world TF 

binding sites, one can also search for degenerate patterns (Sinha and Tompa, 2003; 

Tompa, 1999) and in addition, tools like Weeder (Pavesi et al., 2001) apply efficient data 

structures like suffix trees to decrease runtime for long DNA patterns. Enumerative 

approaches exhaustively explore the whole search space and therefore retrieve the global 

optimum. Because of the exact enumeration, these methods are limited to relatively 

simple patterns like short motifs with very few variations in the binding sites. In a recent 

assessment by Tompa et al. (Tompa et al., 2005), it was shown that an enumerative 

method like Weeder (Pavesi et al., 2001) can achieve very good results in predicting 

known motifs. 
 

Probabilistic approaches represent the TF binding specificity by a matrix model (~motif 

model) and the remainder of the sequence is modeled by a background model. To find the 

parameters of the motif model, these methods use maximum likelihood estimation. The 

two most frequently used methods for maximizing the likelihood are expectation 

maximization (EM) and Gibbs sampling. 
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� EM (Bailey and Elkan, 1994; Lawrence and Reilly, 1990) is a local optimization 

procedure that is guaranteed to monotonically improve the expected likelihood, 

but it is sensitive to its initialization point and is therefore not guaranteed to 

converge to the global maximum. For this reason, motif discovery programs that 

use EM will typically restart the optimization from many distinct initialization 

points to improve the chances of converging to the global maximum. Multiple 

restarts also improve the chances of finding biologically relevant motifs that may 

not necessarily correspond to the global maximum. Interesting heuristics for 

selecting reasonable initialization points have been developed (Blekas et al., 

2003). As example, we mention the popular program MEME (Bailey and Elkan, 

1994) that uses EM in combination with multiple initializations to retrieve the 

global optimum. 
 

� Gibbs sampling (Liu et al., 1995; Lawrence et al., 1993), the stochastic variant of 

EM, is now widely used in motif discovery. Gibbs sampling tends to provide a 

more robust optimization of the model parameters in order to avoid local optima. 

For stochastic algorithms like Gibbs sampling, multiple searches have to be 

performed within the input dataset, in order to confirm that the same matrix 

models are discovered starting from different initializations. Several improved 

versions of the initial Gibbs sampler (Lawrence et al., 1993) are now available 

like MotifSampler (Thijs et al., 2002a), Gibbs Recursive Sampler (Thompson et 

al., 2003) and BioProspector (Liu et al., 2001). 
 

The assessment of different de novo motif discovery algorithms that only use 

coregulation information by Tompa et al. (Tompa et al., 2005) learned us that 

coregulation information can be sufficient to successfully discover regulatory motifs in 

yeast and prokaryotes, but not for motif discovery in higher organisms. Unlike 

prokaryotes, in which TF binding sites typically locate in promoter regions close to the 

TSS, TF binding sites in higher eukaryotes often locate in distal promoters or enhancers 

that can be located far from the TSS (§ 1.2.1). The longer distance between the TF 

binding sites and the TSS in higher eukaryotes, impose a greater computational challenge 

for motif discovery. Longer input sequences imply a larger search space and thus an 

increased risk of being trapped in local maxima by probabilistic methods. Therefore, the 

incorporation of auxiliary information, like evolutionary conservation, into such methods 

can be of significant benefit to discover motifs in higher organisms (see § 1.3.2 and § 

1.3.3). 
 

More recently, with the development of high-throughput experimental methods like ChIP 

(see § 1.2.3), de novo motif discovery evolves from a gene-centered approach, where the 

input consists of the non-coding sequences for a set of genes, to a genome-wide 

approach. Pipelines like MISCA (Boeva et al., 2010), CisGenome (Ji et al., 2008) and 
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W-ChIPMotifs (Jin et al., 2009), use standard probabilistic motif discovery tools like 

MEME (Bailey and Elkan, 1995) and the original Gibbs sampler (Lawrence et al., 1993) 

and even enumerative methods like Weeder (Pavesi et al., 2001) and MaMF (Hon and 

Jain, 2006) to perform de novo motif discovery on a subset of high-scoring DNA regions 

identified by ChIP assays. As most of those standard existing approaches can not 

computationally handle sets with thousands of candidate regulatory regions, they need to 

use an explicit significance threshold to retrieve only those regions with high TF binding 

probability. In contrast, algorithms specifically developed to perform motif discovery on 

ChIP-chip/seq datasets, like MatrixREDUCE (Foat et al., 2006) and cERMIT (Georgiev 

et al., 2010), use all the experimental data and their corresponding quantitative evidence 

(e.g. p-values of ChIP-chip experiments). Those approaches that make intelligent use of 

additional information like TF binding affinity consistently outperform the standard motif 

discovery tools. After mentioning this new tendency in motif discovery, we continue this 

introduction for the gene-centered motif discovery approaches, which are still in great 

demand as ChIP assays require substantial experimental efforts and are not yet commonly 

available for all TFs. 

1.3.2 Algorithms based on comparative genomics 

As a result of advances in DNA sequencing technologies, the number of closely related 

genomes being sequenced has increased tremendously. This has consequently led to the 

emergence of comparative studies focused on identifying functional elements in non-

coding DNA sequences. Functional elements, including TF binding sites, are known to 

evolve at a slower rate than non-functional elements, and therefore well-conserved non-

coding DNA sites should be good candidates for TF binding sites. This technique of 

delineating TF binding sites as conserved non-coding regions in the DNA is also called 

‘phylogenetic footprinting’ (Duret and Bucher, 1997). 
 

Many algorithms use evolutionary conservation information for de novo motif discovery, 

either as a pre- or post-processing step or by incorporating the conservation information 

into the motif finder itself. The former approach, where putative regions are filtered 

according to their conservation levels before applying conventional motif discovery  

(Harbison et al., 2004) or where predicted TF binding sites are post filtered by using 

conservation scores (Wasserman and Fickett, 1998), is quite straightforward. But this 

approach has the main drawback that any region with a conservation level below the 

chosen threshold is completely ignored, and thus TF binding sites that are not well 

conserved are not found by such methods. Thus, most conservation-based motif 

discovery algorithms use the latter approach, and incorporate the conservation 

information into the scoring function of the algorithm itself.  
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The first such algorithms that incorporated orthologous sequences like for example 

(Monsieurs et al., 2006; Marchal et al., 2004; Liu et al., 2004; Kellis et al., 2003; Wang 

and Stormo, 2003; Cliften et al., 2001; Gelfand et al., 2000), treated those orthologous 

sequences independently, thereby ignoring the underlying phylogeny that describes their 

relatedness. As a consequence those algorithms cannot distinguish between conserved 

DNA regions due to a short divergent time, from conserved DNA regions due to 

functionality.  
 

The more advanced algorithms explicitly incorporate the relations between orthologous 

sequences by means of an evolutionary model, among many others PhyME (Sinha et al., 

2004), OrthoMEME (Prakash et al., 2004), EMnEM (Moses et al., 2004a), Phylogibbs 

(Siddharthan et al., 2005) and Phylogenetic sampler (Newberg et al., 2007). Those 

algorithms require as input a predefined alignment of the orthologous regulatory regions 

and a phylogenetic tree defining the phylogenetic distances between the orthologous 

sequences. The main drawback of those algorithms that integrate conservation 

information by means of a predetermined ortholog alignment is that their performance 

strongly correlates with the quality of the alignment (Storms et al., 2010; Gordan et al., 

2010; Ward and Bussemaker, 2008). How sensitive the algorithm is towards a bad-

quality alignment also depends on how the algorithm intrinsically handles the alignment 

(Storms et al., 2010).  
 

Since TF binding sites are usually short, sometimes degenerated, and often in reverse 

orientation or even relocated (Ludwig, 2002), alignment algorithms may not correctly 

align the binding sites within orthologous regulatory sequences. Especially when the 

sequences are very divergent, the background ‘noise’ of non-functional regions may be 

stronger than the ‘signal’ of conserved TF binding sites, preventing a correct alignment 

and often deteriorating motif discovery performance. Those observations inspired 

developers to create alignment-free approaches for using conservation information like 

for example the extension of the original Gibbs sampler by Li and Wong (Li and Wong, 

2005) to find TF binding sites in multiple species independent of ortholog alignments by 

simultaneously sampling all orthologous and co-regulated sequences. In case of large 

input sets, this approach will become computational challenging. Another approach is the 

use of informative priors over DNA sequence positions based on a relaxed definition of 

evolutionary conservation: ‘a TF site within a regulatory region is considered to be 

conserved in an orthologous sequence if it occurs anywhere in that sequence, irrespective 

of orientation’(Gordan et al., 2010). Those priors can then be incorporated into an 

expectation maximization based approach like MEME (Bailey et al., 2010) or into a 

Gibbs sampling based algorithm like PRIORITY (Gordan et al., 2010).  
 

All previous methods belong to the ‘multiple genes – multiple species’ category, which 

means that they were designed to search for motifs that are both overrepresented in a set 
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of coregulated genes from a reference species and conserved across related organisms. 

The combination of two information sources in motif discovery has shown large 

improvements compared with methods that only use one: transcriptional coregulation 

(see § 1.3.1) or evolutionary conservation (Blanchette and Tompa, 2003; Blanchette et 

al., 2002; Blanchette and Tompa, 2002). 

1.3.3 Algorithms for combinatorial motif discovery 

In eukaryotes, transcriptional regulation is often mediated by the concerted interaction of 

several TFs and cofactors (§ 1.2.1). The set of TF binding sites that attract interacting TFs 

often co-localize in the genome as modular structures of typically 50 bp to 1500 bp in 

size, forming a cis-regulatory module (CRM) (Jeziorska et al., 2009). As single TF 

binding sites are less likely to act as regulatory elements than TF binding sites occurring 

in clusters, co-localization can be used as an extra information source to improve motif 

discovery and forms the basis for the development of CRM discovery algorithms. 
 

Such algorithms can be seen as extensions of ‘the standard de novo algorithms for single 

motif discovery’ to ‘algorithms for combinations of motifs’, by incorporating co-

localization (Van Loo and Marynen, 2009). These methods are based on multiple-

component motif models, where the singular motif models and their combinations are 

optimized simultaneously or iteratively. Joint modeling of TF binding sites in CRMs for a 

single species based on Gibbs sampling (Zhou and Wong, 2004) or expectation 

maximization (Segal and Sharan, 2005) demonstrated substantial improvement in de novo 

motif discovery. 
 

Also successful was the combination of ‘co-localization’ and ‘comparative genomics’. 

This was done by the PRF-sampler (Grad et al., 2004) that first restricts the search space 

to regions conserved across different Drosophila species before searching for CRMs. 

Further improvement of CRM discovery performance was made when using evolutionary 

conservation in an alignment independent way, for example MultiModule (Zhou and 

Wong, 2007), EDGI (Sosinsky et al., 2007) and GibbsModule (Xie et al., 2008). 
 

Previously mentioned methods search for CRMs without any prior information on the 

binding pattern of any relevant TF, which is often the case when the input consists of a 

set of genes identified in large-scale expression studies. But as the amount of TFs for 

which the regulatory motif is experimentally defined increases, discovery methods for 

CRMs that follow a slightly different approach were developed (Sun et al., 2009; Van 

Loo et al., 2008; Sharan et al., 2003; Aerts et al., 2003b). Those methods predict the set 

of regulatory motifs, responsible for the coregulation of the input genes, by using known 

motif matrix models from libraries and thus are expected to benefit greatly from novel 

technologies that construct these libraries (Van Loo and Marynen, 2009). Besides the 
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discovery of CRMs, many algorithms were developed to scan a set of sequences with a 

specific combination of known motif models, like Cluster-Buster (Frith et al., 2003) and 

Module-Scanner (Aerts et al., 2003a). These scanning approaches are currently the most 

advanced methods, although their applicability is limited to well-studied processes, for 

which the acting TFs and their motifs are known.   

1.4 The role of chromatin in transcriptional regulation 

DNA sequence information provides a basis for the prediction of TF binding sites, due to 

the sequence specificity of TF-binding events. However, DNA sequence alone is an 

impoverished source of information for the task of TF binding site prediction in 

eukaryotes as it always generates too many false positives. In the previous paragraph (§ 

1.3) we already described some extra information sources that could increase motif 

discovery accuracy, namely the fact that TF binding sites tend to be more conserved than 

non-functional sites and binding sites of several TFs are often clustered together. 

Although those information sources showed promising improvements for the field of 

regulatory motif discovery, they do not allow distinguishing TF binding sites functional 

in one physiological condition or tissue from another. 
 

In this paragraph we first introduce the structure of chromatin and how modification of 

chromatin structure influences eukaryotic transcriptional regulation. We distinguish two 

types of modifications that change chromatin structure: histone modifications (§ 1.4.1) 

and covalent DNA modifications like methylation (§ 1.4.2). As chromatin structure and 

its modifications can be inherited by the next generation, independent of the DNA 

sequence itself (Felsenfeld and Groudine, 2003), they are referred to as epigenetic traits. 

Due to the recent development of new experimental methodologies like ChIP (see § 

1.2.3), an increased amount of experimental epigenetic data for several eukaryotic tissues 

and conditions becomes available. This inevitably creates a major computational 

challenge to incorporate those new data to improve the success rate of motif discovery in 

order to get novel insights into the mechanisms of gene regulation (§ 1.4.3). 

1.4.1 Histone modifications 

Chromatin is the complex of DNA and proteins in which the genetic material is packaged 

inside the cells of organisms with nuclei (Felsenfeld and Groudine, 2003). The 

nucleosome is the fundamental unit of chromatin and it is composed of an octamer of the 

four core histone proteins (H3, H4, H2A, H2B) around which 147 bp of DNA are 

wrapped. Histone modifications are post-translational modifications of the core histone 

proteins that constitute the nucleosome. The long and unstructured N-terminal tails by 

which histone proteins interact with neighboring nucleosomes are subject to various types 
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of covalent modifications, including lysine and arginine methylation,  lysine  acetylation  

and  serine  phosphorylation (Kouzarides, 2007). The use of modification-specific 

antibodies in ChIP-seq has revolutionized our ability to monitor the global incidence of 

histone modifications like acetylation and methylation in different cell lines for human 

(Wang et al., 2008; Barski et al., 2007) and mouse (Mikkelsen et al., 2007). Also ChIP-

chip was used to map tri-methylation of lysine 4 of histone 3 (H3K4me3) (Guenther et 

al., 2007) or multiple histone acetylations and methylations (Koch et al., 2007) in 

different human cell lines. 
 

There are two characterized mechanisms for the function of histone modifications in 

relation to transcriptional regulation: 
 

� First they may affect higher-order chromatin structure by affecting the contact 

between different histones in adjacent nucleosomes or the interaction of histones 

with DNA (Hansen et al., 1998). Of all the known histone modifications, 

acetylation has the most potential to unfold chromatin since it neutralizes the 

basic charge of the lysine rich histone tails (Marks et al., 2001). In this way 

histone modifications control chromatin accessibility: either loosely packaged 

euchromatin, that allows access of the transcriptional machinery to the DNA and 

can be associated with transcriptional activation or highly compact 

heterochromatin associated with transcriptional repression (Sakabe and Nobrega, 

2010; Kouzarides, 2007). Regions where local histone modifications displace the 

nucleosomes (nucleosome depleted regions) allow for easier digestion by DNase 

I. Two high-throughput methods: DNase-chip (Boyle et al., 2008; Xi et al., 2007; 

Crawford et al., 2006) and DNase-seq (Boyle et al., 2008), can be used to rapidly 

identify DNase I hypersensitive sites for any genomic region by either using tiled 

microarrays or sequencing. Mapping DNase I hypersensitive sites or open 

chromatin is an accurate method for identifying the location of active regulatory 

elements (promoters, enhancers, insulators, etc.). 
 

� Secondly, histone modifications recruit non-histone proteins to the DNA, like 

enzymes that can further manipulate the chromatin structure or transcription 

regulatory protein complexes (Strahl and Allis, 2000). The pattern of histone 

modifications constitutes a ‘code’ that is read by the non-histone proteins and 

multi-protein complexes that form the transcription-activating and transcription-

repressing molecular machinery (Strahl and Allis, 2000). 
 

In mammalian systems the most established histone modifications that correlate with 

transcriptional activation are methylation of lysine 4 of histone 3 (H3K4me) and various 

histone acetylations in promoters and enhancers and those that correlate with repression 



Chapter 1 - Introduction  

16 

are trimethylation of lysine residues 27 (H3K27), 79 (H3K79) and 9 (H3K9) of histone 3 

(Barski et al., 2007; Heintzman et al., 2007) see Figure 1.4. 
 

As the histone modification patterns can differ for different classes of regulatory 

elements, they can be used to computationally predict new regulatory elements, like 

promoters and enhancers (Won et al., 2008). To illustrate: active human promoters and 

enhancers are both marked by nucleosome depletion, enrichment of histone acetylation 

and dimethylated H3K4 (H3K4me2), while monomethylated H3K4 (H3K4me1) is 

specific for enhancers regions allowing to distinguish between promoters and enhancers 

in the human genome (Heintzman et al., 2007).  A more recent study of Heintzman et al., 

also describes that enhancers, in contrast to promoters, are marked with highly cell-type-

specific modification patterns (e.g. H3K4me1 is distributed in a cell-type specific 

manner) and thus enhancers strongly correlate to cell-type-specific gene expression 

programs (Heintzman et al., 2009). 
 

 
Figure 1.4 A schematic representation of transcription regulatory elements in the genome and two 

experimental identification methods. The promoter on the left (bottom) is activated by a distal enhancer that 

contains sequence-specific motifs to which TFs bind. The nearby silencer can control gene expression by 

competing with the enhancer or by invoking repressive chromatin through recruitment of histone 

deacetylases and methyltransferases. The enhancer blocker insulator between the two promoters insures 

that only the gene on the left is transcribed. The boundary element (top left) prevents progression of 

heterochromatin on the euchromatic region. A few representative histone modifications are shown under 

histone tails: in green and blue hues, activating marks and in red and orange hues, repressive marks. The 

fraction of the genome that is covered by histone modifications is still unclear. Box: ChIP is represented by 

antibodies binding to a TF and to a nucleosome. The arrows represent DNA shearing that allows isolation 

of the bound sequences. DNase I digests accessible chromatin, represented by a discontinuity in the DNA. 

Taken from (Sakabe and Nobrega, 2010).  

1.4.2 DNA methylation and CpG islands 

Besides the histone proteins, also the DNA itself is subject to covalent chemical 

modification. DNA methylation (Weber and Schubeler, 2007) is the only epigenetic 

modification that directly affects the DNA. Biochemically, a hydrogen atom of the 

cytosine base is replaced by a methyl group. The gold standard for DNA methylation 
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mapping is bisulfite sequencing (as it achieves a single-bp resolution) that exploits the 

ability of bisulfite to convert the DNA methylation state into sequence-based information 

by conversion of unmethylated cytosines into uracils (Hajkova et al., 2002). Another 

method is  methyl-DNA immunoprecipitation (MeDIP), a variant of ChIP-chip where 

purified DNA is immunoprecipitated with an antibody against methylated cytosines 

(Mohn et al., 2009). In mammals, DNA methylation is largely confined to cytosines in a 

CpG context (‘CpG’ stands for cytidine and guanosine, separated by a phosphate atom), 

which has two important implications. First, any genomic position that can be methylated 

is symmetric, i.e. there is a methylated or unmethylated cytosine on the forward strand as 

well as on the reverse strand. Therefore, after DNA replication a specific enzyme can 

read the DNA methylation pattern of the parent strand and faithfully copy it to the newly 

synthesized strand, thereby maintaining heritable DNA methylation patterns. Second, in 

mammalian genomes CpG dinucleotides occur in clusters, and the genomic regions with 

highest CpG density, termed CpG islands, usually (70-85%) exhibit very low levels of 

DNA methylation (Straussman et al., 2009). This because a methylated cytosine residue 

spontaneously deaminate to form a thymine residue; hence methylated CpG dinucleotides 

steadily mutate to TpG dinucleotides, which is evidenced by the underrepresentation of 

CpG dinucleotides in the human genome, except for the unmethylated CpG islands near 

promoter regions (Bock and Lengauer, 2008).  
 

DNA methylation may affect transcriptional regulation in two ways: 
 

� First, the methylation of DNA physically impedes the binding of transcriptional 

proteins to the DNA. 
 

� Second DNA methylation fosters a locally more compact chromatin structure and 

hence represses transcription. Methylated CpG dinucleotide sites near a gene 

recruit specific DNA-binding proteins, which in turn recruit histone deacetylases 

and other chromatin remodeling proteins, resulting in inactive heterochromatin 

and silencing of gene expression (Felsenfeld and Groudine, 2003) (see Figure 

1.5). 
 

Unmethylated CpG islands are in contrast mediators of open chromatin structure and they 

frequently overlap with mammalian promoters (Antequera, 2003), enhancers and other 

regulatory elements (Bock and Lengauer, 2008). It is thus not surprising that 

unmethylated CpG islands are highly enriched for histone modification H3K4me 

(Straussman et al., 2009) and Ooi et al., (Ooi et al., 2007) even suggest that the presence 

of H3K4me3 actually directed undermethylation by preventing the binding of the 

methylation complex. 
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Figure 1.5 A transcriptionally active region targeted for silencing is proposed to acquire DNA methylation 

first, which then recruits the methyl-CpG binding proteins and their associated co-repressors and histone 

deacetylases (HDACs). As DNA methyltransferase 1 (DNMT1) can interact directly with histone 

deacetylase, it is also possible that transcription is first silenced by deacetylation by other tethering factors, 

after which the methylation machinery and the methyl-CpG binding proteins are recruited to 'cement' the 

promoter in the silent state. In either case, the deacetylated nucleosomes adopt a more tightly packed 

structure that inhibits the access of TFs to their binding sites. Adapted from (Robertson and Wolffe, 2000). 
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Computational prediction of DNA methylation is conceptually easier than the prediction 

of more volatile epigenetic mechanisms because DNA methylation patterns exhibit 

relatively low tissue specificity compared to other epigenetic information. For the 

prediction of methylated versus unmethylated CpG islands, the most predictive attributes 

included CpG-richness, specific DNA structure properties and repetitive DNA elements 

as well as certain TF binding sites (Straussman et al., 2009; Bock et al., 2006). 

1.4.3 Epigenetic information in computational motif discovery 

Rapid progress of experimental technologies has given rise to several initiatives like the 

ENCODE (Encyclopedia of DNA Elements) project (Birney et al., 2007) and the 

AHEAD (Alliance for Human Epigenomics and Disease) task force (Jones and 

Martienssen, 2005) to map functional elements and epigenetic traits. These projects are 

extremely important, not only in terms of applying and improving large-scale 

experimental methods, but also to make those data available for computational analysis 

and integration. This is particularly true for the ENCODE project (Birney et al., 2007), 

which has been designed from the onset as a close cooperation between experimental and 

computational biologists. The ENCODE project includes genome wide maps of DNase 

hypersensitive sites (DHS), DNA methylation, histone modifications and TF binding 

regions in various human cell lines. First only 1% of the human genome was targeted 

(Birney et al., 2007), and then was expanded to the entire human genome and genomes of 

model organisms (modENCODE) (Celniker et al., 2009). All the results of the ENCODE 

experiments are displayed on the UCSC Genome Browser (Thomas et al., 2007), which 

provides integrated visualization and standardized retrieval of various genome and 

epigenome datasets.  
 

A few de novo motif discovery tools already integrate epigenetic information to gain 

performance accuracy. The use of epigenetic information can be integrated into the model 

or can be used in a discriminative way to reduce the search space in advance or to filter 

out retrieved binding sites that were not supported by the information. For now, most of 

the established de novo motif discovery approaches can only use this information in a 

discriminative way, except for BayesMD that uses a positional prior based on 

conservation and local sequence complexity (Tang et al., 2008), the new MEME (Bailey 

et al., 2010) and the PRIORIY algorithm (Gordan et al., 2010; Narlikar et al., 2006) that 

both make use of position-specific priors, based on for example epigenetic features. 

Position specific priors can easily be created based on different information sources using 

the PriorsEditor tool (Klepper and Drablos, 2010). 
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Compared to the limited use of epigenetic information in the de novo approach, motif 

scanning already describes many applications using this information source. 
 

� Whitington et al., (Whitington et al., 2009) showed that incorporating high-

throughput histone modification data, such as H3K4me3 density, can greatly 

improve TF binding site prediction for a wide range of human and mouse TFs. 
 

� Won et al. (Won et al., 2009) predicted CRMs in 1% of the human genome 

(ENCODE regions) for the HeLa cell line. Their strategy filters predictions based 

on their location relative to promoter and enhancer regions that were 

computationally predicted based on HeLa-specific histone modification data 

(Won et al., 2008). 
 

� Won et al. (Won et al., 2010) developed ‘Chromia’ (CHROMatin based 

Integrated Approach) for genome-wide prediction of individual TF binding sites 

in mouse embryonic stem cells. This study differs from Won et al. (Won et al., 

2009) as they used a genome-wide approach and fully integrated tissue-specific 

histone modification data instead of using it in a discriminative way.  
 

All three studies (Won et al., 2010; Won et al., 2009; Whitington et al., 2009) used 

epigenetic data derived from the same tissue as for which they predicted TF binding sites. 

This corresponds with the observation that comparing five human tissues identified 

differences in the histone modification profiles, associated with transcriptional 

differences between the tissues (Koch et al., 2007).  
 

The following two studies emphasize less the importance of using tissue specific 

epigenetic data for binding site prediction. 
 

� Lahdesmaki et al. (Lahdesmaki et al., 2008) provided a probabilistic framework 

for integrating multiple data sources to predict TF binding per promoter region 

and in this way define genome-wide the target genes for a specific TF. Their 

framework can easily incorporate any information source that is indicative of TF 

binding. In this study they used computationally predicted nucleosome occupancy 

based on DNA sequence, which seemed too ‘static’ and thus not sufficiently 

informative to predict binding events. 
 

� Ernst et al. (Ernst et al., 2010) used a large set of features to quantify binding 

preferences. The most informative features were based on histone modification 

levels (Barski et al., 2007) and DNase I hypersensitive locations (Boyle et al., 

2008). The analysis in this paper showed that experimentally derived data in one 

tissue can be used to predict TF binding in another tissue.  



Chapter 1 - Introduction  

21 

1.5 Objectives of the thesis 

In this section we will present, chapter-by-chapter, the objectives of this thesis. An 

overview of the relationships between the different chapters can be found in Figure 1.6.  
 

Chapter 1 introduces transcriptional regulation and its main players, and summarizes the 

evolution of motif discovery with the focus on adding multiple information sources to 

improve its accuracy.  
 

In Chapter 2 the objective was the detailed study of two established motif discovery 

algorithms that integrate phylogeny. This was done by comparing their underlying 

models and algorithms. The choice for Phylogibbs (PG) (Siddharthan et al., 2005) and 

Phylogenetic sampler (PS) (Newberg et al., 2007) was based on their algorithmic 

similarity to the newly in-house developed algorithm: PhyloMotifSampler. 

PhyloMotifSampler is an extension of the MotifSampler algorithm which was developed 

by Gert Thijs (Thijs et al., 2002a). Similar to PG and PS, PhyloMotifSampler is a 

probabilistic algorithm that uses an evolutionary model to take into account the 

phylogenetic relatedness between orthologous sequences. Knowledge on the algorithmic 

background and the models used by two successful algorithms in the field was useful 

during the development of PhyloMotifSampler by our colleague Marleen Claeys. 
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Figure 1.6 Overview of the relationships between the different chapters in this thesis.  
 

In Chapter 3 the first objective was to investigate the added value of using orthology 

information in combination with coregulation information in motif discovery. More 

specific we evaluated the conditions under which complementing coregulation with 

orthologous information improves motif discovery for the class of probabilistic motif 

discovery algorithms that incorporate phylogeny. We also investigated the effect of the 

type of data (e.g. the number of species, the evolutionary distances between the species 
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and the topology of the phylogenetic tree) on the performance of the motif discovery 

tools. Another objective of chapter 3 was to design datasets, both synthetic and real, 

covering different degrees of coregulation and orthologous information. In literature 

many benchmark datasets were described that only consist of coregulation information, in 

contrast, datasets suited to benchmark motif discovery tools that can integrate 

orthologous sequence data were very sparse.  
 

In Chapter 4 the goal was to develop an ‘ensemble strategy’ to comprise the results of 

multiple advanced motif discovery algorithms. Combining multiple algorithms may 

enhance motif discovery accuracy as was speculated by a number of studies (Tompa et 

al., 2005; Harbison et al., 2004). EMD (Hu et al., 2006) and SCOPE (Chakravarty et al., 

2007; Carlson et al., 2007) are two de novo ensemble algorithms that combine multiple 

component algorithms to search for motifs in a set of coregulated genes. Both ensemble 

algorithms proved to be more successful than each of its component algorithms. We 

developed FuzzyClustering, a graph based clustering approach based on the work of Joshi 

et al. (Joshi et al., 2008) that instead of reporting the single best solution among all 

predictions, returns multiple local optima. As the posterior probability distribution is 

often multimodal, e.g. in case of weaker (~more degenerated) motifs, this ensemble 

solution will be more representative than the single best scoring solution.  

Further on in Chapter 4, we wanted to make hard-to-use phylogenetic algorithms like PG 

and PS more accessible for non-expert users. To this end we developed a new workflow 

for motif discovery, PHYLO-MOTIF-WEB that applies an ensemble strategy on the 

results of multiple advanced motif discovery tools that can integrate phylogeny. This 

workflow provides all the necessary pre- and post-processing steps needed to identify de 

novo motifs in a biological dataset and is accessible trough an easy to use web server. 

PHYLO-MOTIF-WEB also provides the option to use epigenetic information which is 

recommended when searching for motifs in eukaryotic species. 
 

In Chapter 5 the objective was to get more insight in the molecular mechanisms 

underlying the antiproliferative effects of vitamin D3 on both human and mouse cell lines. 

In order to gain further insight in the molecular actions of vitamin D3, we performed a 

comparative transcriptome analysis across human and mouse. Further, we would like to 

combine our de novo workflow, PHYLO-MOTIF-WEB, to identify ‘novel’ cis-regulatory 

elements, with the prediction of CRMs to unravel possible players in transcriptional 

regulation. This study was a combined effort of Fierro C., Storms V., Marchal K. and the 

Legendo (Laboratory for Experimental Medicine and Endocrinology) research group. 
 

We end this thesis with a discussion of the main research and some perspectives for 

future research in Chapter 6. 
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Chapter 2 Probabilistic motif discovery algorithms that 

incorporate phylogeny 

2.1 Introduction 

With the growing number of sequenced genomes (Edwards et al., 2006; Venter et al., 

2004; Breitbart et al., 2002), detecting motifs through ‘phylogenetic footprinting’ has 

become feasible.  Several motif discovery algorithms have therefore integrated the use of 

orthology in addition to the frequently used coregulation information (Das and Dai, 

2007). Most of the original motif discovery algorithms (Monsieurs et al., 2006; Marchal 

et al., 2004; Liu et al., 2004; Kellis et al., 2003; Wang and Stormo, 2003; Cliften et al., 

2001; Gelfand et al., 2000; McGuire et al., 2000) could potentially incorporate 

orthologous sequences, but only by treating them independently and thus ignoring the 

underlying phylogeny that describes their relatedness. Because of this simplification, 

each orthologous sequence would contribute equally to the detected motif. This is 

counterintuitive as one would expect that a distantly related ortholog with a particular TF 

binding site contributes more information to the discovery of the motif than a more 

closely related ortholog with the same site conserved. On the other hand, the loss of a TF 

binding site in a distantly related ortholog should be penalized less than when this loss 

event occurs in a more closely related ortholog (Blanchette and Tompa, 2002). A number 

of more recent probabilistic motif discovery algorithms explicitly incorporate the 

relations between orthologous sequences by means of an evolutionary model, for 

example EMnEM (Moses et al., 2004a), OrthoMEME (Prakash et al., 2004), PhyME 

(Sinha et al., 2004), the method by Li and Wong (Li and Wong, 2005), Phylogibbs 

(Siddharthan et al., 2005), Tree Gibbs Sampler (Cai et al., 2007) and Phylogenetic 

sampler (Newberg et al., 2007).  
 

In this chapter, we compare two well established, probabilistic motif discovery 

algorithms that explicitly incorporate phylogeny: Phylogibbs (PG) (Siddharthan et al., 

2005) and Phylogenetic sampler (PS) (Newberg et al., 2007). We chose PG and PS as 

both algorithms can work on datasets including orthologs derived from more than two 

different species and datasets which contain only orthologous genes (i.e. no coregulation 

information). Another reason was the similarity between the algorithms underlying PG, 

PS and PhyloMotifSampler (a newly developed motif discovery algorithm by Marleen 

Claeys). A throughout study of PG and PS was thus very useful during the development 

and benchmarking of PhyloMotifSampler, an extension of MotifSampler (Thijs et al., 

2002a) that can integrate phylogeny.  
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The theoretical comparison of their models (as described in § 2.2) and their algorithms 

(as described in § 2.3) also provides the necessary knowledge to correctly apply them on 

synthetic and real datasets, as is done further on in chapter 3 and chapter 5.  
 

For developmental reasons, the weaknesses of both motif discovery algorithms are 

probably as interesting as their strengths, therefore we discuss the current limitations of 

this group of motif discovery algorithms in the discussion section (§ 2.4). We start this 

chapter with Table 2.1 that summarizes the most important characteristics of both 

algorithms. 
 

Table 2.1 Summary of the most important characteristics of PG (Siddharthan and van Nimwegen, 2007; 

Siddharthan, 2007; van Nimwegen, 2007) and PS (Newberg et al., 2007; Thompson et al., 2007; Thompson 

et al., 2003).  

Phylogibbs Phylogenetic sampler 
MODEL 

Input Sequences 

-When used in the coregulation space, input sequences consist of intergenic regions of coregulated genes from 

one species. When used in the orthologous space, input sequences consist of orthologous intergenic regions that 

can optionally be prealigned. When used in the combined space, the input sequences consist of intergenic 

regions of coregulated genes complemented with the orthologs of these genes (that again can be optionally 

prealigned). 

 

-Both algorithms model the input sequences as generated by a background model. Some positions, deviating 

from the background model are assumed to be binding sites for TFs. These TF binding sites are modeled by a 

motif model, more specifically a position specific weight matrix (WM).  

 

Motif model 

-A WM of dimension (4xw) describes the probability of finding the respective nucleotides A, C, G, T at each 

position (from 1 to w) in the TF binding site. TF binding sites belonging to a specific TF are described by the 

same WM. 

 

-Both algorithms define TF binding sites differently for:  

1. Prealigned orthologous sequences 

-Assignment of a set of evolutionary related TF 

binding sites conserved across multiple species from 

the alignment. 

Terminology: a window (more specific a multi-

species window). 

 

- Windows containing gaps can be split up into 

smaller windows without gaps and less species. PG 

can work on subparts of the alignment, allowing 

windows to be placed in conserved, well aligned 

regions as well as in unaligned regions. Therefore 

prealignments are made by a local alignment tool 

(Dialign was recommended) that annotates aligned 

and unaligned regions.  

-Assignment of a set of evolutionary related TF binding 

sites conserved across all species from the alignment.   

Terminology: a block. 

Also used by PS is the term MASS defined as a set of 

aligned orthologs.  

 

-PS works on the alignment as a whole. Only sets of TF 

binding sites conserved over all species are taken into 

account, excluding all sets containing gaps. 

Prealignments for PS are based on a global alignment 

strategy and PS recommends ClustalW. 

 

2. Sequences from one species and unaligned orthologous sequences 

Assignment of individual independent TF binding 

sites (a window now consists of one TF binding site, 

more specific a single-species window). 

Assignment of individual independent TF binding sites 

(a block now consists of one TF binding site and a 

MASS is one sequence). 
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Phylogibbs Phylogenetic sampler 
Background model 

Markov model with order n defined by the user. This 

model gives the probability of each nucleotide given 

the nucleotides on the n previous positions. Model 

parameters are estimated based on input sequences 

or based on an external file with intergenic 

sequences. 

Position specific background model. This model gives 

the probability of each nucleotide on each position of 

the sequence and can be regarded as a zero-order 

Markov model. The model parameters are estimated 

based on the input sequences by a Bayesian 

segmentation algorithm (Liu and Lawrence, 1999). 

Evolutionary model 

-The model for evolution used by both algorithms is an adapted F81 model (Sinha et al., 2003): 

The adapted F81 model describes the probability )(tPab that nucleotide a is mutated to nucleotide b over a time 

period t. The model assumes that all sequence positions evolve independently and at equal rates (γ) and the 

probability for fixation of a mutation at position i is proportional to the WM entry of that nucleotide at position 

i. 

ibabab WMtttP ,))exp(1()exp()( γδγ −−+−=                

With γ = substitution rate, t  =time, 
abδ  is the Kronecker delta function that equals one for a=b and zero for a≠b 

and ibWM ,  is the WM entry of nucleotide b for position i (respectively the motif and background WM).  

Note that this model is an extension of the F81 model (Felsenstein, 1981) where fixation of a mutation is 

proportional to the frequency of that nucleotide in the data bπ  (instead of ibWM , ). 

 

-The evolutionary relations between the species in the dataset are modeled by a phylogenetic tree with 

two properties: 

  

1. A set of phylogenetic distances: The phylogenetic distance between two species is modeled by: 

The proximity q between two species = probability 

that no substitution took place per site. q=exp(-γt) is 

used in the above evolutionary model. 

The branch length b between two species = the expected 

number of mutations per site. b= 3/4γt is used in the 

above evolutionary model. 

2. A topology (pattern of branching): Each branch connects a species/internal node with an internal node/ 

ancestor. 

PG is only directly applicable to star topology trees 

where all species are directly descending from one 

common (unknown) ancestor. 

PS is directly applicable to all tree topologies and thus 

allows for unknown internal nodes in the tree. 

ALGORITHM 

-Goal: identify the positions of the TF binding sites hidden in the input sequences. 

-Method: explore the space of all possible solutions by MCMC (Liu, 2001) sampling. 

Sampling 

-Collapsed Gibbs sampling: sample from a sequence 

of posterior distributions along a set of extensive 

moves.   

 

 

1. Start with a random positioning of 

windows, assigned to different TFs, also 

called a configuration C, based on prior 

information on the expected number of 

windows per TF in the data. 

2. Construct the set of all possible 

configurations C’ that differ in one single 

move from C. A move is e.g. changing the 

position of one single window or adding a 

new window. (see next page) 

- Grouped Gibbs sampling: sample from a sequence of 

conditional distributions along a set of systematic 

moves.  

 

 

1. Start with a random positioning of blocks, 

assigned to different TFs, based on prior 

information on the expected number of blocks 

per TF in the data and maximum number of 

blocks per MASS. 

2. Update the motif model based on all the current 

blocks (Model-update step). (see next page) 
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Phylogibbs Phylogenetic sampler 
Sampling (continued) 

3. Scoring: calculate for each C’ the posterior 

probability score.  

4. Sample a new configuration from this score 

distribution. 

 

This procedure (one cycle) is repeated for two  

phases:  

- 1) simulated annealing (Kirkpatrick et al., 1983) 

where one iterates to configuration C* with the 

highest posterior probability (=MAP). Instead of 

sampling from the normal score distribution a 

parameter β was introduced and sampling is done 

from a distribution which is proportional to (score)
β
. 

By slowly increasing β the sampler will freeze into 

the global optimum C*.  
-2) tracking where posterior probabilities are 

assigned to the windows in C*. 

 

-> one initialization is sufficient 

-> short running time (minutes/hours) 

3. Scoring: leave out the blocks for one MASS 

and calculate for each possible block in this 

MASS the conditional probability score. 

4. First sample the number of blocks for the 

MASS (recursive algorithm), then sample this 

number of blocks from the score distribution 

calculated in step 3 (Site-sampling step). 

5. Repeat steps 2 till 4 for each MASS in the 

dataset 

This procedure (one iteration) is repeated for two  

phases:  

-1) burn-in iterations to converge to an optimum. 

-2) sampling iterations to keep track of all sampled 

blocks to construct the solution afterwards. 

 

 

 

-> multiple initializations (seeds) recommended to 

avoid getting trapped in local optimum 

-> long running time (hours/days) 

Scoring 

Score in above step 3 
-The posterior probability score of a configuration C 

is proportional with the probability that all windows 

in C are drawn from (unknown) motif WMs and that 

the background sequence is drawn from a known 

background model.  

 

-The motif WM is assumed to be  unknown:  

-to compute the probability that a window is drawn 

from an unknown motif WM, PG will use the 

conditional probability (this is the probability with a 

known motif WM) and scan this function over the 

entire WM space. Mathematically this resumes to 

solving an integral over all possible WMs, where the 

prior P(WM) is modeled by a Dirichlet prior 

distribution.  

 

 

 

 

 

 

 

 

For windows containing evolutionary related sites: 

the scoring will include an evolutionary model and a 

phylogenetic tree to describe the probability that 

orthologous sites are related to a common ancestor 

site. 

Score in above step 3: 

-The conditional probability of one block is proportional 

with the probability that the block is drawn from a 

known motif WM divided by the probability that the 

block is drawn from the known background model. 

 

 

-The motif WM is assumed to be known :  

- update WM before score-computation (above step 2) : 

• Sample a new motif WM from a Dirichlet 

distribution Dir(β+c) where β = vector with 

pseudocounts for each nucleotide and c = 

vector with sequence weighted counts 
(*)

 for 

each nucleotide across all the blocks. 

• Accept the new motif WM with a probability 

proportional to the Metropolis Hastings ratio. 

This ratio is proportional with how good the 

new model explains the blocks versus the old 

model. 
(*) 

Each orthologous sequence gets a weight based on the 

phylogenetic tree relating them by using the program 

Seq.weights.pl. For details on using sequence weights to 

build a motif WM see (Newberg et al., 2005). 

 

For blocks containing evolutionary related sites: the 

scoring will include an evolutionary model and a 

phylogenetic tree to describe the probability that 

orthologous sites are related to a common ancestor site. 
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Phylogibbs Phylogenetic sampler 
Scoring (continued) 

-For computational reasons, an approximation is 

needed to solve the integral. This approximation 

requires a star topology which makes it possible to 

directly obtain the joint probability of the 

evolutionary related nucleotides at the leaves of the 

tree. All other tree topologies are reduced to 

collections of star topologies. 

 

-The Felsenstein tree-likelihood algorithm (Felsenstein, 

1981) is used to handle all tree topologies. It is a 

recursive algorithm that marginalizes over all the 

interior nodes of the tree to obtain the joint probability 

of the nucleotides at the leaves of the tree. 

Solution 

Maximum a posteriori (MAP) solution 

The output contains the configuration C* that has the 

highest posterior probability. It is an optimization 

based solution. 

Ensemble centroid solution 

The centroid solution (also used in the ‘Gibbs Centroid 

sampler’ (Thompson et al., 2007)) is a collection of 

centroid TF binding sites composed by all the block 

positions  that appear in at least half the sampling 

iterations over different initializations. 

 
Posterior probabilities 

-During the tracking phase PG samples the 

distribution P(C|S) of all configurations and 

compares each sampled configuration with the MAP 

configuration C* to assign posterior probabilities to 

all windows it reports.  

-The posterior probability of a window reports how 

strong this window is member of, or associated with 

C*.  

-Windows with a posterior probability higher than 

the chosen tracking threshold (T) are reported in the 

‘track output’ file. 

- A posterior probability is assigned to each centroid site 

based on the number of times the site or overlapping 

sites were sampled on the total number of iterations.  

 

-The align-centroid option aligns the centroid TF 

binding sites for a specific TF to construct a motif WM 

by using the ‘Gibbs recursive sampler’ (Thompson et 

al., 2003). 
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2.2 Models used by PG and PS 

2.2.1 Input sequences 

Both algorithms use as input a set of non-coding sequences, in which one expects a 

statistically overrepresented motif. The non-coding sequences are often the promoter 

sequences derived from a set of coregulated or orthologous genes or any combination 

thereof. Each input sequence (Si) can be described as a background sequence modeled by 

a background model (β), interspersed with TF binding sites modeled by a motif model (θ) 

(see Figure 2.1). 
 

 
Figure 2.1 Input sequence (Si) that consists of a set of TF binding sites (highlighted in gray) which are 

modeled by a motif model (θ), embedded in a background sequence which is modeled by the background 

model (β). Adapted from (van Nimwegen, 2007). 

2.2.2 Motif model 

The motif model (θ) is a position specific weight matrix (WM) of dimension (4xw) that 

describes the probability of finding the respective nucleotides A, C, G and T at each 

position (from 1 to w) in the TF binding site. TF binding sites that are bound by a 

common TF are described by the same motif model.  
 

Both motif discovery algorithms start with a random assignment of TF binding sites to 

the input sequences, based on prior information on the number of different motifs and the 

number of TF binding sites per motif. Both algorithms can simultaneously search for 

multiple regulatory motifs. To keep the comparison more focused, the rest of this chapter 

will discuss both algorithms when searching for one regulatory motif. The random 

assignment of TF binding sites for one regulatory motif is straightforward in case of 

unaligned single sequences, but when the sequences are phylogenetically related, as is the 

case for orthologous non-coding sequences, they are first prealigned to delineate the 

regions that are orthologous. Then, TF binding sites are assigned to those sets of 

prealigned sequences. As both the alignment strategy and the positioning of TF binding 

sites differ for both tools, we explain them in more detail.   
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PS uses a global alignment strategy (ClustalW (Chenna et al., 2003)) while PG relies on a 

local one (Dialign (Morgenstern, 1999)). Being a global alignment strategy, ClustalW 

enforces the alignment to span the entire length of the sequences and by definition aligns 

all sequences. A ClustalW alignment thus contains the conserved regions in well aligned 

blocks, while the unconserved parts are usually located in ill-aligned, gapped regions. 

Because of these intrinsic properties, such global alignment strategies underperform 

when further related sequences and/or sequences with unequal length are included (Van 

Hellemont et al., 2005). The local alignment strategy Dialign identifies and aligns local 

regions of similarity within the sequences (aligned regions) and leaves the less conserved 

regions or sequences unaligned. Dialign thus explicitly annotates aligned and unaligned 

regions differently. Aligned regions can also cover a subset of the sequences only. It 

usually outperforms global strategies when unconserved sequences of unequal length are 

included.  

The reason why both algorithms rely on different strategies to generate these 

prealignments stems from the difference in the way they use these prealignments. PS can 

only cope with global prealignments: from these global prealignments only regions that 

are gaplessly aligned over all species in the prealignment are considered as potential TF 

binding sites (also called blocks). Unaligned regions (corresponding to the gapped 

regions in a global prealignment) are ignored in the further analysis. For PG on the other 

hand, both the gaplessly aligned regions and unaligned regions are considered as 

potential TF binding sites, also called windows. For PG a window thus can contain a set 

of orthologous sites (multi-species window) as well as a single unaligned, independent 

site (single-species window). PG treats each of these subparts of the prealignment 

differently: for multi-species windows the phylogenetic relatedness between the 

sequences is taken into account by using an evolutionary model while the single-species 

windows are treated independently. PG thus benefits from using annotated, local 

prealignments as input. In Figure 2.2 the terms ‘window’ (used by PG) and ‘block’ (used 

by PS) are clarified. 
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Figure 2.2 Explains the terms windows (used by PG) and blocks (used by PS). Both PG and PS have to 

assign sets of putative orthologous TF binding sites to a prealignment of orthologous sequences and these 

sets of putative orthologous TF binding sites are called windows (PG) or blocks (PS). When such a set of 

putative orthologous sites is not perfectly aligned over all sequences (contains gaps or unaligned parts) it is 

called an inconsistent window (PG) or an inconsistent block (PS). On the left of the figure, two examples of 

such an inconsistent window/block are shown: putative orthologous TF binding sites aligned over three 

sequences from respectively three species (Sp1, 2 and 3) that contain gaps and unaligned parts. PS does not 

consider inconsistent blocks for further analysis as they are rejected as potential TF binding sites. PG in 

contrast can split up inconsistent multi-species windows into smaller consistent windows that contain no 

gaps/unaligned parts by leaving out the ill aligned/unaligned sequences. These smaller consistent windows 

can still be multi-species windows (first example) that will be scored by an evolutionary model or they can 

become single-species windows (second example) that will be treated as independent TF binding sites. 

2.2.3 Background model 

The background sequence is modeled differently by both algorithms. PG uses an n
th
-order 

Markov model that gives the probability of each nucleotide given the nucleotides on the n 

previous positions. The model parameters are estimated based on the input sequences or 

based on an external file provided by the user that contains non-coding sequences. PS 

does not assume homogeneity in the background composition of each input sequence. 

Therefore PS uses a Bayesian segmentation algorithm (Liu and Lawrence, 1999) to 

produce a position specific background model. This model gives the probability of each 

nucleotide on each position of the sequence and is estimated based on the input 

sequences. 
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2.2.4 Evolutionary model 

Both algorithms account for the phylogenetic relatedness between orthologous sequences 

by scoring orthologous TF binding sites contained in blocks (for PS), or multi-species 

windows (for PG) by a tree-based evolutionary model. The model for the evolution of TF 

binding sites used by both algorithms is based on an adapted Felsenstein 1981 (F81) 

evolution model (Sinha et al., 2003) that describes the probability )(tPab that nucleotide 

(a) is mutated to nucleotide (b) over a time period (t). The model assumes that all 

sequence positions evolve independently and at equal rates (γ) and the probability for 

fixation of a mutation at position i is proportional to the weight matrix (WM) entry of that 

nucleotide at position i. 
 

 ibabab WMtttP ,))exp(1()exp()( γδγ −−+−=      (2.1)  

 

With γ = the rate of nucleotide substitution (replacement by one of the four nucleotides) 

per unit time, t  = time, abδ  = the Kronecker delta function that equals 1 for a = b and 0 

for a ≠ b and ibWM ,  is the weight matrix entry of nucleotide b for position i (respectively 

the motif model θ or the background model β). Note that this model is an extension of the 

F81 model (Felsenstein, 1981) where fixation of a mutation is proportional to the 

frequency of that nucleotide in the data bπ  (instead of ibWM , ). 

 

The evolutionary relatedness between the orthologous sequences in the input set is 

modeled by a phylogenetic tree. A phylogenetic tree consists of nodes connected by 

branches. The input sequences are located at the external nodes of the tree. The internal 

nodes are the inferred ancestral sequences. The pattern of branching is called the 

‘topology’ of the tree and the length of the branch connecting two nodes is a measure for 

the phylogenetic distance between them. PG and PS define the phylogenetic distance in a 

different way. PG introduced the ‘proximity’ (q) as distance measure, which corresponds 

to the probability that no substitution took place, per site.  
 

 )exp( tq γ−=          (2.2) 
 

Inserted in the evolutionary model we get: 
 

 ibabab WMqqqP ,)1()( −+= δ        (2.3) 
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PS uses as distance measure the ‘branch length’ (b), which is defined as the expected 

number of mutations per site: 
 

 tutb γ
4

3
==          (2.4) 

 

with u = the rate of nucleotide mutation (replacement by one of the three other 

nucleotides) per unit time and t  = time. Mutation rate (u) thus differs from substitution 

rate (γ), as a ‘substitution’ of a nucleotide to itself is not counted and this is the source of 

the factor ¾. Inserted in the evolutionary model we get: 
 

 ibabab WMbbbP ,))
3

4
exp(1()

3

4
exp()( −−+−= δ     (2.5) 

From those definitions we can deduce the following relation between ‘proximity’ used by 

PG and ‘branch length’ used by PS:  
 

 )ln(
4

3
qb −=          (2.6) 

 

Both algorithms also differ in the types of tree topology they can handle. PG is only 

directly applicable to star topology trees where all sequences are directly descending 

from one common (unknown) ancestor sequence. While PS is directly applicable to all 

tree topologies and thus allows for unknown internal nodes in the tree. This will be 

further explained in § 2.3.2. 

2.3 The algorithms underlying PG and PS  

2.3.1 Algorithms to sample the search space 

The goal of both motif discovery algorithms is to detect the positions of the TF binding 

sites hidden in the set of input sequences. Because the space of all possible solutions is 

too large to search exhaustively, both tools use Markov Chain Monte Carlo (MCMC) 

sampling to efficiently explore the solution space (Liu, 2001). There are different MCMC 

based sampling methods, depending on how the transitions from one possible solution to 

another are defined; this is also called the ‘moveset’. PS uses one systematic move, 

typical for Gibbs samplers (explained beneath), while PG uses a specifically designed 

moveset with bigger moves. We illustrate some of the moves used by PG in Figure 2.4. 

These moves allow the PG algorithm to change between configurations (i.e. the 

positioning of the windows in the input sequences). For example, starting from one 

configuration, a new configuration can be obtained by shifting all the windows assigned 

to one TF, a few positions to the left (see panel 3 in Figure 2.4). Starting from a random 

configuration (C), PG calculates for all possible new configurations (defined by the 
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moveset) a posterior probability score and then samples a new configuration from the 

posterior probability score distribution. This iterative process of sampling new 

configurations based on their scores achieves convergence to the configuration with the 

highest posterior probability by simulated annealing. Simulated annealing implies that as 

the number of algorithm iterations increases, more and more weight is given to the 

configurations with highest posterior probability scores. Provided the annealing is done 

slowly enough, the final configuration will correspond to the globally optimal state. 
 

The specifically designed moveset in combination with simulated annealing allows PG to 

search the whole solution space more efficiently, at the same time avoiding that the 

algorithm gets trapped in local optima and speeding up convergence. PG thus is an 

optimization based algorithm, designed to converge to the global optimum of the solution 

space during one run of the algorithm, which explains its relative short running time. 

 
Figure 2.4 Moveset for PG. Left top corner: PG starts with a random positioning of windows (grey 

squares), also called a configuration C, based on prior information on the expected number of windows in 

the data. Than the algorithm constructs the set of all possible configurations C’ that differ in one single 

move from C. Panel 1, 2 and 3 illustrate possible moves and the resulting configurations. Panel 1, the move 

equals adding an extra window. In panel 2, the move equals repositioning one window. In panel 3, the 

move equals shifting the positions of all the windows to the left. Adapted from (van Nimwegen, 2007). 
 

The algorithm of PS also starts with the random assignment of blocks (a single TF 

binding site in case of unrelated sequences or a set of orthologous sites in case of 

orthologous sequences) to the input sequences based on prior information given by the 

user e.g. on the number of blocks per sequence (see Figure 2.5). Then, PS uses Gibbs 

sampling, a two step iterative procedure that consists of a ‘site-sampling’ and a ‘model-

update’ step. During the ‘site-sampling’ step, the blocks in one MASS (a single sequence 

or one set of aligned orthologous sequences) are replaced by new blocks, by sampling 

from a conditional score distribution for all possible blocks in the MASS. As mentioned 

on top, the moves of PS, to shift between possible solutions are thus more restricted as 

those of PG, as all the other blocks remain fixed, except for the blocks in one MASS (see 

Figure 2.5). In the ‘model-update’ step, the motif model (θ) is updated based on all the 

current blocks. The two step iterative procedure is repeated during two phases, first a 
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number of burn-in iterations to converge to an optimum, followed by sampling iterations 

to keep track of all sampled blocks to construct an ensemble or centroid solution 

afterwards. As PS is more prone to converge in each run to a different local optimum it 

needs to be re-initialized multiple times in order to estimate the global solution. Because 

of the re-initializations of the algorithm, running times of PS are considerably larger than 

those of PG.  

 
Figure 2.5 Moveset for PS. On top: PS starts with a random positioning of blocks (gray) for a specific TF, 

(i.e. configuration C), in the input set. This based on prior information on the expected number of blocks 

for this TF in the input set and the maximum number of blocks per MASS (single sequence or set of 

aligned orthologous sequences). In a following step of the algorithm, the blocks are left out for one MASS 

and the conditional probability score is calculated for each possible block in this MASS, conditional on the 

current values of the other blocks (C-). Based on the conditional score distribution a number of new blocks 

are sampled and the motif model can be updated. Adapted from (van Nimwegen, 2007). 

2.3.2 Scoring methods 

PG calculates a Bayesian posterior probability )|( SCP  for every possible configuration 

(C) given the input set (S) by using the Bayes’ theorem:  
 

 
∑
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CPCSP
SCP        (2.7) 

 

where )(CP is the prior probability of configuration (C) and )|( CSP  the likelihood of the 

input set (S) given the configuration (C). The denominator sums over all configurations 

and thus evaluates the prior probability of S, which can usually be treated as a constant 
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and ignored. The great advantage of a Bayesian approach is that prior information can 

easily be incorporated into the scoring scheme. In practice a uniform prior P(C) that 

assigns equal probability to all configurations is too ignorant, that’s why the user has to 

give some prior information regarding the number of windows and the number of 

different motifs and all other configurations get a probability of zero.  
 

In case all configurations would be equally likely a priori, the posterior probability 

P(C|S) is proportional to the likelihood )|( CSP , which equals the probability that all 

windows in C are drawn from the (unknown) motif model (θ) and that the background 

sequence is drawn from a known background model (β): 
 

 ( ) )|()|(,,| βθβθ CSPCSPCSP ≠==      (2.8) 
 

where CS =  refers to the windows (TF binding sites) and CS ≠  refers to the 

background sequence. To compute the probability that a window is drawn from an 

unknown motif WM, PG will use the conditional probability (this is the probability with 

a known motif WM) and scan this function over the entire motif WM space. 

Mathematically this resumes to solving an integral over all possible motif WMs, where 

the prior )(WMP  is modeled by a Dirichlet prior distribution Dir(γ).   
 

 ∫ ∂WMWMPWMWindowP )()|(        (2.9) 
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Where m is the width of the motif WM and αiWM  is the probability of finding the 

nucleotide α at position i according to the motif WM. Parameter γ is generally referred to 

as a pseudocount that can be set by the user. Default γ is set to 1, so that a uniform prior 

is obtained, making all motif WMs a priori equally likely, which can be argued to reflect 

a state of complete ignorance about the motif WM. In reality, however, we know that for 

most positions in the TF binding site, regulatory factors tend to have distinct preferences 

for certain nucleotides. By setting γ < 1, more weight will be put on motif WM columns 

that are 'skewed', i.e. giving low probability to some nucleotides and high probabilities to 

others.  
 

For single-species windows this integration (equation 2.9) can be done exactly. For multi-

species windows, containing evolutionary related binding sites, the scoring will include 

an evolutionary model and a phylogenetic tree (T) to describe the probability that 

orthologous sites in a multi-species window evolved from a common ancestor site under 

the selective pressure that they remain binding sites for the same TF.  
 

 ∫ ∂− WMWMPWMTdowspeciesWinmultiP )(),|(     (2.11) 
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In principle we can analytically determine the value of this integral, but for computational 

reasons an approximation is used, as the complexity of the integral increases 

exponentially both with the number of orthologs and the number of windows. This 

approximation requires a star-like tree topology which makes it possible to directly obtain 

the joint probability of the evolutionary related nucleotides at the leaves of the tree. All 

other tree topologies are reduced to collections of star topologies. 
 

PS calculates the conditional probability for each possible block in the MASS during the 

‘site-sampling’ step of the algorithm. The conditional probability of a block is 

proportional with the probability that the block is drawn from a known motif model 

divided by the probability that the block is drawn from the known background model (β). 
 

 
)|(

)|(
)|(

β
θ

blockP

blockP
CblockP ≈        (2.12) 

 

With C = the configuration of blocks in the input set and θ = the motif model based on 

the blocks in configuration C. For blocks containing evolutionary related sites, the 

scoring will include an evolutionary model and a phylogenetic tree (T) to describe the 

probability that orthologous sites in a block evolved from a common ancestor site under 

the selective pressure that they remain binding sites for the same TF.  
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To calculate ),|( TblockP θ  no integration is needed as the motif model is inferred 

during the ‘model-update’ step (see next section) and the Felsenstein tree-likelihood 

algorithm (Felsenstein, 1981) is used to handle all tree topologies. It is a recursive 

algorithm that marginalizes over all the interior nodes of the tree to obtain the joint 

probability of the nucleotides at the leaves of the tree. This means that PS works with a 

full phylogenetic model and does not need to make approximations regarding the 

topology. 
 

In contrast to PG, PS accounts for the phylogeny at an additional level. During the 

‘model-update’ step, a new motif model is sampled from a Dirichlet distribution Dir(b+c) 

where b equals a vector with pseudocounts for each nucleotide and c equals a vector with 

sequence weighted counts for each nucleotide across all the current blocks. The 

pseudocount vector b compensates for zero occurrences in the nucleotide counts. To 

construct the vector c, the nucleotide counts for a fixed position over all blocks are 

weighted according to the phylogenetic weight of the sequences in which they were 

counted. All orthologous sequences have assigned a weight based upon the phylogenetic 

tree relating them (Newberg et al., 2005). This weighting scheme enables PS to give TF 

binding sites, conserved in distant orthologs, a higher weight/contribution to the motif 
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model, than sites conserved in close orthologs. After sampling, PS will accept this new 

motif model with a probability proportional to the Metropolis Hastings ratio. This ratio is 

proportional with how good the new model explains the blocks versus the old model.  

2.3.3 Solutions and posterior probabilities 

PG reports a MAP (maximum a posteriori) solution, meaning the configuration of 

windows with the maximum posterior probability. This MAP configuration is obtained 

during the simulated annealing phase of the algorithm (see § 2.3.1). This phase is 

followed by a ‘tracking’ phase, defined as the prolonged sampling after convergence, and 

measuring, for each possible window, how often it is co-clustered with one of the optimal 

MAP windows. Tracking provides a significance assessment for each window, 

expressing how strong this window is member of, or associated with the MAP 

configuration. Only windows with a posterior probability higher than a chosen tracking 

threshold are reported in the final solution. Tracking makes PG more robust against prior 

over- or under-estimations of the number of windows that occur in the data. Superfluous 

windows found during the simulated annealing phase, will not be stably associated with 

the MAP configuration during tracking and will be lost, while sites not found during 

simulated annealing can be picked up. The drawback is that the algorithm may miss a 

group of windows that are grouped a significant fraction of the samples, but that do not 

occur in the MAP configuration. 
 

PS does not report the single best scoring solution, but garners information from the full 

ensemble of solutions. PS’s ensemble centroid solution (Thompson et al., 2007) 

represents all frequently visited solutions, during the iterations after convergence, across 

all re-initializations, also called the sampling iterations. To calculate the ensemble 

centroid solution, PS counts the occurrences of individual blocks during the sampling 

iterations. The blocks which occur in at least half the sampling iterations are defined as 

centroid blocks. The use of a fragmentation algorithm (Liu et al., 1995) to infer the 

widths of the blocks, causes variation in the lengths of the centroid blocks, making it 

difficult to see which positions are more highly conserved. As a solution, PS makes an 

alignment of them to construct a motif WM by using the ‘Gibbs recursive sampler’ 

(Thompson et al., 2003). In general, ensemble centroid solutions provide more accurate 

estimates compared to MAP solutions, which focus exclusively on the single most 

probable solution. 
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2.4 Discussion 

Gibbs  sampling was first used in the context of biological motif discovery by Lawrence  

et al. (Lawrence et al., 1993). Since then, a significant number of Gibbs sampling based 

algorithms have been developed like (Thompson et al., 2003; Thijs et al., 2002a; Liu et 

al., 2001) amongst many more. In this chapter we compared two of the more advanced 

Gibbs sampling based algorithms, Phylogibbs (PG) and Phylogenetic sampler (PS). They 

both integrate phylogeny by using a tree-based evolutionary model, they can sample 

simultaneously for multiple motifs and they assess the significance of their predictions by 

means of ‘tracking’ or constructing an ensemble centroid solution. Those improvements 

on motif discovery were explained in § 2.2 and § 2.3. In this section we briefly mention 

some of their limitations. 
 

Common to all MCMC sampling based algorithms, like Gibbs samplers, they require 

long convergence times because they need to sample the search space for a long time. 

Especially for PS this results in a very long runtime, as it needs to be re-initialized 

multiple times to obtain an accurate ensemble solution. The convergence time increases 

with the size of the input set, the total number of TF binding sites and the number of 

motifs. Speed improvements were already proposed for the PG algorithm, by using a 

form of ‘importance sampling’ on top of the moveset used to sample the search space. 

When sampling a replacement window, PG now considers every available window and 

needs to calculate a posterior probability score for each possible new configuration. 

Using importance sampling would guide the sampler to spend most of its time in 

important parts of search space and only to select ‘important’ windows lowering the 

number of configurations to be scored (Siddharthan, 2008). 
 

A limitation, more specific for algorithms incorporating phylogeny, is the quality of the 

ortholog alignment. It was shown (Storms et al., 2010; Gordan et al., 2010; Ward and 

Bussemaker, 2008) that errors in the ortholog alignment can have very deleterious effects 

on the performance of algorithms such as PG and PS. In chapter 3, we show that PG is 

more robust against bad quality alignments compared to PS. The local alignment strategy 

used by PG, in combination with the window-principle, allows PG to retrieve TF binding 

sites which are only partially conserved, meaning across a subset of aligned orthologous 

sequences. As a result, PG affords some flexibility in terms of the evolutionary distances 

spanned by the input sequences. For instance, the use of a distantly related ortholog will 

help pinpoint TF binding sites located in conserved regions but will not hamper the 

discovery of TF binding sites absent from that ortholog. 
 

Other motif discovery algorithms try to overcome this limitation, by skipping the pre-

alignment of orthologous sequences and searching both the space of multiple alignments 

and the space of possible TF binding sites at the same time (Cai et al., 2007; Li and 
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Wong, 2005). This will create a very large search space, difficult to search effectively. 

Moreover, for closely related species, large segments of the orthologous non-coding 

sequences can be unambiguously aligned, and by pre-aligning these we significantly 

reduce the search space for the algorithm. A very recent Gibbs sampler, PRIORITY 

(Gordan et al., 2010), avoids the use of pre-alignments and does not take into account 

phylogenetic relationships between the orthologous sequences. To accomplish that, 

PRIORITY considers a TF binding site conserved in an orthologous sequence, if it occurs 

anywhere in that sequence, irrespective of its orientation. Based on this definition of 

conservation, informative priors over the input sequences are derived, which are 

incorporated into their Gibbs sampling algorithm. 
 

Next, we discuss another common phenomenon that influences motif discovery; the 

absence of TF binding sites in the orthologous sequences. This can be the result of 

functional turnover of the orthologous sequence, which can be caused by TF binding site 

turnover, which is a common event during genome evolution, and plays a major role in 

shaping the regulatory circuitry of contemporary species (Wray, 2007). As TF binding 

sites are short and degenerate sequence patterns, they exhibit frequent turnover, even 

across phylogenetically closely related species, such as various Drosophila species 

(Moses et al., 2006). But in both motif discovery algorithms, no explicit functional 

turnover model has been used to infer TF binding turnover events. They only model 

sequence evolution at the nucleotide level, and lack the ability to capture the evolutionary 

dynamics of TF binding site turnover. The CSMET algorithm (Ray et al., 2008), 

explicitly models TF binding site turnover across species, through a ‘low resolution’ 

phylogeny, defined by a functional (motif or background) substitution process. 

Nucleotide substitution is modeled function-specific through ‘high resolution’ 

phylogenies. This makes that CSMET captures function-specific sequence evolution in 

every orthologous sequence rather than assuming that all aligned sequences evolved 

according to the same model (motif or background) (see Figure 2.6). 
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Figure 2.6 Modeling of TF binding site turnover by CSMET. (A) Algorithms like PG and PS do not 

incorporate an explicit model for function turnover. This means that the functionality indicator Zt must 

apply to all the sequence in the alignment, in this case, all sequences evolve under a full motif phylogeny. 

Zt specifies the functional state that can either be motif (Zt=1) or background (Zt=0). (B) CSMET, 

incorporates an explicit evolutionary model Tf for species-specific functional turnover, and partial motif or 

background phylogenies over subsets of sequences according to the turnover status. Adapted from (Ray et 

al., 2008). 
 

PG and PS only model evolution at the nucleotide level, by means of a nucleotide 

substitution model that is based on the F81 evolution model (Felsenstein, 1981). This 

model is very limited as it assumes that all sequence positions evolve independently and 

at equal rates. Moses at al. (Moses et al., 2004b) shows that motif finding benefits from 

using more realistic evolutionary models such as HKY85 (Hasegawa et al., 1985), which 

captures the transition/transversion bias, or the model from Halpern and Bruno (HB) 

(Halpern and Bruno, 1998), which allows for position-specific variation in evolutionary 

rates.   
 

To even further improve motif discovery, algorithms like PG and PS could integrate 

epigenetic information like open chromatin or histone modification data, both relating to 

functional active DNA. PG, that uses a Bayesian approach, which allows for easy 

integration of prior information, can for example favor configurations for which the TF 

binding sites lie in functional active DNA. PS can use a position-specific prior across the 

input sequences to guide the search to those regions that are functionally active. 
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Chapter 3 The effect of orthology and coregulation on 
detecting regulatory motifs 

3.1 Introduction 

The growing number of sequenced genomes allows integrating orthology evidence with 

coregulation information when searching for regulatory motifs. Moreover, the more 

advanced motif discovery algorithms explicitly model the phylogenetic relatedness 

between the orthologous input sequences and thus should be well adapted towards using 

orthologous information. So far no independent study has evaluated the extent of 

information contained within either the coregulation or the orthologous space and the 

conditions under which complementing both spaces improves motif discovery. In this 

chapter we performed such analysis by applying two of the more advanced motif 

discovery methods on both synthetic and real datasets with different properties. We chose 

for ‘Phylogibbs’ (PG) (Siddharthan et al., 2005) and ‘Phylogenetic sampler’ (PS) 

(Newberg et al., 2007) as both algorithms are specifically designed to integrate 

coregulation with orthology (therefore referred to as phylogenetic motif discovery 

algorithms in this study), neither of them is limited in the number of species that can be 

included and previous studies (Siddharthan et al., 2005) already described the superiority 

of PG in detecting motifs. As a comparison we included MEME (Bailey and Elkan, 1994) 

as a representative of algorithms that cannot explicitly incorporate phylogenetic relations 

(therefore referred to as a non-phylogenetic motif discovery algorithm). 

3.2 Materials and Methods 

3.2.1 Motif discovery algorithms and parameter settings 

Three motif discovery algorithms were used: MEME (Bailey and Elkan, 1994), 

Phylogibbs (PG) (Siddharthan et al., 2005), and Phylogenetic sampler (PS) (Newberg et 

al., 2007). MEME is a probabilistic motif discovery tool that follows an optimization 

strategy based on Expectation Maximization (EM). As it was originally developed for 

detecting motifs in the coregulation space, it treats all input sequences independently, and 

does not explicitly model the phylogenetic relatedness between the input sequences. 

MEME searches for the most statistically overrepresented motif in the dataset (the one 

with the lowest E-value). Each TF binding site is reported with a p-value. We used 

MEME-4.00 with default parameters, we set the distribution of motifs to “anr (any 

number of repetitions)” and the maximum number of EM iterations to 500. We searched 

for a palindromic motif (-pal) in case of TyrR and LexA for the real data (see Text S3 in 

the Supplementary Materials).  
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In contrast, PG and PS, both developed for detecting motifs in the combined 

coregulation-orthology space do include a model to take into account the phylogenetic 

relatedness between orthologous input sequences. In chapter 2, we outlined the most 

important differences between both algorithms making it possible to view the results of 

this study in the light of these algorithmic characteristics. For PG we used Phylogibbs-1.0 

and for PS we used Gibbs.x86_64. Before performing the tests on the synthetic and real 

datasets, we thoroughly tested the sensitivity of both algorithms towards parameter 

settings, not of primary importance for our main discussion, but that influence the results 

if not optimized. These tests and the optimized settings as applied in our analysis are 

summarized in Text S3. Most settings were not varied throughout the test runs except for 

the tracking threshold of PG that was set more stringent than its default value, unless 

indicated otherwise.   
 

For PG, prealignments were made with Dialign (Morgenstern, 1999) (with the parameter 

T=2 to avoid long unaligned regions obtained with higher values of T).  For PS, 

prealignments were obtained with ClustalW (version 1.83 (Chenna et al., 2003)) as 

suggested by the developers. For the difficult to align datasets we also performed tests 

with PS on prealignments obtained with Dialign (results in Text S2). For those tests the 

results were similar or worse than those obtained with prealignments from ClustalW, 

indicating that the observed differences between PS and PG are caused by the 

intrinsically different way they cope with the prealignments rather than to small 

differences in the used prealignments. In general, difficult to align sequences will be left 

unaligned with Dialign. This improves the alignment, but implies that those regions can 

no longer be used by PS (see also below). Therefore, for PS it is often more advantageous 

to use ClustalW instead of Dialign (which we therefore did in the remainder of the 

analysis).  

3.2.2 Synthetic datasets 

We created two synthetic motif weight matrices (WMs) as described previously 

(Siddharthan et al., 2005), both of width 13 bp, one with a high information content (IC) 

and one with a lower IC. TF binding sites sampled from these WMs were embedded at a 

randomly chosen position in a random background sequence of length 500 bp. Each 

ancestral sequence (~a background sequence containing an embedded TF binding site) 

was then evolved along a phylogenetic tree under a defined evolutionary model to create 

phylogenetically related sequences. For the background sequence we used the Jukes and 

Cantor (JC) model (Jukes and Cantor, 1969), for the embedded TF binding sites an 

adapted Felsenstein (F81) model (Sinha et al., 2003). Details on the construction of the 

WMs and the evolutionary related sequences are in Text S1 (Supplementary Materials).  
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For the experimental setup we simulated datasets for the coregulation space, the 

orthologous space and the combined coregulation-orthology space. For the coregulation 

space, we simulated the intergenic sequences of ten genes in a reference species (the 

species exhibiting a proximity of 0.80 to the ancestral species was considered the 

reference species). In each of these 10 sequences a TF binding site, drawn from a 

common motif WM, was embedded. For the combined space, we extended the 

coregulation space by simulating the orthologous intergenic sequences for each of the ten 

coregulated reference genes, according to a phylogenetic tree that describes the 

relatedness of the orthologous sequences to the ancestral sequence. The topology of the 

phylogenetic tree was varied between a star topology (equal or unequal distances) and a 

tree topology with internal nodes. The orthologous space consisted of the intergenics of a 

single reference gene together with its simulated orthologs. For all trees used in our tests, 

the Newick format is given in Table S4. 

3.2.3 Real datasets 

The real datasets are derived from Gamma-proteobacterial and Saccharomyces intergenic 

sequences. Also here, datasets were obtained with either a high IC or a low IC motif. For 

the coregulation space we selected target genes in Escherichia coli for the regulators 

LexA and TyrR and in Saccharomyces cerevisiae for the regulators URS1H and RAP1. 

To extend these datasets in the combined space, we searched for all target genes their 

corresponding orthologs in respectively other Gamma-proteobacterial or Saccharomyces 

species. The real datasets for the orthologous space only consist each time of one single 

target of the regulator in the reference species and its corresponding orthologs. In this 

case we selected as reference target, a gene that contained exactly one copy of the TF 

binding site in its upstream region, in order not to confound coregulation with 

orthologous information (as the presence of multiple copies confers coregulation 

information). For the real data, we defined the upstream region as the intergenic region 

between the start codon of the gene and, depending on its orientation the start or stop of 

the previous coding gene. Details on the construction of the real datasets are in Text S1 

and Table S2, the phylogenetic trees that relate the intergenic sequences of respectively 

the bacterial and yeast species are depicted in Figure S1. The Newick formats of the trees 

are given in Table S4. 
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3.2.4 Performance and quality measures 

� Predicted TF binding sites: TF binding sites predicted by MEME correspond to 

all sites obtained from the Expectation Maximization based solution. For PG, the 

‘predicted TF binding sites’ are the TF binding sites from the tracked maximum a 

posteriori solution. For PS we defined the ‘predicted TF binding sites’ as the sites 

returned after running the ‘align-centroid’ option on the collection of centroid TF 

binding sites. More information on the output of PG and PS can be found in 

chapter 2 (§ 2.3.3 ‘Solutions and posterior probabilities’). A ‘predicted motif 

model’ is the WM constructed from the predicted TF binding sites for a specific 

transcription factor. 
 

� Number of datasets/runs with an output (D1/R1): For the synthetic data we had 

100 input datasets per test. D1 gives the number of datasets for which the 

algorithm returned an output, irrespective of whether this output is correct or not. 

For the real data we only had one input dataset per test, so here we re-ran the 

algorithm ten times to get ten outputs for one input dataset. R1 represents the 

number of runs for which the algorithm returns an output. PG and PS internally 

evaluate their results and only report for each run or dataset the solutions that 

exceed a certain threshold. As a result for PG and PS, D1 and R1 sometimes are 

smaller than the number of runs. In contrast, MEME by default reports all 

retrieved results irrespective of their scores and therefore the number of datasets 

or runs with an output by definition equals the number of runs.  
 

� Recovery rate (RR): The RR determines the percentage of the output (D1 for 

synthetic datasets) (R1 for real datasets), for which the predicted motif model 

corresponds to the ‘correct’ motif model. If a match is found between the 

predicted and the correct motif model, the recovery is one, otherwise zero. Motif 

models were compared with MotifComparison (Thijs et al., 2002b). For the 

synthetic data the correct motif model was based on the embedded TF binding 

sites, for the real data on the annotated TF binding sites in the reference species 

(E. coli or S. cerevisiae). Predicted models in the real data contain besides 

contributions from sites in the reference species also contributions from yet 

unannotated sites present in the orthologs. This sometimes causes discrepancy 

between the predicted and the correct motif model. For this reason predicted motif 

models that did not pass the MotifComparison threshold were retained if both the 

species-dependent positive predictive value and species-dependent sensitivity (for 

definitions see below) were above 50% or if one of the two measures was higher 

than 80%. 
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� Positive predictive value (PPV) and sensitivity (Sens): The PPV [PPV=TP / (TP + 

FP)] is a measure for the percentage of true positive (TP) sites amongst the 

predicted sites (TP+FP). A TP site corresponds in the synthetic datasets to the 

embedded sites and in the real datasets to the annotated sites. The false positives 

(FP) correspond to predicted sites, other than those embedded or annotated. The 

Sens [Sens=TP / (TP + FN)] is a measure for the percentage of true sites (TP+FN) 

that are found by the algorithm, with FN = false negatives corresponding to 

embedded or annotated sites not recovered by the algorithm. When a predicted 

site covers at least half the length of the embedded or annotated site, it is 

considered as a true positive site. For the less studied species other than E. coli or 

S. cerevisiae no judgement can be made on whether sites are true or false. 

Therefore, we defined the species-dependent PPV (spPPV) and species-dependent 

sensitivity (spSens) by only taking into account the sites predicted/annotated for 

the genes of the reference species. In the output tables of the Results section the 

PPV, spPPV, Sens and spSens are described per test and represent the mean of 

these values over all datasets/runs with a correct output (recovery equal to one) 

within a single test.  

3.3 Results 

3.3.1 Design of the test datasets 

In this study we assessed the specific contribution of the coregulation, the orthologous 

and the combined space on motif discovery (Figure 3.1 Panel A). Success rates observed 

in the coregulation space were treated as baseline levels. In the combined space we tested 

under which conditions adding orthologs improved the baseline success rate observed in 

the coregulation space. We tested the effect of changing the topology by which the 

orthologs are related, the phylogenetic distances and the number of the added orthologs 

(Figure 3.1 Panel B). Lastly, we evaluated the success rate of the algorithms when only 

orthologous information is available, also by using different conditions. In each space we 

performed tests on datasets with different signal to noise ratios (Figure 3.1 Panel C). We 

refer to ‘changing the signal to noise ratio’ as any manipulation that lowers/increases the 

degree to which the motif is statistically overrepresented in the dataset compared to the 

background e.g. by changing the degree of degeneracy of the motifs or by leaving out TF 

binding sites.  
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Figure 3.1. Caption on next page. 
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Figure 3.1. (On previous page) Overview of the test setup. Panel A presents the three different information 

spaces in which motif discovery was assessed: the coregulation, the combined coregulation-orthology and 

the orthologous space. The coregulation space consists of a set of non-coding sequences from a reference 

species (Spec1 = REF) that each contain at least one TF binding site for a common TF (indicated by Gene 1 

to Gene N). For the combined space, we extent the coregulation space with orthologous sequences selected 

from different species (indicated by Spec 2 to Spec M). One reference gene together with its orthologs is 

referred to as an orthologous set (indicated by a blue frame). The combined space thus consists of multiple 

orthologous sets while the orthologous space consists of a single orthologous set. We assessed the specific 

contribution of each space to the success rate of motif discovery by performing the tests summarized in 

panels B and C. At first we tested the effect of adding different types of orthologous information as shown 

in Panel B. These tests involve changing the topology by which the orthologs are related (equal, unequal 

star and non star like topology), changing the mutual distance between the orthologs (represented by 

elongating the branches of the tree) and using datasets with a different number of orthologs. Secondly, the 

effect of altering the signal to noise ratio of the datasets on the accuracy of the results was tested 1) by 

changing the degree of degeneracy of the motifs and 2) by omitting motifs sites. We differentiate between 

leaving out TF binding sites in the coregulation direction versus their omission in the orthologous direction 

as is illustrated for a dataset in the combined space.  

3.3.2 Motif discovery in the coregulation space 

Datasets consist of sets of coregulated genes from the reference species. We tested the 

ability of the algorithms to recover motifs in datasets with different signal to noise ratios. 

The most trivial task consists of detecting a high IC motif in a dataset where each 

sequence contains a motif instance (Figure 3.2 (A)). We also assessed whether the motif 

discovery tools could recover motifs in datasets with lower signal to noise levels e.g. by 

searching for a low IC motif (Figure 3.2 (B)) or by searching for a high IC motif in a 

dataset where not all sequences contain a motif instance (Figure 3.2 (C)). We applied 

those tests on both synthetic and real datasets. Figure 3.2 summarizes the results for the 

synthetic datasets (from Table S5 (A) and Table S6) as these reflect the most important 

tendencies. Details on the results for the real datasets can be found in Table S5 (D).  
 

Results were evaluated by ‘performance measures’ and ‘quality measures’. The 

‘performance measures’ describe whether the motif discovery tool is able to retrieve the 

motif model of the embedded motif in a particular test. They correspond to the number of 

datasets with an output (D1) and the recovery rate (RR) that indicates the percentage of 

outputs in which a correct motif was predicted. The ‘quality measures’ defined as the 

positive predictive value (PPV) and the sensitivity (Sens) describe whether and how many 

of the true embedded TF binding sites contribute to the predicted motif model. In the 

figures the number of datasets with an output (D1) is indicated by a clear box. The 

number of those datasets that has a correct outcome (D1*RR) is indicated by the black 

area in the clear box. A larger fraction of the black area in the box (RR) indicates that a 

larger fraction of the output is correct. The best results are thus obtained if most of the 

outputs contain a true motif model (largely filled boxes) of a high quality (the latter is 

indicated by the PPV and Sens approaching 100). 
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Figure 3.2. Results for motif discovery in the coregulation space. Each dataset consists of ten coregulated 

genes from the reference species (proximity 0.80). Panel A displays the results for a synthetic dataset in 

which all sequences contain a site sampled from a high IC motif (A). Panel B shows the results for a dataset 

in which all sequences contain a site sampled from a low IC motif (B) and panel C shows the results of a 

dataset where the TF binding site is missing in two out of ten sequences. The remainder of the sequences 

contains a TF binding site sampled from the high IC motif. Results were assessed by the performance 

measures D1: the number of datasets with an output out of 100 datasets, D1*RR: the number of datasets 

with a correct output and the quality measures PPV (the percentage of true sites among the predicted TF 

binding sites, averaged over all correct outputs) and Sens (the percentage of the true sites recovered by the 

algorithm, averaged over all correct outputs). 

 

In Figure 3.2 we see that the results were consistent for the three tested algorithms. It 

shows that coregulation information is sufficient to detect the correct motif provided that 

the motif has a high IC. For a low IC motif, both the RR and the motif quality (assessed 

by PPV and Sens) drop. More specifically we had to lower the tracking threshold T of PG 

to 0.05 in order to still retrieve this low IC motif. Lowering the tracking threshold results 

for PG in general, in a higher number of datasets with an outcome (D1), but at the cost of 

a decreased RR and PPV. Of the three algorithms tested, PS performed best for these low 

IC motifs with a RR equal to of 80.6%, compared to a RR of 34% for MEME and 5.3% 

for PG. As shown in Figure 3.2 (C), all algorithms are quite robust against the presence 

of sequences without TF binding site provided the motif itself is sufficiently pronounced. 

Based on these results, we expect that including orthologous information will be 

beneficial if it increases the signal to noise ratio in the dataset e.g. when searching for a 

low IC motif. 

3.3.3 Motif discovery in the combined coregulation-orthology space 

In this section we assessed to what extent adding orthologous information to the 

coregulation space improves motif discovery. For the algorithms that rely on a 

phylogenetic model we expect that their results will depend on the accuracy with which 

the used phylogenetic tree approximates the true phylogenetic distances between the used 

intergenic sequences. For real data approximating an optimal tree is not obvious as the 

intergenic sequences can not accurately be aligned. The best results were obtained with a 

tree that is based on a ‘neutral’ evolution rate. Using a protein tree seriously deteriorated 
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the results obtained by the phylogenetic motif discovery algorithms as the true evolution 

rate of the intergenic sequences is underestimated (for more details see Table S3). In all 

tests, we used for the phylogenetic algorithms the tree based on a neutral evolution rate. 

If the input sequences were left unaligned, PG and PS will just like MEME treat the 

sequences independently.  

3.3.3.1 Effect of the phylogenetic distances between the orthologs 

Datasets consist of coregulated genes in the reference species (coregulation space) 

complemented with their respective orthologs (orthologous space). A reference gene 

together with its orthologs constitutes an orthologous set. For the first set of tests, the 

relatedness between the sequences in an orthologous set was modeled by a ‘star topology 

with equal distances’. Each orthologous set consists of the reference sequence (proximity 

of 0.80) and four equally distant orthologs. The tests consist of changing the distance 

(~”proximity”) for these four orthologs that were added to each coregulated reference 

gene. 
 

All results for a high and low IC motif resumed in Table S5 (A) reflect the same 

tendency, summarized for one representative example in Figure 3.3. Figure 3.3 shows 

how the discovery of a low IC motif was affected by adding to a set of coregulated 

reference genes (Figure 3.3 (A)), either closely related orthologs (proximity of 0.90, 

Figure 3.3 (B)), intermediately (proximity of 0.50, Figure 3.3 (C)) or distantly related 

orthologs (proximity of 0.20, Figure 3.3 (D)). Adding orthologous information improved 

the RR for all algorithms (fraction of the black area). The best results were obtained for a 

proximity of 0.50 (Figure 3.3 (C)) and under these optimal conditions, algorithms that use 

an evolutionary model clearly outperform the non-phylogenetic motif discovery 

algorithm in finding high quality motifs (both Sens and PPV). All algorithms are 

sensitive towards deviations from the optimal phylogenetic distance between the added 

orthologs. Too closely related orthologs (Figure 3.3 (B)) imply many local optima and 

this resulted for all algorithms, compared to the more optimal situation, mainly in a 

decrease of the RR. This drop in RR was most obvious for MEME as it does not use an 

evolutionary model. PS performed best (highest RR) for these datasets where the motif is 

less pronounced. Adding orthologs that were all very distantly related (Figure 3.3 (D)) 

was mainly deleterious for the phylogenetic algorithms as they depend on the quality of 

the prealignments: misalignment of TF binding sites or gaps introduced within the 

sequence of the TF binding sites make it harder or even impossible to retrieve these TF 

binding sites, which resulted in a lower motif quality (especially a lower Sens) for PG 

and PS compared to MEME. In some cases leaving the distant orthologs unaligned can 

compensate for the loss in sensitivity (Table S5 (A)).  
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Figure 3.3. Effect of adding orthologs with distinct phylogenetic distances on motif discovery in the 

combined space. Results are displayed on the retrieval of a low IC motif in a synthetic dataset. Panel (A) 

shows the results for the coregulation space that consists of ten coregulated reference genes.  The remaining 

panels represent the results for the combined space that consists of the ten coregulated reference genes 

together with their orthologs, also referred to as ten orthologous sets. Each orthologous set consists of five 

prealigned sequences related through an equal star topology: the reference sequence with proximity 0.80 

and four equally distant sequences with proximities of respectively 0.90 (B), 0.50 (C) and 0.20 (D). For the 

measures D1, D1*RR, PPV and Sens see Figure 3.2. 
 

In a second set of tests, we examined if adding one distantly related ortholog to a set of 

closely related orthologs reduces the number of local optima and hence improves the 

motif discovery results. To this end we used for each coregulated reference gene an 

orthologous set for which the relatedness was modeled by a ‘star topology with unequal 

distances’. Each orthologous set consists of four closely related orthologs with 

proximities of respectively 0.80 (the ortholog of the reference species), 0.90, 0.85 and 

0.75 and one distantly related ortholog with a proximity of 0.20. All results represented in 

Table S5 (B) confirmed our expectation: compared to using orthologous sets containing 

only the four closely related orthologs, adding one distantly related ortholog to the 

orthologous set of each coregulated reference gene improved the RR of all algorithms. 

For the phylogenetic algorithms the number of datasets with an output (D1) increased, 

especially for the low IC motif. The increase in RR was sometimes at the expense of a 

small sensitivity (Sens) loss for the predicted motif, which was mainly caused by the 

algorithms not being able to detect the TF binding sites in the distant orthologs. This was 

confirmed by specifically calculating the sensitivity in the distant ortholog (species-

dependent sensitivity, spSens) which was indeed lower than the overall sensitivity 

(results in Table S5 (C)). In this example where the synthetic datasets were particularly 

easy to prealign (equal sequence lengths), including the distant ortholog in the 

prealignment of the orthologous sets improved the results of both phylogenetic 

algorithms.  

3.3.3.2 Effect of the number of added orthologs 

For each dataset, we started off with a real set of coregulated genes in the reference 

species (the target genes of respectively LexA, TyrR in E. coli and URS1H, RAP1 in S. 

cerevisiae) and tested the effect of gradually adding more distant orthologs to these 
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reference genes. All results are shown in Table S5 (D). As for most tests the performance 

parameters (R1 and RR) reached their maximum level, the most striking results for both 

the bacterial and yeast datasets relate to changes in motif quality. To visualize this 

tendency in motif quality observed for both the bacterial and yeast datasets we used a 

combined ‘quality’ metric, the F-value, defined as the harmonic mean of spPPV (species-

dependent PPV) and spSens (species-dependent sensitivity). Figure 3.4 displays the 

difference between the F-value obtained from searching in the combined coregulation-

orthology space and the F-value obtained from searching in the coregulation space only. 

The results are shown for datasets in which for each coregulated gene the orthologous 

sets contain respectively two (Figure 3.4 (A)), four (Figure 3.4 (B)), five (yeast)/six 

(bacteria) prealigned orthologs (Figure 3.4 (C)), and five/six unaligned orthologs (Figure 

3.4 (D)). A positive value of the F-value difference thus indicates a positive effect on the 

motif quality of adding orthologs to the coregulation space, while a negative value 

indicates the negative effect.  
 

 
Figure 3.4. Effect of the number of added orthologs on motif discovery in the combined space. Results on 

the retrieval of both a high and a low IC motif are displayed for the real datasets: 1) results from the 

Gamma-proteobacterial datasets are indicated as black curves and 2) those of the Saccharomyces dataset 

are indicated as gray curves. Results for the high IC motif are indicated by circles and correspond to those 

obtained for LexA (bacterial dataset) or URS1H (yeast dataset), results for the low IC motif are indicated 

by stars and correspond to those obtained for TyrR (bacterial dataset) or RAP1 (yeast dataset). The panels 

represent the results of a dataset containing for each coregulated reference gene two (A), four (B) and six 

(for the bacterial datasets) or five (for the yeast datasets) prealigned orthologs (the reference gene included) 

(C). Panel (D) represents the results of a dataset containing for each coregulated reference gene six or five 

unaligned orthologs (the reference gene included). Results were assessed by the F-value defined as the 

harmonic mean of the spPPV (the percentage of true sites amongst the predicted TF binding sites for the 

reference species, averaged over all correct outputs) and the spSens (the percentage of the true sites found 

by the algorithm for the reference species, averaged over all correct outputs). The reference species are 

respectively E. coli (bacterial data) or S. cerevisiae (yeast data). The Y-axis represents the difference 

between the F-value obtained from searching motifs in the combined coregulation-orthology space and the 

F-value obtained from searching in the coregulation space only. 
 

In general the results confirm what we already observed for the synthetic data (see 

previous section: ‘Effect of the phylogenetic distances between the orthologs’): at first, 

adding orthologous information has more impact on the results when searching for a low 
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IC motif than when searching for a high IC motif. Adding orthologs barely improved the 

motif quality when searching for a high IC motif (LexA and URS1H) (Figure 3.4).  

Secondly, the quality of the motifs retrieved by the phylogenetic tools is more sensitive 

towards the type of orthologs that was added than MEME because their results depend on 

the correctness of the prealignments. Figure 3.4 (C) shows that for PS, the F-value 

difference dropped drastically when adding the more distantly related orthologs that can 

no longer be accurately aligned with the closely related ones. The effect was more 

pronounced for the bacterial datasets that were the most difficult to prealign. As a result 

leaving all orthologs unaligned in those cases of misalignment (Figure 3.4 (D)) improved 

the quality of the motifs retrieved by PS. All four panels in Figure 3.4 show that for 

MEME, the effect of adding orthologs on the quality of the retrieved motif is rather 

small.  
 

Additional tests on synthetic data (see Table S7) ensured us that the differences in 

performance between the motif discovery algorithms we observed when adding orthologs 

could indeed be attributed to the gradually increased phylogenetic relatedness between 

the added orthologs, rather than to the intrinsically different way PG and PS handle non 

star like topologies in their phylogenetic model. 

3.3.3.3 Simulation of motif loss in the orthologous and coregulation direction 

Previous tests showed that adding orthologs was beneficial, provided that they contain 

the TF binding site. However, adding orthologous sequences from species in which the 

mode of regulation is not conserved will increase the noise in the input datasets (Perez 

and Groisman, 2009; Tanay et al., 2005). Here we simulated this situation by adding 

orthologs to a set of coregulated reference genes, but assuming that all added sequences 

derived from one species did not contain the TF binding site. The relatedness between the 

sequences in the orthologous sets was modeled by a star topology with unequal distances. 

Figure 3.5 summarizes these results for a high IC motif (as given in Table S6). Figure 3.5 

(A) shows the reference level of performance when a TF binding site is present in all 

sequences of the orthologous sets. In the remainder of the panels the results are shown of 

replacing in each orthologous set the TF binding site by a random site in the sequence 

derived from either a closely related species (proximity 0.75, Figure 3.5 (B)) or a 

distantly related species (proximity 0.20, Figure 3.5 (C)).  
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Figure 3.5. Effect of motif loss on motif discovery in the combined space. The results are displayed for a 

synthetic dataset containing sites sampled from a high IC motif. Each dataset consists of ten coregulated 

reference genes complemented with their orthologs, also referred to as ten orthologous sets. Each 

orthologous set consists of five prealigned sequences related through an unequal star topology: four closely 

related orthologs with proximities of respectively 0.80 (reference ortholog), 0.90, 0.85 and 0.75 and one 

distantly related ortholog with a proximity of 0.20.  Panel (A) represents the results when a TF binding site 

is present in all sequences of the orthologous sets. Panels (B) and (C) display the results when motif loss 

occurs in all sequences derived from respectively a closely (q=0.75) or a distantly (q=0.20) related species. 

Panel (D) shows the results when motif loss occurs in two out of ten coregulated reference genes and in all 

their corresponding orthologs. For the measures D1, RR*D1, PPV and Sens see Figure 3.2. 
 

As shown in Figure 3.5 (B and C), all three algorithms were affected by adding orthologs 

without TF binding site. For PG the absence of the TF binding sites in closely related 

orthologs (Figure 3.5 (B)) had a more pronounced negative influence (drop in RR, PPV 

and mainly Sens) than when the TF binding site was absent in the distantly related 

orthologs (Figure 3.5 (C)). For PS the situation is reversed: the presence of distant 

orthologs without TF binding site resulted in a drastic drop in D1 and in the Sens 

compared to the reference situation (where the TF binding site was present in all 

orthologs) (Figure 3.5 (A)) or to the situation where the TF binding site was absent in the 

closely related orthologs (Figure 3.5 (B)). The difference in response between PG and PS 

towards the absence of TF binding sites is related to the intrinsically different way they 

treat the prealignments (see also Table S6 for more information). When the TF binding 

site is missing in the distant orthologs, regions that normally would contain the TF 

binding site will be left unaligned by Dialign or will result in a gapped alignment by 

ClustalW. In neither case PS will search for motifs in these regions of the prealignment 

while PG will correctly treat these regions independently and search for motifs in the 

remaining part of the prealignment. Missing TF binding sites in the close orthologs on the 

other hand are better handled by PS as it relies on a global alignment strategy. As closely 

related orthologs align any way well over the total length of their sequence, a global 

alignment is not too much disturbed by a missing TF binding site in one of these close 

orthologs. For a local alignment this often interferes with the correct identification of the 

orthologous regions. 
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In addition, for PS also the weighting scheme used during the update step of the motif 

WM affects its specific behavior towards missing TF binding sites in distantly related 

sequences. Distantly related orthologs get a higher weight than closely related ones, so a 

false positive site in a distant ortholog has a more negative impact on the WM update 

than a false positive site in a close ortholog.  
 

For MEME mainly the motif quality (more in particular the PPV) was decreased by 

omitting TF binding sites, but in contrast to what was observed for the phylogenetic 

algorithms this effect was largely independent of the type of ortholog from which the 

sites were omitted (Figure 3.5 (B, C)). By setting the number of asked TF binding sites 

equal to the number of input sequences, the number of sites we searched is overestimated 

when leaving out TF binding sites. This effect of overestimating the number of TF 

binding sites affects the quality of the motif retrieved by MEME that does not internally 

filter out low quality TF binding sites.  
 

As for the coregulation space, we also tested for the combined space the effect of missing 

TF binding sites in the coregulation direction. This situation was mimicked by assuming 

that two of the reference genes were not truly coregulated with the other genes. The TF 

binding site is thus absent in these two genes and in their respective orthologs. Figure 3.5 

(D) shows that this had almost no effect on the results, except for a PPV drop in case of 

MEME with the same reason as above.   
 

Figure 3.5 (D) also shows that omitting TF binding sites in the coregulation direction has 

less drastic effects on the results (most obvious for PG) when also the orthologs are 

provided than in the absence of the orthologs (Figure 3.2 (C)), even though some of the 

orthologs might not contain the TF binding site.  

3.3.4 Motif discovery in the orthologous space 

Lastly we assessed the performance of the algorithms in the presence of only orthologous 

information. We used a test setup similar as in the combined coregulation-orthology 

space, but instead of using a set of coregulated reference genes complemented with their 

orthologs, we used only one reference gene together with its orthologs (~ one orthologous 

set). The tests consist of changing for this orthologous set the number of orthologous 

sequences and their phylogenetic relatedness (equal or unequal star topology). We also 

assessed in real datasets the effect of gradually adding more orthologs with increasing 

phylogenetic distance to the orthologous set.  
 

All results for the synthetic data are shown in Table S8 (A). Figure 3.6 shows 

representative results for the tested algorithms in detecting respectively a single 

embedded high (at the top) and low (at the bottom) IC motif. Figure 3.6 (A) and (B) show 

the results for the orthologous set containing respectively five and ten orthologs related 
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through an equal star topology with proximity 0.50.  Figure 3.6 (C) shows the results for 

the orthologous set containing five orthologs related through an equal star topology with 

proximity 0.90 and Figure 3.6 (D) shows the results for the orthologous set containing 

five orthologs related through the earlier described unequal star topology (see previous 

section § 3.3.3: ‘Motif discovery in the combined space’). All algorithms performed best 

on datasets with 10 prealigned orthologs related to each other with a proximity of 0.50 

(Figure 3.6 (B)). For this setting, PG and PS outperformed MEME (higher RR and motif 

quality), especially for the low IC motif. However, for PS the number of datasets with an 

output was extremely low (D1<10).  
 

By keeping track of the motif positions sampled during the early iteration stage of PS, we 

noticed that the sampler explored the solution space less for the prealigned input than 

when leaving the sequences unaligned. By getting stuck in non-overlapping local optima 

for each re-initialization, no centroid output could be obtained (low D1). 
 

 
Figure 3.6. Results for motif discovery in the orthologous space. Results are displayed for a synthetic 

dataset with TF binding sites sampled from a high IC (on top) and a low IC motif (below). Each dataset 

consists of only one reference gene and its orthologs, referred to as one orthologous set. Panel (A) and (B) 

represent the results when the orthologous set contains respectively five and ten prealigned orthologs 

related through an equal star topology with a proximity of 0.50. Panel (C) represents the results when the 

orthologous set contains five prealigned orthologs related through an equal star topology with a proximity 

of 0.90 and panel (D) represents the results when the orthologous set contains five prealigned orthologs 

related through an unequal star topology. Note that for most tests the PPV equaled the Sens resulting in 

overlapping dots. For the measures D1, RR*D1, PPV and Sens see Figure 3.2. 
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The performance of all algorithms dropped when the number of prealigned orthologs was 

lowered to 5 (Figure 3.6 (A, C and D)) in which case PS even did not longer retrieve an 

output. Using too closely related orthologs (Figure 3.6 (C)) resulted in a severe further 

decrease of the RR for both MEME and PG (despite lowering the tracking threshold). As 

was also the case in the combined space, we can increase the information level of the 

datasets by adding one distant ortholog through the use of a ‘star topology with unequal 

distances’ (Figure 3.6 (D)): this improved the performance (D1 and RR) of both PG and 

MEME considerably compared to the situation with closely related orthologs of equal 

phylogenetic distance. 
 

For the real datasets, we used two reference targets genes of LexA, two of TyrR, two of 

URS1H and two of RAP1 each containing exactly one TF binding site for their respective 

regulators and we added to each of these individual genes their orthologs resulting in 8 

datasets in total. As was done in the combined space, these orthologs were added 

gradually with increasing phylogenetic distances. The results on the real datasets in the 

orthologous space (Table S8 (B)) were rather poor and similar to what was observed for 

the synthetic data: when the dataset contains too few closely related orthologs (less than 

six for bacterial genes and four for the yeast genes) the algorithms failed in detecting the 

motif (data not shown). Increasing the information level of the datasets by adding extra 

orthologs resulted in PG and MEME becoming able to retrieve the motif for at least some 

of the datasets. For PG the best results were obtained by including the phylogenetic 

relatedness by means of a prealignment. PS totally failed on the real data in the 

orthologous space, even for the maximum number of orthologs (irrespective of whether 

they were aligned or left unaligned).  

3.4 Discussion 

In this work, we tested the impact of using coregulation and/or orthologous information 

on the efficiency of regulatory motif discovery by two representative motif discovery 

algorithms with an evolutionary model. We designed appropriate benchmark datasets and 

made an exhaustive evaluation of both algorithms together with MEME, a well-known 

reference algorithm (All benchmark datasets are available at 

http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Storms_Valerie_PlosONE). 

Parameter tuning required a detailed analysis of how parameters influence test results. 

This analysis (see also Text S3) together with guidelines describing how the selection of 

the best tool depends on the composition of the dataset is summarized in Table 3.1. 
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Table 3.1 Summary of user-guidelines. 

 

PROBLEM CONSTRUCTING 

DATASET 

PREFERRED 

TOOLS 

REMARKS 

1. COREGULATION SPACE 

Maximizing the signal to 

noise ratio in the dataset 

(i.e. the enrichment of TF 

binding sites in the 

dataset) improves the 

success rate. 

Only select sequences 

that are likely to contain 

the motif. Keep the 

input sequences as short 

as possible. 

Adding orthologs (see 2: 

combined space) 

improves the success 

rate at a low signal to 

noise ratio. 

PS:  the ensemble 

centroid solution 

guarantees a high 

success rate for 

datasets with low 

signal to noise 

ratios. MEME: easy 

to use with 

performances 

comparable to those 

of PG and PS. 

Both PG and PS provide 

a statistical procedure to 

filter out non-significant 

TF binding sites => 

Overestimating the 

‘expected number of TF 

binding sites’ affects the 

performance less than 

underestimating them. 

For MEME 

misestimating the 

expected number of TF 

binding sites affects the 

motif quality.  

2. COMBINED SPACE 

It is crucial to use a 

phylogenetic tree that 

reflects the true 

evolutionary distances 

between the intergenic 

sequences. 

Use a tree based on a 

neutral evolution rate or 

a protein tree with 

corrected distances to 

prevent underestimating 

the evolution rate. 

Both PG and PS are 

sensitive to 

overestimating the 

evolutionary 

proximity of the 

orthologous 

intergenic regions. 

The type of topology 

(star, tree like structure) 

does not affect the 

performance of the 

phylogenetic tools. 

The characteristics of 

the added orthologs: 

mainly the evolutionary 

distance between them 

influences the results by 

affecting the trade-off 

between align-ability of 

the orthologs and the 

information level of the 

dataset. 

Close orthologs: the 

dataset contains little 

information 

Intermediate orthologs: 

this is the optimal 

situation. 

Distant orthologs: the 

dataset contains more 

information, but the 

alignment might get 

deteriorated. 

 

  

Close ~ q=0.90, the 

orthologs align for 

almost 100 %. In this 

case add at least one 

distant ortholog to 

increase the information 

level of the dataset. 

Intermediate ~ q=0.50, 

the sequences can be 

aligned and contain 

sufficient information 

(clear phylogenetic 

shadowing of the motif). 

Distant ~ q=0.20, the 

prealignment looks bad. 

For the phylogenetic 

tools it is better to leave 

the difficult to align 

sequences unaligned. 

Close: the 

phylogenetic tools 

outperform MEME 

because of  the 

multiple local 

optima in the data. 

Intermediate: for 

this optimal 

evolutionary 

distance the 

phylogenetic tools 

outperform MEME. 

Distant: an 

unreliable 

prealignment 

deteriorates the 

results of the 

phylogenetic tools. 

MEME performs 

better under those 

conditions. In 

general PG better 

handles these 

difficult to align 

datasets than PS. 

The number of 

orthologs to be added is 

of less importance for 

the success rate. Good 

results can already be 

obtained with 4 

orthologs, provided that 

they have a good 

evolutionary distance. 

PG is easier to use than 

PS: 1) when the dataset 

contains a different 

number of orthologs per 

gene, PG adapts the 

input phylogenetic tree 

automatically while for 

PS it needs manual 

interference. 2) PS has a 

long running time 

compared to PG and 

MEME. 
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From our results it appeared that coregulation data allow all three motif discovery 

algorithms to retrieve the motif if the signal to noise ratio in the data is high. In real life 

situations it is more common to encounter datasets with a low signal to noise ratio, as 

biologists often define coregulated gene sets based on results derived from noisy high 

throughput experiments. Moreover the length of the intergenic sequences can be long 

compared to the length of the TF binding sites (Van Hellemont et al., 2005) and often the 

motifs themselves are heavily degenerated. Under such conditions, adding orthologous 

information to the coregulation space can improve the results. There seems to exist an 

optimal phylogenetic distance between the added orthologs, for which all algorithms 

retrieved the best results. This optimal distance corresponds to orthologs that are still 

alignable, but show a sufficient level of divergence so that non functional background 

sequences are no longer conserved and the signal of the conserved TF binding site stands 

out in the background sequence. For applications of phylogenetic footprinting, where 

motifs are searched for in the orthologous space, there is still room for improvement. All 

three algorithms performed poor, partially because they were originally developed and 

tuned towards searching for motifs in the coregulation or the combined coregulation-

orthology space.  
 

In all tests we observed some reoccurring effects that can be explained by the algorithmic 

specificities of the applied motif discovery algorithms. 
 

 At first we consistently observed that PS outperforms PG and MEME when the 

signal to noise ratio drops in the dataset. This is because PS uses an ensemble of solutions 

to define the statistically most overrepresented motif in the dataset whereas both PG and 

MEME report a single optimal solution. Especially in the presence of multiple local 

PROBLEM CONSTRUCTING 

DATASET 

PREFERRED 

TOOLS 

REMARKS 

2. COMBINED SPACE (continued) 

Motif Loss in a closely 

related ortholog or in a 

distantly related ortholog 

increases the noise in the 

dataset.  

Avoid sequences for 

which one expects that 

the mode of regulation 

has changed (mostly the 

distantly related 

sequences). 

PG/PS performs 

better if the motif is 

omitted in the 

distant/close 

ortholog. MEME: 

not dependent on 

the type of ortholog.  

 

3. ORTHOLOGOUS SPACE 

The same issues as in 2 

are valid regarding the 

phylogenetic tree and the 

characteristics of the 

orthologs. 

The more orthologs are 

added, the better the 

results.  

PG performs best 

when the orthologs 

are prealigned and 

slightly outperforms 

MEME. PS 

underperforms in 

the orthologous 

space. 

Observing a PG output 

that only contains 

unaligned TF binding 

sites indicates that the 

input tree underestimates 

the true evolution rate. In 

that case, lower the 

proximities. 
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optima, such ensemble strategies have proven to be more successful in estimating the true 

optimum than searching for a single optimal solution (Reddy et al., 2007). However, this 

advantage of using an ensemble solution comes at the expense of much longer running 

times (e.g. a dataset with 10 orthologous sets each containing five orthologs had a 

running time around 8 hours, for PS, compared to several minutes for PG and MEME).  
 

 Secondly, we would expect that modeling the relation between orthologous 

sequences when searching for motifs in the combined or the orthologous space would 

improve results over those obtained with MEME, or with PG and PS when leaving the 

sequences unaligned. Using an evolutionary model in combination with a tree that 

correctly represents the phylogenetic distances between the used sequences is indeed 

advantageous when adding closely related sequences. Closely related sequences that are 

treated independently harm motif discovery by inducing multiple local optima as 

observed for MEME. PG and PS can better handle this problem of local optima as they 

constrain the search space by prealigning conserved regions and by treating those regions 

simultaneously. In addition their evolutionary model helps to distinguish conservation 

due to evolutionary proximity from conservation due to functionality as the prealignment 

itself is often uninformative (Blanchette and Tompa, 2002; Tompa, 2001). Adding 

distantly related orthologs usually relieves the problem of the local optima, but often 

occurs at the cost of the motif quality as TF binding sites in the distant orthologs are 

harder to find (less similar to the other TF binding sites) or the distant orthologs disturbs 

the prealignment needed for the phylogenetic algorithms. The accuracy of the 

prealignment seemed in general the major bottleneck for the phylogenetic motif finders. 

PG in general handles better these difficult to align datasets by combining a local 

alignment strategy with a more flexible way of assigning TF binding sites. The different 

way of treating the prealignment by PG and PS also explains the different behavior of PG 

and PS towards omitting TF binding sites in the orthologous direction. For PS we also 

observed that the use of a weighting scheme in a non-ideal situation (incorrect 

prealignment and missing TF binding sites in the distant ortholog) negatively influences 

the results. This implies that when using PS, the user can better omit distant sequences 

for which he is not sure that the mode of regulation is still conserved.  
 

 Lastly, all used algorithms underperform when searching for motifs in only a set 

of orthologous sequences. This effect was most pronounced for PS that only retrieved an 

output when leaving the sequences unaligned and suppressing the use of the phylogenetic 

model. This failure of PS relates to the fact that the sampling ‘model-update step’ (see 

chapter 2, § 2.3.2 ‘Scoring methods’) does not sufficiently explores the search space in 

the absence of coregulated information. PG which uses a different search strategy better 

explores the search space in the orthologous space. 
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Having an insight in this relation between the obtained results and the working principles 

of the algorithms provides developers hints for further improvements. For instance the 

ease with which a basic algorithm as MEME can be used largely compensates for the 

slightly higher accuracy that is obtained with the more complex phylogenetic algorithms. 

Based on our experience we would therefore suggest of using MEME to get a first insight 

into the data. This will help tuning the parameters of the more complex phylogenetic 

algorithms that on their turn can further improve the results e.g. by retrieving more ‘true’ 

and less ‘false positive’ sites. User-friendliness is one of the major issues in determining 

which algorithm to use. Most of the current phylogenetic algorithms are still in their 

developmental phase and do not yet provide the same user-friendliness as more settled 

algorithms such as MEME. Moreover, as the quality of the results of the phylogenetic 

algorithms heavily depends on the correctness of the prealignments, developing ways to 

account for phylogenetic relatedness, independent of a prealignment is a future challenge. 

Care should also be taken when introducing specific ways to model the relation between 

the orthologous sequences. For instance, for PS the use of the weighting scheme has a 

very counterintuitive effect when TF binding sites are missing in the orthologous 

direction. The development of algorithms that can better cope with phenomena of ‘TF 

binding site turnover’ during evolution (Ray et al., 2008) will hopefully result in more 

realistic and informative models. Lastly the ensemble strategy of PS definitely is useful, 

but can be computationally limiting. 
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Chapter 4 PHYLO-MOTIF-WEB: an ensemble 

workflow on the web for de novo discovery of DNA 

binding sites using phylogeny 

4.1 Introduction 

The de novo identification of regulatory motifs is one of the oldest problems in 

bioinformatics with nearly a hundred algorithms published in the last 25 years. Despite 

the abundance of motif discovery algorithms, most programs are difficult for non-expert 

users to readily apply to their uncharacterized datasets. This is unintentionally a 

consequence of motif discovery algorithms getting more and more complex and thus 

requiring a lot of pre- and post-processing steps. This increase in algorithmic complexity 

stems from attempts to improve motif discovery performance by incorporating additional 

information to guide the motif search.  
 

Initially motif discovery was performed on the non-coding sequences of several 

coregulated genes from a single genome. Web servers like MEME SUITE (Bailey et al., 

2009), Motif Tool Manager (Phan and Furlotte, 2008), SCOPE (Carlson et al., 2007), 

iMotifs (Piipari et al., 2010) and many others provide easy access and use of such 

‘coregulation-based’ motif discovery algorithms. Although those motif finders have been 

shown to work successfully in yeast and other lower organisms, they suffer from low 

specificity and sensitivity in higher organisms due to the low signal to noise ratio of 

short, degenerated binding sites in long background sequences (Das and Dai, 2007; 

Tompa et al., 2005).  
 

Large-scale genome sequencing provided a lot of new information and led to a successful 

extension for motif discovery: the use of ‘evolutionary conservation’ by means of 

ortholog alignments, also known as phylogenetic footprinting (Duret and Bucher, 1997). 

Initially, the information extracted from ortholog alignments was used in a discriminative 

way as a pre-processing step to restrict the search space (e.g. MEME_c (Harbison et al., 

2004)) or to confirm/filter predicted binding sites in a post-processing step (Gelfand et 

al., 2000; Wasserman and Fickett, 1998). This was followed by an integrated approach, 

where we can distinguish between algorithms that use the full alignment information 

completed with a phylogenetic tree and an evolutionary model (Siddharthan et al., 2005; 

Sinha et al., 2004; Prakash et al., 2004; Blanchette and Tompa, 2003) and algorithms that 

include the alignment information into positional priors (Gordan et al., 2010; Bailey et 

al., 2010).  
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For long, ‘evolutionary conservation’ was the most powerful remedy against many false-

positive annotations (Vingron et al., 2009) but new techniques like Chromatin 

immunoprecipitation on chip (ChIP-chip) or followed by DNA sequencing (ChIP-Seq) 

introduced new informative DNA features that help to differentiate true binding sites 

(which are bound in vivo by their TF) from random ones (which are not bound in vivo). 

Features like the binding regions of other TFs and epigenetic factors such as nucleosome 

occupancy, DNase hypersensitivity and histone modifications have already been applied 

and shown to improve performance for motif scanning purposes (Won et al., 2010; Ernst 

et al., 2010; Lahdesmaki et al., 2008). Except for MEME version 4.2+ (Bailey et al., 

2010) and PRIORITY (Gordan et al., 2010; Narlikar et al., 2006) that can incorporate 

positional priors based on multiple DNA features, most of the established de novo motif 

discovery algorithms do not yet support the direct use of such information (Klepper and 

Drablos, 2010).  
 

In this chapter, we present a new web server for de novo motif discovery: PHYLO-

MOTIF-WEB. PHYLO-MOTIF-WEB is unique compared to other existing web servers, 

as it covers all the different pre- and post-processing steps needed to identify potential 

motifs in a set of non-coding sequences. The PHYLO-MOTIF-WEB workflow allows for 

integrating DNA features like nucleosome occupancy and histone modifications to define 

putative regulatory regions in the DNA and it applies an ensemble strategy on the results 

of multiple advanced motif discovery tools that can integrate phylogeny. 
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4.2 Materials and Methods 

The PHYLO-MOTIF-WEB workflow consists of four main steps as show in Figure 4.1. 

In this section we explain each of the steps in more detail. 
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STEP 3
Motif discovery by using an ensemble 
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Post-processing of the predicted 

ensemble motif matrices
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Figure 4.1 Overview of the different sub-steps of PHYLO-MOTIF-WEB. The user input consists of one or 

more Ensembl gene IDs for a reference species. Step1: Selects the non-coding sequence regions for each 

reference gene by using the Ensembl Core API modules. Step 2: Allows the user to use additional 

information sources to guide the motif search e.g. mask repeating patterns or add multi-species alignments 

by using the Ensembl Compara API modules or use DNA features to restrict the search space by using the 

Ensembl Regulatory Build. Step 3: Performs motif discovery following an ensemble strategy that clusters 

the results of multiple runs (covering different parameter settings) of one or more component algorithms 

like e.g. MEME, Phylogibbs and Phylogenetic Sampler. Step 4: Evaluation of the predicted ensemble motif 

matrices by calculating their overrepresentation in the input sequences versus random sequence sets using 

Clover, comparing each predicted motif matrix to TRANSFAC/JASPAR motif matrices using 

MotifComparison and visualization of the corresponding binding sites in the reference genome using the 

UCSC Genome Browser. 

4.2.1 User input (see Figure 4.1: step1) 

PHYLO-MOTIF-WEB is developed to perform a gene-centered motif discovery 

approach in eukaryotes. The input consists of the Ensembl gene IDs for a set of genes 

from a reference species that are believed to be regulated by a common TF. For each 

gene, we select the non-coding sequence region up- and downstream of the transcription 
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start site (TSS) using Ensemble core API modules (Hubbard et al., 2009). As those non-

coding regions are often long in order to ensure covering of all the TF binding sites, 

restriction to regions with a high ‘regulatory potential’ is necessary to guarantee an 

accurate performance. For now, the Ensembl database contains the needed additional 

information sources to define ‘regulatory potential’ (see beneath) only for human (Homo 

sapiens) and mouse (Mus musculus).  

4.2.2 Additional information sources (see Figure 4.1: step 2) 

PHYLO-MOTIF-WEB allows for masking repeating patterns like tandem repeats or 

transposable elements helping the motif discovery to focus on true binding sites. 

Evolutionary conservation is integrated in a non-discriminative way by providing for 

each reference sequence region, the full alignments blocks, retrieved from Ensembl using 

the compara API modules. The alignment blocks stem from the multi-species genome 

alignments of 11 eutherian mammals created by EPO (the Ensembl ‘Enredo, Pecan, 

Ortheus’ pipeline for whole-genome multiple alignments). As evolutionary closely 

related species show high sequence similarity and low discriminative power in multiple 

alignments, we leave the sequences for following species out of the alignment blocks: 

chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), orangutan (Pongo pygmaeus) and 

rat (Rattus norvegicus), marmoset (Callithrix jacchus). The species for which the 

sequences are included: human, mouse, macaque (Macaca mulatta), cow (Bos taurus), 

horse (Equus caballus) and dog (Canis familiaris). The user can choose beforehand for 

which species he likes to include the sequences in the alignment blocks (default all six 

species), but as not every genomic region of the reference species can be aligned to every 

other genome, this will anyway result in alignment blocks with varying sizes (i.e. 

different number of orthologous sequences). Besides the alignment blocks, PHYLO-

MOTIF-WEB also provides a phylogenetic tree to describe the evolutionary relationships 

between the orthologous sequences in the alignment block. The phylogenetic tree is 

based on a neutral evolution rate (3rd position of four-fold degenerated codons) and was 

proven to be most suited to capture the relationships between the non-coding sequences 

of the six species (Storms et al., 2010). Providing the alignment blocks in combination 

with a phylogenetic tree allows for optimal use of orthology information where non-

conserved TF binding sites can still be retrieved.  
 

More recently, many other features are described as indicators for DNA regions with 

‘regulatory potential’ and thus can be used to improve the motif discovery performance. 

Chromatin structure is an indirect indicator of regulatory elements. DNase hypersensitive 

sites, i.e. nucleosome depleted regions that are easily digested by the DNase I enzyme, 

are associated with regulatory elements (Boyle et al., 2008). Similarly some regulatory 

elements are known to be enriched for certain histone modifications (Kouzarides, 2007). 
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Genome-wide profiles of various histone modifications using ChIP experiments have 

revealed the locations of several putative regulatory regions in different cell types (Barski 

et al., 2007; Heintzman et al., 2007). Also the location of other functional TF binding 

sites identified by ChIP-chip or ChIP-Seq is a useful feature as the transcriptional 

regulation in eukaryotes is often mediated by the concerted interaction of several TFs that 

bind in close proximity (Van Loo and Marynen, 2009; Gotea and Ovcharenko, 2008). 

Most of these features are cell type and condition specific, and so ideally used to discover 

cell type and condition specific TF binding sites (Whitington et al., 2009). However the 

study of Ernst et al. (Ernst et al., 2010), shows that experimentally derived data in one 

cell type (e.g. DNase hypersensitivity or histone modifications) can be used to predict TF 

binding in another cell type. PHYLO-MOTIF-WEB uses the ‘Regulatory Build’ pipeline 

of Ensembl that combines specific DNA features to provide the annotation of potential 

regulatory regions within the genome (Hubbard et al., 2009). For now available are: 

Human Regulatory Build version 8 and Mouse Regulatory Build version 3. The user can 

choose to use regions identified across multiple cell types (based on open chromatin 

defined by DNase I hypersensitivity mapping and the locations of other TF binding sites) 

and can extend those in a cell type specific manner (based on histone modifications 

assayed by ChIP). The regulatory region annotations can be used to narrow down the 

long non-coding input sequences to hotspots of regulatory elements in a pre-processing 

step or to evaluate predicted binding sites in a post-processing step.  

4.2.3 Motif discovery following an ensemble strategy (see Figure 4.1: step 3) 

PHYLO-MOTIF-WEB integrates multiple de novo motif discovery algorithms by using 

an ensemble strategy. For now, the user can add following algorithms to the ensemble 

strategy: MEME (Bailey and Elkan, 1994) an established algorithm to find TF binding 

sites in sets of coregulated genes, Phylogibbs (Siddharthan et al., 2005) and Phylogenetic 

sampler (Newberg et al., 2007), both more advanced algorithms specialized in integrating 

orthology information. It is often hard for non-expert users to use these advanced motif 

discovery algorithms as they have a lot of parameters to tune and their optimal settings 

depend on the type of input and on the algorithmic properties (Storms et al., 2010). 

PHYLO-MOTIF-WEB overcomes this pitfall as it runs each component algorithm over 

the range of most likely parameter settings, leaving the user with very few undefined 

settings. For each run of each component algorithm, the output consists of a list of 

predicted motifs in the form of position specific probability matrices, each with their 

corresponding individual TF binding sites. Our asymmetric clustering approach, also 

referred to as ‘FyzzyClustering’, resumes all the predicted motif matrices into one final 

list of putative regulatory motif matrices and works on the level of the ‘individual TF 

binding sites’. FuzzyClustering is based on the sequential cluster extraction algorithm, 
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first described in Inoue et al. (Inoue and Urahama, 1999), who demonstrated its use in 

image segmentation and later applied by Joshi et al. (Joshi et al., 2008) to extract clusters 

from gene expression data. The FuzzyClustering algorithm starts with the construction of 

an overview matrix, as shown in Figure 4.2, to keep track which TF binding sites 

(columns in the overview matrix) were retrieved for each predicted motif (rows in the 

overview matrix). To construct the overview matrix, overlapping TF binding sites are 

merged into one representative binding site in case their overlapping region succeeds the 

overlap threshold (default = minimum 50% overlap to merge two TF binding sites). 

Weak TF binding sites can be filtered out the overview matrix by putting a threshold 

(default = 0.05) on the TF binding site’s individual probability. The individual 

probability for a TF binding site is defined as the ratio of ‘the number of times the 

binding site appeared over all the predicted motifs’ and ‘the total number of predicted 

motifs’ as shown in Figure 4.2. As each motif discovery algorithm assigns a weight (i.e. 

the posterior probability score in case of PS and PG and a p-value in case of MEME) to 

their predicted individual binding sites, those weights can also be integrated in the 

calculation of the individual binding site probability. This by multiplying the number of 

times the binding site appeared over all the predicted motifs with the square root of the 

binding site’s weight. In case of overlapping binding sites, the average of their weights is 

taken and assigned to the representing binding site. 
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Figure 4.2: Construction of the overview matrix that is based on the predicted individual binding sites. For 

each predicted motif (3 in total) the corresponding TF binding sites are show in the input sequences. In case 

the individual binding sites sufficiently overlap they are merged into one representative binding site (e.g. in 

the first sequence the binding sites for predicted motif 2 and 3 are merged into one representative binding 

site). The overview matrix contains ‘1’ in case the (representative) binding site (column j) was retrieved for 

the predicted motif (row i), if not it contains ‘0’. In case weights were assigned to the individual TF binding 

sites by the motif discovery algorithm, the ‘1’ is replaced by the ‘binding site weight’ in the overview 

matrix. For each (representative) binding site the individual binding site probability (p) is calculated. In this 

figure we did not integrate weights. 
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Based on this overview matrix an asymmetric clustering approach will sequentially group 

sets of TF binding sites that significantly appear together in sets of predicted motifs. So 

we get clusters of the form (A, B), where A represents the set of predicted motifs that 

contribute to B, the set of significantly co-occurring TF binding sites. This allows for 

each set of TF binding sites to evaluate the fraction of predicted motifs that is covered 

(i.e. the prediction rate) and to trace back the contribution level of each component 

algorithm (PG, PS and MEME). TF binding sites and predicted motifs may be assigned to 

different clusters (referring to the 'fuzzy' aspect of this approach) each with a membership 

probability that represents their relative importance compared to other TF binding 

sites/predicted motifs in the cluster. Those membership probabilities are also affected by 

the original weight assigned to the TF binding site by the motif discovery algorithm. 
 

For each asymmetric cluster reported by our approach, the TF binding sites are aligned to 

construct a position specific probability matrix (i.e. the ensemble motif), where the 

contribution of each binding site is weighted by its membership probability. To enhance 

biological meaningful results we select those ensemble motif matrices that show a 

reasonable consensus score (default threshold value = 0.5) and have binding sites in a 

minimal fraction of the input sequences (default = at least one binding site in 50% of the 

input sequences). The overview matrix is only based on binding sites retrieved for the 

input sequences of the reference species and not those retrieved for the orthologous 

sequences, this in order to create species-specific ensemble motif matrices. 

4.2.4 Post-processing (see Figure 4.1: step 4) 

The post-processing of PHYLO-MOTIF-WEB allows for an optimal evaluation of the 

final ensemble motif matrices. Each motif matrix is visually presented by its motif logo; 

the location of the corresponding binding sites on the input sequences is shown 

graphically and can also be viewed in the UCSC Genome Browser 

(http://genome.ucsc.edu/) to place them in their broader genomic and epigenetic context. 

The contribution level of each component algorithm is indicated by a pie chart. To 

evaluate if the motif matrix is specific for the input set, Clover (Frith et al., 2004) is used 

to calculate the p-value for the motif matrix’s overrepresentation in the input set versus 

random sequence sets sampled from the reference genome. Each final ensemble motif 

matrix can be compared to known motif matrices in databases as TRANSFAC (Matys et 

al., 2006) and JASPAR (Bryne et al., 2008) using the MotifComparison software (Thijs 

et al., 2002b). MotifComparsion relies on the Kullback-Leibler distance to measure the 

similarity between two motif matrices. Matches with a Kullback-Leibler distance < 0.40 

(default) and a minimum overlap of 5 bp or a maximum shift of 4 bp between both 

matrices were regarded as significant.  
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4.3 The PHYLO-MOTIF-WEB web server 

4.3.1 The ‘Run it’ webpage 

On the homepage (http://homes.esat.kuleuven.be/~bioi_marchal/PMW/index.html) of the 

PHYLO-MOTIF-WEB web server, the user can choose to run the PHYLO-MOTIF-WEB 

workflow by clicking on ‘Run it’. The ‘Run it’ webpage (as shown in Figure 4.3) allows 

the user to provide personal information like an email address to which the results of the 

PHYLO-MOTIF-WEB workflow will be sent. Further on, the user can input the Ensembl 

gene IDs for the chosen reference species and select the regions for motif discovery under 

‘Step 1: Select the non-coding regions’. Under ‘Step 2: Additional information sources’ 

the user can choose 1) to use evolutionary conservation information by selecting the 

species in which he expects the TF binding sites to be conserved, 2) to use cell type 

specific DNA features or DNA features applicable to many, different cell types and 3) to 

use repeat masking. Under ‘Step 3: Motif discovery using an ensemble strategy’ the user 

can control the parameters for de novo motif discovery and for the asymmetric clustering 

approach (FuzzyClustering).  

 

 

 

 

 

 

 

 

 

 

Figure 4.3 (on next page) A part of the ‘Run it’ webpage of PHYLO-MOTIF-WEB, where the user can 

input the Ensembl gene IDs for the reference species and select the regions for motif discovery relative to 

the TSS (Step 1), add additional information sources (Step 2) and control the parameters for de novo motif 

discovery and the asymmetric clustering approach (Step 3). 
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As an example, we ran PHYLO-MOTIF-WEB on a synthetic dataset consisting of 7 

human genes, each containing a binding site of the CREB/ATF TF family in their 

promoter region (Hon and Jain, 2006). A region of 1000 bp up- and 200 bp downstream 

of the TSS was selected per gene, evolutionary conservation was integrated by means of 

a human-mouse pairwise alignment and only regulatory regions across all cell types were 

used (see Figure 4.3) (all information was gathered from Ensembl database version 59, 

August 2010). De novo motif discovery was performed by PG, PS and MEME, each 

searching for 1 or 2 regulatory motifs, of width 6 or 8 bp, with 0.5 (4 binding sites in 7 

sequences) or 1 TF binding site per input sequence. As the consensus sequence 

recognized by the CREB/ATF family of TFs equals 5'-TGACGTCA-3', we also searched 

for palindromic motifs. In case the user has no clue on the number of different motifs, 

their widths and the corresponding number of TF binding sites present in the input 

sequences, he can run each motif discovery algorithm over multiple values for each of 

those parameters. However, the amount of different values for each parameter negatively 

influences the running time of PHYLO-MOTIF-WEB. The set of motif matrices, 

predicted across all algorithms and parameter values, is reduced to a set of ensemble 

motif matrices by FuzzyCustering, using the default settings except for the individual 

binding site probability that was lowered to 0.005, in order to improve sensitivity.  

4.3.2 The ‘Results’ webpage 

When clicking on ‘submit’ the user gets an overview of the chosen parameter values and 

can proceed to the ‘Results’ webpage which is presented in Figure 4.4 and Figure 4.5 for 

the CREB/ATF dataset. Figure 4.4 presents the top of the ‘Results’ webpage, containing 

a first table with the genomic coordinates of the selected non-coding regions for each 

gene. In case the user chose to restrict the non-coding regions to the regulatory regions 

annotated by Ensembl and/or to use evolutionary information by means of alignment 

blocks, the genomic coordinates corresponding to those regions are also included in the 

first table. The second table in Figure 4.4 contains the input files for each participating 

motif discovery algorithm, and a picture of the phylogenetic tree in case the tree was 

required by the algorithm. After running each motif discovery algorithm, the predicted 

motif matrices are resumed in a matrix file and the corresponding TF binding sites in a 

binding site file, which can be downloaded from the third table.  
 

Figure 4.4 (on next page) The first part of the ‘Results’ webpage. The first table contains the genomic 

coordinates (chromosome number (Chrom), Start, End and Strand) of the non-coding regions selected for 

each input gene (identified by a NR and Ensembl ID). In case of regulatory regions and/or alignment 

information, this table also contains the genomic coordinates that correspond to those regulatory regions 

(RR) or alignment blocks (AB). For each alignment block, the number of orthologous sequences is given 

(Orth). Notice that the length of the selected region (Length) also contains the gaps in case of alignment 

blocks. The second table contains the input files for the motif discovery algorithms and a picture of the 

phylogenetic tree in case evolutionary conservation was integrated. The third table contains the motif 

discovery output files: the ‘motif matrix files’ and the corresponding ‘binding site files’. 
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Figure 4.5 The second part of the ‘Results’ webpage. All ensemble motifs predicted by FuzzyClustering are 

ranked according to their sequential retrieval. Here we only present the first ensemble motif. Per ensemble 

motif, the following information is provided: the motif logo and position specific frequency matrix, the 

location and scores of the TF binding sites in the reference sequences, the p-value for the motif’s 

overrepresentation in the reference sequence set and a comparison with known motif matrices from 

TRANSFAC and JASPAR. 
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Figure 4.5 shows the remainder of the ‘Results’ webpage, namely the evaluation of each 

ensemble motif predicted by FuzzyClustering. For the CREB/ATF dataset, multiple 

ensemble motifs were predicted, ranked according to their sequential retrieval. For 

clarity, Figure 4.5 only shows the first and thus most significant ensemble motif. Per 

ensemble motif the following information can be retrieved on the ‘Results’ page as 

shown in Figure 4.5:  
 

� The motif logo and the possibility to download the corresponding position specific 

frequency matrix. By looking at the motif logo, we could already see the 

resemblance with the consensus binding sequence of CREB/ATF.  
 

� The TF binding sites that make up the ensemble motif, with their relative 

positions in the reference input sequences and their membership scores (i.e. a 

score that represents the relative importance of the binding site compared to the 

other binding sites that were assigned to the motif) as assigned by the 

FuzzyClustering algorithm. We checked the overlap between the TF binding sites 

predicted by PHYLO-MOTIF-WEB and the ‘true’ binding sites of CREB/ATF in 

the benchmark dataset. In total there were 8 predicted binding sites for this 

ensemble motif; 6 true positives (i.e. they overlap with the true binding sites) and 

2 false positives (no overlap with true sites). This resulted in a very high 

sensitivity (i.e. 6 of the 7 true sites were retrieved) and positive predictive value 

(i.e. only 2 of the 8 predicted sites were false positive). Moreover, the 2 false 

positive predictions had the lowest membership scores (0.184 and 0.247).  
 

� The p-value for the overrepresentation of the ensemble motif in the reference 

sequence set versus random sequence sets. For ensemble motif 1, a p-value of 

0.008 indicated that this motif is very specific for the reference sequence set.  
 

� The comparison of the ensemble motif matrix with known motif matrices from 

the TRANSFAC and JASPAR databases. As shown in Figure 4.5, ensemble motif 

1 resembled the CREB motif matrix from TRANSFAC with a Kullback-Leibler 

distance < 0.40 (default).  
 

� A pie chart that shows the contribution of each motif discovery algorithm to the 

ensemble motif (still to be implemented). Here, only motif predictions made by 

PG contributed to ensemble motif 1, with a prediction rate of 12% (data not 

shown).  
 

� Per gene, the ‘Results’ webpage also contains a link to view the TF binding sites 

in their genomic context through the UCSC Genome Browser (version hg19/Feb. 

2009). An example can be found in Figure 4.6, for the CREB/ATF binding site 

retrieved in the promoter region of ENSG00000169252 (ADRB2). 
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Figure 4.6 Visualization of the CREB/ATF binding site (green circle) in the promoter region of 

ENSG00000169252 (i.e. the ADRB2 RefSeq gene indicated in blue), through a Custom Track in the UCSC 

Genome Browser (hg19). Other DNA features can be visualized by activating their tracks, e.g. CpG islands 

indicated in green. 

4.4 Discussion 

In this chapter, we present a ‘complete’ de novo motif discovery workflow that covers all 

the different pre- and post-processing steps needed to identify potential motifs in a set of 

non-coding sequences and this in the form of an easy to use web server: ‘PHYLO-

MOTIF-WEB’.  
 

PHYLO-MOTIF-WEB allows for the easy integration of multiple different information 

sources that were shown to improve motif discovery performance, like evolutionary 

conservation and DNA features like chromatin structure. For example, PHYLO-MOTIF-

WEB provides the multi-species alignments and the corresponding phylogenetic trees as 

required by motif discovery tools like PG and PS, in order to maximally exploit 

evolutionary conservation information. This makes PHYLO-MOTIF-WEB more user-

friendly compared to other web services like e.g. PhyloScan (Palumbo and Newberg, 

2010) that do not provide the ortholog alignment nor the most optimal phylogenetic tree. 

Also DNA features like nucleosome occupancy and histone modifications can be 

integrated in the workflow by using the Regulatory Build pipeline of the Ensembl 
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database that annotates ‘putative regulatory regions’ in the DNA in a cell type specific 

manner. For algorithms that can not yet integrate this type of information,  

PHYLO-MOTIF-WEB provides the option to use this information in a discriminative 

way, to narrow down the sequence search space as much as possible beforehand, not 

superfluous as the regulation of genes in higher eukaryotes likely depends on a complex 

interplay between proximal and distal enhancers (Luster and Rizzino, 2003).  
 

Finally PHYLO-MOTIF-WEB applies an ensemble strategy on the results of multiple 

advanced de novo motif discovery tools. The use of ensemble strategies already proved 

its benefits (improving both the sensitivity and specificity) over the use of a single 

component algorithm by exploiting the synergetic prediction capability of multiple 

algorithms (Chakravarty et al., 2007; Hu et al., 2006; Hu et al., 2005). We presented a 

clustering-based ensemble strategy, ‘FuzzyClustering’ that groups sets of TF binding 

sites, jointly predicted during multiple runs of one or more component algorithms, into 

one (or more) higher quality motifs. As FuzzyClustering works on the level of the TF 

binding sites, it is able to filter out false positive TF binding sites and pick up weak TF 

binding sites that would get lost in a motif-level clustering approach.  
 

Besides the contribution level of each component algorithm, also the overrepresentation 

of the predicted motifs in the input set compared to random sequence sets and the 

comparison with known database motifs helps the user to assess the statistical and 

biological significance of the predicted ensemble motifs.  
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Chapter 5 De novo motif discovery in vitamin D3 

regulated genes 

5.1 Introduction 

Vitamin D3 (cholecalciferol) can be derived from nutrition, but the main supply of 

vitamin D3 derives from production in the skin after exposure to ultraviolet light from the 

sun, which converts 7-dehydrocholesterol to form previtamin D3, which is rapidly 

converted to vitamin D3 (Holick, 2004) (see Figure 5.1). Therefore, vitamin D3 is not 

considered as a true vitamin but rather as a precursor of a hormone. Whether it is made in 

the skin or ingested, vitamin D3 is first hydroxylated in the liver to 25-hydroxyvitamin 

D3, and then in the kidneys to its biologically active form, 1α,25-dihydroxyvitamin D3 or 

1α,25(OH)2D3 (Holick, 2004). As shown in Figure 5.1, the active metabolite of vitamin 

D3 plays an important role in the regulation of numerous physiological and cellular 

processes including calcium/phosphate homeostasis, bone maintenance, cell growth, cell 

differentiation, and the immune system (Bouillon et al., 2008; Lin and White, 2004; 

Gurlek et al., 2002; Jones et al., 1998). The most widely accepted role of 1α,25(OH)2D3 

is the regulation of calcium and phosphate metabolism as it is important for the 

absorption of these essential minerals in the intestine, and for their mobilization in bone 

tissues (Rachez and Freedman, 2000). Besides this ‘classical’ effect of vitamin D3, the 

hormone is also a modulator of the immune response (Bouillon et al., 2008) and has a 

potent growth-inhibitory or antiproliferative and prodifferentiating action on different cell 

types including malignant cancer cells (Deeb et al., 2007).  
 

 
Figure 5.1 Metabolism of vitamin D3 to 1α,25(OH)2D3  in the kidney and other organs and the biological 

consequences. Taken from (Holick, 2004). 
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The wide range of therapeutic and health-related benefits of vitamin D3 relates to the fact 

that the vitamin D receptor (VDR), through which 1α,25(OH)2D3 exerts its genomic 

effects, is present in most cells and tissues in the body (Zehnder et al., 2001). This 

vitamin D receptor belongs to the class of nuclear receptors which are highly conserved 

throughout evolution and regulate gene expression in a ligand-dependent manner 

(Haussler et al., 1998). Upon 1α,25(OH)2D3 binding, the VDR acts as a ligand-activated 

TF and translocates to the nucleus. Before the VDR is able to influence transcription it 

heterodimerizes with the retinoid X receptor (RXR). This VDR/RXR complex binds 

chromatin rapidly at regulatory regions called vitamin D responsive elements (VDREs). 

These elements are generally composed of two hexameric binding sites interspaced by a 

varying number of nucleotides (Haussler et al., 1998) (more details follow in § 5.2.2.1). 

Many genes regulated by vitamin D3 have multiple VDREs in their promoter region, 

sometimes far away from the coding region, e.g. in distal enhancer regions.  
 

Modulation of gene expression by ligand-activated VDR/RXR bound to the DNA is 

mediated through the recruitment of co-activator protein complexes. These co-activating 

proteins, like the members of the SRC/p160 and the CBP/p300 protein families, may 

induce histone acetylation, which results in an open chromatin structure, creating a 

chromatin surrounding permissive for gene transcription (Rachez and Freedman, 2000). 

Subsequently, general TFs (GTFs) as well as RNA polymerase II are recruited to the TSS 

by VDR/RXR-interacting multi-protein complexes like DRIP (vitamin D Receptor 

Interacting Proteins) (Rachez and Freedman, 2000). This will induce transcription of the 

neighbouring gene. Gene transcription can also be affected by ATP-dependent chromatin 

remodeling complexes, like SWI/SNF, that interact with VDR and mediate a locally low 

nucleosome occupancy by histone displacement (Li et al., 2007). Unliganded VDR is 

kept transcriptionally silent, even when present in the nucleus and bound to chromatin, by 

one or more co-repressors like SMRT (silent mediator for retinoid and thyroid hormone 

receptors) and NCoR (nuclear receptor co-repressors). Those co-repressors are able to 

deacetylate (directly or indirectly) histones and thus keep the chromatin in a densely 

packed configuration which is inaccessible for the transcriptional machinery (Tagami et 

al., 1998). 
 

The antiproliferative effects of 1α,25(OH)2D3, in combination with the presence of VDR 

in a wide variety of cell types opens perspectives for the use of this molecule in the 

treatment of cancer and other hyperproliferative disorders, however its calcemic side 

effects hamper its therapeutic applications. Therefore several research groups designed 

synthetic analogs of 1α,25(OH)2D3 with an improved antiproliferative/prodifferentiating 

action and lower calcemic effects (Eelen et al., 2007; Guyton et al., 2003; Verlinden et 

al., 2000; Bouillon et al., 1995). However, the exact nature of the 1α,25(OH)2D3 

mediated signaling cascade that relates to the antiproliferative effects remains not 
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completely understood. A transcriptome study by Vanoirbeek et al. (Vanoirbeek et al., 

2009) revealed that a superagonistic vitamin D3 analog (WY1112) induces the same set 

of genes as 1α,25(OH)2D3, but the level of induction of the individual genes is higher. A 

better understanding of the 1α,25(OH)2D3 signaling cascade will allow identifying 

regulated key target genes that could be used as important markers for the activity profile 

of newly developed analogs. 
 

The setup of this study is based on a very interesting observation; the antiproliferative 

phenotype induced by vitamin D3 treatment was observed for both human (Homo 

sapiens) breast cancer and mouse (Mus musculus) osteoblastic cell lines. Therefore, we 

performed a comparative transcriptome analysis to gain better insights in the molecular 

mechanism underlying the antiproliferative effects of vitamin D3. In experiments limited 

to a single species, it is often hard to filter false positives from a set of predicted 

differentially expressed genes that have potential to be physiologically important. 

However, evolutionary conservation is a powerful criterion to identify genes that are 

functionally important from a set of coexpressed genes. The availability of transcriptome 

data for both human and mouse, allowed us to focus on genes that showed a conserved 

coexpression behaviour, across both species, which could be of particular interest for the 

common antiproliferative phenotype. The next challenge was to elucidate the 

transcriptional regulation underlying the conserved coexpression behaviour. Although not 

always the case (Ludwig et al., 2000), we assumed that also the transcriptional regulation 

had been conserved and searched for conserved cis-regulatory elements that govern the 

coexpression of the genes. The results of the microarray analysis are described in section 

§ 5.2.1 and the identification of cis-regulatory elements for one specific, well conserved 

coexpression cluster, are described in section § 5.2.2. 

5.2 Results 

5.2.1 Microarray analysis 

In order to gain better insights in the molecular mechanism underlying the 

antiproliferative effects of vitamin D3, a comparative transcriptome analysis for human 

and mouse was performed. The Legendo research group performed microarray time-

series experiments, for both human and mouse, on vitamin D3 treated cells versus control 

cells. For mouse, a cDNA platform was used to examine the expression profile of 21492 

genes in osteoblastic MC3T3-E1 cells (Verlinden et al., 2005), while for human, the 

Affymetrix platform was used, to measure the expression profile of all human coding 

genes in MCF-7 breast cancer cells (Vanoirbeek et al., 2009). Mouse bone cells are a 

very classic target of VDR action in contrast to the human breast cancer cells. However, 

the Legendo research group chose to work with human breast cancer cells as they express 
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VDR and they show clear growth inhibition after vitamin D3 treatment. Also their 

experience on manipulating this type of cells supported their decision. The different 

microarray platforms and tissues, used for both species, make this comparative 

transcriptome analysis less straightforward; differences in gene expression observed 

between both species can be due to species-specific effects, tissue effects or platform 

effects. Therefore we will focus on the similarities in gene expression between both 

species. Those can maybe relate to the common phenotype observed after vitamin D3 

treatment. A statistical analysis, to derive, for each species, the differentially expressed 

genes, followed by a clustering and comparative gene expression analysis, revealed one 

interesting cluster of coexpressed genes which is conserved across human and mouse (for 

all details see Materials and Methods). This conserved cluster consists of 10 genes, 

upregulated in time after vitamin D3 treatment compared to no treatment (control state), 

as shown in Figure 5.2. 
 

 
Figure 5.2 Expression profiles for the conserved coexpression cluster which consists of 10 genes (see Table 

5.1). The expression profiles for 10 genes (rows) in non-treated cells (ctl) and in vitamin D3 treated cells 

(vit) for different time points (1h, 3h, 6h, 12h, 24h, 36h) (columns), in both human (left) and mouse (right). 

Notice, for mouse the gene expression for the 3h time point is not measured. The first (ctr) and second (vit) 

block of columns represent the expression values for human; the third (ctr) and fourth (vit) block of 

columns represent the expression values for mouse. 
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To get a first indication, on how those 10 genes fit in the antiproliferative effect of 

vitamin D3, we considered their individual functions. We looked up the GO terms 

concerning the biological processes in which the 10 genes are involved, for both human 

and mouse, in the amiGO database version 1.7 (Ashburner et al., 2000). Table 5.1 enlists 

for each gene, the gene name and a short description as well as the GO terms for the 

biological processes that are linked to this gene.  
 

Table 5.1 The genes identified as being upregulated in both human and mouse after cell treatment with 

vitamin D3. For each gene belonging to the conserved coexpression cluster (see Figure 5.2), a number (Nr) 

and the gene name (Name) are given, followed by a short description (Description) and a list of all the 

associated GO terms concerning biological processes (GO biological process).  

Nr Name Description GO biological process 

1 PLXND1 Plexin-D1 Multicellular organismal development 

Signal transduction  

Patterning of blood vessels 

2 ID3 DNA-binding protein inhibitor ID-3 Multicellular organismal development  

Negative regulation of transcription 

Regulation of transcription 

Regulation of DNA replication 

Positive regulation of apoptosis 

Epithelial cell differentiation 

3 CPE Carboxypeptidase E Insulin processing 

Proteolysis 

Protein modification process 

4 PISD Phosphatidylserine decarboxylase 

proenzyme 

Phospholipid biosynthetic process 

5 SEC14L1 SEC14-like protein 1 Transport 

6 ITPR1 Inositol 1,4,5-trisphosphate receptor 

type 1 

Calcium ion (transmembrane) transport and 

homeostasis 

Response to hypoxia 

Cell death 

Signal transduction 
7 TSC22D3 TSC22 domain family protein 3 Regulation of transcription, DNA-dependent 

Anti-apoptosis 

Response to osmotic stress 

8 PMEPA1 Prostate transmembrane protein, 

androgen induced 1 
Androgen receptor signaling pathway 

9 PACSIN2 Protein kinase C and casein kinase 

substrate in neurons protein 2 
Endocytosis 

Signal transduction 

Actin cytoskeleton organization 

10 GRAMD4 GRAM domain-containing protein 4 

(Death-inducing protein) 

Apoptosis 

 

Although some genes are active in the same processes, no strong tendency to a specific 

biological pathway is revealed. Based on the GO annotations, it is not possible to identify 

one or several biological processes that are strongly represented in this conserved 

coexpression cluster. Despite this, two biological processes could be directly related to an 

antiproliferative phenotype i.e. cell death and apoptosis, in which ID3, ITPR1 and 

GRAMD4 are involved. 
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Further on, we describe other biological processes exerted by more than one gene of the 

conserved coexpression cluster. The very general process of multicellular organismal 

development, which covers any biological process of which the specific outcome is the 

progression of a multicellular organism over time, was assigned to PLXND1 and ID3. 

Three genes (PLXND1, ITPR1 and PACSIN2) were associated with signal transduction, 

the process whereby a signal is converted into a form where it can ultimately trigger a 

change in the state or activity of a cell. SEC14L1 is involved in transport, a very general 

process by which substances such as macromolecules, small molecules or ions are moved 

into, out of or within a cell, or between cells. More specific is the process of calcium ion 

transport assigned to ITPR1 and endocytosis, a vesicle-mediated transport process in 

which cells take up external materials, assigned to PACSIN2. ID3 and TSC22D3 are both 

involved in regulation of transcription (~ the process that modulates the frequency, rate or 

extent of the synthesis of RNA on a template of DNA).  
 

Then, we have some biological processes, specific for one gene of the coexpression 

cluster, like patterning of blood vessels (i.e. the process that regulates the coordinated 

growth and sprouting of blood vessels) (PLXND1); epithelial cell differentiation (i.e. the 

process whereby a relatively unspecialized cell acquires specialized features of an 

epithelial cell) (ID3); insulin processing (i.e. the formation of mature insulin by 

proteolysis of the precursor preproinsulin), protein modification and proteolysis (CPE); 

phospholipid biosynthetic process (i.e. the chemical reactions and pathways resulting in 

the formation of phospholipids) (PISD); response to hypoxia (i.e. lowered oxygen 

tension) (ITPR1); response to osmotic stress (i.e. an increase or decrease in the 

concentration of solutes outside the organism or cell) (TSC22D3); Androgen receptor 

signaling pathway, any series of molecular signals generated as a consequence of an 

androgen binding to its receptor (PMEPA1); actin cytoskeleton organization (PACSIN2). 

As explained further in the text, we will add an extra gene to the analysis, PDLIM2, 

which is an adaptor protein located at the actin cytoskeleton that promotes cell 

attachment, and is necessary for the migration capacity of cells. 

5.2.2 Identification of cis-regulatory elements 

To unravel cis-regulatory elements that possibly play a role in the transcriptional 

regulation of the coexpressed gene set in both human and mouse, we apply a de novo 

motif discovery approach followed by a motif scanning approach. The purpose of de 

novo motif discovery is to detect novel motifs, i.e. TF binding sites for a common 

regulator shared between multiple genes. For many eukaryotic TFs the regulatory motif is 

already known and stored in databases like TRANSFAC (Matys et al., 2006) and 

JASPAR (Bryne et al., 2008). This allows comparing de novo predicted motifs with 

database motifs which can provide insight in the TFs potentially involved in the 
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transcriptional regulation of the coexpressed gene set. In a second step, we will analyse if 

the binding sites of the de novo predicted motifs co-locate in the DNA, to form cis-

regulatory modules (CRMs). CRMs are common in higher eukaryotes like human and 

mouse, due to the more complex combinatorial interactions between TFs which allow for 

biochemical specificity of transcription. The detection of CRMs can produce predictions 

of substantially better specificity than the analysis of isolated binding sites. 
 

For de novo motif discovery we applied PHYLO-MOTIF-WEB which was described in 

chapter 4. PHYLO-MOTIF-WEB combines the results of multiple de novo motif 

discovery algorithms and allows the use of additional information sources like 

‘evolutionary conservation’ and ‘regulatory potential’ as annotated by the Regulatory 

Build pipeline of the Ensembl database. The collection of de novo predicted motifs were 

then used by CPModule (Guns et al., 2010) to detect CRMs statistically overrepresented 

in the gene set compared to genomic background sequences. CPModule stands for ‘cis-

regulatory module detection by constraint programming’ which combines the principles 

of itemset mining and constraint programming. The results of PHYLO-MOTIF-WEB for 

de novo motif discovery are presented in §5.2.2.1 and the results of CPModule in 

§5.2.2.2. 

5.2.2.1 De novo motif discovery 

Per input setting, PHYLO-MOTIF-WEB runs three different algorithms for motif 

discovery: Phylogibbs (PG) (Siddharthan et al., 2005), Phylogenetic sampler (PS) 

(Newberg et al., 2007) and MEME (Bailey and Elkan, 1994). This is followed by an 

asymmetric clustering approach (FuzzyClustering) to summarize all predictions made by 

PG, PS and MEME into a final set of ensemble motif matrices. The parameter settings for 

each of the motif discovery algorithms and the ensemble strategy are described in 

Material and Methods. As we search for conserved cis-regulatory elements, we will 

integrate evolutionary conservation information. Both PG and PS were specifically 

developed to maximally exploit evolutionary conservation information. Provided with a 

multiple alignment of orthologous sequences, they both search for TF binding sites that 

evolved according to a tree-based evolutionary model (see chapter 2). The user has to 

provide PHYLO-MOTIF-WEB with a set of Ensembl gene IDs from a reference species 

(i.e. the species for which the user likes to infer the regulatory motifs) and PHYLO-

MOTIF-WEB will align the corresponding non-coding sequences with their orthologous 

sequences selected from a set of user chosen species. 
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For this study, we provided PHYLO-MOTIF-WEB with the Ensembl gene IDs 

corresponding to the genes from the conserved coexpression cluster (see Figure 5.2). As 

shown in Table 5.2, we ran PHYLO-MOTIF-WEB on four different input settings (A, B, 

C and D), related to the selected reference species, the number of species included in the 

alignment (~alignment type) and the number of input genes.  
 

Table 5.2 The four different input settings for the PHYLO-MOTIF-WEB workflow. 

Setting Reference species Alignment type Input genes 

A human Pairwise human-mouse 10 

B mouse Pairwise human-mouse 10 

C human Six-species alignment 10 

D human Six-species alignment 11 
 

The reference species was chosen to be either human (setting A, C and D) or mouse 

(setting B) as shown in Table 5.2. If the reference species equals human, the human 

Ensembl gene IDs are used as input and the motif matrices predicted by PHYLO-

MOTIF-WEB are human-specific (i.e. only based on TF binding sites predicted for the 

human input sequences and not on binding sites predicted for the orthologous sequences). 

When mouse was chosen as the reference, the same holds, but now mouse Ensembl IDs 

are used as input and the obtained motifs are mouse-specific. For each input gene, we 

selected 4000 bp centered on the TSS (transcription start site). This region was further 

restricted to its ‘regulatory regions’ as annotated by the Regulatory Build Pipeline of 

Ensembl (see Material and Methods). Reducing the input will limit the motif search space 

to those regions with high potential of containing ‘functional’ TF binding sites. 

Effectively reducing the search space reduces the risk of finding false positive predictions 

but comes at the expense of a lower sensitivity i.e. TF binding sites lying outside those 

regulatory regions will be missed. As mentioned on top, we will search for conserved cis-

regulatory elements by incorporating ‘evolutionary conservation’ by means of an 

alignment. For input settings A and B we used a pairwise human-mouse alignment, for 

settings C and D a six-species alignment (see Material and Methods). For setting D we 

added an extra gene, PDLIM2 (PDZ and LIM domain 2), also referred to as mystique. 

This gene was not retrieved by the microanalysis as explained in the Material and 

Methods section, but it is of particular interest for the Legendo research group as it is 

involved in cancer metastasis. On top, the Legendo research group could experimentally 

verify a binding site for VDR upstream of PDLIM2’s TSS.  
 

Table 5.3 summarizes, per input setting (A, B, C and D), all the predicted ensemble 

motifs together with following characteristics; their motif logo, the consensus score of 

their motif matrix, the number of TF binding sites predicted to be present in the 

sequences of the reference species, the number of target genes of the reference species 

that contain a TF binding site, the names of the target genes and a p-value for the 

overrepresentation of the ensemble motif in the reference sequence set compared to 
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random sequence sets. The two last characteristics mentioned in Table 5.3 are derived 

from the Ensemble strategy (FuzzyClustering) that clusters TF binding sites which were 

jointly retrieved in a significant number of motifs predicted by PG, PS and MEME, into 

ensemble motifs. Per ensemble motif, Table 5.3 mentions the percentage of predicted 

motif matrices that contributed to the ensemble motif (i.e. the prediction rate) and the 

motif discovery algorithms by which those contributing motifs were predicted (see also 

Material and Methods). 

 
 

Table 5.3 Ensemble motifs predicted by PHYLO-MOTIF-WEB, for the four different input settings (A, B, 

C and D). Each ensemble motif is indicated by its ID (the setting number followed by a serial number). 

Then, the motif logo (Logo) is shown, the consensus score (Cs), the number of TF binding sites predicted 

for the sequences of the reference species (TFBSs), the number of target genes (TGs), the target gene 

names (Target gene names), a p-value for the overrepresentation of the ensemble motif (P-value), the motif 

discovery algorithms with a contribution level different from zero (Tools) and the prediction rate (PR). 
 

ID Logo Cs TFBSs TGs Target gene names P-value Tools PR 

Setting A: 10 genes, human=reference, pair-wise alignment with mouse 

A1 

 

1.65 12 5 PLXND1, ID3, 

SEC14L1, PMEPA1, 

GRAMD4 

0.686 MEME 9% 

A2 0.59 28 9 PLXND1, ID3, 

PISD, SEC14L1, 

ITPR1, TSC22D3, 

PMEPA1,PACSIN2, 

GRAMD4 

0.223 PS 18% 

A3 

 

1.08 44 9 PLXND1, ID3, 

PISD, SEC14L1, 

ITPR1, TSC22D3, 

PMEPA1,PACSIN2, 

GRAMD4 

0.61 PG 

MEME 

14% 

Setting B: 10 genes, mouse=reference, pair-wise alignment with human 

B1 

 

1.23 25 8 PLXND1, PISD, 

SEC14L1, ITPR1, 

TSC22D3, 

PMEPA1, 

PACSIN2, 

GRAMD4 

0.061 MEME 7%  

B2 

 

0.71 31 6 PLXND1, PISD, 

SEC14L1, 

TSC22D3, 

PMEPA1, PACSIN2 

0.551 PS 11%  

B3 

 

0.84 77 10 PLXND1, ID3, CPE, 

PISD, SEC14L1, 

ITPR1, TSC22D3, 

PMEPA1,PACSIN2, 

GRAMD4 

0.058 PG  23%  
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ID Logo Cs TFBSs TGs Target gene names P-value Tools PR 

Setting C: 10 genes, human=reference, six-species alignment 

C1 

 

1.30 82 9 PLXND1, ID3, 

PISD, SEC14L1, 

ITPR1, TSC22D3, 

PMEPA1, 

PACSIN2, GRAMD4 

0.72 MEME 8% 

C2 

 

0.74 50 8 PLXND1, ID3, 

PISD, SEC14L1, 

ITPR1, PMEPA1, 

PACSIN2, GRAMD4 

0.02 PG 

PS 

20% 

Setting D: 11 genes, human=reference, six-species alignment 

D1 

 

1.27 85 9 PLXND1, ID3, 

PISD, SEC14L1, 

TSC22D3, 

PMEPA1, 

PACSIN2, 

GRAMD4, PDLIM2 

0.82 MEME 13% 

D2 

 

0.67 39 10 PLXND1, ID3, 

PISD, SEC14L1, 

ITPR1, TSC22D3, 

PMEPA1, 

PACSIN2, 

GRAMD4, PDLIM2 

0.24 PG 10% 

D3 

 

0.77 17 7 PLXND1, ID3, 

PISD, SEC14L1, 

ITPR1, TSC22D3, 

PDLIM2 

0.09 PS 10% 

  

Motifs A1, B1, C1 and D1 

Across all four input settings, PHYLO-MOTIF-WEB predicted a similar GC-rich motif 

matrix represented respectively by the motifs A1, B1, C1 and D1, referring to the first 

predicted ensemble motif for each setting. Motifs A1, C1 and D1 are human-specific 

while motif B1 models TF binding sites for mouse sequences. In general, over all input 

settings, only motif matrices predicted by MEME contributed to this GC-rich ensemble 

motif and the prediction rate ranged between 7% for motif B1 and 13% for motif D1. We 

calculated for each ensemble motif the p-value for its overrepresentation in the input 

sequence set compared to a set of random sequence sets of the same size. Except for the 

mouse-specific motif B1 (p-value = 0.061), the p-values for the human-specific motifs 

were quite high; 0.686 (motif A1), 0.72 (motif C1) and 0.82 (motif D1). So, especially in 

case of human, those GC-rich ensemble motifs are not very specific for the upregulated 

gene set and probably correspond to a very general/common regulatory motif that occurs 

frequently in the promoter regions of human genes. This is also reflected by the number 

of target genes in our input set; all genes except for CPE contain at least one binding site 

for this GC-rich motif across the four input settings.  
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When we compared the four ensemble motif matrices A1, B1, C1 and D1 with motif 

matrices in the TRANSFAC and JASPAR databases (see Table 5.4), they matched with 

the motif matrices for the following TFs: SP1 (all four ensemble motifs), EGR-1 (A1, C1 

and D1), LRF (motif B1 and C1) and TEAD2 (motif D1). SP1 appears the most 

significant match with p-values ranging between 0.00004 for motif A1 and 0.00059 for 

motif B1.  
 

Table 5.4 Comparison between predicted and known motif matrices. The columns are: the ID of the 

predicted motif matrix according to Table 5.3 (ID), the names of the TFs that correspond to regulatory 

motif matrices that match the predicted motif matrix (TF), the consensus sequence for the matching 

regulatory motifs (Consensus sequence), the p-value for the comparison between the predicted motif matrix 

and the known motif matrices (p-value) and the number of nucleotides that overlap between the predicted 

and the known motif matrix (Overlap). P-values and overlap values are given for the optimal trade-off and 

orientation between both matrices. For degenerated nucleotide symbols, see IUPAC code in Table S1 in the 

Supplementary Materials. 

ID TF Consensus sequence p-value Overlap 

A1 SP1 

EGR-1 

GCCCCGCCCC 

CCCGCCCCCrCCCC 

0.00004 

0.00014 

6 

8 

B1 SP1 

LRF 

nnGGGGCGGGGnn 

GGGGkynnb 

0.00044 

0.00406 

7 

7 

C1 SP1 

EGR-1 

LRF 

GGGGCGGGGC 

GGGGyGGGGGCGGG 

GGGGkynnb 

0.00059 

0.00094 

0.00148 

6 

8 

7 

D1 EGR-1 

TEAD2 

SP1 

GGGGyGGGGGCGGG 

GvGGmGG 

GGGGCGGGGC 

1.8e-05 

0.00010 

0.00019 

9 

7 

7 
 

SP1 (specificity protein 1) is known to act as a master regulator of TFs among which 

several cell cycle regulators. The regulatory motif for SP1 was also retrieved by Prakash 

and Tompa (Prakash and Tompa, 2005), who performed a genome-wide discovery of 

regulatory elements in vertebrates through comparative genomics. Also here the SP1 

motif was predicted for a large number of genes and well conserved across vertebrate 

species. Interesting in the light of this vitamin D3 study, is the study of Huang et al., 

(Huang et al., 2004) which confirms a physical interaction between the SP1 and the VDR 

proteins, required for the induction of p27Kip1 expression after vitamin D3 supply. Their 

results suggest that VDR is involved in the induction of p27
Kip1

, by interacting with SP1 

to modulate the expression of p27
Kip1

 that lacks a VDR response element (VDRE) in its 

promoter region. EGR-1 (Early growth response 1) belongs to the EGR family of zinc-

finger proteins. It is a nuclear protein and functions as a transcriptional regulator. The 

products of target genes it activates are required for differentiation and mitogenesis. 

Studies on human breast cancer cells suggest that EGR-1 is a tumor suppressor gene (Liu 

et al., 2007). LRF (also known as ZBTB7A or Pokemon) is involved in cell cycle 

progression and was described as a transcriptional repressor involved in oncogenesis 

(Maeda et al., 2007; Maeda et al., 2005).  
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TEAD2 (TEA domain family member 2) or ETF, is a TF which plays a key role in the 

Hippo signaling pathway, a pathway involved in organ size control and tumor 

suppression by restricting proliferation and promoting apoptosis (Zhao et al., 2008). 
 

Motifs A3 and B3 

Motifs A3 (human-specific) and B3 (mouse-specific) are two very similar GC-rich 

ensemble motifs predicted by PHYLO-MOTIF-WEB. In contrast to the SP1-like 

ensemble motifs, these two motifs were retrieved only for input settings A and B. When 

integrating more species in the alignment (as was done for input settings C and D), this 

motif was not longer retrieved by PHYLO-MOTIF-WEB. A reason can be that the TF 

binding sites are not well conserved across all six species in the alignment and thus 

harder to discover. As shown in the results Table 5.3, motif A3 has a prediction rate of 

14% (i.e. the fraction of predicted motif matrices that contributed to the ensemble 

solution). Those predictions were made by both MEME and PG, which adds extra 

confidence to this motif. Motif B3, the mouse-specific motif, has a high prediction rate of 

23% and was based on motif matrices predicted by PG. Similar as for the SP1-like 

ensemble motifs, the p-value for the overrepresentation of motif A1 (p-value = 0.61) in 

the human sequence set is much higher than for motif B1 (p-value = 0.058) in the mouse 

sequence set. A reason for this returning phenomenon is maybe the smaller GC-content 

of the mouse background sequence set (46.9%) compared to the human one (50.5%). 

Many binding sites were retrieved for both motifs, with on average 4.4 (motif A3) and 

7.7 (motif B3) binding sites per target gene. As shown in Table 5.5, both ensemble motif 

matrices match with the regulatory motif matrix of the ZFP161 protein with p-values 

equal to 0.00056 (motif A3) and 0.000079 (motif B3). Motif A3 also matches the 

regulatory motif matrix of the NRF1 protein (p-value = 0.00020). 
 

Table 5.5 Comparison between predicted and known motif matrices. For column information see Table 5.4. 

ID TF Consensus sequence p-value Overlap 

A3 NRF1 

ZFP161 

yGCGCATGCG 

yCGCGCsC 

0.00020 

0.00056 

8 

6 

B3 ZFP161 GsGCGCGr 7.9e-05 6 
 

ZFP161 (zinc finger protein homologous to ZFP161 in mouse) or ZF5 is the 

transcriptional repressor of c-myc (~oncogene) and appears to be expressed ubiquitously, 

but its message seems particularly abundant in certain differentiated tissues with little 

mitotic activity. Furthermore, it has growth-suppressive activity when overexpressed in 

mouse. Therefore, ZFP161 was proposed to have a function in arresting cell divison and 

maintaining a differentiated state (Numoto et al., 1995). NRF1 (nuclear respiratory factor 

1) activates the expression of some key metabolic genes regulating cellular growth and 

nuclear genes required for respiration and mitochondrial DNA transcription and 

replication.  
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NRF1 is also a strong biological and positional candidate to contribute to type 2 diabetes 

susceptibility (Liu et al., 2008). Elkon et al. (Elkon et al., 2003) found that NRF1 co-

occurred significantly with both SP1 and TEAD2 (see motifs A1, B1) in promoters of 

genes expressed in a cell cycle dependent manner.  
 

Motifs A2 and B2 

The following two ensemble motifs are motif A2 (human-specific) and motif B2 (mouse-

specific). Similar to motifs A3 and B3, they were only retrieved for the human-mouse 

alignment and lost in case of the six-species alignment (input settings C and D). Motif A2 

has the highest prediction rate (18%) of all ensemble motifs in setting A. The 

contributing matrices were all predicted by PS. Motif B2 has a prediction rate of 11% and 

also here, PS was the only contributing algorithm. The p-values for the 

overrepresentation equalled 0.223 in case of motif A2 (human sequence set) and 0.551 in 

case of motif B2 (mouse sequence set). Motif A2 has binding sites in almost every human 

input gene (except for the CPE gene), while binding sites for motif B2 were only 

retrieved in six out of ten mouse input genes as shown in Table 5.3. When we compare 

both motif matrices (A2 and B2) to known matrices from TRANSFAC and JASPAR we 

get diverse matching profiles as shown in Table 5.6. The two common matches are the 

regulatory motif matrix of OLF1 (p-value = 0.00331 for A2 and p-value = 0.00131 for 

B2) and the regulatory motif matrix of EBF (p-value = 0.0011 for A2 and p-value = 

0.00676 for B2).  
 

Table 5.6 Comparison between predicted and known motif matrices. For column information see Table 5.4. 

ID TF Consensus sequence p-value Overlap 

A2 LYF1 (Ikaros) 

EBF 

OLF1 

STAT 

yCTCCCAAA 

TCyCwrGGGAm 

nCmnvyTCyCTrGGGAvThGnn 

TCCmAGAAnnnnn 

0.00091 

0.00110 

0.00331 

0.00405 

8 

7 

8 

7 

B2 DEAF1 

AP2ALPHA 

OLF1 

AP2GAMMA 

EBF 

nCGnnyTCGGGnrTTTCCGdArnnn 

sCynnnGGC 

nCmnvyTCyCTrGGGAvThGnn 

sCCnnrGGC 

TCyCwrGGGAm 

4.5e-05 

0.00123 

0.00131 

0.00162 

0.00676 

10 

8 

10 

8 

9 
 

EBF (early B-cell factor) is a protein family that consists of four members: EBF1 till 

EBF4, with EBF1 (synonymous to OLF1) a regulator of B-cell differentiation. Further, 

motif A2 matches with the motif matrices of LYF1 (i.e. a transcriptional regulator in the 

development of lymphocytes, B-cells and T-cells) and STAT. Motif B2 matches with the 

motif matrices of DEAF1 and the AP2 family of TFs. Notice that the motif matrices of 

OLF1 and DEAF1 are only partially covered by the predicted motif matrices (~ the 

length of the predicted motifs A2 and B2 is much shorter).  
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Motif D3  

Motif D3 (human-specific) is a special motif as it was only retrieved for input setting D 

that includes PDLIM2. The motif has a prediction rate of 10% and the predicted matrices 

that contributed were all retrieved by PS. The p-value for its overrepresentation in the 

human sequence set, compared to random sequence sets equals 0.09. The total number of 

TF binding sites, divided over its 7 target genes, equals 17 of which 5 binding sites are 

located in the promoter region of PDLIM2. As shown in Table 5.7, motif matrix D3 

matches significantly with the motif matrices of ZEB1 and LMO2.  
 

Table 5.7 Comparison between predicted and known motif matrices. For column information see Table 5.4. 

NR TF Consensus sequence p-value Overlap 

D3 ZEB1 

LMO2 

GnmCAGGTGynb 

CnnCAGGTGbnn 

0.00030 

0.00077 

9 

9 
 

ZEB1 (zinc finger E-box binding homeobox 1, also called deltaEF1 or AREB6) may 

modulate the levels of VDR expression during differentiation in embryonal development, 

as well as in cancer cells (Lazarova et al., 2001). ZEB1 is also a critical inducer of 

epithelial to mesenchymal transitions (EMT) in some cell types during development and 

cancer metastasis, which suggests that ZEB1 is a key player in late stage carcinogenesis 

(Eger et al., 2005). The LMO2 (LIM domain only 2) protein has a central and crucial role 

in hematopoietic development and is highly conserved across vertebrates (Yamada et al., 

1998). 
 

Motifs C2 and D2 

Motifs C2 and D2, both human-specific, were only retrieved when using the six-species 

alignment. The use of the six-species alignment further reduces the search space and 

allows retrieving less pronounced (~degenerated) motifs. As input settings C and D only 

differ by one input gene, PDLIM2, it is not surprising that motif matrices C2 and D2 are 

similar and align very well (Tomtom p-value = 8.34e-06). The TF binding sites assigned 

to both motifs by the FuzzyClustering algorithm largely overlap (data not shown) and 

almost all 11 human genes contain at least one binding site in their non-coding region 

(except for CPE and TSC22D3). Motif C2 has a high prediction rate (20%) and its 

contributing motif matrices were predicted by both PG and PS. Motif D2 has a prediction 

rate of 10% and only predictions made by PG contributed to this ensemble motif. The p-

values for the overrepresentation of both motifs in the human sequence set equal 0.022 

for motif C2 and 0.24 for motif D2. When we compare both motif matrices with the 

TRANSFAC and JASPAR motif matrices we find a match between motif matrix C2 and 

the motif matrix for T3R (p-value = 0.01214) and a match between motif matrix D2 and 

the VDR motif matrix (p-value = 0.0124) as shown in Table 5.8. Notice that motifs C2 

and D2 only cover a small part of the T3R and VDR motifs e.g. the optimal offset for 

motif D2 and the VDR motif equals seven, meaning that motif D2 matches only the 

second half of the VDR motif. 
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Table 5.8 Comparison between predicted and known motif matrices. For column information see Table 5.4. 

NR TF Consensus sequence p-value Overlap 

C2 T3R SnnTrAGGTCACGsnn 0.01214 8 

D2 VDR nGGnnAnnnrGnnCA 0.0124 8 
 

T3R (3,5,3’-triiodothyronine receptor) shares functional binding sites with VDR (vitamin 

D3 receptor) as it is also a member of the nuclear hormone receptor (NHR) family which 

binds the DNA predominantly as a heterodimer with the Retinoid X Receptor (RXR) 

(Schrader et al., 1995). It is not surprising to predict a motif similar to the regulatory 

motif of VDR in a set of human genes upregulated after vitamin D3 treatment, as many of 

the known biological effects of active vitamin D3 are direct. This means that upon 

binding of 1α,25(OH)2D3, the VDR heterodimerizes with RXR and binds directly to 

vitamin D3 response elements (VDREs)  in the promoter region of its targets genes, to 

induce or repress their expression (Bouillon et al., 2008). Those VDREs are scattered 

throughout the genome as they are positioned within approximately 100.000 bp either 5’ 

or 3’ of the TSS of the target gene (Haussler et al., 2010; Rachez and Freedman, 2000). 

Promoter analysis of genes transcriptionally regulated by 1α,25(OH)2D3 has identified 

many VDREs with distinct structures. The most common VDRE type, designated DR3, 

contains two direct repeats of 6 bp separated by a 3 bp spacer as shown in Figure 5.3. The 

sequence of the hexameric repeats, or half-sites, varies considerably, but a general 

consensus sequence of AGGTCA has been established (Haussler et al., 1998). Besides 

the variation in the consensus sequence of the two half-sites, also the length of the spacer 

separating them can vary, e.g. DR4 and DR6 (Carlberg, 1995). Additionally, other natural 

occurring VDREs have been reported like the inverted repeat (IR) (AGGTCA-spacer-

TGACCT) (Echchgadda et al., 2004), and the everted repeat (ER) (TGACCT-spacer-

AGGTCA) (Thompson et al., 2002), where the length of the spacer can vary from zero to 

eight nucleotides (Sandelin and Wasserman, 2005). For transcriptional activation, VDR 

occupies the 3′ half-site whereas RXR binds the 5′ half-site of VDRE site (Schrader et al., 

1995) as shown in Figure 5.3.  
 

 
Figure 5.3 Schematic representation of binding of RXR-VDR heterodimers to vitamin D3 response 

elements (VDREs) in the form of DR3 (left) and ER6 (right) motifs. Both the RXR and the VDR protein 

belong to the nuclear hormone receptor family and consist of a ligand-binding domain (LBD) and a DNA-

binding domain (DBD). For the consensus motifs, Pu stands for purine (A or G) and Py stands for 

pyrimidine (T or C). Taken from (Lin and White, 2004). 
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However, de novo predicted motif D2 only corresponds to one half-site of the VDR 

motif. This can relate to our parameter settings as we searched for motifs with a motif 

width equal to 8 bp (see Material and Methods). To retrieve the full VDR regulatory 

motif, we also performed de novo motif discovery for a motif width equal to 15 bp. But 

those motifs with a longer motif width were too degenerate and didn’t correspond to any 

known regulatory motif form the TRANSFAC/JASPAR database.  
 

It is hard to discover de novo the full length VDR motif, not only because the VDREs can 

be positioned far up- or downstream of the respective target genes, but also because of 

the diverse VDRE configurations (DR, IR, ER) and the variable spacer lengths. As the de 

novo motif discovery tools, integrated in the PHYLO-MOTIF-WEB workflow, all model 

a regulatory motif by using a position weight matrix, they are not able to represent 

variable spacing and inversions of the half-sites within the TF binding sites. This 

inflexibility is usually not a concern because the structural constraints for monomeric 

protein-DNA interaction generally preclude such variation, but it is a substantial problem 

for the analysis of VDR target sites.  
 

Therefore, we used a motif scanning approach specifically designed to predict binding 

sites for nuclear hormone receptors (NHRs) like VDR; the NHR-scan algorithm 

(Sandelin and Wasserman, 2005) (see Material and Methods).  The results of the NHR-

scan on the entire 4000 bp region for the 11 human genes are summarized in Table S9 

(Supplementary Material). As shown in Table S9, there is overlap between the binding 

sites predicted by the NHR-scan and the binding sites of the de novo predicted motif D2 

that resembles the VDR half-site motif. Table S9 also shows that NHR-scan retrieved a 

ER6-type binding site upstream of PDLIM2, which was experimentally confirmed being 

a functional RXR-VDR binding site by the Legendo research group. The location of this 

binding site (chr8:22434438-22434455) was previously predicted in silico by Wang et al. 

(Wang et al., 2005). This binding site was not retrieved by PHYLO-MOTIF-WEB as it is 

not located in a regulatory region and not conserved for mouse as shown in Figure 5.4. 

This non-conservation can indicate that this VDR binding site is not responsible for the 

conserved gene expression seen across human and mouse.  
 

 
Figure 5.4 Conservation of the experimentally defined VDRE upstream of PDLIM2. The genome 

coordinates of this binding site are chromosome 8, position 22434438-22434455. 
 

Other human genes that contain an ER6-type binding site with a score equal or better 

than the score of the true ER6-type binding site are: CPE that contains 3 ER6-type 

binding sites, PMEPA1 that contains 2 ER6-type binding sites and PISD, SEC14L1 and 

GRAMD4 that contain each 1 ER6-type binding site. Also the most common DR3-type 
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binding site for VDR was predicted for a few genes as shown in Supplementary Table S9. 

However, none of those VDR binding sites were retrieved by the de novo approach. 

5.2.2.2 Cis-regulatory module (CRM) detection 

In this section we describe the results of CPModule (see Material and Methods). As input 

we used the entire 4000 bp region centered on the TSS for each of the 11 human input 

genes (includes PDLIM2). Using the entire 4000 bp allows to pickup TF binding sites 

missed in the de novo approach due to restriction of the search space to the regulatory 

regions. Further, we provided the set of de novo discovered motif matrices predicted by 

PHYLO-MOTIF-WEB in § 5.2.2.1. For this collection of motif matrices, CPModule will 

predict the subset of motifs for which the corresponding binding sites significantly co-

locate in CRMs in the human sequence set. As default, you can use the entire motif 

matrix collection from TRANSFAC and JASPAR. However, as we already had a clue on 

which motifs may play a role in the upregulation of our gene set, we could exclude 

possible noise by only providing the de novo discovered motif matrices. As we searched 

for CRMs in the human sequence set, only the human-specific motif matrices were 

qualified (input settings A, C and D). After leaving out the redundant (~similar) motif 

matrices we got; motifs A2, A3, D1, D2 and D3.  
 

We ran the CPModule algorithm for different module sizes (i.e. maximum length of the 

region spanned by the CRM), ranging from 150 bp up to 400 bp. The CRMs, specific to 

our human sequence set and not to a background model (p-value < 0.001), are 

summarized in Table 5.9. For each module size, we enumerate the predicted CRMs, 

characterized by their rank (based on the p-value), their corresponding motif set, the 

number of target genes (i.e. the genes that contain at least one CRM in their selected 4000 

bp region) and the names of the non-target genes. 
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Table 5.9 Results of CPModule for the human sequence set (~ 11 upregulated genes after vitamin D3 

treatment). For module sizes between 200 and 300 bp and for module sizes between 350 and 400 bp, 

CPModule predicted the same set of CRMs. Foreach CRM we report the rank, the corresponding motif set, 

the number of target genes and the names of the non-target genes. 

Module size (bp) Rank Motif set Number of target genes Non-target gene names 

1 D3-D2 9 ID3, PDLIM2 

2 D3-A2 11 / 

150 

3 D2-A2 10 PACSIN2 

1 A2-A3 7 ID3, TSC22D3, PMEPA1, 

PACSIN2 

200-300 

2 D3-D2-A2 10 PACSIN2 

1 D1-A2 7 PLXND1, ID3, SEC14L1, 

PDLIM2 

2 A2-A3 7 ID3, TSC22D3, PMEPA1, 

PACSIN2 

350-400 

3 D3-D2-A2 10 PACSIN2 
 

For a module size of 150 bp, CPModule predicted three different CRMs, each containing 

TF binding sites for two different motifs: D3-D2, D3-A2 and D2-A2. Each of those 

CRMs covers at least 81.82% of the input sequences. When we increased the module size 

up to 200 or 300bp, CPModule predicted two CRMs: the first ranked CRM contains TF 

binding sites for two motifs: A2 and A3, the second ranked CRM combines the previous 

two-motif-CRMs to a three-motif-CRM, containing TF binding sites for motifs D3, D2 

and A2. When we further increased the module size up to 350 or 400 bp, CPModule 

predicted the same CRMs as for module sizes equal to 200 or 300 bp, except for one new 

CRM containing TF binding sites for two motifs: D1 and A2. As shown in Table 5.9, all 

the de novo predicted motifs are contained in at least one CRM, specific for the 11 human 

sequences. Striking, is the presence of TF binding sites for motif A2 in almost every 

predicted CRM, which is maybe related to the degenerated nature of the motif matrix 

(consensus score of motif A2 equals 0.59).  
 

The predicted CRMs are the DNA footprints of a set of TFs that co-operate to regulate 

gene expression. Motif D2, which resembles one half-site of the VDR regulatory motif, 

frequently co-occurs with two other regulatory motifs, one which resembles the ZEB1 

motif (motif D3) and one which resembles the EBF motif (motif A2). When we added 

two extra motif matrices, representing the full DR3-type and the full ER6-type binding 

sites to the analysis, CPModule also predicted a significant CRM, which contains TF 

binding sites for the DR3, ZEB1 and EBF like motifs (data not shown).  
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5.3 Material and Methods 

5.3.1 Microarray analysis 

5.3.1.1 Differentially expressed genes 

The microarray analysis was performed by a colleague of the CMPG Bioinformatics 

group Carolina Fierro. Data pre-processing and statistical analysis were adapted to the 

technical platforms and experimental design of both human and mouse microarray 

experiments. Mouse experiments were performed on a cDNA two-color microarray 

platform, measuring 5 time points (1, 6, 12, 24 and 36 hours after control and vitamin D3 

treatment) each with 2 technical replicates (dye-swap). The human dataset consists of 6 

time points (1, 3, 6, 12, 24 and 36 hours after control and vitamin D3 treatment) each with 

2 biological replicates. The human experiments were performed on the Affymetrix 

platform. For both human and mouse datasets, an F-test was used to detect differentially 

expressed genes. For the mouse data we used a stringent false discovery rate (FDR) 

cutoff of 3% (Storey and Tibshirani, 2003) that resulted in 740 differentially expressed 

genes. For human, the biological replicates greatly differed, so we used a much less 

stringent FDR cutoff of 20%, which resulted in 143 differentially expressed genes. 

5.3.1.2 Selection of human and mouse genes 

We focused our analysis on genes with orthologs in both human and mouse (as defined in 

Ensembl version 54), which were present in both microarray platforms. Non-specific 

probes (i.e. probes that match to more than one gene) were left out the analysis. Since 

many probes could match the same gene, we averaged the profiles of probes representing 

the same gene only if the Euclidean distance between two profiles was lower than 3. In 

case there were no probes selected for this Euclidian distance cutoff, the gene was 

discarded from the analysis. The intersection of differentially expressed genes, i.e., genes 

differentially expressed in both species, consisted of only 9 genes. As this number is very 

limited, we used the union (i.e. differentially expressed in one of the two species) of 

differentially expressed genes. The final union consists of 505 mouse genes, orthologous 

to 515 human genes. 

5.3.1.3 Detection of conserved expression behaviour 

For those 505 mouse genes, orthologous to 515 human genes, we applied a clustering 

approach to group the genes with a similar expression profile over time. In this study, we 

used 'Euclidian distance' to assess the relationship between two gene expression profiles. 

We used the differential cluster analysis (DCA) (Ihmels et al., 2005) that first clusters the 

genes in one species into multiple coexpressed groups. In a second step, DCA will for 

each coexpressed group in the first species re-cluster the genes, based on the profiles of 

their orthologs in the other species, into a predefined number of clusters (two). For the 
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DCA we started by clustering the human data (hierarchical clustering to obtain 7 clusters) 

and reorder each human cluster based on hierarchical clustering over the mouse profiles. 

We finally obtained one partially conserved cluster, three clusters with split conservation 

and three clusters with no conservation between human and mouse. For the first two 

cases we selected three sub-clusters; a sub-set of genes, coexpressed in both human and 

mouse. From these three sub-clusters, only one clearly represents genes up-regulated in 

both human and mouse and consists of 10 genes (see Figure 5.2). This conserved 

coexpression cluster will be used to infer cis-regulatory elements. 

5.3.1.4 The PDLIM2 gene 

On the human microarray PDLIM2 was represented by two probes, each with a different 

expression profile and therefore not picked-up by our microarray analysis (see Euclidian 

distance cutoff = 3). This could be the result of different splicing variants of the PDLIM2 

gene. As one of the two probes shows a clear upregulated expression profile in human, 

consistent with the expression profile in mouse, it is justified to include PDLIM2 for 

input setting D. 

5.3.2 Identification of cis-regulatory elements 

5.3.2.1 De novo motif discovery by PHYLO-MOTIF-WEB 

For input settings A and C, we used the human Ensembl gene IDs while for input setting 

B the mouse Ensembl gene IDs which correspond to the 10 genes in the conserved 

coexpression cluster and which were retrieved in the Ensembl database version 59 

(August 2010). For input setting D, the human Ensembl gene ID for PDLIM2 was added.  
 

For each input gene, we selected the 4000 bp genomic region, centered on the TSS of the 

gene. As many eukaryotic TF binding sites locate in the 5’ untranslated region (5’UTR), 

the first intron or the proximal promoter region, we may also capture those regions within 

our selection. The 4000 bp regions were restricted to their ‘regulatory regions’ as defined 

by the Ensembl Regulatory Build pipeline (version 59), thereby also excluding the 

protein coding regions (exons). As there are no cell type specific regulatory regions 

available for the human breast cancer cell-type and the mouse osteoblastic cell-type, we 

used ‘MultiCell-type’ regulatory regions based on features like DNase I, which is known 

to mark accessible chromatin, binding site locations of other TFs defined by ChIP-chip or 

ChIP-seq experiments and binding sites for the enhancer binding factor CTCF.  
 

The genomic coordinates of the ‘regulatory regions’, were used to retrieve the alignment 

blocks from the Ensembl database. For input settings A and B, we selected the pairwise 

alignment blocks between human and mouse, for input settings C and D we selected the 

six-species alignment blocks to further restrict the search space. The genome sequences 

of those six species (human, mouse, macaque (Macaca mulatta), cow (Bos taurus), horse 
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(Equus caballus) and dog (Canis familiaris)) show a good trade-off between still 

alignable and informative and were recommended by Eric van Nimwegen (author of the 

PG software). In case of PG and PS, PHYLO-MOTIF-WEB provided the alignment 

blocks for each input gene, for MEME on the other hand, the orthologous sequences were 

left unaligned. 
 

PHYLO-MOTIF-WEB predicts a set of ensemble motif matrices based on clustering the 

results of three motif discovery algorithms; PG, PS and MEME. A major advantage of 

PHYLO-MOTIF-WEB is that the user can chose a range of parameter values and 

PHYLO-MOTIF-WEB will run each motif discovery algorithm for all possible 

combinations of those parameter values. Table 5.10 summarizes the parameter values for 

de novo motif discovery by PG, PS and MEME.  
 

Table 5.10 Parameter values used for the three motif discovery algorithms (PS, PG and MEME) 

implemented in the PHYLO-MOTIF-WEB workflow. We have the ‘general’ parameters, applicable for 

each motif discovery algorithm and the algorithm-specific parameters ‘PS’, ‘PG’ and ‘MEME’. For more 

details on the parameters of PG and PS and their meanings see Supplementary Text S3. 

 Parameter Value 

Motif type Search for both normal and palindromic motifs 

Number of different motifs 1, 2 or 3 

Motif width 8, 15 

General 

Number of TF binding sites per motif (0.50, 1 or 2 TF binding sites per input 

sequence) * the number of input sequences 

Maximum number of TF binding sites per 

sequence 

2 

Threshold on the posterior probability 0.25 (1/(1+gamma) with gamma = 3) 

Number of seeds 1 

Burn-in iterations 1000 

PS 

Sampling iterations 2000 

Iterations during simulated annealing 100 

Iterations during tracking 100 

Pseudocount 1 

PG 

Tracking threshold 0.05 

MEME P-value threshold 0.01 
 

PG and MEME use a third order Markov background model based on the promoter 

regions selected from the Eukaryotic Promoter Database (EPD) (Schmid et al., 2006). PS 

builds its own position specific background model based on the set of input sequences. 
 

The ensemble strategy of PHYLO-MOTIF-WEB uses the FuzzyClustering algorithm to 

reduce the large and redundant collection of motif matrices predicted by PG, PS and 

MEME. FuzzyClustering acts on the level of the TF binding sites and in order to retrieve 

species-specific motif matrices, only the TF binding sites which were predicted for the 

reference species (human or mouse), were used as input. FuzzyClustering clusters pairs 

of TF binding sites with a statistically relevant jointly occurrence, across all predicted 

motifs, into meaningful ensemble motifs, that have a higher likelihood to represent a true 

motif than the original set of predicted motifs. FuzzyClustering was run in the ‘traceback’ 
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mode (-t), so that it reports the percentage of predicted motifs that contributed to the 

ensemble motif (~prediction rate) and the motif discovery algorithms by which those 

contributing motif matrices were predicted (contribution level of each motif discovery 

tool). The threshold for the individual binding site probability (-p) was set to 0.005. The 

consensus cutoff parameter (-c), defines the cutoff on the consensus score of the 

ensemble motif and was set to 0.50 (default). The consensus score is a measure for the 

degeneracy of a motif matrix: a non-degenerated motif has a score equal to 2 while a 

motif with a uniform nucleotide distribution (fully degenerated) has a score 0. The 

sequence volume (–i), which stands for the minimum number of reference sequences that 

should contain at least one TF binding site of the ensemble motif was set to 0.20. For 

more details see chapter 4. 
 

To evaluate if an ensemble motif matrix is specific for the input set we used Clover (Frith 

et al., 2004) to calculate the p-value for the motif matrix’s over-representation in the set 

of sequences for the reference species versus random sequence sets. The reference 

sequence set consisted of the full 4000 bp regions for each gene (human or mouse). The 

random sequence sets were sampled from a collection of 4000 bp regions centered on the 

TSS for all genes annotated in the Eukaryotic Promoter Database (EPD), for either 

human or mouse. Clover calculated for each ensemble motif a ‘raw score’, indicating 

how strongly the motif is present in the reference sequence set and a corresponding p-

value that assigns the statistical significance of this raw score. The number of 

randomizations (-r) was set to 1000. A p-value of zero means that the ‘raw score’ for the 

motif in the random sequence set could never equal to the one obtained for the reference 

sequence set in any of the 1000 randomizations. 
 

A common question within the context of de novo motif discovery is whether a newly 

discovered motif resembles any previously discovered motif in an existing database. To 

answer this question, we used the software Tomtom (Gupta et al., 2007) that uses the 

‘Pearson correlation coefficient’ as statistical measure of motif-motif similarity and 

searches a database of ‘target’ motifs with a given ‘query’ motif. As query motif we used 

the ensemble motifs predicted by PHYLO-MOTIF-WEB and searched for significant 

matches in the TRANSFAC and JASPAR databases. A match was found significant if the 

E-value < 10 (i.e. the expected number of times that the given query would be expected 

to match a target as well or better than the observed match in a randomized target 

database of the given size). The E-value is the result of applying a form of Bonferroni 

correction for multiple tests (matching a query motif against multiple target motifs) 

which assumes that the targets are independent of one another. The correction consists of 

multiplying the motif p-value by the number of targets in the database. In Table 5.3 we 

report the motif p-value for the optimal offset and orientation of the query and target 

motif. 
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5.3.2.2 NHR-scan 

The NHR-scan (Sandelin and Wasserman, 2005), is a flexible Hidden Markov Model 

framework capable of predicting NHR binding sites by using a model that allows for 

variable spacing and orientation of half-sites. Essentially the model consists of three 

'match state chains' - corresponding to each type of binding site configuration (direct, 

inverted and everted repeats), and one 'background state' - corresponding to no 

prediction. Each ‘match state chain’ is composed of two half-site models and a spacer 

model separating them. From the background state, it is possible to move to each type of 

match state. To identify candidate binding sites, the NHR-scan implemented the Viterbi 

algorithm. Given the model, the Viterbi algorithm is applied to identify ‘the most 

probable chain of states’ that is consistent with the observed sequence. We ran the NHR-

scan algorithm with the ‘probability for entering match states’ set to the default value of 

0.01. This value corresponds to the transition probability from the background state to the 

different match state chains. The probability of entering match states can be viewed as a 

sensitivity and selectivity trade-off. Higher values will result in more predictions: more 

true sites will be detected but more false sites will be reported. 

5.3.2.3 CRM detection 

The CPModule algorithm (Guns et al., 2010) consists of 3 phases: screening, mining and 

ranking. The ‘itemset mining phase’ of CPmodule is proceeded by a ‘scanning phase’ to 

identify putative TF binding sites for each de novo predicted motif matrix. Scanning is 

performed by Clover (Frith et al., 2004) under low stringency conditions which requires 

further filtering of the TF binding sites. This filtering was done based on whether or not 

the binding sites were located in regions of transcriptionally active chromatin (~low 

nucleosome occupancy). Also binding sites in regions with a GC-content > 80% were 

filtered out. For the itemset mining, CPModule applies the framework of constraint 

programming for itemset mining. The constraints involve the putative binding sites of 

TFs, the number of sequences in which they co-occur and the proximity of the binding 

sites (~ module size). We searched for CRMs which occur in at least 60% of the input 

sequences and with module sizes ranging between 150 and 400 bp. For each potential 

CRM, CPModule assesses its specificity for the input sequences compared to a 

background model by calculating a p-value, and ranks the potential CRMs accordingly. 
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5.4 Discussion 

In this chapter, we aimed to elucidate the molecular mechanisms underlying the 

antiproliferative effects of vitamin D3 on human breast cancer cells and mouse bone cells. 

We performed a comparative transcriptome analysis across human and mouse cell lines 

that both showed decreased cell growth after vitamin D3 treatment. We could extract a 

cluster of genes, which were all upregulated after vitamin D3 treatment, in both species. 

To elucidate the transcriptional regulation underlying the conserved coexpression 

behaviour of the genes, we assumed that also the transcriptional regulation had been 

conserved and searched for conserved cis-regulatory elements in the gene’s non-coding 

sequences.  

5.4.1 De novo motif discovery 

First, we applied a de novo strategy to retrieve completely novel motifs, without any prior 

information on the motif type. This approach revealed a collection of putative motifs 

including two GC-rich motifs, which resemble the regulatory motifs of the SP1 and 

ZFP161/NRF1 TFs. The SP1-like motif was predicted for each of the four input settings, 

while the ZFP161/NRF1-like motif was only predicted for settings A and B, using the 

human-mouse pairwise alignment. Both GC-rich motifs seemed not very specific for our 

human sequence set. Indeed, SP1 and NRF1 motifs occur in the promoter regions of 

many human genes and are well conserved among vertebrates (Xie et al., 2005; 

FitzGerald et al., 2004). Both motifs are also enriched in the promoters of genes that 

function in cell cycle and are thus involved in controlling the cell cycle (Elkon et al., 

2003). Notice, that only MEME and PG, not PS, contributed to those GC-rich motifs. In 

contrast to MEME and PG, PS uses a position specific background model that takes into 

account the locally varying GC-content of the input sequences (see chapter 2). Variations 

in GC-content are common in vertebrate promoter regions as they may contain CpG 

islands (i.e. stretches of frequently unmethylated CpG dinucleotides that are 

transcriptionally active). The GC-rich binding sites of SP1 often locate in CpG islands 

and even contribute to the maintenance of their hypomethylated state (Brandeis et al., 

1994), making it very hard for PS to discover those binding sites.  
 

In case we searched for motifs conserved across the human-mouse pairwise alignment, a 

motif that resembles the regulatory motif of EBF was predicted, only by PS. The 

degenerated nature of this motif matrix can explain its low overrepresentation for the 

upregulated sequence set and its presence in every CRM predicted by CPModule. The 

TFs that could possibly bind this motif are mainly involved in B-cell differentiation. 
 

When searching for motifs conserved across multiple mammalian species, both PG and 

PS predicted a motif that resembles one half-site of the VDR motif. This may indicate 
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direct regulation of the upregulated genes by VDR in response to vitamin D3 treatment. 

We used NHR-scan, a scanning approach specifically developed to predict NHR binding 

sites, to exactly locate possible VDR binding sites in the promoter region of each human 

gene. NHR-scan could predict the true VDRE in the promoter region of PDLIM2. 
 

When we added the PDLIM2 gene also to our de novo approach (input setting D), PS 

predicted an extra motif, which resembles the regulatory motif of ZEB1. Most of the 

corresponding TF binding sites were indeed retrieved in the non-coding region of 

PDLIM2. Both proteins (PDLIM2 and ZEB1) are involved in metastasis, i.e. the process 

by which cancer spreads to surrounding tissues. The process of metastasis requires that 

epithelial cells undergo a de-differentiation process known as epithelial-mesenchymal 

transition (EMT). ZEB1 is involved in EMT, as it downregulates E-cadherin, an 

intercellular adhesion protein, in order to increase cell motility (Sanchez-Tillo et al., 

2010). However, other studies also indicate that the levels of different ZEB1 co-factors 

are critical for the action of ZEB1 (repressive or activating) on E-cadherin (Pena et al., 

2005). Further on ZEB1 was also reported as a  transcriptional activator of VDR 

(Lazarova et al., 2001). PDLIM2, suppresses anchorage-independent growth of cancer 

cells, which suggests a possible tumor suppressor function (Loughran et al., 2005). We 

may suggest for ZEB1 a possible role as transcriptional repressor or activator of the 

PDLIM2 gene.  
 

Conclusively, the de novo approach benefitted from using different motif discovery 

algorithms that each contributed different motifs, related to their algorithmic 

backgrounds. Both, very common motifs such as the SP1 and NRF1-like motifs as well 

as motifs more specific for the set of upregulated genes such as the VDR and ZEB1-like 

motifs were predicted.  

5.4.2 Cis-regulatory modules 

In higher eukaryotes, TFs rarely operate by themselves, but rather bind to DNA in 

cooperation with other DNA-binding proteins. To infer possible combinatorial regulation 

for the set of human sequences, we searched for combinations of TF binding sites 

corresponding to the de novo predicted motif matrices. In a study of Blanchette et al. 

(Blanchette et al., 2006), where they predicted CRMs for the whole human genome, 58% 

of the predicted CRMs had a module size of less than 500 bp. In this study, we 

considered module sizes of 150 bp up to 400 bp. For a module size of 350 bp, CPModule 

predicted three CRMs that were specific for the human sequence set compared to random 

sequence sets. Each of those CRMs contained the EBF-like motif, in combination with 

the SP1-like motif (first CRM) or the NRF1-like motif (second CRM) or in combination 

with both the VDR and the ZEB1-like motifs (third CRM). None of those TFs are known 

to co-act in transcriptional regulation following the literature.  
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The scanning phase of CPModule is still open for improvement. TF binding sites located 

in promoter regions with a high GC-content (>50%) were filtered out. This threshold is 

very stringent because many CRMs in the human genome overlap with CpG islands 

(Blanchette et al., 2006) and we therefore relaxed this threshold to 80%. Next, the 

scanning method does not correct for the high number of individual binding sites 

predicted for degenerated motif matrices (e.g. motif A2 ~ EBF-like motif). Only the 

statistical significance of the resulting CRMs was calculated. Further, we noticed overlap 

between TF binding sites predicted for different motif matrices. As the regulatory motifs 

of different TFs may resemble each other, especially if they come from the same family, 

it can be useful to integrate an extra constraint that avoids overlap between predicted TF 

binding sites. A possible improvement, more specific for the case of VDR binding sites, 

is the use of the NHR-scan predictions instead of using the default PWM screening with 

the motif matrix of VDR.  

5.4.3 Future perspectives 

The research performed in this chapter focussed specifically on the cluster of coexpressed 

genes which was conserved across the human and mouse cell lines. The motifs predicted 

for this small set of genes and the corresponding regulators could be promising elements 

to further elucidate the molecular pathways induced by vitamin D3. For future research it 

would be interesting to also investigate the presence of these motifs in the rest of the 

human/mouse genome. For example, the cluster of genes upregulated after vitamin D3 

treatment in human breast cancer cells was only partially conserved in mouse bone cells. 

We could investigate the complete set of human genes upregulated after vitamin D3 for 

the presence of the predicted motifs. 
 

Although motif discovery can indicate cis-regulatory elements, overrepresented in the 

input sequence set, it remains hard to determine ‘functional’ cis-regulatory elements. We 

used PHYLO-MOTIF-WEB, which allows integrating many information sources to guide 

the motif search as much as possible to functional DNA regions, e.g. nucleosome 

depleted DNA regions (~DNase I hypersensitivity information), the locations of other TF 

binding sites, evolutionary conserved regions etc. Ideally, PHYLO-MOTIF-WEB would 

also use information on chromatin modifications (e.g. histone modifications), but for 

now, this cell type and condition dependent information is lacking for the human and 

mouse cell lines used in this study. 
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Chapter 6  General discussion and perspectives 

6.1 General discussion 

Although there is an enormous collection of tools available, the discovery of TF binding 

sites (motifs) stays a challenging problem. The evolution in motif discovery was 

characterized by optimizing existing algorithms to maximally exploit all kinds of 

information sources. In this thesis, we focused on the class of probabilistic motif 

discovery tools that try to optimize the use of phylogenetic information. 
 

In chapter 2, we made a theoretical comparison between two well established, 

probabilistic motif discovery algorithms that use a tree-based evolutionary model to 

integrate phylogeny; Phylogibbs (PG) and Phylogenetic sampler (PS), also referred to as 

phylogenetic motif finders. In chapter 3, we evaluated the conditions under which 

complementing coregulation with orthologous information improves motif discovery for 

this class of phylogenetic motif finders. We designed appropriate benchmark datasets and 

made an exhaustive evaluation of both algorithms together with MEME, as a 

representative of algorithms that cannot explicitly incorporate phylogenetic relations.  
 

First, we learned very useful hints for further improvement of motif discovery from 

the relation between ‘the working principles of the algorithms’ as explained in 

chapter 2 and ‘their performance results’ as obtained in chapter 3. 
 

� In this way, we showed that the use of an ensemble strategy, to estimate the true 

optimum in the dataset, was more successful than searching for a single optimal 

solution. This was especially true for datasets showing a low signal to noise ratio, 

as is often the case for biological datasets, e.g. a set of coexpressed genes derived 

form a microarray experiment likely contains targets of more than one regulatory 

protein, lowering the relative overrepresentation of a particular motif. However, 

this advantage of using an ensemble solution comes at the expense of much 

longer running times, as it is computationally very demanding.  
 

� Another important observation was that motif discovery performance of 

phylogenetic motif finders depends on the quality of the ortholog alignments, as 

was also stated by (Gordan et al., 2010; Ward and Bussemaker, 2008). The 

deleterious effects of errors in the ortholog alignments mainly arose when using 

evolutionary distant orthologs, difficult to prealign correctly. However, adding 

distant orthologs to the alignment usually relieved the problem of multiple local 

optima induced by a set of closely related orthologs. Our results showed that 

combining a local alignment strategy with a more flexible way of assigning TF 

binding sites (e.g. TF binding sites may be absent in some of the orthologs) could 
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increase robustness against difficult to align datasets, compared to using a global 

alignment strategy with a very rigid assignment of sites. Moreover, this local 

alignment strategy indirectly accounts for TF binding site turnover, which is a 

common event during genome evolution, and plays a major role in shaping the 

regulatory circuitry of contemporary species (Wray, 2007).  
 

� In general, motif discovery by the phylogenetic algorithms was poor for the 

orthologous space, where evolutionary conservation forms the only information 

source. In case the dataset only contains one set of aligned orthologous sequences, 

we expect that the adequacy of both the evolutionary model and the phylogenetic 

tree will be important to correctly predict the motif. But, if the motif discovery 

algorithm is unable to sufficiently explore the search space (i.e. the predictions 

depend on the initialization of the algorithm) for this type of data, no results will 

be retrieved. In contrast to the moves used by a typical Gibbs sampler, which 

failed to deviate from the initialization point, the moveset defined by PG seemed 

more successful to explore the orthologous information space. 
 

Secondly, chapter 3 showed that the success rate of combining coregulation and 

orthology information depends on the complex relation between the algorithm and 

the dataset. 
 

� The performed tests illustrated that the nature of the used algorithm is crucial in 

determining how to exploit multiple species data in the best way to improve motif 

discovery performance. Most influencing the results were ‘the phylogenetic 

distances between the orthologous sequences’ as they affect the trade-off between 

align-ability of the orthologs and the information level of the dataset.  
 

� The topology of the tree (star- or tree-like structure) that describes the relatedness 

of the orthologous sequences does not affect the performance of the phylogenetic 

tools. However, the tree should reflect the true evolutionary distances between the 

non-coding orthologous sequences, as both phylogenetic motif finders are 

sensitive to underestimating those distances. This is the case when using a species 

tree based on the conservation of rRNA or protein-coding DNA sequences.  
 

� The number of added orthologs mainly influenced the results for the orthologous 

space, with as rule: the more orthologs added the better the results.  
 

The results of the extended benchmarking in chapter 3 also showed that the performance 

of a motif discovery algorithm strongly depends on the dataset specificities. Each 

algorithm performed better than the others on some type of data, which can be explained 

by the differences in their algorithmic backgrounds. The same observation was made by 

Tompa et al. (Tompa et al., 2005) for a set of algorithms performing in the coregulation 

space. This diversity in performance has led to the idea that ensemble methods, 
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comprising the results of multiple motif finders may lead to improvements in prediction 

accuracy. Diversified predictions by different motif finders would contribute in 

increasing the sensitivity of the final prediction (Hu et al., 2006). As dozens of motif 

discovery algorithms are available today, the ensemble approach is especially promising 

to use them to our advantage.  
 

In chapter 4 we developed a workflow for de novo motif discovery in eukaryotes, 

PHYLO-MOTIF-WEB, which can easily be accessed through its web service. PHYLO-

MOTIF-WEB applies an ensemble strategy to comprise the results of multiple motif 

discovery algorithms, for now PG, PS and MEME. To the best of our knowledge, this is 

the first time that an ensemble approach is used in the motif discovery problem that 

incorporates phylogenetic motif finders. Moreover, the workflow covers all the different 

pre- and post-processing steps needed to identify potential motifs in a set of non-coding 

sequences, making hard-to-use phylogenetic tools like PG and PS more accessible to the 

non-expert user. For the ensemble strategy we developed a clustering algorithm, 

FuzzyClustering that sequentially groups a set of TF binding sites that significantly 

appear together in a set of predicted motifs. For each asymmetric cluster, all the 

individual binding sites and motif predictions get a membership probability assigned that 

reflects the relative importance of a binding site/predicted motif in the extracted cluster. 

Then, the TF binding sites are aligned to construct a position specific weight matrix (i.e. 

the ensemble motif). We quote some advantages of using FuzzyClustering. 
 

� Compared to algorithms that cluster on the level of the motif matrix (Habib et al., 

2008; Romer et al., 2007; Thijs et al., 2002a), FuzzyClustering can distinguish 

between more and less likely TF binding site predictions, based on their 

membership scores. This allows better fine-tuning of sensitivity and specificity of 

the results. 
 

� For each ensemble motif, FuzzyClustering can evaluate the fraction of predicted 

motifs that significantly contributed and trace back the contribution level of each 

component algorithm (PG, PS and MEME). This makes it possible to put more 

confidence in an ensemble motif supported by a high fraction of the predicted 

motifs retrieved by multiple motif finders. 
 

� PS also uses an ensemble strategy to cluster the results across multiple 

initializations and iterations of the algorithm itself (see chapter 2). The difference 

with FuzzyClustering is that PS does not account for the co-occurrence of 

different TF binding sites per iteration of the algorithm. Instead, PS just counts 

individual binding site frequencies and in case the algorithm was asked to search 

for multiple motifs simultaneously, an extra post-processing step is required to 

group the significant binding sites into different motifs. 
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� FuzzyClustering integrates the score, assigned to each TF binding site by the 

motif discovery algorithm, into the cluster extraction process. In Hu et al. (Hu et 

al., 2006) they not only propose to use the scores assigned by the motif discovery 

algorithm, but also weigh those scores by the overall accuracy of the algorithm 

itself. Although, determining algorithm accuracy seems not straightforward, 

especially as it depends on many factors (see chapter 3). 
 

� To enhance biological meaningful results, the ensemble motif is only reported if 

the consensus score is sufficiently high, TF binding sites are sufficiently 

distributed over the input sequences and a sufficient number of predicted motifs 

contributed to the ensemble motif. 
 

Using FuzzyClustering to resume the results of multiple motif discovery algorithms 

requires a more extended benchmarking (research in progress). This to further elucidate 

the ‘fuzzy’ aspect (i.e. TF binding sites and predicted motifs may be assigned to different 

clusters with different membership probabilities) and how this relates with possible 

redundancy in the final set of ensemble motifs. To enhance the diversity in the 

predictions we ran each motif discovery algorithm for different parameter settings. 

Varying the parameters is reasonable since the optimal parameter settings for a given 

dataset cannot be estimated in advance. However, a possible downside is that bad choices 

for the parameters can deteriorate the quality of the predictions, resulting in poor 

consensus building. 
 

PHYLO-MOTIF-WEB performs de novo discovery of motifs in eukaryotes, which is 

extremely difficult, due to the low signal to noise ratio. Integration of extra information 

like evolutionary conservation can partially increase this signal to noise ratio, but more 

efficient would be to restrict or prioritize the search space to those DNA regions that are 

likely involved in transcriptional regulation. Epigenetic information like chromatin 

structure can provide information on ‘transcriptionally active’ DNA regions. However, 

chromatin structure is tissue and condition dependent.  Due to the recent development of 

new experimental methodologies like ChIP, an increased amount of experimental 

epigenetic data for several eukaryotic tissues and conditions becomes available. This 

inevitably creates a major computational challenge to incorporate those new data to 

improve motif discovery (e.g. allows distinguishing TF binding sites functional in one 

physiological condition or tissue from another).  
 

Although extremely promising, our knowledge is still limited, as the pattern of chromatin 

modifications present in the cell, like histone modifications and the methylation of DNA, 

constitute a ‘code’ that is not fully understood yet. More knowledge on which chromatin 

modifications co-locate with transcriptionally active regions like promoters or enhancers 

or even with the binding locations of specific TFs will enhance usability. PHYLO-
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MOTIF-WEB provides an option to use epigenetic information to restrict the motif 

search space, by integrating the information provided by the Regulatory Build Pipeline of 

Ensembl (Hubbard et al., 2009).  
 

� This pipeline combines a variety of genome-wide epigenomic and genomic data 

sets to annotate potential regulatory regions within the genome. The vast majority 

of features are derived from ChIP-seq data. 
 

� Annotations were made across multiple cell types, based on open chromatin 

defined by DNase I hypersensitivity mapping and FAIRE (Formaldehyde-

Assisted Isolation of Regulatory Elements) and the genome-wide binding 

locations of CTCF (i.e. marker for enhancer/insulator regions) and other TFs. The 

multiple cell type annotations can be extended in a cell type specific manner, 

based on histone modifications assayed by ChIP. 
 

The use of epigenomic data, preferably cell type and condition specific, can help to 

predict the actual functionality of cis-regulatory elements as this depends on chromatin 

accessibility by the regulatory proteins. However, actual in vivo TF binding can only be 

validated by experiments like ChIP preferably combined with expression data to check 

for transcriptional activity.   
 

In chapter 5 we focussed on a biological topic, namely gaining more insight in the mode 

of action underlying the antiproliferative effects of vitamin D3 on human breast cancer 

cells and mouse bone cells. We performed a comparative transcriptome analysis to study 

the transcriptional response towards vitamin D3 treatment, in both human and mouse cell 

lines. We could extract a cluster of genes, which were all upregulated after vitamin D3 

treatment, in both species. Despite a few genes involved in cell death or apoptosis, no 

biological process was overrepresented in this cluster of genes. This heterogeneous nature 

of the extracted cluster can reflect the multiple sites of action of vitamin D3, maybe 

suggesting the involvement of different regulatory proteins. 
 

To elucidate the transcriptional regulation behind the conserved coexpression behaviour 

of the genes, we assumed that also the transcriptional regulation had been conserved and 

searched for conserved cis-regulatory elements in the gene’s non-coding sequences. We 

first performed a de novo approach by using PHYLO-MOTIF-WEB and then analysed if 

the binding sites of the de novo predicted motifs co-locate in the DNA, to form CRMs. 

The de novo approach predicted on one hand very common motifs, known to be involved 

in cell cycle regulation, such as the SP1- and NRF1-like motifs, but also more specific 

motifs such as the VDR- and ZEB1-like motifs. The VDR-like motif suggests direct 

regulation of the genes by the active metabolite of vitamin D3. The ZEB1-like motif can 

be interesting because ZEB1 is a transcriptional activator of VDR and is involved in the 

process of metastasis. Although none of those individual motifs was convincingly 
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overrepresented in the coexpressed gene set, particular combinations were. For example, 

the co-location of the binding sites for VDR and ZEB1 was significant for the human 

coexpressed gene set. This shows that the detection of CRMs can produce predictions of 

substantially better specificity than the analysis of isolated binding sites. 
 

As standard probabilistic motif discovery tools usually fail to recover the full-length 

VDR motif, we also used NHR-scan that integrates a Hidden Markov Model framework 

to account for the diverse configurations (DR, IR and ER) and the variable spacer lengths 

of the VDR motif. NHR-scan could predict the experimentally verified ER6-type binding 

site upstream of PDLIM2.  
 

In silico prediction of VDR target genes, following a gene-centered approach is almost 

impossible as the VDR binding locations are scattered throughout the genome. The study 

of Ramagopalan et al. (Ramagopalan et al., 2010), presented a comprehensive high-

resolution map of VDR binding throughout the human genome defined by ChIP-seq in 

lymphoblastoid cells. After calcitriol stimulation of the cells, they identified 2776 VDR 

binding sites which were mainly located in introns (36%) and in regions at least 5000 bp 

away from the first or last exon of the gene (28%). The remaining VDR binding sites (36 

%) were located within 5000 bp of the gene’s first or last exon. This genome-wide 

approach can be combined with in silico motif discovery to retrieve the exact VDR 

binding motif. In the study of Ramagopalan et al., the DR3-type of VDR motif was most 

significantly enriched within the VDR binding intervals. They also described that those 

VDR binding intervals were significant enriched in regions associated with active 

chromatin such as DNase I–hypersensitive sites, CTCF binding locations and specific 

histone modifications (e.g. H3K4me3 and H3K27ac).  
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6.2 Perspectives 

6.2.1 The mode of action of vitamin D3 

In this thesis, we only performed a transcriptome analysis where we studied the gene 

expression profiles after vitamin D3 treatment and predicted in silico TF-DNA 

interactions. In order to obtain a more comprehensive view on the molecular actions of 

1α,25(OH)2D3 (i.e. the active metabolite of vitamin D3), we plan to reconstruct its 

regulatory network by the integrated analysis of different 'omics' data sets. A multi-level 

approach using high-throughput ChIP-seq, and expression profiling (microarray and 2D-

DIGE) will be used to detect 1α,25(OH)2D3-induced changes at the chromatin, the mRNA 

and the protein level in one cell type (see Figure 6.1).  
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Figure 6.1 A multi-level approach by integrating different ‘omics’ data sets to get a comprehensive view on 

the 1α,25(OH)2D3 regulatory network. The boxes colored in blue, show the one-level transcriptome 

analysis performed in this thesis. 
 

New and existing bio-informatics tools will be used to analyze and integrate the data at 

different levels in order to reconstruct the 1α,25(OH)2D3 regulatory network. The 

resulting comprehensive view will allow new and crucial signaling cascades in the 

actions of 1α,25(OH)2D3 to be uncovered and characterized. Integration of all different 

sources is important to overcome the limitations of each of the individual techniques. As 

an example: despite being bound in ChIP-seq data, some target genes might be found 

transcriptionally inactive in the expression data, indicating the necessity of temporally 

and/or tissue-restricted transcriptional co-regulators. On the other hand, expression data 
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does not allow distinctions to be made between primary events directly controlled by TF 

binding and secondary transcriptional changes, while ChIP-seq can. 

6.2.2 Integrating multiple information sources to predict TF binding 

Recent progress of experimental technologies like high-throughput sequencing and ChIP-

based approaches will have a tremendous impact on our understanding of the 

transcriptional regulatory mechanisms. New datasets like genome-wide TF binding 

locations, histone modifications, DNA methylation and nucleosome occupancy will 

become available for an increasing amount of cell types and physiological conditions, all 

providing new evidence in the search for regulatory regions in the genome. With the 

growing number of information sources, computational methods for integrating these 

diverse data sources can further improve the prediction of TF binding. To enhance the 

integration of these new data in computational approaches and to enable a more faithful 

construction of the transcriptional regulatory network, initiatives like the ENCODE 

project (Birney et al., 2007), together with the UCSC Genome Browser  (Thomas et al., 

2007) provide an integrated visualization and standardized retrieval of various genome 

and epigenome datasets to the research community. 
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Appendix - Supplementary materials 

Chapter 1: Introduction 
 

Table S1 IUPAC (International Union of Pure and Applied Chemistry) codes used to denote ambiguous 

positions in nucleotide sequences. Adapted from (Pavesi et al., 2004). 

IUPAC Nucleotides Mnemonics 

A A Adenine 

C C Cytosine 

G G Guanine 

T T Thymine 

R A or G puRine 

Y C or T pYrimidine 

M C or A aMino group at common position 

K T or G Ketogroup at common position 

W T or A Weak hydrogen bonding 

S C or G Strong hydrogen bonding 

B C, T or G  not A 

D A, T or G  not C 

H A, T or C  not G 

V A, C, or G  not T 

N A, C, G or T aNy 

Chapter 3: The effect of orthology and coregulation on detecting 

regulatory motifs 

Figure S1 depicts the phylogenetic trees used to relate the eight Gamma-proteobacterial 

species and the five Saccharomyces species.  
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Figure S1 Phylogenetic trees relating the eight Gamma-proteobacterial species (on top) and the five 

Saccharomyces species (below). Both trees (Newick formats in Table S4) are based on a neutral evolution 

rate and reflect the phylogenetic relatedness between the intergenic sequences of eight Gamma-

proteobacterial species (on top) or five Saccharomyces species (below). For the tests on real data for the 

combined and the orthologous space, we added orthologs with increasing phylogenetic distances to the 

reference species E.coli (in case of the bacterial datasets) or S. cerevisiae (in case of the yeast datasets). 

Subsets of these orthologs (reference species included) used throughout the tests were selected as follows:  

For the Gamma-proteobacteria: 

2 orthologs = SEQ1+SEQ4; 4 orthologs = SEQ1+SEQ4+SEQ5+SEQ6;  

6 orthologs = SEQ1+SEQ4+SEQ5+SEQ6+SEQ2+SEQ3;  

7 orthologs = SEQ1+SEQ4+SEQ5+SEQ6+SEQ2+SEQ3+SEQ8  

and 8 orthologs = SEQ1+SEQ4+SEQ5+SEQ6+SEQ2+SEQ3+SEQ7+SEQ8. 

For the Saccharomyces species: 
2 orthologs = SEQ1+SEQ2; 4 orthologs = SEQ1+SEQ2+SEQ3+SEQ4; 5 orthologs = 

SEQ1+SEQ2+SEQ3+SEQ4+SEQ5. 

Table S2 explains the composition of the real datasets for the Gamma-proteobacterial 

and the Saccharomyces species. 

Table S2 Composition of the real datasets for the Gamma-proteobacterial and the Saccharomyces species. 

GAMMA-PROTEOBACTERIA 

R HIGH IC – LexA 

T LexA PolB RecN RpsU* SulA UvrA* UvrB UvrD 

M 3 1 2 1 1 1 1 1 

O 8 8 8 8 6 8 8 8 

S
[1]
 / / / / 7,8 / / / 

 

R LOW IC – TyrR 

T AroF AroG AroL Mtr* TyrB* TyrP TyrR 

M 3 1 5 1 1 2 2 

O 8 5 6 7 7 6 8 

S
[1]
 / 2,7,8 7,8 7 7 7,8 / 
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SACCHAROMYCES SPECIES 

R HIGH IC - URS1H 

T AGP1 SPO16 REC104 IME2* REC114* MEK1 HOP1 MSH5 MRPL27 POP4 

M 1 1 1 1 1 2 1 1 1 1 

O 5 5 5 5 5 5 5 5 5 5 

S
[2]
 / / / / / / / / / / 

R LOW IC - RAP1 

T HIS4* RPL11B ENO1* OPI3 AVT4 BUD22 RPS2 YEF3 SNF4 RPL5 

M 1 1 1 1 1 1 1 1 1 1 

O 5 5 5 5 5 5 5 5 5 5 

S
[2]
 / / / / / / / / / / 

Rows: R: the regulator, T: the target genes for the regulator used to compose the dataset in the coregulation 

space in respectively the reference species E. coli and S. cerevisiae, M: number of TF binding sites for the 

specific regulator in the selected upstream region of those reference genes, O: the total number of  

orthologs that could be used for each target gene in the orthologous or combined space (the number 

includes the gene in the reference species itself) and S: the species for which no ortholog was retrieved. 

Species names are represented by the following numbers:
 [1] 

The gamma proteobacteria: 1=Escherichia coli, 

2=Yersinia pestis, 3=Erwinia carotovora, 4=Shigella flexneri, 5=Salmonella typhimurium, 6=Salmonella 

enterica, 7=Vibrio cholerae, 8=Pseudomonas aeruginosa.  
[2]

 For both, URS1H and RAP1, all 10 target genes in the reference species had orthologs in all 4 other 

Saccharomyces species. 

 Note that the used version of PS can not handle a dataset for which the MASSES (~a prealigned set of 

orthologs for one gene) contain a different number of orthologs. Therefore, we left out the gene AroG in 

the TyrR datasets for the tests with PS. We applied this correction also in the coregulation space to better 

compare results obtained from the combined and orthologous space with those from the coregulation space. 

*Target genes in the reference species for respectively LexA, TyrR, URS1H and RAP1: each of those was 

used together with its respective orthologs for the tests in the orthologous space. 

Table S3 shows the effect of different types of phylogenetic trees on the results of the 

phylogenetic algorithms (PG and PS) for the Gamma-proteobacterial datasets in the 

combined coregulation-orthology space. 

Table S3 The effect of different types of phylogenetic trees on the results of the phylogenetic algorithms 

(PG and PS) for the Gamma-proteobacterial datasets in the combined coregulation-orthology space. 

GAMMA-PROTEOBACTERIA 

SETUP HIGH IC - LexA 

 
LOW IC - TyrR 

Results of PG 

Tree type R1 RR spPPV spSens R1 RR spPPV spSens 

Neutral 10 100 98.6 75.5 8 100 96.9 67.5 

Protein 2 50 85.7 54.5 2 0 / / 

Corrected 10 90 95.6 72.7 8 75 92.8 61.1 

Results of PS 

Tree type R1 RR spPPV spSens R1 RR spPPV spSens 

Neutral 10 90 69 42.2 10 100 85 36.4 

Protein 0 / / / 0 / / / 

Corrected 10 80 71.4 45.5 10 100 100 40 

Performance and quality measures: R1: the number of runs with an output out of the 10 runs on one real 

dataset, RR (%): Recovery Rate: the percentage of the output (R1) for which the correct motif was 

retrieved (correct outputs), spPPV (%): species-dependent PPV: the percentage of true sites among the 

predicted sites for the reference species, averaged over all correct outputs, spSens (%): species-dependent 
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Sens:  the percentage of the true sites in the reference species found by the algorithm, averaged over all 

correct outputs. E. coli is the reference species. The dataset of each regulator consists of 8 (LexA) or 7 

(TyrR) target genes from the reference species (see Table S2), together with their orthologs in 5 additional 

species (Figure S1 lists from which species these orthologs were derived). Each reference sequence 

together with its orthologs was prealigned (6 sequences in total). The phylogenetic relatedness between the 

orthologous sequences is modeled by one of the three different ‘tree types’: a Neutral, a Protein or a 

Corrected tree (Newick formats in Table S4).  

Additional information on the phylogenetic trees used for the synthetic and real datasets 

The construction of the tree used to model the phylogenetic relatedness between the 

intergenic sequences of the Gamma-proteobacteria was based on coding sequence 

alignments. Three different trees were obtained : 1) a tree made by PhyML (Guindon and 

Gascuel, 2003) with as input the alignment of 30 concatenated protein sequences over all 

eight species (~Protein tree), 2) the branch lengths of the previous tree multiplied by 

factor 13.5 as described by Newberg et al. (Newberg et al., 2007) (~Corrected tree) and 

3) a tree based on neutral evolution rates by only taking into account the evolution of the 

third positions of four fold degenerate codons (~Neutral tree) (kindly provided by Erik 

Van Nimwegen). As can be seen in Table S3, for both PG and PS, the overall highest 

recovery rate (RR) was obtained with the tree based on a neutral evolution rate. The tree 

based on protein alignments did most of the time not result in any output as it 

overestimates the relatedness between the intergenic sequences. As intergenic sequences 

are expected to evolve faster than coding sequences, correcting the branch lengths of the 

protein tree allowed to better approximate the true relatedness between the intergenic 

sequences and the obtained results became more comparable to those obtained with the 

neutral tree. In all subsequent analyses, the tree based on the neutral evolution rate was 

used (Siddharthan et al., 2005). Figure S1 shows the neutral evolution tree for both the 

Gamma-proteobacterial and the Saccharomyces species. The Newick formats of all trees, 

used for tests on synthetic and real datasets, are given in Table S4. 

Table S4 contains the Newick formats for all the phylogenetic trees that were used in the 

tests on the synthetic and real datasets. 

Table S4 Newick format for all the phylogenetic trees used in the tests on the synthetic and real data. The 

distances are given in proximities (q). 

Synthetic data 

Topology Proximities 

Equal distances [1] (SEQ1:0.80,SEQ2:q,SEQ3:q,SEQ4:q,SEQ5:q); (5orthologs) 

(SEQ1:0.80,SEQ2:q,SEQ3:q,SEQ4:q,SEQ5:q, SEQ6:q,SEQ7:q, 

SEQ8:q,SEQ9:q,SEQ10:q); (10 orthologs) 

Star 

Unequal distances (SEQ1:0.80,SEQ2:0.90,SEQ3:0.85,SEQ4:0.75,SEQ5:0.20); 

 

Tree (Newberg et al., 

2007) 

(((SEQ1:0.83,(SEQ2:0.89,SEQ3:0.91):0.84):0.95, 

(SEQ4:0.97,SEQ5:0.99):0.82):0.93,SEQ6:0.70); 
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Real data 
[2]
 

Gamma-proteobacteria 

Topology Proximities 

Neutral ((((SEQ1:0.95,SEQ4:0.98):0.61,(SEQ5:0.99,SEQ6:0.96):0.61):0.70, 

(SEQ2:0.38,SEQ3:0.45):0.95):0.94,(SEQ7:0.25,SEQ8:0.14):0.99); 

Protein  ((((SEQ1:0.99,SEQ4:0.99):0.97,(SEQ5:0.99,SEQ6:0.99):0.97):0.94, 

(SEQ2:0.92,SEQ3:0.91):0.96):0.79,SEQ7:0.76,SEQ8:0.38); 

Tree 

Corrected 
[3]

 ((((SEQ1:0.99,SEQ4:0.92):0.68,(SEQ5:0.99,SEQ6:0.97):0.66):0.43, 

(SEQ2:0.32,SEQ3:0.29):0.58):0.04,SEQ7:0.02,SEQ8:0.0); 

Saccharomyces species 

Topology Proximities 

Star Neutral (SEQ1:0.80,SEQ2:0.80,SEQ3:0.58,SEQ4:0.50,SEQ5:0.45); 

[1] 
The value for q varies between 0.90, 0.50 and 0.20 for different tests. For example: q=0.90 describes a 

phylogenetic tree for very closely related orthologs.  
[2] For the real data we replaced the species names by SEQnumbers. For the Gamma-proteobacteria: 

1=Escherichia coli, 2=Yersinia pestis, 3=Erwinia carotovora, 4=Shigella flexneri, 5=Salmonella 

typhimurium, 6=Salmonella enterica, 7=Vibrio cholerae, 8=Pseudomonas aeruginosa. For the 

Saccharomyces species: 1=S. cerevisiae, 2=S. paradoxus, 3=S. mikatae, 4=S. kudriavzevii, 5=S. bayanus, 
[3] 

The relation between the proximities for the Protein and the Corrected tree is given by: (proximity of the 

Corrected tree) = (proximity of the Protein tree)
13.5

 as described in (Newberg et al., 2007). The proximities 

are rounded up to two decimals after the comma. 

Table S5 consists of Tables S5 (A, B, C and D) containing the results of PG, PS and 

MEME in the coregulation space and in the combined coregulation-orthology space for 

both the synthetic and real datasets. 
 

All data presented in Table S5 (A, B and C), showing the results of the three algorithms 

on the synthetic datasets in the coregulation space and in the combined space are 

described in the main text. Table S5 (D) shows the results of the three algorithms on the 

real datasets in the coregulation and combined space. For the results on the real data in 

the coregulation space, a trend similar as for the synthetic datasets in Table S5 (A) was 

observed, though less pronounced. For both, the Gamma-proteobacterial and yeast 

datasets, all algorithms retrieved the high IC motif (LexA or URS1H) with a high RR and 

motif quality. For a low IC motif (TyrR or RAP1) the quality of the motifs retrieved by 

all three algorithms, especially by PG and PS, was characterized by a very pronounced 

drop in sensitivity (Sens). As for the synthetic data in Table S5 (A), PG showed for a low 

IC motif a weaker performance (R1 and RR) compared to PS and MEME. 
 

Table S5 A Results of PG, PS and MEME on synthetic datasets for the ‘star topology with equal 

distances’ given in proximities (q). The results for the ‘coregulation space’ are given as reference values 

(REF). 

SYNTHETIC DATA 

SETUP HIGH IC LOW IC 

Results of PG 

Proximity q D1 RR PPV Sens D1 RR PPV Sens 

REF: Coregulation space 44 100 99.3 88.4 75* 5.3* 72.2* 47.5* 

0.90 88 100 99.4 98 30 76.7 94.8 72.2 

0.50 99 100 100 98.9 74 100 98.5 80.9 

0.20 100 100 98.5 76.9 77 94.8 92 33.9 

0.20 (unaligned) 95 100 96.7 91 42 97.6 89.9 50 
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SYNTHETIC DATA 

SETUP HIGH IC LOW IC 

Results of PS 

Proximity q D1 RR PPV Sens D1 RR PPV Sens 

REF: Coregulation space 100 100 99.4 91.9 36 80.6 94.9 57.2 

0.90 100 100 99.8 98.1 32 93.8 97.6 79 

0.50 100 100 100 97.9 100 100 99.5 90.6 

0.20 100 100 97.9 78.7 97 100 92.7 55.5 

0.20 (unaligned) 100 100 99.3 95.8 100 100 92.5 46.4 

Results of MEME 

Proximity q D1 RR PPV Sens D1 RR PPV Sens 

REF: Coregulation space 100 100 93.1 92.7 100 34 67.4 67.4 

0.90 100 100 95.6 94.9 100 67 73.2 73.0 

0.50 100 100 94.8 94.5 100 100 68.8 68.8 

0.20 100 100 94.2 94.1 100 100 66.9 66.8 

Performance and quality measures: D1: the number of datasets with an output out of the 100 synthetic 

datasets, RR (%): Recovery Rate: the percentage of the output (D1) for which the correct motif was 

retrieved (correct outputs), PPV (%): Positive Predictive Value: the percentage of true sites among the 

predicted TF binding sites, averaged over all correct outputs, Sens (%): Sensitivity: the percentage of the 

true sites found by the algorithm, averaged over all correct outputs. * Tracking threshold PG equal to 0.05 

(instead of 0.50).  

The synthetic datasets contain in ‘the coregulation space’ the 10 coregulated sequences from the reference 

species each of which has one TF binding site embedded. In the ‘combined space’ the datasets contain 10 

orthologous sets, (an orthologous set is defined as one reference gene and its orthologs). Each orthologous 

set contains 5 orthologous sequences that are related trough a star topology with equal distances (Newick 

format in Table S4) and contain one embedded TF binding site per sequence (high IC or low IC). They can 

be aligned or left unaligned.  

Note that in the coregulation space true motifs recovered by PG and PS in general exhibit a higher PPV 

than motifs recovered by MEME, while for the Sens the opposite is true. This is a consequence of the 

different working regime of the Sens/PPV trade off which in each of the algorithms is being used. For 

MEME and PS this trade off is fixed and can not be user specified. 
 

Table S5 B Results of PG, PS and MEME algorithms on synthetic datasets for a ‘star topology with 

unequal distances’ (~ four closely related orthologs and one distantly related ortholog). 

SYNTHETIC DATA 

SETUP HIGH IC LOW IC 

Results of PG 

Unequal star topology D1 RR PPV Sens D1 RR PPV Sens 

Only 4 orthologs aligned 91 98.9 99.7 99 36 72.2 94.7 71.2 

All 5 orthologs aligned 99 100 99.7 92.7 69 94.2 96.7 64.3 

Distant ortholog unaligned 91 100 98.7 96.3 44 90.9 92.6 68.6 

Results of PS 

Unequal star topology D1 RR PPV Sens D1 RR PPV Sens 

Only 4 orthologs aligned 100 100 99.8 98 59 89.8 96.2 72.6 

All 5 orthologs aligned 100 100 99.8 96.9 100 100 98.8 81.9 

Distant ortholog unaligned 100 100 99.7 98.3 90 96.7 96.8 67.9 
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SYNTHETIC DATA 

SETUP HIGH IC LOW IC 

Results of MEME 

Unequal star topology D1 RR PPV Sens D1 RR PPV Sens 

Only 4 orthologs 100 100 96.4 95.9 100 84 71.5 71.3 

All 5 orthologs 100 100 96.1 95.7 100 93 68.4 68.1 

Performance and quality measures: idem as in Table S5 A. Each synthetic dataset in the combined space 

consists of 10 coregulated sequences from the reference species together with their orthologs. Each 

reference sequence together with its orthologs is referred to as an orthologous set. A synthetic dataset thus 

consists of 10 orthologous sets. Each orthologous set contains in total 5 orthologs that are related trough a 

star topology with unequal distances (Newick format in Table S4) and contain one embedded TF binding 

site per sequence (high IC or low IC). Only 4 orthologs aligned: we search for motifs in a dataset for 

which the 10 orthologous sets only contain the 4 closest related orthologs that were aligned. All 5 

orthologs aligned: the 10 orthologous sets contain 5 prealigned orthologous sequences. Distant ortholog 

unaligned: the 10 orthologous sets contain all 5 orthologs, but only the 4 closely related ones are aligned 

and the most distant ortholog is left unaligned. 
 

Table S5 C The species-dependent quality parameters for PG, PS and MEME on results obtained in the 

combined space with synthetic datasets containing sequences related through a star topology with unequal 

distances. This Table complements Table S5 B, with values for the species-dependent PPV and species-

dependent sensitivity.
 

SYNTHETIC DATA 

SETUP HIGH IC LOW IC 

Results of PG 

Unequal star topology PPV Sens spPPV spSens PPV Sens spPPV spSens 

All 5 orthologs aligned 99.7 92.7 98.5 84.9 96.7 64.3 96.5 47.8 

Distant ortholog unaligned 98.7 96.3 96.9 92.4 92.6 68.6 92.9 47.8 

Results of PS 

Unequal star topology PPV Sens spPPV spSens PPV Sens spPPV spSens 

All 5 orthologs aligned 99.8 96.9 99.7 96.7 98.8 81.9 98.8 81.9 

Distant ortholog unaligned 99.7 98.3 99 94.9 96.8 67.9 95.3 49.4 

Results of MEME 

Unequal star topology PPV Sens spPPV spSens PPV Sens spPPV spSens 

All 5 orthologs 96.1 95.7 98 92.2 68.4 68.1 73 54.5 

Performance and quality measures: idem as in Table S5 A, except for spPPV (%): species-dependent PPV: 

the percentage of true sites among the predicted sites for the reference species, averaged over all correct 

outputs, spSens (%): species-dependent Sens: the percentage of the true sites in the reference species found 

by the algorithm, averaged over all correct outputs. For this specific case the reference species equals the 

distantly related species (proximity 0.20). Each synthetic dataset consists of 10 coregulated genes in the 

reference species together with their orthologs, thus containing 10 orthologous sets. Each orthologous set 

contains 5 orthologous sequences that are related trough a star topology with unequal distances (Newick 

format in Table S4) and contain one embedded TF binding site per sequence (high IC or low IC). ). All 5 

orthologs aligned: the 10 orthologous sets contain 5 prealigned orthologous sequences. Distant ortholog 

unaligned: the 10 orthologous sets contain all 5 orthologs, but only the 4 closely related ones are aligned 

and the most distant ortholog is left unaligned. 
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Table S5 D Results of PG, PS and MEME on real datasets (Gamma-proteobacterial and Saccharomyces 

species) for motif discovery in the ‘combined coregulation-orthology space’. Results for the ‘coregulation 

space’ are given as reference values (REF).  

GAMMA-PROTEOBACTERIA 

SETUP HIGH IC - LexA 

 
LOW IC – TyrR 

Results of PG 

# orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

REF: coregulation space 10 100 98 81.8 8 100 92 58.3 

2  10 100 94 81.8 7 100 91.6 61.9 

4 10 100 89 74.5 10 100 91.9 67.3 

6 10 100 98.6 75.5 8 100 96.9 67.5 

6 (unaligned) 10 100 87.9 81.8 10 50 95.3 62.7 

Results of PS 

# orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

REF: coregulation space 10 100 100 81.8 10 100 100 57.1 

2 10 100 96.7 79.1 10 100 100 64.3 

4 10 100 90 71.8 10 100 98.9 63.6 

6 10 90 69 42.4 10 100 85 36.4 

6 (unaligned) 10 100 79.8 84.5 10 100 100 61.4 

Results of MEME 

# orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

REF: coregulation space 10 100 90.9 90.9 10 100 73.3 73.3 

2 10 100 90.9 90.9 10 100 80 80 

4 10 100 90.9 90.9 10 100 84.6 73.3 

6 10 100 100 90.9 10 100 85.7 80 

SACCHAROMYCES SPECIES 

SETUP HIGH IC – URS1H 

 
LOW IC – RAP1 

Results of PG 

# orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

REF: coregulation space 10 100 93.3 98.2 9* 22.2* 87.5* 20* 

2 9 100 96.3 99 7* 28.6* 100* 10* 

4 5 100 100 100 5* 40* 70.3* 90* 

5 5 100 96 80 4* 75* 67.4* 93.3* 

5 (unaligned) 2 50 100 100 8* 37.5* 79.1* 100* 

Results of PS 

# orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

REF: coregulation spacey 10 100 92.5 100 10 100 87.6 71 

2 10 100 91.7 100 10 100 75 60 

4 10 100 83.9 81.8 10 100 90 90 

5 10 100 84 75.5 10 100 88.8 79 

5 (unaligned) 10 100 91.7 100 10 100 87.6 71 
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SACCHAROMYCES SPECIES 

SETUP HIGH IC – URS1H 

 
LOW IC – RAP1 

Results of MEME 

# orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

REF: coregulation space 10 100 100 100 10 100 90 90 

2 10 100 100 100 10 100 81.8 90 

4 10 100 100 100 10 100 81.8 90 

5 10 100 100 100 10 100 81.8 90 

Performance and quality measures: R1: the number of runs with an output out of the 10 runs on one real 

dataset, RR (%): Recovery Rate: the percentage of the output (R1) for which the correct motif was 

retrieved (correct outputs), spPPV (%): species-dependent PPV: the percentage of true sites among the 

predicted sites for the reference species, averaged over all correct outputs, spSens (%): species-dependent 

Sens:  the percentage of the true sites in the reference species found by the algorithm, averaged over all 

correct outputs. The reference species equals E. coli (bacterial data) or S. cerevisiae (yeast data). 

Gamma-proteobacteria: The dataset of each regulator consists of 8 (LexA) or 7 (TyrR) target genes from 

the reference species (Table S2), together with their orthologs selected from additional species. In total we 

have “# orthologs” orthologs per gene (the ortholog of the reference species included), all prealigned or all 

left unaligned, related trough the neutral tree for the Gamma-proteobacteria. Saccharomyces species: The 

dataset of each regulator (URS1H, RAP1) consists of 10 target genes from the reference species (Table S2), 

together with their orthologs select from additional species. In total we have “# orthologs” orthologs per 

gene (the ortholog of the reference species included), all prealigned or all unaligned, related trough the 

neutral tree for the Saccharomyces species. Table S4 shows the Newick formats of both trees and Figure S1 

lists which species are used for each ‘# orthologs’ for both the bacterial and yeast species. * Tracking 

threshold PG equal to 0.05 (instead of 0.50). 

Table S6 shows the effect of leaving out motif sites in both the coregulation space and in 

the combined coregulation-orthology space for a synthetic dataset containing sites 

sampled from a high IC motif. 
 

Table S6 The effect of leaving out TF binding sites in both the ‘coregulation space’ (on top) and in the 

‘combined coregulation-orthology space’ (below). Results are displayed for a synthetic dataset containing 

sites sampled from a high IC motif. 

SYNTHETIC DATA 

SETUP HIGH IC 

Results of PG 

Number of TF binding sites/gene D1 RR PPV Sens 

Ref: 10(1,1,1,1,1,1,1,1,1,1) 
[a]
 44 100 99.3 88.4 

10(1,1,1,1,1,1,1,1,0,0)
 [b]

 29 100 96.9 87.1 

Results of PS 

Number of TF binding sites/gene D1 RR PPV Sens 

Ref: 10(1,1,1,1,1,1,1,1,1,1) 
[a]
 100 100 99.4 91.9 

10(1,1,1,1,1,1,1,1,0,0) 
[b]

 100 100 96.9 92.4 

Results of MEME 

Number of TF binding sites/gene D1 RR PPV Sens 

Ref: 10(1,1,1,1,1,1,1,1,1,1) 
[a]
 100 100 93.1 92.7 

C
O
R
E
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10(1,1,1,1,1,1,1,1,0,0) 
[b]

 100 99 77.7 97 
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SETUP HIGH IC 

Results of PG 

Number of TF binding sites/gene, ortholog D1 RR PPV Sens 

Ref: all genes and all orthologs contain the motif site 
[a]
 99 100 99.7 92.7 

TF binding site absent in distant ortholog (q=0.20)
 
for all 

genes
 [b]

 
76 100 97.6 91.4 

TF binding site absent in close ortholog (q=0.75) for all 

genes 
[b]

 
77 88.3 86.2 63.3 

TF binding site absent in all orthologs for two out of ten 

genes 
[b]

 
97 100 98.2 96.6 

Results of PS 

Number of TF binding sites/gene, ortholog D1 RR PPV Sens 

Ref: all genes and all orthologs contain the motif site 
[a]
 100 100 99.8 96.9 

TF binding site absent in distant ortholog (q=0.20)
 
for all 

genes
 [b]

 
18 83.3 78.1 62.7 

TF binding site absent in close ortholog (q=0.75) for all 

genes 
[b]

 
99 99 79.3 88.3 

TF binding site absent in all orthologs for two out of ten 

genes 
[b]

 
100 100 99.5 96.5 

Results of MEME 

Number of TF binding sites/gene, ortholog D1 RR PPV Sens 

Ref: all genes and all orthologs contain the motif site 
[a]
 100 100 96.1 95.7 

TF binding site absent in distant ortholog (q=0.20)
 
for all 

genes
 [b]

 
100 100 79.0 98.6 

TF binding site absent in close ortholog (q=0.75) for all 

genes 
[b]

 
100 100 77.7 96.8 
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TF binding site absent in all orthologs for two out of ten 

genes 
[b]

 
100 100 77.9 97.1 

Performance and quality measures: D1: the number of datasets with an output out of the 100 synthetic 

datasets, RR (%): Recovery Rate: the percentage of the output (D1) for which the correct motif was 

retrieved (correct outputs), PPV (%): Positive Predictive Value: the percentage of true sites among the 

predicted TF binding sites, averaged over all correct outputs, Sens (%): Sensitivity: the percentage of the 

true sites found by the algorithm, averaged over all correct outputs. Number of motif sites/gene [e.g. 

10(1,1,1,1,1,1,1,1,0,0)]: the number before the brackets represents the total number of coregulated 

sequences for the reference species present in the dataset. The numbers between brackets indicate gene per 

gene the number of embedded TF binding sites in the gene’s intergenic sequences. For ‘the coregulation 

space’ each synthetic dataset consists of 10 sequences from the reference species with one/zero TF binding 

site embedded. For the ‘combined space’ each synthetic dataset contains 10 orthologous sets (an 

orthologous set is defined as one reference sequence and its orthologs). Each orthologous set consists in 

total of 5 prealigned orthologs, related trough a star topology with unequal distances (Newick format in 

Table S4 on the Supplementary) and one/zero embedded TF binding site per sequence. Note that for 

MEME the orthologs are always unaligned.
  

[a]
 Ask the motif discovery algorithm to search for the exact number of TF binding sites present in the 

dataset. 
[b]

 Ask the motif discovery algorithm to search for 1 TF binding site per sequence, hereby slightly 

overestimating the number of TF binding sites present in the dataset. 
 

As mentioned in chapter 2, the prealignment of the orthologous sequences plays a role in 

how missing TF binding sites affect the motif discovery results in the combined space, 

more specifically when TF binding sites were omitted in all the sequences of one of the 

species that were added as additional orthologous information to the coregulated gene set 

of the reference species. Here we provide a more in depth explanation why this is the 

case. 
 

The performance of PG was most deteriorated if the TF binding sites were omitted in the 

sequences from a closely related species while for PS the performance was most affected 

if the TF binding sites were absent in the sequences of a distantly related species.  

The local alignment strategy used in combination with PG will leave the distant orthologs 

that shows low similarity with the closely related orthologs unaligned. PG thus will only 
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take into account the alignment of the closely related orthologs and will treat the distant 

orthologs as independent, unaligned sequences. However, when TF binding sites are 

missing in the sequences of a closely related species, this might interfere with finding the 

correct alignment of the orthologous TF binding sites present in the other closely related 

sequences. If so, these TF binding sites will not longer be captured in the same window 

and this will result in a decrease in sensitivity of the retrieved motifs. Misalignment will 

also increase the chance to capture a false positive site in the window, resulting in a 

decrease of the PPV (see Table S6). The effect of a false positive TF binding site in a 

window is dependent on the phylogenetic distance of the ortholog for which this site was 

retrieved: a window will be more penalized during scoring when containing a false, non 

conserved site present in a closely related ortholog than when present in a distantly 

related one. This explains why PG is more sensitive to the presence of noisy sequences in 

closely related species.  
 

For PS only the regions that are gaplessly aligned over all species in the alignment are 

considered as potential TF binding sites (blocks). A missing TF binding site will result in 

rejection of a block or it will be replaced by a false positive TF binding site. This last 

effect can be observed in the Table S6_species_specific, by comparing the overall PPV 

(over all species) to the species-dependent PPV (= the PPV in the reference species that 

has a proximity of 0.80): the overall PPV is 80% of the species-dependent PPV, 

indicating that one site in a block of five TF binding sites is indeed a false positive one. 

Moreover, the absence of TF binding sites in a distant ortholog interferes more in 

obtaining a good global alignment than when absent in a close ortholog that aligns any 

way well over the remainder of its sequence. This explains why PS can cope better with 

the absence of TF binding sites in closely related orthologs than in distant orthologs 
 

Table S6_species_specific Species-dependent motif quality parameters for the results obtained by PS in the 

‘combined coregulation-orthology space’ when leaving out TF binding sites. Results are displayed for a 

synthetic dataset containing sites sampled from a high IC motif. 

Unequal star topology with PPV Sens spPPV spSens 

TF binding site absent in distant ortholog 

(q=0.20)
 
for all genes

 [b]
 

78.1 62.7 97.7 62.7 

TF binding site absent in close ortholog 

(q=0.75) for all genes 
[b]

 

79.3 88.3 99.2 88.4 

Performance and quality measures: idem as in Table S6 except for the spPPV (=species-dependent PPV) 

and spSens (=species-dependent Sensitivity), both measured for the reference species (q=0.80). 

Each synthetic dataset contains 10 orthologous sets (an orthologous set is defined as one reference 

sequence and its orthologs). Each orthologous set consists in total of 5 prealigned orthologs, related trough 

a star topology with unequal distances (Newick format in Table S4 on the Supplementary) and one/zero 

embedded TF binding site per sequence. 
[b]

 Ask the motif discovery algorithm to search for 1 TF binding 

site per sequence, hereby slightly overestimating the number of TF binding sites present in the dataset. 
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Table S7 gives the results of the phylogenetic algorithms when using orthologs related 

through a non star like tree topology for the synthetic data in the combined coregulation-

orthology space. 
 

Table S7 Results of the phylogenetic algorithms when using orthologs related through a non star like 

topology for the synthetic datasets in the combined coregulation-orthology space.  

SYNTHETIC DATA 

SETUP HIGH IC LOW IC 

Results of PG 

Number of TF binding 

sites/gene 
D1 RR PPV Sens D1 RR PPV Sens 

10(1,1,1,1,1,1,1,1,1,1) 97 100 99.8 99.8 63 90.5 95.4 78.7 

Results of PS 

Number of TF binding 

sites/gene 
D1 RR PPV Sens D1 RR PPV Sens 

10(1,1,1,1,1,1,1,1,1,1) 100 100 99.8 99.5 83 95.2 98.6 80.1 

Performance and quality measures: D1: the number of datasets with an output out of the 100 synthetic 

datasets, RR (%): Recovery Rate: the percentage of the output (D1) for which the correct motif was 

retrieved (correct outputs), PPV (%): Positive Predictive Value: the percentage of true sites among the 

predicted TF binding sites, averaged over all correct outputs, Sens (%): Sensitivity: the percentage of the 

true sites found by the algorithm, averaged over all correct outputs. Each synthetic dataset consists of 10 

coregulated genes in the reference species together with their orthologs, thus containing 10 orthologous 

sets. Each orthologous set contains 6 prealigned orthologous sequences that are related trough a non star 

like topology
 
(Newick format in Table S4) and contain one embedded TF binding site per sequence (high 

IC or low IC).  
 

The effect of using orthologs related through a non star like topology on the accuracy of 

the phylogenetic algorithms 

An intrinsic property of PG is that it can only handle star topologies directly during the 

score calculation of phylogenetically related TF binding sites as a result of the way it 

calculates these posterior probability scores (see chapter 2, Table 2.1: ‘Scoring’). To 

calculate the posterior probabilities the algorithm solves the integral over all possible 

motif WMs. When an evolutionary model is included, this integral is solved by making 

an approximation that requires a star topology tree. Any other topology, deviating from a 

star topology needs to be converted to a collection of star topologies first. PS on the 

contrary can cope directly with different topologies. It uses a conditional probability for 

which the motif WM is known and no integration is needed. Moreover, it uses the 

Felsenstein tree-likelihood algorithm where internal nodes are allowed.  
 

To test whether this intrinsic difference between both algorithms in treating topologies 

deviating from a star topology has an effect on the performance, we ran both algorithms 

on synthetic datasets in the combined coregulation-orthology space that exhibited a non 

star like topology (created by using the phylogenetic tree described in Newberg et al.  

(Newberg et al., 2007)). Each dataset contains 10 coregulated reference genes, each 

supplemented with 5 additional orthologs. The evolutionary distances are sufficiently 

close to guarantee that the intergenic sequences can reliably be aligned. Results are 

shown in Table S7. 
 

These results suggest that for this non star like topology PS seemingly outperforms PG. 

Motif discovery resulted in more datasets with an output, a slightly higher recovery rate 

(RR) and a slightly higher quality for the datasets with a correct output, given by the 

values of the PPV and sensitivity. However, this better performance of PS over PG was 
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also seen for star topologies in the combined coregulation-orthology space (see Table S5 

A and B). So it might be a general tendency observed for all topologies and does not 

really prove that PS is less sensitive than PG in handling topologies different from a star. 

This observation was also confirmed by the results on the real datasets which have a non 

star like topology and for which both algorithms showed comparable results.  

Conclusively, using a topology different from a star does not result in striking differences 

between PG and PS in retrieving the true motifs. 

Table S8 consists of Tables S8 (A and B) containing the results of PG, PS  and MEME in 

the orthologous space.  
 

Table S8 (A) shows the results of the three algorithms on the synthetic datasets in the 

orthologous space and Table S8 (B) shows the results of the three algorithms on the real 

datasets in the orthologous space. These results were all described in the main text.  
 

Table S8 A Results of PG, PS and MEME on synthetic datasets in the orthologous space. 

SYNTHETIC DATA 

SETUP HIGH IC LOW IC 

Results of PG 

Topology - # orthologs D1 RR PPV Sens D1 RR PPV Sens 

EST (0.50) - 5 66 100 100 100 6 100 100 100 

EST (0.50) - 10 100 100 100 100 88 98.9 100 97.1 

EST (0.50) - 10 (unaligned) 62 100 99.4 93.5 20 85 98.9 73.5 

EST (0.90) - 5 60* 38.3* 100* 100* 45* 8.89* 100* 100* 

EST (0.90) - 10 97* 75.3* 100* 100* 87* 27.6* 100* 100* 

EST (0.90) – 10 

(unaligned) 
96* 64.6* 97.5* 100* 89* 34.8* 96* 99.7* 

UEST- 4 77* 48.1* 100* 100* 67* 25.4* 100* 100* 

UEST - 5 (+distant) 94* 83* 99.7* 99.7* 66* 51.5* 98.2* 98.2* 

Results of PS 

Topology - # orthologs D1 RR PPV Sens D1 RR PPV Sens 

EST (0.50) - 5 0 / / / 0 / / / 

EST (0.50) - 10 7 100 100 100 2 100 100 100 

EST (0.50) - 10 (unaligned) 100 100 100 94.4 79 94.9 99.4 66.3 

EST (0.90) – all settings 0 / / / 0 / / / 

UEST – all settings 0 / / / 0 / / / 

Results of MEME 

Topology - # orthologs D1 RR PPV Sens D1 RR PPV Sens 

EST (0.50) - 5 100 98 96.7 96.7 100 48 86.6 86.6 

EST (0.50) - 10 100 100 97.4 97.4 100 75 82.9 82.9 

EST (0.90) - 5 100 17 94.1 94.1 100 6 93.3 93.3 

EST (0.90) - 10 100 59 90.2 90.2 100 20 83.5 83.5 

UEST- 4 100 38 98.7 98.7 99 18.2 90.3 90.3 

UEST - 5 (+distant) 100 64 93.4 93.4 100 18 82.2 82.2 

Performance and quality measures: D1: the number of datasets with an output out of the 100 synthetic 

datasets, RR (%): Recovery Rate: the percentage of the output (D1) for which the correct motif was 

retrieved (correct outputs), PPV (%): Positive Predictive Value: the percentage of true sites among the 

predicted TF binding sites, averaged over all correct outputs, Sens (%): Sensitivity: the percentage of the 
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true sites found by the algorithm, averaged over all correct outputs. Each synthetic dataset contains 1 single 

orthologous set consisting of ‘# orthologs’ orthologs (i.e. one sequence of the reference species together 

with all its orthologs), either all being prealigned or all left unaligned, related trough a ‘Topology’ topology. 

EST = Equal Star Topology with proximity q equal to 0.50 or 0.90 and UEST = Unequal Star Topology 

with four closely related orthologs and one distantly related ortholog. For the Newick formats of the equal 

and unequal star topology see Table S4. * Tracking threshold PG equal to 0.05 (instead of 0.50). Note that 

for MEME all orthologs are unaligned. 
 

Table S8 B Results of PG, PS and MEME on real datasets (Gamma-proteobacterial and Saccharomyces 

species) in the orthologous space. 

GAMMA-PROTEOBACTERIA 

SETUP HIGH IC - LexA 

 
LOW IC - TyrR 

Results of PG 

 # orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

6 10 0 / /  

8(LexA)/7(TyrR) 10 0 / / 10* 0* /* /* G
 1
 

8/7 (unaligned) 7 0 / / 7* 14.3* 50* 100* 

6 10 100 100 100  

8(LexA)/7(TyrR) 10 100 100 100 10* 100* 100* 100* 

G
 2
 

8/7 (unaligned) 5 40 100 100 9* 88.9* 49.4* 100* 

Results of PS 

 # orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

6 3 0 / /  

8(LexA)/7(TyrR) 0 / / / 0 / / / G
1
 

8/7 (unaligned) 2 0 / / 8 / / / 

6 0 / / /  

8(LexA)/7(TyrR) 0 / / / 0 / / / G
2
 

8/7 (unaligned) 1 100 100 100 8 / / / 

Results of MEME 

 # orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

6 10 0 / /     

G
1
 

8(LexA)/7(TyrR) 10 0 / / 10 0 / / 

6 10 100 100 100     

G
2
 

8(LexA)/7(TyrR) 10 100 100 100 10 100 50 100 

SACCHAROMYCES SPECIES 

SETUP HIGH IC – URS1H 

 
LOW IC – RAP1 

Results of PG 

 # orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

4 0* /* /* /* 10* 0* /* /* 

5 0* /* /* /* 10* 0* /* /* G
1
 

5 (unaligned) 4* 0* /* /* 9* 88.9* 100* 100* 

4 10* 100* 100* 100* 9* 0* /* /* 

5 10* 100* 100* 100* 10* 0* /* /* 

G
2
 

5 (unaligned) 10* 100* 100* 100* 10* 0* /* /* 
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SACCHAROMYCES SPECIES 

SETUP HIGH IC – URS1H 

 
LOW IC – RAP1 

Results of PS 

 # orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

4 0 / / / 0 / / / 

5 0 / / / 4 0 / / G
1
 

5 (unaligned) 0 / / / 4 50 100 100 

4 0 / / / 0 / / / 

5 0 / / / 0 / / / 

G
2
 

5 (unaligned) 4 25 100 100 0 / / / 

Results of MEME 

 # orthologs R1 RR spPPV spSens R1 RR spPPV spSens 

4 10 0 / / 10 100 100 100 

G
1
 

5 10 0 / / 10 100 100 100 

4 10 100 100 100 10 0 / / 

G
2
 

5 10 100 100 100 10 0 / / 

Performance and quality measures: R1: the number of runs with an output out of the 10 runs on one real 

dataset, RR (%): Recovery Rate: the percentage of the output (R1) for which the correct motif was 

retrieved (correct outputs), spPPV (%): species-dependent PPV: the percentage of true sites among the 

predicted sites for the reference species, averaged over all correct outputs, spSens (%): species-dependent 

Sens:  the percentage of the true sites in the reference species found by the algorithm, averaged over all 

correct outputs. The reference species equals E. coli (bacterial data) or S. cerevisiae (yeast data). Each real 

dataset contains one single orthologous set consisting of ‘# orthologs’ orthologs (i.e. one sequence of the 

reference species together with all its orthologs), either all being prealigned or all left unaligned, related 

trough a neutral species tree (Newick formats for the Gamma-proteobacterial or Saccharomyces species 

trees in Table S4). Figure S1 lists which species were used for each ‘# orthologs’ for both the bacterial and 

yeast species. We generated for each regulator two test sets. Gamma-proteobacteria: for LexA we 

selected respectively the targets G1=RpsU and G2=UvrA and for TyrR the targets G1=Mtr or G2=TyrB, 

each time complemented with their respective orthologs. For TyrR targets, orthologs were only retrieved 

for 7 out of the 8 Gamma-proteobacterial species.  Saccharomyces species: for URS1H we selected the 

targets G1= IME2 or G2= REC114 and for the regulator RAP1 the targets G1= HIS4 or G2= ENO1, each 

time complemented with their respective orthologs. Targets in the reference species contained exactly one 

TF binding site for the regulator in their intergenic region.  

* Tracking threshold PG equal to 0.05 (instead of 0.50). For MEME all orthologs are unaligned.  

Note that for the real data in the orthologous space it is hard to judge on results with a RR=0%, as this 

might both refer to the discovery of a false positive motif or the discovery of a true positive different from 

the annotated motif (so the presence of a second more strong local optimum). 

Text S1 provides additional information on the construction of the synthetic and real 

datasets. 
 

Synthetic datasets 

Synthetic motif weight matrices (WMs) were constructed as in Siddharthan et al. 

(Siddharthan et al., 2005); for each position in the motif WM we picked a random 

“consensus” nucleotide, set the probability of that nucleotide to p and set the probabilities 

of the other nucleotides to (1-p)/3, where p is called the polarization of the motif WM. 

We created two different motif WMs: 1) a high IC motif WM of width 13 bp with p=0.90 

for each position and 2) a more degenerated, low IC motif WM of width 13 bp with for 

each position p=0.75. TF binding sites were sampled from both motif WMs to create 

input sequences containing respectively a high or low IC motif. We embedded each 
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sampled TF binding site at a randomly chosen position in a background sequence of 

length 500 bp that was randomly generated. Each ancestral sequence (~a background 

sequence containing an embedded TF binding site) was then evolved along a 

phylogenetic tree under a defined evolutionary model to create phylogenetically related 

sequences. For the background sequence (whole sequence except the TF binding sites) 

we used the Jukes and Cantor (JC) model (Jukes and Cantor, 1969), for the embedded TF 

binding sites an adapted Felsenstein (F81) model (Sinha et al., 2003). To simulate 

evolution under the JC model we used the software Rose (Stoye et al., 1998). Rose 

creates, guided by a phylogenetic tree and an evolutionary model, a family of 

evolutionary related sequences starting from an ancestral sequence by insertion, deletion 

and substitution of characters. The branch length of the Rose input tree equals the 

expected number of substitutions per 100 sites (default branch length multiplied by 100). 

By setting the ‘mutation probability’ parameter to 1.0 for all sites in the ancestral 

sequence, the number of substitutions introduced for each 100 sites of the sequence on 

average equals the branch lengths of the tree. Of course, the number of observed 

mutations might be smaller due to back-mutations, especially if the branch length is 

large. The insertion and deletion threshold was set to zero. For the embedded TF binding 

sites we simulated the evolution according to the adapted F81 evolutionary model; we 

used the approach described in Siddharthan et al. (Siddharthan et al., 2005). Evolutionary 

related TF binding sites were created starting from the embedded ancestral TF binding 

site following a phylogenetic tree with proximities (q). For each position in the 

orthologous TF binding site, the probability of finding a nucleotide equal to the ancestral 

nucleotide is q and the probability of a mutation is (1-q). When the ancestral nucleotide 

was mutated, it was replaced by a new nucleotide sampled from the motif WM.  
 

Real datasets 

For the real data we constructed datasets containing a high IC or a more degenerated, low 

IC motif for both the Gamma-proteobacterial and for the Saccharomyces species. To 

construct the datasets for the Gamma-proteobacteria in the coregulation space, we 

selected according to RegulonDB (Huerta et al., 1998), genes in Escherichia coli that 

contain at least one annotated TF binding site for respectively the regulators LexA and 

TyrR. To extend the LexA and TyrR datasets in the combined space, we searched for 

each of their target genes the corresponding orthologs in other Gamma-proteobacteria 

(Shigella flexneri, Salmonella typhimurium, Salmonella enterica, Yersinia pestis, Erwinia 

carotovora, Vibrio Cholerae and Pseudomonas aeruginosa). For the ortholog discovery 

we used the reciprocal smallest distance approach (RSD) (Wall et al., 2003). For the 

orthologous space we selected E. coli genes that have exactly one annotated LexA or 

TyrR TF binding site and their corresponding orthologs. For the yeast datasets in the 

coregulation space, we selected target genes in Saccharomyces cerevisiae for respectively 

the regulators URS1H and RAP1 based on annotated TF binding sites in SCPD (Zhu and 

Zhang, 1999) and SwissRegulon (Pachkov et al., 2007). Corresponding orthologs for all 

target genes were retrieved from the Saccharomyces Genome Database (SGD project. 

"Saccharomyces Genome Database" http://www.yeastgenome.org/, accessed 14 March 

2009) in case of Saccharomyces paradoxus, while for Saccharomyces mikatae, 

Saccharomyces kudriavzevii and Saccharomyces bayanus we used data from the 

Washington University group (Cliften et al., 2003). For the orthologous space we 

selected S. cerevisiae genes that have exactly one annotated URS1H or RAP1 TF binding 
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site and their corresponding orthologs. Table S2 gives the exact composition for each real 

dataset. 

Text S2 provides additional information on the pre-processing of the alignments. 
 

Both phylogenetic algorithms need as input a prealignment of the orthologous sequences 

in order to account for their phylogenetic relatedness by the use of an evolutionary model 

(see chapter 2). In this section of the supplementary we describe the results for using PS 

in combination with the local alignment strategy Dialign (Morgenstern, 1999) instead of 

the default global alignment strategy ClustalW (Chenna et al., 2003).  
 

For datasets that contain easy to align sequences (e.g. the synthetic datasets with 

sequences of equal length) the global and local alignment strategies perform equally well 

and result in similar high quality alignments. So in those cases there is no difference 

between using ClustalW or Dialign. For the more difficult to align sequences (which in 

our analysis corresponded to the bacterial and yeast datasets that consisted of intergenic 

sequences of different length), the local alignment strategy can perform better than a 

global one.  
 

To rule out that for those difficult to align sequences, the difference in performance we 

observed between PG and PS was due to the difference in the used alignment procedure 

rather than in the intrinsically different way both algorithms handle the alignments, we 

also run tests of PS with alignments obtained by Dialign (results in Table A below). 

When doing so, the regions that are well aligned over all sequences are extracted from the 

local prealignment prior to providing them as input to PS. Using a local alignment 

strategy did not improve the results obtained by PS compared to using ClustalW. When 

using a local alignment strategy on those difficult to align datasets most regions will be 

left unaligned which usually improves the quality of the prealignment. However, as PS 

can only search for motifs in the regions that are well aligned over all orthologs, the 

prealignment does not longer contain input information for PS. Therefore, it is often more 

advantageous to use PS in combination with ClustalW than with Dialign (which we 

therefore did in the remainder of the analysis). 
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Table A Results of PS when using a local alignment strategy on the difficult to align real datasets in the 

combined coregulation-orthology space. 

GAMMA-PROTEOBACTERIA 

SETUP HIGH IC - LexA 

 
LOW IC – TyrR 

Results of PS 

# orthologs = 6 R1 RR spPPV spSens R1 RR spPPV spSens 

Global alignment strategy 

 
10 90 69 42.4 10 100 85 36.4 

Local alignment strategy 10 100 100 33.6 0 / / / 

SACCHAROMYCES SPECIES 

SETUP HIGH IC – URS1H 

 
LOW IC – RAP1 

Results of PS 

# orthologs = 5 R1 RR spPPV spSens R1 RR spPPV spSens 

Global alignment strategy 10 100 84 75.5 10 100 88.8 79 

Local alignment strategy 10 100 16 11.8 0 / / / 

Performance and quality measures: R1: the number of runs with an output out of the 10 runs on one real 

dataset, RR (%): Recovery Rate: the percentage of the output (R1) for which the correct motif was 

retrieved (correct outputs), spPPV (%): species-dependent PPV: the percentage of true sites among the 

predicted sites for the reference species, averaged over all correct outputs, spSens (%): species-dependent 

Sens:  the percentage of the true sites in the reference species found by the algorithm, averaged over all 

correct outputs. The reference species equals E. coli or S. cerevisiae. Gamma-proteobacteria: The dataset 

of each regulator consists of 8 (LexA) or 7 (TyrR) target genes from the reference species (Table S2), 

together with their orthologs in 5 additional species (Figure S1 lists from which species these orthologs 

were derived). Each reference sequence together with its orthologs was prealigned so in total we have 6 

prealigned orthologs, related trough the neutral tree for the Gamma-proteobacteria. Saccharomyces 

species: The dataset of each regulator (URS1H and RAP1) consists of 10 target genes from the reference 

species (Table S2), together with their orthologs in 4 additional species (Figure S1 lists from which species 

these orthologs were derived). Each reference sequence together with its orthologs was prealigned so in 

total we have 5 prealigned orthologs, related trough the neutral tree for the Saccharomyces species. Table 

S4 shows the Newick formats of both trees. We provide as input to PS the regions of a local prealignment 

(Dialign, threshold = 2) that were conserved over all 6 or 5 orthologs. As reference also the results of PS 

are given that were obtained with the full ClustalW prealignment. 

Text S3 provides additional information on the parameters of PG and PS. 
 

As both phylogenetic algorithms have some more specific parameters to integrate e.g. the 

phylogeny, we discuss their parameters in more detail in this section. Table B shows the 

parameter settings used in this study for PG and PS for all performed tests on synthetic 

and real datasets and is followed by a description of these parameters. 
 

Table B The parameter settings for PG and PS on the synthetic and real datasets. 

PG 

Parameter Symbol Synthetic datasets Real datasets 

Input tree  -L Phylogenetic tree in Newick 

format, distances given by 

proximities 

Gamma-proteobacterial tree 

or Saccharomyces species tree 

both with proximities  

Order of Markov 

model for 

background 

probabilities  

-N -1 1 (default) 

Alignment level  -D 0: unaligned sequences 

1: aligned sequences 

0: unaligned sequences 

1: aligned sequences 
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PG 

Parameter Symbol Synthetic datasets Real datasets 

Motif width  -m 13 20 (LexA)  

18 (TyrR) 

13 (URS1H) 

10 (RAP1) 

Expected number 

of windows 

(unless mentioned 

differently in 

tables) 

-I - unaligned: number of 

embedded TF binding sites in 

the input data 

- aligned/partially aligned: 

number of embedded TF 

binding sites in the input data 

divided by the number of 

orthologs per gene 

-unaligned: number of 

annotated TF binding sites 

present in E. coli/S. cerevisiae 

multiplied by the number of 

orthologs per gene 

-aligned: number of annotated 

TF binding sites present in 

E.coli/S. cerevisiae 

Palindromic motif -C No palindromic TF binding 

sites 

-No C for LexA, URS1H and 

RAP1 

-C for TyrR (see Table C) 

Tracking 

threshold  

(unless mentioned 

differently in 

tables) 

-E 0.50 0.50 

Number of cycles 

during 

annealing/tracking  

-S 100 100 

Reverse 

complement  

-r Use r (only search on the 

forward strand) 

Use r (only search on the 

forward strand) 

PS 

Parameter Symbol Synthetic datasets Real datasets 

Input tree Tree* For each MASS a separate 

phylogenetic tree relating 

only the species used in that 

MASS. Newick format with 

distances given by branch 

lengths. 

For each MASS a Gamma-

proteobacterial tree or a 

Saccharomyces species tree, 

only relating the species for 

that MASS (branch lengths). 

Sequences 

weights 

Weights* Made by Seq.weights.pl Made by Seq.weights.pl 

Background 

composition 

model 

-B Made by unifiedcpp.opteron Made by unifiedcpp.opteron 

Alignment of the 

centroid TF 

binding sites 

-Align_centroid Use Align_centroid  Use Align_centroid 

Reverse 

complement 

-r Use r (only search on the 

forward strand) 

Use r (only search on the 

forward strand) 

Palindromic motif -R No palindromic TF binding 

sites 

No –R for LexA, URS1H and 

RAP1 

-R 1,1,9 for TyrR (see Table 

C) 

Motif width  / 13 20 (LexA) 

18 (TyrR) 

13 (URS1H) 

10 (RAP1) 
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PS 

Parameter Symbol Synthetic datasets Real datasets 

Expected number 

of TF binding 

sites (unless 

mentioned 

differently in 

tables) 

/ Number of embedded TF 

binding sites in the input data 

Number of annotated TF 

binding sites in E. coli/S. 

cerevisiae multiplied by the 

number of orthologs per gene 

Maximum 

number of TF 

binding sites per 

sequence 

-E 1 Maximum number of 

annotated TF binding sites 

present in one of the genes in 

the input file 

Prior distribution 

on the number of 

TF binding sites 

per sequence  

Blocks*  0.50 0.95 No prior info 

Bayesian 

sampling 

-bayes 2000,8000 2000,8000 

Number of seeds 

(re-initializations) 

-S 20  20 

Nucleotide 

alphabet 

-n Use n Use n 

*For PS the prior information is gathered in a ‘prior file’ (-P). In this prior file, terms as ‘Tree’, ‘Weights’ 

and ‘Blocks’ are used to specify the parameter for which additional information was provided (see also in 

the description of the parameters). 
 

The description of the parameters of both phylogenetic motif discovery algorithms 
 

Parameters describing the motifs: 

both algorithms need an initial guess on the expected number of motifs present in the 

input sequences and for each motif the expected number of motif sites. This information 

is captured in the parameter –I for PG and for PS this information is mentioned just after 

the program name in the command line. The format to describe this information is for 

both algorithms the same, e.g. ‘10,10’ when we expect two different motifs, each with 10 

expected TF binding sites. In this work in principle all described datasets contain exactly 

one motif. Both algorithms were therefore asked to search exactly for one motif model 

per dataset. For PG, the expected number of TF binding sites is described by the expected 

number of ‘windows’ (see chapter 2, Table 2.1: ‘Motif model’). For a dataset that 

contains only unaligned sequences, a window always equals a single TF binding site 

(~single-species windows) while for a dataset with prealigned sequences, a window 

equals or a single unaligned TF binding site or a set of multiple aligned TF binding sites 

(~multi-species windows). So to define the expected number of windows the user has to 

take into account if the sequences in the dataset are prealigned or not. For unaligned 

sequences the expected number of windows equals the total number of embedded TF 

binding sites for the synthetic data and the number of TF binding sites in E.coli/S. 

cerevisiae multiplied by the number of orthologs for the real data (assuming that all 

orthologous genes contain the same number of TF binding sites). For prealigned 

sequences the expected number of windows was set to the number of embedded TF 

binding sites divided by the number of orthologs for the synthetic data and for the real 

data to the number of TF binding sites in E. coli/S. cerevisiae.  
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For PS, the expected number of TF binding sites present in the input sequences was 

chosen equal to the total number of embedded TF binding sites for the synthetic data and 

for the real data equal to the number of TF binding sites in E. coli/S. cerevisiae multiplied 

by the number of orthologs. PS has two extra parameters compared to PG concerning 

prior information on the number of TF binding sites per sequence. The first parameter is -

E, the maximum number of motif sites per sequence. This parameter was set to one for the 

synthetic data and equal to the highest number of TF binding sites present in one of the 

input sequences for the real data. The second parameter describes the prior probabilities 

for finding zero, one until -E sites per sequence. We set the prior probabilities for finding 

zero and one TF binding site per sequence to respectively 0.50 and 0.95 for the synthetic 

data, while for the real data we used uniform probabilities to find zero, one until -E TF 

binding sites per sequence. For the synthetic data a prior probability for finding zero TF 

binding sites per sequence equal to 0.50 had a positive influence in the presence of noisy 

sequences (sequences without TF binding sites), but did not deteriorate the performance 

of detecting the true motifs in the absence of noise (data not shown). This prior 

information is provided to the algorithm through a prior file (–P) that can contain 

different types of prior information each labeled by a short term, in this case ‘>Blocks’. 
 

Other prior information on the motif is the motif width (number of conserved motif 

positions): for both algorithms this parameter equaled the total motif length (13 bp for the 

synthetic data, 20 bp respectively 18 bp for LexA and TyrR and 13 bp respectively 10 bp 

for URS1H and RAP1). This motif width is not restrictive for PS, because for the default 

settings of the algorithm the fragmentation option -F is turned on which means that PS  

allows conserved motif positions to be interrupted by degenerated motif positions and as 

such alters and optimizes the length of the motif.   
 

All algorithms allow the option to search for special motif types such as palindromic 

motifs. In Table C (beneath) we tested the effect of using a specific model for 

palindromic motifs or not, on the real LexA and TyrR datasets. We found that for both 

phylogenetic algorithms, the TyrR datasets gave the best results when choosing for a 

palindromic model, while for the LexA datasets the opposite was true (probably because 

the degenerate spacer has less palindromic properties). So for the TyrR datasets we used 

parameter –C for PG and parameter -R1,1,9 for PS (-R1,1,9 indicates that the first (1) 

motif model we search for is palindromic in positions 1 through 9, implying 

automatically a corresponding position, the same distance away from the opposite end of 

the motif that is also palindromic). For the synthetic and yeast data (URS1H and RAP1), 

the TF binding sites were all non-palindromic.  
 

To search for motifs on one strand only and not on the complementary strand we used 

parameter –r for both algorithms. 
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Table C The effect of using a palindromic motif model for PG, PS and MEME when searching for the 

LexA and TyrR motif in the Gamma-proteobacterial datasets in the coregulation space. 

GAMMA-PROTEOBACTERIA 

SETUP HIGH IC - LexA 

 
LOW IC - TyrR 

Results of PG 

Model R1 RR spPPV spSens R1 RR spPPV spSens 

Palindromic 9 100 96.4 79.8 8 100 92 58.3 

Non Palindromic 10 100 98 81.8 5 80 90.7 58.3 

Results of PS 

Model R1 RR spPPV spSens R1 RR spPPV spSens 

Palindromic 10 100 88.9 72.7 10 100 100 57.1 

Non Palindromic 10 100 100 81.8 10 100 100 44 

Results of MEME 

Model R1 RR spPPV spSens R1 RR spPPV spSens 

Palindromic 10 100 90.9 90.9 10 100 73.3 73.3 

Non Palindromic 10 100 81.8 81.8 10 100 73.3 73.3 

Performance and quality measures: R1: the number of runs with an output out of the 10 runs on one real 

dataset, RR (%): Recovery Rate: the percentage of the output (R1) for which the correct motif was 

retrieved (correct outputs), spPPV (%): species-dependent PPV: the percentage of true sites among the 

predicted sites for the reference species, averaged over all correct outputs, spSens (%): species-dependent 

Sens:  the percentage of the true sites in the reference species found by the algorithm, averaged over all 

correct outputs. E. coli is the reference species. Model: ‘Palindromic’ stands for using the palindromic 

parameters (PG: -C, PS: –R 1,1,10 for LexA and –R 1,1,9 for TyrR and MEME: -pal), ‘Non Palindromic’ 

stands for no use of the palindromic parameters. Gamma-proteobacteria: The dataset of each regulator 

consists of 8 (LexA) or 7 (TyrR) target genes in E. coli (Table S2).  
 

Parameters influencing the search algorithm:  

The PG algorithm can be split up in simulated annealing and tracking (see chapter 2, 

Table 2.1: ‘Sampling’), the number of cycles for each phase (–S) was set to the default 

value of 100. One of the parameters often mentioned in the results section is the tracking 

threshold –T, which determines the trade-off between sensitivity and PPV (it corresponds 

to the frequency with which TF binding sites are co-sampled with the reference 

configuration during the tracking cycles). By increasing the default threshold of 0.05 to 

0.50 we observed a drastic increase in PVV at the expense of only a slight drop in 

sensitivity, resulting in a better overall performance (data not shown). Unless indicated 

explicitly we always used T= 0.50. PS consists of burn-in and sampling iterations (see 

chapter 2, Table 2.1: ‘Sampling’) respectively set to 2000 and 8000 iterations (-bayes). 

The number of re-initializations (-S) was set to 20, to avoid that the algorithm reports a 

local optimum as is the case for low values of –S. When using the fragmentation option –

F (see paragraph motif width) we also turned on the option -align_centroid to obtain a 

motif WM (this to align the centroid motif sites of different length resulting from the –F 

option). For PS the stringency of the centroid sites can not be altered by the user.  
 

Parameters relating to the use of the phylogeny when working with prealigned 

orthologous sequences.  

Both algorithms need as input a phylogenetic tree in Newick format with distances 

described by proximities for PG and branch lengths for PS. PS requires a separate tree for 

each MASS containing only the species present in this particular set of aligned orthologs 

(provided through the prior file –P indicated by ‘>TREE’). The provided perl script 
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(Seq.weights.pl) was used to calculate the sequence weights (see chapter 2, Table 2.1: 

‘Scoring’) for each MASS based on the corresponding tree. The obtained sequence 

weights were provided to the algorithm through the prior file, indicated by ‘>WEIGHTS’. 

PG works with one tree relating all species present in the input dataset. An additional 

parameter in the PG algorithm is the alignment level (-D). This parameter indicates if the 

sequences in the dataset are prealigned (-D=1 or -D=2) or not (-D=0). For prealigned 

sequences the user can specify by using –D the placement of the windows: -D=1 (splits 

up multi-species windows containing gaps into smaller windows without gaps) or –D=2 

(gapped windows will be left out) (see also Text S2). For both the synthetic and real data 

–D was set to zero for the unaligned data and to one for the prealigned data. 
 

Parameters describing the background model:  

PG uses an Nth order Markov model (–N). For the synthetic data we used (-N=-1) 

indicating a single nucleotide frequency of 0.25 for A, C, G and T. For the real data we 

tested different background models: Markov models trained on the input sequences with 

order 0, 1 and 3 and a single nucleotide background model derived from the full E. coli/S. 

cerevisiae genome. Except for the Markov model order 3 (for which the input sequences 

were not sufficiently long to calculate reliably the correlated counts), all other 

background models derived from the input sequences gave comparable results (data not 

shown). For further tests on the real data, we used the default order 1 background model 

derived from the input sequences. PS uses a special position specific background model 

that gives the probabilities of observing each of the four nucleotides at each position in 

the sequence. This background model is derived by running a Bayesian segmentation 

algorithm (unifiedcpp) provided by PS, on the set of input sequences (for both the real 

and the synthetic datasets). The generated background model was provided to the 

algorithm by parameter –B. 

Chapter 5 De novo motif discovery in vitamin D3 regulated genes 

Table S9 Results of the NHR-scan method on the entire 4000 bp region centered on the TSS of each human 

gene (in total 11 human genes) The table displays the gene number (Nr), gene name (Name), the binding 

site-type (Type), the binding site sequence (Sequence), the genomic start position (Genomic start), the 

position relative to the TSS (TSS) which is negative if the binding site is located upstream of the TSS, the 

location of the binding site inside (=1) or outside (=0) the regulatory regions as annotated by Ensembl (R) 

and the logarithm of the Viterbi score (Score). The rows marked in light gray are TF binding sites that 

overlap with de novo predicted binding sites for motif D2. The row marked in dark gray corresponds to the 

experimentally confirmed VDRE site upstream of the PDLIM2 gene. 

Nr Name Type Sequence Genomic start TSS R Score 

1 PLXND1 DR1 TGACCTTGGAACC 129326683 -1034 1 -19.9331 

  DR2 GGGTCACAGGTGCA 129323838 1810 1 -21.4774 

  IR1 GGGCCACTGGCTG 129326470 -821 1 -21.1364 

  IR1 GGTGCACAGTCCT 129324597 1052 1 -20.4125 

2 ID3 DR4 TGACCTCGGAGGAGCT 23886343 -73 1 -25.1957 

  DR2 TGAACTTGTGGCCT 23884739 1533 1 -21.0615 

3 CPE DR4 TGGCCTCAAGTGATCC 166280377 -1969 0 -24.25 

  DR1 TGGTGATAGGTCA 166282251 -95 0 -19.3872 

  DR4 TGTACTGCTGTGAACA 166282954 608 0 -25.0523 

  ER6 TGAACTTGCACAGGTTAT 166281947 -399 0 -27.6249 
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Nr Name Type Sequence Genomic start TSS R Score 

  ER6 TGAAATGTTTAAAGTTTA 166282121 -225 0 -26.4722 

  ER4 TGAGCCCGGGAGGTCA 166283592 1246 0 -25.1342 

  ER6 TGAAATAGGTGAAGTGCA 166284129 1783 0 -26.5557 

4 PISD DR4 TGACCTCAGGTGATCC 32060126 -1723 0 -22.3667 

  DR2 TGACCTCGTGATCC 32059755 -1350 0 -20.3773 

  DR3 TGCCCTAGTTGAACT 32059472 -1068 0 -21.3738 

  DR2 GGATCACGAGGTCA 32059219 -814 0 -20.4523 

  DR2 TGGCCCACTGAACT 32058268 137 0 -21.6818 

  DR3 AGTTCACGAGGGACA 32057884 520 1 -23.3265 

  DR4 GGGTTAGGTTAGGTAA 32057692 711 0 -24.1713 

  DR3 TTACCCTTGTGACCC 32057642 762 1 -23.341 

  DR4 GGGTCTTCTGAGTCCA 32057589 814 0 -25.1072 

  DR4 GGATCACTTGAGGTCA 32056948 1455 0 -22.2023 

  ER6 TGTCCTGTGGGAAGGACA 32057762 639 1 -27.4598 

5 SEC14L1 DR2 AGTTCAGCAGGTCA 75135223 -1782 0 -18.3712 

  DR4 TGACCTCAGGTGATCC 75135481 -1524 0 -22.2917 

  DR2 TGACCTCGTGATCC 75135809 -1196 0 -20.4523 

  DR2 GGGTGATGAGGCCA 75135983 -1022 0 -22.0171 

  DR4 TGACCTCCCGCAAACT 75136641 -364 1 -24.9787 

  ER6 AGACCTGGCTGTGGTTCA 75137759 754 1 -26.3309 

6 ITPR1 ER8 TGAAGTGTGGACGAAGCTCA 4535756 722 1 -29.6821 

7 TSC22D3 DR1 TCACCTCTGACCT 107021087 -527 1 -18.493 

  ER8 TCAACTAAGGTGGCAGGTAA 107020246 307 1 -30.129 

8 PMEPA1 DR1 TGGCCTTTGGCCT 56288314 -1734 0 -20.5451 

  DR2 TGACCTCCTGACCT 56288281 -1702 0 -17.4549 

  DR4 ATGTCACACGAGGTCA 56288209 -1632 0 -22.6401 

  DR3 TGAACTGGGTGTCCT 56287761 -1183 0 -22.5829 

  DR5 GGATCAATGGGAGGTCA 56287202 -626 0 -25.2079 

  DR3 TGACCTCCTTCACCC 56286916 -338 0 -21.3264 

  DR2 GGTTCAGTGGGCCA 56285575 1004 1 -22.2064 

  IR1 GGGCCTGGGTCCT 56286658 -78 0 -21.1962 

  IR1 GGGTCAAGGACCC 56285402 1178 1 -19.2777 

  ER6 AGCACTCAGCCGAGGTCA 56287396 -821 0 -27.4286 

  ER6 TGAATGGGACCCAGGTCA 56286891 -316 0 -27.5239 

9 PACSIN2 DR2 TGACCTCGTGATCC 43412931 -1793 0 -20.4523 

  DR2 TGACCTTGTGATCT 43412430 -1292 0 -19.8384 

  DR4 TTACCTTCCCTGAACT 43411513 -377 1 -22.8915 

  DR1 AGGTCAGGGGTCG 43411000 139 1 -19.0009 

  DR2 TGCCCTTGTGACCC 43410241 897 1 -19.6395 

  IR1 AGGTGAGTGGCCG 43411016 123 1 -21.1649 

  IR1 GGGTCCGGGGCCT 43410714 425 1 -20.503 

10 GRAMD4 DR1 TGGCCTCTGCCCC 46970765 -1144 0 -19.8597 

  DR2 AGGTCTGGCGGTCA 46971542 -367 1 -22.0877 

  DR3 AGGTCAGTGAGTTGA 46971974 65 1 -22.4748 

  DR2 AGGGCACTGGGGCA 46971993 84 1 -22.4536 

  DR3 CGACCTGGTTGCCCC 46973219 1310 0 -23.4304 

  IR1 TGGTCACAGTGCT 46971229 -680 1 -21.0472 
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Nr Name Type Sequence Genomic start TSS R Score 

  IR0 AGTCCCTGACCC 46972617 708 0 -19.4268 

  ER6 TGCACCCCTGCCAGGTCC 46973844 1935 1 -27.9547 

11 PDLIM2 DR4 TGACCTCAGGTGATCC 22433793 -1999 0 -22.2917 

  DR2 AGGTGAGCAGGGCA 22433984 -1808 0 -21.4339 

  DR4 TTACCTAACATGAGCC 22434016 -1776 0 -25.017 

  DR4 AGGTTGCTGAAGGTCA 22435368 -424 0 -24.0336 

  DR2 AGGCCAGGCGGTCA 22435516 -276 0 -22.4536 

  DR3 TGGCCTCCTTGCCCT 22437438 1646 1 -22.7564 

  IR1 AGGTCAGGGACTT 22434222 -1570 0 -19.3915 

  IR1 AGGGCAGTGGCCT 22434391 -1401 0 -18.7749 

  IR1 GGGACAGAGACCA 22434661 -1131 0 -20.7429 

  IR0 GGGTGAAGACCT 22435957 165 0 -19.6841 

  IR1 GGGCCATCGGGCT 22436977 1185 1 -20.6213 

  IR1 GGCTCAAAGGTCT 22437032 1240 1 -20.8036 

  ER1 TGAAGTCAGGTCC 22434122 -1670 0 -20.9458 

  ER6 TGACCCAGCAGGGGTTCA 22434438 -1354 0 -26.3359 
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