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SUMMARY 
 

Availability of various genome-wide datasets provides the opportunity to study the whole 

genome behavior of the organisms as well as predicting new functions for unknown genes. With 

the advent of the omics data, molecular biology has evolved from a rather data-poor to an 

extremely data-rich era. Several smaller scale studies already have shown how the integration of 

different omics data can result in a better mechanistic understanding of the cellular organism. In 

addition to omics data, co-expression cross-species comparison is also useful to expand the 

available information from better studied organism to other organisms or strains where the 

available data is limited. 

In the first part of the study, we described a new co-expression cross-species comparison method 

to analyze microarray datasets comparatively across species and to identify the co-expressed 

modules of genes. For this aim, we developed a method referred to as COMODO (COnserved 

MODules across Organisms) that uses an objective selection criterium to identify conserved 

expression modules between two species. The method uses as input microarray data and a gene 

homology map and provides as output pairs of conserved modules and searches for the pair of 

modules for which the number of sharing homologs is statistically most significant relative to the 

size of the linked modules. We demonstrated the performance of COMODO using distantly 

related two model bacterial systems, Escherichia coli and Bacillus subtilis. As a notable result, 

we identified larger size of conserved co-expressed modules than previously predicted to exist. 

In addition, we identified co-expressed modules of similar elementary processes with totally 

different regulatory mechanisms. Later, we discussed the statistics to assess co-expression 

conservation between two or three organisms, and we expanded COMODO to detect the co-

expression conservation across three organisms. We applied COMODO to study the expressional 

conservation and divergence across E. coli, Salmonella enterica, and B. subtilis. We observed 

several modules just conserved in E. coli and S. enterica including many modules related to 

response to various stimuli and signal transductions, even though some aspects of their life style 

are remarkably different (pathogenicity of S. enterica). Moreover, based on the conserved co-

expressed modules, we could predict some conservation in the regulatory interaction of E. coli 
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and S. enterica although the regulatory network is not available for S. enterica. Furthermore, we 

also investigated the co-expression conservation of genes involved in two special functions, 

quorum sensing and pathogenicity across E. coli and S. enterica, and we could observe fair 

conservation for genes involved in quorum sensing, but almost no conservation for genes 

involved in pathogenicity. In fact, S. enterica contains a much larger number of genes related to 

pathogenicity that are considered the main causes of difference in life style of the  two 

phylogentically close species E. coli and S. enterica. 

In the second part of this study, first we explored the mutual relation between the regulatory 

network and microarray expression compendium in E. coli. For this aim, we tried to detect 

modules in the regulatory network which may resemble combinatorial regulators by using Fisher 

exact test and Monte Carlo sampling. As both of the methods, Fisher exact test and Monte Carlo 

sampling, failed to find modules in the regulatory network, at the next attempt we tried to define 

a similarity measure for each pair of genes based on their common regulators; we called it co-

regulatory similarity. PageRank value was used as a measure to assess the importance of a 

regulator in the regulatory network. Based on this measure, the more important regulators were 

happened to be the more global regulators. This facilitated to define the co-regulatory similarity 

measure between each pair of genes based on the PageRank value of their common regulators. In 

our definition, regulators with lower PageRank values (more local regulators) contribute more in 

the co-regulatory similarity of their targets. We showed this co-regulatory similarity measure 

exhibits high correlation with the observed co-expression on the microarray expression 

compendium. Based on this study we could conclude that the observed co-expressed modules are 

the effect of the structure of the whole regulatory network rather than a set of combinatorial 

regulators. 

We also studied the mutual relation between the regulatory network as the controlling network 

and the other interaction networks with non-controlling roles in the cell. To process non-

controlling interaction networks, we detected biological modules. These biological modules 

included modules detected in protein-protein interaction network and EcoCyc cellular pathways. 

The average co-regulatory similarity values of all gene pairs in each biological module were 

much higher than what is expected for random genes. We also performed the analysis in the 
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other direction, we detected modules with high co-regulatory similarity values derived from the 

regulatory network. We found high similarity between these expected modules based on the 

regulatory network and actual biological modules. In addition, we also compared the hierarchy 

of biological modules, built by using regulatory networks, with the one, built by using functional 

GO terms. The regulatory similarity between each two modules could easily be calculated by 

averaging our defined co-regulatory similarity value between each pair of genes across two 

modules. For the functional similarity, we introduced new species-specific functional similarity 

measure for a pair of genes, and we calculated the average value of this similarity measure 

between each pair of genes across two modules. We could observe rather high correlation 

between functional similarity value and co-regulatory similarity of two modules, implying the 

hierarchies built by these two measures are highly related. Based on our observation, we could 

explain that despite the rapid evolution of the regulatory network, the rewiring in this network 

would be in the direction to keep the biological modules conserved and also in higher level 

preserve the functional hierarchy. 
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SAMENVATTING 
 

De beschikbaarheid van genoomwijde datasets biedt de mogelijkheid om organismen in hun 

globaliteit te bestuderen en de functie van nog ongekende genen te voorspellen. Moleculaire 

biolgie is geëvolueerd naar een datarijk onderzoeksdomein.  Verschillende studies hebben reeds 

aangetoond dat integreren van omics data vaak resulteert in een beter globaal inzicht in het 

cellulaire gedrag. Bovendien, laat het vergelijken van omics informatie over de species heen toe 

om informatie van gekende organismen te extrapoleren naar minder bestudeerde organismen.   

In het eerste deel van dit werk beschrijven we een nieuwe cross-species coclustering strategie, 

COMODO (COnserved MODules across Organisms)  die toelaat om coexpressie informatie te 

vergelijken tussen species. De methode gebruikt als input microarray data en homologie relaties 

en geeft als output paren van geconserveerde coexpressie modules waarvoor het aantal gedeelde 

homologen statistisch significant is t.o.v. het aantal genen in de modules. We hebben de 

performantie van COMODO aangetoond door expressie-informatie te vergelijken tussen twee 

evolutionair ver verwijderde bacteriële modelsystemen Escherichia coli en Bacillus subtilis.  In 

een later hoofdstuk hebben we COMODO uitgebreid voor de vergelijking van coexpressie-

informatie tussen drie organismen waarbij we COMODO hebben gebruikt om coexpressie 

modules te zoeken die geconserveerd zijn in E. coli, Salmonella enterica, and B. subtilis.  

In het tweede deel van de thesis, hebben we de relatie bestudeerd tussen het regulatorisch  

network en microarray expressie data in E. coli. Hiervoor hebben we een nieuwe netwerk 

gebaseerde similariteitsmaat voor coregulatie gedefinieerd op basis van de PageRank. In onze 

definitie komen regulators met een lagere PageRank overseen met meer locale regulators die 

meer bijdragen tot de totale coregulatorische similariteit tussen de targets. Genen met een hoge 

regulatorische similariteit op basis van de pagerank waren ook sterk coexpressed.  Dit liet ons toe 

te besluiten dat het geobserveerd coexpressie gedrag (modulariteit in coexpressienetwerk) kan 

verklaard worden door een globaal network effect.  

Bijkomend hebben we ook de relatie bestudeerd tussen het regulatorische netwerk en andere 

cellulaire interactienetwerken die geen regulerende functie hebben, zoals protein-protein 
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interactie- en metabole netwerken (EcoCyc). De gemiddelde coregulatorische similariteit 

(PageRank) voor genparen die behoren tot deze functionele netwerken was hoger dan verwacht 

op basis van een random associatie. Modules geïndentificeerd in deze functionele netwerken 

vertoonden ook een gemiddeld hogere coregulatorische similariteit dan verwacht op basis van 

random associatie. Ook werd de hiërarchie van de biologische modules zoals afgeleid op basis 

van onze netwerk gebaseerde regulatorische similariteit vergeleken met de functionele hierarchie 

gebruikt door GO. Deze vergelijking toonde aan dat beide hiërarchieën sterk gerelateerd zijn 

m.a.w. dat de functionele hiërarchie zoals gebruikt door GO, de regulatorische hiërarchie 

reflecteert.  Deze observaties tonen aan dat gedurende evolutie het regulatorisch netwerk wellicht 

wijzigt om aanpassingen aan nieuwe situaties te accommoderen, maar dat wijzigingen 

onderheving zijn aan beperkingen opgelegd door de netwerkstructuur (zoals het behoud van 

functionele hiërarchie).   
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ABBREVIATIONS 
 

BM   Bacillus subtilis module 

cDNA   complementary DNA 

ChIP   chromatin immunoprecipitation  

ChIP-chip  chromatin immunoprecipitation (CHIP) on a microarray (chip) 
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COG   clusters of orthologous groups of proteins 

COLOMBOS  collection of microarrays for bacterial organisms 
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MIM   multi input motif 
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OSLOM  order statistics local optimization method 
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CHAPTER 1 

INTRODUCTION 
 

1.1. CONTEXT OF THE THESIS 

1.1.1. SYSTEMS BIOLOGY: SYSTEMATIC APPROACHES TO STUDY LIFE 

Systems biology is the study of an organism with system point of view. Here, an organism is 

viewed as an integrated and interacting network of genes, RNAs, proteins, enzymes, and 

biochemical reactions which can sustain its life by interacting with its environment. Systems 

biology aims to describe the modular organization of an organism instead of analyzing individual 

components or aspects of the organism. 

Systems Biology can be seen as a revolutionary approach to analyze biological complexity and 

biological systems function which reshaped the life sciences, and provided a deep understanding 

of DNA sequences, RNA synthesis, and the generation and interaction of proteins. During the 

past decades a tremendous evolution in molecular techniques allowed measuring the different 

biological components and their interactions on a genome-wide scale, giving rise to genome-

wide data sets. Systems Biology approach to analyze the results derived from genome-scale 

experiments has accumulated vast amounts of data. 

The complete sequencing of many genomes specially the human genome has ushered in a new 

era of systems biology referred to as omics. The English language neologism omics informally 

refers to a field of study in biology ending in -omics, such as genomics or proteomics (Wikipedia 

definition). The availability of omics data for various organisms has provided the opportunity to 

analyze conserved molecular mechanisms between different model organisms (Stuart, Segal et 

al. 2003; Lefebvre, Aude et al. 2005; Fierro, Vandenbussche et al. 2008; Chikina and 

Troyanskaya 2011). 

The emergence of high-throughput technologies, such as genome sequencing technologies, 

microarray technology, Yeast two-hybrid screening, facilitate the vast growth in available omics 
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data. High-throughput technologies allow researchers to quickly conduct millions of 

biochemical, genetic or pharmacological tests. To understand the underlying biology of these 

data, systems biology is relying on an intimate integration of both mathematical and biological 

methods.  

One major issue in systems biology is to develop proper data mining tools to integrate 

knowledge derived from various omics data. Because first, different omics data (e.g. genome 

sequence, transcriptome, proteome, interactome, metabolome) unveil distinct aspects of a cell as 

a biological system and integrating them leads to a more comprehensive insight into the cell life. 

Second, experimental and biological noise in the individual data measurements can be so 

prohibitive that each data type alone has a limited utility. 

In addition to data integration, comparing the genomic properties across various species has 

revealed evolutionary and functional relations among different genes. The field comparative 

genomics was originally initiated to study of functional links and evolutionary relation mainly 

based on sequence similarity. Recent developments in data integration has made this field richer 

as coupling sequence similarity with other data sources provides more accurate source of 

information to study evolutionary and functional relations. 

1.1.2. COMPARATIVE GENOMICS 

The aim of comparative genomics is to study the relation of genome structure and function 

across different biological species or strains to shed light on evolutionary and functional 

conservation and divergence, and also to expand available knowledge from the well-studied 

organisms to the ones which this knowledge is limited. The study of functional links and 

evolutionary relation was accomplished mainly based on sequence similarity. Genes or proteins 

with high sequence similarity are called homologous. Homologous sequences are orthologous if 

they were separated by a speciation event: when an ancient species diverges into two separate 

species, the divergent copies of a single gene in the resulting species are said to be orthologous. 

Although this sequence-homology based prediction has been successful in practice it has certain 

drawbacks. For example, it may fail to predict the real orthologous gene pairs; Orthologous 

proteins with rather divergent sequences may be responsible for the same biological function. On 
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the other hand, two proteins with quite similar sequences may be involved in different biological 

processes or molecular functions(Lefebvre, Aude et al. 2005). In addition, the existence of the 

large number of homologous protein families to which the sequence-homology based prediction 

fails to ascribe a known function for any member is another major limitation (Karimpour-Fard, 

Detweiler et al. 2007; Chikina and Troyanskaya 2011). 

Considering the mentioned problems, coupling other functional data sources is inevitable. 

Recently, there has been growing interest in utilizing co-expression data derived from different 

microarray experiments as another data source to predict functionally related genes among 

different organisms (Bergmann, Ihmels et al. 2004). Previous studies demonstrate that genes 

with similar functions are often co-expressed (Ihmels, Bergmann et al. 2005). In addition, 

revealing evolutionary conserved expression patterns has gained a lot of interest recently (Tirosh, 

Bilu et al. 2007; Chikina and Troyanskaya 2011). The next step in this field may accomplish by 

integrating physical interaction data to gain higher insight of conservation and divergence across 

different species or strains in the context of evolution. 

1.1.3. GENE EXPRESSION COMPENDIA 

Gene expression is the process by which information from a gene, which is typically a DNA 

strain, is used in the synthesis of a functional gene product. The first products of this process are 

RNA strains (e.g. mRNA, rRNA, tRNA, sRNA). Later, Messenger RNAs (mRNAs) can give rise 

to the proteins (see also central dogma of molecular biology in 1.1.5). The set of all RNA 

molecules in a cell at a certain stage or an environmental condition is referred to as the 

transcriptome. Revealing this transcriptome allows gaining insight into the functions of the 

individual genes and their interrelationships. Microarray technology has facilitated measuring the 

whole transcriptome on one chip. 

Microarray experiments are made publicly available in specialized databases (Barrett, Troup et 

al. 2007; Demeter, Beauheim et al. 2007; Parkinson, Kapushesky et al. 2007). To fully exploit 

the large resource of information offered by the public databases, all the publicly available 

microarrays in one organism should be combined as large species-specific gene expression 

compendia (Figure 1.1). Compendia can be considered as a matrix containing the organism‟s 
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genes (rows) microarray expression values for all conditions (columns) in which microarrays 

were performed (Figure 1.1). 

 

Figure 1.1. For an organism, gene expression compendia contain all publicly available microarray experiments 

measured at different stages or environmental conditions (left panel). It can be considered as a matrix containing the 

organism‟s genes (rows) microarray expression values for all conditions (columns) in which microarrays were 

performed (right panel). 

 

Genes, which show similar expression pattern for a large set of conditions, are referred as co-

expressed genes. As mentioned above co-expression is considered as a functional data and it was 

widely used to analyze functional relation in one organism (Ihmels, Bergmann et al. 2004) 

(Bergmann, Ihmels et al. 2003; Fadda, Fierro et al. 2009; Lemmens, De Bie et al. 2009) or across 

organisms (Ihmels, Bergmann et al. 2004; Ihmels, Bergmann et al. 2005; Zarrineh, Fierro et al. 

2011). 

1.1.4. GENE ONTOLOGY TERMS 

Gene ontology (GO) terms are the most standard functional classes to validate the biological 

results, usually high-throughput experiments (Hu, Karp et al. 2009). Each GO term includes 

genes were annotated for a certain function. GO terms are divided to three main domains: 
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biological process, molecular function, and cellular component. Each domain of gene ontology is 

a tree-like directed acyclic graph (DAG) in which each node is a GO term and the direction of 

edges shows the parents GO terms. Thus, if a gene is assigned to a certain GO term, this gene 

should be assigned to all its parents GO terms. The problem with using GO terms is to detect the 

informative terms in the mentioned DAG as some GO terms contains hundreds of genes while 

some may contain only one gene. Here the main problem is how to deduce the functional relation 

between two genes or two clusters of genes considering the structure of GO terms DAG. One 

way is to reduce the GO terms just to a set of informative ones. As an example (Hu, Jiang et al. 

2010) took just 32 informative GO terms from biological process domain, and they even 

removed any proteins with NCBI product descriptions as “hypothetical”, “predicted” or 

“putative” to perform their analysis. 

1.1.5. PHYSICAL INTERACTIONS AND CELLULAR PATHWAYS 

According to central dogma of molecular biology, DNA information can be copied into mRNA, 

which is called transcription, and proteins can be synthesized using the information in mRNA as 

a template, which is called translation. The last products of this process, proteins, are known as 

the building blocks of cellular components and functions by forming protein complexes and 

enzymes. However, this is not the whole story, and a large network of physical interactions in all 

levels (e.g. protein-DNA, RNA-DNA, RNA-RNA, protein-protein, protein-compound) exists to 

control the transcription and translation process. This controlling system enables cells to sustain 

their life and react to their environmental perturbations. In addition, DNA information can be 

copied into non-coding RNA‟s such as transfer RNA (tRNA), ribosomal RNA (rRNA), and 

bacterial small RNAs (sRNA). These RNA‟s can carry on catalyst activities and controlling 

activity inside the cell.  

In bacteria, gene expression is controlled by specific proteins (or protein complexes) called 

transcription factors (TFs), and also sigma and anti-sigma factors in transcription level. Gene 

expression can also be controlled by sRNA‟s in post-transcriptional level. Both mentioned 

protein-DNA transcriptional interactions and RNA-RNA post-transcriptional interactions can be 

inhibitory or activatory. Finally, some proteins like protein kinases can control other proteins in 
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post-translational phase through a phosphorylation activity. This kind of protein-protein 

interactions can also appear as both inhibitory and activatory. 

New technologies have facilitated the prediction of massive number of physical interactions in 

different levels. To portrait the global mechanism of cell as a living system, these interactions 

have to be processed and integrated in a biological meaningful manner. In this way, network 

representations are the most natural and successful representation of physical interactions. A 

biological network is represented as an undirected graph like protein-protein network where 

nodes are proteins and edges are the interactions between them. A biological network can also be 

represented as directed graphs like regulatory network where in bacterial case the nodes are 

protein, sRNA, and genes and edges are regulatory relations between regulatory elements 

(protein, sRNA) and the targets genes. Phosphorylation network is another directed network 

where nodes are proteins and edges represent a kinase activity. 

In addition to direct physical interactions, cellular pathways are also another available source of 

data that can be represented as a network. A cellular pathway is a chain of biological reactions to 

reform some initial compounds to the final compounds, and we call this chain of reactions a 

metabolic pathway if the final compounds which can be used by the cell, and in case that this 

chain of reactions convey a cellular signal in to a cell we call it signaling pathway. A cellular 

pathway is usually represented as a directed graph where the nodes are compounds and the edges 

are the reactions between them. A reaction can also be represented by the enzymes which 

catalyzed the reactions. As illustration, Figure 1.2  represents L-arabinose degradation I pathway 

in E. coli derived from EcoCyc (Keseler, Bonavides-Martinez et al. 2009).  

To gain a global understanding of the mode of action in a cell (comprehensive mechanistic 

network), the network becomes an overlay of different individual networks and cellular 

pathways with nodes representing different molecular entities and edges different physical 

interactions or pathway directions. Here the problem is how to interpret this large and 

heterogeneous network. The simple solution is to restrict the nodes in the network to just genes, 

or both genes and proteins especially in eukaryotic cases where one gene can be translated to 

several different forms of proteins (alternative splicing) (Huang and Fraenkel 2009; Hyduke and 

Palsson 2010). The edges can also be restricted to actual physical interactions (Huang and 
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Fraenkel 2009; Hyduke and Palsson 2010) (e.g. Figure 1.3), or they may reflect the functional 

relations between genes derived from different physical interaction networks or cellular 

pathways (Myers, Chiriac et al. 2009; Narayanan, Vetta et al. 2010). In later case, the other 

functional data like co-expression data can also contribute to build the functional interaction 

network (Myers, Chiriac et al. 2009; Narayanan, Vetta et al. 2010). Naïve Bayesian approach is 

the most famous approach to build the functional interaction network (Myers, Chiriac et al. 

2009). 

Each biological interaction network displays a special topology which is evolutionary favorable 

due to the biological function of the network. The network, which gained the most attention from 

topological point of view in recent studies, is the regulatory network which evolves faster than 

other networks in the cell (Shou, Bhardwaj et al. 2011). The regulatory network consists of 

transcriptional, post-transcriptional, and post-translational interactions and controls the 

regulation of every cellular process. The highly repetitive topologies in the regulatory network 

are called regulatory motifs. In (Yu and Gerstein 2006), different regulatory motifs was 

highlighted such as single input motif (SIM), multi input motif (MIM), feed-forward loop (FFL), 

and multi component loops (MCL) (Figure 1.4). It has been shown that feed-forward loop is the 

most abundant circuit in a regulatory network (Babu, Teichmann et al. 2006; Yu and Gerstein 

2006). Later in (Michoel, Joshi et al. 2011), the controlling motif circuits were expanded to 

protein-protein interactions and also post-translational interactions such as phosphorylation, 

which are highly abundant in higher evolutionary organisms. They showed that feed-forward 

loop is not only the favorable pattern in regulatory network consists of translational and post-

translation interactions, but also it is highly abundant adding post-transcriptional interactions to 

the mentioned network in yeast (Michoel, Joshi et al. 2011). 
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Figure 1.2.  Network representation of L-arabinose degradation I pathway in E. coli. In this pathway 

compound L-arabinose is converted to another compound D-xylulose-5phosphate through three biological reactions. 

Three proteins/enzymes araA, araB, and araC catalyzed these reactions. 
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Figure 1.3. An example of comprehensive mechanistic network. pheromone response network in yeast. Here 

each module consists of different kind of interactions and different types of genes (TF and non-TF). The genes are 

categorized in different boxes based on their GO terms. Taken from (Huang and Fraenkel 2009). 
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Figure 1.4. Illustration of regulatory network motifs. Four common network motifs in regulatory networks. 

Different colors represent different motifs.  (I) Single-input motifs (SIM). For example, node 1 regulates nodes 2 

and 3. (I) Multiple-input motifs (MIM). For example, nodes 1 and 2 are regulators, and nodes 3 and 4 are there 

common targets. (III) Feed-forward loop (FFL). For example, node 1 is the higher regulator in the hierarchy, and 

node 2 is its target while this node is a local regulator itself, and node 3 is the shared target of both regulatory. (IV) 

Multi-component loops (MCL). Node 1 is the higher regulator in the hierarchy, node 2 is target of node 1 while it 

regulates node 3. Node 4 is target of node 3, but it regulates node 1 on top of the hierarchy. Taken from (Yeger-

Lotem, Riva et al. 2009). 

 

1.2. OBJECTIVES OF THE THESIS 

Availability of various genome-wide datasets provides the opportunity to study the whole 

genome behavior of the organisms as well as prediction of new functions for unknown genes. 

Integrating different types of data can lead to a better understanding of the cellular behavior and 

better functional annotation of genes (Kelley and Ideker 2005; Beyer, Bandyopadhyay et al. 

2007; Huang and Fraenkel 2009). However, data generation efforts in bacteria have for a long 

time been lagging behind related efforts in yeast and other eukaryotic organisms. According to 

(Hu, Janga et al. 2009) one-third of the 4,225 protein-coding genes of the best studied bacterial 

strain, Escherichia coli K-12, remain functionally un-annotated (orphans). The number of 

annotated genes decline sharply for other bacteria. In addition, the annotated information 

regarding the physical interactions and cellular pathways is even more limited. This limitation is 

even more critical for the regulatory networks, especially for the less studied organisms. For 

example, 2697 transcriptional interactions and 203 small RNA interactions were annotated for 



11 

 

Escherichia coli K-12 in RegulonDB database (Gama-Castro, Jimenez-Jacinto et al. 2008), and 

the available data drops to 120 binding factors and 1475 gene regulatory relations for Bacillus 

subtilis, annotated in DBTBS (Sierro, Makita et al. 2008). Finally, there is no regulatory database 

for the other model bacteria Salmonella enterica enteric. 

One way to overcome the data source limitation is to expand the information from the well-

studied organisms to the ones that the available information was limited.  Comparative genomics 

was the classical approach to expand information across organisms by considering sequence 

homology. Right now, fairly good functional annotation, operon prediction, and metabolic 

pathways, derived from genes sequence similarity, are available for different bacterial genome in 

BioCyc (Karp, Ouzounis et al. 2005). Co-expression similarity is another functional data which 

can easily be coupled to sequence data to enrich the accuracy of comparative genomics. 

Therefore, we developed new software, called COMODO (COnserved MODules across 

Organisms), to systematically integrate the sequence homology relations and co-expression 

relation derived from microarrays experiments. We demonstrated its performance using two 

distantly related model bacterial systems, Escherichia coli and Bacillus subtilis. As the results, 

we have shown the larger size of conserved co-expressed modules than previously predicted 

(Chapter 2). Later, we formalized the co-expression conservation for three organisms, and we 

demonstrate the efficiency of the cross-species co-expression comparison by studying the co-

expression conservation as well as divergence of less studied model organism Salmonella 

enterica enteric in comparison to the other gram negative model organism Escherichia coli and 

the gram positive model organism Bacillus subtilis (Chapter 3). 

Integrating various data sources is another way to overcome the data limitations. Integrating 

different data sources derived from high-throughput to assign new function to genes with 

unknown genes have been applied over different species especially E. coli (Andres Leon, 

Ezkurdia et al. 2009; Hu, Janga et al. 2009) and yeast (Zhu, Zhang et al. 2008; Myers, Chiriac et 

al. 2009; Narayanan, Vetta et al. 2010). Although current data integration methods based on 

network could predict new function for many genes of different genome successfully, still the 

mutual relation between physical interaction networks with controlling role inside the cell (the 

regulatory network) and other physical interaction networks and also other functional data 
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sources is not completely explored. For the first time, we could formulate the co-regulation of 

genes based on the regulatory network, and we have shown that our co-regulatory similarity 

measure is in line with the observed co-expression on the microarray compendia (Chapter 4). 

Later, we have shown the relation of the internal interactions responsible to assemble structural 

and functional components and cellular pathways with their regulatory program (Chapter 5). In 

addition, we could display the relation between functional hierarchy of genes and their regulatory 

hierarchy. 

1.3. OVERVIEW OF THE THESIS 

This section provides a chapter-by-chapter overview of the thesis (see Figure 1.5). The main 

topics of this thesis are cross-species co-expression comparison (Chapter 2 and 3) and the mutual 

relation between the regulatory network and other data sources (Chapter 4 and 5).  In Chapter 1, 

comparative genomics is defined, and cross-species co-expression comparison is described as an 

improvement to the classical comparative genomics. In addition, gene expression compendium is 

introduces as a proper data set for cross-species co-express comparison. Furthermore, Different 

data sources like gene ontology term, as the most standard functional data source, and also 

physical interaction and cellular pathways are also introduced in this chapter. Finally, some basic 

properties of the regulatory network as the network with controlling role inside the cell like 

highly repetitive topologies, motifs, are also introduced in this chapter. 

In Chapter 2, a new methodology for cross-species co-expression comparison, referred to as 

COMODO (COnserved MODules across Organisms) that uses an objective selection criterium to 

identify conserved expression modules between two species, is introduced. The method uses as 

input microarray data and a gene homology map and provides as output pairs of conserved 

modules and searches for the pair of modules for which the number of sharing homologs is 

statistically most significant relative to the size of the linked modules. To demonstrate its 

principle, we applied COMODO to study co-expression conservation between the two well 

studied bacteria Escherichia coli and Bacillus subtilis. The work in this chapter has been 

accepted for publication (Zarrineh, Fierro et al. 2011): 

 

 Zarrineh P., Fierro A. C., Sanchez-Rodriguez A., De Moor B., Engelen K., Marchal K. 

COMODO: an adaptive coclustering strategy to identify conserved Co-expression modules 

between organisms (2011). Nucleic Acids Research, 39 (7):e41. 
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In Chapter 3, the extended COMODO methodology is discussed. The extended COMODO can 

capture conservation across three species. The conservation and divergence inferred from 

extended COMODO methodology applied on three well studied bacteria Escherichia coli, S. 

enterica, and Bacillus subtilis is described in this chapter. Since regulatory network information 

does not exist in S. enterica, some possible regulatory interactions which can be deduced from 

co-expression conservation of target genes are also highlighted. The work presented in this 

chapter is still on-going:    

 

 

 

In Chapter 4, we introduce a new co-regulatory measure based on the regulatory network 

structure. To demonstrate its capabilities we applied this measure over E. coli regulatory network 

as the regulatory network of E. coli is one of the most complete regulatory networks. For the first 

time, we could show the co-regulatory measure is in agreement with the observed co-expression 

in microarray expression compendia. Using this co-regulatory measure in Chapter 5, we could 

project the regulatory network over physical interaction data including the protein-protein 

interaction network and the cellular metabolic and signaling pathways in E. coli. We could 

introduce a new species-specific functional similarity measure using GO terms in E. coli, and we 

could demonstrate the relation between regulatory program and hierarchy of functions in E. coli. 

The work presented in chapter 4 and 5 is an on-going collaboration research with institute for 

Cross-Disciplinary Physics and Complex Systems, in Palma de Mallorca: 

 

 

 

 

 Zarrineh P., Sanchez-Rodriguez A., Marchal K. Extending COMODO to three organisms: 

application on S. enterica. In preparation. 

 

 Zarrineh P., Herrada A. C., Ramasco J. J., Eguiluz V. M., De Moor B., Marchal K. The 

mutual relation between the regulatory interaction network and other data sources: application 

to the E.coli genome. In preparation. 
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Finally, Chapter 6 summarizes the results and provides a perspective on the future of both cross-

species co-expression comparison and the mutual relation study between controlling interactions 

and other data sources. In this chapter we emphasize the co-regulatory similarity measure and the 

functional similarity measure derived from GO terms can be useful for data integration methods. 

As more data sources are becoming available in different organisms, both cross-species 

comparison and data integration fields can be enriched by new available data. These two fields 

are not completely independent, and the new progresses in data integration may be beneficial for 

cross-species comparison in near future. 

 

Figure 1.5. Overview structure PhD thesis. The thesis contains an introduction chapter (Chapter 1) and a 

conclusions and perspectives chapter (Chapter 6). The main part of the thesis consists of two parts, in the first part a 

new methodology is introduced for cross-species co-expression comparison (Chapter 2 and 3). In the second part, 

the mutual relation between the regulatory network and the other data sources, proper for data integration, is 

described in details (Chapter 4 and 5). This mutual relation study can be used for data integration (Chapter 6).  
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CHAPTER 2 

COMODO: AN ADAPTIVE CO-CLUSTERING STRATEGY TO IDENTIFY 

CONSERVED CO-EXPRESSION MODULES BETWEEN ORGANISMS 
 

2.1. INTRODUCTION 

The availability of large scale expression compendia in combination with gene sequence 

conservation makes it possible to compare expression networks across organisms, in order to 

study their evolution or to identify functional counterparts in different species as homologs with 

„conserved expression behavior‟ (Tirosh, Bilu et al. 2007; Fierro, Vandenbussche et al. 2008; Lu, 

Huggins et al. 2009). Besides custom made datasets that measure exactly the same experimental 

conditions in the different analyzed species (Lelandais, Tanty et al. 2008), also large 

heterogeneous compendia based on collecting publicly available expression datasets confer a 

useful resource for cross-species analysis of co-expression (Stuart, Segal et al. 2003; Bergmann, 

Ihmels et al. 2004). In contrast to the custom made homogeneous datasets, such heterogeneous 

expression compendia do not allow for a direct comparison of the expression patterns between 

orthologs in the different data sets, but instead rely on the search for „conserved expression 

behavior‟. With conserved expression behavior, we refer to the conservation of a mutual relation 

between genes across species (such as the conservation of the mutual correlation between the 

expression profiles of a pair of genes across species). This conserved behavior is usually derived 

by defining co-expression modules (i.e. genes sets that behave similarly in all or a subset of the 

conditions), inferred by either biclustering (searching for co-expressed gene sets) (Cai, Xie et al. 

; Bergmann, Ihmels et al. 2004; Ihmels, Bergmann et al. 2005; Lu, He et al. 2007) or by the 

analysis of a co-expression network (a network constructed from the data where the nodes refer 

to the genes and the weighted edges to the degree of co-expression between the connected nodes) 

(Stuart, Segal et al. 2003; Lefebvre, Aude et al. 2005; Oldham, Horvath et al. 2006). These 

conserved modules are then compared across the species.  Methods differ in the way they 

perform this module comparison. A first set of approaches starts from a reference species in 

which an initial set of modules is built (Bergmann, Ihmels et al. 2004; Ihmels, Bergmann et al. 

2005; Oldham, Horvath et al. 2006; Lu, He et al. 2007). The corresponding homologous modules 
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are then identified in the target species by using gene homology. The approaches allow 

determining if the expression of a group of co-expressed genes in the reference organism is fully, 

partially, or not at all conserved at the level of co-expression in the target organism. To make an 

exhaustive comparison of all conserved modules between both species, each species has once to 

be used as a reference and once as a target. These approaches are most often applied using one-

to-one gene homology relations (Ihmels, Bergmann et al. 2005; Lelandais, Tanty et al. 2008). A 

second set of approaches obviates the need of reference species: in the multi-species co-

expression network proposed by Stuart et al. (Stuart, Segal et al. 2003), nodes correspond to 

genes that are conserved across the studied species (one-to-one map) and edges indicate 

significant pairwise co-expression levels between those genes in the different species. A 

clustering approach is used to identify conserved modules in this multi-species co-expression 

network. Alternatively, co-clustering strategies exploit homology and co-expression information 

to identify in both species simultaneously co-expression modules. Depending on the 

implementation results focus on modules containing only homologous genes that link up related 

modules (Lefebvre, Aude et al. 2005) or on finding mixed modules containing both homologous 

linker genes together with other genes that are co-expressed with those linker genes in a species 

specific way (Cai, Xie et al. 2010).  

The difficulty with most previous methods is that they rely on the choice of a particular co-

expression threshold or clustering parameter that determines the final module sizes (e.g. minimal 

degree of co-expression within a cluster or a minimal correlation coefficient to define subsets of 

co-expressed genes in a co-expression network, the number of clusters, etc.). However, choosing 

such parameter is not trivial as the definition of a relevant biological module is not a fixed one: 

different parameters can result in equally valid modules differing from each other in number of 

genes and/or conditions. Moreover, the relation between the degree of co-expression and a 

particular parameter or threshold usually is dataset-dependent (noise level, number of arrays 

tested, etc.) (Van den Bulcke, Lemmens et al. 2006). As it is hard to decide in advance on the 

most optimal co-expression threshold or parameter to define modules in each of the species-

specific compendia and to decide upon the threshold or parameter combination that would allow 

for a proper cross-species comparison of modules, we developed a cross-species co-clustering 

approach referred to as COMODO (COnserved MODules across Organisms) that exploits 
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homology relations to determine the most optimal „conserved co-expression modules‟ between 

two species (Zarrineh, Fierro et al. 2011). COMODO can take as input both one-to-one and 

many-to-many homology relations. The way we exploit the homology relations makes 

COMODO mainly suitable to search for processes with conserved co-expression behavior.  

Modules in a conserved pair are composed of homologous genes that share a mutual co-

expression in each of the species, together with additional genes for which the co-expression 

with the homologous linker genes was found to be species-specific. We applied COMODO to 

search for conserved modules in two evolutionary distant prokaryotic model organisms: 

Escherichia coli and Bacillus subtilis. For those prokaryotic organisms we found conserved co-

expression modules with a considerably larger fraction of genes than the number of conserved 

transcriptional units previously reported based on comparative genome analysis (Snel, van Noort 

et al. 2004; Okuda, Kawashima et al. 2007) and that cover a wider range of biological processes 

with conserved co-expression behavior than previously detected (Vazquez, Freyre-Gonzalez et 

al. 2009). Our results also showed how distantly related bacteria support the co-expression 

behavior of similar elementary processes with a completely different regulatory program. In 

chapter 3 we will formulize co-expression in more general way to extend COMODO to three 

organisms. 

 

2.2. MATERIALS AND METHODS 

2.2.1. COMODO CO-CLUSTERING PROCEDURE 

An overview of COMODO is given in Figure 2.1 while in Figure 2.2 the detailed steps of the co-

clustering procedure are displayed. 

2.2.2. GENE-GENE THRESHOLD MATRIX 

Conceptually all theoretically potential modules in each of the species can be represented as 

nested chains of partially overlapping modules that were obtained by gradually decreasing the 

threshold of the distance measure used by the clustering or distance approach (Figure 2.1). 

Biologically each chain of nested modules corresponds to the hierarchical organization of a 
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certain cellular processes (e.g. ranging from the production of an essential specific amino acid to 

a general response on a diauxic shift) (Bergmann, Ihmels et al. 2003). Different chains can share 

genes as the same genes can be involved in more processes. We used a symmetric gene-gene 

threshold matrix to concisely represent such chains of nested modules (Figure 2.1). Each axis of 

this matrix corresponds to the genes of one organism. The order of the genes in the X- and Y-

axis of the matrix is determined by their assignment to modules under the most stringent tested 

threshold i.e. genes that are co-expressed at the most stringent tested threshold will be grouped.  

The values in the i
 th

 row and j 
th
 column of the gene-gene threshold matrix represent the most 

stringent threshold at which respectively genes i and j appear together in at least in one of the 

detected modules. For the results shown in the main text the pairwise similarity between the 

genes was based on the Pearson correlation over all conditions in the compendium. The gene-

gene threshold matrix in this case contains for each cell a discretized pairwise correlation value 

and the gene order on the X- and Y-axis of the gene-gene threshold matrix equals the order of the 

genes at the leaves of a hierarchical clustering applied on the non-discretized gene-gene 

correlation matrix. The number of bins used for the discretization depends on the parameter step 

size (see also below). We also built a gene-gene threshold matrix by using the gene thresholds 

defined by the iterative signature algorithm (ISA) to assign its genes to modules (Bergmann, 

Ihmels et al. 2003; Zarrineh, Fierro et al. 2011). In the latter case, the gene-gene threshold matrix 

consists of a compact representation of the overlapping clusters (module tree) that can be 

obtained using ISA with different threshold combinations. In our paper, we demonstrated the 

generality of the COMODO by analyzing results derived from ISA as a measure to build gene-

gene threshold matrix (Zarrineh, Fierro et al. 2011), but in this chapter we will just focus on the 

results derived by using Pearson correlation across all conditions as co-expression measure since 

the quality of the results was much higher.  

2.2.3. SELECTION OF SEED MODULES 

To select the seed modules, we used the values on the first subdiagonal of the gene-gene 

threshold matrix (the first subdiagonal contains the values directly under those of the main 

diagonal of the gene-gene threshold matrix). To identify seeds we selected on this first 

subdiagonal groups of genes that were locally found to be more co-expressed with each other 
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than with their neighboring genes on the first subdiagonal (Figure 2.2A). For those genes the 

value on the first subdiagonal corresponds to the most stringent co-expression threshold at which 

they can be found together. To prevent that we would obtain many very small seed modules,  

 

 

Figure 2.1. Detection of evolutionary conserved expression modules. A: Input data constitute of expression 

compendia of two distinct organisms (here E. coli and B. subtilis) (left panel) as well as a homology map between 

genes of the respective species (here derived from COG) (right panel).  In the right panel, nodes correspond to genes 

and edges indicate the homology relations. B: The left panel schematically illustrates the concept of module trees. 

Conceptually all potential modules (indicated by rectangles) in each of the species can be represented as nested 

chains of partially overlapping modules that can theoretically be obtained by gradually decreasing the threshold that 
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determines the degree of co-expression within a module. Consecutive branches of the module trees give a view of all 

possible module sizes that originate from seed modules (modules indicated by a star correspond to modules obtained 

with the most stringent threshold). The chains of nested modules are captured by the symmetric gene-gene threshold 

matrices in each of the species (right panel). Our cross-species co-clustering procedure starts from tightly co-

expressed seed modules (indicated by stars) and uses a bottom up approach to traverse these chains of nested 

modules in both species simultaneously to identify from all possible matching pairs the best matching one (here 

indicated by the modules connected by a gray line, best is defined based on the Chi-square test statistic). C: resulting 

matching module pairs are referred to as evolutionary conserved module pairs and consist of a core and a variable 

part. 

 

Figure 2.2. Cross-species co-clustering procedure. Displays the overall strategy of the co-clustering approach: 

first „module seeds‟ are selected from the gene-gene threshold matrices in the respective organisms. Module seeds 
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linked by a sufficient number of homologous gene pairs are then gradually extended by traversing the space of 

possible cluster threshold combinations represented on the gene-gene threshold matrices of the respective species 

until optimality is reached. A: Module seed selection step: The left panel represents a zoom in on the gene-gene 

threshold matrices of respectively the first and second organisms. Values on the first subdiagonal of the gene-gene 

threshold matrix (indicated with white rectangles) are used to select the seed modules. The right panel displays the 

co-expression values corresponding to this first subdiagonal of the gene-gene threshold submatrices of respectively 

organisms 1 and organism 2. Groups of genes that are mutually more co-expressed than with any other genes on the 

first subdiagonal are selected as seeds (gray areas in the plot). To prevent that we would obtain many very small 

seed modules we set in the gene-gene threshold matrix all values larger than a prespecified maximal co-expression 

stringency value equal to this value. B: Extension of seed modules step: module seeds linked by a sufficient 

number of homologous gene pairs are gradually extended by traversing the space of possible cluster threshold 

combinations represented on the gene-gene threshold matrices in the respective organisms until optimality is 

reached. As it is computationally heavy to compare all possible threshold pairs, a combination of a greedy and brute 

force search was used to find the optimal module pair. This combination of a greedy and brute force search is 

represented as a dimensional grid of different threshold pairs, each with their corresponding chi-square values. The 

arrows indicate how the search space was traversed to find an optimal threshold pair. The search starts from the 

most stringent threshold pair (seed modules (top left)). Greedy (larger black arrows) and brute force (smaller red 

arrows) searches are called consecutively to evaluate different thresholds pairs in an efficient way. Plot of 

consecutive Chi-square values obtained along the search (i.e. for the different evaluated threshold pairs). C: 

Optimization criterium: a Pearson‟s chi-square test was used to assess the statistical significance of a module pairs 

i.e. to assess to what extent the number of linking and non-linking gene pairs between two modules differ from what 

is expected by chance. 

 

containing two genes only, in the gene-gene threshold matrix all values larger than a prespecified 

maximal co-expression stringency value were set equal to this value. This guarantees a minimal 

number of genes to be present in the seed modules. We could show that within a certain range 

our co-clustering procedure is quite robust against the choice of this prespecified maximal co-

expression stringency value (see 2.3.10). 
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2.2.4. EXTENSION OF SEED MODULES 

COMODO uses a bottom up approach to build its conserved module pairs. It starts from the seed 

modules in each of the species of interest. Module seeds linked by a sufficient number of 

homologous gene pairs are gradually extended by traversing the space of possible cluster 

threshold combinations as represented on the gene-gene threshold matrices in the respective 

species until optimality is reached (see below for the chi-square optimization criterium). As it is 

computationally heavy to pairwisely compare all cluster threshold combinations between the two 

organisms we developed a dedicated search methodology. The search space of all possible 

combinations of thresholds can be represented in a two dimensional grid as shown in Figure 

2.2B. Moving down the grid corresponds to gradually lowering the thresholds pairs. At each 

move the optimization criterium is evaluated. The parameter “Step” indicates the size by which 

the threshold is lowered at each move (in our experiments this was set to 0.05). To move along 

the grid we applied a combination of a greedy and brute force search. The methodology starts 

with the thresholds that define the seeds module pairs. By applying a greedy search gradually 

one or both of the thresholds in a combination are lowered until a local optimum is reached, i.e. 

further lowering the thresholds does not further improve the optimization criteria. To prevent the 

methodology from getting trapped in a local optimum, it searches further down in the grid in 

brute force manner until the stop criteria is reached (see below) to make sure no other threshold 

pair exists that is more optimal. If a better threshold pair than the current local optimum is found, 

the whole greedy search procedure is restarted from this more optimal threshold pair. 

Two stop criteria are used: first, both thresholds should be larger than a preset value (in our 

example based on the Pearson correlation coefficient, both thresholds should at least be 0.1). 

Secondly, the minimal fraction of homologous versus non-homologous genes in the gene sets 

obtained by a given threshold pair should be higher than a preset number (in our study it was set 

to 0.1).  

To tune the methodology for bacterial applications we introduced the following refinement 

procedure: genes that belong to the same operon tend to show a higher degree of co-expression 

with each other than with other genes. To prevent our methodology of getting biased towards 

finding module pairs that are composed of evolutionary conserved operons (these might always 
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get the highest chi-square value), we allowed for all module pairs of which one of the composing 

modules contains less than five genes the following additional threshold relaxations: the 

threshold of the group that contains less than five genes was relaxed until more genes were 

included. In such case, both the initially detected module pair and the module pair obtained after 

threshold relaxation were retained for further analysis.  

The method can be applied on any chains of nested modules for which the relation between the 

modules is hierarchical, meaning that the module(s) obtained with the more stringent thresholds 

should be subsets of the ones obtained with a more relaxed threshold. Modules obtained with a 

more stringent threshold can never contain genes that were not detected at a more relaxed 

threshold.  

2.2.5. CHI-SQUARE TEST STATISTIC AS OPTIMIZATION CRITERIUM  

The definition of the best matching module pair is bound by the number of homologs that is 

shared by the selected modules in each of the species and corresponds to the pair for which the 

number of sharing homologs is statistically most significant relative to the size of the linked 

modules (Figure 2.2C). We used a Pearson‟s chi-square test to assess the statistical significance 

of a module pairs i.e. to assess to what extent the number of linking and non-linking gene pairs 

between two modules differ from what is expected by chance. To formulate the Pearson‟s chi-

square test, consider N1 genes in the genome of the first organism and N2 genes in the genome 

of the second organism, and M linking homologous gene pairs derived from the COG database. 

If we pick two genes randomly, one from each organism, the probability that a homologous gene 

pair has been chosen is equal to
1 2

M

N N
. Therefore, the probability that these genes are not 

homologous is 
1 2

1
M

N N
. 

Given a pair of modules (one for each organism) containing respectively g1 genes from the first 

organism and g2 genes from the second one (where g1 and g2 << N1 and N2 respectively), the 

expected number of homologous gene pairs that would appear assuming that the two modules are 

randomly selected modules can be estimated by: 
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The expected number of non-homologous gene pairs appearing between them can be estimated 

by: 

_ g 1 2
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We use the Pearson‟s chi-square test to assess whether the number of homologous and non-

homologous gene pairs in an observed module pair is significantly different from the expected 

one. A chi-square test with one degree of freedom is as follow:  

2 2

g g _ g _ g2

g _ g

homolo ous homolo ous non homolo ous non homolo ous

homolo ous non homolo ous

O E O E

E E
 

Where O and E stand for observed and expected values respectively. Note that as the p-value 

might get very close to zero, we use an optimization criterium that maximizes the actual chi-

square values instead of minimizing the corresponding p-values. 

2.2.6. FILTER PROCEDURE 

We selected from the raw output the most interesting module pairs for further analysis: we only 

retained the most significant module pairs (using a minimal threshold on the chi-square value). 

To remove redundancy we kept in case of overlapping module pairs (different module pairs that 

share 75% of homologous linker genes) the one with higher chi-square value. 

We included the following additional criteria for our specific application: modules of size 

smaller that six should be linked up to their counterpart modules in the other organism with at 

least two homologous linker genes, this to avoid small spuriously linked modules.  In addition, 

we required that the number of linker genes comprises at least 20% of the total number of genes 

in each of the modules to prevent unbalanced growth of one module compared to its counterpart 

module as the latter modules were very often found not to be biologically meaningful. 
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2.2.7. APPLICATION OF THE METHODOLOGY TO THE E. COLI AND B. SUBTILIS DATASETS 

Using a the Pearson correlation over all conditions as a distance measure and a prespecified 

maximal co-expression stringency value of 0.7 for seed identification, we obtained conserved 

module pairs covering 1687 E. coli genes and 2129 B. subtilis genes. After filtering (using a chi-

square threshold of 470) and removing overlapping module pairs (see above), we retained 445 E. 

coli genes and 481 B. subtilis genes being found in 82 non-redundant module pairs. The final 82 

conserved module pairs were ordered according to their overlap in gene number in each of the 

organisms. Modules that shared more than 30% of their genes were assigned to the same 

biological process as they were enriched in the same GO categories and pathways. To assess the 

False Discovery Rate (FDR) of our results we randomized the expression values in the original 

compendia and searched for conserved module pairs using the same procedure as described 

above (process was repeated 50 times, expression data was randomized by reassigning the gene 

labels to the expression profiles). 

2.2.8. CONDITION SELECTION FOR MODULE VISUALIZATION 

For visualization purposes heat maps only display the conditions for which the co-expression 

behavior was most obvious. Relevant conditions were selected by dividing per condition the 

mean value of the expression levels in the module by the variance (coefficient of variation). If 

this coefficient of variation exceeds a predefined threshold (1 in our case), the corresponding 

condition is visualized. 

2.2.9. MICROARRAY COMPENDIA 

The microarray compendium of E. coli was obtained from Lemmens et al. (Lemmens, De Bie et 

al. 2009) and the one of B. subtilis from (Yu and Gerstein 2006) et al. (Fadda, Fierro et al. 2009). 

They contained respectively 870 conditions for E. coli and 231 for B. subtilis. 

2.2.10. HOMOLOGY MAP AND SEQUENCE SIMILARITY 

A total of 5459 homologous gene pairs between E. coli and B. subtilis were annotated based on 

the COG database (Tatusov, Koonin et al. 1997). This many-to-many COG map was used 
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throughout the thesis unless specified otherwise. Orthologous gene pairs between E. coli and B. 

subtilis were when needed identified by the Reciprocal Smallest Distance approach (Wall and 

Deluca 2007). 

2.2.11. ESSENTIAL GENES 

Essential genes in B. subtilis and E. coli were downloaded from DEG, a database of essential 

genes (Zhang, Ou et al. 2004; Zhang and Lin 2009). This database contains 271 essential genes 

in B. subtilis, resulting from a single gene deletion experiment (Kobayashi, Ehrlich et al. 2003). 

For E. coli 620 genes were originally determined to be essential based on genetic footprinting 

(Gerdes, Scholle et al. 2003) and 303 genes were later identified by single gene deletions (Baba, 

Ara et al. 2006). As 205 genes were found in common between those two E. coli lists, we 

obtained in total 712 essential genes for E. coli. Based on the homology relation derived from the 

COG database, we found 209 homologous pairs of essential genes comprising 191 B. subtilis and 

195 E. coli essential genes. From these 195 E. coli genes with homologs in B. subtilis 164 were 

originally identified by the single gene deletion experiment mentioned above (Baba, Ara et al. 

2006). 

2.2.12. ENRICHMENT ANALYSIS OF GENE ONTOLOGY TERMS, METABOLIC 

PATHWAYS, PROTEIN COMPLEXES, AND REGULATORY DATA 

Gene Ontology (GO) terms, metabolic pathways, and protein complexes of E. coli were 

downloaded from EcoCyc (Keseler, Bonavides-Martinez et al. 2009). GO terms for B. subtilis 

were downloaded from the Comprehensive Microbial Resource (CMR) (Peterson, Umayam et al. 

2001). Metabolic pathways and protein complexes of B. subtilis were obtained from BioCyc 

(Karp, Ouzounis et al. 2005). Transcriptional interactions were downloaded from RegulonDB 

(Gama-Castro, Jimenez-Jacinto et al. 2008) and DBTBS (Sierro, Makita et al. 2008) for E. coli 

and B. subtilis respectively. Enrichment analysis was done based on the hypergeometric 

distribution corrected for multiple testing by the False Discovery Rate (FDR) (Benjamini and 

Hochberg 1995). 
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2.2.13. OPERON INFORMATION  
Operon structure was derived from RegulonDB (Gama-Castro, Jimenez-Jacinto et al. 2008) and 

DBTBS (Sierro, Makita et al. 2008) for respectively E. coli and B. subtilis. As DBTBS only 

describes experimentally validated B. subtilis operons, we used for gene sets not covered by 

DBTBS the following databases with operon predictions: OpeRons (DOOR, 

http://csbl1.bmb.uga.edu/OperonDB/) (Mao, Dam et al. 2009) and 

http://www.microbesonline.org/operons/OperonList.html (Price, Huang et al. 2005). Operon 

predictions were retained: 1) if databases agree with each other in predicting the same operon 

structure (this was the most frequent situation), 2) if they were only predicted by one database, 3) 

in the few cases where two databases predicted a different operon structure, we used the structure 

that was more compatible with our expression results or with the structure of the counterpart 

operon in E. coli. To identify conserved operons (or homologous operons) between E. coli and B. 

subtilis we used the following definition: we started from the list of E. coli operons as this was 

the best annotated. We identified as an operon conserved between E. coli and B. subtilis any 

annotated operon in B. subtilis for which at least two genes showed homology, based on COG 

database information. This analysis was also repeated using only strict homology links obtained 

by the Reciprocal Smallest Distance approach (Wall and Deluca 2007) to approximate a 

definition of „orthologous‟ operons. 

  

2.3. RESULTS  

2.3.1. COMODO: A METHOD TO IDENTIFY CROSS-SPECIES EXPRESSION CONSERVATION 

As we focused on searching processes across species with evolutionary conserved co-expression 

behavior, we defined the optimal size of the modules in each of the species as the one that 

maximizes the fraction of homologous genes that links up both modules in an evolutionary 

conserved module pair. An overview of the analysis flow is given in Figure 2.1. To avoid 

(bi)clustering the datasets using a fixed parameter setting that determines the cluster size in each 

of the species separately, we relied on a bottom up co-clustering approach to build the modules. 

COMODO is initialized with co-expressed seeds or seed modules obtained in each of the 



28 

 

species. These seeds are gradually expanded in each of the species until a pair of modules is 

obtained for which the number of shared homologs is statistically optimal relative to the size of 

the linked modules. The optimization criterium is based on a chi-square statistic (see 2.2.5). Our 

co-clustering procedure that extends the seed modules until optimality is reached is based on 

greedy and brute force procedure described in 2.2.4.  

Eventually pairs of evolutionary conserved modules are obtained, each containing a core and a 

variable part (Figure 2.1C). The core part consists of the homologous genes that link up both co-

expression modules and for which the mutual co-expression behavior is conserved. The variable 

part contains the additional genes that belong to the composing modules of a given pair in either 

one of the organisms. These are the genes that either do not have a homologous counterpart in 

the other organism or that acquired a co-expression behavior similar to that of the core part in 

only one of two species (Perez and Groisman 2009). Because a module in one species can be 

linked to more counterparts in the other species (Figure 2.3), COMODO can be used to study 

both conservation, but also divergence in expression which makes it optimally suited to be used 

with a many-to-many homology map. 

2.3.2. IDENTIFYING EVOLUTIONARY CONSERVED MODULES BETWEEN E. COLI AND B. 

SUBTILIS 

We applied our methodology to study the degree to which co-expression modules have been 

conserved between two bacterial model organisms E. coli and B. subtilis. For both species we 

used cross-platform microarray compendia covering a wide range of experimental conditions 

(see 2.2.9). Many-to-many homology relations amongst the genes of the two species were 

defined based on COG (Tatusov, Koonin et al. 1997). Applying our method resulted in the 

identification of 82 conserved module pairs in E. coli and B. subtilis that were linked through a 

statistically significant set of homologous genes. These linked groups are called matching 

module pairs and they represent processes for which the co-expression is at least partially 

conserved over the wide evolutionary distance that separates E. coli from B. subtilis. Figure 2.3 

gives an overview of these matching, evolutionary conserved module pairs. 
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To estimate the potential number of false positives amongst our detected conserved module 

pairs, we applied COMODO to a randomized dataset from which we did not expect to find any 

meaningful results (see 2.2.7). The False Discovery Rate (FDR) estimated as the mean number 

of significantly detected matching module pairs in random expression compendia was 2.24. In 

general the chi-square statistic values obtained in the randomized datasets were well below the 

ones observed for the true dataset (t-test, P < 0.05), implying that the size of the core to the 

variable part is much larger in modules obtained from the true dataset than in those obtained 

from the random dataset.  

In those 82 conserved module pairs, on average 60% of the genes constitute the core part and 

40% the variable part. Of those genes in the variable part, 33% did not have a homologous 

counterpart in the organism of comparison. The other 67% found in the variable part with a 

homologous counterpart in the other organism could correspond to species-specific members of 

the regulon represented by the core part. A gene assigned to the core part of one module can also 

be found in the variable part of another module as the same gene can belong to different regulons 

that do not completely coincide between species.  For instance, EM40-BM40 contains in its core 

part the orthologous operon nrdEFIH known to be regulated both in E. coli and B. subtilis by 

NrdR (Hartig, Hartmann et al. 2006; Torrents, Grinberg et al. 2007). In EM59-BM59, containing 

a Fur-dependent conserved core the same nrdEFIH is in the variable part of the E. coli module. 

This confirms previous knowledge on nrdEFIH being Fur-dependent in E. coli, but not in B. 

subtilis (at least not yet observed) (Hartig, Hartmann et al. 2006).   

By using a stringent filtering procedure and only maintaining matching module pairs for which 

the core part was relatively larger compared to the variable part, we focused on the processes for 

which co-expression behavior was conserved between E. coli and B. subtilis. The number of 

genes in the evolutionary conserved modules varies largely and ranges between 2 to 100, with a 

large overrepresentation of small modules (e.g. 28 module pairs containing 2 to 5 genes only in 

both matched modules). Smaller modules usually correspond to single operons, subunits of a 

protein complex or constitute parts of larger biosynthetic pathways. As the size of the conserved 

modules increases, the modules cover larger pathways. A complete description of the modules 

can be found in the Table S2.1.  
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In total 30 of our 82 conserved modules are linked by a single homologous operon: 14 of those 

by „an orthologous operon‟ (according to the definition of operon orthology described in 2.2.13) 

and 16 by a homologous, but functionally related operon. As by definition genes within an 

operon (as an estimate of a transcription unit) will be co-expressed, these matching modules, 

although correctly identified by our method do not contribute more information on the functional 

relation between the matching operons than the one derived from sequence analysis. Therefore, 

extrapolation of the operon function between E. coli and B. subtilis should be treated with care 

for those modules. 

2.3.3. ASSESSING THE CONSERVATION OF CO-EXPRESSION WITHIN HOMOLOGOUS 

OPERONS 

As the operon structure is an important mechanism to guarantee the conservation of co-

expression behavior between genes within a species (Snel, van Noort et al. 2004; Okuda, 

Kawashima et al. 2005; Okuda, Kawashima et al. 2007), we wanted to assess as a validation of 

our methodology to what extent homologous operons will be found in the core parts of our 

conserved modules. When using the COG based definition of homologous operons, we could 

retrieve 289 pairs of E. coli and B. subtilis operons that share at least 2 homologous genes (see 

2.2.13). Based on sequence homology several E. coli operons were mapped to at least two 

different operons in B. subtilis that mutually do not share any gene (this was also observed when 

the comparison was performed the opposite way around i.e. when B. subtilis operons were 

mapped to those of E. coli). Of these 289 E. coli operons with a homologous counterpart in B. 

subtilis, 91 were found as linkers between conserved modules (i.e. 31% recovery rate), resulting 

in a total of 135 links between conserved modules as some operons can occur in more modules. 

Of those 135 linking operons, in 61 cases all the genes of the linking operons were found in the 

core part, in 33 cases one of the operon genes of the linking operons was missing and in 41 cases 

at least two genes of the linking operons were missing from the core part. Although in some 

cases lacking some of the operon genes in the core part might point towards differentiation in 

regulation, for instance, by means of intra-operonic promoters, it seemed that in many cases it 

was the last operon gene that was no longer found to be co-expressed with the rest of the operon 

genes in the core parts of the linking modules. This observation can be explained by the 
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increased degradation of the mRNA at the 3‟ end of the transcript (Grunberg-Manago 1999). 

When using a more stringent definition of homologous operons (see 2.2.13), the fraction of E. 

coli operons with a counterpart in B. subtilis that was found in the core part (meaning that their 

genes were found as linker genes in conserved modules) was much higher (50 of the 100 linking 

operons, i.e. 50% recovery rate). This higher recovery rate might be partially due to the fact that 

this more strict mapping as an estimate of orthologous operons results in linking operons that 

mutually share more genes than with the previously used COG-based mapping (as an estimate of 

homologous operons). When more genes are shared between the linking operons, the chance to 

find a module pair that meets our selection criteria (sharing at least two co-expressed linker 

genes) can be met more easily. On the other hand, it definitely also reflects that many of the 

operons that can be linked through a COG mapping are not each other‟s functional counterparts.  

We also found that a considerable part of the orthologous operons could not be retrieved in 

conserved co-expression modules as their composing genes were not found to be co-expressed in 

E. coli or B. subtilis, probably due to the still incomplete sampling of conditions in the used 

expression compendia (this was the case for 50 operon pairs defined using the more stringent 

definition and for 198 of the conserved operon pairs defined with the less stringent definition). 

So the 50% recovery rate of orthologous operons (as well as the 31% recovery rate for the 

homologous operons) in our module cores stems from the incompleteness of the used expression 

compendia rather than from a bias in the methodology. 

2.3.4. OPTIMIZED CO-EXPRESSION THRESHOLD IS MODULE-DEPENDENT 

Maximizing the statistical significance of the number of linking homologs in the core of a 

conserved module pair relative to the module sizes in each of the respective species allows us to 

select in each of the species the modules that best match the conserved processes reflected by the 

core. Depending on the type of biological process that is conserved in the core the optimal 

correlation thresholds for the modules in each of the individual species can differ considerably. 

This is illustrated in Figure 2.4 where the selected correlation coefficient differs largely between 

the modules of the different conserved pairs. 
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Globally the correlation thresholds for the E. coli modules were lower than those of the 

corresponding B. subtilis modules, most probably because the E. coli compendium is larger and 

contains more conditions than the one of B. subtilis. When investigating per organism the 

relation between the used correlation threshold and the number of genes in a selected module, we 

observed that it is not only the number of genes within a module that determines the selected 

correlation threshold, but that there is also a clear influence of the type of process the module 

reflects (Figure 2.4). Housekeeping processes such as ribosomal metabolism and translation 

(EM34_35_36-BM34_35_36) were found with very strict thresholds despite containing a 

relatively high number of genes, while for more specialized processes such as e.g. iron 

acquisition (EM59-BM52_53_59) and motility and flagella synthesis (EM32-BM32) the 

opposite was observed (Figure 2.4). This can be related to the number of compendium conditions 

in which genes are expected to be co-expressed. When using a distance measure that by default 

considers all conditions (such as Pearson correlation), genes that tend to be active under all 

conditions (e.g. housekeeping genes) will be found co-expressed with a more stringent 

correlation threshold than genes that are only co-expressed under a subset of the sampled 

conditions (e.g. those that belong to the more specialized modules). This observation underlines 

the need for a module- and dataset-dependent determination of the co-expression threshold or 

clustering parameter that determines the final module sizes during the co-clustering of 

heterogeneous expression compendia. 
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Figure 2.3. Overview of evolutionary conserved modules between E. coli and B. subtilis. A total of 82 

evolutionary conserved module pairs of which the matching modules (connected by solid lines) were linked through 

a statistically significant set of homologs between E. coli and B. subtilis are shown. Node sizes are proportional to 

the number of co-expressed genes in the modules (indicated in parenthesis) and module ids correspond to those used 

in Table S2.1. Modules showing an overlap of 30% to 75% of their genes within each species were connected by 

dashed lines. Modules that show an overlap of at least 75% in their gene content were merged.  Modules to which a 

similar functional category was assigned were grouped (as indicated by the different panels. Panels with the same 

color are involved in a similar general process e.g. metabolism).  
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Figure 2.4. Degree of correlation within a co-expression module versus the number of genes it contains. 

Number of genes: refers to the total number of genes in the module (adding up genes in core and variable parts). A 

total of 82 evolutionary conserved modules between E. coli (circles) and B. subtilis (squares) are plotted. In each 

case the color used to represent a module corresponds to the color scheme in Figure 2.3 to denote the functional 

class (or group of related functional classes) a module was assigned to.   

 

2.3.5. COMPARISON WITH SCSC, A PROBABILISTIC CO-CLUSTERING APPROACH 

We compared the performance of COMODO with the recently developed co-clustering approach 

SCSC of which the implementation is publicly available (Cai, Xie et al. 2010). We observed that 

the intrinsically different way in which the co-clustering is performed by respectively SCSC and 

COMODO affects the characteristics of the detected matching module pairs. SCSC partitions the 

data in each species in a predefined number of modules (Zarrineh, Fierro et al.). This results in 

sets of loosely connected modules of which the sizes and co-expression level largely depend on 

the used dataset pre-filtering and the predefined cluster number. In addition, there is no guarantee 

that the homologous genes that were added to the modules are amongst the most tightly co-

expressed genes in a module. This, in combination with the fact that the identified modules 
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should only be loosely connected by homologs to be identified as a matching pair  complicates 

distinguishing true matching module pairs from spurious matching ones when using SCSC in 

combination with a many-to-many homology map. 

COMODO in contrast chooses the number of genes in the modules of either species to maximize 

the enrichment of linking homologs relative to the number of variable genes. This criterium 

results in adapting the size of the modules to the specificities of the conserved processes:  as a 

result COMODO can cover a wide range of module sizes without compromising the quality of 

the modules (reflected by a good co-expression level). In addition homologous linker genes are 

by definition as tightly co-expressed as the rest of the genes in a module. This, together with a 

selection of the most significantly matching module pairs based on the chi-square statistic 

facilitates prioritizing the most significant matching module pairs. However, because of this 

bottom up strategy COMODO might unlike SCSC underestimate in the individual species the 

true sizes of the pathways represented by the cores. 

2.3.6. EVOLUTIONARY CONSERVED PROCESSES AND ESSENTIAL GENES 

Figure 2.3 gives an overview of the evolutionary conserved modules ordered within a species 

according to their overlap in genes. Partially overlapping modules (indicated by dashed lines) 

were assigned to the same functional category. Biological processes involved in carbohydrate 

metabolism, amino-acid metabolism, energy metabolism, nucleotide metabolism, lipid 

metabolism, translation and ribosomal metabolism, motility and flagella synthesis, DNA repair, 

cell shape and division, protein folding (heat shock), DNA-binding (cold shock), signal 

transduction, cofactors and vitamins, and iron acquisition all contain genes for which the mutual 

co-expression behavior was found to be conserved between E. coli and B. subtilis. As most of 

these processes with a conserved co-expression behavior are primary processes, we wondered to 

what extent they contained essential genes, defined as the minimal gene sets required to sustain a 

living cell. Essential genes are believed to be widespread and highly conserved during evolution 

(Gerdes, Scholle et al. 2003; Kobayashi, Ehrlich et al. 2003). Previous studies identified a total 

of 712 essential genes in E. coli and 271 genes in B. subtilis (Zhang, Ou et al. 2004; Zhang and 

Lin 2009).  Of those, 209 were found to have a counterpart in both species (as homologous gene 

pairs). 48 (23%) of these essential homologous gene pairs were found as core genes in our 
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conserved modules. The majority of them (37 pairs) belonged to the large conserved module pair 

involved in translation and ribosomal metabolism. Another 17% of the homologous essential 

gene pairs appeared in conserved modules that were linked by a smaller number of conserved 

core genes than the minimum that was required in our selection (i.e. in the module pairs that 

were linked more weakly by homologous genes pairs and did not pass our stringent selection 

criteria). For the remainder of the essential genes that were not found in any module, we found 

that they exhibited a lower degree of co-expression with other genes in the genome than was 

observed on average (indicating that most likely they are not co-expressed with any other gene in 

our dataset).  

In addition, some auxiliary processes not generally considered as essential (Kobayashi, Ehrlich et 

al. 2003) exhibit a highly conserved co-expression behavior between E. coli and B. subtilis. 

Remarkably is the group involved in flagella synthesis and motility (EM32-BM32) which 

recapitulated 68% of the previously characterized motility genes of E. coli and 78% of the genes 

known to be related to motility in B. subtilis (Rajagopala, Titz et al. 2007). The majority of the 

genes known to be involved in flagella synthesis with a homologous counterpart in both E. coli 

and B. subtilis were found in the core part (50 homologous links including 34 linked genes in the 

core part out of 54 total module genes in E. coli (63%) and 36 linked genes in the core part out of 

48 total module genes in B. subtilis (75%)). The variable part then mainly consisted of genes 

occurring in one of the two species only (14 out of 20 in E. coli (70%) and 15 out of 22 in B. 

subtilis (68%)).  

Another large group is the one involved in iron acquisition (EM59-BM52_53_59) which 

contains 70% of the E. coli and 65% of the B. subtilis Fur targets identified by Ollinger et al. 

(Ollinger, Song et al. 2006). Unlike motility and flagella synthesis case, here most of the known 

Fur targets of E. coli and B. subtilis were not found in the core part. The core part only consists 

of 26 homologous links (13 out of 52 total module genes in E. coli (25%) and 18 out of 32 total 

module genes in B. subtilis (56%)) which is a relatively small fraction compared to the large 

variable parts. The variable part of the E. coli module contained in this case  28 out of the  39 

genes (72%) without homologous counterpart in B. subtilis and the variable part of B. subtilis 
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had 7 out of the 14 genes (50%) without counterpart in E. coli. This indicates that the Fur 

regulon largely changed during evolution to adapt to the specific needs of each organism. 

2.3.7. REGULATION OF EVOLUTIONARY CONSERVED MODULES 

For all conserved module pairs depicted in Figure 2.3, the co-expression behavior of their genes 

has largely been conserved during evolution. This does, however, not necessarily mean that also 

the regulatory mechanism that is responsible for this co-expression behavior is conserved. To 

study their regulatory mechanisms, we listed all modules with conserved co-expression behavior 

and assigned to each module the corresponding transcription and sigma factors by calculating the 

modules‟ enrichment in genes for a given transcription or sigma factor, according to RegulonDB 

or DBTBS (see Table S2.1). We used the Reciprocal Smallest Distance approach (RSD) (Wall, 

Fraser et al. 2003) to identify the best matching transcription and sigma factors pairs between E. 

coli and B. subtilis. We then determined whether modules with a conserved co-expression 

behavior were regulated by matching transcription and sigma factors in both organisms. By 

doing so, we were able to divide the evolutionary conserved module pairs into three main groups 

according to the sequence similarity of the transcription and/or sigma factors that were assigned 

to each of them. 

The first group comprises conserved module pairs regulated by reciprocally best matching 

transcription or sigma factor pairs. To this group belonged 14 of the 82 conserved modules pairs 

regulated by the pairs NrdR/NrdR (EM39_40-BM39_40), Fur/Fur (EM51_52_53_55_57_58_59-

BM51_52_53_55_57_58_59), LexA/LexA (EM67-BM67), BirA/BirA (EM21-BM21) and 

ArgR/AhrC (EM9_10_79-BM9_10_79) (where the notation corresponds to the E. coli gene/B. 

subtilis gene). Each of these best matching transcription factors pairs have previously been 

identified as functionally conserved counterparts between E. coli and B. subtilis (with Fur/Fur, 

LexA/LexA, and ArgR/AhrC being direct orthologs and BirA/BirA being a best matching 

xenolog pair as pinpointed by Price et al. (Price, Dehal et al. 2007)). Moreover, the best 

matching transcription factors pairs identified by Price et al. (Price, Dehal et al. 2007) as non-

functional counterparts were never found to regulate our conserved modules, further confirming 

the power of using co-expression in inferring functionality. Also in this group we found the 
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conserved modules regulated by two orthologous sigma factor pairs: FliA/SigD (EM32-BM32) 

and RpoN/SigL (EM79-BM79).  

A second group of conserved module pairs appeared to be regulated by transcription or sigma 

factors showing a homologous link, as predicted by COG, but not being best reciprocal matches.  

In this group we found four transcription factor pairs: ArcA/ResD (EM24-BM24), FruR/CcpA 

(EM25-BM25), GalR/CcpA (EM61-BM61), and Gals/CcpA (EM61-BM61) that could be 

assigned to three conserved module pairs. For the couple ArcA and ResD it is indeed known that 

they both are sensing aerobic versus anaerobic conditions (Vazquez, Freyre-Gonzalez et al. 

2009). They both belong to large gene families for which the evolutionary history is hard to 

resolve and thus inferring functionality from merely sequence homology can be misleading (Sun, 

Sharkova et al. 1996). Just like FruR, GalR and GalS in E. coli, CcpA in B .subtilis is still 

involved in the regulation of carbon sources, but evolved towards a more global function than its 

homologous counterparts in E. coli. Indeed CcpA is known to be the non-homologous functional 

counterpart of Crp (Babu, Teichmann et al. 2006; Vazquez, Freyre-Gonzalez et al. 2009). 

Regarding the sigma factors regulating the modules in this group we observed the pairs: 

RpoD/SigA (EM1_18_32_39_43_81_82-BM1_18_32_39_43_81_82), RpoH/SigA (EM44_45-

BM44_45), and RpoS/SigA (EM62_63-BM62_63).  According to the COG homology definition, 

the house keeping sigma factor SigA of B. subtilis (Paget and Helmann 2003) has three 

homologs in E. coli, namely RpoD, RpoH, and RpoS. These multiple sigma factor copies have 

resulted in a subfunctionalization in E. coli of the global role executed by the sigma factor SigA 

in B. subtilis (Paget and Helmann 2003; Wade, Roa et al. 2006). This is clearly visible from our 

results where we found different combinations of respectively RpoD, RpoH and RpoS being 

responsible for the regulation of at least 12 E. coli modules that were paired with an equal 

number of B. subtilis modules regulated by SigA. 

In the third group of conserved module pairs we found those cases where the assigned 

transcription regulators do not show any significant sequence similarity with each other, but they 

appear to regulate genes with similar function in both organisms.  For 65 of the 82 conserved 

module pairs, at least one of the assigned transcription factors was different between E. coli and 

B. subtilis (summarized in the Table S2.1).  For example, the master regulators FlhC and FlhD 
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responsible for regulation of motility and flagella synthesis in E. coli do not have a homologous 

counterpart in B. subtilis, while the co-expression behavior of their cognate modules  is 

conserved (EM32-BM32). We can thus assume that a non-homologous functional counterpart, 

such as the recently proposed SwrA takes over the mechanism of regulation in B. subtilis 

(Calvio, Celandroni et al. 2005; Calvio, Osera et al. 2008; Smith and Hoover 2009). Indeed 

SwrA is known to regulate SigD in B. subtilis as FlhC and FlhD do in E. coli (Hamze, Julkowska 

et al. 2009).  

Additional striking examples are the pairs of conserved modules in E. coli and B. subtilis 

regulated respectively by PurR/PurR (EM16_17_18-BM16_17_18), TreR/TreR (EM48-BM48), 

CysB/YwfK (EM2-BM2), MalT/AbrB (EM47-BM47). A complete list of such non-homologous 

transcription factors that regulate paired co-expression modules in E. coli and B. subtilis can be 

found in Table S2.1. PurR is known in both E. coli (Rolfes and Zalkin 1988) and B. subtilis 

(Weng, Nagy et al. 1995) to respond to purine excess by repressing genes of the inositol 

monophosphate (IMP) to adenine monophasphate (AMP) conversion pathway. TreR on the other 

hand controls the expression of the trehalose utilization operon in both species and its activity is 

known to be dependent on the cAMP gene activation protein (CAP) in both E. coli and B. 

subtilis (Horlacher and Boos 1997). Both pairs of similarly named transcription factors 

PurR/PurR and TreR/TreR constitute well documented cases of parallel evolution: despite being 

each other‟s functional counterparts in both E. coli and B. subtilis and being responsible for the 

regulation of an almost conserved regulon, the proteins in each pair do not exhibit any significant 

sequence homology, nor any similarity in their molecular mode of action (Schock and Dahl 

1996; Horlacher and Boos 1997; Fukami-Kobayashi, Tateno et al. 2003). 

In contrast to these well documented cases no studies exists that focus on the direct functional 

comparison of the pairs CysB/YwfK and MalT/AbrB in respectively E. coli and B. subtilis. The 

functional relation between CysB/YwfK was supported by the fact that both regulators belong to 

the same LysR-type of activators and they do show a low level of sequence homology (28% of 

sequence homology) (Guillouard, Auger et al. 2002)).  Also the regulator pair was assigned to 

conserved modules involved in cysteine biosynthesis, a role which is well documented for CysB 

and YwfK.  Both regulators are also related to sulfate transport (Sekowska, Kung et al. 2000; 
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Guillouard, Auger et al. 2002). Phenotypes of E. coli cysB mutants were found to be very similar 

to those of B. subtilis ywfK mutants (Guillouard, Auger et al. 2002). The conserved modules 

regulated by the MalT/AbrB pair were found to be in involved in maltose metabolism. In E. coli 

MalT is known to regulate seven operons of the maltose regulon (Danot, Vidal-Ingigliardi et al. 

1996) that are subjected to catabolite repression (Eppler, Postma et al. 2002). For AbrB the direct 

role on maltose regulation is not reported. Instead AbrB is known to be a dual regulator that 

regulates a plethora of genes during starvation-induced processes such as those involved in 

sporulation, production of antibiotics and degradative enzymes (Robertson, Gocht et al. 1989). 

The fact that AbrB has been found to modulate the cAMP-CAP system by competing with 

catabolite repressor proteins during growth on carbon sources that induce partial catabolite 

repression, (Fisher, Strauch et al. 1994) points towards a possible functional link between MalT 

and AbrB.  

2.3.8. DIFFERENTIATION IN EXPRESSION BY DIVERGENCE OF REGULATION 

We can also find modules containing sets of genes, co-expressed in one species that got split up 

in different co-expression modules in the second species (Figure 2.5). We identified such gene 

sets as follows: a single module in the first organism should be linked to two different modules 

in the second organism of which the respective core parts do not share more than 30% of their 

genes. Such cases might point towards a condition-dependent differentiation in regulation that is 

observed in one species, but not in the other. Such differentiation in regulation seems to occur, 

for instance, for heat shock genes (EM44_45-BM44_45), most of which are chaperones and 

proteases known to protect cells against damage induced by protein unfolding. These genes were 

found to be  co-expressed in E. coli as was also previously observed (Rasouly, Schonbrun et al. 

2009). In B. subtilis the corresponding genes, all known to be regulated by HrcA are split up in 

two different modules (Schumann 2003). This observation indicates that HrcA induces a 

difference in expression behavior, depending on the type of transcription factors it is combined 

with. A potential interacting partner of HrcA could be CtsR, the transcription factor known to 

regulate the gene clpE (Schumann 2003) that belongs to one of the two evolutionary conserved 

modules in B. subtilis. Note that HrcA seems not to have a homologous counterpart in E. coli. 
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Figure 2.5. Differentiation in expression. The E. coli module EM44_45 (left panel) is covered by two different 

modules BM44 and BM45 in B. subtilis (right panel). Genes that belong to the same module are displayed in a gray 

box and homology relations are denoted by gray edges; numbers on the edges indicate Smith-Waterman alignment 

scores (z-values). Shaded areas in the right heatmap correspond to conditions where both B. subtilis modules do not 

overlap. 

 

2.3.9. EXPRESSION BEHAVIOR OF LINKER GENES 

The fact that the identification of evolutionary conserved module pairs was based on a many-to-

many homology map allowed us to study the complex evolutionary history of several of the 

linker genes (Table S2.2).  

At first we focused on linker genes that all showed a mutual homology. We found several of 

those linker genes modules, being connected by several one-to-many or many-to-many relations: 

e.g. paired modules that contained at least one gene in E. coli with multiple homologous 

counterparts in B. subtilis each of which was found in a different conserved module or the 

opposite way around. Those genes for which we found a divergence in mutual co-expression 

behavior between the homologous genes within one species could be an indication of their 

functional divergence as it is known that multiple copies of a particular gene in one species, 

resulting from horizontal gene transfer or duplication events tend to disappear unless they evolve 

into non-redundant copies by acquiring novel functions (neo-, subfunctionalization) (Rastogi and 

Liberles 2005). We found in total 19 cases of potential neo- and/or subfunctionalization (Table 

S2.2). For instance, the duplicated genes in E. coli with ribonucleotide reductase activity (Figure 

2.6): each gene of the duplicated pairs nrdA/nrdE and nrdE/nrdF belongs to a different module 

(respectively EM39-BM39 and EM40-BM40), while the homologous counterparts of these genes 
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in B. subtilis (being nrdE and nrdF) belong to one single co-expression module. Although we 

found NrdR as the responsible regulator for both sets of paralogous ribonucleotide reductases 

genes in E. coli, genes within a duplicated pair exhibit a clear difference in expression behavior. 

Moreover, all three co-expressed genes of the B. subtilis conserved module (nrdEF-ymaA) were 

reported as essential genes (Kobayashi, Ehrlich et al. 2003), while their most closely related 

homologs (the E. coli nrdEF genes) were not (Zhang, Ou et al. 2004; Zhang and Lin 2009), but 

instead essentiality in E. coli was taken over by the less related homologs (nrdAB), reflecting a 

clear case of sub/neofunctionalization. Another example of complex transcriptional evolution of 

homologous gene families relates to the family involved in oligopeptide and dipeptide ABC 

transport. Figure 2.7 shows how in both organisms homologous genes are co-expressed in 

different conserved modules. A large fraction of homology links (indicated by blue, green and 

red lines) occur between members of the DppBCDF system in E. coli with members of the Opp 

and App transport system in B. subtilis. In each case, a gene in E. coli is linked to two or more 

genes in B. subtilis covering more than one co-expression module. For example, the E. coli gene 

dppD (EM26_27) is linked to respectively B. subtilis oppD (BM26_28) and dppD, appD 

(BM27_29_30). In E. coli dppBCDF genes form a dipeptide inner membrane ATP-binding 

cassette transporter involved in the uptake of heme iron (Letoffe, Delepelaire et al. 2006). In B. 

subtilis both the oligopeptide transport system  Opp (Perego, Higgins et al. 1991) and the AppA 

system (Koide and Hoch 1994) are involved in  competence development and sporulation with 

the App system being able to substitute the Opp system. Although both systems being 

functionally related in B. subtilis, they exhibit clear differences in their expression behavior 

pointing towards at least some further specialization (Figure 2.7). 

For another set of homologous linker genes (16 cases) we found the multiple copies of the gene 

family within one species in the same module, indicating that their expression behavior was 

retained as a result of either recent multiplication events that did not yet result in further 

functional divergence, or the need of multiple gene copies for dosage effect. 

In addition to these linker genes that all belonged to the same COG, we also found few examples 

(5 cases) where genes not exhibiting any mutual homology in one organism (not belonging to the 

same COG) were linked to the same gene in the other organism, implying that here two protein 



43 

 

domains occurring in one organism in separate genes got fused in the other organism into a 

single gene. One case for which the fusion was also supported by the literature was the linking 

gene set  purL/purL and purL/purQ (Enright, Iliopoulos et al. 1999).  The most interesting cases 

were those where the genes containing the separate or unfused domains belonged to different co-

expression modules (frwB/manP and frwC/manP) as this indicates that there is a functional 

constraint to keep these genes unfused so that they can be differentially expressed. 

 

 

 

 

 

Figure 2.6. Expression divergence of duplicated genes in E. coli.   Expression behavior of genes in modules 

EM39 (above the line in the heatmap) and EM40 (below the line in the heatmap) in E. coli (left panel). Shaded areas 

correspond to conditions not shared between modules. Homologous genes to the B. subtilis nrdEF operon (module 

BM39_40) were found in two different co-expression modules in E. coli (modules EM39 and EM40).  Each module 

is surrounded by a gray box and homology relations are denoted by gray lines (right panel). Numbers over the lines 

represent Smith-Waterman alignment scores (z-values). 
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Figure 2.7. Visualization of the conserved module pairs EM26_27_28_29_30-BM26_27_28_29_30 (Table S2.1) 

consisting of the conserved modules involved in oligopeptide and dipeptide transport. Edges indicate 

homologous gene pairs (a color code is used to display the degree of homology (measured by the z-value of the 

Smith-Waterman alignment score). Heatmaps next to the modules illustrate the expression values of the 

corresponding genes for the selected conditions.   

 

2.3.10. SENSITIVITY TOWARDS THE CHOICE OF THE PRESPECIFIED MAXIMAL CO-

EXPRESSION STRINGENCY VALUE  

Seed modules were identified by selecting groups of genes that showed locally a higher mutually 

co-expression level than their neighbors on the first subdiagonal of gene-gene threshold matrices 

(Figure 2.2). To prevent that we would obtain many very small seed modules containing only 

two genes, we set in the gene-gene threshold matrix all values larger than a prespecified maximal 

co-expression stringency to this value. Below we show how the choice of this prespecified 

maximal co-expression stringency value affected the results of our co-clustering procedure. We 

ran COMODO with 9 different prespecified maximal co-expression stringency values of 0.5, 

0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 applied on respectively the E. coli and B. subtilis gene-

gene threshold matrices. This means that for a prespecified maximal co-expression stringency 
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value of e.g. 0.5 all discretized Pearson correlation values in the gene-gene threshold matrix of 

respectively E. coli and B. subtilis that are larger than 0.5 are set to 0.5. For filtering we removed 

redundant module pairs (different matching module pairs that share 75% of homologous linker 

genes) and matching module pairs with chi-square value below 470.  

Figures 2.8 and 2.9 show how the choice of the prespecified maximal co-expression stringency 

value affects the number of detected modules and gene coverage (genes covered by the identified 

matching modules pairs). Choosing a non-stringent prespecified maximal co-expression 

stringency value will result in fewer modules that by definition will be more loosely co-

expressed, while choosing a more stringent value will result in more modules being more tightly 

co-expressed. As we were interested in the latter type of modules, a relatively stringent 

prespecified maximal co-expression stringency value is preferable. In addition, Figure 2.8 shows 

that gene coverage and the number of homologous pairs is stable applying the range of 

prespecified maximal co-expression stringency values from 0.7 to 0.9. 

 

 

 

 

Figure 2.8. Sensitivity of the COMODO towards applying a range of different prespecified maximal co-

expression stringency values. A. Number of final matching module pairs obtained by applying different values of 

the prespecified maximal co-expression stringency value.  B. Number of homologous gene pairs and genes of either 

species covered by the obtained matching modules pairs.  
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Figure 2.9. Comparison of COMODO output obtained with different prespecified maximal co-expression 

stringency values. These heatmaps compare the results of different COMODO runs obtained by applying the 

prespecified maximal co-expression stringency values indicated on respectively the X- and Y-axis. A. Overlap in 

core part: assesses to what extent the matching module pairs obtained by applying different prespecified maximal 

co-expression stringency values cover similar cores. Cores of different matching module pairs are considered to 

overlap if they are at least 75% similar in gene content. Each entry in the heatmap corresponds to the number of 

cores similar between runs obtained by applying respectively the prespecified maximal co-expression stringency 

values indicated on the X- and Y-axis, divided by the total number of cores obtained by the run with the prespecified 

maximal co-expression stringency value on the Y-axis. B. Overlap in homologous gene coverage: assesses the 

overlap in homologous gene pairs covered by matching module pairs obtained with different prespecified maximal 

co-expression stringency values. The entry in the heatmap corresponds to the total number of homologous gene pairs 

found in common in the cores of the matching module pairs obtained by applying respectively the prespecified 

maximal co-expression stringency values indicated on the X- and Y-axis divided by the total number of homologous 

gene pairs obtained by applying the prespecified maximal co-expression stringency value on the Y-axis. C. Overlap 

in E. coli gene coverage: assesses the number of genes in E. coli in common between matching modules pairs 

obtained with different prespecified maximal co-expression stringency values. The entry in the heatmap corresponds 

to the total number of E. coli genes found in common in the matching module pairs obtained by applying by 
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applying respectively the prespecified maximal co-expression stringency values indicated on the X- and Y-axis 

divided by the total number of genes obtained by applying the prespecified maximal co-expression stringency value 

on the Y-axis. D. Overlap in B. subtilis gene coverage: similar as C but for B. subtilis. 

 

 

Figure 2.9 shows that in the range from 0.7 to 0.9 of prespecified maximal co-expression 

stringency value, the results of COMODO are quite robust against the choice of this value. 

However, setting this value too stringent might result in losing some modules as the seed 

modules might not contain a sufficient number of homologous linkers to be further extended. 

The results obtained by applying different less stringent prespecified maximal co-expression 

stringency values are less comparable as the proper threshold combination that gives rise to the 

best matching module pairs (with the highest chi-square values) can no longer be encountered. 

 

2.4. DISCUSSION 

COMODO is a method for cross-species co-clustering. It relies on the use of large scale co-

expression compendia for each of the species to be compared. By using a bottom up approach 

and by exploiting homology relations to identify the optimal size and degree of co-expression in 

each of the modules that constitute a conserved module pair, COMODO allows identifying in 

each of the species the modules that best reflect the processes that are conserved in the core. The 

strength of COMODO relates to its ability of automatically prioritizing best matching module 

pairs that can cover a large range of different co-expression levels and module sizes. This feature 

allows the methodology to adapt to closely or evolutionary distant organisms and to identify both 

processes that are fully or partially conserved across evolution. Moreover, because COMODO 

can be used in combination with a many-to-many homology map, it is suitable to study 

functional relations between linker genes that mutually exhibit complex homology relations.  

Applying COMODO to large scale expression compendia allowed comprehensively mapping the 

processes with conserved co-expression behavior in the divergent bacterial model organisms E. 

coli and B. subtilis. In contrast to previous studies Price et al. (Price, Huang et al. 2005) and Van  
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Noort et al. (van Noort, Snel et al. 2003), COMODO does not use any prior information on 

previously documented regulon structure or regulatory information and can thus map in an 

unbiased way modules with conserved co-expression between both species. Because COMODO 

adapts its module sizes in each species to maximize the relative number of linking homologs, it 

will not only identify conserved operons for which obviously the conserved co-expression signal 

is most pronounced, but it will also detect if they exist conserved modules comprising multiple 

operons. 

As it was previously shown, that inferring true orthology is complicated by duplications and 

horizontal gene transfer (Price, Dehal et al. 2007), we combined the COG many-to-many map 

with our expression compendia to infer the most likely functional counterparts between E. coli 

and B. subtilis. Of the 5459 COG links between E. coli and B. subtilis, 355 were found in 

conserved module pairs. Of those 355 COG links that could be mapped to conserved module 

pairs, 149 represented reciprocal best hits. Those probably correspond to true functional 

counterparts. The other 206 most often were links of large gene families that got sub- or 

neofunctionalized. This figure also indicates that COG largely overestimates the number of true 

functional relations, although we cannot completely rule out that some of the functional links 

were not covered due to a lack of certain conditions in the expression datasets.  

In general we found that most of the conserved modules were involved in elementary cellular 

processes needed to support bacterial cell duplication and inheritance of the genetic information, 

cell division and the provision of energy (Kobayashi, Ehrlich et al. 2003). The cores of these 

modules contained regulon members that were indeed shown by comparative studies to occur 

over a wide range of bacterial species (Babu, Teichmann et al. 2006; Lozada-Chavez, Janga et al. 

2006). Modules involved in transcription, translation, and central carbon metabolism contained 

genes that were previously shown to be differential expressed during the global response to 

glucose in both B. subtilis and E. coli (Vazquez, Freyre-Gonzalez et al. 2009). Despite covering 

mainly elementary processes our conserved modules contained relatively few essential genes. 

This, together with the fact that the conserved modules covering elementary processes were 

rather small (restricted to a single or to maximally a few transcription units, except for those 

involved in ribosomal metabolism and translation) confirms the previous suggestion that 
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essential processes seem not to be primarily coordinated by the modulation of gene expression 

(Kobayashi, Ehrlich et al. 2003).  

In addition to these smaller modules we also found larger conserved module pairs that were 

mainly involved in iron acquisition (Fur regulon) and flagella synthesis. While both processes 

are fairly conserved at the level of their gene content, mainly the process involved in iron 

acquisition has underwent major changes in regulon membership in either species. 

The mechanism by which genes were transcriptionally co-regulated seemed to be much less 

conserved than their co-expression behavior itself: while the co-expression behavior of complete 

orthologous regulons was maintained over evolution, the transcription factors responsible for 

their regulation were only conserved in few cases as was also observed by Price et al. (Price, 

Dehal et al. 2007). However, in most cases the ortholog of a particular transcription factor known 

to be responsible for the co-expression behavior in one species did not exist in the other species, 

suggesting that the role of the disappeared transcription factor must have been taken over by an 

alternative, yet unknown but non-homologous transcription factor. Furthermore we observed that 

the variable part in E. coli or B. subtilis of the conserved modules largely consisted of genes 

specific for one organism, but not occurring in the other one, indicating that bacteria are also 

flexible in adding new members to an existing regulon (Babu, Teichmann et al. 2006; Lozada-

Chavez, Janga et al. 2006; Price, Dehal et al. 2007). These observations suggest that despite the 

extreme potential of network rewiring, prokaryotes are extremely robust in preserving the co-

expression behavior of some elementary pathways. Probably the operon structure contributes 

largely to this robustness against rewiring by maintaining a minimal level of co-expression 

(Lemmens, De Bie et al. 2009). 

 

 

 

 

 

 

 



50 

 

 

CHAPTER 3 

EXTENDING COMODO TO THREE ORGANISMS: APPLICATION ON 

S. ENTERICA 
 

3.1. INTRODUCTION 

One of the key issues in system biology is to identify functional orthologous genes. These 

functional orthologous not only share sequence ancestry, but also perform the same function. 

Microarray expression data is a genome-scale high-throughput experiment which can identify 

genes with similar function with high accuracy (Chikina and Troyanskaya 2011) as genes with 

similar function tend to have more similar expression profiles. 

In the previous chapter we introduced COMODO as a methodology which can detect co-

expression conservation across two different organisms. As we mentioned in previous chapter, 

COMODO is initialized with co-expressed seeds or seed modules obtained in each of the 

species. These seeds are gradually expanded in each of the species until a pair of modules is 

obtained for which the number of shared homologs is statistically optimal relative to the size of 

the linked modules. The strength of COMODO relates to its ability of automatically prioritizing 

best matching module pairs that can cover a large range of different co-expression levels and 

module sizes. 

In this chapter, we improve COMODO by first detecting a larger number of co-expressed seed 

modules in each organism. In each organism, seed modules are identified by applying a 

prespecified maximal stringency threshold (see 2.2.3). We enabled COMODO to apply a range 

of prespecified maximal stringency thresholds to detect more initial seed modules in each 

organism. In addition, we extended the optimization criteria to three organisms to detect co-

expression conservation across three organisms.  
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Although previous cross-species comparison studies have revealed the co-expression 

conservation and also regulatory network conservation across prokaryotic (Lozada-Chavez, 

Janga et al. 2006; Okuda, Kawashima et al. 2007; Perez and Groisman 2009; Zarrineh, Fierro et 

al. 2011) and eukaryotic (Bergmann, Ihmels et al. 2004; Ihmels, Bergmann et al. 2005; Oldham, 

Horvath et al. 2006; Tirosh and Barkai 2007; Chikina and Troyanskaya 2011) organisms over 

long ranges of phylogenetic distances, still it is not clear to what extent life style influence the 

conservation of both co-expressed modules and the regulatory network across phylogenetically 

close organisms. 

To explore the effect of life style, we studied the co-expression conservation of two evolutionary 

close prokaryotic model organisms: E. coli and S. enterica. Although these two gram-negative 

bacteria are evolutionary very close organisms, S. enterica is a dangerous human pathogen, and 

this made it interesting to investigate which evolutionary changes had caused the human 

pathogenecity in S. enterica. We applied COMODO to search for conserved modules in E. coli 

and S. enterica. To explore the general co-expression conservation across bacteria phyla, we also 

applied COMODO to search for conserved modules in three prokaryotic model organisms: E. 

coli, B. subtilis, and S. enterica. Moreover, we studied the genes involved in quorum sensing as 

the quorum sensing may be influenced by life style. Similarly, we also investigated genes, with 

pathogenesis function, as the pathogenecity is one of the major differences between E. coli and S. 

enterica, and it directly related to the life style. 

 

3.2. MATERIALS AND METHODS 

As described in the previous chapter, the homology map between different bacteria was derived 

from the COG database (Tatusov, Fedorova et al. 2003), and orthologous gene families were 

derived using smallest distance approach (Wall and Deluca 2007). The same microarray 

compendia was used for E. coli and B. subtilis as in the previous chapter, and the microarray 

compendium of S. enterica was obtained from COLOMBOS (Engelen, Fu et al. 2011) containing 

657 conditions. The basic validation analysis like assigning gene ontology, metabolic pathway to 
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the modules and condition selection to visualize the co-expression of modules were performed as 

described in the previous chapter. 

 

3.2.1. STATISTICS TO ASSESS CO-EXPRESSION CONSERVATION BETWEEN TWO OR THREE 

ORGANISMS 

Two data sources, sequence similarity and expression compendia, are used to detect 

expressionally conserved genes across multiple organisms. Detecting genes with sequence 

similarity is more straightforward as different orthologous or homologous gene families are 

available through different databases (Tatusov, Fedorova et al. 2003; Wall, Fraser et al. 2003; 

Wall and Deluca 2007). The idea behind COMODO is to find proper threshold to detect co-

expression modules in two or more organisms, in a way that maximizes the observed linked 

homologous genes using a proper statistical test. 

To define proper statistics between two organisms, the homology relation can be considered as a 

bipartite graph where nodes on each side are the genes in each one of the organisms and edges 

represents the homology relation between the genes. Given two modules one in each organism, 

the p-value of observing such a module and homologous gene pairs can be calculated by Monte 

Carlo sampling method. To perform Monte Carlo sampling, in each step we shuffled two edges 

in a way that the distribution of degrees in the bipartite graph remained preserved. This shuffling 

is done by repeatedly selecting at random two edges and crossing them (replacing two homology 

relations). If two modules Ci and Cj are linked with |T| homology relations, and shuffling 

procedure was performed n times, we calculate p-value as follow: 

    

To extend this formula to three organisms, the homology relation between three organisms can 

be considered as a tripartite graph where nodes are genes and edges are the homology relations, 

and Monte Carlo sampling can be done in a similar way for this tripartite graph. Each homology 

relation consists of three genes in three organisms linked all by homology. To perform Monte 
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Carlo sampling, in each step we choose two homology relations, in a way that each two genes of 

the same organism will be different. Now it is sufficient to reshuffle two links out of three links 

exists in homology relation. As an illustration, by considering two homology relations as (G11-

G21-G31) and (G12-G22-G32), we can obtain three valid reshuffling: 1. (G12-G21-G31) and (G11-G22-

G32) 2. (G11-G22-G31) and (G12-G21-G32) 3. (G11-G21-G32) and (G12-G22-G31) where the genes, 

written in a parenthesis, are all connected and ordered based on the organism number. 

Therefore, if three modules Ci, Cj, and Ck are linked with |T| homology relations and shuffling 

procedure was performed n times, we calculate p-value as follow: 

    

Notice that the links just between two organisms are not considered, and we are just interested in 

the ones that link genes in all three organisms in the optimization part. 

Although Monte Carlo sampling is the standard node-permutation method, in general when 

sample sizes are large, the Pearson‟s chi-square test will give accurate results to calculate p-

values derived from permutation tests. Running Mont Carlo sampling in each iterative step of 

COMODO is not computationally feasible because in each step of COMOD Monte Carlo 

sampling should be preformed, and consequently the edge reshuffling procedure should be run 

for millions of times just for each step. Pearson‟s chi-square statistic test can be used instead as a 

proper test to approximate the p-value. The assumption behind the Pearson‟s chi-square statistic 

is that the homologous links are evenly distributed in the bipartite (in two organisms case) and 

tripartite (in three organisms case) graphs. In other words, nodes with large number of 

connections cause problem for estimating the real p-value with Pearson‟s chi-square statistic test. 

The fact that each gene does not have large number homologous pairs will fulfill the assumption 

of using Pearson‟s chi-square statistic to estimate the real p-value. 

This Pearson‟s chi-square static was introduced in, the previous chapter for two organisms. To 

formulate the Pearson‟s chi-square test, consider N1 genes in the genome of the first organism, 

N2 genes in the genome of the second organism, N3 genes in the genome of the third organism, 

and M linking homologous gene triples derived from the COG database. If we pick three genes 
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randomly, one from each organism, the probability that a homologous gene triple has been 

chosen is equal to . Therefore, the probability that these genes are not homologous 

is . 

Given three modules (one for each organism) containing respectively g1 genes from the first 

organism, g2 genes from the second organism, and g3 genes from the third organism (where g1 , 

g2, g3<< N1, N2, N3 respectively), the expected number of homologous gene triples that would 

appear assuming that the three modules are randomly selected modules can be estimated by: 

 

The expected number of non-homologous gene triples appearing between them can be estimated 

by: 

 

We use the Pearson‟s chi-square test to assess whether the number of homologous and non-

homologous gene triples in an observed module pair is significantly different from the expected 

one. A chi-square test with one degree of freedom is as follow:  

2 2

g g _ g _ g2

g _ g

homolo ous homolo ous non homolo ous non homolo ous

homolo ous non homolo ous

O E O E

E E
 

Where O and E stand for observed and expected values respectively. Note that as the p-value 

might get very close to zero, we use an optimization criterium that maximizes the actual chi-

square values instead of minimizing the corresponding p-values. 
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3.2.2. APPLICATION OF THE METHODOLOGY TO THE E. COLI, B. SUBTILIS, AND S. 

ENTERICA DATASETS 

The COMODO methodology was expanded to accept a range of prespecified maximal co-

expression stringency values to detect more module seeds in each organism. We used five 

prespecified maximal co-expression stringency values, 0.9,0.8,0.7,0.6, and 0.5, in this study. As 

the previous chapter, the Pearson correlation across all conditions was used as the measure for 

co-expression. In theory, using five prespecified maximal co-expression stringency values results 

in five different module seeds, but in practice many of these module seeds are identical. 

We used COMODO for two organisms to find co-expression conservation between E. coli and S. 

enterica with the same setting and filter procedure as the previous chapter experiments. Table 

S3.1. summarizes the conserved modules across these two species. In this table, the orthologous 

gene pairs are linked with red line to each other and homologous gene pairs with black line. 

COMODO was also extended to find expressional conserved modules in three organisms. We 

applied COMODO to find conserved modules across three bacterial E. coli, B. subtilis, and S. 

enterica. For three organisms we also used the same setting and filter procedure as previous 

chapter experiments except we used 0.2 as the minimal fraction of homologous versus non-

homologous genes for one of the stopping criteria and also we used the same fraction number in 

initial module selection step for least initial linker genes in each module. We used 0.2 instead of 

0.1 for these two variables in our experiments to reduce the number of linked module triples 

which make more memory efficient as for three organisms the use of memory is much higher, 

and also to reach to the stopping criteria faster as searching in the best threshold for three 

modules (each for one organism) can be much slower than two. In addition, the highly conserved 

co-expressed modules contain much higher ratio of genes linked by homology. Table S3.2. 

summarizes the conserved modules across these three species. In this table, the orthologous gene 

triples are linked with red line to each other and homologous gene pairs with black line. 

Homologous gene pairs just in two organisms are also reported in separate columns, although 

they had no effect in the calculation of the optimization criteria. 
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3.3. RESULTS 

3.3.1. IDENTIFYING EVOLUTIONARY CONSERVED AND NON-CONSERVED CO-EXPRESSED 

MODULES BETWEEN E. COLI, B. SUBTILIS, AND S. ENTERICA 

In previous chapter, we applied our methodology to study the degree to which co-expression 

modules have been conserved between two bacterial model organisms E. coli and B. subtilis. In 

this chapter, we also applied COMODO over E. coli and S. enterica. Applying our method 

resulted in the identification of 211 conserved module pairs in E. coli and S. enterica that were 

linked through a statistically significant set of homologous genes Table S3.1). We also applied 

the extended COMODO for three organisms with over E. coli, B. subtilis, and S. enterica. 

Applying our method resulted in the identification of 110 conserved module triples in E. coli, B. 

subtilis, and S. enterica that were linked through a statistically significant set of homologous 

genes (Table S3.2). 

As it was mentioned in previous chapter large evolutionary conserved modules are enriched for 

ribosomal metabolism and translation (Table S3.1 EM81_91_96_97-SM81_91_96_97 to 97 and 

Table S3.2 EM58_59-BM58_59-SM58_59), motility and flagella synthesis (Table S3.1 EM160-

162-SM160_ and Table S3.2 EM83_89-BM83_89-SM83_89), iron acquisition (Table S3.1 

EM172-SM172 and Table S3.2 EM95-BM95-SM95). Conversely, two large evolutionary 

conserved modules just in E. coli and S. enterica related to cellular respiration, both anaerobic 

respiration (Table S3.1 Module IDs EM44_48_51-SM44_48_51) and aerobic respiration (Table 

S3.1 EM159-SM159), seemed to be diverged in more distant bacterium B. subtilis. 

Cellular respiration is not the only process with conserved expressional behavior between E. coli 

and S. enterica, and diverged expressional behavior in B. subtilis, many smaller modules in size 

are also conserved only across E. coli and S. enterica. Interestingly, some of them are related to 

signal transduction and response to stimuli regardless of different life style of these organisms. 

For example, response to various stimuli are specific to E. coli and S. enterica like response to 

stress (Table S3.1 EM20_21_71_72_76_112_118_120-SM20_21_71_72_76_112_118_120), 

response to external stimulus (Table S3.1 EM59-SM59), response to chemical stimulus (Table 

S3.1 EM121-SM121), and response to abiotic stimulus (Table S3.1 EM204-SM204). Signal 
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transduction modules with conserved expressional behavior between E. coli and S. enterica 

(Table S3.1 EM25_26_27_126_184_185-SM EM25_26_27_126_184_185) are other remarkable 

examples. 

3.3.2. REGULATORY NETWORK CONSERVATION 

Regulatory network evolves rapidly as various species need to adapt themselves to different 

environment. In previous chapter, we have highlighted evolutionary conserved transcription 

factors with conserved co-expressed targets like Fur, NrdR, LexA, BirA, ArgR/AhrC. These 

regulators are highly conserved across bacteria phyla, thus we also found them in three 

organisms, E. coli, B. subtilis, and S. enterica, experiment conserved (Table S3.2) except for 

BirA where its target are not highly co-expressed in our S. enterica due to the lack of conditions.  

As mentioned in the previous chapter non-orthologous transcription factors may be responsible 

to regulate similar biological processes in E. coli and B. subtilis. Since E. coli and S. enterica are 

evolutionary close organisms and most of the genes have high sequence similarity, we can 

expect that in the latter case transcription factors are actual orthologous transcription factors with 

the same function. As an example, PurR, the transcription factor of purine biosynthesis processes 

(Table S3.2 EM75_105_106-BM75_105_106-SM75_105_106), do not show any sequence 

homology between E. coli and B. subtilis, while it shows very high sequence similarity between 

two closer organisms E. coli and S. enterica, and we know they are actual functional orthologous 

pairs (Yang, Lu et al. 2001; Yang, Lu et al. 2006). As the regulatory network does not exist for S. 

enterica, to validate the expected regulator we need to perform laboratory experiments like 

regulator mutation in PurR case (Yang, Lu et al. 2001), or we can check the upstream binding 

site motifs. If there is a high conservation at both protein sequence level of transcription factor 

and upstream binding site motifs of co-expressed target genes, it will be highly probable that this 

transcription factor is responsible for observed co-expression in the module. 

Co-expression conservation of regulators themselves may also imply the similarity in regulatory 

interaction conservation. For example, conserved FliA/SigD, the flagellar sigma factor (sigma 

28), and its anti sigma factor, FlgM are also highly conserved in co-expression across all the 

three bacteria as they co-expressed with motility and flagella synthesis (Table S3.2 EM89-
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BM89-SM89). Conserved sigma factor FliZ, a protein which acts as a sigma(S) inhibitor 

(Pesavento, Becker et al. 2008), also co-expressed in this group, but this protein just exists in E. 

coli and S. enterica. LexA is another conserved regulator in all three bacteria which is also 

conserved in co-expressed (Table S3.2 EM108-BM108-SM108). 

FliZ is not the only regulator which exhibits co-expression conservation only between E. coli and 

S. enterica. Self-regulatory transcription factors MtlR (Table S3.1 EM63-SM63), LldR (Table 

S3.1 EM183-SM183), IscR (Table S3.1 EM190-SM190), GlnG (Table S3.1 EM200-SM200), 

PhdR (Table S3.1 EM96-SM96), and Fis (Table S3.1 EM84_96-SM84_96) are also conserved in 

expression across E. coli and S. enterica. Therefore, we expect that these transcription factors are 

conserved across these two organisms. Two anti-sigma factors RseA and RseB are also 

conserved in expression (Table S3.1 module EM193-SM193), we expect the corresponding 

sigma factor RpoE must also be conserved in co-expression as they are in one operon in both E. 

coli and S. enterica, and perhaps the reason that it was not detected in S. enterica is the 

conditions set of S. enterica microarray (Figure 3.1.B). Furthermore, we know that in general 

sigma factors and anti-sigma factors are highly conserved across E. coli and S. enterica (Paget 

and Helmann 2003; Pons, Gonzalez et al. 2006; Menard, Santos et al. 2007). 

In addition to the mentioned conserved orthologous regulators, there are cases of homologous 

regulators which show similar co-expression conservation meaning that the linked homologous 

appeared in the same linked co-expressed modules. This implies the possibility of taking over the 

regulatory function by homologous counterparts. For example, transcription factor STM0347 is 

homologous to self-regulator CsgD, and they are both co-expressed in linked co-expressed 

module (Table S3.1 EM166-SM166). In addition, CsgD is the main regulator of this linked 

module in E. coli. Although the direct orthologous gene CsgD exist in S. enterica and is known 

to be responsible for the co-expression in both organisms (Pesavento, Becker et al. 2008) and 

was reported to be the responsible regulator in both organisms(Pesavento, Becker et al. 2008), 

still STM0347 may also be responsible for the regulation of the co-expressed S. enterica genes. 

CsgD was probably not detected as co-expressed gene in S. enterica by COMODO because of 

condition set in this organism (Figure 3.1.A). As another example, two co-expressed E. coli 

transcription factors UidR and FeaR show homology and conservation in expression with two 
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co-expressed S. enterica transcription factors STM0580 and STM0581 respectively (Table S3.1 

EM201-SM201). The fact that for both transcription factors in E. coli the orthologous 

counterpart in S. enterica were not detected by reciprocal smallest distance method (Wall and 

Deluca 2007), it will make our point stronger that the corresponding S. enterica transcription 

factors, STM0580 and STM0581, may have acquired the function, although the whole 

observation can be the artifact of using loose COG homology relations. Finally, we found two 

linked homologous transcription factors UhpA in E. coli and SsrB in S. enterica (Table S3.1 

EM58-SM58) where the possibility of considering them as functional counterpart is very low 

because probably observation of this co-expression conservation is the artifact of loose COG 

homology relations. 

 

 

Figure 3.1. Expression behavior of genes in modules SM166 (Panel A) and SM193 (Panel B) in S. enterica. 

Genes in black are the genes which are found as the co-expressed modules by COMODO. While genes in red (csgD 

and rpoE) are the ones which are not found in the co-expressed modules, but their ortholgous pair are co-expressed 

with the E. coli counterpart modules. We expect that genes in red (csgD and rpoE) should also be part of their 

modules as they are in the same operon with some genes of their modules. Shaded areas correspond to conditions 

not shared for the genes which were not detected as co-expressed in S. enterica (red genes). The fact that these 

conditions are much smaller in number than the conditions genes in red (csgD and rpoE) show co-expression with 

the rest of the modules genes increases the probability that these genes are actually in those modules. 
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3.3.3. EXPRESSION COMPARISON OF GENES INVOLVED IN QUORUM SENSING AND 

PATHOGENECITY 
Here we explore the co-expression of genes involved in quorum sensing and pathogenicity as 

quorum sensing and pathogenicity are influenced by the life style. Quorum sensing is the 

mechanisms that bacteria use to coordinate their behavior in various environments. Interestingly, 

from four gene products known to be responsible in quorum sensing (GO:0009372) in E. coli 

(Carbon, Ireland et al. 2009), two genes, LsrK (Table S3.1 EM5-6-SM5-6) and LuxS (Table S3.1 

EM126-SM126) were found conserved in co-expression, and one gene MqsR does not have 

orthologous counterpart in S. enterica. 

As S. enterica is a human pathogen we also looked at gene products involved in pathogenesis 

(GO:0009405). Six E. coli genes were listed as Pathogenesis (Carbon, Ireland et al. 2009), but 

none of them were found in any conserved module. From 60 gene products known to have 

function Pathogenesis in S. enterica (Carbon, Ireland et al. 2009), sseA (Table S3.1 

SM17_18_19), slyA (Table S3.1 SM20), spvB (Table S3.1 SM193), and no pathogenesis gene 

was linked by homology to any gene in the counterpart linked module.  

Perhaps the most interesting case of the mentioned pathogenesis genes in S. enterica is SpvB. 

This gene was co-expressed in a co-expressed link module where two anti-sigma factors, RseA 

and RseB, are found conserved (Table S3.1 EM193-SM193) and one sigma factor, RpoE, is 

seemed to be conserved (see 3.3.2). Therefore, we can presume that response to the 

extracytoplasmic/extreme heat stress factors have some relation with pathogenecity in S. enterica 

case. The fact that OstA, which is the protein responsible to osmotic stress, was found co-

expressed just in S. enterica module (Table S3.1 SM193) makes our guess even stronger, that 

pathogenesis have relation with responding to the stresses in S. enterica. 

   

3.4. DISCUSSION 

Co-expression can highlight functional similarity of homologs across different species (Chikina 

and Troyanskaya 2011). We could extend COMODO to detect co-expression conservation across 

three species and we applied extended COMODO to detect conservation across E. coli and S. 
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enterica and B. subtilis. We could detect conserved biological processes across these three 

organisms which seems to be conserved across the whole bacteria phyla, as well as biological 

processes which are conserved across two closely related species E. coli and S. enterica such as 

aerobic and anaerobic respiration. Interestingly, many modules related to response to various 

stimuli and signal transductions were among the biological processes which were just conserved 

across two evolutionary closer species E. coli and S. enterica, even though some aspects of their 

life style are remarkably different (pathogenicity of S. enterica). 

The conservation and divergence of the co-expressed genes illustrate the evolutionary path that 

each species might go through to adapt itself to the environment, but more importantly the 

regulatory network responsible for the observed expression should evolve rapidly not only to 

control the expression of genes involving in different biological processes, but also to enable the 

organism to interact to convey various signals from environment into the cell. Therefore, the 

structure of regulatory network is highly divergent even for two closely related organisms 

regardless of high conservation of observed co-expression (Lozada-Chavez, Janga et al. 2006). 

We observed the conservation of few biological processes even in all three organisms which is in 

line with previous knowledge, as the conservation of the target of these transcription factors and 

their upstream binding site motifs have been discussed in depth in separate focused papers (Fur 

(Andrews, Cartron et al. 2006; Chen, Lewis et al. 2007), NrdR (Rodionov and Gelfand 2005), 

LexA (Erill, Campoy et al. 2007), birA (Rodionov, Mironov et al. 2002), ArgR/AhrC (Gelfand, 

Makarova et al. 2001)). In addition, we could predict some regulatory network conservation just 

in E. coli and S. enterica. The conserved regulators are basically sigma factor and sigma factors 

which are known to be highly conserved (Chadsey, Karlinsey et al. 1998; Paget and Helmann 

2003; Rhodius, Suh et al. 2006; Pesavento, Becker et al. 2008; Osterberg, Del Peso-Santos et al. 

2011), and also some self regulatory transcription factors as they co-expressed with their targets. 

The fact that we observe high co-expression conservation across E. coli and S. enterica, even 

conservation in various stimuli and signal transductions, and also we could predict some 

conservation in regulatory network although this network is not available for S. enterica, made 

this question even harder that what made their difference in life style (pathogenicity of S. 

enterica). Therefore, we investigated genes involved in quorum sensing and pathogenesis. 
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Amazingly, two genes out of four genes involved in quorum sensing in E. coli were conserved in 

co-expression. Finally, we could observe the major source of difference in two organisms by 

exploring genes involved in pathogenesis. The dominant majority of these genes were not co-

expressed in the linked co-expressed modules, and SpvB in S. enterica was co-expressed in the 

module which is responsible to address stresses like extracytoplasmic, extreme heat stress and 

osmotic stress. This may imply the relation between pathogenesis and these stresses. 

In conclusion, we investigated two phylogeneticly close species E. coli and S. enterica with 

some differences in their life style (pathogenicity of S. enterica), and we could observe high 

conservation in responses to various stimuli, transductions of different signals, quorum sensing. 

Even the comparison of the regulatory network structure based on the available knowledge show 

some conservation, and considering that the regulatory network is highly variable even in close 

species we could not conclude that different life style have a great impact on this network. The 

only large divergence that we could observe was the genes involved in pathogenesis. Therefore, 

we observed that the phylogenetic distance has far more effect on the co-expression conservation 

than life style. 
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CHAPTER 4 

INFERRING CO-REGULATED GENES FROM REGULATORY NETWORK 

 

4.1. INTRODUCTION 

Gene expression is controlled by regulators such as sigma factors, transcription factors (TFs), 

and small RNAs (sRNAs). The interaction between regulators and their target genes/mRNA can 

be represented as a network. This interaction network is highly flexible through the evolution to 

empower organisms to adapt themselves to various environmental changes and perturbations 

(Hyduke and Palsson 2010). Therefore, Regulatory networks can be seen as the internal 

controlling system inside the cell, that have two major tasks, conveying the signal from the 

environment into the cell and controlling the expression of the genes. The fact that these two 

tasks are very different makes, it challenging to detect modularity in the regulatory network in a 

way that it can describe both of them. Although the interactions evolve rapidly in the regulatory 

network, the general structure of the circuits within this network follow „general patterns‟ which 

is referred to as motifs (Yu and Gerstein 2006; Michoel, Joshi et al. 2011). Regulation of a gene 

may be controlled by more than one regulator which can be referred to as combinatorial 

regulation (Fadda, Fierro et al. 2009; Lemmens, De Bie et al. 2009; Kim, Bhardwaj et al. 2010). 

Both highlighting circuit motifs and combinatorial regulation have gained a lot of attention 

recently (Balaji, Babu et al. 2006; Yu and Gerstein 2006; Lemmens, De Bie et al. 2009; Gerstein, 

Bhardwaj et al. 2010; Kim, Bhardwaj et al. 2010). 

Regulatory networks give rise to gene expression. Therefore, for genes exhibiting higher co-

expression on microarray expression compendia, a higher similarity in regulatory circuits is 

expected. The regulators enriched as the common regulators of a co-expressed module are 

usually referred as combinatorial regulators, and usually a Fisher exact statistical test is used to 

detect the combinatorial regulators. Combinatorial regulators were detected in various organisms 

including two prokaryotic model organisms E. coli (Lemmens, De Bie et al. 2009) and B. subtilis 

(Fadda, Fierro et al. 2009). 
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Combinatorial regulators are detected by considering the co-expressed target genes, and it can be 

seen as a way to define modularity in the regulatory network. However, modularity in regulatory 

network was also studied just by considering the regulatory network structure. In this way, 

regulators that share large number of targets are detected and called collaborative regulators 

(Gerstein, Bhardwaj et al. 2010). Collaborative regulators are expected to give rise to the co-

expression of their common targets. In fact by assuming modularity in the regulatory network, 

combinatorial regulators and collaborative regulators are becoming closely related definitions. 

The difference is that combinatorial regulators are detected considering co-expressed targets, 

while collaborative regulators are detected first from the regulatory network, and co-expression 

of the targets is the subsequence (Figure 4.1). A measure for the degree of collaboration for a 

pair of regulators was introduced in (Balaji, Babu et al. 2006). They simply calculate Jaccard 

coefficient targets of two regulators i and j as: 

 

Where Ga is the set of targets of regulator a. Despite, these attempts to associate the observed co-

expression with the modules inside the regulatory network, the consistency between the 

expression profile of the target genes and the interactions in the regulatory network was shown to 

be low (Gutierrez-Rios, Rosenblueth et al. 2003; Herrgard, Covert et al. 2003). 

To overcome the mentioned problem, (Marr, Theis et al. 2010) tried to explore the relation 

between regulators and their targets.  They defined subnet in regulatory networks as the subgraph 

induced by all nodes downstream of a root node, including the root node (Marr, Theis et al. 

2010). A subnet can be seen as a root regulator and its direct and indirect targets, and the degree 

of co-expression on the microarray expression compendia for a subnet shows to what extent the 

root regulator has influence on the expression of its direct and indirect targets. Figure 4.1 

demonstrates some differences between subnets and collaborative regulators and combinatorial 

regulators. One major advantage of subnet approach is that it traverses the whole regulatory 

network from a root regulator while in detecting collaborative regulators and combinatorial 

regulators the regulatory network was summarized as a bipartite network where regulators are in 

one side and targets in the other sides. 
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In addition to combinatorial regulators and collaborative regulators, recent studies also focused 

on the hierarchy of the regulatory network to decipher regulatory dynamics and network 

architecture (Gerstein, Bhardwaj et al. 2010; Kim, Bhardwaj et al. 2010). The importance of 

regulators is directly related to their positions in the hierarchy (Kim, Bhardwaj et al. 2010). One 

reason for this is that the feed forward loop in the regulatory network is abundant. Therefore, if a 

regulator regulates another regulator usually it regulates the targets of the lower regulator as 

well. Furthermore, upper-level regulators or global regulators have few functionally redundant 

copies, and had a shorter half-life (Kim, Bhardwaj et al. 2010).  The upper-level regulators are 

believed to be noisier to be used to predict any function for their targets, as their targets may not 

exhibit high co-expression and also enriched for a specific function, while the lower-level, local, 

regulators have more direct effect on the expression of their targets and their targets usually are 

involved in similar functions (Lemmens, De Bie et al. 2009; Kim, Bhardwaj et al. 2010).  

Recently, it was shown that the importance of regulator is not only related to the number of its 

targets but also its position in the regulatory network (chain-of-command) (Gerstein, Bhardwaj et 

al. 2010; Kim, Bhardwaj et al. 2010). Therefore, if a regulator regulates another regulator, it adds 

more value to the importance of the regulator on top. For example, LexA in E. coli inhibits sigma 

factor 70 and some global regulators, thus LexA has a high effect on the expression of a large 

number of genes in the organism (Gerstein, Bhardwaj et al. 2010; Kim, Bhardwaj et al. 2010). In 

addition, if some genes are dominantly controlled by a certain regulator (autonomous regulator); 

it adds more importance to this regulator compared to the genes controlled by a combination of 

regulators (collaborative regulators). As an example, LexA dominantly controls most of its 

targets and no other regulator regulates many LexA target genes (Gerstein, Bhardwaj et al. 2010; 

Kim, Bhardwaj et al. 2010). 

Although our knowledge about the regulatory networks have been increased recently, but the 

modularity inside these networks and the way they evolve during the evolution have not been 

completely described. Detecting collaborative regulators is essential to find any modularity in 

regulatory network as these collaborative regulators resemble the combinatorial regulators 

(Figure 4.1), and observed co-expression of genes can be described by combinatorial regulation. 
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Figure 4.1. The relation between combinatorial regulators, collaborative regulators, and subnet in the 

regulatory network. A schematic of the regulatory network is presented where each blue circle is a regulator and 

each red circle is a non-regulator gene, and the regulatory interactions are shown by directed arrows. The two red 

rectangles illustrate the co-expressed modules. The regulators, enriched as combinatorial regulators, responsible for 

the co-expression of these two modules are shown as two blue parallelograms, and the node on top is enriched to be 

regulator of both groups. Unlike combinatorial regulators, collaborative regulators are just detected based on the 

structure of the regulatory network without considering the co-expression modules. By considering the number of 

targets that each pair of regulators shares, collaborative regulators can be clustered as two bleu parallelograms. This 

shows although combinatorial regulators and collaborative regulators are defined in different ways, but in ideal 

cases where a clear modularity exists in the regulatory network they exhibit similar groups. On the other hand, 

subnets in the regulatory network demonstrate different concept, as the definition of the subnet is very different. 

Subnet is defined as the subgraph induced by all nodes downstream of a root node, including the root node. 

Therefore, the whole network of this example is a subnet in which the regulator in the higher level is the root. Four 

other subnets also exist in this example, in each of these subnets one regulator in the second level is the root, and 
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four targets of the regulator are also in the subnet. In other words, subnet can be seen as a root regulator and its 

direct and indirect targets (this example does not contain any indirect target in any subnet), and the degree of co-

expression on the microarray expression compendia for a subnet shows to what extent the root regulator has 

influence on the expression of its direct and indirect targets. 

 

 

In this chapter, first we improved the measure to detect the collaborative regulators using Fisher 

exact test and Monte Carlo sampling methods instead of Jaccard coefficient introduced in 

(Balaji, Babu et al. 2006). In a similar attempt but in the other direction, we also tried to define a 

regulatory similarity between each two genes based on their common regulators considering the 

whole regulatory network structure. This similarity measure obviates the need to detect any 

modularity in the regulatory network. For each pair of genes, we measured the similarity in 

regulation by using the importance of their common regulators, and we called our defined 

similarity measure „co-regulatory similarity measure‟. We studied the mutual relation between 

this measure and the co-expression of genes on the microarray compendia. 

 

4.2. MATERIALS AND METHODS 

4.2.1. REGULATORY NETWORK (TRANSCRIPTIONAL AND POST-TRANSCRIPTIONAL 

INTERACTIONS) 

We downloaded and annotated sigma factors, transcription factors (TFs), and small RNAs 

(sRNAs) and their targets from RegulonDB database (Gama-Castro, Jimenez-Jacinto et al. 

2008).  

4.2.2. CO-EXPRESSION MICROARRAY DATA 

Like the previous chapters, the microarray compendium of E. coli was obtained from (Lemmens, 

De Bie et al. 2009). We used the Pearson correlation coefficient across all conditions as the 

measure of co-expression of two genes.  
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4.2.3. MONTE CARLO SAMPLING IN REGULATORY NETWORK TO ASSESS THE 

COLLABORATION OF REGULATORS 

We considered a regulatory network as a bipartite graph (regulator, target), note that each 

regulator is represented twice on both side of this bipartite graph as two separate nodes because 

even the target part of the bipartite graph contains regulators as a regulator can be target of 

another regulator. Each two regulator may share certain number of their targets, and Fisher exact 

test can be used to assess the probability of observing equal or higher number of the shared 

targets the two regulators by chance. Consequently, lower p-value means two regulators are 

sharing more targets compare to what expected by chance. In other words, lower p-value implies 

two regulators are more collaborative. Monte Carlo sampling is the less biased way to measure 

this probability. Fisher exact test is more robust way to measure the p-value when the target 

number of regulators is more evenly distributed, while we know it is not the case for the 

regulatory network, and some regulators have large number of target genes while the others 

regulate few genes. 

To perform Monte Carlo sampling, in each step we shuffled two edges in a way that the 

distribution of degrees in the bipartite graph remain preserved. This shuffling is done by 

repeatedly selecting at random two edges and crossing them (replacing the targets of two 

regulators). If two regulators Ri and Rj shares |T| targets, and shuffling procedure was performed 

n times, we calculate p-value and q-value as follow: 

     

      

Where function E stands for expected value. In contrast to p-value, higher q-value means two 

regulators are more collaborative. 



69 

 

One major advantage of using q-value is its faster convergence, and the fact that it can be used 

directly to find module is another advantage. On the other hand, p-value cannot be used directly 

and some transformation like using –log(p-value) or 1/p-value is needed because more 

collaborative regulators gain lower p-values. 

4.2.4. PAGERANK VALUE OF REGULATORS TO ASSESS IMPORTANCE OF A REGULATOR 

PageRank assigns a numerical weight to each node in a network that measures its relative 

importance within the network (Page and Brin 1998). PageRank was originally developed for 

World Wide Web application to empower search engines to search the web pages efficiently. It 

considers the World Wide Web as a graph where each webpage is a node and each hyperlink is a 

directed edge. The importance of each webpage is measured by its PageRank value (Page and 

Brin 1998). 

The importance of regulators in a regulatory network can be measured by PageRank value since 

regulatory network is very similar to World Wide Web. First of all, in World Wide Web 

important pages receive higher hits. Similarly, in regulatory network, important regulators 

regulate more targets. Furthermore, in World Wide Web, the importance of each page also 

relates to the pages that link to them (e.g. page directly linked by Google). In regulatory network 

if a regulator regulates a more global regulator, this regulator is more important. 

We have used the original PageRank algorithm described by Lawrence Page and Sergey Brin 

(Page and Brin 1998) in several publications. It is given by: 

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn)) 

Where PR(A) is the PageRank of regulator A, PR(Ti) is the PageRank of target Ti which link to 

regulator A,  C(Ti) is the number of outbound links on target Ti, and d is a damping factor which 

can be set between 0 and 1. We calculate this value by reversing the direction of regulation in the 

regulatory network as the importance of a regulator is a result of its target genes.  

In World Wide Web an imaginary surfer is considered to traverse the network by randomly 

clicking links, and eventually this person stops clicking at one step. At any step, the probability 
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that the person continues clicking is called damping factor d. This damping factor is usually a 

high number (closer to 1), and we set it to 0.95. 

4.2.5. CO-REGULATORY SIMILARITY MEASURE BETWEEN PAIR OF GENES AND PAIR OF 

MODULES BASED ON PAGERANK SIMILARITY OF COMMON REGULATORS 

We define co-regulatory similarity of a pair of genes as the global similarity of their regulators 

on top of them. We measure the co-regulatory between each two genes G1 and G2 based on the 

PageRank values of their common regulators Ri as follow:   

    

Where n is the number of common regulators between G1 and G2. As it can be seen from the 

formula, each common regulator on top of the gene pair G1 and G2 adds a value to the co-

regulatory similarity of them. This value is equal to the inverse of the PageRank of the regulator 

because more local regulators have lower PageRank value, thus it contributes more to the co-

regulation of its targets. In other words, the highly co-regulated genes are more likely to have 

common local regulator(s) on top. 

The defined co-regulatory similarity measure can be easily extended to the module level. For two 

modules M1 and M2 of size l1 and l2 we used average similarity of each pair of genes across two 

modules as co-regulatory similarity measure: 

     

Where  and   are the genes inside the modules. 

4.2.6. FINDING MODULES IN A NETWORK USING OSLOM 

OSLOM is a recently developed method to find modules in a network (Lancichinetti, Radicchi et 

al. 2011). The internal optimization criteria of OSLOM empowers it to detect just densely 

connected subnetwork. OSLOM operates based on the local optimization of a fitness function 
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expressing the statistical significance of clusters with respect to random fluctuations, which is 

estimated with tools of Extreme and Order Statistics (Lancichinetti, Radicchi et al. 2011). As low 

connected subnetworks cannot gain high statistical significance in comparison to random 

fluctuations, OSLOM could detect the proper modules for our aim. 

As described by the main authors, OSLOM uses the significance as a fitness measure in order to 

evaluate the clusters by defining the probability of finding the cluster in a random null model, i. 

e. in a class of graphs without community structure. The configuration model is chosen as the 

null model. This is a model designed to build random networks with a given distribution of the 

number of neighbors of a vertex (degree). The networks are generated by joining randomly 

vertices under the constraint that each vertex has a fixed number of neighbors, taken from the 

pre-assigned degree distribution. 

In comparison to the other methods, OSLOM is superior in detecting overlapping clusters and 

clusters with hierarchical structure, i.e. a clusters which include (or are included by) other 

clusters (Lancichinetti, Radicchi et al. 2011). As hub genes (genes with high connectivity) are 

generally highly presented in various biological networks, and these genes are involved in 

several biological processes, a suitable clustering method should be able to detect overlapping 

clusters in which the overlapping nodes are usually the hub genes. In addition, many biological 

networks have hierarchical structure. For example, in metabolic network a number of metabolic 

pathways can be part of a superpathway, or in protein-protein interaction network a combination 

of protein complexes may construct a larger structural complex.  

 

4.3. RESULTS 

4.3.1. DETECTING COLLABORATIVE REGULATORS 

If we can detect modules consisting of collaborative regulators, we can verify the co-expression 

of the targets of each module. If we observe modularity in the regulatory network and co-

expression of the target genes of the regulators in one module, it means that the modules of 

collaborative regulators were indeed acting combinatorially.   
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We tried three different measures to detect collaborative regulators in E. coli, and consequently 

deciphering modularity in the regulatory network of E. coli. First instead of the simple Jaccard 

coefficient, we calculate the more sensitive Fisher exact test p-value to calculate to what extent 

two regulators mutually share their target genes, considering the regulatory network as a bipartite 

graph (regulator- target). This Fisher exact test computes the probability of observing the number 

of common targets with respect to the number of genes that each regulator regulates and the size 

of the whole genome. After calculating p-values for each pair of regulators, we observed that if 

we plot log transform of p-values derived from Fisher exact test and log transform of regulator 

number, the outcome would be a straight line (Figure 4.2). This may imply that log transform of 

the p-values may have power law distribution, thus it possibly will be hard to cluster the 

regulators based on their common targets.   

We have also developed two measures (p-value and q-value) based on Monte Carlo sampling 

method to sample a bipartite graph (regulator - target) with the same node degree (see 4.2.3). 

Here, the idea is to build a network consists of only regulators as nodes, and edges in this 

network may represent to what extent two regulators are collaborative. We built the network by 

using q-value or transformed p-values as the value for the edges. We applied OSLOM method to 

find modules in these networks, and OSLOM could not detect high modularity in any of the 

networks. It may imply regardless of which measure we use (q-value or transformed p-value) 

that it is difficult to find modules in the network. 
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Figure 4.2. -log transformation of Fisher exact test p-values calculated for each regulator pairs by comparing the 

observation common targets to what can be expected by chance, versus the logarithm regulator pairs number.  

 

4.3.2. CO-REGULATORY SIMILARITY A MEASURE TO PREDICT CO-EXPRESSION   

We used the PageRank measure to capture the importance of regulators in a regulatory network. 

This measure can fulfill both the idea of chain-of-command, as well as the target number because 

as entailed in the formula each target adds a value to the PageRank of the regulator (target 

number, and the targets with higher PageRank add higher value to the PageRank for the regulator 

(chain-of-command). In E. coli, regulators with higher PageRank are sigma factors (RpoD, 

RpoE, RpoS, RpoN, RpoH), global transcription factors (e.g. Crp, ArcA, Fnr), and transcription 

factors with a high value due to the chain-of-command idea like LexA, since LexA inhibits some 

global regulators and RpoD sigma factor 70. In other words, although LexA does not regulate 

large number of targets, regulating important targets has sharply increased its PageRank value. In 

addition, normal stress related target genes of LexA do not have many regulators which cause 

their high contribution to the PageRank value of LexA as in the formula the contribution of 

targets are divided between all the regulators on top of them. Because of this property of the 
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formula, more autonomous regulators as defined in (Gerstein, Bhardwaj et al. 2010; Kim, 

Bhardwaj et al. 2010) gain higher PageRank than collaborative regulators as defined in 

(Gerstein, Bhardwaj et al. 2010; Kim, Bhardwaj et al. 2010) gain.  

According to how we define the co-regulation of genes (see 4.2.5), two genes are more co-

regulated if they have more regulators in common and their common regulators are more local 

(lower PageRank). Therefore, we define co-regulatory similarity between two genes as the sum 

of the inverse PageRank value of their common regulators (see 4.2.5). This value is directly 

related to random walk starting from one gene and tracing the regulatory network to reach the 

second gene. This measure can be easily expanded to calculate the regulatory similarity between 

two groups of genes (see 4.2.5). 

Since we have defined co-regulatory similarity as similarity in the regulatory circuits controlling 

the genes, the co-regulatory similarity between two genes must be observable on microarray 

expression compendia. Therefore, the detected co-regulatory similarity should be traceable as co-

expression on microarray data to prove the accuracy of our proposed co-regulation similarity 

measure. Pearson correlation coefficient across all conditions measures co-expression between 

two genes. Lack of conditions in expression data and also unmeasured regulatory interaction can 

reduce the credibility of comparison between co-expression and our defined co-regulatory 

similarity measure. Therefore, we excluded the genes, without at least one common regulator or 

a Pearson correlation co-expression value over 0.5 with at least one other gene, from our 

analysis. Figure 4.3.A represents the distribution of co-regulation similarity between all selected 

pairs of genes, defined based on PageRank values of their common regulators, and Figure 4.3.B 

shows the distribution of Pearson correlation coefficient across all conditions on microarray data 

between all selected pairs of genes. Now the question is to show that the gene pairs with the 

highest co-regulatory similarity value (Figure 4.3.A right tail) exhibit high co-expression (Figure 

4.3.B both right and left tails). 
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Figure 4.3. Co-expression versus co-regulatory similarity.  A. Distribution of co-regulation similarity between all 

selected pairs of genes, defined based on PageRank values of their common regulators. B. Distribution of Pearson 

correlation coefficient across all conditions on microarray data between all selected pairs of genes. Genes without at 

least one common regulator or Pearson correlation co-expression value over 0.5 with at least one other gene were 

excluded from the analysis. C. Average co-expression of gene pairs with the highest co-regulatory similarity (blue 

solid curve) versus average co-expression of all genes pairs (dashed red line). The number of gene pairs with the 

highest co-regulatory similarity is represented on the X-axis, and the average of co-expression of the corresponding 

top gene pairs with the highest co-regulatory similarity is represented on the Y-axis. The absolute value of Pearson 

correlation across all conditions was used as the measure for the co-expression. D. Average co-regulatory similarity 

of gene pairs with the highest co-expression (blue solid curve) versus average co-regulatory similarity of all genes 
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pairs (dashed red line). The number of gene pairs with the highest co-expression is represented on the X-axis, and 

the average of co-regulatory similarity of the corresponding top gene pairs with the highest co-expression is 

represented on the Y-axis. 

 

 

 

Figure 4.3.C shows that gene pairs that gain higher co-regulatory similarity based on our defined 

measure exhibit much higher co-expression than an average gene pair, and the genes with higher 

co-regulatory similarity exhibits higher co-expression as the blue curve decreases as more gene 

pairs added. Here the absolute value of Pearson correlation across all conditions was used as the 

measure for the co-expression. Similarly, as it was shown in figure 4.3.D gene pairs, exhibiting 

higher co-expression, gain higher co-regulatory similarity value. 

Kolmogorov-Smirnov statistic is the standard statistic to compare the order of two lists and was 

used to interpret gene expression data in combination with other data sources such as phenotype 

(Subramanian, Tamayo et al. 2005; Keller, Backes et al. 2007). We used the Kolmogorov-

Smirnov test to verify that the gene pairs with large co-regulatory similarity values exhibit higher 

co-expression using the absolute value of Pearson correlation coefficient as the co-expression 

measure. In fact, if the entire gene pairs with non-zero co-regulatory similarity is chosen (pairs 

with at least one common regulator), Kolmogorov-Smirnov test verify that these pairs exhibit 

higher co-expression than what is expected by chance with the significance level 5%. This means 

if two genes contain a common regulator they exhibit higher co-expression than two random 

genes which is expectable by the definition of the gene regulation, while comparison between 

our defined co-regulatory similarity measure and co-expression demonstrate stronger relation 

than what can be deduced by Kolmogorov-Smirnov test (Figure 4.3.C and 4.3.D). 
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4.4. DISCUSSION 

The concept collaborative regulators may have direct relation with the combinatorial regulatory 

which is responsible for observed co-expression on the microarray compendia. In this study we 

introduced new measures, Fisher exact test and also Monte Carlo sampling, to detect 

collaborative regulators. These measures are more sensitive than the originally proposed Jaccard 

coefficient (Balaji, Babu et al. 2006; Gerstein, Bhardwaj et al. 2010)  because they provide a p-

value of observing the number of shared targets for two regulators compare to what is expected 

by chance. However, we could not successfully apply any of these methods to highlight 

collaborative regulators which could decipher the regulatory network modularity in E. coli.  

As we failed to highlight the collaborative regulators, which can describe the observed co-

expression, we introduced a regulatory similarity measure for a pair of gene considering the 

whole structure of the regulatory network. The introduced regulatory measure for a pair of genes 

considers the importance of common regulators. This importance is related to the position of the 

regulator in the hierarchy and was measured by using PageRank method. The higher regulators 

in the hierarchy are more global regulators and have more targets while the lower regulators are 

the more local ones. One advantage of using PageRank is that it can also fulfill the concept of 

chain-of-command (Gerstein, Bhardwaj et al. 2010; Kim, Bhardwaj et al. 2010) in the regulatory 

network. 

Using our definition of co-regulatory similarity measure for a pair of genes, we could observe the 

direct relation between the regulatory network and the observe co-expression on microarray 

expression compendia. As two co-expressed genes are probably involved in the similar 

biological processes, we can expect genes with high co-regulatory similarity value are also 

involved in similar function. Therefore, the defined co-regulatory similarity measure can be seen 

as a suitable measure for data integration. 

One major advantage of our defined co-regulatory similarity measure is that it obviates the need 

to detect any modularity in the regulatory network. Therefore, the observed co-expression 

between a group of genes on the microarray expression compendia can be explained as the effect 

of the whole regulatory network, and not a certain group of regulators. The fact that the 



78 

 

regulatory network may not be modular is not in contrast to the combinatorial regulatory 

concept. Based on our definition of the co-regulatory similarity measure, a group of genes which 

have higher co-regulatory similarity are more likely to have common regulators and some local 

regulator are expected to be among these common regulators. Nevertheless, our definition of co-

regulatory similarity does not imply that a group of co-expressed genes has to share the majority 

of their common regulator. In contrast, finding modularity in the regulatory network based on 

collaborative regulators contain this hidden presumption that there exists a detectable modularity 

in the regulatory network that have a one to one relation with the co-expression modularity of 

genes (as an example consider schematic Figure 4.1). 

Considering our defined co-regulatory similarity measure, we can explain the fast evolution of 

the regulatory network. This network should evolve much faster in comparison to other 

interaction networks and cellular pathways to enable the organisms to adapt themselves to the 

new environment, but what should remain conserved is the co-regulatory similarity of the genes. 

Considering our definition of co-regulatory similarity measure, we can explain why the majority 

of rewiring happens in higher regulators in the hierarchy (more global regulators) (Jothi, Balaji et 

al. 2009) because the targets of lower level regulators in the hierarchy, or local regulators, gain 

higher co-regulatory similarity value. Consequently, the target genes of local regulators are more 

likely to be co-expressed. On the other hand, more global regulator seem to assist the conveying 

signals from the environment to the cell, but have less effect on the observed co-expression of 

the genes. 
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CHAPTER 5 

THE RELATION BETWEEN PHYSICAL INTERACTION NETWORKS 

AND FUNCTIONAL DATA SOURCES: APPLICATION TO THE E. COLI 

GENOME 
 

5.1. INTRODUCTION 

Integrating different types of data including physical interactions (protein-protein, protein-DNA, 

etc.), genetic interactions (synthetic sickness and synthetic lethality), and expression data can 

lead to a better functional annotation of genes and a better understanding of the cell behavior 

(Kelley and Ideker 2005; Beyer, Bandyopadhyay et al. 2007; Andres Leon, Ezkurdia et al. 2009; 

Hu, Janga et al. 2009; Huang and Fraenkel 2009). 

Integrating different data sources derived from high-throughput to assign new function to genes 

with unknown genes have been applied over different species especially E. coli (Andres Leon, 

Ezkurdia et al. 2009; Hu, Janga et al. 2009) and yeast (Zhu, Zhang et al. 2008; Myers, Chiriac et 

al. 2009; Narayanan, Vetta et al. 2010). In these studies, the mutual relations between different 

data sources were carefully explored. The study of (Zhu, Zhang et al. 2008) is a good example of 

combining different data sources including genotypic, expression, transcription factor binding 

site (TFBS), and protein-protein interaction network (PPI) data from a number of yeast 

experiments. They observed that some protein complexes are either traceable as a clique in 

protein-protein interaction network, or as highly co-expressed genes in microarray expression 

compendia. Therefore, they concluded the complementary relation between protein-protein 

interaction network and microarray expression data. As another example, (Kelley and Ideker 

2005) studied the mutual relation between the combined network of physical interactions 

(protein-protein and protein-DNA) and genetic interactions, and they concluded that genetic 

interactions occur mostly between different pathways, retained from physical interaction data, 

rather than within pathways. As another example, in (Chandrasekaran and Price 2010), it was 

shown that using transcriptional regulatory network improve the metabolic network prediction in 

E. coli. To predict metabolic changes that result from genetic and environmental perturbation, 
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they integrated transcriptional regulatory network with corresponding metabolic network using 

high-throughput measured data (Chandrasekaran and Price 2010). The high accuracy of their 

result in constructing regulatory-metabolic network in E. coli made their constraint-based 

probabilistic modeling proper to study less studied organisms like M. tuberculosis 

(Chandrasekaran and Price 2010). 

Predicting the behavior of cell and its response to perturbations (Ishii, Nakahigashi et al. 2007) 

with respect to the cellular architecture of regulatory circuits (Cho, Zengler et al. 2009; Thiele, 

Jamshidi et al. 2009) as well as signaling pathways (Hyduke and Palsson 2010) is another major 

application of data integration. These kinds of studies can reveal the repeating pattern (motifs) 

over interaction circuits of networks with controlling role such as regulatory network and 

phosphorylation network which are evolutionary more favorable to control cellular 

behavior(Michoel, Joshi et al. 2011), and the way that these circuits are developed to handle 

perturbations (Ishii, Nakahigashi et al. 2007). For example, (Ishii, Nakahigashi et al. 2007) 

attempted to assess if there is a redundancy structure of the metabolic network or if there are 

multiple regulatory circuits in E. coli to address perturbations. They observed in response to 

enzymatic gene disruptions (mutation), metabolic levels remains stable, and they could conclude 

that the reason of this stability is due to the parallel routes in metabolic network, and when one 

route is not available due to the mutation of enzyme in this route, the parallel route is still 

accessible. In contrast, they observed in response to changes in growth rate perturbation 

(exposing high glucose), E. coli regulates enzyme levels to maintain a stable metabolic state, 

implying that changes in regulation is the complementary strategy that E. coli uses to keep 

metabolic network robust to response to the environmental perturbations. 

Although current data integration methods based on network could predict new function for 

many genes of different genome successfully (Myers, Chiriac et al. 2009; Narayanan, Vetta et al. 

2010) or successfully described the organism response to stimuli (Ishii, Nakahigashi et al. 2007; 

Yeger-Lotem, Riva et al. 2009), still the mutual relation between physical interaction networks 

with controlling role inside the cell such as regulatory network and other physical interaction 

networks and also other functional data sources is not completely explored. The regulatory 

network evolves rapidly to enable different species to adapt themselves to various environmental 
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conditions, but they also control the expression of non-controlling networks inside the cell, and 

these non-controlling networks such as protein-protein interactions and metabolic pathways are 

evolutionary conserved in close species (Shou, Bhardwaj et al. 2011). The fact that the 

regulatory network evolves differently from the other networks, which are controlled by this 

network, makes it difficult to deduce functional relation between genes from the regulatory 

network. For example, more global regulators have been shown to regulate genes with 

completely different biological functions (Jothi, Balaji et al. 2009; Kim, Bhardwaj et al. 2010). 

In addition, it not clear to what extent the regulatory hierarchy, which is derived from the 

regulatory network, is similar to the functional hierarchy of the genes, which is defined by GO 

terms hierarchy. The hierarchy which can be derived from a regulatory network may be highly 

dynamic as the regulatory networks evolve rapidly. In contrast, the hierarchy which can be 

observed using GO terms seems to be static as it is directly related to the GO terms hierarchy, 

and the hierarchy of GO terms is a fixed hierarchy for all species. 

In this chapter first, we assessed the relation between networks with controlling role and non-

controlling roles. We used our co-regulatory similarity measure to evaluate the regulatory 

similarity of genes, which are involved in the same biological processes. We considered genes in 

two types of modules as the genes which are involved the same biological processes; genes 

involved in the same metabolic or signaling pathways, and also genes which are detected as 

modules in the protein-protein interaction network. We also compared the regulatory hierarchy 

of the genes, which are involved in the same biological processes, with their functional 

hierarchy. We used the co-regulatory similarity measure at the module level (see 4.2.5) to build 

the hierarchy of modules. To measure the functional similarity across different biological 

processes, we introduced a new species-specific functional relation measure between each two 

modules based on their shared gene ontology terms.  
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5.2. MATERIALS AND METHODS 
 

In this part we discuss the available high confident data sources available in E. coli.  Note that 

unlike yeast, the phosphorylation and genetic interaction networks are not available for E. coli. 

5.2.1. CURRENT AVAILABLE PHYSICAL INTERACTION DATA SOURCES IN E. COLI 

5.2.1.1. Protein-protein interactions network 

We downloaded 7603 interactions from combined interaction dataset provided by (Peregrin-

Alvarez, Xiong et al. 2009) from the following link: 

http://www.compsysbio.org/bacteriome/download.php 

The combined interaction dataset was derived from combining the (Hu, Janga et al. 2009) (3888 

interactions between 918 proteins with high confidence score) and functional interactions 

(Peregrin-Alvarez, Xiong et al. 2009) (3989 interactions between 1941 proteins deduced by 

Peregrin-Alvarez). The later one was built by combining 3 experimental datasets (large scale pull 

down (Arifuzzaman, Maeda et al. 2006), small scale assays (Xenarios, Salwinski et al. 2002; 

Salwinski, Miller et al. 2004), large scale Tap (Butland, Peregrin-Alvarez et al. 2005)) and 6 

computational datasets (conserved co-expression (Bergmann, Ihmels et al. 2004), phylogenetic 

profiles (Bowers, Pellegrini et al. 2004), literature mining (Hoffmann and Valencia 2005), gene 

proximity (Bowers, Pellegrini et al. 2004), Rosetta stone (Bowers, Pellegrini et al. 2004), 

Interlogs (Rain, Selig et al. 2001; Gerstein, Yu et al. 2004)). Although for some of these 

functional interactions there is no evidence of direct interaction, but there is fairly high 

confidence that they are involved in same biological process. 

We combined those 7603 interactions provided by (Peregrin-Alvarez, Xiong et al. 2009) with 

1528 interactions derived and annotated from literature-based curated EcoCyc (Keseler, 

Bonavides-Martinez et al. 2009)  protein complexes. This resulted eventually in 8454 high-

confidence protein-protein interactions. 

 

http://www.compsysbio.org/bacteriome/download.php
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5.2.1.2. Regulatory network: Transcriptional and post-transcriptional 

interactions 

Like previous chapters, we considered transcriptional and post-transcriptional interactions as the 

regulatory network. We downloaded sigma factors, transcription factors (TFs), and small RNAs 

(sRNAs) and their targets from RegulonDB database (Gama-Castro, Jimenez-Jacinto et al. 

2008). Unfortunately unlike yeast, post-translational interactions such as phosphorylation 

interactions are not available for E. coli. 

5.2.1.3. Metabolic and signaling pathways 

Like chapter 2, we downloaded highly accurate literature-based curate metabolic and signaling 

pathways (mostly two-components pathways) from EcoCyc (Keseler, Bonavides-Martinez et al. 

2009). 

5.2.2. FUNCTIONAL DATA SOURCES 

5.2.2.1. Gene Ontology terms 

Like previous chapters, Gene Ontology (GO) terms of E. coli were downloaded from EcoCyc 

(Keseler, Bonavides-Martinez et al. 2009).  

5.2.2.2. Co-expression microarray compendia 

Like in previous chapters, the microarray compendium of E. coli was obtained from Lemmens et 

al. (Lemmens, De Bie et al. 2009). We used the Pearson correlation coefficient across all 

conditions as the measure of mutual co-expression between genes. To measure the co-expression 

of genes inside a module, we calculated the average of these Pearson correlation coefficients of 

all gene pairs in the module.  

5.2.3. JACCARD SIMILARITY COEFFICIENT 

The Jaccard coefficient measures similarity between two modules of genes is defined as the 

number of common genes divided by the total number of the genes: 
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Where Ga is the set of genes in module a. 

5.2.4. DETECTING MODULES IN EACH PHYSICAL INTERACTION DATA SOURCE 

Different physical interaction data sources are available for E. coli. Each one measures a certain 

type of interaction. Metabolic (292 modules) and signaling modules (22 modules) were directly 

downloaded from EcoCyc pathway database (Keseler, Bonavides-Martinez et al. 2009). 

A recently developed community detection method called, OSLOM (Order Statistics Local 

Optimization method) (Lancichinetti, Radicchi et al. 2011), was applied over high-confidence 

PPI network and could detect 114 modules. 

To find modules consisting of genes with similar regulators, OSLOM was applied over the co-

regulatory similarity values of all pair of genes and detects 68 modules. 

5.2.5. FUNCTIONAL SIMILARITY MEASURE BETWEEN TWO MODULES 

We assign a vector V with a length equal to the number of GO terms to each module. For i th 

module, the j element related to the j th GO term is calculated as:        

Then if the j th GO term includes large number of genes, we expect a low value for . 

We define similarity between two modules l and k based on cosine similarity of their vectors as 

follow:  

     

Where n is the total number of GO terms. For example, consider just five Go terms exist, and 

each one includes (1000, 50, 25, 10, 2) genes. Imagine two gene modules including 20 and 15 

genes and they share (20, 19, 15, 6 ,1) and (10, 8 ,5 ,3, 0) genes with the GO terms. Then: 
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  V1 = (20/1000, 19/50, 15/25, 6/10, 1/2) 

  V2 = (10/1000, 8/50, 5/25, 3/10, 0/2) 

And   Similarity(V1,V2) = 0.3610 / (1.0558 * 0.3946) =0.8665 

The GO terms, including only one gene, are not indicating any functional relation and 

consequently are not informative and are excluded from this analysis. 

 

5.3. RESULTS 

5.3.1. STUDYING MUTUAL RELATION BETWEEN PHYSICAL INTERACTION DATA SOURCES 

AND FUNCTIONAL DATA SOURCES 

To gain a global view on mutual relation between various interaction networks and functional 

hierarchy of GO terms in E. coli, we perform two steps summarized in Table 5.1. First, we 

studied the mutual relation between the regulatory network and modules involved in a certain 

biological process (Table 5.1 task 1). We considered the modules derived from protein-protein 

interaction network (PPI) and each pathway metabolic or signaling pathway as a module 

involved in a certain biological process. We checked the similarity in regulatory circuits (see 

4.2.5) of the genes involved in a certain biological module using our defined co-regulatory 

similarity measure. Later, we built the regulatory hierarchy of the modules involved in the same 

biological processes, and we also built the functional hierarchy of the modules involved in the 

biological processes using our defined species-specific functional similarity measure of modules 

(task 2). The comparison of these two hierarchies could reveal the degree of similarity in the 

regulatory hierarchy and functional hierarchy in E. coli.  
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Table 5.1. Overview of the different analysis performed in this chapter. First, we studied the mutual relation 

between the regulatory network and non-controlling interaction networks (task 1). Later, we built the regulatory 

hierarchy of the modules involved in the same biological processes, and we also built the functional hierarchy of the 

modules involved in the biological processes using our defined species-specific functional similarity measure of 

modules (task 2). 

 

5.3.2. DETECTING MODULES OF GENES INVOLVED IN THE SAME BIOLOGICAL PROCESSES 

(Lee, Gianchandani et al. 2008) investigated the mutual relation between genes involved in 

signaling, metabolic, and transcriptional regulatory networks in yeast using dynamic flux balance 

analysis (Lee, Gianchandani et al. 2008). Inspired by (Lee, Gianchandani et al. 2008), we 

explored the mutual relation of the physical interactions of genes involved in four biological 

processes including regulatory interactions, signaling pathways, metabolic pathways, structural 

and functional components. 

Regulatory interactions consist of transcriptional, post-transcriptional, and post-translational 

interactions and control every cellular process and regulate all other categories. Unlike yeast, the 

post-translational interactions such as phosphorylation interactions are not available for E. coli. 

As we mentioned in the previous chapter, we were not able to detect modularity in the regulatory 

network (see 4.3.1). For E. coli metabolic and signaling pathways are available in EcoCyc 

Task 1: Studying the mutual relation between the regulatory network and non-controlling 

interaction networks 

 Detecting biological modules in non-controlling networks  (Modules in PPI network + cellular 

pathways) 

 Checking the average co-regulatory similarity values of genes pairs in the same module 

 Detecting modules with high co-regulatory similarity values using the regulatory network 

 Comparison between the detected  biological processes modules and modules with high co-

regulatory similarity values (derived from regulatory network) 

Task 2: Comparing the hierarchy of biological process modules built using regulatory 

networks with the one built using functional GO terms  

 Build the hierarchy of biological process modules by using co-regulatory similarity measure for 

modules 

 Build the hierarchy of biological process modules by using the defined functional similarity measure 

for modules 

 Compare two hierarchy 
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(Keseler, Bonavides-Martinez et al. 2009), and we considered each pathway or super-pathway as 

a module. We defined a fourth category as “structural and functional components” to contain the 

genes involving in different biological processes such as building large components (e.g. 

flagellum or ribosomal big and small subunits) or transport activities. Based on this definition, 

the building blocks of these “structural and functional components” are interacting proteins, and 

protein-protein interaction network is a proper data source to detect them. 

A measured protein-protein interaction can be the interaction between: 1. Two transcription 

factors that regulates their targets together  2. A kinase and substrate (phosphorylation activity) 

3. A protein complex constituting an enzyme 4. Structural or functional component. Here we are 

more interested to detect modules in protein-protein interaction networks consisting of structural 

or functional components. A structural or functional component is a densely connected 

subnetwork in protein-protein interaction network, hence a module detection method which can 

highlight more densely connected subnetworks is more suitable for our framework. Therefore, 

we used OSLOM (Lancichinetti, Radicchi et al. 2011) to find modules in protein-protein 

interaction network as this method detect densely connected subnetworks due to its internal 

optimization criteria. 

Naturally the detected modules in protein-protein interaction networks are from two last 

categories, a protein complex encoding an enzyme and structural or functional component, 

because two interacting transcription factors or kinase and substrate (phosphorylation activity) 

are low connected nodes in protein-protein interaction network by their nature. To show that 

protein complexes encoding enzymes were not highly appeared in OSLOM results, we compared 

the detected modules by OSLOM with EcoCyc cellular metabolic and signaling pathways. 

Figure 5.2 shows that the detected modules in protein-protein interaction network do not share 

many genes with cellular metabolic and signaling pathways. In other words, genes which are 

encoding enzymes are not among the modules detected in protein-protein interaction network. 

The reason can be these genes have lower connectivity on average than genes in protein-protein 

interaction network. Average connectivity in our protein-protein interaction network is 1.8904 

while average connectivity genes encoding enzymes in this network is 1.3447 (Self loops were 

not considered). 
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Figure 5.1. Four biological processes categories inside a cell. 1. Regulatory interactions consist of 

transcriptional, post-transcriptional, and post-translational interactions and control every cellular process and 

regulate all other categories. 2. Signaling pathways which may be activated by an environmental change and 

usually activates certain regulators. 3. Metabolic pathways where each pathways is a series of chemical reactions 

occurring within a cell. 4. Structural and functional components accomplish a certain function (e.g. here 

flagellum is responsible for locomotion). 

 

We have also compared the modules derived from protein-protein interaction network with the 

modules which were derived from protein-protein interaction network of (Hu, Janga et al. 2009) 

and the original modules (Peregrin-Alvarez, Xiong et al. 2009) both using Markov Cluster 

Algorithm (MCL) clustering. Our detected modules were highly different from that of (Hu, 

Janga et al. 2009), but rather similar to the one of (Peregrin-Alvarez, Xiong et al. 2009) because 

we used protein-protein interaction network of (Peregrin-Alvarez, Xiong et al. 2009). As it was 

reported in (Peregrin-Alvarez, Xiong et al. 2009) most of the connections reported in from (Hu, 
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Janga et al. 2009) are functional rather than actual physical protein-protein interaction causing 

large difference in the modules derived from these two data source, and Peregrin-Alvarez could 

show that Peregrin-Alvarez, Xiong et al. 2009) data source and the detected modules are more 

reliable, as they have more actual physical interaction and also they integrated more functional 

data sources to predict interacting proteins. Interestingly, the detected OSLOM modules with the 

MCL-based (Peregrin-Alvarez, Xiong et al. 2009) original modules show high similarity (Figure 

5.3). Our qualitative analysis shows that modules of OSLOM are usually larger and included 

more than one MCL module which are related to each other (see Appendix A). In addition, it can 

cluster highly connected proteins (hubs) in more than one module while in many cases MCL 

failed to do it (see Appendix A). The reason behind these dissimilarities between the modules 

detected by OSLOM and MCL is the actual differences of the algorithms, MCL is flow based 

network clustering method, while OSLOM detects subnetworks which are densely connected and 

highly different from what is expected by chance. OSLOM results does not include low 

connected proteins which prevents finding paths on network while it enables OSLOM to find 

highly connected structural and functional component. 
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Figure 5.2. The Jaccard coefficient was used to compare modules detected by OSLOM in the protein-protein 

interaction network with cellular signaling and metabolic pathways derived from EcoCyc. Modules detected in 

the protein-protein interaction network are shown on the X-axis. These modules were ordered based on the order in 

which there were organized by OSLOM. On Y-axis EcoCyc cellular pathways are presented, and these pathways 

were ordered in a way that pathways with larger Jaccard coefficient values would appear on the diagonal. The 

intensity of dots on the heatmap is related to the value of Jaccard coefficient. As it can be seen in this heatmap, the 

OSLOM PPI modules do not have high Jaccard coefficient with cellular pathways. 
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Figure 5.3. The Jaccard coefficient was used to compare OSLOM PPI modules with (Hu, Janga et al. 2009) 

(left panel), and (Peregrin-Alvarez, Xiong et al. 2009) PPI modules (right panel). The intensity of dots on each 

heatmap shows the Jaccard coefficient Left panel: There are few modules with high Jaccard coefficient and as the 

dots are scattered all around the heatmap, and we could not reorder them on a diagonal implying the results of from 

(Hu, Janga et al. 2009) is completely different as the data sources were completely different. Right panel: 

Comparison of the modules detected by OSLOM with from (Hu, Janga et al. 2009) original modules (applying MCL 

algorithm over the same data source) shows a close relation between the modules. We reordered the modules in both 

dimension to bring the highly related ones on the diagonal. As it can be seen on the heatmap the majority of 

OSLOM modules have large Jaccard coefficient with from (Hu, Janga et al. 2009) modules. OSLOM did not find 

modules with lower connectivity. 

 

5.3.3. EXPLORING THE MUTUAL RELATION BETWEEN GENES INVOLVED IN SIMILAR 

BIOLOGICAL PROCESSES AND THE REGULATORY NETWORK 

The regulatory network controls the expression of genes involved in similar biological processes 

such as “structural and functional modules” and cellular pathways. Therefore, we expect high 

similarity in the regulatory interactions controlling the genes which are involved in the similar 

biological processes. In this part first we use our defined co-regulatory similarity measure and 

microarray expression compendia to show that genes, involved in the same biological processes, 

are more likely to have similar controlling regulatory interactions circuits and tend to be co-
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expressed with each other. After that we also show that genes, which have more similarity in 

controlling regulatory interactions, are the ones involved in similar biological processes. 

We calculated the average Pearson correlation coefficient across all conditions of gene pairs 

involved in the same biological process as the co-expression measure (Figure 5.4). Similarly, we 

used our defined co-regulatory similarity measure to assess the similarity in controlling 

regulatory circuits of the modules (Figure 5.5). As we expected we could observe both the 

average co-expression and average co-regulatory similarity are much higher than what can be 

expected for a random module. Although 36% of signalling pathways, 24% of metabolic 

pathways, and 20% of PPI modules did gain not average co-regulation higher than the expected 

co-regulation value 0.008, the average co-regulatory value was striking higher than average for 

the majority of the modules (Figure 5.5). The major limitation in using co-regulatory similarity 

measure is the lack of known regulatory interactions for many genes, as all the regulatory 

interactions exists in the regulatory interaction network of E. coli was not measured with high-

confidence experiences yet, and if we do not identify any regulators for the genes involved in a 

biological module (which was the case for almost all of the modules exhibits lower co-regulatory 

similarity than random) the assigned co-regulatory similarity value to this module will remain 

zero. 

The fact that genes involved in a similar biological process are more likely to be co-expressed 

and their controlling regulatory interaction circuits are very similar is not a new finding, and we 

need to show the same phenomena in the other direction meaning that with a given regulatory 

interaction network, we can still detect the similar modules of genes which are involved in the 

same biological processes. For this aim, we also used OSLOM to detect modules just using the 

regulatory network based on the introduced co-regulatory similarity measure, and we compared 

these modules to the modules in which genes were involved in the same biological processes by 

using Jaccard coefficient. Interestingly we could observe high similarity between these two types 

of modules (Figure 5.6). As it can be seen in Figure 5.6, modules detected from regulatory 

network are larger in size and one of them can be linked to more than one corresponding 

modules with genes involved in the same biological process. 

 



93 

 

 

 

Figure 5.4. The distribution of the average co-expression value calculated by the Pearson correlation 

coefficient across all conditions for different modules involved in the same biological processes. These modules 

are divided to three categories modules derived from protein-protein interaction network (left panel), metabolic 

pathways (middle panel), and signalling pathways (right panel). These average Pearson correlation coefficients were 

usually much higher than 0, which is expected value for a random module. 
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Figure 5.5. The distribution of the average co-regulation similarity measure for different modules involved in 

the same biological processes. These modules are divided to three categories modules derived from protein-protein 

interaction network (left panel), metabolic pathways (middle panel), and signalling pathways (right panel). These 

average co-regulatory similarity measures were usually much higher than 0.008, which is expected value for a 

random module. 
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Figure 5.6. Jaccard coefficient was used to compare OSLOM detected modules using co-similarity measure 

with the modules involved in the same biological process. Modules involved in the same biological processes, 

including combined detected modules in protein-protein interaction network, and cellular metabolic and signaling 

pathways are represented on the X-axis. A hierarchical clustering were applied on these combined modules using 

co-regulatory similarity as the similarity measure, and these modules are ordered as the leafs of hierarchical 

clustering. With this representation modules with more similarity in regulation are located closer to each other on 

the X-axis. Modules derived by applying OSLOM on gene co-regulatory similarity are represented on Y-axis and 

reordered based on the order of the other axis to bring the higher Jaccard coefficient on the diagonal. The intensity 

of dots on the heatmap is related to the value of Jaccard coefficient. 

 

5.3.4. COMPARING REGULATORY NETWORK HIERARCHY AND GO TERMS HIERARCHY 

We have already shown the relation between modules of genes involved in the same biological 

processes and the regulatory network interaction which controls these modules. In this part we 

explore the relation between the regulatory hierarchy of the modules of genes involved in the 

same biological processes and their functional hierarchy. For this aim, first for each two modules 
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of genes involved in the same biological processes, the co-regulatory similarity measure of the 

modules was calculated. At the next step, for these modules, the functional similarity was 

calculated using the similarity measure between the modules (see 5.2.5). Finally the correlation 

between these two similarities measures across all pairs of modules was calculated using Pearson 

correlation coefficient. When we use all three GO terms domains, this Pearson correlation 

coefficient was equal to 0.2868 which is a considerably higher than what is expected by chance. 

This Pearson correlation coefficient was equal to 0.2682 considering just biological processes, 

0.2575 considering just molecular function, 0.0154 considering just cellular components (This 

Pearson correlation coefficient was equal to 0.2851 for combined biological process and 

molecular function GO-terms). 

Although the observed Pearson correlation coefficient (0.2868) clearly shows that there is a 

relation between regulatory hierarchy and functional hierarchy, still we looked at the extreme 

cases to investigate the reason of not obtaining very high correlation value. We observed that 

most of the signaling pathways gained a high functional similarity value with each other. 

Nevertheless, it is known that genes involved in different two-component signaling pathways do 

not have any relation with each other, signaling pathways have different regulatory programs. As 

a result we observe a problem that arises because of the GO-term misclassification. Although for 

an expert user the meaning of two-component signaling pathway is clear and the person will not 

consider them similar in function, for automatic analysis this classification is misleading. As 

another extreme case example, carbon transport related module has high module co-regulator 

similarity with carbon source related module while this similarity were not captured in GO-terms 

because the hierarchy of these two groups is different in all 3 domains although for an expert the 

functional similarity is observable. Still we cannot say there is no difference between functional 

hierarchy and regulatory hierarchy as paralogous gene in duplicated operons may not have 

similar regulatory pattern even though they can be involved in similar function or close species 

have many orthologous genes in common meaning that there functional hierarchy is similar, but 

regulatory hierarchy may be very different even for closer species.  
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5.4. DISCUSSION 

We could exhibit the mutual relation between the regulatory network as a controlling network 

and other non-controlling networks such as protein-protein interaction network and cellular 

pathways. We divided biological processes into four general categories known as Regulatory 

interactions, signaling pathways, metabolic pathways, and structural and functional components 

(Figure 5.1). At the next step we tried to detect modules in each category. In previous chapter, 

we showed that finding modules in regulatory network is difficult (see 4.3.1). We downloaded 

signaling and metabolic pathways in a modular format from EcoCyc (Keseler, Bonavides-

Martinez et al. 2009) (each pathway or super-pathway is considered a module). We detected 

modules which we called structural and functional components, by finding densely connected 

subnetwork in protein-protein interaction network using OSLOM. After detecting modules 

consisting of genes involved in similar biological processes, we could show that a high similarity 

in regulatory circuits exists for the genes in each module by using the defined co-regulatory 

similarity measure. In addition, if we tried to find modules just by looking into the regulatory 

network structure and using our defined co-similarity measure, we can observe modules very 

similar to the modules consisting of genes involved in similar biological processes. 

We introduced a new species-specific functional similarity measure for two modules that has 

several advantageous over the methods that had been developed based on semantic similarity. 

Semantic similarity provides quantitative ways to compute similarities between GO terms, genes, 

and gene groups by considering the structure of GO terms DAG (Couto, Silva et al. 2007; Wang, 

Du et al. 2007; Du, Li et al. 2009). One major problem with semantic similarity is that it just 

considers the topology of GO terms, but it does not consider the number of genes inside the GO 

terms, while the number of genes inside a GO term is a species-specific feature of GO terms. In 

addition, it is believed that one use of semantic similarity is to highlight informative GO terms 

located at certain level(s), and usually the GO terms close to the root are considered as 

noninformative (Du, Li et al. 2009). As an example, (Hu, Jiang et al. 2010) took just 32 

informative GO terms from biological process domain. Figure 5.7 shows the number of genes in 

GO terms located in first 4 layers of biological processes domain of E. coli. It is clear that the 
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distribution of genes in GO terms is not balance. Many GO terms contains several genes even in 

lower levels while there are always GO terms containing low numbers of genes in the very top of 

the DAG. For example, 8 out of 14 GO terms in the uppermost level of the biological process 

domain in E. coli includes less than 80 gene products (Table 5.1). This means that most of GO 

terms in the uppermost levels are still informative in E. coli case, while as it can be seen in 

Figure 5.7, the less-informative GO terms, including hundreds of genes, may exist even in lower 

levels. Furthermore, a certain gene may just be annotated for very general less-informative GO 

term in a certain organism. Therefore, ignoring less-informative GO terms will lead to lose all 

the available data for this gene. 

We could also demonstrate the relation between regulatory hierarchy of the different modules 

and their functional hierarchy. For this aim we used our defined co-regulatory similarity measure 

to build the regulatory hierarchy of the modules, and we introduced a new species-specific 

functional similarity measure between modules, and we used it to build the functional hierarchy 

of the modules.  We could observe correlation between co-regulatory similarity and functional 

similarity across different modules. Our results imply that although regulatory network evolves 

rapidly while functional GO terms is a static definition with firm structure of GO terms relations 

regardless of the organism, still a non-neglectable relation exists between regulatory hierarchy 

and functional hierarchy of modules. 

The fact, that our defined co-regulatory similarity measure was successful to explain the relation 

between the controlling regulatory network and the other interaction networks, implies that the 

observed expression is the effect of the total structure of the regulatory network, not only direct 

regulators of the co-expressed genes. Based on the results of this chapter and previous chapter, 

we can claim that co-regulatory similarity is a proper measure to assess the regulatory similarity 

of genes as this measure is in agreement with the observed co-expression on the microarray 

compendia, and it could explain the relation between the highly flexible regulatory networks 

with the evolutionary conserved targets such as cellular pathways and protein complexes. 

Regulatory networks evolve rapidly to allow the different species to adapt themselves to various 

environments, while cellular pathways and protein complexes are rather conserved across 

evolutionary related species (Shou, Bhardwaj et al. 2011) . Therefore, explaining the trends of 
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evolution of regulatory had remained as a difficult problem. The trends that rewiring may happen 

in regulatory networks were presented in several paper (Lozada-Chavez, Janga et al. 2006; Perez 

and Groisman 2009; Kim, Bhardwaj et al. 2010). Based on the properties of the defined co-

regulatory measure, we expect that the evolutionary trends of regulatory network should be more 

global to ensure the co-regulatory similarity of related genes by considering the total structure of 

the network. Considering the co-regulatory formula we can expect the rewiring happens mostly 

in more global regulators as the more local regulators have lower contribution to the co-

regulatory similarity value between two genes, but may contribute more to the co-regulatory 

similarity between two modules of genes because two modules are less like to share a local 

regulator. Therefore, we can explain why the mutant of many regulators, especially higher 

regulator in the hierarchy like Fnr, Fis, and ArcA, do not cause lethality in E. coli (Covert, 

Knight et al. 2004; Perrenoud and Sauer 2005; Blot, Mavathur et al. 2006; Bradley, Beach et al. 

2007; Seshasayee, Fraser et al. 2009). Knocking out one regulator, especially a global one will 

not perturb the expression possible modules of genes involved in a certain biological process, but 

it may change the internal signal routing passes and disable the organism to address certain 

environmental perturbations. 

Finally, functional similarity measure and co-regulatory similarity measure can be used in the 

data integration researches. Our defined functional similarity measure is species-specific and it 

fetches information from all the GO terms in the hierarchy. Likewise, our defined co-regulatory 

similarity measure is far more sensitive that assigning same function to all targets of a regulator 

or kinase. Although the Phosphorylation network currently is not available for E. coli, but while 

it will become available it can be integrated to the regulatory network to enrich the controlling 

interactions. 
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Gene Oontology ID Gene Ontology Name Gene Product number 

GO:0001906 cell killing 2 

GO:0040007 growth 5 

GO:0032501 multicellular organismal process 6 

GO:0016032 viral reproduction 20 

GO:0000003 reproduction 30 

GO:0022610 biological adhesion 44 

GO:0032502 developmental process 46 

GO:0051704 multi-organism process 73 

GO:0071840 cellular component organization or biogenesis 265 

GO:0065007 biological regulation 532 

GO:0050896 response to stimulus 569 

GO:0051179 localization 894 

GO:0008152 metabolic process 2286 

GO:0009987 cellular process 2374 

 

Table 5.1. GO terms in the uppermost level of the biological process domain, directly linked to the root node 

GO:0008150 biological_process, and their number of annotated gene products in E. coli. 
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Figure 5.7. The zoom in of four first layers gene ontology structure of biological process domain in E. coli. 

Each biological domain is a tree-like directed acyclic graph (DAG) in which each node is a GO term and the 

direction of edges shows the parents GO terms. GO terms are selected by applying breath first search (BFS) 

algorithm on this DAG by setting the maximum distance from the root, GO:0008150 biological_process node, to 

three. The size of GO terms is related to the number of gene products annotated for this term. Therefore, the larger 

nodes are more general GO terms and are less-informative. 
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CHAPTER 6 

CONCLUSIONS AND PERSPECTIVES 

 

6.1. CONCLUSIONS 

The advent of new technologies resulted is a revolutionary boost in molecular biology. System 

biology has facilitated integrating and analyzing various omics data from different experiments 

to uncover function of genes and interaction of them in different level. Several genome scale 

high-throughput experiments which measure different kind of interactions are available for 

model organisms like yeast and E. coli. Analyzing this data will lead to deep understanding of 

the cell life as a biological system. Therefore, developing new data mining methodology which 

can integrate different data sources with considering the biological complexities of the cell life is 

inevitable. In addition, this gained knowledge can be expanded to the other organisms by 

comparing proper data sources across various species. 

Function of many genes originally predicted, based on transferring annotation of genes in other 

organisms with high sequence similarity, but sequence similarity is not the only data available 

data for cross-species comparison. Microarray co-expression data is known to be the most 

appropriate data source which can be coupled to sequence similarity to enrich the cross-species 

comparison of homologous genes (Chikina and Troyanskaya 2011). We could develop a new co-

clustering methodology to detect co-expression conservation across two different organisms. In 

chapter 2, we applied this methodology on two well-studied prokaryotic model organisms: 

Escherichia coli and Bacillus subtilis as a proof of concept. Comparison with available 

knowledge of expression conservation across these two organisms, mostly based on operon 

conservation (Snel, van Noort et al. 2004; Okuda, Kawashima et al. 2005) or regulon 

conservation (Okuda, Kawashima et al. 2007), reveals the high performance of COMODO. 

COMODO could even detect co-expression conservation beyond both operon and regulon level 

such as genes which are involved in translation. In chapter 3, we applied COMODO to highlight 

the conservation and divergence of various biological processes across Escherichia coli, S. 
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enterica, and Bacillus subtilis. We could observe high co-expression conservation across E. coli 

and S. enterica, even conservation in response to various stimuli, signal transductions, and 

quorum sensing. The only non-conservation that we could detect was related to the genes 

involved in pathogenicity which are considered the main causes of difference in life style of the 

two phylogenetically close species Escherichia coli and Salmonella enterica. We could also 

demonstrate the application of the predicted conserved co-expressed modules to predict the 

possible conservation of the regulatory interactions. Comparing binding sites of these predicted 

regulators seems to be the most straight-forward way to increase the confidence of these 

predictions. 

Integrating various data sources in one organism is another way to expand the current 

knowledge. One major problem with data integration is how to integrate the regulatory network 

as the controlling network with other data sources because the mutual relation between the 

regulatory network and other physical interactions which are controlled by the regulatory 

network was not explained before. Usually for data integration purposes genes, which are 

regulated by the same regulator(s), are considered functionally related (Myers, Chiriac et al. 

2009; Narayanan, Vetta et al. 2010), but it is known that more global regulators have been shown 

to regulate genes with completely different biological functions (Jothi, Balaji et al. 2009; Kim, 

Bhardwaj et al. 2010). Unlike the previous papers that defined co-regulated genes as a pair of 

genes regulated by similar regulator(s) (Myers, Chiriac et al. 2009; Narayanan, Vetta et al. 

2010), we defined a new co-regulatory similarity measures which considered the place of the 

regulator in the regulatory hierarchy to assign a co-regulatory similarity value to each pair of 

genes. In our defined measure, a lower regulator in the hierarchy, more local regulator, adds 

more to the co-regulatory similarity measure of its target genes compare to the higher and more 

global regulator. We calculated PageRank values for all the regulators in the regulatory network 

as a measure to find the place of each regulator in the regulatory hierarchy because this measure 

is in line with both connectivity and chain-of-command idea‟s which are known to be the main 

criteria to reflect the importance of regulators in the hierarchy (Myers, Chiriac et al. 2009; 

Narayanan, Vetta et al. 2010). We showed that our defined co-regulatory similarity measure is 

highly correlated with the observed co-expression on the microarray compendia in E. coli. In 

addition, we showed that genes, involved in the similar biological processes, demonstrate higher 
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co-regulatory similarity using our defined measure. Finally, we observed correlation between the 

regulatory hierarchy and the functional hierarchy, derived from GO categories, in E. coli. 

Co-regulatory similarity measure is not the only measure that we introduced which can be used 

in data integration. We also introduced a new species-specific measure to assess functional 

similarity between a pair of genes considering GO terms. Our introduced measure is more 

sensitive compared to semantic similarity methods because first of all it is a species specific 

measure, and it considers the number genes in a GO term to assess to what extent a GO term is 

informative. In addition, it does not reduce any GO term as non-informative GO term. 

 

6.2. PERSPECTIVES 

6.2.1. DATA INTEGRATION 

Although we have introduced two new measures, co-regulatory similarity measure (see 4.2.5) 

and functional similarity measure (see 5.2.5), suitable for data integration, we did not propose 

any data integration framework. The obvious application of our study is to propose a new data 

integration framework. In this part first we discuss the application of data integration in 

reconstructing biological networks and then we discuss how we can integrate various data 

sources into four biological processes categories inside a cell that we introduced in (5.3.2). 

6.2.1.2. Reconstructing biological networks 

The most intuitive way of viewing various omics data (see 1.1.1) is by adopting a graph based 

representation. In such view nodes represent different molecular entities whereas edges represent 

interactions. Edges can have weighs that reflect the degree of belief in a certain interaction.  

Integrating proper networks lead to a more comprehensive insight of cell behaviour, and usually 

in these networks, nodes represent either genes or proteins and edges represent either physical 

interactions or functional relations. Table 6.1 summarizes available data for E. coli in some of 

the biological networks which were highly used in data integration. 
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Although E. coli is the best-studied prokaryotic model organism, the available data is still poor 

for this organism. No genetic or post-translational (phosphorylation) interaction network exist for 

E. coli, and even the number of the high-confidence protein-protein interactions is limited. 

Validating interactions derived from high-throughput experiments as well as predicting possible 

new interactions based on the other data sources seem to be a promising approach to increase our 

knowledge about the biological network. Recently several papers were published regarding to 

the reconstruction of high-confidence protein-protein interaction network in E. coli (Hu, Janga et 

al. 2009; Peregrin-Alvarez, Xiong et al. 2009), genetic interaction network in yeast (Pandey, 

Zhang et al. 2010), and post-translation interaction network in yeast (Yachie, Saito et al. 2011). 

To assess the confidence of the predictions, the predicted interactions are benchmarked against 

the available validated interactions (derived from laboratory experiments) as a positive set and a 

set of non-interacting gene pairs as a negative set. 

Our introduced co-regulatory similarity can be used to validate and predict interactions in co-

expression, protein-protein, metabolic, and post-translational interaction networks (Table 6.1). At 

least validating and predicting interactions in protein-protein and post-translation interaction 

networks are more promising because a large high quality protein-protein interaction network 

does not exist in E. coli, and post-translational network does not exist in this organism at all. 

Although over 7600 high-confidence protein-protein interactions predicted in (Peregrin-Alvarez, 

Xiong et al. 2009), but this number is very low compare to the possible interactions that may 

exist. In addition, although (Hu, Janga et al. 2009) could build a very large protein-protein 

interaction network, but confidence of their predictions is not high. If we can build a large and 

reliable protein-protein interaction network, we can use it as one of the data sources to build 

post-translational interaction network. 
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NETWORK TYPE INTERACTION DEFINTION DATA SOURCE INTEGRALE SOURCE 

Functional interactions       

Co-expression network 
Degree of co-expression between genes 

Expression compendia (Faith, Hayete et al. 

2007; Engelen, Fu et al. 2011) Co-regulatory similarity¹ 

Genetic Interaction 

network 

Observed Phenotype defects in double 

mutants: aggravating or alleviating 

eSGA (synthetic gene array) - proof of 

concept (Butland, Babu et al. 2008) 

Analysis Technology (GIANT coli) Proof of 

concept (Gross, Typas et al. 2008) 

Low-throughput experiments (about 200 

interaction) (Babu, Musso et al. 2009)   

Physical interactions       

Metabolic Network 

Flow of flux through enzyme reactions 

EcoCyc (Keseler, Bonavides-Martinez et al. 

2009) 

iAF1260 (Feist, Henry et al. 2007) 

Co-expression 

Text mining (co-occurrence) 

Gene neighborhood 

Co-regulatory similarity¹ 

Protein-protein 

interaction network 

Direct Physical interactions between 

two proteins or proteins co-eluting in a 

complex 

Maldi TOF, LC-MS/Ms (6,234 interactions) 

(Butland, Peregrin-Alvarez et al. 2005) 

Large-scale Pull down (11,511 interactions) 

(Arifuzzaman, Maeda et al. 2006) 

Large-scale SPA (5,993 interactions) (Hu, 

Janga et al. 2009) 

Dip database (12,893 interactions in 

2010/10/10)  (Xenarios, Salwinski et al. 2002) 

EcoCyc protein complexes (Keseler, 

Bonavides-Martinez et al. 2009) 

Co-expression 

Text mining (co-occurrence) 

Gene neighborhood 

Co-regulatory similarity¹ 

Conserved protein-protein interaction 

in other organisms 
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(post)transcriptional 

network 

Physical interactions between a 

sigma/transcription factor (SRNA) and 

DNA 

RegulonDB (Gama-Castro, Jimenez-Jacinto 

et al. 2008) 

chip-chip, Chip-seq Expression compendia 

post-translation network 

Phosphorylation of a substrate by a 

kinase 

EcoCyc (Hist-Asp two-components systems) 

(Keseler, Bonavides-Martinez et al. 2009) 

Ser/Thr/Tyr phosphorylation (Macek, Gnad 

et al. 2008) 

Protein-protein interaction network 

Co-expression 

Gene neighborhood 

Co-regulatory similarity¹ 

GO terms: GO:0016301 kinase activity 

(177 gene products) -GO:0004871 

signal transducer activity (102 gene 

products) 

 

 

Table 6.1. Different functional and physical interaction networks and available data for each network in E. coli. The name of the network is written in the 

first column, and the definition of the interactions in the network can be found in the second column. For each network, both validated experiments and high-

throughput experiments are mentioned in the third column. The other data sources which can be integrated to predict or verify interaction in the network are 

listed in the last column. One data source which can be used in reconstruction of some of the networks is our co-regulatory similarity measure indicated by 1. Co-

regulatory similarity measure is not one data source but it is a functional relation measure derived from transcriptional, post-transcriptional , and post-

translational interaction networks.   
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6.2.1.3. Integrating different data sources 

In (5.3.2), we introduced four biological processes categories inside a cell and we called them 

regulatory interactions, signaling pathway, metabolic pathways, and structural and functional 

components. Still we did not introduce any data integration framework, and we just detected 

some structural and functional components by using the protein-protein interaction network. 

Different biological networks can be used to find modules in different biological processes 

(Figure 6.1). 

Regulatory interaction network in our framework is simply an aggregation of all the controlling 

interaction networks including transcription, post-transcriptional, and post-translational network. 

We can improve the current available EcoCyc metabolic and signaling pathways for E. coli by 

using iAF1260 model for metabolic interaction network available in BIGG database (Feist, 

Henry et al. 2007). If we can build a post-translational network it can also assist to detect better 

signaling pathways. Microarray expression compendia and genetic interactions can be coupled to 

other data sources to boost the predictions in all four categories, but they should be interpreted 

differently for each category as the meaning of interactions is different for each category. For 

example, a genetic interaction between two regulators has completely different biological 

interpretation than a genetic interaction between two genes involved in the same or different 

metabolic pathway(s). Finally, our defined co-regulatory similarity measure can be used to 

improve the prediction in structural and functional components as well as both signaling and 

metabolic pathways. 

One issue that should be considered in integrating different data sources is that if they have built 

independently or one data source has been used as a data source to build the other one. For 

example, both protein-protein interaction network and microarray expression compendia can be 

used to detect structural and functional components, but if microarray expression compendia had 

been used to detect interactions in protein-protein interaction network, then the result may be 

become biased towards the genes that show high co-expression with each other. 
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6.2.2. CROSS-SPECIES COMPARISON 

We have developed COMODO that use microarray expression compendia and sequence 

homology as an input to verify the genes conserved in co-expression. One obvious way to 

improve this cross-species comparison is to add other data sources. Protein-protein interactions 

and metabolic pathways tend to be conserved across phylogenetically close species, and have 

already been used for cross-species comparison across different organisms (Karp, Ouzounis et al. 

2005; Bandyopadhyay, Sharan et al. 2006; Li, Coghlan et al. 2006; Karimpour-Fard, Detweiler et 

al. 2007; Singh, Xu et al. 2008; Zaslavskiy, Bach et al. 2009). In contrast to the mentioned data 

sources, regulatory network has not highly been used as a source of data in cross-species 

comparison as inferring functional relation between genes based on this network is not 

straightforward. The introduced co-regulatory similarity measure facilitates using this data 

source in a cross-species comparison framework. 

Although the developed cross-species comparison methods usually tend to identify homologous 

genes with conserved function, detecting conserved interactions in different networks may be 

one interesting application of cross-species comparison methods. Even though expanding the 

available interactions from better studied organism to other organisms or strains where the 

available interactions is limited seemed to be easy in protein-protein and metabolic interaction 

networks, this expanding is not straightforward for the regulatory network. The introduced co-

regulatory similarity measure can also be used to expand or predict the regulatory interactions.  
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Figure 6.1. The relation between different biological network and four biological process categories that we 

have introduced. Different biological networks can be used to detect modules in four biological categories that we 

introduced in (5.3.2). Different biological networks are shown by rectangles and the four categories are depicted by 

squares. The networks which are directly related to the modules in our defined categories are connected to their 

related categories by red arrows. Regulatory interaction network in our framework is simply an aggregation of all 

the controlling interaction networks including (post)-transcriptional, and post-translational network. Metabolic and 

signaling pathways can be deduced from metabolic network, and post-translation network can be used as a coupling 

data source to detect signaling pathways. Structural and functional components can be detected by using the protein-

protein interaction network (see chapter 5). In addition, the networks which are connected by black solid arrows to 

their categories are the networks which can be coupled to the other data sources to boost the predictions accuracy. 

For example, co-expression network can be used to predict more accurate metabolic and signaling pathways since 

genes, involved in the same biological pathways, are expected to exhibit higher co-expression. The same argument 

is also true regarding to use the co-expression network to predict more accurate structural and functional 

components because proteins, involved in the same structural and functional components, tend to exhibit higher co-

expression. Co-expression network can also be used to predict regulatory network interactions. In chapter 4 we 

discussed the relation between these two networks. Finally, the dashed arrows represent the co-regulatory measure 

that derived from the regulatory network and can be used for better module prediction in other three categories. We 

showed in (5.3.3) that genes, involved in the same biological metabolic and signaling pathways or same structural 

and functional components, exhibit higher co-regulation similarity based on the measure that we introduced for co-

regulation similarity (see also Figure 5.5). 
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APPENDIX A 
 

Qualitative comparison of OSLOM PPI modules with MCL PPI modules 

We have applied a recently developed community detection method called OSLOM 

(Lancichinetti, Radicchi et al. 2011) on protein-protein interactions data, described in (Peregrin-

Alvarez, Xiong et al. 2009) to detect modules. Here we performed a qualitative comparison 

between the modules that the main authors have highlighted in their paper derived by MCL 

method and our corresponding modules detected by OSLOM. These modules include chemotaxis 

and flagella assembly (Figure A1), leucin, isoleucin and valine biosynthesis (Figure A2), pili 

assembly (Figure A3), and cell wall biosynthesis and cell division (Figure A4). 

 Chemotaxis and Flagella assembly 

Components of chemotaxis of flagella assembly are organized within two distinct modules (3 

and 15) in Peregrin-Alvarez results (Figure A1). OSLOM also found these two modules (module 

84 and module 85) (Figure A1). OSLOM could detect three highly connected proteins cheY, 

motA, and motB (Figure A1 black nodes) in both modules. Note that fhiA and mbhA, are both 

pseudo-genes and we had removed them from the network before applying OSLOM. 

Leucin, Isoleucin and Valine Biosynthesis 

Leucin, isoleucin and valine biosynthesis are organized within three distinct modules (45, 66 and 

203) in Peregrin-Alvarez results (Figure A2). OSLOM found the proteins involved in leucin, 

isoleucin and valine biosynthesis just in one module (module 61) (Figure A2). Interestingly, 

OSLOM could find few more proteins related to other carbohydrate processes and transport (edd, 

gcl, icd, oxc, uhpC) and a two-component signaling pathway in the mentioned module 

(uhpABT). OSLOM did not detect two lower connected proteins yfdU and ybhJ. 
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Figure A1. Modules related to cheomatix and Flagella assembly reported in Peregrin-Alvarez results (top) 

and OSLOM results (bottom). OSLOM could find three highly connected proteins cheY, motA, and motB (black 

nodes) in both modules. fhiA and mbhA, are both pseudo-genes and we had removed them from the network before 
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applying OSLOM. Peregrin-Alvarez modules visualization (top) are taken from their paper (Peregrin-Alvarez, 

Xiong et al. 2009). 

Pili Assembly 

Pili Assembly is organized within two distinct modules (21 and 35) in Peregrin-Alvarez results 

(Figure A3), while OSLOM could detect them in one module (module 86). This module contains 

yhcD which is predicted outer membrane protein. Two Pili-like proteins were reported in one of 

the Pili Assembly module (module 21) of Peregrin-Alvarez. In contrast, OSLOM could detect 

four Pili-like proteins in a separate module (module 78) (Figure A3). The fact that OSLOM 

could separate these two groups proves its higher accuracy. 

Cell Wall Biosynthesis and Cell Division 

Cell wall biosynthesis and cell division related genes are organized within 10 distinct modules 

(2, 9, 38, 63, 132, 205, 206, 207, 209, and 247) in Peregrin-Alvarez results (Figure A4). The 

related proteins are organized in five distinct modules (1, 62, 64, 102, and 111) in OSLOM 

results (Figure A4). Modules 9, 38, 205, and 207 of Peregrin-Alvarez contain proteins similar to 

module 111 of OSLOM. OSLOM could detect ftsE, ftsX, and secA more than Peregrin-Alvarez 

while it did not include low connected relA and atp which do not seem relevant. Modules 132 of 

Pregerin-Alvarez and 62 OSLOM are identical. Module 132 of Pregerin-alvarez is completely 

entailed in module 101 of OSLOM. Loosely connected module 207 of Pregerin-alvarez were not 

detected by OSLOM. Module 38 of Pregerin-alvarez and module 1 of OSLOM are fairly similar 

but OSLOM find prokaryotic protein translocation apparatus which comprise secA, secB, secD, 

secE, secF, secG and secY all together. In this example also OSLOM shows that it does not 

detect loosely connected nodes in the network, and the results of OSLOM were more relevant. 

General conclusions 

Comparing the detected proteins by two methods, we can conclude that in general OSLOM 

modules are larger, and sometimes two or three MCL modules are related to one OSLOM 

module. In addition, OSLOM modules are highly connected, and loosely connected proteins 
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usually do not appear in its results. Furthermore, highly connected proteins can appear in more 

than one module. 
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Figure A2. Leucin, Isoleucin and Valine Biosynthesis related modules (modules 45, 66 and 203) in Peregrin-

Alvarez results (top) and similar module detected by OSLOM (module 61-bottom). OSLOM could find few 

more proteins related to other carbohydrate processes and transport (edd, gcl, icd, oxc, uhpC) and a two-component 

signaling pathway in the mentioned module (uhpABT). OSLOM could detect ilvE, but OSLOM did not detect two 

lower connected proteins yfdU and ybhJ. Peregrin-Alvarez modules visualization (top) are taken from their paper 

(Peregrin-Alvarez, Xiong et al. 2009). 
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Figure S3. Pili Assembly is organized within two distinct modules (21 and 35) in Peregrin-Alvarez results 

(top), while OSLOM could detect them in one module (module 86-bottom). Two Pili-like proteins were reported 

in one of the Pili Assembly module (module 21) of Peregrin-Alvarez. In contrast, OSLOM could detect four Pili-like 

proteins in a separate module (module 78). Peregrin-Alvarez modules visualization (top) are taken from their paper 

(Peregrin-Alvarez, Xiong et al. 2009). 
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Figure A4. Cell wall biosynthesis and cell in Peregrin-Alvarez results (top) and OSLOM (bottom). Cell wall 

biosynthesis and cell division related genes are organized within 10 distinct modules (2, 9, 38, 63, 132, 205, 206, 

207, 209, and 247) in Peregrin-Alvarez results. The related proteins are organized in five distinct modules (1, 62, 64, 

102, and 111) in OSLOM results. Peregrin-Alvarez modules visualization (top) are taken from their paper (Peregrin-

Alvarez, Xiong et al. 2009). 

 


