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dankzij de continue wetenschappelijke feedback waarop ik steeds kon rekenen. Het
doet mij deugd om te zien hoe OPTEC de voorbije jaren stelselmatig werd uitgebouwd
tot een kenniscentrum dat nu gekend is tot in alle uithoeken van de wereld. Moritz, Ik
bewonder jouw gave om mensen met elkaar in contact te brengenen samenwerkingen
te stimuleren. Het was een waar genoegen om met jou te hebben mogen samenwerken.

Daarnaast wil ik ook mijn twee assessoren, Prof. Lieven Vandenberghe en Prof. Jan
Swevers, danken voor de waardevolle inbreng van hun expertise. Prof. Vandenberghe
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wil ik extra bedanken voor zijn bereidwilligheid om in mijn jury te zetelen en omdat
hij een trip naar Boedapest wilde combineren met een tussenstop in België om mijn
preliminaire verdediging bij te wonen.

Ook bedank ik de andere leden van mijn examencommissie, voorzitter Prof. Yves
Willems, Prof. Wim Michiels, Prof. Jan Willems, Prof. JohanSuykens en de externe
juryleden, Prof. Michel Verhaegen (Delft University of Technology) en Prof. Michel
Kinnaert (Université Libre de Bruxelles), voor hun bereidwilligheid om in mijn jury
te zetelen en voor de nuttige feedback die mijn doctoraatstekst versterkt heeft.

Een speciale dank gaat uit naar Prof. Jan Willems die mij al tijdens mijn eerste weken
wist te inspireren en door zijn kritisch wetenschappelijkeingesteldheid een belangrij-
ke invloed gehad heeft op mijn werk en dit op verschillende momenten tijdens mijn
doctoraat.

Een speciale dank ook aan Prof. Johan Suykens voor de dynamiek die hij aan SCD
geeft en voor de vele informele gesprekken die meer dan eens een nieuwe invalshoek
gaven aan de ideeën die ik aan het uitwerken was.

Voorts wil ik Prof. Joos Vandewalle bedanken voor de aangename samenwerking voor
het vak systeemidentificatie. Terwijl de dictatische takenmeestal een noodzakelijk
kwaad zijn tijdens een doctoraatsopleiding, was het voor mij een meerwaarde dankzij
de vrijheden en verantwoordelijkhedendie ik kreeg om het vak te geven. Tegelijkertijd
mocht ik van hem elk jaar opnieuw waardering ondervinden voor het geleverde werk.

I would like to address a special word of gratitude to Prof. Stephen Boyd for inviting
me to Stanford University. It was a very rewarding experience both professionally
and personally to work in such an inspiring environment, andin a group of outstan-
ding researchers who are endulged in your spirit of innovation. Even though you are
enormously occupied, you regularly reserved time for me forboth informal chats and
scientific advice. You managed to overwhelm me with a tsunamiof new ideas, which
all proved to work when I worked them out afterwards!

Het IWT ben ik dankbaar voor het gestelde vertrouwen en de financiele ondersteuning
van mijn onderzoek, en het FWO Vlaanderen voor de financiele ondersteuning van
mijn onderzoeksverblijf in Stanford.

Naast wetenschappelijke ontwikkeling gaat een doctoraat ook over persoonlijke ont-
wikkeling. Het is een continue zoektocht, een reis met ups endowns. Op mijn reis heb
ik echter mogen rekenen op de aanwezigheid van mijn collega’s, vrienden en familie
tijdens de meest droevige maar ook de meest euforische momenten.
An office is one’s home when at work. To the (ex-)colleagues atEsat and OPTEC,
thank you for providing such an enjoyable workplace and for the many inspiring dis-
cussions.Tom, onze samenwerking in het glycemie-onderzoek heeft mijn doctoraat
verrijkt. Niet alleen door de uitdaging van het onderwerp opzich, maar ook door de
vele boeiende discussies en de resultaten die we bereikt hebben. Ik wens je alle succes
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den.

I also want to thank my friends abroad for making my stay in Stanford unforgettable
and for the support in hard times. Special thanks to some verygood friends whom
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Abstract

In model-based predictive control strategies, accurate estimates of the current state
and model parameters are required in order to predict the future system behavior for
a given control realization. One particularly powerful approach for constrained non-
linear state estimation is Moving Horizon Estimation (MHE). In MHE past measure-
ments are reconciled with the model response by optimizing states and parameters
over a finite past horizon. The basic strategy is to use a moving window of data
such that the size of the estimation problem is bounded by looking at only a subset
of the available data and summarizing older data in one initial condition term. This
also establishes an exponential forgetting of past data which is useful for time-varying
dynamics.
Compared to other state estimation approaches, MHE offers many advantages follow-
ing from its formulation as a dynamic optimization problem.Inequality constraints on
the variables (states, parameters, disturbances) can be included in a natural way and
the nonlinear model equation is directly imposed over the horizon length. Empirical
studies show that MHE can outperform other estimation approaches in terms of accu-
racy and robustness. In addition to these well-known advantages, the framework of
MHE allows for formulations different from the traditional(weighted) least-squares
formulation.
The greatest impediment to a widespread acceptance of MHE for real-time applica-
tions is still its associated computational complexity. Despite tremendous advances
in numerical computing and Moore’s law, optimization-based estimation algorithms
are still primarily applied to slow processes. In this work,we present fast structure-
exploiting algorithms which use robust and efficient numerical methods and we demon-
strate the increased performance and flexibility of nonlinear constrained MHE.
MHE problems are typically solved by general purpose (sparse) optimization algo-
rithms. Thereby, the symmetry and structure inherent in theproblems are not fully
exploited. In addition, the arrival cost is typically updated by running a (Extended)
Kalman filter recursion in parallel while the final estimate covariance is computed
from the derivative information. In this thesis, Riccati based methods are derived
which effectively exploit the inherent symmetry and structure and yield the arrival
cost update and final estimate covariance as a natural outcome of the solution pro-
cess. The primary emphasis is on the robustness of the methods which is achieved by
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orthogonal transformations.
When constraints are imposed, the resulting quadratic programming (QP) problems
can be solved by active-set or interior-point methods. We derive modified Riccati
recursions for interior-point MHE and show that square-root recursions are recom-
mended in this context because of the numerical conditioning. We develop an active-
set method which uses the unconstrained solution obtained from Riccati recursions
and employs a Schur complement technique to project onto thereduced space of ac-
tive constraints. The method involves non-negativity constrained QPs for which a
gradient projection method is proposed. We implement the algorithms in efficient C
code and demonstrate that MHE is applicable to fast systems.
These QP methods are at the core of solution methods for general convex and non-
linear MHE as is demonstrated. Convex formulations are investigated for robustness
to outliers and abrupt parameter changes. Furthermore, themethods are embedded
in a Sequential Quadratic Programming strategy for nonlinear MHE. One application
has been of particular interest during this doctoral research: estimation and predictive
control of blood-glucose at the Intensive Care Unit (ICU). For this application relia-
bility and robustness of the estimates as well as of the numerical implementations are
crucial. We evaluate an MHE based MPC control strategy and show its potential for
this application.
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Korte inhoud

Modelgebaseerde predictieve regelstrategieën vereisenaccurate schattingen van de
modelparameters en de huidige toestand om het toekomstige systeemgedrag te kun-
nen voorspellen. Toestandsschatting met schuivend tijdsvenster of moving horizon
estimation (MHE) is een krachtige techniek voor niet-lineaire schatting met ongelijk-
heidsbeperkingen. Het idee in MHE is om de metingen met het model te combineren
door middel van optimalisatie over een eindig venster. Doorslechts een eindig aantal
meetpunten te beschouwen en een schuivend tijdsvenster te gebruiken blijft het opti-
malisatieprobleem berekenbaar. Zodoende wordt er ook automatisch een laag gewicht
toegekend aan oude metingen die weinig informatie geven over de huidige toestand
en parameters.
In vergelijking met andere methoden voor toestandsschatting, heeft MHE een aantal
voordelen die volgen uit de formulering als dynamisch optimalisatieprobleem. On-
gelijkheidsbeperkingen kunnen eenvoudig opgelegd wordenen de niet-lineaire mo-
delvergelijkingen worden rechtstreeks in rekening gebracht over het volledige tijds-
venster. Empirische studies tonen aan dat MHE accuratere enrobuustere schattingen
oplevert dan andere toestandsschattingsmethoden. Naast deze gekende voordelen, laat
MHE andere formuleringen toe dan de traditionele kleinste kwadraten formulering.
Een grootschalige doorbraak van MHE voor real-time toepassingen wordt enkel ver-
hinderd door de geassocieerde rekencomplexiteit. In elke tijdstap dient namelijk een
optimalisatieprobleem opgelost te worden. Ondanks de enorme vooruitgang op het
vlak van numerieke methoden en rekenkracht (de wet van Moore), worden optima-
lisatiegebaseerde methoden voor toestandsschatting nog voornamelijk toegepast op
relatief trage processen. Deze thesis tracht aan te tonen dat MHE toepasbaar is op
snelle processen door gebruik te maken van structuurbenuttende robuuste algoritmen
en bovendien aanleiding geeft tot een hogere performantie en flexibiliteit.
MHE optimalisatieproblemen worden typisch met standaard optimalisatiealgoritmen
opgelost. Daardoor kan de structuur en symmetrie die inherent is aan deze problemen
niet ten volle benut worden. Bovendien wordt de zogenaamdearrival cost typisch
berekend door een (Extended) Kalman filter recursie in parallel uit te voeren en wordt
de covariantie van de laatste schatting berekend door een statistische analyse.
In deze thesis worden Riccati gebaseerde methoden ontwikkeld, welke de structuur
en symmetrie uitnutten en tezelfdertijd dearrival cost updateen covariantie van de
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laatste schatting opleveren als bijproduct van het oplossingsproces. De ontwikkelde
methoden maken gebruik van orthogonale transformaties voor maximale robuustheid.
Wanneer ongelijkheidsbeperkingen aanwezig zijn, kunnenactive-setofwel interior-
point methoden aangewend worden. In deze thesis worden aangepaste Riccati re-
cursies afgeleid voorinterior-pointMHE methoden en wordt aangetoond datsquare-
root methoden een duidelijk voordeel bieden wat betreft numerieke conditionering.
Daarnaast wordt eenactive-setmethode voorgesteld welke de MHE oplossing zonder
beperkingen als startpunt neemt en een beperkt aantal active-set iteraties nodig heeft
voor convergentie. In elke iteratie wordt geprojecteerd opde gereduceerde ruimte
van actieve beperkingen door middel van een Schur complement techniek. Voor de
resulterende gereduceerde QPs met positiviteitsbeperkingen wordt een gradiënt pro-
jectiemethode voorgesteld. Efficiente implementaties vande algoritmen in C tonen de
toepasbaarheid van MHE op snelle systemen aan.
De ontwikkelde methoden voor kwadratische programmering liggen aan de basis van
algemene convexe of niet-lineaire MHE methoden. In deze thesis worden convexe
formuleringen onderzocht voor robuustheid tegen abnormale meetwaarden en abrupte
parametervariaties. Tot slot worden de methoden gebruikt in een SQP strategie voor
niet-lineaire MHE.
Een bepaalde toepassing is van bijzonder belang geweest tijdens dit doctoraat: real-
time schatting en predictieve regeling van de bloedglucosebij patiënten op intensie-
ve zorgen. Voor deze toepassing zijn robuustheid en betrouwbaarheid van zowel de
schattingen als de numerieke implementaties cruciaal. EenMHE gebaseerde MPC
strategie wordt geëvalueerd en voorgesteld voor toepassing in de nabije toekomst.
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CHAPTER 1
Introduction

Physical systems are designed to perform specific functions. Knowing the system
state is necessary to solve many control problems. In most practical cases, however,
the physical state of the system cannot be determined by direct observation. Instead,
the state needs to be estimated from noisy output measurements and a process model
usually obtained from physical insight.

1.1. History

State estimation has had a long and remarkable history in thenatural sciences and
engineering and was influenced by some of the most prodigiousscientists as Gauss,
Legendre and Maxwell. The first method for forming an optimalestimate from noisy
measurements was themethod of least-squares. It was developed during the Age of
Exploration, late eighteenth century, when scientists sought for solutions to the chal-
lenges of navigating the oceans. The accurate description of the behavior of celestial
bodies was key to determining the postion of the ships, enabling them to sail in open
seas. Carl Friedrich Gauss is commonly credited with developing the fundamentals of
the method of least-squares in 1795, although Legendre independently developed the
method around the same time and was the first to publish it. Interestingly, Gauss used
his method to solve a specific problem, namely determining the orbit of the newly dis-
covered planet Ceres, which is still part of our Solar Systembut is now categorized as
a dwarf planet. The Italian astronomer Piazzi discoveredthe last missing planetCeres
in 1801. He was only able, however, to observe the planet for forty-one days after
which it moved behind the sun. This launched a scientific challenge of determining
the orbit of Ceres using Piazzis observations such that astronomers would be able to
locate the planet when it reappeared. The problem of determining Ceres’ orbit was
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more complex than any other previous problem in astronomy. For the discovery of
Uranus astronomers had relied on the assumption of a circular orbit, which was nearly
correct, but the orbit of Ceres was elleptic with unknown eccentricity. Apparently,
the orbit could not be determined from the data using known methods. Under certain
hypotheses which Gauss adopted from Kepler the orbit was determined by a set of
five parameters. No dynamics of the object itself were neededas long as the object
remained in this orbit,i.e. unperturbed by large planets. Gauss solved the nonlinear
least-squares problem by hand calculation and using only three out of the twenty-two
observations made by Piazzi over forty-one days. It required over one hundred hours
of calculation. His approach was to determine a rough approximation followed by iter-
ative refinements, allowing the estimated orbit to fit the observations smoothly. Using
Gauss’ predictions astronomers found Ceres again after it reemerged from behind the
sun.

In one of his remarks Gauss anticipated the maximum likelihood method, which was
only introduced in 1912 by Robert Fisher. It is interesting that Gauss rejected the
probabilistic maximum likelihood method in favor of the deterministic method of
minimizing the sum of squared residuals [166]. Inspired by the maximum likelihood
method Kolmogorov and Wiener independently developed around 1941 a least-mean-
square estimation method using autocorrelation functions. This Wiener-Kolmogorov
filter has two important drawbacks. It is only applicable to stationary processes and it
requires the solution of an integral equation known as the Wiener-Hopf equation.

The breakthrough in estimation theory was achieved by Rudolph Kalman with the
development of his famous filter. The Kalman filtering algorithm was originally pub-
lished by Kalman [112] in 1960 for discrete-time systems andby Kalman and Bucy
[113] in 1961 for continuous-time systems. It has been the subject of many research
works following its initial publication and has been covered in numerous textbooks.
The Kalman filter provides a solution which is far superior tothe Wiener-Kolmogorov
filter [196] due to its recursive nature and effective use of the Riccati equation. The
key idea which led Kalman to derive his filter was equating expectation with pro-
jection [83]. The Kalman filter is applicable to non-stationary systems. In fact the
first application of the Kalman filter was a nonlinear one – trajectory estimation for
the Apollo project, a planned mission to the moon and back which resulted in one of
the greatest achievements of mankind with the moon landing of Apollo 11 in 1969
(Figure 1.1).

To date the Kalman filter has found widespread application indiverse areas including
space- and aircraft navigation, GPS, automotive, mechatronics, oil refining and chem-
ical process industry, (nuclear) power industry, communication networks, economics,
computer vision applications, oceanography, weather and air quality forecasting, hu-
man gait analysis, fluid dynamics. The impact of the Kalman filter cannot be overesti-
mated. Its popularity can be attributed to the fact that it isboth theoretically attractive
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Figure 1.1.The Kalman filter was used for trajectory estimation in the Apollo space program.
These missions led to the first manned moon landing in 1969, one of the greatest achievements
of the 20th century.

– because of all possible linear unbiased state estimators it is the one that is optimal
in the sense of minimum variance estimation error and in addition it is asymptotically
stable – and at the same time yields a very simple yet powerfulpractical implementa-
tion. Historical surveys on the development of Kalman filtering can be found in [166]
and [111].

In 1963 Bryson and Frazier [30] first showed the connection between Kalman filter-
ing and optimization. Early formulations of linear unconstrained MHE, sometimes
referred to as limited memory filters, were presented in [106], [162] and [175]. Given
the computational limits of the 1960’s it is not surprising that recursive solution meth-
ods were proposed for these formulations. For general nonlinear dynamical models
exact recursive solutions are impossible to compute in finite time as the problem be-
comes infinite dimensional as shown by Kushner in 1964 [120].Therefore approxi-
mations must be made, which led to several nonlinear filters.The Kalman filter was
extended to nonlinear models by linearizing through a first order Taylor series around
the current estimate [34]. Nonlinear unconstrained MHE wasfirst proposed by Jang
and coworkers [105] in 1986. The formulation, however, ignored disturbances. Their
work was extended in the following years by Tjoa and Biegler [177], Liebman and
coworkers [125] and Muske and coworkers [134]. Further investigations in the fol-
lowing years have led to a deeper understanding in the optimality and stability prop-
erties resulting in effective and stable MHE formulations [59, 146, 155]. Stability of
linear constrained MHE was addressed by Findeisen [59], Raoet al [148], Alessandri
et al [4] and for nonlinear systems by Alamir et al [1], Rao et al [149], Alessandri et
al [5] and Zavala et al [201, 202]. MHE for hybrid systems was investigated in [63].

Since MHE is an optimization-based state estimation method, it strongly depends on
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the underlying numerical optimization schemes. An overview of numerical aspects
and techniques for MPC and MHE is given by Diehl et al [44]. Albuquerque and
Biegler [3] first proposed a structure-exploiting algorithm for MHE which scales lin-
early in the horizon length. Riccati based methods for MHE problems have been
proposed,e.g. by Tenny et al [173], Jorgensen et al [108], Haverbeke et al [94] and
Zavala et al [199, 202].

On the other side, researchers have proposed explicit MHE methods, seee.g. [36,
169], which aim to move the computations offline. These methods typically involve
the solution of a multiparametric (quadratic) program overthe variable space and a
tabulation over all possible regions which is consulted online. The drawback of this
approach is an exponential growth of the number of regions hence of the look-up-
tables when either the number of variables or the estimationhorizon are increased.

Algorithms for efficient nonlinear MHE have also been investigated. Zavala et al [202]
proposed an algorithm based on NLP sensitivity and collocation. This was extended
to a fast but approximate algorithm for MHE [200]. An MHE scheme, inspired by the
multiple shooting real-time iteration scheme for NMPC proposed by Diehl [42, 43],
was presented by Kraus et al [118] and Kühl et al [119].

In addition to these theoretical and numerical advances, the superiority of MHE over
traditional recursive estimation methods such as the Extended Kalman Filter (EKF)
has been demonstrated empirically by Haseltine et al [89].

1.2. Dynamical system models

Many phenomena in nature can be described by dynamical models. The central idea is
to model the natural process by relations between quantities and their rates of change,
e.g. relying on laws of nature, thermodynamics, mechanics or electricity. This leads
immediately to differential equations. Furthermore, any differential equation of arbi-
trary order can be transformed into a coupled set of first-order differential equations.
A state-spacerepresentation is a dynamical model where vectors of inputs, outputs
and states are related by first-order differential or difference equations. The states are
the smallest possible subset of system variables that can represent the entirestateof
the system at any given time. The state-space representation provides a convenient
and compact way to model and analyze systems with multiple inputs and outputs.
Throughout this thesis we will consider linear and nonlinear state-space models in
continuous or discrete time.
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Continuous-time models

Continuous-time systems can often be described by ordinarydifferential equations
(ODEs) as follows

ẋ(t) = f (t,x(t),u(t), p(t),w(t)), (1.1)

wheref is a nonlinear function, the timet is the dependent variable,x(t)∈Rnx denotes
the state vector,u(t) ∈ Rnu are given inputs,p(t) ∈ Rnp is the set of parameters and
w(t) ∈ Rnw is a vector of state or process disturbances. The output equation may be
given by the following expression

y(t) = h(t,x(t),u(t))+v(t), (1.2)

whereh is a nonlinear function and wherey(t),v(t) ∈ Rny are respectively the output
and the output disturbances or measurement errors.

If the model is affine in the variablesx andw, then the following linear continuous-
time model is obtained

ẋ(t) = f̄ (t)+A(t)x(t)+G(t)w(t), (1.3)

y(t) = h̄(t)+C(t)x(t)+v(t). (1.4)

Here the (time-varying) system matricesA(t) ∈Rnx×nx, G(t) ∈Rnx×nw, C(t) ∈Rny×nx

and the offsets̄f (t) ∈ Rnx, h̄(t) ∈ Rny are assumed to be known.

Discrete-time models

Often the output is only measured at discrete sampling instants The state equation may
also be discretized in advance, leading to the following nonlinear discrete-time model

xk+1 = fk(xk,uk, pk,wk), (1.5)

yk = hk(xk,uk)+vk. (1.6)

wherek denotes discrete time,xk ∈ Rnx is the state,wk ∈ Rnw is the state or process
disturbance,vk ∈ Rny is the output disturbance or measurement error andyk ∈ Rny is
the observed output.

If the model is affine inx andw, then the following linear discrete-time description is
obtained

xk+1 = fk +Akxk +Gkwk, (1.7)

yk = hk +Ckxk +vk. (1.8)
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Here the (time-varying) system matricesAk ∈ Rnx×nx, Gk ∈ Rnx×nw, Ck ∈ Rny×nx and
the offsetsfk ∈Rnx, hk ∈Rny are assumed to be known.

1.3. State estimation

This section defines the state estimation problem and its different facets. The reason
of existence of state estimation is given by the following motivations and by the fact
that state-space models have become the standard for advanced feedback control.

Infer states from outputs

Typically not all states are measured either because it is too costly or simply because
it is impossible. For example the average molecular weight of a polymer in a chem-
ical reactor cannot be measured directly, but it can be computed based on viscosity
measurements. On the other hand, concentrations of chemical components are of-
ten determined from temperature measurements, which are much easier to measure.
Often the outputs are a subset of states, but in general this state-output relation may
be more complex,i.e. given by the nonlinear mapping (1.5). Fortunately, states and
outputs are all interconnected by the model equations. Therefore, it is well possible
to estimate a large number of states (and parameters) from observations of a single
output.

In a disturbance-free setting (wk,vk = 0,∀k) the main challenge of state estimation
is to retrieve the states that have generated the observed outputs, given the dynami-
cal model. This is an inverse problem which is readily solvedin the linear case but
which requires the solution of a nonlinear combinatorial problem in case constraints
are present and the state and/or output equations are nonlinear. When the model is
nonlinear the inverse mapping may not even be one-to-one, hence multiple state se-
quences could have generated the observed output sequence.

Another goal of a deterministic state estimator is to recover from a wrong initial guess.
Combining the model predictions with the information comprised in the output mea-
surements allows for asymptotic convergence to the true state sequence.

Retrieve states from noisy measurements

Disturbances enter the system at two places. Process disturbances, denoted byw,
account for modelling errors as well as for process variations. Output disturbancesv
account for modelling errors and for (random) sensor errors. Any mathematical model
is a simplification of the processes occurring in reality andour only hope is that the
model captures the most important dynamics. Hence the challenge of state estimation
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Smoothing

Prediction

Measurements

Filtering

time

Figure 1.2.Illustration of filtering, prediction and smoothing. Usingall available measurements
up until the current time instant the goals are respectivelyto estimate the current state, future
states or past states.

is to find good state estimates in the face of noisy measurements and process distur-
bances. Of course the performance of state estimation is limited by the system set-up,
more precisely by the quality of the model and by the amount and quality of data
(information richness).

1.3.1. Filtering, prediction and smoothing

The state estimation problem comes in different forms depending on the span of avail-
able measurements used for computing a certain state estimate. This is illustrated in
Figure 1.2 and formalized by the following definition.

Definition 1 (State estimation, filtering, prediction and smoothing). Given a sequence
of output measurements Yl = {y0, . . . ,yl} generated by a process defined by one of the
models of Section 1.2, the state estimation problem consists in computing an estimate
of the state xk based on Yl . If k = l the estimation problem is called a filtering problem
and the estimate xk a filtered state estimate. If k> l the problem (state estimate)
is a prediction problem (predicted estimate) and if k< l it is a smoothing problem
(smoothed estimate).

As time evolves and more measurements are collected, the estimates of a state at a
certain point in the past (a process calledfixed-point smoothing) will become increas-
ingly accurate as one might expect. There is, however, a lower bound to this accuracy
which is defined by the amount of noise present in the system and by the characteris-
tics of the model. Indeed, the more unstable the open-loop system is the harder it is
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to control it, because more energy needs to be be applied to avoid the process from
drifting away, but the easier it is to estimate the states because small perturbations in
the state estimate lead to widely diverging trajectories.

On the other hand the accuracy of predictions tends to decrease the further ahead one
wants to predict. The evolution of the prediction errors is governed by the open-loop
system dynamics since the feedback mechanism that is inherent to the Kalman filter
and to MHE (see Chapter 3) is broken.

As will become clear, in MHE a number of smoothed estimates and a filtered estimate
are obtained in each time step. Subsequently, when combinedwith a predictive con-
troller, the filtered (current) state estimate and the modelare used to predict the future
state trajectory.

1.4. Moving horizon estimation

1.4.1. Least-squares batch state estimation

In the previous section the goal of state estimation was defined asfinding the state
sequence that is most likely given a sequence of observations and a system model.
Now, let us specify, what exactly is meant bymost likely.

The objective is defined as

J (T,x,w,v) = Jic(x0)+ Jproc(T,w)+ Jout(T,v), (1.9)

whereT is the batch size (number of data points) and wherex ∈ R(T+1)nx, w ∈ RTnw

andv∈R(T+1)ny denote the stacked vectors of states, process disturbancesand output
disturbances respectively.

The first term,Jic, is the cost associated with the initial condition. Usually, it is as-
sumed that some prior information is available in the form ofan initial state estimate
x̂0 and a corresponding covariance matrixP0, which allows the following definition

Jic(x0) = ‖x0− x̂0‖2P−1
0

. (1.10)

HenceP0 determines the weight that is given to the initial guess ˆx0 relative to the other
terms in the objective. If we have high (low) confidence in theestimate ˆx0 then the
cost of choosingx0 far away from ˆx0 is large (small).

The second term,Jproc, is a penalization of the state or process disturbances.

Jproc(T,w) =
T−1

∑
k=0

‖wk‖2Q−1
k

. (1.11)
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HereQ−1
k provides a measure of confidence in the model.

The third term,Jout, is a penalization of the output disturbances or measurement errors

Jout(T,v) =
T

∑
k=0

‖vk‖2R−1
k

. (1.12)

R−1
k provides a measure of confidence in the measurement data.

The minimization is subject to one of the system models described in Section 1.2. For
nonlinear discrete-time systems this yields the followingnonlinear least-squares batch
estimation problem

minx,w,v ‖x0− x̂0‖2P−1
0

+ ∑T−1
k=0 ‖wk‖2Q−1

k
+ ∑T

k=0‖vk‖2R−1
k

s.t.
xk+1 = fk(xk,uk, pk,wk), k = 0, . . . ,T−1,

yk = hk(xk,uk)+vk, k = 0, . . . ,T,

(1.13)

with x = {x0, . . . ,xT} the unknown state sequence,w = {w0, . . . ,wT−1} the unknown
process disturbances andv = {v0, . . . ,vT} the unknown output disturbances. The ma-
tricesP0, Qk andRk are tuning parameters for reconciling the model with the mea-
surements and the initial guess.

1.4.2. General batch state estimation

Other relevant state estimation problems can be formulatedby altering the definitions
of the objective terms. For example, instead ofℓ2 norms, one could work withℓ1

norms or Huber penalty functions in order to robustify the estimation problem with
respect to outliers in the measurements or with respect to parameter jumps. If the
objective is composed of convex functions and if the model islinear, i.e. fk andhk

are affine, the problem (1.13) is convex. Convex MHE formulations are discussed in
Chapter 6.

In order to generalize the batch estimation problem the following modified definitions
of the objective terms are proposed. The initial condition term is given by

Jic(x0) = ρ(S−T
0 (x0− x̂0)). (1.14)

whereρ(·) is an arbitrary penalty function and whereS0 is a weighting matrix. In case
ρ(·) is the squaredℓ2 norm andS0 is a (upper triangular) Cholesky factor ofP0, i.e.
P0 = ST

0 S0, the newly defined initial condition (1.14) is equivalent to(1.10).
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1.4. Moving horizon estimation

The process disturbance term is redefined as

Jproc(T,w) =
T−1

∑
k=0

ρ(W−T
k wk), (1.15)

whereρ(·) is again an arbitrary penalty function not necessarily identical for everyk
and whereWk is a weighting matrix. Again, the new definition coincides with the old
definition (1.11) if the squaredℓ2 norm is chosen and ifWk is a Cholesky factor ofQk,
i.e.,Qk = WT

k Wk.

Finally, the output disturbance term becomes

Jout(T,v) =
T

∑
k=0

ρ(V−T
k vk). (1.16)

where forρ(·) andVk the same statements hold as with the previous term,i.e. equiva-
lence to (1.12) forρ(·) = ‖ · ‖22 andRk = VT

k Vk.

1.4.3. Constrained state estimation

Because the batch state estimation problem is formulated asan optimization problem,
inequality constraints on the optimization variables can easily be imposed. This is
useful from an engineering viewpoint since in practice additional information about
the process is often available in the form of constraints,e.g.quantities such as temper-
ature, pressure, mass, postion, speed, acceleration, concentrations are often restricted
to a certain range either by definition (e.g. nonnegativity) or by physical or practical
limitations (e.g. for safety reasons). Incorporating this prior knowledge into the esti-
mation problem typically improves the performance and convergence of the estimator
[89]. In particular, when the system model is nonlinear the optimization problem is
in general nonconvex with several local minima. In such a case non-physical optima
may be excluded by restricting the search space yielding a dramatic increase in esti-
mation performance, as shown by Haseltine and Rawlings [89]. Constraints may also
be used to simplify the model. Explicitly enforcing constraints in the model, if at all
possible, can introduce discontinuities which causes numerical difficulties when the
model is used for estimation or control.

In this thesis the following state-disturbance path inequality constraints are considered

gk(xk,wk) ≤ 0 (discrete− time)
g(t,x(t),w(t)) ≤ 0 (continuous− time)

(1.17)

10
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whereg is an arbitrary (nonlinear) function. After linearization(and discretization)
these inequalities are reduced to the following mixed linear inequality constraints

Dkxk +Ekwk ≤ dk, (1.18)

whereDk ∈ Rr×nx, Ek ∈ Rr×nw are known matrices anddk ∈∈ Rr is a known vector.
As a special case, bound inequality constraints are considered

xmin ≤ xk≤ xmax,

wmin ≤ wk ≤ wmax,

vmin ≤ vk≤ vmax.

(1.19)

1.4.4. Moving horizon approximation

The batch state estimator described above cannot be appliedto online estimation
problems in general because the problem grows unbounded with increasing hori-
zon. In order to bound the problem, people have proposed a moving horizon strategy
[59, 148, 149, 155] relying on the ideas of dynamic programming.

Consider the objective function of the least-squares batchestimation problem (1.13)
and let us rearrange it as follows

J (T,x,w,v) = ‖x0− x̂0‖2P−1
0

+
T−N−1

∑
k=0

‖wk‖2Q−1
k

+‖vk‖2R−1
k

+
T−1

∑
k=T−N

‖wk‖2Q−1
k

+
T

∑
k=T−N

‖vk‖2R−1
k

. (1.20)

Because of the Markov property which arises from the state-space description, the
last two terms depend only on the statexT−N and the model and measurements in the
interval [T −N,T]. Therefore, by Bellman’sprinciple of optimality[12], the least-
squares batch estimation problem can be replaced by the following equivalent fixed-
size estimation problem

minx,w,v ZT−N(xT−N)+ ∑T−1
k=T−N ‖wk‖2Q−1

k
+ ∑T

k=T−N ‖vk‖2R−1
k

s.t.

xk+1 = fk(xk,uk, pk,wk), k = T−N, . . . ,T−1,

yk = hk(xk,uk)+vk, k = T−N, . . . ,T,

0 ≥ gk(xk,wk) k = T−N, . . . ,T−1,

0 ≥ gN(xN),

(1.21)

complemented with the requirement thatxT−N is reachable. HereN is the horizon
length andZT−N(xT−N) is thearrival cost which compactly summarizes past infor-
mation. The basic strategy of moving horizon estimation is to solve a growing horizon

11



1.4. Moving horizon estimation

tN

Estimation 

window

t0

Summarized 

by Arrival Cost

Measurement

MHE estimate

Figure 1.3. Illustration of the Moving Horizon Estimation approach: optimize over a finite
window trading off measurement disturbance (data accuracy) and process disturbance (model
accuracy) with an additionalarrival costwhich summarizes the data outside the window. When
a new measurement comes in, the window is shifted and thearrival cost is updated.

batch estimation problem untilT = N and afterwards solve a fixed-size estimation
problem on a moving horizon. At every iteration the oldest measurement is discarded
and the new measurement is added. This is visualized in Figure 1.3.

Arrival cost is a fundamental concept in MHE as it allows to transform a problem
which grows unbounded into an equivalent fixed-size problem[146]. In general,
however, an analytical expression for the arrival cost doesnot exist and it should be
approximated. We therefore replace the first term in the objective with an approxi-
mate arrival cost̂ZT−N(xT−N). Rao et al [146, 148, 149] derived conditions for the
approximate arrival cost to guarantee stability of MHE (seeChapter 2).

One strategy for computing an approximate arrival cost is touse a first-order Taylor
expansion around the trajectory of past estimates. This is equivalent to applying an
EKF recursion for the covariance update. In this case, the arrival cost is approximated
as

ẐT−N(xT−N) = ‖xT−N− x̂T−N‖2P−1
T−N

(1.22)

wherex̂T−N is the MHE estimate obtained at timek= T−N and wherePT−N is the co-
variance propagated by a Kalman filter recursion. This arrival cost approximation has
several advantages. For linear unconstrained systems withquadratic objectives this
arrival cost is exact since in this case the Kalman filter provides a recursive solution to
the problem of estimating the current state (see Chapter 3 for a proof of equivalence).
Furthermore, Rao et al [146, 148] have proved that this arrival cost approximation
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yields a stable estimator for constrained linear problems.When the model is nonlin-
ear, however, the EKF covariance update does not guarantee stability and additional
measures are needed for guaranteed stability.

Other arrival costs have been proposed in the literature. Rawlings and Rajamani pro-
pose to approximate the arrival cost using a particle filter [153].

In Chapter 7 so-calledsmoothed updatesare discussed. These updates generally show
good performance while preserving equivalence in the unconstrained linear case.

The most important advantage of using a larger window size isthat this mitigates
problems due to poor initialization or poor arrival cost approximation [89]. Further-
more, by casting the estimation problem as an optimization problem MHE inherits the
favorable properties of batch estimation being the flexibility of problem formulation,
direct handling of constraints and ability to deal with nonlinear system models. The
price to pay is an increased complexity as it is required to solve an optimization prob-
lem in every time step. However, as shown in this thesis, the computational cost can
be made comparable to recursive methods by efficient structure-exploiting numerical
methods.

1.4.5. Simultaneous state and parameter estimation

Often parameters are unknown in addition to the states and disturbances. The problem
is typically tackled by imposing a model on the parameter variations and treating them
as states. If no explicit model for the parameter variationsis available the following
model can be used

pk+1 = pk + ξk (discrete− time)
ṗ = ξ (t) (continuous− time)

(1.23)

whereξ are additional disturbances which may be penalized in the objective by an ar-
bitrary penalty function. Usually, parameters are modelled as constant (but unknown),
i.e. pk+1 = pk or ṗ = 0, which makes sense for MHE when short horizons are con-
sidered since states typically vary much faster than parameters. In the case of batch
estimation or MHE with large horizons, it is no longer justifiable to model parameters
as constants as the process behavior can substantially varyover time. Then model
(1.23) is usually imposed with a squaredℓ2 norm penalty onξ , which is called a
random walkmodel.

Often parameters enter the system in a highly nonlinear way making the simultaneous
estimation of states and parameters a difficult problem. Even when a linear model
is considered and one desires to estimate both the states andthe system matrices the
problem is already quite nonlinear. For such highly nonlinear estimation problems,
optimization-based estimators such as MHE usually outperform recursive estimators.
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1.5. Kalman filter

The Kalman filter yields a recursive solution to the unconstrained linear least-squares
batch estimation problem (1.13). As noted before, such a recursive solution is only
possible for very specific cases: unconstrained optimal control problems for linear
systems with quadratic objective can be solved recursivelyby dynamic program-
ming, leading to the well-known Kalman filter for estimationand the Linear Quadratic
Regulator (LQR) for control. The Riccati equation is central to this recursive solution
provided by the Kalman filter and LQR, and also to other main problems in the field
such asHin f ty control and the theory of dissipative systems and LMI’s [195]. The
Kalman filter is briefly reviewed in Chapter 2.

There is a strong connection between MHE and Kalman filtering. When constraints
are inactive the linear least-squares batch estimator and the Kalman filter are equiv-
alent. Even when a finite horizon is used (MHE), the estimatescoincide with the
Kalman filter estimates, hence are optimal in least-squaressense, if the arrival cost
is updated using Kalman filter recursions. This equivalencebetween the Kalman fil-
ter and weighted least squares estimation is classical and has been treated in several
papers and textbooks,e.g. [170], [195], [111,§10.6], [190, Ch. 1], [71]. A proof of
equivalence between MHE and Kalman filter for linear unconstrained systems derived
from the optimality conditions is given in Chapter 3.

1.5.1. Nonlinear extensions of the Kalman filter

Extensions of the Kalman filter have been developed for nonlinear systems. The pop-
ular Extended Kalman Filter (EKF) for example linearizes ineach time step around
the current estimate through a first order Taylor-series approximation. Although the
EKF has been successfully applied in numerous applications, there have been several
reports of poor estimation performance and even filter divergence (see Chapter 3 for a
discussion).

There are a number of variations on the EKF. Higher order Taylor series expansions
can be used in the filter equations [120]; when two terms of theexpansion are used, the
resulting EKF is called a second-order filter. Other algorithms use more linearization
iterations in every time-step to improve the approximationaccuracy; these filters are
termed iterated EKF. Any one of these algorithms may be superior to standard EKF
in a particular application, but there are no real guidelines nor theoretical proofs [6].

In the Unscented Kalman Filter (UKF) or Sigma Point Kalman filter, the probabil-
ity density is approximated by a nonlinear transformation of a random variable, the
unscented transform(UT), which is more accurate than the first-order Taylor series
approximation in the EKF. The approximation utilizes a set of sample points, which
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guarantees accuracy with the posterior mean and covarianceto the second order for
any nonlinearity.

1.6. A note on the deterministic versus stochastic interpretation of
state estimation

In classical text books the Kalman filter is often derived from a stochastic viewpoint
by making assumptions on the characteristics of thenoisesdisturbing the system.
However, the Kalman filter can perfectly be derived from a purely deterministic least
squares formulation and this avoids unnecessary stochastic modeling assumptions
which are often difficult to attach physical meaning to. The deterministic interpre-
tation of the Kalman filter has been given in several works, see [170, 196] and the ref-
erences therein. Willems [196] gives a very comprehensive self-contained treatment
of Kalman filtering in its various existence forms from a deterministic perspective.

As indicated by Willems [196], the disturbancesw and v should be interpreted as
unknown inputs, which together with the (unknown) initial state x0 determine the
observationsy. Then the goal of state estimation is to find among all(x0,w,v) which
yield y the one that ismost likelyin the sense that it minimizes a specified objective,
i.e. the least squares norm or square root of (1.9)-(1.12). By substituting theseoptimal
disturbances in the system dynamics, an estimate of any related system variable can
be obtained.

In the context of MHE, in which the estimation problem is explicitly formulated as
an optimization problem, the deterministic interpretation is the only reasonable one
since the fundaments of the probabilistic assumptions are contested when constrainst
come into play. Moreover, for nonlinear MHE, the probabilistic approach naturally
leads to stochastic differential equations which would unnecessarily complicate the
numerical algorithms. Robertson et al [155] showed that bound constraints on the
disturbancesw andv may be interpreted as truncated normal distributions. But,as
Rao [146] states, state constraints cannot (easily) be interpreted stochastically as they
may correlate the disturbances and lead to acausality. In contrast, the deterministic
intrepretation is perfectly satisfactory for MHE.

Note that, despite this plea for the deterministic approach, for ease of reference and
because the terminology is so much established, we stick to the term covariance matrix
although we could equally well speak about the inverse weighting, information or
confidence matrix.
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1.7. Model predictive control

The development of MHE, although proposed much earlier in many different forms
throughout the literature, was pushed in the nineties motivated by the success of Model
Predictive Control (MPC), its counterpart for control. Model Predictive Control (MPC)
has gained widespread interest in both academia (see textbooks [31, 121, 128, 156])
and industry (see [145] for a survey) over the past decades. In a wide range of indus-
tries it has become the method of choice for advanced processcontrol.

The ultimate goal in optimal control is to find a feedback law that minimizes a certain
control objective over an infinite horizon, starting from the current statex0 and subject
to a process model (as described in Section 1.2) and constraints. Typically, but not
necessarily, the objective is quadratic

J(x,u) =
∞

∑
k=0

‖xk‖2Qk
+‖uk‖2Rk

.

where the weightingsQk and Rk are tuning parameters. The optimal solution can
be obtained from the solution of an infinite dimensional partial differential equation,
called Hamilton-Jacobi-Bellman (HJB) equation. In general, a closed-form expres-
sion for the solution of the HJB equation does not exist. One exception is linear
unconstrained systems with quadratic objectives. In this case, the solution follows
from a matrix equation,i.e. a Riccati equation, and the resulting feedback controller
is called LQR.

Another class of solution methods is based onPontryagin’s Maximum Principle[143]
and proceed by maximizing the Hamiltonian matrix. Pontryagin’s maximum principle
is closely related to the HJB equation and provides conditions that an optimal trajec-
tory must satisfy. However, while the HJB equation providessufficient conditions for
optimality, the minimum principle provides only necessaryconditions. The maximum
principle typically leads to an intricate multi-point boundary value problem.

Alternatively, and similarly to the MHE case, the infinite-horizon control problem can
be replaced by an equivalent finite-horizon problem, due to the Markov property of
the state-space model.

minx,u ∑N−1
k=0 ‖xk‖2Qk

+‖uk‖2Rk
+V (xN)

s.t.

x0 = x̄0,

xk+1 = fk(xk,uk, pk), k = 0, . . . ,N−1,

0 ≥ gk(xk,uk) k = 0, . . . ,N−1,

0 ≥ gN(xN),

(1.24)

whereV (xN) is the terminal cost or end cost and ¯x0 is the fixed initial state. The mini-
mization is with regards to the state and control sequences{x0, . . . ,xN} and{u0, . . . ,uN−1}
respectively withuk ∈ Rnu. Constraints can be imposed on states and controls.
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Since a closed-form expression of the terminal cost rarely exists, it should be approxi-
matedF(xN) = V̂ (xN). Mayne et al [131] derived conditions for stability of the MPC
approximation. One popular strategy for approximation of the terminal cost is to as-
sume that after the horizon the system can be controlled using LQR. In this case the
(approximate) terminal cost is

V̂ (xN) = ‖xN‖2PN
.

wherePN is the solution to the corresponding LQR discrete-algebraic Riccati equation.
This approach, sometimes called dual-mode MPC, guaranteesasymptotic stability for
linear systems in the absence of disturbances [131].

The strategy of MPC is to solve the open-loop fixed-size optimization problem (i.e.
(1.24) with approximated terminal cost), apply only the first element of the optimal
input sequence to the process, obtain a new state estimate and repeat the procedure.

The unique combination of several important features distinguishes MPC from other
control methods. First, analogous to MHE, it is possible to incorporate constraints
and impose multivariate nonlinear models in a natural way. Constraints are even more
relevant for the control problem than for the estimation problem, because safety limita-
tions, environmental regulations and economic objectivesforce companies to operate
their processes at the constraints. Second, the extensive research on MPC has led to
formulations with guaranteed stability [131]. Finally, the ability to control processes
proactively is a key feature of MPC. When disturbances are known in advance (e.g.
grade changes in chemical processes), significant performance gains can be obtained
in comparison with pure feedback control by incorporating these future disturbances
into the control problem. A common motivation for the importance of this feature is
by the example of driving a car; in the event of an upcoming turn one already takes
this information into account by slowing down and changing to the outer lane in order
to follow an efficient path.

In order to fully exploit the potential of MPC it is required that the underlying model
and its parameters are constantly updated to take disturbances and plant-model mis-
match into account. The performance of the closed loop system is directly influenced
by the quality of the estimates. The combination of MHE and MPC yields a pow-
erful and versatile strategy for advanced process control.States and parameters are
adapted based on incoming measurements leading to improvedprediction accuracies
in turn leading to improved control performance. In addition, empirical studies [117]
show that the MPC problem becomes easier to solve when estimates are more accurate
because the predicted behavior resembles the true plant behavior more closely.
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1.8. Similarities and differences between control and estimation

Optimal control and optimal estimation are closely relatedmathematical problems.
For linear time-invariant systems without inequality constraints, there exists asepa-
ration principlewhich states that state estimator and controller can be designed sep-
arately. If they are both stable then the closed-loop systemis also stable. If they are
both optimal (i.e. Kalman filter and LQR) then the closed-loop system is also optimal.
This combination of steady-state Kalman filter and steady-state LQR is calledLinear
Quadratic Gaussian (LQG) compensation.

In the Kalman filter, covariance matrices are propagated by amatrix Riccati recur-
sion. For control, the Linear Quadratic Regulator (LQR) leads to a similar Riccati
recursion and both recursions can easily be related using a conversion table for the
matrices involved. Remarkably, the Riccati recursion for LQR runs backwards while
the Kalman filter Riccati recursion runs forward, and therefore, this duality is only
interesting for linear time-invariant models, since in thetime-varying case the LQR is
impractical as it involves an infinite backward matrix recursion. This so-calledduality
relation between Kalman filter and LQR was noted in the seminal papers of Kalman
[112, 113].

Interesting similarities can also be discovered between MHE (1.21) and MPC (1.24)
from their respective formulations. The MHE problem approximates the batch estima-
tion problem by adding a weighting on the initial state (arrival cost or cost-to-arrive)
while the MPC problem approximates the infinite optimal control problem by adding
a weighting on the final state (terminal cost or cost-to-go).Conditions to ensure sta-
bility are represented by a dual set of inequalities for the arrival cost and the terminal
cost, see [146]. Furthermore, in the MHE problemwk are the control variables sim-
ilar to uk in the MPC problem. These observations suggest a duality between both
problems. However, as pointed out by Todorov [178], it is notdirectly clear from the
conversion tables of the Riccati recursion or from the similarity of the formulations in
which sense estimation and control are dual problems. In order to make it clear, we
will show that the unconstrained batch estimation problem can be rewritten into a form
which can be interpreted as a control problem. Thereto, consider the following simple
discrete linear time-varying (LTV) model (compare to the more general discrete LTV
model (1.7))

xk+1 = Akxk +wk,

yk = Ckxk +vk.

If, furthermore, the disturbance variables are eliminated, the estimation problem can
be written as

min
x
‖x0− x̂0‖2P−1

0
+ ∑T−1

k=0 ‖xk+1−Akxk‖2Q−1
k

+ ∑T
k=0‖yk−Ckxk‖2R−1

k
. (1.25)
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This problem is equivalent to the following one

min
x,u

∑T−1
k=0 ‖uk‖2R̄k

+ ∑T
k=0

(

‖xk‖2Q̄k
+2xT

k q̄k

)

, (1.26)

with

R̄k = Q−1
k

Q̄0 = P−1
0 +CT

0R−1
0 C0 q̄0 =−x̂0−C0kTR−1

0 y0

Q̄k = CT
k R−1

k Ck q̄k =−CT
k R−1

k yk 0 < k≤ N,

and where the process disturbances have been replaced by controls, i.e. uk = wk. By
this reformulation, we can see that the unconstrained batchestimation problem can be
interpreted as reference-tracking optimal control problem with a reference trajectory
specified by the observations and with a free intial state.

This free initial state vectorx0 is the most important difference with MPC. These
extra degrees of freedom allow us to fit an observed output sequence according to a
specified objective. Therefore the estimation problem is often referred to as aninverse
problem. It must be noted that the addition of an initial condition typically increases
the numerical conditioning as the extra degrees of freedom may result in an infinite
number of solutions to the estimation problem.

Duality relations between MHE and MPC, are further complicated due to the presence
of constraints and possibly nonlinear dynamics. It was shown by Goodwin, De Doná
and coworkers [78, 79, 133] that the dual of the linear constrained MHE problem is a
reverse-time nonlinear unconstrained control problem involving projected variables, a
special instance of an MPC problem, and that there is no duality gap. Although this
result is highly interesting from a theoretical view, thereis no direct practical value to
it since the dual problem is not easier to solve than the primal problem.

Note that the notion of duality in system theory is more vaguethan Lagrangian du-
ality in optimization. Duality in system theory, as we showed in this section, means
for example that a specific estimation problem can be rewritten and interpreted as a
specific control problem. Both problems of course yield the same solution(s). La-
grangian duality, on the other hand, implies that the primaloptimization problem has
a corresponding dual problem where the Lagrange multipliers are the variables and
the primal variables are the Lagrange multipliers. If thereis no duality gap, the solu-
tions to both problems are exactly the same. In some cases this duality relation can
be exploitede.g. if the dual problem is easier to solve than the primal problem. See
Chapter 2 for more details.

Figure 1.4 illustrates the various relations between MHE, the Kalman filter, LQR and
MPC.
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Figure 1.4.Relation of Moving Horizon Estimation (MHE) to Kalman filter, Linear Quadratic
Regulator (LQR) and Model Predictive Control (MPC).

1.9. Motivation

Several factors justify the increasing research interest in real-time optimization-based
estimation methods. First, the recursive solution provided by the Kalman filter is only
possible when two very specific conditions are fulfilled: a quadratic objective and a
linear system model. Whenever these conditions are not met,the problem is to be
solved by optimization or by suboptimal recursive methods.Second, the enormous
advances in computer technology , in numerical linear algebra and optimization of the
last decades now make optimization-based estimation such as MHE a viable alterna-
tive to recursive estimation methods,i.e. derived from Kalman filtering. Third, due to
its formulation as an optimization problem, inequality constraints can be incorprated
in a natural way and the nonlinear model is direclty imposed over the entire win-
dow. It also adds flexibility for instance in formulating other useful estimation prob-
lems different from the traditional least-squares formulation. Finally, using a window
(horizon) larger than one provides a higher degree of robustness in the presence of
disturbances and allows to overcome problems of divergencecommonly encountered
with recursive methods such as the Extended Kalman Filter [89].

The development of MHE, although proposed much earlier in many different forms
throughout the literature, was pushed in the nineties motivated by the success of MPC,
an optimization-based control technique. MHE is often motivated as the dual prob-
lem of MPC, although this duality is not directly useful besides for its didactical and
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Figure 1.5. Predicted growth in major markets (left) and new markets (right) for monitoring
(state estimation) and control. Graphs are taken from a report of a 2008 workshop by the
European Commission DG Information Society and Media, available for download at [52].

theoretical importance (see Section 1.8).

Similar to the least-squares method and the Kalman filter, the research on MHE and
MPC has been driven by applications. The number of applications has increased
rapidly over the past decades (see [145]) and prospections are that the market for
monitoring and control will continue to grow steadily over the next years [52] (see
Figure 1.5). Typical applications are in petrochemicals, pulp and paper, food process-
ing, metallurgy, pharmaceuticals or other areas with slow sampling rates. Examples
of MHE applications in these areas can be found in the references [2, 45, 46, 64, 67,
95, 118, 130, 157, 201].

In recent years, a shift has started to occur towards applications with high sampling
rates made possible by the development of dedicated algorithms for MPC and MHE.
The work presented in this thesis can be situated along theseresearch lines and pro-
poses several dedicated algorithms for fast real-time MHE.The thesis demonstrates
that MHE is applicable to systems with fast sampling times and forms an attractive
alternative to recursive estimation methods because of itsincreased flexibility.

For linear systems, moving horizon estimation problems canbe formulated as sparse
convex quadratic programs (QPs) with equality and inequality constraints. Also for
nonlinear MHE problems, sparse convex QP subproblems are obtained for instance in
every iteration of an SQP approach.

Instead of eliminating the states to obtain a smaller but dense convex QP, it is ad-
vantageous to keep the original sparse and highly structured problem and to solve
the corresponding system of optimality conditions by exploiting the structure. It is
shown how this system of optimality conditions can be decomposed and solved by
Riccati based methods. These solution methods fully exploit the inherent symmetry
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1.10. Structure of the thesis

and structure and furthermore provide improved robustnessby using orthogonal trans-
formations. It is argued in this thesis that for MHE problems, the solution method of
choice should be Riccati based. This is in contrast to MPC where, depending on the
system dimensions and the horizon length, the most effective solution strategy is either
by Riccati methods (or sparse solvers) or bycondensing, i.e. solving the reduced sys-
tem obtained after variable elimination. In MHE, Riccati methods are favorable even
for small horizons, because the dimension of thecontrolsor process disturbances is
typically comparable to the state dimension. Furthermore,the arrival cost update and
final estimate covariance are obtained as a natural outcome of the solution process. In
contrast, if the problems are solved using a general purpose(sparse) solver, the arrival
cost is computed by running a Kalman filter in parallel while the final state covariance
is computed by a local first order analysis.

When constraints are imposed, the resulting quadratic programming (QP) problems
can be solved by active-set or interior-point methods. Interior point methods preserve
the block diagonal structure of the KKT system and hence can be solved with modified
Riccati recursions. These modifications are investigated in the context of MHE in this
thesis. It is shown that square-root versions are especially useful for interior-point
methods due to their increased numerical robustness. Active-set methods typically do
not preserve the structure. To circumvent this problem, a Schur-complement active-
set method is proposed which uses the unconstrained MHE solution as a starting point
and proceeds by projecting onto the set of working constraints.

In order to guarantee robustness of MHE algorithms, robust penalty functions are in-
vestigated in the framework of MHE. It is shown in this dissertation that the use of
convex penalty functions such as theℓ1 norm or the Huber penalty function can dra-
matically improve the robustness of the algorithms while efficient structure-exploiting
algorithms can still be derived yielding a computational performance comparable to
the standard formulation. Robust norms can also be used for penalization of the pa-
rameter changes. Such a formulation allows fast detection of within-horizon parame-
ter jumps, which is especially useful for moderate to large horizon lengths, where the
standard MHE formulation would smooth out these parameter switches.

1.10. Structure of the thesis

The general structure of this doctoral dissertation is depicted in Figure 1.6.

1.11. Specific contributions

This thesis aims to bridge the gap between classical recursive estimation methods and
optimization-based estimation methods. By introducing ideas and techniques from
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Figure 1.6.Structure of the thesis.

the well-developed fields of numerical linear algebra and optimal estimation into the
emerging field of MHE, efficient solution methods for the resulting optimization prob-
lems are derived yielding fast and reliable algorithms.

In Chapter 2 the mathematical foundation for both practical and theoretical study of
MHE is provided. Stability of the constrained estimator is addressed and the most
important concepts from linear algebra and optimization are introduced. A brief in-
troduction to Kalman filtering and Kalman smoothing is givenwith a special focus on
the different implementation forms.

Chapter 3 addresses unconstrained MHE. It is shown that the decomposition of the
KKT system byLU or LDLT factorizations leads to Riccati based solution methods.
The methods fully exploit the structure inherent in the MHE problem. The square-root
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1.11. Specific contributions

version further exploits the symmetry in the system and employs orthogonalization
methods yielding increased numerical robustness. Structured QR methods are pro-
posed to reduce the computation times of the square-root Riccati based MHE method.
A proof of equivalence of unconstrained MHE with the Kalman filter/smoother is
given and the analogy with Riccati methods for MPC is discussed.

Publications related to this chapter: [73, 90].

Chapter 4 extends the Riccati based methods of Chapter 3 to constrained MHE prob-
lems using a primal barrier interior-point method. It is shown how the barrier terms en-
ter in the measurement updates and can be interpreted asperfect measurements. Sev-
eral types of constraints are considered in the tailored methods. A hot-starting strategy
is proposed and the benefit of a good initialization procedure is demonstrated. Finally,
it is demonstrated that square-root recursions are extremely useful in an interior-point
method since the condition number of the matrices in the factorization typically grows
lograthmically for actively constrained components.

Publications related to this chapter: [90].

Active-set methods for the solution of constrained MHE problems are considered in
Chapter 5. In particular, a Schur complement active-set method is proposed. The
presented method starts from the unconstrained MHE solution, i.e. without inequal-
ity constraints, which can be computed using the Riccati based methods of Chapter 3
and solves a number of non-negativity constrained QPs in thereduced space of active
constraints. A gradient projection method using projectedNewton steps is proposed
to solve the reduced QPs and Cholesky updates and downdates are employed to up-
date factorizations at both outer and inner active set changes. By using square-root
Riccati approach, the method involves just a small number ofpartial forward solves
and backward solves. It is demonstrated that the method typically converges in only a
few iterations.

Publications related to this chapter: [93].

Chapter 6 addresses general convex MHE formulations. The focus is on two types
of robust convex MHE formulations which are particularly useful in practical appli-
cations. First, robustness with regards to occasional outliers is investigated by means
of Huber penalty MHE andℓ1 penalty MHE. The former is shown to have excellent
performance in terms of outlier rejection and estimation accuracy. Second, the joint
estimation of states and parameters or inputs is considered. The resuling MHE prob-
lem is formulated as a convex cardinality problem yielding robustness with respect
to rapid parameter changes,i.e. jumps or break points. It is shown that this leads to
an MHE problem withℓ1 penalty on the parameter variation and a small number of
subsequent corrections to theℓ1 norm MHE problem. Significant improvements in
estimation performance are obtained using this procedure and a polishing step.

Publications related to this chapter: [91, 92].
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In Chapter 7 the application of MHE to nonlinear constrained problems isconsid-
ered. This is done in a direct multiple shooting Gauss-Newton framework. The
Gauss-Newton SQP iterations yield quadratic subproblems which can be solved ef-
ficiently using the methods presented in the previous chapters. The Chapter discusses
the application of MHE and MPC to the normalization of blood-glucose of patients
in the intensive care unit. The problem, model and data resulted from a collaborative
research with the ICU of the University Hospital K.U.Leuven. An existing patient
model is used for model-based estimation and control. The idea is to monitor and
regulate the blood-glucose level to a normoglycemic range using measurements of
glycemia and by advising an appropriate insulin dosing. Thepatient model is further
complemented with a known disturbance of administered carbohydrate calories flow.
It is demonstrated by numerical simulations that a strategyof model-based estima-
tion and predictive control is able to provide an adequate regulation of blood-glucose
taking into account model imperfections and large intra andinter patient variability.

Publications related to this chapter: [44, 94, 185].
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CHAPTER 2
Computational framework

The goal of this chapter is to provide the mathematical foundation for
both the theoretical and practical aspects of MHE. A framework for the
stability properties of the moving horizon approximation is introduced.
Furthermore, the most important concepts from numerical linear algebra
and optimization which constitute the basis of future chapters are briefly
reviewed.

2.1. Stability framework for MHE

One important desirable property of any estimator is asymptotic stability. For MHE
this framework emerged from the theoretical work that had been done earlier for MPC
and is based on Lyapunov theory. For details we refer to [59, 146, 152].

Consider again the MHE problem with approximate arrival cost ẐT−N(·)

minx,w,v ẐT−N(xT−N)+ ∑T−1
k=T−N ‖wk‖2Q−1

k
+ ∑T

k=T−N ‖vk‖2R−1
k

s.t.

xk+1 = fk(xk,uk, pk,wk), k = T−N, . . . ,T−1,

yk = hk(xk,uk)+vk, k = T−N, . . . ,T,

0 ≥ gk(xk,wk) k = T−N, . . . ,T−1,

0 ≥ gN(xN),

(2.1)

and define the stage cost asLk(wk,vk) = ∑T−1
k=T−N ‖wk‖2Q−1

k
+ ∑T

k=T−N ‖vk‖2R−1
k

.
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2.1. Stability framework for MHE

Definition 2 (Lower semi-continuity). A functionσ(·) is lower semi-continuous at
x0 if for everyε > 0 there exists a neighborhoodU of x0 such that

σ(x)≥ σ(x0)− ε, ∀x∈U. (2.2)

Definition 3 (Lipschitz continuity ). A functionσ(·) is (globally) Lipschitz continu-
ous if there exists a constant K such that for all x1,x2 ∈ domσ ,

‖σ(x2)−σ(x1)‖ ≤ K‖x2−x1‖ (2.3)

If a function is twice differentiable then it is Lipschitz continuous.

Definition 4 (K function). A functionσ(·) is aK function if it is continuous, strictly
increasing andσ(0) = 0.

Consider the nonlinear discrete-time system model of (2.1). Then the following defi-
nition can be given.

Definition 5 (Uniform observability ). A system is uniformly observable if there ex-
ists a positive integer N0 and aK functionφ(·) such that for any two states x1 and
x2

φ(‖x1−x2‖)≤
N0−1

∑
j=0
‖y(k+ j;x1,k)−y(k+ j;x2,k)‖, ∀k≥ 0,

where y(k+ j;x1,k) denotes the output obtained at discrete time step k+ j when the
model is initialized with x1 at time step k.

This uniform observability condition states that if the output residuals are small, then
the estimation error is also small.

For a (discrete-time) linear system, the definition of uniform observability condition
is given as follows.

Definition 6 (Uniform observability for linear systems). A linear system is uni-
formly observable if the observability Grammian given by

Vk =
N−1

∑
j=0

(Ck+ jA
j
k+ j)

TCk+ jA
j
k+ j

is positive definite for all k≥ 0 and N≥ nx.

In order to derive conditions for existence of a solution to the MHE problem, we
introduce the following assumptions (see [149]).

28



Computational framework

Assumption 1. The functions fk(·) and hk(·) are Lipschitz continuous for all k≥ 0.

Assumption 2. The stage cost Lk(·) is a continuous function for all k≥ 0 and the
arrival costẐT−N(·) is a continuous function.

Assumption 3. There existK functionsη(·) andγ(·) such that

η(‖(w,v)‖)≤ Lk(w,v) ≤ γ(‖(w,v)‖) (2.4)

η(‖x− x̂0‖)≤ Ẑk(x) ≤ γ(‖x− x̂0‖) (2.5)

for all w, v, x andx̂0 satisfying the constraints and for all k≥ 0.

Furthermore, it is necessary to impose similar conditions on the arrival cost. Let̂φT

be the objective function value at the solution for problem (2.1), then we require [149]

Condition 1. There exists aK functionγ̄(·) such that

0≤ ẐT(z)− φ̂T ≤ γ̄(‖z− x̂T‖) (2.6)

for all z satisfying the state constraints and T≥ 0.

Theorem 2.1.1(Existence of a solution to MHE problem (2.1)). If the following
conditions are fulfilled

• assumptions 1 - 3 hold

• the arrival cost satisfies condition 1

• the system is uniformly observable and N≥ N0

then a solution to problem 2.1 exists for allx̂0 satisfying the state constraints and for
all T ≥ 0.

Proof. See [149].

To guarantee stability of MHE, the arrival cost should satisfy the following condition
[149]

Condition 2. LetR N
τ denote the set of reachable states defined as

R N
τ = {x(τ;z,τ −N,{w})} (2.7)

where x(τ;z,τ −N,{w}) represents the state at timeτ when the model is applied
forward from initial condition z at timeτ−N using the disturbance sequence w.
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2.1. Stability framework for MHE

• For τ ≤ N the approximate arrival cost satisfiesẐτ(·)≤ Zτ(·).

• For τ > N the approximate arrival cost satisfies

Ẑτ(p)≤ φ̂τ−1 (2.8)

and p equals the final state of the solutionφ̂τ−1.

Theorem 2.1.2(Asymptotic stability of MHE ). If the following conditions are ful-
filled

• assumptions 1 - 3 hold

• the arrival cost satisfies conditions 1 and 2

• the system is uniformly observable and N≥ N0

then for all x̂0 satisfying the state constraints, MHE is asymptotically stable for the
system model of (2.1).

Proof. See [149].

2.1.1. Linear time-invariant systems

For linear time-invariant (LTI) systems,i.e. system model (1.7) withAk ≡ A, Gk ≡ G
andCk ≡C for all k≥ 0, properties such as observability and asymptotic stability can
be checked more easily.

In the sequel, letΛ(A) denote the set of eigenvalues of the matrixA.

Definition 7 (Asymptotic stability ). Consider the following disturbance-free and
offset-free LTI system

xk+1 = Axk, (2.9)

yk = Cxk. (2.10)

The system is asymptotically stable, i.e. xk→ 0, if and only if for allλ ∈ Λ(A) holds
|λ |< 1.

If the observability matrix of orderN is defined as

ON :=








C
CA
...

CAN








,

then the following theorem holds.
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Computational framework

Theorem 2.1.3(Uniform observability for linear time-invariant systems). A linear
time-invariant system is uniformly observable if and only if rank(Onx−1) = nx.

Proof. see [14, 71].

Observability can also be formulated directly in terms of the pair{A,C}.

Definition 8 ([14, 71] Uniform observability for linear time-invariantsystems in terms
of {A,C}). Let λ ∈ Λ(A), thenλ is said to be an observable mode of{A,C} if

rank(

[
λ I −A

C

]

) = nx,

otherwise,λ is said to be an unobservable mode of{A,C}.

Consider the following state equation with controlsuk ∈ Rnu and control system ma-
trix B∈Rnx×nu

xk+1 = Axk +Buk. (2.11)

Definition 9 ([14, 71] Detectability for linear time-invariant systems). The pair{A,C}
is detectable if allλ ∈ Λ(A) with |λ | ≥ 1 are observable modes of{A,C}.

In words this definition states that if a system is observableor stable, then it is also
detectable; if a system is unobservable or unstable, then itis detectable if its unob-
servable modes are stable.

The concepts of controllability and stabilizability are dual to observability and de-
tectability, respectively. Algebraically this implies:

• [A,C] is observable iff[AT,CT] is controllable,

• [A,C] is detectable iff[AT,CT] is stabilizable.

2.2. Linear algebra

The basic idea behind methods for solving a system of linear equations is to transform
the problem into one that is easy to solve [68, 203]. This is exactly what people do
when they are asked to solve a set of linear equations by hand.One systematically
eliminates variables,i.e. eliminatex1 from all equations except the first by subtracting
multiples of the first equation and so on, a procedure known asrow reductionor
Gaussian elimination.
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2.2. Linear algebra

Consider ann×n system of linear equations written in matrix form asMz= w. Write

M =

(
a bT

c D

)

, whereb,c∈ Rn−1, D ∈ R(n−1)×(n−1), anda∈ R0. After applying the

elimination process to the first column the following equivalent system is obtained

(
a bT

0 D−ca−1bT

)(
x1

x2:n

)

=

(
w1

w2:n−ca−1w1

)

. (2.12)

Next the same process is applied to the(n−1)× (n−1) submatrixD−ca−1bT and so
on, untilM is transformed into an upper triangular matrix. This systemcan be solved
easily,i.e. the value ofx1 is immediately obtained asw1/a, nextx2 is obtained after
substituion ofx1 and so on.

Block elimination, Schur complement and the matrix inversion lemma

The Gaussian elimination idea can be extended to linear systemsMz= w with block-
partitioning

M =

(
A B
C D

)

. (2.13)

SupposeA is square and nonsingular and partitionz=

(
x
y

)

andw=

(
u
v

)

conformally

with M.

After eliminating the vectorx the problem reduces to solving a smaller linear system

(
D−CA−1B

)
y = v−CA−1u. (2.14)

Definition 10 (Schur complement). Consider a matrix M with block partitioning as
given by equation (2.13) and assume A is square and nonsingular. Then the matrix
SA = D−CA−1B is called the Schur complement of A in M. Likewise, the matrix
SD = A−BD−1C is called the Schur complement of D in M.

With this definition equation (2.14) can be written as

y = S−1
A

(
v−CA−1u

)
. (2.15)

Substituting this into the first block equation and collecting terms yields

x =
(
A−1 +A−1BS−1

A CA−1)u−A−1BS−1
A v. (2.16)
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Computational framework

Hence, this derivation leads us to the following expressionfor the inverse ofM

M−1 =

(
A−1+A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

)

. (2.17)

Similarly, if D is nonsingular one could start by eliminatingy to obtain

x = S−1
D

(
u−BD−1v

)
. (2.18)

whereSD is the Schur complement ofD in M. Substituting this into the second block
equation and collecting terms yields

y =
(
D−1 +D−1CS−1

D BD−1)v−D−1CS−1
D u. (2.19)

Putting everything together leads us to the expression

M−1 =

(
S−1

D −S−1
D BD−1

−D−1CS−1
D D−1 +D−1CS−1

D BD−1

)

. (2.20)

Equating the elements in the equivalent representations (2.20) and (2.17) gives imme-
diately the following lemma known as theMatrix Inversion Lemma.

Lemma 2.2.1. Let A, D and D−CA−1B be nonsingular square matrices. Then

(
A−BD−1C

)−1
= A−1+A−1B

(
D−CA−1B

)−1
CA−1. (2.21)

and

(
A−BD−1C

)−1
BD−1 = A−1B

(
D−CA−1B

)−1
. (2.22)

Symmetry and positive definiteness

When a matrixM is symmetric or symmetric and positive (semi)definite, thiscan be
exploited in block elimination and variants of the Schur complement and the matrix
inversion lemma can be formulated. The following theorem (see [203]) will be useful.

Theorem 2.2.2.Let M be a symmetric matrix partitioned as

M =

(
A B
BT D

)

,

in which A is square and nonsingular. Then
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2.2. Linear algebra

• M ≻ 0 iff both A≻ 0 and SA = D−BTA−1B≻ 0.

• M � 0 iff both A≻ 0 and SA = D−BTA−1B� 0.

Consequently if M� 0 and A≻ 0, then D� SA and

det(D)≥ det(SA) = det(M)/det(D)≥ 0.

Generalized inverse and generalized Schur complement

In the definition (10) of the Schur complementA was assumed to be square and non-
singular. By introducing a generalized inverse this definition can be extended allowing
A to be an arbitrary matrix.

Definition 11 (Generalized inverse). A generalized inverse for a given m×n matrix
M is an n×m matrix denoted by M− (not necessarily unique) such that MM−M = M.

If M is square and nonsingular, its only generalized inverse is the ordinary inverse.

The best known generalized inverse is theMoore-Penrose generalized inverseor pseu-
doinversedenoted asM†, which is a unique matrix satisfying

MM†M = M, M†MM† = M†, (M†M)T = M†M. (2.23)

If

M = U

(
Σ 0
0 0

)

VT, (2.24)

is a singular value decomposition ofM in whichΣ has positive diagonal elements and
U andV are orthogonal, then

M† = V

(
Σ−1 0
0 0

)

UT. (2.25)

Now, the pseudoinverse is used to define the generalized Schur complement.

Definition 12 (Generalized Schur complement). The generalized Schur comple-

ment of A in M with M=

(
A B
C D

)

is defined as SA = D−CA†B.
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Matrix factorizations

Gaussian elimination describes a process of transforming amatrix into upper triangu-
lar form by reducing it column by column. Alternatively, a matrix can be expressed
as afactorizationor decomposition, i.e. a product of matrices with special proper-
ties. Thesingular value decomposition(M = UΣVT) for instance expresses a matrix
as a product of two orthogonal matrices (U andV) and a diagonal matrix (Σ). The
factorization associated with Gaussian elimination is theLU factorization

M = PLU

whereP is a permutation matrix,L is lower triangular andU is unit upper triangular
(upper triangular containing only ones on the diagonal). Every nonsingular matrix
M ∈ Rn×n can be factorized in this form. TheLU factorization is the standard ap-
proach for solving a general linear system [29]. When the matrix M is sparse theLU
factorization usually includes both row and column pivoting, i.e. M = P1LUP2 with
P1 andP2 permutation matrices. Also whenM contains very large elements including
row and column pivoting typically improves numerical stability.

SupposeM is nonsingular symmetric and suppose it can be factorized asM = LU
without row interchanges. Then, by the uniqueness of theLU factorization,M can be
written as

M = LDLT

with D = diag(uii ). In order to preserve symmetry interchanges must be appliedto
both rows and columns yielding a factorization

M = PLDLTPT. (2.26)

This factorization is known as theLDLT factorizationor indefinite Cholesky decom-
position. Unfortunately, in contrast to theLU factorization existence is not guaranteed

for theLDLT factorization. For example [68] the matrixM =

(
0 1
1 0

)

cannot be fac-

torized by (2.26).

WhenM is symmetric positive definite theLDLT factorization always exists and all
elements ofD are strictly positive. This allows us to write

M = LDLT = LD
1
2 D

1
2 LT = L̄L̄T = R̄TR̄, (2.27)

which is known asCholesky factorization. The lower (upper) triangular matrix̄L (R̄)
is uniquely determined byM and is called theCholesky factorof M.
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2.3. Convex optimization

Every nonsingular matrixM ∈ Rn×n can be factored as

M = QR

whereQ is an orthogonal matrix (QQT = QTQ = I , henceQ−1 = QT) andR is upper
triangular. This is theQR factorizationand will be used frequently throughout this
doctoral thesis. Note thatQ does not need to be computed explicitly to solve the linear
system, only matrix-vector productsQTw are needed which saves storage space and
computation time. It is important to note that orthogonal transformations preserve
Euclidean length of each column and therefore no error build-up occurs (in contrast
to Gaussian eleminiation for example).

It can be shown that theQR method when applied to symmetric matrices yields an
eigenvalue decomposition,i.e. AQ= QΛ or R = QΛ with Λ the diagonal matrix of
eigenvalues.

TheQR factorization is most often applied to linear least-squares problems (overde-
termined systems) and is also useful for underdetermined linear systems [29, 68].

A numerically robust way of achieving triangular form involves orthogonal matrices.
Such factorization methods are referred to asorthogonal triangularizationmethods.
The most popular techniques for orthogonal triangularization uses Householder or
Givens transformations.

2.3. Convex optimization

Convexity is a fundamental concept in optimization [29, 136]. The class of con-
vex programming problems includes linear least-squares, linear programming and
quadratic programming problems, all of which have by now a fairly complete the-
ory and can be solved numerically efficiently [29]. In this section a brief overview
is given of the theory and numerical solution methods for some convex programming
problems that are used in this thesis.

In the sequel the following standard form of nonlinear optimization problem (Nonlin-
ear Program or NLP) is used

minx f0(x)
s.t. fi(x)≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

(2.28)

with x∈Rn. The domainD =
⋂m

i=0dom( fi) ∩
⋂p

i=1dom(hi) is assumed to be nonempty.
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2.3.1. Definitions

Definition 13 (Convex set). A setS ⊆ Rn is convex iff for any two points x1,x2 ∈ S
all convex combinations of these points also lie within the setS :

(1−θ )x1+ θx2 ∈ S , ∀θ ∈ [0,1],∀x1,x2 ∈ S .

Definition 14 (Affine function ). A function f : Rn→ R is affine if it is the sum of a
linear function and a constant, i.e. :

f (x) = aTx+b, a∈ Rn,b∈ R.

It is worth clarifying that in this thesis, as it is frequent in control and estimation
theory, the term linear function is sometimes used for functions which are actually
affine.

Definition 15 (Convex function). A function f : Rn→ R is convex iff its domain
dom( f ) is convex and for every x1,x2 ∈ dom( f ) and θ ∈ [0,1] following inequality
holds

f ((1−θ )x1+ θx2)≤ (1−θ ) f (x1)+ θ f (x2). (2.29)

Definition 16 (Strictly convex function). A function f : Rn→ R is strictly convex
iff its domaindom( f ) is convex and strict inequality holds in (2.29) for x1 6= x2 and
θ ∈ (0,1).

Definition 17 (Convex optimization problem). Problem (2.28) is a convex opti-
mization problem if the objective and inequality constraint functions, f0, . . . , fm are
convex and the equality constraint functions are affine, i.e. hi(x) := aT

i x− bi with
ai ∈Rn,bi ∈R for i = 1, . . . , p.

The following theorem explains the importance of convexity.

Theorem 2.3.1(see [29, 136]). If problem (2.28) is a convex optimization problem
then any local solution is also a global solution and the solution set is itself convex.
Moreover, if the objective f0 is strictly convex, the solution is unique if it exists.

2.3.2. Duality and Karush-Kuhn-Tucker conditions

TheLagrangianassociated with the standard optimization problem (2.28) is defined
as

L(x,λ ,ν) = f0(x)+
m

∑
i=1

λi fi(x)+
p

∑
i=1

νihi(x).
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2.3. Convex optimization

The vectorsλ andν are calledLagrange multipliersassociated with the inequality
and equality constraints respectively.

TheLagrange dual function g: Rm×Rp→ R is defined as the minimum value of the
Lagrangian overx: for λ ∈ Rm, ν ∈Rp,

g(λ ,ν) = inf
x∈D
L(x,λ ,ν) = inf

x∈D

(

f0(x)+
m

∑
i=1

λi fi(x)+
p

∑
i=1

νihi(x)

)

.

Note that the dual function will take on the value−∞ when the Lagrangian is un-
bounded below. The dual function is concave even when the problem (2.28) is not
convex.

Proposition 2.3.2.The dual function yields a lower bound on the optimal value f0(x⋆)

of the problem (2.28), i.e.

g(λ ,ν)≤ f0(x
⋆), ∀ λ ≥ 0,ν. (2.30)

See [29] for a proof.

For any primal feasiblex and for anyλ ≥ 0 andν the differencef0(x)− g(λ ,ν) is
non-negative and is called theduality gap. The optimal lower bound can be found by
maximizing the dual function with respect to the Lagrange multipliers which leads to
the following optimization problem

max g(λ ,ν)

s.t. λ ≥ 0.
(2.31)

This problem is called theLagrange dual problemassociated with the problem (2.28).
The original problem (2.28) is called theprimal problem.

The dual problem (2.31) is a convex optimization problem, since the objective to be
maximized is concave and the constraint is convex. This is the case whether or not the
primal problem is convex.

When the equality holds for expression (2.30) at the solution, i.e. g(λ ⋆,ν⋆) = f0(x⋆),
the optimal duality gap is zero, and it is said thatstrong dualityholds. Otherwise, one
speaks ofweak duality.

An important property is that for feasible convex primal problems strong duality holds
if the constraints are linear and dom( f0) = Rn, see [29] for a proof. As a result strong
duality holds for the QPs considered in Chapters 3 to 4.

Under the assumption of strong duality, it follows from the definition of the dual
function that

f0(x
⋆) = g(λ ⋆,ν⋆)≤ L(x⋆,λ ⋆,ν⋆). (2.32)
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Writing out the Lagrangian yields

f0(x
⋆)≤ f0(x

⋆)+
m

∑
i=1

λ ⋆
i fi(x

⋆), (2.33)

where the term of the equality constraints vanishes becauseh(x⋆) = 0. Thus it follows
that

m

∑
i=1

λ ⋆
i fi(x

⋆)≥ 0. (2.34)

But sinceλ ⋆ ≥ 0 and fi(x⋆)≤ 0, it also holds that

λ ⋆
i fi(x

⋆)≤ 0, i = 1, . . . ,m. (2.35)

Combining the two expressions (2.34) and (2.35) leads to theconclusion that

λ ⋆
i fi(x

⋆) = 0 i = 1, . . . ,m. (2.36)

This is called thecomplementary slacknesscondition. This condition states that for
convex problems for which strong duality holds every activeinequality has a corre-
sponding strictly positive Lagrange multiplier while every inactive inequality must
have a zero Lagrange multiplier.

Now, if all functions in problem (2.28) are assumed to be differentiable, then it fol-
lows that the gradient ofL(x,λ ⋆,ν⋆) vanishes atx = x⋆. This means that for any
optimization problem with differential objective and constraint functions for which
strong duality holds, the triplet(x,λ ,ν) can only be (primal and dual) optimal if the
following set of conditions, known as theKarush-Kuhn-Tucker (KKT) optimality
conditions, are satisfied

∇ f0(x⋆)+ ∑m
i=1 λ ⋆

i ∇ fi(x⋆)+ ∑p
i=1 ν⋆

i ∇hi(x⋆) = 0,

fi(x⋆) ≤ 0, i = 1, . . . ,m
hi(x⋆) = 0, i = 1, . . . , p

λ ⋆
i ≥ 0, i = 1, . . . ,m

λ ⋆
i fi(x⋆) = 0, i = 1, . . . ,m

(2.37)

These KKT conditions are the first order necessary conditions for optimality for con-
strained optimization, hence are the equivalent of∇ f (x⋆) = 0 in unconstrained opti-
mization. For convex optimization problems the KKT conditions are also sufficient
first order optimality conditions. As a consequence the KKT conditions are necessary
and sufficient optimality conditions for the QPs consideredin Chapters 3 to 4.
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2.3. Convex optimization

2.3.3. Linear least-squares

The linear least-squares problem (LS) can be formulated as

minx‖Ax−b‖22, A∈ Rm×n,b∈Rm. (2.38)

It can be reduced to solving a set of linear equations

(ATA)x∗ = ATb, (2.39)

or in other words yields an analytical solution given by

x∗ = A†b, (2.40)

whereA† = (ATA)−1AT is the pseudoinverse ofA.

LS and the Schur complement

Consider a block partitioned matrixM =

(
Q S
ST R

)

� 0. Then, the least-squares prob-

lem over some of the variables has an analytic expression as follows

g(x) = miny

(
x
y

)T(
Q S
ST R

)(
x
y

)

= xTQ̄x (2.41)

whereQ̄ = Q−SR†ST is the Schur complement ofR in M.

Numerical solution methods for LS

The classical method for solving the least-squares problem(2.38), which can be traced
back to the work of Gauss, proceeds by forming the normal equations [22]

ATAx= ATb (2.42)

and solving them through a Cholesky decomposition of the symmetric positive definite
matrixM = ATA, i.e. M= RTRwith Rupper triangular. In statistical applications this
is known as thesquare-root method. The normal equations approach can however
give rise to numerical difficulties. First, some significantdigits might get lost during
explicit formation ofM = ATA andM may not be positive definite or even nonsingular
due to round-off. Second, the normal equations approach introduces errors larger than
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those inherent in the problem due to the fact that its solution depends upon the square
of the condition number ofA. Methods based on orthogonal triangularization which
work directly onA such as theQR factorization on the other hand have shown to
possess very good stability properties.

ForA∈ Rm×n with m≥ n there exists aQRfactorization such that

QTA =

(
R
0

)

, (2.43)

whereQ ∈ Rm×m is orthogonal andR∈ Rn×n is upper triangular with nonnegative
diagonal elements. See [22] for a proof. IfA has full rank (rank(A) = n) thenR has
strictly positive diagonal elements, hence is nonsingular. Then one can write

A =
(
Q1 Q2

)
(

R
0

)

= Q1R. (2.44)

Here,Q1 andR are uniquely determined. The matrixQ2 is in general not uniquely
determined.

The following theorem shows how theQRfactorization may be used to solve the linear
least-squares problem

Theorem 2.3.3(see [68]). Let A∈ Rm×n, m≥ n and b∈ Rm be given. Assume that
rank(A) = n and that a QR factorization is computed such that

QTA =

(
R
0

)

, QTb =

(
c1

c2

)

. (2.45)

Then the least-squares solution x∗ and the corresponding residual r= b−Ax∗ satisfy

Rx∗ = c1, ‖r‖2 = ‖c2‖2. (2.46)

Proof. SinceQ is orthogonal the objective can be expressed as

‖Ax−b‖22 = ‖QT(Ax−b)‖22 = ‖Rx−c1‖22 +‖c2‖22. (2.47)

And becauseR is nonsingular by the full rank condition onA the minimum is attained
at x∗ = R−1c1 and its residual equals the norm ofc2.
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2.3. Convex optimization

2.3.4. Linear programming

A Linear Program (LP), another important class of convex programming problems,
can be written as

minx cTx
s.t. Ax≤ b,

Cx= d,

(2.48)

with c∈Rn, A∈ Rm×n, b∈ Rm, C∈ Rp×n, d ∈ Rp.

2.3.5. Quadratic programming

A convex optimization problem is called a Quadratic Program(QP) if the objective
funtion is convex and the constraint functions are affine. Itcan be written as

minx
1
2xTHx+gTx

s.t. Ax≤ b,

Cx= d,

(2.49)

whereH ∈ Rn×n is symmetric positive semidefinite,g∈ Rn, A∈ Rm×n, b∈ Rm, C ∈
Rp×n, d ∈Rp.

When linear constraints are added to the least-squares problem (2.38) the solution can
no longer be computed analytically, but a QP must be solved.

2.3.6. Second-order cone programming

A constraint of the form

‖Ax+b‖2≤ cTx+d, (2.50)

is asecond-order cone constraint. A convex optimization problem with such a con-
straint is called a Second-order Cone Program (SOCP) and canbe written as

minx
1
2 f Tx

s.t. ‖Ax+b‖2≤ cTx+d,

Fx = g,

(2.51)

where f ,c∈ Rn, d ∈ R, A∈ Rm×n, b∈ Rm, F ∈ Rp×n, g ∈ Rp. Second-order Cone
Programs are more general than (and include) Quadratic Programs.
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2.4. Nonlinear optimization

If the objective function and/or some of the equality or inequality constraints are non-
linear, the mathematical program is called a nonlinear programming problem. Even
when the objective and constraint functions are smooth, thegeneral nonlinear optimi-
zation problem can be very difficult to solve. Indeed, for convex problems any local
solution is also a global solution (Theorem 2.3.1), however, for non-convex problems
the KKT conditions can only characterize local optimality.Global optimization is
used for problems with a small number of variables, where computing time is not crit-
ical, and the value of finding the true global solution is veryhigh. Therefore, only
local optimization methods are considered in this thesis. This should not temper our
ambition of findinggood solutionsthough, since in moving horizon estimation (and
control) a good initial guess is often available and if inequalities can be imposed,
the search region can often be dramatically reduced such that bad local optima are
excluded. Furthermore, with the help of efficient numericaltechniques for dynamic
programming such as multiple shooting convergence to good local optima, in many
cases even the global optimum, is typically obtained.

Nonlinear optimization algorithms are iterative processes which differ by the strategy
to move from one iterate to the next. The methods typically involve trade-offs between
speed of convergence and computer storage, between robustness and computational
speed, and so on. In this thesis so-called Newton-type methods, which make use of
first and/or second order derivatives, are employed.

2.4.1. Newton’s method for unconstrained optimization

The generic unconstrained nonlinear problem is

minx f0(x), (2.52)

with x∈ Rn. Assumef0 is twice continuously differentiable.

This nonlinear problem is solved in (exact) Newton’s methodby minimizing in every
iteration a quadratic approximation,i.e. the next iteratexk+1 = xk + pk is found by
minimizing

mk(x
k + p) = f0(x

k)+ ∇ f0(x
k)T p+

1
2

pT∇2 f0(x
k)p (2.53)

≅ f0(x
k + p) (2.54)

with respect top. Here∇ f0(xk) and∇2 f0(xk) are the gradient and Hessian respec-
tively of f0 evaluated atx. This minimum is directly found by setting the gradient to
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2.4. Nonlinear optimization

zero, yielding

pk =−(∇2 f0(x
k))−1∇ f0(x

k), (2.55)

Newton’s method converges quadratically close to the solution.

The steepest descent method is a Newton-type method that does not take curvature
information into account but instead takes stepspk =−∇ f (xk). It is computationally
cheaper but converges only linearly.

In order to enforce convergence of Newton’s method from an arbitrary starting point,
a suitable globalization strategy is necessary. There are two families of globalization
strategies, line-search and trust-region, see [33, 136] for in-depth treatment of the
topic.

Nonlinear Least-Squares (NLS)

In nonlinear least-squares the following special objective consisting of a sum of squared
nonlinear functions is assumed

f0(x) =
1
2
‖r(x)‖22, (2.56)

with r : Rn→Rq.

The Jacobian ofr, theq×n matrix of first partial derivatives, is defined as

J(x) =

[
∂ r j

∂xi

]

j=1,...,q
i=1,...,n

With this definition the gradient and Hessian of the objective (2.56) can be written as

∇ f0(x) = J(x)Tr(x),
∇2 f0(x) = J(x)TJ(x)+ ∑q

j=1 r j(x)∇2r j(x).
(2.57)

Near the solution the first term is typically dominant because either the residuals are
small or∇2r j (x) are small (near-linearity of the model close the solution).Therefore,
the following Hessian approximation is typically used

Wk = JT
k Jk, (2.58)
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with Jk := J(xk) This iterative procedure for solving the NLS problem is known as
Gauss-Newton method. In every iteration a linear least-squares subproblem is solved

pk
GN = argmin

p

1
2
‖rk +JT

k p‖22, (2.59)

= −
(
JT

k Jk
)−1

JT
k rk, (2.60)

= −J†
k rk, (2.61)

whererk := r(xk) andJ†
k is a pseudo-inverse. Reliable and efficient orthogonal trian-

gularization methods can be applied to these LS subproblemsas discussed before, see
also [22, 136].

In order to enforce convergence from far-off starting points a suitable globalization
strategy is necessary. One particularly popular and effective globalization strategy is
theLevenberg-Marquardt method. Large steps are penalized by this method by adding
a regularization term.

pk
LM = argmin

p

1
2
‖rk +JT

k p‖22 +
αk

2
‖p‖22, (2.62)

= −
(
JT

k Jk + αkI
)−1

JT
k rk, (2.63)

where I is the identity matrix andαk is the so-calleddamping parameter. For αk

small the method resembles Gauss-Newton while forαk large the behavior of steepest
descent is obtained.

Now, let us consider constrained nonlinear optimization. The standard form was given
before (problem 2.28) and is repeated here for convenience.

minx f0(x)
s.t. fi(x)≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

(2.64)

with x∈Rn. The domainD =
⋂m

i=0dom( fi) ∩
⋂p

i=1dom(hi) is assumed to be nonempty.

There are two big families of Newton-type algortihms for constrained nonlinear prob-
lems, Sequential Quadratic Programming (SQP) type methodsand Interior-Point (IP)
methods, that differ mainly by the way the complementary slackness condition is han-
dled.

2.4.2. Sequential Quadratic Programming (SQP)

One of the most effective methods for nonlinear optimization generates steps by solv-
ing quadratic subproblems. As such, this SQP approach, applies in every iteration a
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2.4. Nonlinear optimization

Newton step to the KKT system of the nonlinear programming problem which leads
to a fast rate of convergence. It has been shown that SQP solvers require the fewest
number of function evaluations to solve NLPs [19, 159]. By linearizing in every it-
eration all nonlinear functions occurring in the KKT conditions around the current
iterate, one arives at the following QP

minx
1
2(x−xk)T∇2

xL(xk,λ k,νk)(x−xk)+ ∇ f0(xk)Tx
s.t. fi(xk)+ ∇ fi(xk)T(x−xk)≤ 0,

hi(xk)+ ∇hi(xk)T(x−xk) = 0,

(2.65)

where∇ f0(xk) denotes the gradient of the objective evaluated at the current iteratexk

and where∇2
xL(xk,λ k,νk) is the Hessian or matrix of second order derivatives of the

Lagrangian evaluated at the current iterate of primal and dual variables. If the Hessian
is positive semi-definite, this QP is convex.

Sequential Quadratic Programming can be implemented both in a line search or a
trust-region framework, see [33, 136]. SQP methods show their strength when applied
to problems with significant nonlinearities [136].

Full quasi-Newton methods

In quasi-Newton methods, also known as variable metric methods, approximationsWk

of the Hessian matrix∇2
xL(xk,λ k,νk) are maintained. In each iteration a new Hessian

approximationWk+1 from the previous by a low-rank update. The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update is the most widely used and has proven to be very
successful. It is given by

Wk+1 = Wk +
ykyT

k

yT
k sk
−WksksT

kWk

sT
kWksk

. (2.66)

If the process is started with a positive definite approximationW0 then all subsequent
Hessian approximations are positive definite. Damped BFGS updates and other vari-
ants have been proposed to deal with the problem of non-positive definite true Hes-
sians, seee.g.[136].

Constrained Gauss-Newton (CGN) method

Another particularly successful SQP variant is the Constrained Gauss-Newton (or
Generalized Gauss-Newton) method. It uses the Gauss-Newton Hessian approxima-
tion (2.58). The constrained Gauss-Newton method has only linear convergence but
often with a surprisingly fast contraction rate. The contraction rate is fast when the
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residual norm‖r(x⋆)‖ is small or the problem functionsf0, fi ,hi have small second
derivatives. It has been developed and extensively investigated by Bock and cowork-
ers, see e.g. [23, 160]. The CGN method is central in Chapter 7of this dissertation.

2.4.3. Interior-point methods

In interior-point methods, in contrast to SQP methods, the solution of the KKT sys-
tem is attempted by replacing the non-smooth complementaryslackness condition
λi fi(x) = 0 by a smooth nonlinear approximationλi fi(x) = κ , with so-called barrier
parameterκ . This amounts to replacing the inequalities with a logarithmic barrier
term in the objective weighted with the barrier parameter. Instead of the original
problem (2.28) a sequence of problems of the following form

minx f0(x)−κ ∑m
i=1 log(− fi(x))

s.t. hi(x) = 0, i = 1, . . . , p,
(2.67)

is solved using Newton’s method for decreasingκ . After a limited number of Newton
iterations a quite accurate solution of the original Nonlinear Program (NLP) is ob-
tained. By this approach the iterates are forced to remain inthe interior of the set de-
scribed by the inequality constraints, and convergence to the true solution is achieved
by gradually reducing the barrier parameter. We refer to theexcellent textbook [198]
for details. A widely used implementation of nonlinear Interior Point methods is the
open source code IPOPT [191].

2.5. Algorithm complexity and memory storage

2.5.1. Flop count

The complexity of a numerical algorithm is typically expressed by the number of
floating point operationsor flops it requires. In this thesis we follow the definition
used by Boyd and Vandenberghe [29], Golub and Van Loan [77] and by many other
authors of a flop being one arithmetic operation, that is, oneaddition, subtraction,
multiplication or division of two floating-point numbers1.

Of course the computation time of an algorithm depends on many other factors such
as processor speed, choice of compiler, data motion, memoryhierarchy and cache
boundaries [29, 77], yet the number of flops gives a good indication of the computation
time as a function of the problem dimensions. Only the leading terms are typically
taken into account.

1Some authors define a flop as a multiplication followed by an addition, also known as a DAXPY
(double-precision real Alpha times X Plus Y), since this corresponds to one instruction on many processors
and is a basic operation in the well-known packages BLAS/LAPACK and LINPACK. Their flop counts are
a factor 2 smaller.
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Vector operations

Consider two vectorsx,y∈ Rn.

• Addition of x andy requiresn flops.

• Multiplication of any of the two vectors with a scalar also requiresn flops.

• Computation of the inner productxTy requiresn multiplications andn−1 addi-
tions, or 2n−1≈ 2n flops.

Matrix-vector multiplication

A matrix-vector multiplicationy= Axwith A∈Rm×n requiresm(2n−1)≈ 2mnflops.

Matrix-matrix multiplication

The product of two matricesC = AB with A∈ Rm×n andB∈ Rn×p requiresmn(2p−
1)≈ 2mnpflops.

2.5.2. Memory allocation

The memory that needs to be allocated for an algorithm is determined by the nature
of the data,i.e. structure or sparsity, and by the implementation of the algorithm, i.e.
structure/sparsity exploitation, data overwrite.

In general, storing a vector or matrix requires memory allocation for at least the num-
ber of non-zero elements. A densem×n matrix requiresmnmemory entries. If the
matrix, however, contains onlyN < mnnon-zero elements it can be stored using only
N entries. A triangular or symmetricn×n matrix requires1

2n(n+1) entries, while a
diagonaln×n matrix - of course - requiresn entries. Other structured matrices such as
Toeplitz, Hessenberg, Sylvester or banded matrices can be stored efficiently as well.

2.6. Brief introduction to the Kalman filter

In his seminal paper [112] Kalman derived his filter using a geometric approach, the
orthogonal projection theory. The filter may also be derivedusing a rigourous prob-
abilistic setup (seee.g. [6, 107]) or using maximum likelihood statistics (seee.g.
[107, 174]), which is the most straightforward and popular way of deriving the fil-
ter formulas but has the drawback that several stochastic assumptions are needed, see
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the discussion in Section 1.6. The filter equations may be derivation using a purely
deterministic least-squares approach, seee.g.[71, 190, 196].

In this section derivations are omitted and instead the focus is on the different imple-
mentation forms of the Kalman filter and their relations.

2.6.1. The covariance Kalman filter (CKF)

For compactness we shall write

x̂k = x̂k|k−1, Pk = Pk|k−1

x̂k+ = x̂k|k, Pk+ = Pk|k

unless amplification is necessary for clarity. The Kalman filter scheme consists of
two distinct stages: a measurement update or correction stage, and a time update or
prediction stage.

In the measurement update stage thea priori state estimate ˆxk and its associated co-
variance matrixPk are combined with measurement information to give an improved
estimate and covariance matrix.

Measurement update

Re
k = CkPkC

T
k +Rk (2.68)

Pk+ = Pk−PkC
T
k [Re

k]
−1CkPk (2.69)

Kk = PkC
T
k [Re

k]
−1 (2.70)

ỹk = yk−hk−Ckx̂k (2.71)

x̂k+ = x̂k +Kkỹk (2.72)

HereKk is theKalman gain, ỹk is called theinnovation(i.e. , the deviation of predicted
output from observed output) andRe

k is the innovation covariance. Thea posteriori
estimate ˆxk+ with its associated covariancePk+ is now the best linear estimate ofxk

using all data up to the current time.

In the time update stage the model is used to propagate the state estimate and covari-
ance matrix one time step forward.

Time update

Pk+1 = AkPk+AT
k +GkQkG

T
k (2.73)

x̂k+1 = fk +Akx̂k+ (2.74)
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2.6. Brief introduction to the Kalman filter

Provided the initial estimate is a true minimum mean-square-error estimate of the
statex0, all subsequent estimates computed by the Kalman recursions are best linear
estimates in mean-square sense for the given data. If in addition the disturbancesw
andv are Gaussian, then the state estimates delivered by the Kalman filter areoptimal
in mean-square sense.

Note that the error covariance and consequently the Kalman gain are independent of
the data. Hence, the matrix and vector recursions can be computed in parallel.

Time update and measurement update may be combined yielding

Pk+1 = AkPkA
T
k −AkPkC

T
k [Re

k]
−1CkPkA

T
k +GkQkG

T
k (2.75)

K̄k = AkPkC
T
k [Re

k]
−1 (2.76)

x̂k+1 = fk +Akx̂k + K̄kỹk (2.77)

Notice that the gain matrix̄Kk = AkKk. Matrix equation (2.75) yields a recursion for
Pk and is termedRiccati difference equation.

2.6.2. The Kalman filter as a feedback system

Equation (2.77) provides insight into the mechanics of the Kalman filter. It can be
viewed as a feedback system where the innovations through a gain matrix K̄k are
injected into the process. This approach was first considered by Luenberger [127] in
a deterministic setting. Any gain which stabilizes the error dynamics given by

ek+1 = (Ak−KkCk)ek (2.78)

yields a stable observer2. It suffices to choose a gain such that all eigenvalues of
Ak−KkCk are smaller than one (e.g. by pole placement). The Kalman filter delivers
an optimal gain under the assumed conditions.

2.6.3. The time-invariant and steady-state Kalman filter

For linear time-invariant (LTI) systems the Kalman filter recursions as given before
can be applied with constant system matrices, however, dedicated algorithms can be
derived in order to speed up computations.

2When the system is assumed to be disturbance-free (deterministic) a state estimator is calledobserver,
when disturbances are considered the termfilter is preferred.
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Consider a recursive estimator for the disturbance-free and offset-free Linear Time-
Invariant (LTI) system (2.9) given by the recursion

x̂k+1 = Ax̂k +Kỹk,

whereK is a gain matrix (not necessarily the Kalman gain) and ˜yk = yk−Cx̂k is the
innovation vector. Then the estimation errorek = xk− x̂k obeys the following recursion

ek+1 = (A−KC)ek.

Consequently, the estimation error converges asymptotically to zero if the gain matrix
is chosen such that|λ |< 1 for all λ ∈ Λ(A−KC).

Theorem 2.6.1(Exponential convergence of the error covariance). If {A,C} is ob-
servable and{A,WT} with Q= WTW is controllable, then the sequence Pk converges
exponentially to a limit P∞ and consequently the Kalman gain converges to a limit K∞.

The convergence rate depends on the process and output covariances and on the sys-
tem dynamics,i.e. the eigenvalues of the system matrixA. In the limit the (combined)
Kalman filter recursion becomes a discrete-time algebraic Riccati equation (DARE):

P∞ = AP∞AT−AP∞CT[R+CP∞CT]−1CP∞AT +GQGT

K∞ = AP∞CT[R+CP∞CT]−1.
(2.79)

Using the steady-state Kalman filter instead of the (time-invariant) Kalman recursions
can yield significant computational savings but involves loss of precision. Whether
this trade-off if acceptable depends on the particular application.

The DARE (2.79) can be solved by spectral decomposition of the Hamilton matrix
or by iterative methods such as step-doubling or the Newton-Kleinman algorithm [6,
116].

2.6.4. The square-root covariance Kalman filter (SRCF)

A well-known problem with the normal Kalman filter recursions is that they can re-
sult in a covariance matrix which fails to be symmetric and/or positive definite [6, 71].
This might happen if some measurements are very accurate, which causes numerical
ill-conditioning. To cope with this difficulty Potter and Stern [144] introduced the idea
of expressing the Kalman filter recursions in terms of a square-root, more precisely
a Cholesky factor of the covariance matrix. By propagating such a Cholesky factor,
the computed covariance matrix remains symmetric and positive definite at all times.
Moreover, the numerical conditioning is generally much better since the condition
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2.6. Brief introduction to the Kalman filter

number of the Cholesky factor is the square root of the condition number of its cor-
responding covariance matrix. This means that the precision is effectively doubled.
Finally, these square-root recursions are numerically more robust due to the use of
orthogonal transformations such asQRfactorizations [189].

Suppose a square-root or more precisely a (upper) triangular Cholesky factorSk of
the state covariance matrix at timek is given such thatPk = ST

k Sk. Assume that also
square roots of the covariance matricesQk andRk are given such thatQk =WT

k Wk and
Rk = VT

k Vk. Then, themeasurement update, as described in [6], amounts to finding
an orthogonal transformation such that

T

(
Vk 0

SkCT
k Sk

)

=

(
(
Rk +CkPkCT

k

)1/2
K̃k

0 Sk+

)

, (2.80)

whereK̃T
k = PkCT

k

(
Rk +CkPkCT

k

)−1/2
and withPk+ = ST

k+Sk+. HereT is any orthog-
onal matrix making the right hand side triangular. Hence, aQR factorization gives us
bothT and the right hand side.

Subsequently the state estimate is updated as

x̂k+ = x̂k− K̃T
k

(
Rk +CkPkC

T
k

)−T/2
ỹk (2.81)

Another form of the measurement update suggests computing the followingQR fac-
torization

(
I

V−T
k CkST

k

)

=
(
Q Q̃

)
(

R
0

)

, (2.82)

and subsequently updating

Sk+ = R−TSk, (2.83)

x̂k+ = x̂k +ST
k+QT

(
0

V−T
k ỹk

)

. (2.84)

This form requires invertibility of the measurement weighting matrixRk (hence ofVk).
The formulation can easily be verified as follows

Pk+ =
(
P−1

k +CT
k R−1

k Ck
)−1

=
[
S−1

k S−T
k +CT

kV−1
k V−T

k Ck
]−1

, (2.85)

=
[
S−1

k

(
I +SkC

T
k V−1

k V−T
k CkS

T
k

)
S−T

k

]−1
,(2.86)

=
[
S−1

k

(
RTQTQR

)
S−T

k

]−1
, (2.87)

= ST
k R−1R−TSk, (2.88)

= ST
k+Sk+. (2.89)
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And for the state update

x̂k+ = x̂k +PkC
T
k

(
Rk +CkPkC

T
k

)−1
ỹk, (2.90)

= x̂k +ST
k R−1R−TSkC

T
k V−1

k V−T
k ỹk, (2.91)

= x̂k +ST
k R−1QT

(
0

V−T
k ỹk

)

, (2.92)

where the second step comes from the Matrix Inversion Lemma and where for the last
step we need to prove that

R−TSkC
T
k V−1

k V−T
k = QT

(
0

V−T
k

)

. (2.93)

Left multiplying both sides withRT gives

SkC
T
k V−1

k V−T
k = RTQT

(
0

V−T
k

)

. (2.94)

and using the definitions from theQRfactorization (2.82) yields

SkC
T
k V−1

k V−T
k =

(
I SkCT

k V−1
k

)
(

0
V−T

k

)

, (2.95)

which concludes the proof.

Thetime update is found by computing the followingQRfactorization

(
Sk+AT

k
WkGT

k

)

=
(
Q̂ Q̄

)
(

Sk+1

0

)

, (2.96)

and the state update remains as in the CKF given by

x̂k+1 = fk +Akx̂k+. (2.97)

Note that the following modified combined update equation (compare with (2.75))

Pk+1 = (Ak− K̄kCk)Pk(Ak− K̄kCk)
T + K̄kRkK̄

T
k +GkQkG

T
k (2.98)

tends to promote nonnegative definite covariance matrices.However, if Pk fails to
be nonnegative for some reason (i.e. numerical approximation errors), all subsequent
covariance matrices will fail to be nonnegative as well. In addition, this modification
lacks the good numerical conditioning and robustness of theSRCF implementation.
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2.6.5. The information filter (IF)

Instead of propagating the covariance matrix and the current state estimate the infor-
mation filter propagates the inverse covariance matrix orinformation matrixand the
information vector. The information filter is especially useful when the initial state is
completely unknown (i.e. P0 = ∞), since the covariance Kalman filter would fail in
this case. On the other hand, the IF fails when covariance matrices become singular. If
the output dimension is large compared with the state dimension then the information
filter is more efficient than the covariance filter, which explains its popularity as an
observer in large sensor networks. A drawback of the information filter is the loss of
physical interpretation of state vector components and covariances [83].

The following information vectors are introduced

âk = P−1
k x̂k, âk+ = P−1

k+ x̂k+.

Application of the Matrix Inversion Lemma to (2.69) and (2.72) yields the following
expressions for the measurement update

P−1
k+ = P−1

k +CT
k R−1

k Ck (2.99)

âk+ = âk +CT
k R−1

k (yk−hk) (2.100)

Note that the measurement update is simpler in the information filter. The time update
equations on the other hand are slightly more complicated. AssumeAk is invertible
and define

Mk = A−T
k P−1

k+ A−1
k .

Then applying the Matrix Inversion Lemma to (2.73) yields

P−1
k+1 =

(
M−1

k +GkQkG
T
k

)−1
, (2.101)

=
(
I −NkG

T
k

)
Mk, (2.102)

with Nk = MkGk
(
GT

k MkGk +Q−1
k

)−1
. And furthermore

âk+1 =
(
I −NkGT

k

)
Mk ( fk +Akx̂k+) (2.103)

=
(
I −NkGT

k

)(
Mk fk +A−T

k âk+
)

(2.104)

Note that compared to the covariance Kalman filter this formulation requires inverses
of Ak andQk which involves extra computations and causes numerical problems in
case these matrices are (near) singular.
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If Gk = I for all k, the expressions can be simplified and the requirement of non-
singularAk can be dropped, since in this case applying the Matrix Inversion Lemma
to (2.73) withGk = I yields

P−1
k+1 = Q−1

k −Q−1
k Ak

(
AT

k Q−1
k Ak +P−1

k+

)−1
AT

k Q−1
k , (2.105)

âk+1 = P−1
k+1( fk +AkPk+x̂k+) . (2.106)

The problem with this formulation, apart from the requirement Gk = I , is that the in-
formation vector time update can only be formulated in termsof information vectors if
invertibility of P−1

k+ is assumed which is in contradiction with one of the main reasons
of existence of the information filter, the possibility of infinite Pk+.

Another possibility which allowsGk 6= I and avoids the assumption of invertibleAk

was given by Mutambara [135]. He proposes to perform the inversion ofPk+1 explic-
itly instead of applying the Matrix Inversion Lemma. However, in this case invert-
ibility of both P−1

k+ andP−1
k+1 is required which undermines the spirit of information

filtering. The time update in this formulation is given by

P−1
k+1 =

(
AkPk+AT

k +GkQkG
T
k

)−1
(2.107)

âk+1 = P−1
k+1( fk +AkPk+âk+). (2.108)

Comparing the information filter to the covariance Kalman filter, it is seen that the
measurement update is simpler whereas the time update is more complex. Further-
more, the information filter needs inverses ofGT

k MkGk + Q−1
k while the covariance

Kalman filter needs inverses ofCkPkCT
k + Rk. Hence ifnw≪ ny the IF will be more

efficient, if the reverse is true the CKF is favorable [6].

Interestingly there exists aduality between the CKF and the IF [6, 71]. Table 2.1
contains the duality relations to convert between both formulations.

CKF time update IF meas. update
Pk+1 P−1

k+
Ak CT

k
Pk+ R−1

k
GkQkGT

k P−1
k

CKF meas. update IF time update
Pk+ P−1

k+1
Pk Mk

CT
k Gk

Rk Q−1
k

Table 2.1.Duality relations between the covariance Kalman filter (CKF) and the information
filter (IF).
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The square-root information filter (SRIF)

In analogy to the covariance Kalman filter, a square-root form of the information filter
can be derived [6]. Let us define the following (square-root)innovation vectors

b̂k = S−T
k x̂k, b̂k+ = S−T

k+ x̂k+.

whereSk denotes a square-root Cholesky factor ofPk as before. Then the measurement
update is given by the followingQRfactorization

(
S−T

k
V−T

k Ck

)

=
(
Q̂ Q̄

)
(

S−T
k+
0

)

, (2.109)

and the (square-root) information vector is updated as follows

(
b̂k+

⋆

)

= Q̂T
(

b̂k

V−T
k (yk−hk)

)

, (2.110)

where⋆ denotes entries which are not important for our discussion.The time update
is defined (analogously to (2.80)) by the following orthogonal transformation

T̄

(
W−T

k 0
S−T

k+ A−1
k Gk S−T

k+ A−1
k

)

=

(
(
Q−1

k +GT
k MkGk

)1/2
B̃T

k
0 S−T

k+1

)

, (2.111)

(
⋆

b̂k+1

)

= T̄

(
0

b̂k+ +S−1
k+A−1

k fk

)

. (2.112)

with B̃k = MkGk
(
Q−1

k +GT
k MkGk

)−T/2
and whereT̄ is any orthogonal matrix making

the right hand side triangular.

Table 2.2 gives an overview of the different implementationforms of the Kalman filter.
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Form Normal Square-root

C
ov
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e

Measurement update

Pk+ = Pk−PkC
T
k

(
CkPkC

T
k +Rk

)−1
CkPk

Kk = PkC
T
k

(
CkPkC

T
k +Rk

)−1

ỹk = yk−hk−Ckx̂k

x̂k+ = x̂k +Kkỹk

Time update

Pk+1 = AkPk+AT
k +GkQkGT

k

x̂k+1 = fk +Akx̂k+

Measurement update

T

(
Vk 0

SkCT
k Sk

)

=

(
(
Rk +CkPkCT

k

)1/2
K̃k

0 Sk+

)

x̂k+ = x̂k + K̃k
(
Rk +CkPkC

T
k

)−T/2
ỹk

Time update

(
Sk+AT

k
WkGT

k

)

=
(
Q̂ Q̄

)
(

Sk+1
0

)

x̂k+1 = fk +Akx̂k+

In
fo

rm
at

io
n

Measurement update

P−1
k+ = P−1

k +CT
k R−1

k Ck

âk+ = âk +CT
k R−1

k (yk−hk)

Time update

P−1
k+1 =

(
I −NkGT

k

)
Mk

âk+1 =
(
I −NkGT

k

)(

Mk fk +A−T
k âk+

)

with

Mk = A−T
k P−1

k+ A−1
k

Nk = MkGk

(

GT
k MkGk +Q−1

k

)−1

Measurement update

(
S−T

k
V−T

k Ck

)

=
(
Q̂ Q̄

)
(

S−T
k+
0

)

(

b̂k+
⋆

)

= Q̂T
(

b̂k

V−T
k (yk−hk)

)

Time update

T̄

(
Wk 0

S−T
k+ A−1

k Gk S−T
k+ A−1

k

)

=

(
(
Qk +GT

k AkGk
)T/2

B̃T
k

0 S−T
k+1

)

(
∗

b̂k+1

)

= T̄

(
0

b̂k+ +S−1
k+A−1

k fk

)

with B̃k = MT
k Gk

(
Qk +GT

k AkGk
)−T/2

Table 2.2.Different implementation forms of the Kalman filter.5
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2.7. Brief introduction to Kalman smoothing

2.7. Brief introduction to Kalman smoothing

In the setting of filtering, the Kalman filter provides the best estimate based on past
data. Iffuturedata are also available, they can be used to further improve the estimate.
In the following discussion,k denotes the current time instant.

In one scenario we may be interested in obtaining an estimateof the state at a fixed
time j < k given measurements up to timek. As more and more measurements are
collected, the estimate ˆx j can be systematically refined. Consider for example a satel-
lite taking pictures at a fixed rate [164]. As the satellite continues to orbit, additional
range measurements can be used to improve the picture taken at time j. This situation
is calledfixed-point smoothing.

In another situation it might be useful to estimate the stateat timek−N whereN
represents a fixed lag and where the indexk is continually changing. In other words,
at every time step a state is estimated using a fixed number ofN futuremeasurements.
In our satellite example this situation occurs whenN time steps are needed before the
picture is transmitted and processed. This case is known asfixed-lag smoothing.

Finally, in fixed-interval smoothingstate estimates in a some interval,e.g. [0, . . . ,N]

are computed based on all measurements in this interval. This situation occurs if a
sequence of satellite pictures is available for post-processing and the goal is to obtain
a time history of optimal estimates given all collected data. Fixed-interval smoothing
has significant resemblance with MHE as discussed in the following sections. It is
possible to employ a single smoothing scheme based on fixed-interval smoothing to
solve all three classes of smoothing problems.

The improvement due to smoothing is monotone increasing as more measurements
become available. The maximum improvement possible is governed by the system
dynamics and the signal-to-noise ratio and can vary from zero to one hundred percent.

Traditionally Kalman smoothing has been primarily used foroffline estimation (fixed-
interval smoothing) or for online estimation problems which can tolerate some delay
(fixed-lag smoothing).

2.7.1. Fixed-point smoothing

The fixed-point smoother equations are summarized below.Initialization

x̂ j | j = x̂ j (2.113)

Pj | j = Pj (2.114)

Π j | j = Pj (2.115)

(2.116)
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For k = j, j +1, . . .

Re
k = CkPkC

T
k +Rk (2.117)

Pk+ = Pk−PkC
T
k [Re

k]
−1CkPk (2.118)

Kk = PkC
T
k [Re

k]
−1 (2.119)

ỹk = yk−hk−Ckx̂k (2.120)

x̂k+ = x̂k +Kkỹk (2.121)

Pk+1 = AkPk+AT
k +GkQkG

T
k (2.122)

x̂k+1 = fk +Akx̂k+ (2.123)

K j |k = Π j |kC
T
k [Re

k]
−1 (2.124)

x̂ j |k+1 = x̂ j |k +K j |kỹk (2.125)

Π j |k+1 = Π j |k
(
AT

k −CT
k K j |k

)T
(2.126)

Pj |k+1 = Pj |k−Π j |kC
T
k KT

j |k. (2.127)

2.7.2. Improvement due to smoothing

From equations (2.124) and (2.127) it can be seen that

Pj |k = Pj |k−1−Π j |kC
T
k

(
CkPkC

T
k +Rk

)−1
CkΠ j |k (2.128)

= Pj | j−1−
k

∑
l= j

Π j |lC
T
l

(
Cl PlC

T
l +Rl

)−1
Cl Π j |l (2.129)

Or, equivalently, the improvement due to smoothing can be written as

Pj | j−1−Pj |k =
k

∑
l= j

Π j |lC
T
l

(
Cl PlC

T
l +Rl

)−1
Cl Π j |l (2.130)

Usually, the relative improvement is expressed as a percentage as follows

tr
[
Pj | j−1−Pj |k

]

tr
[
Pj | j−1

] ×100%

Now consider the time-invariant case and suppose the filter has reached steady-state,
i.e. limk→∞ Pk = P̄. Then, from the initialization, eq. (2.115) and recursion eq. (2.126),
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Π j |k can be written as

Π j |k = P̄(A−KC)k− j+1 , (2.131)

= P̄Φk− j+1. (2.132)

Plugging this into expression (2.130) evaluated at steady-state yields the maximum
possible improvement due to smoothing:

P̄−Pj |∞ = P̄

[
∞

∑
l= j

(
ΦT)l− j

CT
l

(
Cl PlC

T
l +Rl

)−1
Cl Φl− j

]

P̄ (2.133)

From this it can be seen that the improvement due to smoothingincreases propor-
tianally to the signal-to-noise ratio,i.e. R→ 0. For estimation problems with a high
signal-to-noise ratio the improvement of smoothing can be significant, even close to
100 percent [6, 164]. The improvement increases monotonically with a rate governed
by the eigenvalues of the filter dynamicsΦ = A−KC. For the time-invariant case,
a rule of thumb states that practically all possible improvement due to smoothing is
obtained after two or three times the dominant time constant(spectral radius). For the
time-varying case, the eigenvalues of the filter dynamics govern the rate of change of
improvement with lag, in this case no general conclusion norquantification can be
made since the dynamics are changing.

2.7.3. Fixed-lag smoothing

Let us define ˆxk,l as the state estimate ˆxk−l+1 propagatedl time steps forward with an
identity transition matrix and no disturbance. Or written mathematically

x̂k,1 = x̂k, x̂k,2 = x̂k−1, . . . x̂k,l = x̂k−l+1.

With this, the augmented system can be defined as








xk+1

xk+1,1
...

xk+1,N+1








=








Ak 0 · · · 0
I 0 · · · 0
...

...
.. .

...
0 · · · I 0















xk

xk,1
...

xk,N+1








+








I
0
...
0








fk +








Gk

0
...
0








wk, (2.134)

yk = hk +
[
Ck 0 · · · 0

]








xk

xk,1
...

xk,N+1








+vk. (2.135)

60



Computational framework

Or, written in terms of Kalman gains








x̂k+1

x̂k+1,1
...

x̂k+1,N+1








=








x̂k|k−1

0
...
0








+








0 0 · · · 0
I 0 · · · 0
...

...
.. .

...
0 · · · I 0















x̂k

x̂k,1
...

x̂k,N+1








+








Kk

Kk,1
...

Kk,N+1








ỹk,

where x̂k+1,1 is obtained from a normal Kalman filter recursion. By applying the
Kalman filter equations to this augmented model, smoothed state estimates for all
lagsl = 1, . . . ,N are obtained. In fixed-lag smoothing, however, one is only interested
in the state with lagN + 1. For this reason, the fixed-lag smoother for time-varying
models and significant lags is computationally involved compared to the Kalman fil-
ter. For the time-invariant steady-state case, however, the fixed-lag smoother is very
practical and reduces to

x̂k−l |k = x̂k−l |k−1 +Kk,l+1ỹk, (2.136)

Kk,l+1 = P̄(A−KC)k− j+1CT
k

(
CkPkC

T
k +Rk

)−1
. (2.137)

2.7.4. Fixed-interval smoothing

Forward-backward smoothing

The forward-backward algorithm, derived by Fraser and Potter [62], computes the
smoothed estimates as a linear combination of two optimal filters.

In a first step the standard Kalman filter is applied. In asecond step, a backward
filter is applied. Since forward and backward estimates mustbe independent and no
further information is available, the backward filter needsto be initialized asPb,N = ∞.
In order to make this recursion computationally feasible, this initialization implies the
backward filter needs to be run in information form. The backward information filter
is initialized as follows

YN = P−1
N = 0 (2.138)

âN = P−1
N x̂N = 0, (2.139)

and subsequently, in every time step, the following recursions are performed

Yk+ = Yk +CT
k R−1

k Ck (2.140)

âk+ = âk +CT
k R−1

k (yk−hk) (2.141)

Kb,k−1 = Yk+
(
Yk+ +Q−1

k−1

)−1
(2.142)

Yk−1 = AT
k−1 (I −Kb,k−1)Yk+Ak−1 (2.143)

âk−1 = AT
k−1 (I −Kb,k−1)(âk+−Yk+ fk) (2.144)
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In a third step, the smoothed estimates and covariances are computed from the for-
ward and backward filtered estimates as follows

Ks
k = Pk+Yk (I +Pk+Yk)

−1 (2.145)

Ps
k = (I −Ks

k)Pk+ (2.146)

x̂s
k = (I −Ks

k) x̂k+ +Ps
kâk (2.147)

The optimal weighting between forward and backward estimates is also known as
Millman’s theorem[35]. The derivation of the forward-backward smoother is straight-
forward but the algorithm is computationally expensive. The following algorithm, best
known as Rauch-Tung-Striebel (RTS) smoothing, is computationally more efficient.

Two-pass smoothing or Rauch-Tung-Striebel (RTS) smoothing

The Rauch-Tung-Striebel algorithm [151] employs the regular Kalman filter in a for-
ward pass whereafter the backward pass applies a correctionusing only the data pro-
vided by the forward pass.

Analogous to the forward-backward smoother, thefirst step of RTS smoothing in-
volves a forward run of the standard Kalman filter.

In a second step, the smoothed estimates are computed as a correction to the filtered
estimates obtained by the forward run.

Ps
N = PN+ (2.148)

x̂s
N = x̂N+, (2.149)

and subsequently, in every time step, the following recursions are performed

Ks
k = Pk+AT

k P−1
k+1 (2.150)

Ps
k = Pk+−Ks

k

(
Pk+1−Ps

k+1

)
(Ks

k)
T (2.151)

x̂s
k = x̂k+ +Ks

k

(
x̂s

k+1− x̂k+1
)
. (2.152)

We note thatKs
k = Pk(Ak−KkCk)

TP−1
k+1.

In order to prove these recursions, observe from eq. (2.125)that

x̂k|N = x̂k|N−1 +Kk|Nỹk (2.153)

= x̂k|k +
N

∑
l=k+1

Kk|l ỹl . (2.154)
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and similarly

x̂k+1|N = x̂k+1|k +
N

∑
l=k+1

Kk+1|l ỹl . (2.155)

Furthermore, it can be shown thatKk|l = Ks
kKk+1|l . Using this information, allows us

to write

x̂s
k = x̂k|N = x̂k|k +Ks

k

N

∑
l=k+1

Kk+1|l ỹl , (2.156)

= x̂k|k +Ks
k

(
x̂k+1|N− x̂k+1|k

)
, (2.157)

q.e.d.

The equation forPs
k = Pk|N can be obtained after a similar calculation.

Note that the smoothed covariances are not needed to computethe smoothed esti-
mates. Also note that invertibility of the covariances computed by the forward pass is
required.

Similarly to the filtering problem, steady-state smoothingalgorithms can be derived
for LTI systems to save computational effort. An early survey of smoothing algorithms
is given in [132].
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CHAPTER 3
Efficient methods for unconstrained

MHE

In this chapter efficient methods for the solution of MHE problems are
discussed for the case when no inequalities are active. Normal and square-
root Riccati based solution strategies are derived from decompositions of
the KKT system. These solution methods provide insights into the me-
chanics of MHE and yield an update formula for the arrival cost. Equiv-
alence of unconstrained MHE and Kalman filtering/smoothingis shown
and the analogy with MPC is discussed. Structured QR factorization
methods are proposed to speed up the computations in the square-root
method. The performance and robustness of these solution methods are
compared for optimized C implementations and illustrated by virtue of
numerical examples.

3.1. Introduction

In this chapter efficient solution methods for unconstrained MHE are discussed. It
is well known that a rearrangement of the variables reveals the typical block diago-
nal structure of the Karush-Kuhn-Tucker (KKT) system of optimal control problems.
This special structure can be exploited using either Riccati recursions or sparse de-
composition methods. As shown in this chapter, Riccati methods solve an optimal
control problem by: (1) factorizing the KKT system using a Riccati recursion, and (2)
applying the factors through a forward and a backward vectorsolve. Riccati methods
for optimal control have been investigated for example by Glad and Jonson[75], Rao
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et al [150] and Vandenberghe et al [188]. Wang et al [192] amongst others proposed
a sparse Cholesky decomposition. Normal Riccati based methods for MHE problems
have been proposed before,e.g.by Tenny et al [173] and Jorgensen et al [108].

The most important difference between both is that the MHE problem has a free initial
state vectorx0. These extra degrees of freedom allow us to fit an observed output
sequence according to a specified objective. It must be notedthat the addition of an
initial condition typically increases the numerical conditioning as the extra degrees of
freedom may result in an infinite number of solutions to the estimation problem.

As we discussed in Section 1.8 and show in Section 3.4 there isa strong analogy be-
tween MPC and MHE. Both are similar in nature, yielding similar KKT systems. The
MPC algorithms can be applied with some modifications to MHE problems (and vice
versa); more specifically using conversion tables for the Riccati and vector recursions,
adaptation of the right hand side (e.g. to include the observations) and a modifica-
tion for the initial state. However, while the Riccati approach for MPC is merely an
efficient way of solving the KKT system by exploiting the Gauss-Markov structure,
it is much more valuable in the MHE context. In MPC, the terminal weight if cal-
culted by LQR is typically constant because the infinite trajectory beyond the horizon
remains infinite. In contrast, in MHE the arrival cost is updated in every time step by
one combined Kalman filter update step which is exactly the first step in the solution
method if a Riccati approach is used. Furthermore, the quality of the final state esti-
mate, which is the variable of interest in MHE, is important and the Riccati recursion
computes a covariance matrix representing second order information for the problem
discarding constraints, which is a usual confidence measurein state or parameter esti-
mation and is typically obtained in standard methods by a local first order (statistical)
analysis around the estimate. This solution method and the natural outcomes are de-
picted schematically in Figure 3.1. Furthermore, note thatthe weighting matrices in
the MHE problem are inverses and therefore it can be that the problem may not even
be formulated if a singular initial covariance (or infinite initial weighting matrix) is
supplied while a (unique) solution is easily found using a Kalman filter recursion. On
the other hand, the initial covariance can be chosen infiniteif no initial guess is avail-
able and in this case information filter recursions can be applied. The applicability of
the numerical algorithms is improved by designing them withthe particularities of the
problem in mind. In this chapter we derive normal and square-root Riccati methods
for unconstrained MHE from respectivelyLU andLDLT decomposition of the KKT
system. The equations may also be derived using the equivalence between weighted
least squares (MHE) and the Kalman filter or fixed interval smoother, as presented in
several text books,e.g.[111, 190].

The complexity of the Riccati based solutions is dominated by the cost of factoriza-
tion and isO(N(nx + nw)3). The same complexity is achieved with a sparseLDLT

factorization method applied to the KKT system, but in this case the arrival cost up-

66



Efficient methods for unconstrained MHE

Forward vector solve

Riccati matrix recursion

Backward vector solve

Updated initial 

condition
Final state 

covariance

Figure 3.1. Schematic representation of the MHE solution strategy using Riccati and vector
recursions. The updated initial condition (arrival cost update) and the final state covariance are
obtained as a by-product of the solution strategy.

date and final state covariance are not obtained from the solution process. Hence,
the cost of the Riccati based solution methods grows only linearly with the horizon
lengthN and, as with any Kalman filter strategy the scales cubically with the system
dimensions. In contrast, a dense solver applied to the full KKT system has complexity
O(N3(nx +nw)3).

Another approach for solving optimal control problems is known ascondensingand
was first proposed by Bock and Plitt [25]. For MHE this approach arises from the ob-
servation that the state equationxk+1 = fk +Akxk +Gkwk allows reconstruction of the
complete state sequence{x0, . . . ,xN} from the knowledge ofx0 and{w0, . . . ,wN−1}
only. Hence, the statesx1, . . . ,xN can be eliminated yielding a reduced optimization
problem. The cost of this condensing approach is again dominated by the cost of fac-
torizing the reduced system and is roughlyO(N3nw

3). Alternatively, ifnx≈ nw which
is typical in MHE problems, one could eleminate the disturbances{w0, . . . ,wN−1}
and obtain a reduced system with a cost of factorization ofO(N3nx

3). This approach
can be categorized as a reduced Hessian QP method, where the effort of finding an
orthogonal basis for the constraint matrix is avoided by variable elimination.

For control problems, the control dimension is typically much smaller than the state
dimension. Therefore, for MPC, condensing is often favorable even though it has
some extra overhead due to the computation of the reduced system (block elimination)
which is often not mentioned. For MHE problems, where the dimension of thecon-
trols or process disturbances is typically equal or comparable tothe state dimension
nw≈ nx, the Riccati approach is practically always favorable for reasonable horizons.
Comparing the order estimates, hence neglecting the overhead cost and smaller terms,
of both approaches we see that fornw = nx the Riccati approach is already favorable
for N > 2 for any system dimension. Fornw = nx

2 the breakpoint occurs atN≈ 5.

Due to the cubic scaling we note that for large systems,i.e. state dimensions of 1000
or more, the Riccati approach or any (sparse) direct factorization method will be com-
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3.2. Structure-exploiting algorithms for unconstrained MHE

putationally expensive. Therefore, for large-scale applications, other methods such as
conjugate gradient may be more suitable for solving the KKT system.

We conclude that the Riccati based methods are most suitablefor MHE problems with
small to moderate system order and large horizons.

3.2. Structure-exploiting algorithms for unconstrained MHE

Consider the following general linear unconstrained MHE problem

minx,w ‖x̄0 +x0− x̂0‖2P−1
0

+ ∑N−1
k=0 ‖w̄k +wk‖2Q−1

k
+‖hk +Ckxk +Hkwk‖2R−1

k

+‖hN +CNxN‖2R−1
N

s.t. xk+1 = fk +Akxk +Gkwk, k = 0, . . . ,N−1,

(3.1)

with x = {x0, . . . ,xN} the unknown state sequence andw = {w0, . . . ,wN−1} the un-
known process disturbances.

This equality constrained QP is obtained after linearization at x̄= {x̄0, . . . , x̄N} and
w̄= {w̄0, . . . ,w̄N−1} of the unconstrained nonlinear MHE problem (1.13) in a Gauss-
Newton framework. More precisely, the nonlinear functionsf andh are approximated
by first order Taylor expansions

fk(x̄k,w̄k) ≈ fk +Ak∆xk +Gk∆wk, k = 0, . . . ,N−1,

yk−hk(x̄k,w̄k) ≈ hk +Ck∆xk +Hk∆wk, k = 0, . . . ,N−1,

yN−hN(x̄N) ≈ hN +CN∆xN.

(3.2)

For notational convenience we will from now on rename the system dimensions as
n = nx, m= nw andp = ny.

Let us write the KKT system asMξ = r, with

M =















Φ0 ΓT
0 0

Γ0 0 −ϒT

0 −ϒ Φ1

. . .

ΦN−1 ΓT
N−1 0

ΓN−1 0 −I
0 −I ΦN















, ξ =
















z0

λ0

...
zN−1

λN−1

zN
















, r =
















rd,0

rp,0

...
rd,N−1

rp,N−1

rd,N
















, (3.3)
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whererd,k (resp.rd,N) denotes the dual residual associated withzk = (xT
k ,wT

k )T (resp.
zN = xN ), andrp,k denotes the primal residual associated withλk and where we de-
fined

Φ0 =

[
P−1

0 +CT
0 R−1

0 C0 CT
0 R−1

0 H0

HT
0 R−1

0 C0 Q−1
0 +HT

0 R−1
0 H0

]

, rd,0 =

[
P−1

0 (x̂0− x̄0)−CT
0 R−1

0 h0

−Q−1
0 w̄0−HT

0 R−1
0 h0

]

,

Φk =

[
CT

k R−1
k Ck CT

k R−1
k Hk

HT
k R−1

k Ck Q−1
k +HT

k R−1
k Hk

]

, rd,k =

[
−CT

k R−1
k hk

−Q−1
k w̄k−HT

k R−1
k hk

]

, 1≤ k≤N−1

ΦN =
[

CT
NR−1

N CN
]
, rd,N =

[
−CT

NR−1
N hN

]
,

Γk =
[

Ak Gk
]
, rp,k =

[
− fk

]
, 0≤ k≤N−1

ϒ =

[
In
0

]

3.2.1. Normal Riccati based solution method

Lemma 3.2.1. The KKT matrix M (3.3) can be factorized by an LU decomposition
M = LU with

L =















Σ−1
0+

Γ0 −P1

0 −ϒ Σ−1
1+

. . .

Σ−1
N−1+

ΓN−1 −PN

0 −In Σ−1
N+















,

U =















In+m Σ0+ΓT
0

In P−1
1 ϒT

In+m Σ1+ΓT
1

. . .

In+m ΣN−1+ΓT
N−1

In P−1
N
In















,

which can be recursively computed by Algorithm 1.

Algorithm 1. [Riccati recursion]

1. Initialization: P0
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3.2. Structure-exploiting algorithms for unconstrained MHE

2. For k= 0, . . . ,N−1:

a) Measurement update step

Let Σk =

[
Pk

Qk

]

and Dk =
[
Ck Hk

]

Calculate:

Σk+ =
(
Σ−1

k +DT
k R−1

k Dk
)−1

= Σk−ΣkDT
k

(
Rk +DkΣkDT

k

)−1
DkΣk

b) Model forwarding step

Let Γk =
[

Ak Gk
]

Calculate:

Pk+1 = ΓkΣk+ΓT
k

endfor.

3. Final time step:

a) Measurement update step

Let ΣN = PN and DN = CN

Calculate:

ΣN+ =
(
Σ−1

N +DT
NR−1

N DN
)−1

= ΣN−ΣNDT
N

(
RN +DNΣNDT

N

)−1
DNΣN

A proof of Lemma 3.2.1 is now given.

Proof. To find out howΣ0+, P1, Σ1+ etc. can be computed, it suffices to multiply out
LU and equate withM. This yields

Σ−1
0+ = Φ0 (3.4)

...

−ϒP−1
k ϒT + Σ−1

k+ = Φk (3.5)

ΓkΣk+ΓT
k −Pk+1 = 0 (3.6)

...

−P−1
N + Σ−1

N+ = ΦN (3.7)

Equation (3.6) yields exactly the model forwarding step of the Riccati recursion.
Equations (3.4), (3.5) and (3.7) follow directly from the definition of Φ0, Φk and
ΦN respectively.
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The block structure of the KKT matrix and itsLU factorization corresponding to
Lemma 3.2.1 are illustrated in Figure 3.2. In order to solve the KKT system the
matricesL andU do not need to be constructed, instead the factorsΣ0+, P1, Σ1+ etc.
are computed and directly applied to the residual vector. The solution vectorξ of
primal and dual variables can be obtained after a forward solve Lξ ′ = r followed by
a backward solveUξ = ξ ′ . This is formalized in Theorem 3.2.2. First, the direct
calculations are presented by the following algorithms (Algorithms 2 and 3).

Algorithm 2. [Direct forward vector recursion]

1. Initialization (k= 0):

z
′
0 = Σ0+rd,0

λ
′
0 = P−1

1 (−rp,0 + Γ0z
′
0)

2. For k= 1, . . . ,N−1:

z
′
k = Σk+(ϒλ

′
k−1 + rd,k)

λ
′
k = P−1

k+1(−rp,k + Γkz
′
k)

endfor.

3. Final time step:

z
′
N = ΣN+(λ

′
N−1 + rd,N)

Algorithm 3. [Direct backward vector recursion]

1. Initialization:

zN = z
′
N

2. For k= N−1, . . . ,0:

λk = λ
′
k−P−1

k+1zk+1

zk = z
′
k−Σk+ΓT

k λk

endfor.

Theorem 3.2.2. (KKT solution using directLU factor-solve method)The KKT sys-
tem Mξ = r with M,ξ and r as defined before (3.3) can be solved by performing the
following steps
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1. Factorize M= LU according to Lemma 3.2.1 using the Riccati recursion of
Algorithm 1,

2. Solve Lξ ′ = r using Algorithm 2,

3. Solve Uξ = ξ ′ using Algorithm 3.

Proof. The proof follows directly from Lemma 3.2.1 and block elimination using the
block structure inL, U andr.

The forward and backward vector solves proposed in Theorem 3.2.2 requires invert-
ibility of matricesPk for all k not only in solving the KKT system but also in forming
the first dual residualrd,0 which containsP−1

0 . This can be avoided by matrix calcula-
tion as formalized in Theorem 3.2.3 and Algorithms 4 and 5.

Algorithm 4. [Forward vector recursion]

1. Initialization:

d0 =

[
x̂0− x̄0

−w̄0

]

2. For k= 0, . . . ,N−1:

z
′
k = dk−ΣkD

T
k

(
Rk +DkΣkD

T
k

)−1
(Dkdk +hk)

x̂k+1 = fk + Γkz
′
k

dk+1 =

[
x̂k+1

−w̄k+1

]

If (k = N−1) then
dN = x̂N

else

dk+1 =

[
x̂k+1

−w̄k+1

]

endif.

endfor.

3. Final time step:

z
′
N = dN−ΣNDT

N

(
RN +DNΣNDT

N

)−1
(DNdN +hN)

72



Efficient methods for unconstrained MHE

Algorithm 5. [Backward vector recursion]

1. Initialization (k= N:

zN = z
′
N

λN−1 = CT
N

(
RN +DNΣNDT

N

)−1
(DNdN +hN)

2. For k= N−1, . . . ,1:

zk = z
′
k−Σk+ΓT

k λk

λk−1 = AT
k λk +CT

k

(
Rk +DkΣkD

T
k

)−1[
Dk(dk−ΣkΓT

k λk)+hk
]

endfor.

3. Final step (k= 0):

z0 = z
′
0−Σ0+ΓT

0λ0

Theorem 3.2.3. (KKT solution using modifiedLU factor-solve method)The KKT
system Mξ = r with M,ξ and r as defined before (3.3) can be solved by performing
the following steps

1. Factorize M= LU according to Lemma 3.2.1 using the Riccati recursion of
Algorithm 1,

2. Solve Lξ ′ = r using Algorithm 4,

3. Solve Uξ = ξ ′ using Algorithm 5.

Proof. The factorization step is identical to Theorem 3.2.2, hence, it remains to prove
that the second and third step (Algorithms 4 and 5) yield an identical optimal vector
ξ as in Theorem 3.2.2 (Algorithms 2 and 3).

First, consider the forward vector solve. At time stepk = 0 we have that

z
′
0 = Σ0+rd,0

=
(
Σ−1

0 +DT
0R−1

0 D0
)−1(Σ−1

0 d0−DT
0R−1

0 h0
)

= d0−Σ0DT
0

(
R0 +D0Σ0DT

0

)−1
(D0d0 +h0)
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with d0 =

[
x̂0− x̄0

−w̄0

]

andΣ0 andD0 as defined in Algorithm 1. For the last step we

used the results from Equations (3.24) - (3.27). Next, the variablesλ ′k, which are not
calculated in Algorithm 4, can be written as

λ
′
k = P−1

k+1(−rp,k + Γkz
′
k)

= P−1
k+1( fk + Γkz

′
k)

= P−1
k+1x̂k+1

= P−1
k+1ϒTdk+1

with dk+1 =

[
x̂k+1

−w̄k+1

]

andϒ =

[
I
0

]

.

Then

z
′
k+1 = Σk+1+(ϒλ

′
k + rd,k+1)

= Σk+1+(Σ−1
k+1dk+1−DT

k+1R−1
k+1hk+1)

= dk+1−Σk+1DT
k+1

(
Rk+1 +Dk+1Σk+1DT

k+1

)−1
(Dk+1dk+1 +hk+1)

which concludes the proof that identicalz
′
k are obtained in Algorithms 2 and 4.

Second, consider the backward vector solve.

λN−1 = λ
′
N−1−P−1

N zN

= CT
N

(
RN +CNPNCT

N

)−1
(CNdN +hN)

where we plugged inλ ′N−1 = P−1
N dN andzN = z

′
N = dN−PNCT

N

(
RN +CNPNCT

N

)−1
(CNdN +hN).

Fork < N we plug inλ ′k−1 = Σ−1
k ϒTdk andzk = z

′
k−Σk+ΓT

k λk into

λk−1 = λ
′
k−1−P−1

k zk

= Σ−1
k ϒTdk−Σ−1

k ϒTdk + Σ−1
k ϒTΣk+ΓT

k λk

+Σ−1
k ϒTΣkD

T
k

(
RN +DNΣNDT

N

)−1
(DNdN +hN)

which concludes the proof that identicalzk are obtained in Algorithms 3 and 5.

Lemma 3.2.4. The MHE problem (3.1) has a unique optimal primal-dual pair(z,λ )

if the KKT matrix M (3.3) is full rank. Sufficient conditions are

• P0≻ 0
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... ...

... ...

... ...

=

M L U

Figure 3.2.Visualization of the block structure in the KKT matrix and itsLU decomposition.

• Qk ≻ 0,∀k

• Rk ≻ 0,∀k

Proof. From Lemma 3.2.1 it is clear that the KKT matrix is full rank iff the factorL is
full rank. This occurs whenΣk+ for k∈ [0,N] andPk for k∈ [1,N] are positive definite.
A necessary condition is that

(
Rk +DkΣkDT

k

)
is positive definite fork ∈ [0,N]. This

is guaranteed ifRk ≻ 0 andΣk ≻ 0 ∀k. The latter is fulfilled ifP0≻ 0 andQk ≻ 0,∀k
(see [107] for a proof).

Remark 1. In practical implementations the forward Riccati matrix and forward vec-
tor recursion are combined in a single loop.

Remark 2. We opted to present the methods in a general formulation, i.e. with H 6=
0. If Hk = 0 for all k, then there is nomixing between x and w and the Riccati
recursion involves covariances of order n× n. The resulting algorithms are similar
but simplified. The modified decomposition and algorithms are given in Appendix A.

3.2.2. Square-root Riccati based solution method

Suppose a square-root or more precisely a (upper) triangular Cholesky factorS0 of the
state covariance matrix is given such thatP0 = ST

0S0. Assume that also square roots
of the covariance matricesQk andRk are given such thatQk = WT

k Wk andRk = VT
k Vk.
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Then the cost function of MHE problem (3.1) can be written as follows

JN = ‖S−T
0 (x̄0 +x0− x̂0)‖22

+
N−1

∑
k=0

‖W−T
k (w̄k +wk)‖22 +‖V−T

k (hk +Ckxk +Hkwk)‖22

+‖V−T
N (hN +CNxN)‖22. (3.8)

The symmetry which is inherent in the KKT system (3.3) can be exploited. Here we
describe a symmetric decomposition and a resulting recursive solution strategy which
uses square-roots and orthogonal transformations therebyincreasing the robustness of
the methods. The block structure of the KKT matrix and its symmetric decomposition
are illustrated in Figure 3.3.

Lemma 3.2.5. If the KKT matrix M (3.3) is full rank (see Lemma 3.2.4 for suffi-
cient conditions), then it is symmetric indefinite and can befactorized by an indefinite
Cholesky decomposition M= LDLT with

L =















T−1
0+

Γ0TT
0+ ST

1
0 −ϒS−1

1 T−1
1+

. . .

T−1
N−1+

ΓN−1TT
N−1+ ST

N
0 −ϒS−1

N T−1
N+















,

D =















In+m

−In
In+m

. . .

In+m

−In
In















,

which can be recursively computed by Algorithm 6.

Algorithm 6. [Square-root Riccati recursion]

1. Initialization: S0

2. For k= 0, . . . ,N−1:
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a) Measurement update step

Let Tk =

[
Sk

Wk

]

(note thatΣk = TT
k Tk)

and Dk =
[
Ck Hk

]

Compute QR-factorization:

[
Vk

TkDT
k Tk

]

=
[
Q̄k Q̃k

]
[
(R̃e

k)
−1 K̃T

k
0 Tk+

]

with R̃e
k =

(
Rk +DkΣkDT

k

)−1/2
andK̃k = ΣkDT

k R̃e
k.

b) Model forwarding step

LetΓk =
[

Ak Gk
]

Compute QR-factorization:

Tk+ΓT
k =

[
Q̂k+1 Q̌k+1

]
[
Ŝk+1

0

]

endfor.

3. Final time step:

a) Measurement update step

Let TN = SN (note thatΣN = TT
N TN)

and DN = CN

Compute QR-factorization:

[
VN

TNDT
N TN

]

=
[
Q̄N Q̃N

]
[
(R̃e

N)−1 K̃T
N

0 TN+

]

with R̃e
N =

(
RN +DNΣNDT

N

)−1/2
andK̃N = ΣNDT

NR̃e
N.

A proof of Lemma 3.2.5 is now given.

Proof. To find out howT0+, S1, T1+ etc. can be computed, we multiply outLDLT and
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equate withM. Then,

T−1
0+ T−T

0+ = Φ0 (3.9)

...

−ϒS−1
k S−T

k ϒT +T−1
k+ T−T

k+ = Φk (3.10)

ΓkT
T
k+Tk+ΓT

k −ST
k+1Sk+1 = 0 (3.11)

...

−S−1
N S−T

N +T−1
N+T−T

N+ = ΦN (3.12)

First we prove the measurement update step, i.e. Equations (3.9), (3.10) and (3.12).
Let us defineDk =

[
Ck Hk

]
. Note that

Φ0 =

[
S−1

0 S−T
0

W−1
0 W−T

0

]

+DT
0V−1

0 V−T
0 D0,

Φk =

[
0

W−1
k W−T

k

]

+DT
kV−1

k V−T
k Dk, 1≤ k≤ N−1

ΦN = DT
NV−1

N V−T
N DN.

(3.13)

Let us compute theQRfactorization

[
Vk

TkDT
k Tk

]

=
[
Q̄k Q̃k

]

[
(
Rk +DkΣkDT

k

)1/2
K̃T

k
0 Tk+

]

(3.14)

with Tk =

[
Sk

Wk

]

andK̃T
k =

(
Rk +DkΣkDT

k

)−T/2 ΣkDk and whereQ̄k andQ̃k are

orthogonal matrices. To see that this is a valid choice forTk+, invert the triangular
matrix on the right-hand-side

[
(
Rk +DkΣkDT

k

)1/2
K̃T

k

0 Tk+

]−1

=

[
(
Rk +DkΣkDT

k

)−1/2 −
(
Rk +DkΣkDT

k

)−1/2
K̃T

k T−1
k+

0 T−1
k+

]

which follows from application of the Schur complement (seeequations (2.13)-(2.17)).
From theQRfactorization (3.14) we know that

[
(
Rk +DkΣkDT

k

)1/2
K̃T

k
0 Tk+

]−1

Q̄T =

[
Vk

TkDT
k Tk

]−1

(3.15)

=

[
V−1

k
DT

kV−1
k T−1

k

]

(3.16)

where we assumed without loss of generality that

[
Vk

TkDT
k Tk

]

is invertible.
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Now, it can be seen that

[
(
Rk +DkΣkDT

k

)1/2
K̃T

k

0 Tk+

]−1[(
Rk +DkΣkDT

k

)1/2
K̃T

k

0 Tk+

]−T

=

[

⋆ −
(
Rk +DkΣkDT

k

)−1/2
K̃T

k T−1
k+ T−T

k+

−T−1
k+ T−T

k+ K̃k
(
Rk +DkΣkDT

k

)−T/2
T−1

k+ T−T
k+

]

where⋆ =
(
Rk +DkΣkDT

k

)−1
+
(
Rk +DkΣkDT

k

)−1/2
K̃T

k T−1
k+ T−T

k+ K̃k
(
Rk +DkΣkDT

k

)−T/2
.

Moreover, we have

[
Vk

TkDT
k Tk

]−1[
Vk

TkDT
k Tk

]−T

=

[
V−1

k V−T
k V−1

k V−T
k Dk

DT
kV−1

k V−T
k DT

kV−1
k V−T

k Dk +T−1
k T−T

k

]

Since both expressions are equal by the orhtogonality ofQ̄, we obtain by equating the
bottom right elements

T−1
k+ T−T

k+ = T−1
k T−T

k +DT
kV−1

k V−T
k Dk (3.17)

which concludes the proof for Equations (3.9) and (3.10). The proof for Equation
(3.12) is similar.

Next, we prove the model forwarding step. From Eq. (3.6) it can be seen that with any
orthogonal matrixQ̂k+1

Sk+1 = Q̂T
k+1Tk+ΓT

k , 0≤ k≤ N−1 (3.18)

We compute aQRfactorization

Tk+ΓT
k =

[
Q̂k+1 Q̌k+1

]
[
Ŝk+1

0

]

(3.19)

whereQ̂k+1 andQ̌k+1 are orthogonal matrices and̂Sk+1 is upper triangular.

Theorem 3.2.6. (KKT solution using directLDLT factor-solve method)The KKT
system Mξ = r with M,ξ and r as defined before (3.3) can be solved by performing
the following steps

1. Factorize M= LDLT according to Lemma 3.2.5 using the Riccati recursion
of Algorithm 6,

2. Solve Lξ ′ = r,
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3.2. Structure-exploiting algorithms for unconstrained MHE

3. Solve LTDξ = ξ ′

Proof. The proof follows directly from Lemma 3.2.5 and block elimination using the
block structure inL andr.

Similarly to the direct solution of Theorem 3.2.2 the forward and backward vector
solves according to Theorem 3.2.6 require invertibility ofmatricesSk for all k not
only in solving the KKT system but also in forming the first dual residualrd,0 which
containsS−1

0 S−T
0 . This can be avoided by using the approach of Theorem 3.2.3 but

reformulated in terms of square-roots. More specifically, the square-root Riccati re-
cursion of Algorithm 6 is performed, but the forward and backward solves corrspond
to theLU factorsization in order to avoid unnecessary matrix inversions. This is pro-
posed in Theorem 3.2.7.

Theorem 3.2.7.(KKT solution using modifiedLDLT factor-solve method employing
square-roots)The KKT system Mξ = r with M,ξ and r as defined before (3.3) can be
solved by performing the following steps

1. Factorize M= LDLt according to Lemma 3.2.5 using the Riccati recursion of
Algorithm 6,

2. Forward vector solve using Algorithm 7,

3. Backward vector solve using Algorithm 8.

Algorithm 7. [Square-root forward vector recursion]

1. Initialization:

d0 =

[
x̂0− x̄0

−w̄0

]

2. For k= 0, . . . ,N−1:

z
′
k = dk− K̃k(R̃

e
k)

T(Dkdk +hk)

x̂k+1 = fk + Γkz
′
k

dk+1 =

[
x̂k+1

−w̄k+1

]

If (k = N−1) then
dN = x̂N

else

dk+1 =

[
x̂k+1

−w̄k+1

]

endif.
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endfor.

3. Final time step:

z
′
N = dN− K̃N(R̃e

N)T(DNdN +hN)

Algorithm 8. [Square-root backward vector recursion]

1. Initialization (k= N:
zN = z

′
N

λN−1 = CT
NR̃e

N(R̃e
N)T(DNdN +hN)

2. For k= N−1, . . . ,1:

zk = z
′
k−TT

k+Tk+ΓT
k λk

λk−1 = AT
k λk +CT

k R̃e
k(R̃

e
k)

T [Dk(dk−TT
k TkΓT

k λk)+hk
]

endfor.

3. Final step (k= 0):
z0 = z

′
0−TT

0+T0+Σ0+ΓT
0λ0

A proof of Theorem 3.2.7 is now given.

Proof. The first step follows from Lemma 3.2.5.

For the second step it suffices to prove equivalence of Algorithms 4 and 7, which
amounts to verifying that

ΣkD
T
k

(
Rk +DkΣkD

T
k

)−1
= K̃k(R̃

e
k)

T.

This follows directly from the definitions of̃Kk andR̃e
k, repeated here for convenience

R̃e
k =

(
Rk +DkΣkD

T
k

)−1/2

K̃k = ΣkD
T
k

(
Rk +DkΣkD

T
k

)−1/2

Similarly, for the third step equivalence of Algorithms 5 and 8 is easily verified by
checking that

CT
k

(
Rk +DkΣkD

T
k

)−1
= CT

k (R̃e
k)

TR̃e
k

which follows from the definition of̃Re
k.
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... ...

= ... ...

... ...

... ...

M L D L
T

Figure 3.3.Visualization of the block structure in the KKT matrix and its indefinite Cholesky
decomposition.

Note that only the R-factors of both the measurement update step and the time
update step are needed for the forward and backward solves. Hence the algo-
rithms can useQ-lessQRfactorizations. See Appendix B allowing a reduction in
computation time.

Remark 3. Also for the square-root Riccati method, the algorithms canbe simplified
if H ≡ 0. The adapted algorithms are given in Appendix A.

3.2.3. Structured QR factorizations

The systematic use of orthogonal transformations to factorize arbitrary matrices was
initiated by Givens [74] and Householder [98]. In Appendix Balgorithms and flop
counts are provided for Givens and Householder methods which are still standard
practice due to their excellent numerical stability properties [22, 77]. A row-reordering
of the matrices involved in the measurement update step, is known to lead to compu-
tational savings in the factorizations, see standard textbooks,i.e. by Verhaegen and
Verduld [190] or Kailath et al [111]. Both standard and row-reordered (structured)
versions have been implented in C and numerical simulation results are presented in
Appendix B. In the numerical examples presented in Section 3.5 these structured QR
methods are used in the square-root MHE algorithms.

3.3. Proof of equivalence of unconstrained MHE and the Kalman
filter/smoother

The equivalence of the Kalman filter/smoother to a weighted least-squares estimator is
well-known and is described in several papers and text books, e.g.[170], [195], [111,
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§10.6], [190, Ch. 1], [71]. However, because the derivation via the optimality con-
ditions (see also [146]) is crucial in showing that the moving horizon approximation
with the arrival cost computed from the forward recursions is exact1 in the linear un-
constrained case and that MHE yields a sequence of smoothed estimates and a filtered
estimate, we present the derivation in this section.

Consider the following optimization problem atN = 0

minx0,v0
1
2{(x0− x̂0)

TP−1
0 (x0− x̂0)+vT

0R−1
0 v0},

s.t. y0 = h0 +C0x0 +v0.
(3.20)

The optimality conditions are




P−1
0 CT

0

C0 I
I R−1

0









x0

π0

v0



=





P−1
0 x̂0

y0−h0

0



 , (3.21)

whereπ0 is the vector of Lagrange multipliers corresponding to the equality con-
straints andI represents the identity matrix of appropriate dimensions.

Block elimination yields

π0 = R0v0 (3.22)

v0 = y0−h0−C0x0 (3.23)

x0 = (P−1
0 +CT

0 R−1
0 C0)

−1(P−1
0 x̂0 +CT

0 R−1
0 (y0−h0)). (3.24)

The following equalities are a direct result of theMatrix Inversion Lemma

(P−1
0 +CT

0 R−1
0 C0)

−1 = P0−P0C
T
0 (R0 +C0P0C

T
0 )−1C0P0, (3.25)

(P−1
0 +CT

0 R−1
0 C0)

−1CT
0 R−1

0 = P0C
T
0 (R0 +C0P0C

T
0 )−1. (3.26)

Using this and some matrix calculation the following expression forx0 can be obtained

x0 = x̂0 +P0C
T
0 (R0 +C0P0C

T
0 )−1(y0−h0−C0x̂0). (3.27)

Note that this exactly corresponds to the Kalman filter measurement update:x0 = x̂0+

and(P−1
0 +CT

0 R−1
0 C0)

−1 = P0+ (see equations (2.72) and (2.69)).

Next, consider the caseN = 1. The optimization problem now becomes

minx0,v0,w0,x1,v1
1
2{(x0− x̂0)

TP−1
0 (x0− x̂0)+wT

0 Q−1
0 w0 +vT

0 R−1
0 v0 +vT

1 R−1
1 v1},

s.t.
y0 = h0 +C0x0 +v0,

y1 = h1 +C1x1 +v1,

x1 = f0 +A0x0 +G0w0.

(3.28)

1Meaning that the results for all three estimators, the batchestimator, MHE and the Kalman filter,
coincide.
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The recursive solution can again be obtained from the KKT optimality conditions
















P−1
0 CT

0 AT
0

C0 I
I R−1

0
Q−1

0 GT
0

A0 G0 −I
−I CT

1
C1 I

I R−1
1































x0

π0

v0

w0

λ0

x1

π1

v1
















=
















P−1
0 x̂0

y0−h0

0
0
− f0

0
y1−h1

0
















. (3.29)

Hereπ0 andπ1 are the vector of Lagrange multipliers corresponding to thefirst two
equality constraints (measurement equations), whileλ0 is the vector of Lagrange mul-
tipliers corresponding to the last equality constraint (state equation).

Using the insight obtained from the caseN = 0 the variablesπ0 andv0 can be elimi-
nated, yielding












P−1
0 +CT

0R−1
0 C0 AT

0
Q−1

0 GT
0

A0 G0 −I
−I CT

1
C1 I

I R−1
1























x0

w0

λ0

x1

π1

v1












=












P−1
0 x̂0 +CT

0 R−1
0 (y0−h0)

0
− f0

0
y1−h1

0












.

(3.30)

Block elimination of the variablesw0, λ0 andx1 gives





P−1
0 +CT

0R−1
0 C0 AT

0CT
1

C1A0 −C1G0Q0GT
0CT

1 I
I R−1

1









x0

π1

v1



=





P−1
0 x̂0 +CT

0 R−1
0 (y0−h0)

y1−h1−C1 f0
0



 .

(3.31)

We know that by constructionx1 = f0+A0x0+G0w0, which can be rewritten with the
optimalw0 =−Q0GT

0CT
1 π1 as

x1 = f0 +A0x0−G0Q0GT
0CT

1 π1. (3.32)

Furthermore, the following definitions are introduced in accordance with the Kalman
filter covariance time update formula (2.69)

P1 = A0P0+AT
0 +G0Q0GT

0 , (3.33)

x̂1 = f0 +A0x̂0+, (3.34)

with P0+ andx0+ as defined before.
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Then, an equivalent representation of the above set of optimality conditions (3.31) is





P−1
1 CT

1
C1 I

I R−1
1









x1

π1

v1



=





P−1
1 x̂1

y1−h1

0



 . (3.35)

To verify that this is indeed an equivalent representation let us start from the first block
equation of (3.31)

P−1
0+ x0 +AT

0CT
1 π1 = PT

0 x̂0 +CT
0 R−1

0 (y0−h0).

with P0+ = (P−1
0 +CT

0 R−1
0 C0)

−1 as before.

Left multiplication of both sides withA0P0+ and addition off0 gives

f0 +A0x0 +A0P0+AT
0CT

1 π1

= f0 +A0P0+[P−1
0 x̂0 +CT

0R−1
0 (y0−h0)]. (3.36)

Adding and subtractingG0Q0GT
0CT

1 π1 we obtain for theleft hand sideof eq.(3.36)

LHS = f0 +A0x0−G0Q0GT
0CT

1 π1 +G0Q0GT
0CT

1 π1 +A0P0+AT
0CT

1 π1,

= x1 +P1CT
1 π1.

Where we used eq. (3.32) forx1 and the definition ofP1.

The right hand side of eq.(3.36) can be reformulated using theMatrix Inversion
Lemma

RHS = f0 +A0P0+[P−1
0 x̂0 +CT

0 R−1
0 (y0−h0)],

= f0 +A0x̂0+,

= x̂1.

Where we used the definitions of ˆx0+ (3.27) and ˆx1 (3.34).

Finally, left multiplication of both sides withP−1
1 gives the first block equation of

(3.35).

Block elimination applied to (3.35) leads to the solution (analoguous to (3.27))

x1 = x̂1 +P1C
T
1 (R+C1P1C

T
1 )−1(y1−h1−C1x̂1). (3.37)

This concludes the proof forN = 1.

By comparing the equivalent representations (3.31) and (3.35) it is seen how the in-
formation of the first time step is propagated to the next yielding a recursive solution.
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The proof forN > 1 follows by recursively applying the procedure described above.2

Equivalently, it can be proven that solving the optimization problem (3.28) yields not
only a filtered estimate ofx1 but also a smoothed estimate forx0. To this end, consider
again the optimality conditions forN = 1 written compactly as follows







P−1
0+ AT

0
Q−1

0 GT
0

A0 G0 −I
−I CT

1 R−1
1 C1













x0

w0

λ0

x1







=







P−1
0+ x0+

0
− f0

CT
1 R−1

1 (y1−h1)







. (3.38)

The first block equation gives

x0 = x̂0+−P0+AT
0λ0. (3.39)

The second block equation gives

w0 =−Q0GT
0λ0. (3.40)

Plugging this into the third block equation yields

x1 = f0 +A0x̂0+−A0P0+AT
0λ0−G0Q0GT

0λ0, (3.41)

= f0 +A0x̂0+−P1λ0, (3.42)

= x̂1−P1λ0. (3.43)

Now, since the optimalx1 equals the filtered estimate ˆx1+, it follows that

λ0 = P−1
1 (x̂1− x̂1+). (3.44)

Plugging this into eq. (3.39) gives

x0 = x̂0+ +P0+AT
0P−1

1 (x̂1+− x̂1), (3.45)

which is exaclty the RTS smoothed estimate (equations (2.150) and (2.152) ). The
proof for N > 1 follows by recursively applying the same procedure.

Remark 4. Having proven the equivalence between kalman filtering/smoothing and
unconstrained MHE it is clear that their estimates are globally optimal in least-
squares sense. This again emphasizes the remarkable property of the Kalman filter
of being a recursive solution to the optimal estimation problem. This, as mentioned
before, is attributed to the two special properties; linearmodel and quadratic objec-
tive.
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3.4. Analogy with Riccati methods for MPC

As discussed in Section 1.8, batch estimation or MHE problems are essentially opti-
mal control problems.

Consider the following unconstrained MPC problem.

minx,u ‖x̄N +xN‖2Q̄N
+ ∑N−1

k=0 ‖x̄k +xk‖2Q̄k
+‖ūk +uk‖2R̄k

s.t. xk+1 = fk +Akxk +Bkuk, k = 0, . . . ,N−1,

x0 = x̄0, k = 0, . . . ,N−1,

(3.46)

with as optimization variables the state sequencex = {x0, . . . ,xN} and the input se-
quenceu = {u0, . . . ,uN−1}. The sequences{x̄0, . . . , x̄N} and{ū0, . . . , ūN−1} describe
nominal or reference trajectories for the states and inputsrespectively.

This optimization problem leads to the following KKT system

















0 −I
−I Π0 ΘT

0 0
Θ0 0 −I
0 −I Π1

. . .

ΠN−1 ΘT
N−1 0

ΘN−1 0 −I
0 −I ΠN

















.

















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λ1

...
zN−1

λN−1

zN
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














=












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

x̄0

rd,0

rp,1

...
rd,N−1

rp,N−1

rd,N


















. (3.47)

where we defined

Πk =

[
Q̄k 0
0 R̄k

]

, rd,k =

[
−Q̄kx̄k

−R̄kūk

]

, 0≤ k≤ N−1

ΠN =
[

Q̄N
]
, rd,N =

[
−Q̄Nx̄N

]
,

Θk =
[

Ak Bk
]
, rp,k =

[
− fk

]
, 0≤ k≤ N−1

Note that in the literature the initial state is often eliminated in the KKT system rep-
resentation, seee.g.[150] or [192], since it is fixed anyway. We preferred to keep the
equations forx0 qndλ0 in, because it facilitates the comparison with the KKT systems
for MPC (3.47) and MHE (3.3).
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The KKT system (3.47) can be factorized using the following (combined) Riccati
recursion

Vk = AT
kVk+1Ak−AT

kVk+1Bk(R̄k +BT
kVk+1Bk)

−1BT
kVk+1Ak + Q̄k (3.48)

which runs backwards starting from the terminal weightVN = Q̄N. Hence, the MPC
KKT system can be solved by a backwards vector and Riccati recursion followed by
a forward vector recursion. See the references [150, 188] for more details.

By comparing (3.48) to the Kalman filter recursion for factorizing the MHE KKT
system, see (2.75) or Appendix A, we find the well knownduality relations (see also
the discussion in Section 1.8) which are summarized in Table3.1.

Table 3.1.Conversion table between LQR and Kalman Riccati recursions.

LQR k V A B Q̄ R̄ Q̄N

Kalman n−k P AT CT GQGT R P0+

3.5. Numerical examples

To illustrate the efficiency of the unconstrained MHE algorithms using normal or
square-root Riccati recursions and their properties,i.e. linear scaling in the hori-
zon length, we have implemented both Riccati based methods in C and applied them
to random linear time-varying systems with dimensions(nx,nw,ny) = (5,5,2). The
square-root version employs structured QR methods (see Appendix B).

Numerical results were obtained for randomly generated matrices sampled from the
standard normal distribution2 and averaged3 over 100 repetitions. Computing times
correspond to an Intel Core2-Duo processor at 2.13 GHz with 2MB cache and 2
GB RAM, and using the compiler gcc version 4.4.5. The resultsare presented in
Figure 3.4.

The linear scaling property is clear from the growing horizon case, while the com-
putation times are bounded for the moving horizon implementation. For this system
with dimensions(nx,nw,ny) = (5,5,2) the computation times are all below 0.5 ms for
horizon lengths up to 50. For the MHE version with horizon 5 computation times are
even below 0.06 ms. The square-root algorithm is slower by about a factor 1.5 com-
pared to the normal algorithm. Both codes were equally optimized, i.e. unnecessary
calculations are avoided, previously computed quantitiesare reused, multiplications

2Using the random number generator from GNU Scientific Library (GSL)
3The median was used rather than the mean in order to remove bursts originating from processes

running in the background.
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with triangular matrices are executed efficiently, etc. Allcalculations have been im-
plemented in a self-contained code, which differs from our previous implementation
(see [90]) where calls to BLAS and LAPACK were used for matrix-matrix and matrix-
vector operations and other linear algebraic computations. We have noticed that our
implementations are faster compared to the BLAS/LAPACK calls.

The increased computational complexity of the square-rootis completely attributed to
the QR factorizations involved, which motivates our efforts to develop structured QR
methods. This increased computational burden is compensated by an increased accu-
racy and stability of the square-root version as demonstrated next. Furthermore, the
square-root version is more memory efficient as it works withtriangular covariances.
This becomes apparent from Figure 3.5 where we ran into a memory problem. Since
the normal algorithm is more memory intensive it causes the program to exceed the
cache boundaries as the amount of data grows while this effect is delayed with the
square-root algorithm.

In order to compare the accuracy of both methods, we applied them to random linear
time-varying systems with stable system matrices,i.e. Ak = c

λmax(Ak)
Ak with c< 1, and

with nw = nx, Gk = I andQk = I ,∀k. For this case the covariance evolves toP∞ = I or
|S∞|= I and the error can be readily checked.

Application to random linear time-varying systems with dimensions(nx,nw,ny) =

(2,2,2) and stability factorc = 0.1 averaged over 100 repetitions yields the results
presented in Figure 3.6. Both the error in smoothed state vector ‖x∗− x‖2 divided
by the horizon length and the error4 in final covariance matrix‖PT − I‖2 or ‖|ST |−
I‖2 with T the horizon length are computed. For this stability factor convergence to
the steady state covariance is obtained after only 1 or 2 timesteps. It can be seen
that the square-root algorithm is consistently more accurate in both the estimates and
covariances. Note that the non-smoothness in the error covariance evolution is due to
the time-variance of the system.

The difference in accuracy grows dramatically when larger systems are considered. In
Figure3.7 the final covariance error is presented for systems with dimensions (nx,nw,ny)
= (5,5,5) and (nx,nw,ny) = (10,10,5). The errors of the square-root algorithm are two
orders in magnitude smaller compared to those of the normal algorithm.

3.6. Conclusions

TIn this chapter the problems of state estimation were presented in an optimization
framework and connections with Kalman filtering and MPC werediscussed. It was
shown how the KKT system can be decomposed byLU and LDLT factorizations.

4The Frobenius norm was used for the covariance matrix error
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3.6. Conclusions

These decompositions yield normal and square-root Riccatibased solution methods
for the MHE problem. The methods fully exploit the structureinherent in the MHE
problem. The square-root version further exploits the symmetry in the system and
employs orthogonalization methods yielding increased numerical robustness. Struc-
tured QR methods were proposed for the square-root Riccati based method to reduce
its increased computation time.

The methods have been implemented in C in a fully self-contained and optimized
code and numerical results were presented illustrating thelinear scaling with horizon
length. Computation times below 0.5 ms are obtained for order 5 time-varying sys-
tems and horizon lengths of up to 50. For the moving horizon version computation
times below 0.06 ms are possible. The simulations further demonstrate that the nor-
mal Riccati algorithm is faster than the square-root Riccati algorithm by about a factor
1.5. This increased computational burden of the square-root version is compensated
by a substantial increase in numerical accuracy and robustness as demonstrated by
numerical examples. The developed Riccati based solution methods form the basis
for constrained and nonlinear MHE methods presented in the following chapters.
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Figure 3.4.Computation times in seconds for random linear time-varying systems and estima-
tion with growing horizon (top) and with moving horizon of lengths 1, 2, 5 and 10 (bottom).
The results for the normal Riccati based algorithm are depicted in solid line; the results for the
square-root Riccati based algorithm in dashed line.
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Figure 3.5.Computation times in seconds for random linear time-varying systems and estima-
tion with growing horizon. The results for the normal Riccati based algorithm are depicted in
solid line; the results for the square-root Riccati based algorithm in dashed line. The normal
algorithm is more memory intensive which causes the programto exceed the cache boundaries
as the amount of data grows. The square-root algorithm is clearly more memory efficient.
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Figure 3.6. Errors for the normal Riccati based algorithm (solid line) and square-root Ric-
cati based algorithm (dashed line) for the growing horizon case and system dimensions
(nx,nw,ny) = (2,2,2). Top panel: error in smoothed state vecor‖x∗ − x‖2 divided by T.
Bottom panel: error in final state covariance‖PT− I‖2 or ‖ST − I‖2 with T the horizon length.
It is seen that the square-root algorithm is consistently more accurate.
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Figure 3.7. Error in final state covariance‖PT − I‖2 or ‖|ST | − I‖2 with T the horizon length
for the normal Riccati based algorithm and square-root Riccati based algorithm for growing
horizon length. Top row: system dimensions(nx,nw,ny) = (5,5,5). Bottom row: system
dimensions(nx,nw,ny) = (10,10,5). Left column: normal Riccati based algorithm.Right
column: square-root Riccati based algorithm. The errors of the square-root algorithm are two
orders in magnitude smaller.
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CHAPTER 4
Interior-point methods for MHE

In this chapter the solution of constrained MHE problems by an infeasi-
ble start primal barrier method is addressed. Modificationsof the normal
and square-root Riccati based methods presented in the previous chapter
are proposed yielding MHE methods which scale linearly withboth the
horizon length and the number of interior-point iterations. Typically a
limited number of interior-point iterations is sufficient to achieve conver-
gence as is demonstrated by numerical examples. It is shown that a good
initialisation strategy improves the performance of the algorithms. The
primal barrier method experiences a logarithmically growing condition
number near an active constraint, which motivates the use ofsquare-root
methods because of their numerical accuracy.

4.1. Introduction

Riccati based solution methods for optimal control problems have been investigated
before in the literature [10, 17, 44, 75, 80, 87, 88, 108, 150,167, 188, 192]. Almost
all of these publications focus on the control problem, i.e.MPC. The state estimation
problem, i.e. MHE, is closely related to the control problemand has largely the same
optimal control structure. However, the main differences with MPC are that the initial
value is free and typically thecontrol vector, called state disturbance in MHE, has
about the same dimension as the state vector while in the MPC problem the control
vector is typically much smaller allowing an effective reduction in problem dimen-
sions by eleminating the state variables.

The interior-point method presented here closely resembles the one for MPC problems
presented in [192] in the sense that an infeasible start primal barrier method is used.
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4.2. Overview of interior-point methods for quadratic programming

However, the method presented in [192] solves the KKT systemby a block-Cholesky
decomposition which is only applicable to strictly positive definite Hessians. In MHE
problems the Hessian is typically positive semidefinite. Furthermore, the algorithms
presented here employ Riccati based solution methods for the KKT system along the
lines of the methods presented in Chapter 3.

Riccati based methods for MHE problems have been proposed before,e.g. by Tenny
et al [173] and Jorgensen et al [108]. In these works normal Kalman filter recursions
were proposed to factorize the KKT system. As mentioned in previous chapters, a
well known problem with the normal Kalman filter recursions is its numerical sta-
bility [6, 189]. The recursions depend on the square of the condition number of the
matrices involved. When the process is well known,i.e. small covarianceQk, it is
often observed that rounding errors render the state covariance matrixPk invalid: neg-
ative diagonal entries or otherwise loss of positive semi-definiteness. The stability
issue is even more important when these recursions are applied in an interior-point
method, since the barrier term can have extremely large impact on the conditioning of
the matrices to be propagated, as shown in this chapter.

To avoid these problems, square-root Riccati based methodsare proposed in this chap-
ter and are demonstrated to provide reliable estimates in aninterior-point context.
Extracts of this chapter were published in [90].

4.2. Overview of interior-point methods for quadratic programming

The standard convex QP may be expressed as (see (2.49))

minz
1
2zTHz+gTz

s.t. Cz= d,

Pz≤ h,

(4.1)

with HessianH ∈ Rn×n symmetric positive semidefinite, gradientg ∈ Rn, equality
constraintsC∈ Rm×n, d ∈ Rm and inequality constraintsP∈ Rp×n, h∈ Rp.

4.2.1. Primal barrier method

We will use a primal barrier method to solve the QP [29, 136]. The inequality con-
straints in the QP (4.1) are replaced with a barrier term in the objective, to get the
approximate problem

minz zTHz+gTz+ κφ(z)
s.t. Cz= b,

(4.2)
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whereκ > 0 is a barrier parameter, andφ is the log barrier associated with the in-
equality constraints, defined as

φ(z) =
p

∑
i=1

− log(hi− pT
i z),

wherepT
i denotes theith row of P. The problem (4.2) is a convex optimization prob-

lem with smooth objective and linear equality constraints,and can be solved by New-
ton’s method.

In a basic primal barrier method, a sequence of problems of the form (4.2) is solved,
using Newton’s method starting from the previously computed point, for a decreasing
sequence of values ofκ . As κ approaches zero, the solution of (4.2) converges to a
solution of the QP (4.1).

Let us introduce a dual variableν ∈Rm associated with the equality constraintCz= b.
The optimality conditions for (4.2) are then

rd = Hz+g+ κPTd+CTν = 0
rp = Cz−b = 0

(4.3)

with rd the dual andrp the primal residual and wheredi = 1/(hi− pT
i z). The term

κPTd is the gradient ofκφ(z). We also have the implicit constraintPz< h. The
stacked vectorr = [rT

d rT
p ]T is called the residual. The optimality conditions for (4.2)

can then be expressed asr = 0.

The algorithm is initialized with az0 point that strictly satisfies the inequality con-
straints but need not satisfy the equality constraints. An arbitrary initial value can be
used forν0. This is called an infeasible-start Newton method.

An approximatez (with Pz< h) and ν is computed at each step. The optimality
conditions (4.16) are linearized and primal and dual steps∆z, ∆ν are calculated for
whichz+ ∆z, ν + ∆ν yield zero residuals in the linearized approximation.

The primal and dual search directions∆z and ∆ν can be computed by solving the
following KKT system

[
H + κPT diag(d)2P CT

C 0

][
∆z
∆ν

]

=−
[

rd

rp

]

. (4.4)

Here the termκPT diag(d)2P is the Hessian of the barrierκφ(z) and

Having obtained this Newton step, a feasibility search and abacktracking line search
on the norm of the residualr (see, e.g., [29]) are performed. Finally, the primal and
dual variables are updated:z := z+s∆zandν := ν +s∆ν. This procedure is repeated
until the norm of the residual is below an acceptable threshold.
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4.3. Structure-exploiting interior-point methods for MHE

It can be shown that primal feasibility (i.e.,Cz= b) is achieved in a finite number of
steps, assuming the problem (4.2) is strictly feasible. Theprimal and dual variablesz
andν will converge to an optimal point. A typical method is to reduceκ by a factor
τ each time a solution of (4.2) is computed (within some accuracy). The total number
of Newton steps to convergence is bounded and depends on the number of constraints,
the initial pointz0 (andν0), the initial barrier parameterκ0 and the reduction factor
τ [29]. However, it is observed that an accurate solution of the original QP can be
obtained with a limited number of Newton steps, far less thanthe theoretical bound.

4.2.2. Primal-dual interior-point methods

In a standard primal-dual interior-point method the primaland dual variables are ob-
tained from the solution of two similar linear systems with different right hand side
corresponding to an affine scaling step and a centering step (or centering-corrector if
this step is combinedi.e. with the popular Mehrotra’s corrector step), see [150]. The
search directions are similar but not identical to those of the primal barrier method. A
primal-dual method typically yields more aggressive step sizes (close to the bound-
aries). In practice the primal-dual methods are often faster and more reliable. It can
be shown that the linear systems to be solved for obtaining the search directions are
structurally identical to those of the primal barrier method, see [29, 150]. For this
reason the interior-point methods for MHE have been developed for the primal barrier
method and can be extended to a primal-dual method.

4.3. Structure-exploiting interior-point methods for MHE

In this section structure-exploiting primal barrier interior-point methods for solving
linear constrained MHE problems are described. Consider the following general linear
constrained MHE problem

minx,w ‖x̄0 +x0− x̂0‖2P−1
0

+∑N−1
k=0 ‖w̄k +wk‖2Q−1

k
+‖hk +Ckxk +Hkwk‖2R−1

k
+‖hN +CNxN‖2R−1

N

s.t.
xk+1 = fk +Akxk +Gkwk, k = 0, . . . ,N−1,

Tx
k xk +Tw

k wk ≤ tk k = 0, . . . ,N−1
Tx

NxN ≤ tN

(4.5)

with x = {x0, . . . ,xN} the unknown state sequence andw = {w0, . . . ,wN−1} the un-
known process disturbances.

Let us first define an overall optimization variable

z= (x0,w0,x1 . . . ,wN−1,xN) ∈ R(N+1)n+Nm.
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Then the QP may be expressed as

minz
1
2zTHz+gTz

s.t. Cz= b
Pz≤ h

(4.6)

with

H =








S−1
0 S−T

0 +CT
0 C0 CT

0 H0

HT
0 C0 Im+HT

0 H0

. . .

CT
NCN








,

g =











−S−1
0 S−T

0 x̄+CT
0 h0

HT
0 h0
...

HT
N−1hN−1

CT
NhN











, b =−






f0
...

fN−1




 ,

C =






A0 G0 −In
. . .

AN−1 GN−1 −In




 ,

P =








Tx
0 Tw

0
. . .

Tx
N−1 Tw

N−1
Tx

N








, h =








t0
...

tN−1

tN








,

(4.7)

whereIn denotes the unit matrix of dimensionn.

The Newton step∆zand∆ν can be computed by solving the KKT system (4.4) for this
specific problem, which can be done efficiently using Riccatibased solution methods
along the lines of the previous chapter. This is described indetail in the next section
for the different use cases: mixed linear constraints, state constraints, disturbance
constraints and bound constraints.

4.3.1. Computing the Newton step

By rearranging the KKT system, the block diagonal structureof the KKT matrix is
revealed (see Section 3.2). Let us write the KKT system asMξ = r, with
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M =















Φ0 ΓT
0 0

Γ0 0 −ϒT

0 −ϒ Φ1

. . .

ΦN−1 ΓT
N−1 0

ΓN−1 0 −I
0 −I ΦN















, ξ =
















∆z0

∆ν0

...
∆zN−1

∆νN−1

∆zN
















, r =
















rd,0

rp,0

...
rd,N−1

rp,N−1

rd,N
















, (4.8)

whererd,k (resp. rd,N) denotes the dual residual associated with∆zk = (∆xT
k ,∆wT

k )T

(resp.∆zN = ∆xN ), andrp,k denotes the primal residual associated withνk.

We will now consider different types of constraints and present Riccati based solution
methods for the different cases.

Mixed linear constraints

Mixed linear constraintsare commonly encountered in optimal control problems and
are given by

Tx
k xk +Tw

k wk ≤ tk k = 0, . . . ,N−1
Tx

NxN ≤ tN
(4.9)

For this type of constraints the Hessian of the barrier function has block diagonal
structure. It can be expressed as

PT diag(d)2P =








MT
0 M0 MT

0 L0

LT
0 M0 LT

0 L0

. . .

MT
NMN








, (4.10)

with

Mk = diag(1/(tk−Tx
k xk−Tw

k wk))Tx
k , 0≤ k≤ N−1

Lk = diag(1/(tk−Tx
k xk−Tw

k wk))Tw
k , 0≤ k≤ N−1

MN = diag(1/(tN−Tx
NxN))Tx

N.

(4.11)

The gradient of the barrier function is given by
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gp =
















MT
0

LT
0
...

MT
k

LT
k
...

MT
N
















1 (4.12)

where1 represents a column vector of all ones with appropriate length.

Plugging this into the KKT system (4.8) yields

Φ0 =

[
P−1

0 +CT
0 R−1

0 C0 +κMT
0 M0 CT

0 R−1
0 H0 +κMT

0 L0

HT
0 R−1

0 C0 +κLT
0M0 Q−1

0 +HT
0 R−1

0 H0 +κLT
0L0

]

Φk =

[
CT

k R−1
k Ck +κMT

k Mk CT
k R−1

k Hk +κMT
k Lk

HT
k R−1

k Ck +κLT
k Mk Q−1

k +HT
k R−1

k Hk +κLT
k Lk

]

, 1≤ k≤ N−1

ΦN =
[
CT

NR−1
N CN +κMT

NMN
]

rd,0 =

[
P−1

0 (x̂0− x̄0)−CT
0 R−1

0 h0− (P−1
0 +CT

0 R−1
0 C0)x0−AT

0ν0−κgp,x0

−Q−1
0 w̄0−HT

0 R−1
0 h0− (Q−1

0 +HT
0 R−1

0 H0)w0−GT
0ν0 +κgp,w0

]

rd,k =

[
−CT

k R−1
k hk−CT

k R−1
k Ckxk− (−νk−1+AT

k νk)−κgp,xk

−Q−1
k w̄k−HT

k R−1
k hk− (Q−1

k +HT
k R−1

k Hk)wk−GT
k νk +κgp,wk

]

, 1≤ k≤N−1

rd,N =
[
−CT

NR−1
N hN−CT

NR−1
N CNxN +νN−1−κgp,xN

]

rp,k =
[

fk +Akxk +Gkwk−xk+1
]
, 0≤ k≤ N−1

Γk =
[
Ak Gk

]
, 0≤ k≤N−1

ϒ =

[
In
0

]

wheregp,xk (resp.gp,wk) denotes the barrier gradient associated with∆xk (resp.∆wk).

101



4.3. Structure-exploiting interior-point methods for MHE

Riccati based IP method A Riccati based solution method has been developed for
constrained MHE using interior-point methods. The constraints enter the Riccati re-
cursion in the measurement update step, which is intuitive since active constraints can
be interpreted as measurements with very large weight (or, equivalently, with very
small covariance).

The normal Riccati recursion is modified as follows (comparewith Algorithm 1).

SetΣk =

[
Pk

Qk

]

andDk =

[
Ck Hk√
κMk

√
κLk

]

.

Calculate the covariance update:

Σk+ =
(
Σ−1

k +DT
k R−1

k Dk
)−1

= Σk−ΣkDT
k

([
Rk

Inik

]

+DkΣkDT
k

)−1

DkΣk

(4.13)

with nik the number of inequality constraints for time stepk.

The measurement update of the square-root recursion modifies similarly. LetTk =
[
Sk

Wk

]

(note thatΣk = TT
k Tk)

andDk =

[
Ck Hk√
κMk

√
κLk

]





TkDT
k Tk

[
Vk

Inik

]



=
[
Q̄k Q̃k

]
[
(R̃e

k)
−1 K̃T

k
0 Tk+

]

(4.14)

with R̃e
k =

(
Rk +DkΣkDT

k

)−1/2
andK̃k = ΣkDT

k R̃e
k.

Remark 5. It can be seen that in case of mixed linear inequalities, the general form of
Riccati based solution is necessary whether H is zero or not.This is one of the motiva-
tions for developing the algorithms for this general case inChapter 3 and throughout
this thesis.

Note that in comparison with the previous chapter, the blockrows of the matrix to be
factorized have been interchanged since this is how the recursions have been imple-
mented (see Appendix B for a discussion on structuredQR factorization). These row
interchanges do not change theR factor.

A solution method for interior-point MHE using square-rootrecursions is now pre-
sented.
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Lemma 4.3.1. If the KKT matrix M (4.8) is full rank (see Lemma 3.2.4 for suffi-
cient conditions), then it is symmetric indefinite and can befactorized by an indefinite
Cholesky decomposition M= LDLT with

L =















T−1
0+

Γ0TT
0+ ST

1
0 −ϒS−1

1 T−1
1+

. . .

T−1
N−1+

ΓN−1TT
N−1+ ST

N

0 −ϒS−1
N T−1

N+















,

D =















In+m

−In
In+m

. . .

In+m

−In
In















,

which can be recursively computed by Algorithm 9.

Proof. See proof of Lemma 3.2.5.

Algorithm 9. [Square-root Riccati recursion for interior-point MHE]

1. Initialization: S0

2. For k= 0, . . . ,N−1:

a) Measurement update step

Let Tk =

[
Sk

Wk

]

(note thatΣk = TT
k Tk)

and Dk =

[
Ck Hk√
κMk

√
κLk

]

Compute QR-factorization:





TkDT
k Tk

[
Vk

Inik

]



=
[
Q̄k Q̃k

]
[
(R̃e

k)
−1 K̃T

k
0 Tk+

]

with R̃e
k =

(
Rk +DkΣkDT

k

)−1/2
andK̃k = ΣkDT

k R̃e
k.
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4.3. Structure-exploiting interior-point methods for MHE

b) Model forwarding step

Let Γk =
[

Ak Gk
]

Compute QR-factorization:

Tk+ΓT
k =

[
Q̂k+1 Q̌k+1

]
[
Ŝk+1

0

]

endfor.

3. Final time step:

a) Measurement update step

Let TN = SN (note thatΣN = TT
N TN)

and DN =

[
CN√
κMN

]

Compute QR-factorization:





TNDT
N TN

[
VN

IniN

]



=
[
Q̄N Q̃N

]
[
(R̃e

N)−1 K̃T
N

0 TN+

]

with R̃e
N =

(
RN +DNΣNDT

N

)−1/2
andK̃N = ΣNDT

NR̃e
N.

Note that the dimensions of the matrices resulting from the measurement update be-
comeR̃e

k ∈ R(p+nik)×(p+nik) andK̃k ∈R(p+nik)×(n+m).

Theorem 4.3.2.(KKT solution using modifiedLDLT factor-solve method employing
square-roots)The KKT system Mξ = r with M,ξ and r as defined before (4.8) can be
solved by performing the following steps

1. Factorize M= LDLT according to Lemma 4.3.1 using the Riccati recursion
of Algorithm 9,

2. Forward vector solve using Algorithm 10,

3. Backward vector solve using Algorithm 11.

Proof. See proof of Theorem 3.2.7.

The computation of the newton step in an interior-point method is preceded by a
calculation of barrier Hessian and gradient and primal and dual residuals

rd = Hz+g+ κPTd+CTν = 0
rp = Cz−b = 0

(4.15)
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Hence the termCTν with

C =






A0 G0 −In
. . .

AN−1 GN−1 −In




 (4.16)

has been computed and can be used in the following recursions. For notational con-
venience we writeck as the component ofCT ν corresponding to time stepk, that
is

c0 = ΓT
0ν0

ck = ΓT
k νk−

[
νk−1

0

]

cN = −νN

(4.17)

The following square-root forward and backward vector recursions can be derived for
the IP MHE case

Algorithm 10. [Square-root forward vector recursion for interior-pointMHE]

1. Initialization:

d0 =

[
x̂0− x̄0

−w̄0

]

−z0

2. For k= 0, . . . ,N−1:

gk =

[
hk +Ckxk +Hkwk√

κenik

]

∆z
′
k = dk− K̃k(R̃

e
k)

T(Dkdk +gk)−TT
k+Tk+ck

x̂k+1 = fk + Γk(∆z
′
k +zk)

dk+1 =

[
x̂k+1

−w̄k+1

]

−zk

endfor.

3. Final time step:

gN =

[
hN +CNxN√

κeniN

]

∆z
′
N = dN− K̃N(R̃e

N)T(DNdN +gN)−TT
N+TN+cN
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4.3. Structure-exploiting interior-point methods for MHE

Algorithm 11. [Square-root backward vector recursion for interior-point MHE]

1. Initialization (k= N):

∆zN = ∆z
′
N

ηN = cN

∆νN−1 = ηN +DT
NR̃e

N(R̃e
N)T [DN(dN−TT

N TNηN)+hN
]

2. For k= N−1, . . . ,1:

∆zk = ∆z
′
k−TT

k+Tk+ΓT
k λk

ηk = ck +AT
k ∆νk

∆νk−1 = ηk +DT
k R̃e

k(R̃
e
k)

T [Dk(dk−TT
k Tkηk)+hk

]

endfor.

3. Final step (k= 0):

∆z0 = ∆z
′
0−TT

0+T0+ΓT
0∆ν0

with ∆zk =

[
∆xk

∆wk

]

.

Note that only the R factors of the QR factorizations in measurement and time
update steps are required, henceQ-lessQR factorizations (see Appendix B) are
used to improve computation speeds.

Separate state and disturbance constraints

In case the inequality constraints are notmixedandH ≡ 0 the updates of states and
disturbances can be decoupled. General (linear) state constraints are given by

Tx
k xk ≤ tk, (4.18)

with Tx
k ∈ Rnixk×n andtk ∈ Rnixk.

General (linear) disturbance constraints are given by

Tw
k wk ≤ sk, (4.19)

with Tw
k ∈ Rniwk×n andsk ∈Rniwk .
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For this type of constraints the Hessian of the barrier function has block diagonal
structure. It can be expressed as

PT diag(d)2P =








MT
0 M0

LT
0 L0

. . .

MT
NMN








. (4.20)

with

Mk = diag(1/(tk−Tx
k xk))Tx

k , 0≤ k≤ N
Lk = diag(1/(sk−Tw

k wk))Tw
k , 0≤ k≤ N−1.

(4.21)

The gradient of the barrier function is given by (4.12).

If state constraints are present andH ≡ 0 the measurement update step of the square-
root algorithm involves covariances of ordern×n and reduces to

Dk =

[
Ck√
κMk

]






SkDT
k Sk[

Vk

Inixk

]




=

[
Q̄k Q̃k

]
[
(R̃e

k)
−1 K̃T

k
0 Sk+

]

with R̃e
k ∈ R(p+nixk)×(p+nixk) and K̃k ∈ R(p+nixk)×n. The forward and backward vector

recursions are modified accordingly.

In case no state constrains are presentDk = Ck and the algorithms of Appendix A are
valid andR̃e

k ∈ Rp×p, K̃k ∈ Rp×n.

If disturbance constraints are present, the disturbance vectors can be recursively up-
dated separately from the state uppdates as follows

[

Wk
√

κLT
k Wk

Iniwk

]

=
[
Q̄k Q̃k

]
[
(R̃w

k )−1 (K̃w
k )T

0 Wk+

]

with R̃w
k ∈ Rniwk×niwk , K̃w

k ∈ Rniwk×m andWk+ ∈ Rm×m.

dw
k =−w̄0−w0

wk+ = dw
k − K̃w

k (R̃w
k )TLkW

T
k+Wk+

(
cw

k + κgp,wk

)

wherecw
k is the part ofck corresponding towk.
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4.3. Structure-exploiting interior-point methods for MHE

Bound constraints

In case of bound constraints the barrier gradient is computed as

d+
k = 1/(xmax

k −xk)

d−k = 1/(xmin
k −xk)

gp,xk = d+
k −d−k

(4.22)

Furthermore, the matricesMk andLk are sparse. They can be constructed in two ways

Mk =

[
diag

(
d+

k

)

diag
(
d−k
)

]

or

Mk = diag

(√

(d+
k )2 +(d−k )2

)

The latter version is more compact, while the first version ismore consistent with the
general state constraint case and yields slightly simpler vector updates.

For disturbance constraints,i.e. matricesLk, both versions are possible as well. In this
case consistency with the general constraint case is preserved for the both version and
there is no difference for the vector update.

The sparsity of these barrier term matrices is exploited in the bound constrained ver-
sions of the algorithms.

Fixed initial state In order to be able to solve general optimal control problems(see
Section 3.4), the possibility of a fixed initial state shouldbe handled. When the initial
state is exactly known, its covariance becomes singular. A singularS0 does not present
any problems to the algorithm for finding the Newton step, in fact anySk andSk+ can
be singular in the algorithm. However, in order to compute the dual residual, which
is required by the interior-point method for performing a line search, the objective
gradient and hessian are needed and they are infinite in case of singular covariance of
the initial state. The problem can be circumvented through aminor modification of
the KKT system. The following constraint is added to the MHE problem

∆x0 = x̄−x0.
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Interior-point methods for MHE

Let us denote byν0 the dual variable associated to this constraint. Then in theKKT
matrix an extra row and column are added to the top left, leading the the following
modified KKT system:











0 In 0 . . . 0
In
0
...
0

M











[
∆ν0

ξ

]

=

[
x̄−x0

r

]

.

The optimal vectorξ is obtained as before by solving the original KKT system with
singularS0 and the dual variable∆ν0 is obtained from the modified KKT system.

4.4. Numerical examples

The interior-point method presented in this chapter has been implemented in C. The
implementation is an extension of the square-root Riccati based codes for uncon-
strained MHE presented in Chapter 3 and employ structured QRmethods (see Ap-
pendix B). All calculations have been implemented in a self-contained code, which
differs from our previous implementation (see [90]) where calls to BLAS and LA-
PACK were used for matrix-matrix and matrix-vector operations and other linear
algebraic computations. We have experienced that the self-contained code is faster
compared to the BLAS/LAPACK calls.

Computing times correspond to an Intel Core2-Duo processorat 2.13 GHz with 2 MB
cache and 2 GB RAM, and using the compiler gcc version 4.4.5.

4.4.1. Constrained linear system

Consider the following linear discrete-time system [149]

xk+1 =

[
0.99 0.2
−0.1 0.3

]

xk +

[
0
1

]

wk, k = 0,1, . . .

yk =
[

1 −3
]
xk +vk, k = 0,1, . . .

We assumevk to be zero-mean normally distributed random noise with variance 0.01,
andwk = |zk|with zk zero-mean normally distributed random noise with unit variance.
We also assumex0 to be normally distributed with zero mean and unit covariance.
We formulate the constrained estimation problem withQ = 1, R= 0.01, P0 = I , and

x̄ =

[
0
0

]

.
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Figure 4.1. Top left: First state and MHE estimates for horizon length 10.Top right: Second
state and MHE estimates for horizon length 10. When the number of interior-point iterations is
limited to 10 (dashed red line), the performance is still almost identical to the full convergent
estimator (solid black line). True states are depicted in solid blue line. Bottom left: Compu-
tation times for the algorithm with limited number of iterations (ten) and a growing horizon
(solid black line) as well as horizon 10 (dashed red line).Bottom right: Computation times
per iteration for the growing horizon case.

Simulations were performed for this example. Good performance was obtained with
κinit = 1 and decreasing factorτ = 0.2. The results are shown in Figure 4.1. The top
panels show the true states and MHE estimates for horizon length 10. When the num-
ber of interior-point iterations is limited to 10, the performance is still almost identical
to the full convergent estimator. In the bottom left panel the computation times are
shown for the algorithm with limited number of iterations (ten) and a growing horizon
as well as horizon 10. In the bottom right panel the computation times per iteration
are shown for the growing horizon case. As expected, the computation times scale
linearly with the number of iterations for the interior-point method. From the figures
it can be concluded that the moving horizon estimator with horizon length 10 and
limited number of iterations can be run at 1 ms per time step or1 kHz.
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Interior-point methods for MHE

4.4.2. Waste water treatment process

Consider a waste water treatment process, shown in Figure 4.3. Waste water enters
the equalizing tank which is designed to equalize concentration fluctuations of the
incoming wastewater and to attenuate the effects of flow surges, i.e. due to a batch
processing facility, on the treatment tanks. The contents of the equalization tank are
continuously stirred.

In the primary sedimentation stage, the sludge settles while grease and oils rise to the
surface and are skimmed off. Secondary treatment is designed to substantially degrade
the biological content of the sewage which are derived from human waste, food waste,
soaps and detergent.

Tertiary treatment removes stubborn contaminants that secondary treatment was not
able to clean up. Wastewater effluent becomes even cleaner inthis treatment pro-
cess through the use of stronger and more advanced treatmentsystems. All tanks are
continuously stirred.

Now suppose there is a leak in the process and our goal is to detect its location and
magnitude. The example is taken from [146]. The process is described by the follow-
ing linear model

xk+1 =










0.89168 0 0 0 10
0.10832 0.90518 0 0.04306 0

0 0.09482 0.89524 0 0
0 0 0.10476 0.89235 0
0 0 0 0 0










xk+










−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1










wk,

yk =










1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1










xk +vk,

Here the state vector representsxk =
[

m0 m1 m2 m3 min
]T

with m0 the mass
in the equalizing tank,min the mass of waste water entering the equalizing tank and
mi the mass in treatment tanki = 1,2,3.

Suppose the masses are measured with error covariance

R = diag
(

8 8 8 8 4
)
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The leak is located in treatment tank 2. The leak is modelled as wk = |zk| with zk a
normally distributed random variable with error covariance

Q = diag
(

0 0 5 0 15
)

As the location of the leak is unknown, the estimator is designed with

Q = diag
(

5 5 5 5 15
)

In order to satisfy the mass balances, the constraintsxk ≥ 0 andwk ≥ 0 are added:
tanks have positive mass and mass is only lost through a leak.

Mean losses are represented in Table 4.1. It can be seen that both MHE and the
Kalman filter are able to detect the leak in treatment tank 2 and the resulting waste
losses entering the equalizing tank as one would expect [146]. When there is no leak,
the Kalman filter would predict a net addition of mass to the tank process, which is
physically impossible.

The state constraints do not add much information, but the disturbance constraints do.
The results are Figures 4.4 to 4.13. As can be seen from the graphs and from the mean
squared errors, represented in Table 4.2, MHE is clearly thebetter estimator.

Computation times are shown in Figure 4.2 for MHE with horizon of 10. For this
horizon length high estimation accuracy was obtained and a Ccode of the interior-
point algorithm yields computation times of 1.5 ms. Hence, for this problem size the
estimator can be run at almost 1 kHz on a standard computer.

Table 4.1.Mean losses - MHE and Kalman filter estimates.

mean losses

equal. Tank Tank 1 Tank 2 Tank 3 Waste
Actual 0 0 1.7514 0 3.2396
MHE 0.2909 0.2959 1.0198 0.3069 3.0795

Kalman filter −0.1818 −0.0189 1.5709 0.1533 3.0466

Table 4.2.Mean squared errors for state estimates.

x1 x2 x3 x4 x5

MHE 2.4619 1.9164 4.8446 1.3962 0.8280
Kalman filter 2.8675 2.5624 5.4899 2.1047 0.8921
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Figure 4.2. Computation times in seconds for the waste water treatment problem and MHE
with horizon of 10.

4.4.3. A hot-starting strategy

In MHE similar optimal control problems are solved repeatedly. Therefore, it is a
reasonable assumption that the solution of an MHE problem can be shifted one time
step forward to yield a good starting point for the next MHE problem. Unfortunately,
as pointed out in [150], in interior-point methods it is better to use a starting point
away from the boundary (a strictly feasible point). More specifically we recall that
in interior-point methods a sequence of problems of the form(4.2) is solved for de-
creasingκ , however if we shift from one MHE problem to the next, we starta new
optimization problem, i.e. withκ = κinit . Hence it turns out that the solution to the
previous MHE problem (i.e. with smallκ) is not always a good initialization. The
procedure we suggest here, illustrated in Figure 4.4.3, is to solve a sequence of prob-
lems for decreasingκ until reasonable accuracy is obtained, but use the solutionof the
problem withκ = κinit as an initialization for the next time step. Note that, as pointed
out in [192], the particular value ofκinit turns out not to matter much; any value over
a wide range seems to give good results. In both cases we do notshift the trajectory,
but instead omit the first time point and use the model with a zero state disturbance to
simulate a new final state, since this typically yields better results than a shift provided
that the constraints do not change from one problem to the next. Figure 4.15 shows
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4.4. Numerical examples

Figure 4.3. Detection of a leak in a waste water treatment process (from Rao [146]). Top:
Illustration of the connected tanks process.Bottom: Aerial photograph of a typical waste
water treatment plant.

the results for the waste water treatment problem over 500 time steps and MHE with
horizon 10.κinit = 0.01 and decreasing factorτ = 0.9. When the number of iterations
is limited, the hot-starting strategy yields a slight but consitent improvement com-
pared to initialization using the solution of the previous time step. For comparison the
results with initialization at zero in every time step,i.e. no hot-starting, are depicted
as well. From this, it is clear that a smart re-use of information from the previous
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Figure 4.4.Disturbance estimates in the equalizing tank.
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Figure 4.5.Disturbance estimates in treatment tank 1.
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Figure 4.6.Disturbance estimates in treatment tank 2.
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Figure 4.7.Disturbance estimates in treatment tank 3.
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Figure 4.8.Disturbance estimates waste entering equalizing tank.
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Figure 4.9.State estimates in the equalizing tank.
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Figure 4.10.State estimates in treatment tank 1.
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Figure 4.11.State estimates in treatment tank 2.
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Figure 4.12.State estimates in treatment tank 3.
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Figure 4.13.State estimates waste entering equalizing tank.
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time step allows a significant reduction in the number of iterations to convergence, or
equivalently, in computation time.

shift

0 1 N N+1

κ↓
κinit

Figure 4.14. Illustration of the hot starting procedure. Solve a sequence of problems with
decreasingκ, starting withκinit , until reasonable accuracy. Use the solution of the problem
with κinit as an initialization for the next time step.
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Figure 4.15. Left: Mean squared error between the true constrained solution and the solution
for a fixed number of iterations initialized by shifting the previous solution (solid line) versus
the hot-starting strategy (dashed line).Right: Mean squared error for initialization at zero (no
shift). The plots were generated for the leak detection problem with 500 time steps and MHE
with horizon 10.

4.4.4. Numerical conditioning

In order to analyse the numerical conditioning of the square-root and the normal Ric-
cati method, we applied them to the waste water treatment problem for κinit = 0.01
and decreasing factorτ = 0.9 and for a fixedκ = 0.01. The top panels in Figure 4.16
show the condition number of a matrix involved in the measurement update for a state
with an actively constrained component. For the normal Riccati method the condition
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number of the following matrix is depicted

([
Rk

Inik

]

+DkΣkD
T
k

)

(4.25)

which needs to be inverted (see Eq.(4.13)), or in practice isfactorized and its factors
are applied. For the square-root method, the condition number of





TkDT
k Tk

[
Vk

Inik

]



 , (4.26)

is depicted. Which is the matrix that is factorized in the measurement update of the
square-root method (see Eq.(4.14)). The bottom panels in Figure 4.16 show the loga-
rithmic growth of the condition number of the square-root barrier HessianMk. In case
of a decreasing barrier parameter, the effect is slightly amplified. For a decreasingκ
the algorithm converges in 10 iterations while for a fixedκ convergence is achieved in
14 iterations. It can be seen from Figure 4.16 that the condition number for the typcial
matrix in the square-root method is the square of the one in the normal method, as
expected. This motivates the use of the square-root Riccatimethod in the context of
(primal barrier) interior point methods.

The same problems of numerical conditions are also observedin the method of weight-
ing for constrained least-squares (see [22, 77]). In this case it is recommended to use
row and column permutations in the factorization process [22]. For most problems
it is sufficient to initially order the rows with potentiallylarge terms first as done in
the proposed row-reordering for the measurement update. Although Van Loan [187]
shows on certain contrived examples that this is not always sufficient, we have not
experienced any problems in our implementations.

4.5. Conclusions

In this chapter Riccati based solutions for constrained MHEusing a primal barrier
interior-point method were presented. It was demonstratedhow the barrier terms en-
ter in the measurement update step of the recursion and constraints can be interpreted
asperfect measurements. The square-root algorithm exploits both the structure and
the symmetry in the problems and employs structured QR methods at the core. Sev-
eral types of constraints were considered: mixed or separate, general or bound con-
straints. A hot-starting strategy was presented which showed improved performance
in the first iterations. The use of square-root Riccati methods within an interior-point
method could be strongly motivated by the fact that the condition number of the matri-
ces involved in the factorization typically grow logarithmically. A C implementation
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Figure 4.16.Logarithmic growth of the numerical conditioning in function of the iteration num-
ber for a state with actively constrained components.Top row: Evolution condition number
of a matrix involved in the measurement update of the square-root (solid) and normal Riccati
method (dashed), for a fixed barrier parameter(left) and a decreasing barrier parameter(right) .
Bottom row: Inverse barrier parameter (dashed) and evolution of the condition number of the
square-root of the barrier hessian (solid), for a fixed barrier parameter(left) and a decreasing
barrier parameter(right) .

demonstrated the performance of the square-root algorithm. It was shown by nu-
merical examples that the method can be run in the milisecondrange on a standard
computer for moderate horizons.
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CHAPTER 5
Active-set methods for MHE

In this chapter active-set strategies are proposed for the solution of con-
strained MHE problems. In particular a Schur complement active-set
method is presented. The method uses as the starting point the uncon-
strained MHE solution which can be computed efficiently using Riccati
based algorithms as discussed in Chapter 3 and allows multiple updates
to the active set per iteration. These properties are desirable for MHE
since only a small number of inequality constraints is expected to be ac-
tive at the solution. The proposed active-set method involves the solu-
tion of reduced non-negativity constrained QPs in the working-set null
space. For this, a gradient-projection method using projected Newton
steps and Cholesky factorizations is proposed. Cholesky updates are em-
ployed in the projected Newton iterations. Once a solution to the reduced
QP is found, it is used to update primal and dual variables using a Schur
complement technique. Between (outer) active set iterations the reduced
Hessian changes by adding some constraints to the working set. These
changes are exploited by a Cholesky downdate. Application of a C im-
plementation of the method to several numerical examples shows its ex-
cellent performance on typical MHE problems.

5.1. Introduction

Albuquerque and Biegler [3] first proposed a structure-exploiting algorithm for MHE
which scales linearly in the horizon length. They applied a type of condensing in
which thecontrolsand multipliers are eliminated and the reduced QP is formulated
and solved in the state space. By construction this approachshould have a strong
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5.1. Introduction

relation with Riccati recursion, although the proposed algorithm does not explicitly
employ a Riccati recursion. Riccati based methods for MHE problems have been
proposed before,e.g. by Tenny et al [173] and Jorgensen et al [108]. Typically,
normal Riccati (Kalman filter) recursions are proposed to solve the KKT system. A
structure-exploiting interior-point MHE method using square-root was presented in
[90].

Active-set methods for quadratic programming can be classified intoprimal feasible
or dual feasible methods. In primal feasible methods, a Phase I calculation to find
an feasible initial point is typically required. Subsequently, constraints are added or
deleted in order to reduce the objective while maintaining primal feasiblity. Upon
convergence, dual feasibility is obtained. Dual methods, on the other hand start with
a dual feasible point, which usually can be computed cheaply(no Phase I), and main-
tain dual feasibility during subsequent QP iterations.QPOPT [140] is a primal fea-
sible active-set method which uses the null-space approach. It maintains a dense
Cholesky factorization of the reduced Hessian.QPKWIK [161] is a dual feasible active-
set method based on the famous method of Goldfarb and Idnani [76]. BothQPOPT and
QPKWIK are dense methods and both require a positive definite Hessian. Therefore,
they are not directly suitable for MHE problems.

A primal Schur complement active-set method, calledSchurQP, was presented by Gill
et al [70]. This method applies the Schur complement for every change in the working
set which can be addition or removal of one constraint. A dualSchur complement
active-set method, calledQPSchur, was presented by Bartlett et al [10, 11]. It allows
structure exploitation in the KKT system matrices and is applied to MPC problems.
The method, however, still requires a positive definite Hessian and proceeds by adding
or deleting one constraint at a time as usual in active-set methods.

Axehill and Hansson [7, 8] have presented a dual active-set method for MPC which
uses gradient projection. In their algorithm the two step procedure, comprising a
Cauchy point calculation and a Newton direction computation, is directly applied to
the dual MPC problem. Inequalities are discarded in the Cauchy point calculation
and (forward) normal Riccati recursions are used in the projected Newton step. Their
method permits multiple active-set changes per iteration,requires few QP iterations
and is shown to perform very well on several linear and hybridMPC examples.

In this chapter, we present a Schur complement active-set method tailored to MHE
problems. The method inherits properties from both primal and dual methods. The
algorithm is motivated by two observations: (1) theunconstrainedMHE problem, i.e.
discarding inequalities, can be solved very efficiently using Riccati recursions and (2)
in MHE only a small number of inequality constraints is expected to be active at the
solution. Therefore, the method uses the unconstrained MHEsolution as the starting
point and solves a number of QPs in the reduced space of working set constraints until
the active set is determined. The method allows multiple active-set changes per itera-
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tion and typically converges in a few iterations. For the unconstrained MHE solution,
a Riccati based method using square-roots is proposed whichallows fast computa-
tion of the QP matrices. The underlying QPs are non-negativity constrained quadratic
problems for which a gradient projection method using projected Newton steps is
presented.ModifiedCholesky factorizations are suggested for solving the QP KKT
systems and subsequent changes are exploited by Cholesky downdates and updates
at the level of outer and inner active set iterations. The method bears resemblances
with the method for MPC by Axehill et al [7, 8], but differs in the following: (1) it
is specifically designed for MHE, (2) it uses the unconstrained solution, hence empty
initial working set, as a starting point, which can be motivated for MHE, (3) it pro-
ceeds by adding sets of constraints per iteration and constraints are only removed upon
convergence, inactive constraints are automatically assigned multipliers equal to zero
(4) by using Cholesky factorizations for the solution of underlying KKT systems and
updating factorizations at both the lower and higher level (inner and outer active set
iterations), the efficiency is maximized.

5.2. Overview of active-set methods for quadratic programming

In this section, we give a brief introduction to standard active-set methods.

Unlike for interior-point methods, no polynomial bound on the complexity of the
active-set method can be given. In fact, active-set methodscan display exponential-
time behavior on certain problems [115]. However, in practice they can outperform
interior-point methods on many problems and the number of iterations required is typ-
ically a small polynomial function of the dimension [198]. The key successs factor for
active-set methods is a good warm starting strategy, since the number of iterations to
reach the optimum is greatly influenced by the initial working set. In a typical active-
set method, one constraint is added or deleted from the working set per iteration. Even
when there is more than one blocking constraint. For example, if l constraints in the
initial working set are inactive at the solution, at leastl iterations are required to con-
verge. More thanl iterations may be required if constraints are added during iterations
but removed later.

The standard convex QP may be expressed as (see (2.49))

minz
1
2zTHz+gTz

s.t. Cz= d,

Pz≤ h,

(5.1)

with HessianH ∈ Rn×n symmetric positive semidefinite, gradientg ∈ Rn, equality
constraintsC∈ Rm×n, d ∈ Rm and inequality constraintsP∈ Rp×n, h∈ Rp.
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5.2. Overview of active-set methods for quadratic programming

5.2.1. Solving equality constrained QPs

Standard active-set methods proceed by adding or deleting constraints. Therefore,
factorization updates for the KKT matrix are typically employed and are crucial to the
efficiency of the active-set method. Here, we briefly introduce the three most popular
approaches to factorize and update the KKT matrix.

The direct factor-solve method

One approach to solving the equality constrained QP is to factorize the full KKT
matrix and solve the following KKT system using the factors

[
H C̄T

C̄ 0

][
∆z
−λ

]

=

[
−g
d̄

]

. (5.2)

HereC̄, d̄ represent the equality constraintsC,d augmented with the working set of
active inequality constraintsPi ,hi for i ∈W . Since the KKT matrix is indefinite,
the Cholesky factorization cannot be used.QRor LU factorization can be used, but
in order to exploit the symmetry theLDLT or indefinite Cholesky decompositionis
typically used,i.e. M = PLDLTPT. The direct factor-solve method using indefinite
Cholesky can be effective on some problems. However, if the KKT system is sparse
then this sparsity might be destroyed in theL factor unless the permutation matrix can
be chosen by prior knowledge of the KKT structure. In fact theunconstrained MHE
problem is an equality constrained QP and the square-root Riccati-based MHE algo-
rithm formalized in Theorem 3.2.6 follows exactly from a direct factor-solve method
using prior knowledge of the KKT structure to construct a structure-preserving fac-
torization. WhenH andC̄ are large and sparse, the KKT system may also be solved
using a sparse symmetric linear solver such as MA27 [50] or MA57 [51].

Range-space method

In the range-space method, the Hessian is used to eliminate the primal direction

C̄H−1C̄Tλ = C̄H−1g−d. (5.3)

This assumes that the Hessian is strictly positive definite.Note that this is not the case
for typical MHE problems.

Afterwards, the primal variables are recovered from the dual variables

H∆z = C̄Tλ −g. (5.4)
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The range-space method works well if the Hessian is easy to invert and the number of
equality constraints is small,i.e. yielding an effictive data compression byCH−1CT.

Null-space method

The null-space method allows a positive semi-definite Hessian. It builds on the obser-
vation that any vector can be decomposed in two orthogonal parts

∆z = Y∆zY +N∆zN, (5.5)

whereN ∈ Rn×(n−m) is the null-space matrix andY is any matrix such that
[

Y N
]

is nonsingular. By substituting this decomposition into the KKT system, the following
equations are obtained

C̄Y∆zy = d, (5.6)

HY∆zy +HN∆zN−C̄Tλ = −g. (5.7)

Multiplying the second equation byNT yields

NTHN∆zN = −NT (HY∆zy +g) . (5.8)

This system with reduced HessianNTHN∆zN ∈R(n−m)×(n−m) is always positive defi-
nite and can be solved using Cholesky decomposition. The null-space method works
well when the number of degrees of freedomn−m is small.

5.2.2. Primal active-set methods

Primal active-set methods start with finding a feasible inital iterate. If a (good) feasible
initial point is not immediately available, it can be computed by solving a feasibility
problem (typically an LP), which is termed aPhase I. Afterwards, equality constrained
QP are solved iteratively in which the original equality constraints are complemented
with the inequality constraints in theworking set(equation (5.2)). If∆z 6= 0, then the
objective function is decreased along this search direction. The goal is to select the
largest possible stepα, 0< α ≤ 1, that does not violate the constraints.

α = min

(

1, min
pT

i ∆z>0

hi− pT
i zj

pT
i ∆z

)

. (5.9)

where j denotes the active set iteration index. A constraint which rendersα < 1 is
called ablocking constraint. If there is a blocking constraint, it is added to the working
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set. If not, then a full step is takenα = 1 and the working set is left unchanged. Next,
optimality is checked. If there are negative multipliers, then the constraint with most
negative multiplier is removed from the working set and the iteration is repeated.
Hence, in every iteration primal feasibility is maintained. Dual feasibility is obtained
upon convergence.

There is flexibility in the choice of initial working set and each initial choice leads
to a different iteration sequence. If it is possible to obtain a good choice of the initial
working set from prior knowledge of the QP, then a substantial reduction in the number
of active-set iterations can be achieved.

5.2.3. Dual active-set methods

In the dual approach, a dual feasible initial iterate is required which is usually com-
puted cheaply. Hence a Phase I is avoided, which is the main motivation for dual
active-set methods. More specifically, the following initialization is dual feasible

z0 = −H−1g

y0 = 0

W = /0

wherey represents the multipliers for the inequalities in the working set.

We give a short description of the famous dual active-set method by Goldfarb and
Idnani [76], which is applicable to strictly convex QPs. An extension to convex QPs
was given by Boland [26]. At every iteration in a dual active-set method, a violated
constraint is selected to be added to the working set. Let us denote this constraint as
q. Then the step directions for the primal and dual variables are determined as follows

∆z =
[

H−1C̄T (C̄H−1C̄T)−1
C̄H−1−H−1

]

pT
q, (5.10)

∆λ = −
(
C̄H−1C̄T)−1

C̄H−1pT
q. (5.11)

Note that these step directions are very similar to the range-space approach (equations
(5.3) and (5.4)).

Theprimal-dual step lengthτ is chosen such that constraintq becomes active (primal
feasible), but small enough to maintain dual feasibility.

τ = min
{

τprimal,τdual
}

, (5.12)
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with

τprimal =







∞ if∆z= 0
pT

qzj−hq

pT
q∆z

otherwise
(5.13)

τdual = min
i∈W

{

−λ j
W

∆λi
| |∆λi > 0

}

. (5.14)

If the primal step direction∆z is non-zero, a primal-dual step is taken. There are
two possibilities. Ifτ = τprimal, a full primal step is taken and constraintq is added
to the working set. Ifτ = τdual, only a partial step can be taken, since the blocking
constraint determined by (5.14) must be dropped from the working set. If the∆z= 0,
constraintq cannot be be satisfied simultaneously with all other constraints in the
working set. Therefore, no primal step is taken. A partial dual step is taken, provided
τdual < ∞, such that one constraint can be removed from the working set. In case such
a constraint cannot be found, the QP is infeasible. Once a full step can be taken, a
new violated constraint is selected and added to the workingset and the procedure is
repeated. If there are no violated constraints, the algorithm successfully terminates.

Summarizing, in a dual active-set method, the KKT matrix is updated as constraints
are added or removed from the working set and the dual objective function is iter-
atively increased while maintaining dual feasibility. Thealgorithm terminates at a
primal feasible point.

5.2.4. qpOASES - an online active-set strategy

Ferreau et al [56, 57] have developed an online active-set strategy which is extremely
useful for parameterized successive QPs as it employs a homotopy path from one QP
to the next thereby allowing warm starting without a phase I.The original method
[56] uses a null-space method for solving the equality constrained QPs. An open-
source implementation of the method is available under the name qpOASES [55].
The method cannot be strictly classified as either primal or dual.

5.3. A Schur-complement active-set method for MHE

The main motivation for the proposed algorithm is that the unconstrained problem,
i.e. discarding inequalities, can be solved very efficiently (Chapter 3) and that in MHE
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only a small number of inequality constraints is expected tobe active at the solution.
The latter is due to the stochastic nature of the estimation problem: different obser-
vation sequences will yield (slightly) different solutions which prevents that certain
inequalities are always active. Constraints are often merely added to avoid divergence
or convergence to far-off local optima.

5.3.1. Outline of the active-set method

Let us recapture the standard QP formulation (5.1)

minz
1
2zTHz+gTz

s.t. Cz= d,

Pz≤ h,

which represents a linear constrained MHE problem if the optimization variables are
defined as

z= (x0,w0,x1 . . . ,wN−1,xN) ∈ R(N+1)n+Nm.

and the matrices are composed as follows

H =








S−1
0 S−T

0 +CT
0 C0 CT

0 H0

HT
0 C0 Im+HT

0 H0

. . .

CT
NCN








,

g =











−S−1
0 S−T

0 x̄+CT
0 h0

HT
0 h0
...

HT
N−1hN−1

CT
NhN











, b =−






f0
...

fN−1




 ,

C =






A0 G0 −In
. . .

AN−1 GN−1 −In




 ,

P =








Tx
0 Tw

0
. . .

Tx
N−1 Tw

N−1
Tx

N








, h =








t0
...

tN−1

tN








,

(5.15)

whereIn denotes the unit matrix of dimensionn.
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Furthermore, let us introduce multipliersλ ∈ Rnc associated with the equality con-
straintCz= b and multipliersy∈Rnp associated with the inequality constraintsPz≤h.

We denote thei-th row of the inequality constraints aspT
i z≤ hi and say that this

constraint isactiveatz0 if pT
i z0 = hi holds. Active-set algorithms search iteratively for

the binding set or set of active constraints at optimality. In every iteration a working
set is keptI ⊆ {1, . . . ,np}.

Then the KKT optimality conditions for QP (5.1) are given by (see Chapter 2):

Hz+g+CTλ + ∑i∈A pT
i yi = 0

Cz−b = 0,

Pz−h ≤ 0,

y ≥ 0,

yi(pT
i z−hi) = 0, i ∈ A

(5.16)

The dual problem of QP (5.1) is

maxz,y − 1
2zTHz+yTb

s.t. Cz= d,

Hz+g= PTy,
y≥ 0,

(5.17)

or, equivalently

maxy≥0 minz
1
2zTHz+gTz+yT(pT

Az−hA)

s.t. Cz= b,
(5.18)

A solution for the equality constrained problem, discarding inequalities, is found by
solving the KKT system

Kξ = r, (5.19)

with

K =

[
H CT

C 0

]

,ξ =

[
z
λ

]

, r =

[
−g
b

]

(5.20)

Now, for the definitions (5.15), this corresponds to theunconstrained MHE problem
and we have presented in Chapter 3 efficient Riccati based methods for this problem.
The active-set method we propose here, uses the unconstrained MHE solution as a
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starting point. Next, if there are violated inequality constraints, they are added to the
working setI ⊆ {1, . . . ,np}. A solution to the equality constrained QP

minz
1
2zTHz+gTz

s.t. Cz= b,

pT
I z≤ hI ,

(5.21)

can then be obtained by a Schur complement technique.

Proposition 5.3.1.Under the conditions of Lemma 3.2.4, the KKT matrix K is invert-
ible.

Proof. See Lemma 3.2.4.

Let us defineVT =
[
pT
I 0

]
. Then our aim is to find(znew,λ new) such that the in-

equality constraints are satisfied, or

VT

[
znew

λ new

]

≤ hI . (5.22)

By projecting onto the space of active constraints the following reduced QP is obtained

miny
1
2yTMy+cTy

s.t. y≥ 0,
(5.23)

with

M = VT(K−1V), (5.24)

c = −VT
[

z0

λ 0

]

+hI . (5.25)

Note thatM is the Schur complement ofK in the KKT matrix

[
K V

VT 0

]

.

Proposition 5.3.2. The reduced Hessian M= VTK−1V is positive semidefinite.
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Proof. First, note thatM exists by Proposition 5.3.1. SubstituteV andK from their
definitions (5.19) resp. (5.22)

M =
[
pT
I 0

]
[
H CT

C 0

]−1[
pI
0

]

, (5.26)

with H symmetric positive semidefinite. The proof is given in[139].

Corollary 5.3.3. As a consequence of Proposition 5.3.2 the reduced QP is convex.

After a solution of the reduced QP is obtained, the unconstrained MHE solution can
be expanded using a Schur complement technique as follows

[
znew

λ new

]

=

[
z0

λ 0

]

− (K−1V)y. (5.27)

Lemma 5.3.4.Given a pair(z,λ ) and a working set defined by matrix VT =
[
pT
I 0

]

and vector hI , the solution of the reduced QP (5.23) and Schur complement vector
update (5.27) yield a pair(znew,λ new) with znew satisfying the inequality constraints
in the working set and corresponding multipliers yI .

Proof. The KKT conditions of the reduced QP (5.23) are

My+c− µ = 0,

y ≥ 0,

µ ≥ 0,

yi µi = 0.

(5.28)

From the first equation we can eliminateµ , leading to

My+c ≥ 0,

y ≥ 0,

yi(My+c)i = 0,

, (5.29)
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By substitutingM andc from their definition, we get for the first equation

VTK−1Vy−VT

[
z0

λ 0

]

+hI ≥ 0,

⇔−VT(

[
z0

λ 0

]

−K−1Vy)≥−hI ,

⇔VT

[
znew

λ new

]

≤ hI ,

⇔ pT
I z

new≤ hI ,

which yields the following equivalent set of KKT conditionsfor the reduced QP

pT
I z

new ≤ hI ,
y ≥ 0,

yi(pT
i znew−hi) = 0.

(5.30)

Hence, the solution of the reduced QP gives us aznew which satisfies the inequalities
in the working set and corresponding multipliersyI .

Next, the new solution is checked with the inequalities. If there are (other) violated
inequalities, they are added to the working set and the procedure is repeated. The
procedure is summarized in Algorihtm 12. Convergence of thealgorithm is formalized
by Theorem 5.3.5. Figure 5.1 represents a flowchart of the proposed algorithm.

It is important to note that the working set is growing and inactive constraints are
only removed from the working set upon convergence, simply by checking which
constraints have multipliers equal to zero. This strategy prevents cycling.

Algorithm 12. [Active-set Schur-complement method]

1. Initialize iteration counter j= 0, working setI = /0 and compute the uncon-
strained solution

[
z0

λ 0

]

= (K−1r)

2. Add the violated inequalities toI

I = I ∪{i|pT
i z> hi}
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Figure 5.1.Flowchart for the Schur-complement active-set method.

Define VT =
[
pT
I 0

]
. Then we want to find(znew,λ new) such that

VT

[
znew

λ new

]

≤ hI

Define

M = VT(K−1V)

c =−VT

[
z0

λ 0

]

+hI

3. Solve the reduced QP

miny
1
2yTMy+cTy

s.t. y≥ 0

which yields the multipliers for inequalities (5.22).
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4. Expand the solution using a Schur complement technique

[
znew

λ new

]

=

[
z0

λ 0

]

− (K−1V)y

5. Verify that znew satisfies all other inequalities. If so, go to step 6. If not,
increase the iteration counter j← j +1 and go to step 2.

6. Solution obtained. Drop all inactive inequalities, i.e.with multipliers equal to
zero. This gives the set of active constraintsA, and corresponding components
of the constraint matrix and vector pA,hA.

Theorem 5.3.5.After termination of the algorithm all KKT conditions of theoriginal
QP (5.1) are satisfied.

Proof. To verify this, let us denote thenonzerovalues ofy as y∗. Then the KKT
conditions for QP (5.1) are given as

[
K VA

VT
A 0

][
ξ ∗

y∗

]

=

[
r

hA

]

, (5.31)

or after substitutingK andr





H CT PA

C 0 0
PT

A 0 0









z∗

λ ∗

y∗



=





−g
b

hA



 . (5.32)

Which is equivalent to (5.16), q.e.d.

Furthermore, from the following equation

[
z∗

λ ∗

]

=

[
z0

λ 0

]

−K−1VAy∗ (5.33)

it is clear how the constrained solution relates to theunconstrainedsolution.

Note the difference with a classical (primal) active-set Schur-complement method
which typically starts with a guess for the active setP̃, h̃ (without solving the un-
constrained system), solves a KKT system of the form

[
K P̃T

P̃ 0

][
ξ
π̃

]

=

[
r
h̃

]

,
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and then iteratively adds violated inequalities, one at a time, and updates the KKT
solutions. If there are many active constraints, this approach requires many iterations
which can be time consuming. The proposed Schur complement active-set method on
the other hand allows larger working set updates in every iteration.

5.3.2. MHE solution using Riccati recursions

The unconstrained MHE solution can be obtained efficiently using normal or square-
root Riccati recursions as described in detail in Chapter 3.These methods comprise
of a forward matrix recursion, which factorizes the KKT matrix, combined with a
forward vector solve followed by a backward vector solve. The normal Riccati method
essentially factorizes the KKT system as anLU factorization (Lemma 3.2.1), while
the square-root Riccati method represents anLDLT factorization (Lemma 3.2.5). A
square-root version using structuredQR-factorizations was shown to exhibit excellent
numerical robustness properties (see Chapter 3). These MHEmethods scale linearly
with the horizon length.

5.3.3. Forward and backward vector solves

In order to calculated the Schur complement matrixM (5.24), we need to solveK−1V.
Fortunately, from the Riccati based solution of the unconstrained MHE problem we
already have a factorization ofK−1. If the square-root Riccati method is employed it
is given as

K−1 = L−TD−1L−1 (5.34)

Recall thatD = blkdiag(In+m,−In, . . . , In+m,−In, In), henceD−1 = D.

Thus, to computeVT(K−1V), we need to solve

LX = V, (5.35)

change the sign of the components inX associated with the multipliers (let us denote
it X1), and left-multiply with the originalXT.

Equation (5.35) can be solved using direct forward solves employing square-root fac-
tors (see Theorem 3.2.6). Furthermore, note thatV has special structure. It only
contains non-zeros at the locations of the violated constraints. Therefore, only partial
forward solves are needed starting at the location of the constraint violation, which
further reduces the computation times.
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After obtaining the reduced QP solutiony, the primal and dual variables are updated
using equation (5.27). Here, we need to computeK−1Vy. This is done by multiplying
the already obtainedX1 = D−1L−1V with y which yields a vector. And apply one
direct backsolve (see Theorem 3.2.6).

For comparison, the dual active-set algorithm for MPC by Axehill et al [7, 8] which
applies gradient projection to the dual MPC problem and employs a (forward) nor-
mal Riccati recursion requires one partial forward solve and one backward solve per
active-set change. The latter is avoided in our algorithm bythe Schur complement
expansion.

5.3.4. Gradient projection method

Notice the special form of the reduced QP (5.23): only non-negativity constraints and
no equalities. Several methods exist for solving these types of optimization problems.
We propose a gradient projection method which is designed tomake rapid changes
to the active set allows to exploit the factorizations already computed in previous
iterations at the highest and lowest level by Cholesky updates. The method was also
adapted to work on semidefinite matrices.

The gradient projection is described in detail below and wascompared with two other
QP methods: qpOASES, an open-source C++ implementation of the online active
set strategy developed by Ferreau et al [56, 57], and a primalbarrier interior-point
method. The reduced QP is indeed also an ideal case for a primal barrier interior-point
method, since any point in the positive orthant is a valid starting point. Hence, a Phase
I can be omitted. With suitable values for the initial barrier parameter and descreasing
factor, we observed that the algorithm typically convergesafter only 10-20 iterations.
Unfortunately, factorizations cannot (easily) be re-usedin the interior-point method.

The presentation of the gradient projection method is largely a summary of the ones
presented in [136] and [7]. The gradient projection method consists of two stages, see
Figure 5.2. In the first stage, the Cauchy pointxc is computed by searching along a
piecewise linear path starting from the current iterate in the steepest descent direction.
The working set is then defined as the set of active constraints at the Cauchy point.
By this stage, global convergence of the gradient projection method is guaranteed.
However, the convergence rate can be improved by adding a second step in which a
QP in the subspace defined by the working set is solved approximately.
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Figure 5.2.The figure illustrates that it is not sufficient to project theunconstrained minimizer
in order to solve the non-negativity constrained QP. The contour lines of the quadratic objec-
tive are plotted in gray. The constrained solution is denoted x∗. The unconstrained minimizer
is denotedxu and its projection is denotedx1. The gradient projection method first computes
the Cauchy pointxc by searching along a piecewise linear path starting from thecurrent iter-
ate in the steepest descent directiondsd. This step guarantees global convergence. Next, the
convergence rate is improvedi.e. by a projected Newton step. The gradient projection method
converges in two iterations for this example.

Cauchy point computation

For the non-negativity constrained QP (5.23), the piecewise linear path from the cur-
rent pointxk in the steepest descent directionp is given by

x(t) = [xk + t p]+, (5.36)

where the scalart parametrizes the path and where the projection onto the positive
orthant is defined as

[z]+i =

{
zi , zi ≥ 0
0, zi < 0.

(5.37)

The Cauchy point is then computed as the first local minimizerof a univariate piece-
wise quadratic function. To find this minimizer, the breakpoints are computed, and
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then each of the line segments is examined seperately until aminimizer is found. The
breakpoints are given explicitly as [7, 136]

t̄i =

{
xk
i

pi
, pi < 0

∞, pi ≥ 0.
(5.38)

The components ofx(t) can then be expressed as

xi(t) =

{
xk

i + t pi, t < t̄i
0, otherwise.

(5.39)

Duplicate values and zeros have to be removed and the remaining values are sorted
into an ordered set such that 0< t1 < t2 < .. . < t f . On each interval[0,t1], [t1,t2],
. . .,[t f−1, t f ], the objective function is quadratic and can be optimized analytically if
the upper and lower bounds are temporarily discarded. For the interval[t j−1,t j ] it
follows that

x(t) = x(t j−1)+ ∆t p̂ j−1, ∆t ∈ [0,t j − t j−1] (5.40)

with

p̂ j−1
i =

{
pi , t j−1 < t̄i
0, otherwise.

(5.41)

Inserting this into the objective function results on a scalar unconstrained quadratic
optimization problem on each interval, which can be solved analytically. After such
an unconstrained minimizer for one of these quadratic subproblems has been found,
it has to belong to the current interval,i.e. be att j−1+∆t∗, ∆t∗ ∈ [0,t j− t j−1), or be
at the boundaryt j−1. In all other cases, we move on to the next interval and continue
the search.

Projected Newton method

After the Cauchy point has been computed, the working set is defined as the compo-
nents ofxc which are at the bounds,i.e. which are zero. The following QP can be
formulated
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minz
1
2xTMx+cTx

s.t. xi = xc
i , i ∈ A(xc),

xi ≥ 0, i /∈ A(xc)

(5.42)

Solving this QP exactly may be as hard as solving the originalQP. Therefore, it is com-
monly approximated by an equality constrained QP ignoring the bounds and solved
iteratively usinge.g. a projected conjugate gradient method or a projected Newton
method [7, 15].

minz
1
2xTMx+cTx

s.t. xi = 0, i ∈W ,
(5.43)

whereW denotes the working set. The projected Newton method has been opted for,
motivated by the fact that it yields a Newton step in the subspace defined by the active
components and thereby allows a substantial improvement tothe convergence rate
obtained from the Cauchy steps. Indeed, the gradient method(Cauchy steps) typically
converges in a zig-zag path yielding slow convergence. By adding a Newton step
with quadratic convergence rate, the performance of the algorithm can be drastically
improved. This is illustrated in Figure 5.3 for a problem of order 50 with 31 active
constraints and condition numberκ(M) = |λmax(M)|

|λmin(M)| = 1e4. The two-stage gradient
projection method converges in less than 5 iterations.

The KKT conditions for QP (5.43) are given by

mT
i x =−ci, i /∈W

mT
i x−λ =−ci, i ∈W

xi = 0 i ∈W
(5.44)

Hence, a Newton step in the subspace defined by the non-zero components remains
to be calculated. This can be done by a Cholesky factor-solve. However, since the
matrixM can be positive semidefinite, a modified outer product Cholesy factorization
[77, page 148] is developed. It is described in Algorithm 13.Note that when a zero
pivot is encountered nothing is to be done. This is verified by[77, Theorem 4.2.6].

Algorithm 13. [Cholesky decomposition for positive semidefinite matrices.]

for i = 1 to ndo
if L(i, i) > 0 then

L(i, i) =
√

L(i, i)
L(i +1 : n, i) = L(i +1 : n, i)/L(i, i)
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for j = i +1 to ndo
L( j : n, j) = L( j : n, j)−L( j : n, i)L( j, i)

end for
end if

end for

The projected Newton method proceeds by finding a Newton stepin the subspace
defined by the working set. If negative components of the minimizer are encoutered,
they are added to the working set and a new problem is solved. In contrast to an
ordinary active set method, several constraints can be added in every iteration.

Algorithm 14. [Projected Newton algorithm]

I = {i|xc
i = 0}

J = {1, . . . ,n}
while p > 0 do
J = J \I
Lr = rows and columns deletion (Algorithm 15)(L,I )

Solve lower triangular system : Lr x̃ =−cJ
Solve upper triangular system :(Lr)Txr = x̃
Set p= 0
for i = 1 to length(J ) do

if |xr
i |< 1e−14 then
I = I ∪ J (i)

else ifxr
i < 0 then

I = I ∪ J (i)
p = p+1

else
xJ = xr

i

end if
end for

end while
xI = 0
λI = MI ,:x+cI

5.3.5. Updating/downdating Cholesky factorizations

In this work we further improve the performance of the projected Newton method
by re-using factorizations. Note that successive Newton step computations involve
reduced Hessian obtained by deleting rows and columns associated to the working
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Figure 5.3.The convergence improvement of the projected Newton step ofthe gradient projec-
tion method is illustrated. Like in the unconstrained case,the gradient descent method typically
converges in a zig-zag path yielding slow convergence (dashed line). By adding a Newton step
with quadratic convergence rate, the performance of the algorithm can be drastically improved
(solid line). The plot was generated for a non-negativity constrained QP of dimension 50 with
31 active constraints. The method converged in less than 5 iterations.

set. The Cholesky decomposition can be updated to incorporate low rank additions or
downdated for low rank subtractions [163].

Deleting a row and column

Deleting row and columnk of a matrix actually means setting all entries to zero except
for the diagonal entry. which is set to an arbitrar value [40]. The original factorization
can be written as





C11 c12 CT
31

cT
12 c22 cT

32

C31 c32 C33



=





L11

lT12 l22

L31 l32 L33









LT
11 l12 LT

31
l22 lT32

LT
33



 (5.45)
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After deleting row and columnk, we have





C11 0 CT
31

0T ρ2 0T

C31 0 C33



=





L11

0T ρ
L31 0 L̄33









LT
11 0 LT

31

ρ 0T

L̄T
33



 (5.46)

Hence, we only need to set row and columnk of L̄ to zero, set the diagonal entry toρ
and computēL33.

For this term, the original factorization is

L33LT
33 = C33−L31LT

31− l32lT32 (5.47)

while the new factorization is

L̄33L̄T
33 = C33−L31LT

31 (5.48)

Combining these equations, we observe that deleting a row and column is equivalent
to a rank-1 update

L̄33L̄T
33 = L33LT

33+wwT (5.49)

with w = l32.

Several methods for rank modifications of a Cholesky have been proposed in the lit-
erature. A review can be found in [69]. Here we disucss one of the most stable
techniques, due to Stewart and available as thedchud routine inLINPACK [48]. See
[163] for a more detailed discussion.

The idea is to apply Givens rotationsJk (see Appendix B) to the augmented matrix

Jn . . .J1

[
LT

wT

]

=

[
L̄T

0

]

(5.50)

leading toL̄ L̄T = LL T +wwT. If a rotation results in̄Lkk < 0, we simply flip signs of
the Givens rotation factorsck := −ck andsk := −sk. The computation takes roughly
O(n2) flops (compared toO(n3) for a full factorization).

Algorithm 15. [Row and column deletion]

I = {i|xc
i = 0}

J = {1, . . . ,n}
for i = 1 to length(I ) do
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w = L(I (i)+1 : end,I (i))
L(I (i),1 : I (i)−1) = 0
L(I (i)+1 : n,I (i)) = 0
L(I (i),I (i)) = 1
L(I (i)+1 : n,I (i)+1 : n) = rank −1 update(L(I (i)+1 : n,I (i)+1 : n),w)

end for

Algorithm 16. [Rank-1 update]

for i = 1 to ndo
if L(i, i) 6= 0 then

if |w(i)|> |L(i, i)| then
t =−L(i, i)/w(i)
s= 1/

√
1+ t2

c = st
else

t =−w(i)/L(i, i)
c = 1/

√
1+ t2

s= ct
end if
a = cL(i, i)−sw(i)
if a < 0 then

c =−c
s=−s
a = cL(i, i)−sw(i)

end if
b = sL(i, i)+cw(i)
L(i, i) = a
w(i) = b
for j = i +1 to ndo

a = cL(i, i)−sw(i)
b = sL(i, i)+cw(i)
L( j, i) = a
w( j) = b

end for
end if

end for

We apply these updates in the projected Newton method where in every iteration one
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or multiple rows are deleted. Afterwards, the updated factors are used to solve

L̄Tx
′

= −c (5.51)

L̄x = −x
′

(5.52)

At the higher level, we apply rank-1 updates to remove the inactive constraints from
the active-set upon convergence of the Schur complement active-set method (see Fig-
ure 5.1).

Adding rows and columns

As we will show below, adding a row and column to a matrix corresponds to a negative
rank-1 modification or downdatēLL̄T = LL T−wwT. This connection between modi-
fication of a matrix and modification of the factorization is somewhat counterintuitive.
Removing elements from a matrix correspond to an update of the factorization, while
adding elements corresponds to a downdate.

In the context of our Schur complement active-set method, multiple rows and columns
are added in every iteration. Hence, we are interested in block addition of the existing
Cholesky factor of the reduced Hessian.

Consider an existing factorization

C11 = L11LT
11 (5.53)

and suppose it is extended as follows

[
C11 CT

21
C21 C22

]

=

[
L11

L̄21 L̄22

][
LT

11 L̄T
21

L̄T
22

]

(5.54)

=

[
L11LT

11 L11L̄T
21

L̄21LT
11 L̄21L̄T

21+ L̄22L̄T
22

]

(5.55)

Hence the new factors can be computed as follows

L21 = C21L−T
11 (5.56)

L22LT
22 = C22−L21LT

21 (5.57)

The latter is indeed a downdate. It can be calculated using hyperbolic rotations po-
tentially in combination with Givens rotations for numerical stability, we refer to
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[21] for a detailed treatment. In our case, we do not have a factorization ofC22 =

L22LT
22. Therefore, it makes more sense to compute the Cholesky factorization of

C22− L21LT
21. Since the subtraction can give negative diagonal entries,a check is

made before executing the factorization.

5.3.6. Computational burden

Let nA denote the number of inequalities in the active set andnit the number of (outer)
active-set iterations. Then the computational burden is summarized in Table 5.1. Here
we subdivide the work needed for solving the unconstrained problem and the work
needed for the constrained solution, i.e. the iterations ofthe active-set method.

Table 5.1.Overview of the computational burden subdivided into the unconstrained problem
(unc) and the constrained problem (con). The operations are: a Riccati recursion, a forward
vector solve (fsolve), a partial forward vector solve (partial fsolve),a backward vector solve
(bsolve) and solving a reduced QP (rQP).

Riccati fsolve partial fsolve bsolve rQP
unc 1 1 0 1 0
con 0 0 nA nit nit

total 1 1 nA nit +1 nit

5.4. Numerical examples

5.4.1. Waste water treatment process

Consider again the waste water treatment problem presentedin Section 4.4.2. The
state and disturbance estimates are identical (up to numerical accuracy) to those ob-
tained with the interior-point MHE method and were shown anddiscussed in Chap-
ter 4. Hence, we will only compare the performance of both algorithms and discuss
the working of the Schur complement active-set method. The computation times are
shown in Figure 5.4. It can be seen that the algorithm needs only 0.2 ms if an hori-
zon of 10 is used. Hence, the algorithm is about a factor 2 faster than a comparable
interior-point method, see Section 4.4.2.

Figure 5.5 shows that the algorithm typically needs only 2 or3 active-set iterations.
Once the number of active constraints stabilizes, also the number of constraints in the
final working set stabilizes around the same number.
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Figure 5.4.Computation times in seconds for the waste water treatment application and MHE
with horizon 10. The Schur complement active-set MHE method(dashed line) is about a factor
2 faster than the interior point method using ten iterations(solid line).

5.5. Conclusions

In this chapter a Schur complement active-set method was presented. It uses as the
starting point the unconstrained MHE solution which can be computed efficiently us-
ing a square-root Riccati based algorithm. By projecting onto the reduced space of
active constraints a reduced non-negativity constrained QP is obtained. For this, a
gradient-projection method using projected Newton steps and Cholesky factorizations
is proposed. Cholesky updates are employed in the projectedNewton iterations. Once
a solution to the reduced QP is found, it is used to update primal and dual variables us-
ing a Schur complement technique. The method allows multiple updates to the active
set per iteration. Between (outer) active set iterations the reduced Hessian changes
by adding some constraints to the working set. These changesare exploited by a
Cholesky downdate. The performance of the algorithm was demonstrated by applica-
tion of a C implementation to some numerical examples.
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Figure 5.5.Schur complement active-set method applied to the waste water treatment process
for MHE with horizon 10.Top: Number of constraints in the final working set (solid line) and
number of active constraints (dashed line).Bottom: Number of (outer) active-set iterations.
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CHAPTER 6
Convex MHE formulations

The focus in this chapter is on two types of robust convex MHE formu-
lations which are particularly useful in practical applications. First,
robustness with regards to occasional outliers is investigated by means
of Huber penalty MHE andℓ1 penalty MHE. The Huber formulation is
shown to have excellent performance in terms of outlier rejection and es-
timation accuracy. Second, the joint estimation of states and parameters
or inputs is considered. The resuling MHE problem is formulated as a
convex cardinality problem yielding robustness with respect to rapid pa-
rameter changes, i.e. jumps or break points. It is shown thatthis leads
to an MHE problem withℓ1 penalty on the parameter variation and a
small number of subsequent corrections to theℓ1 norm MHE problem.
Significant improvements in estimation performance are obtained using
this procedure and a polishing step.

6.1. Robust estimation using Huber penalty function

Traditionally, state estimators are based on a least-squares penalization of residuals.
For linear unconstrained systems, this leads to the celebrated Kalman filter. For con-
strained and/or nonlinear systems, moving horizon estimation (MHE) [44, 59, 89,
108, 134, 146, 155, 157, 202], has emerged as an attractive alternative. In MHE, a
finite horizon optimization problem is solved in every time step. Past data outside the
window is summarized in a so-calledarrival cost. When a new measurement becomes
available, the arrival cost is updated, the window is shifted and the process is repeated.

The least-squares approach, however, is not always suitable when the process is char-
acterized by structural defects in the model or by imperfectmeasurements. In such
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cases, robust methods, which are less sensitivive to large errors, are desirable. In
robust statistics, estimators involving explicit or recursive optimization over (robust)
penalty functions are referred to asM-estimators[103]. According to Zhang [205] a
robust esimator should satisfy the following specifications: (1) have a bounded influ-
ence function,i.e. derivative of the penalty function, and (2) return unique estimates,
which implies that the norm function should be strictly convex. Theℓ1 norm is such
robust measure. However, in the least absolute deviation orℓ1 approach, gross errors
can still have a significant impact on the estimates as they are given equal weight as
small residuals. A generalization of this is the least powers method orℓp approach, us-
ing functions|u|p which are convex forp≥ 1 [29]. The selection of an optimal value
of p for robust estimation has been ivestigated, and forp around 1.2 good estimates
may be expected [154, 205].

Unfortunately, both the least absolute deviation and the least powers approach tend to
produce more zero residuals than can be statistically explained in many cases. These
drawbacks have motivated research into even more robust approaches.

Hybrid ℓ1 - ℓ2 combine robust treatment of large residuals with Gaussian treatment
of small residuals. The Huber penalty function, introducedin 1973 by Peter Huber
[102], is one such hybridℓ1 - ℓ2 norm. It has been found very practical for robust
estimation by several authors in certain areas.

For example, in geophysics, Guitton and Symes [29, 84, 85] have applied it to seismic
data represented by a linear regression model,i.e. a robustinverse problem

min
x
‖Ax−b‖huber (6.1)

instead of the standard least-squares problem

min
x
‖Ax−b‖2 (6.2)

The authors do not employ the QP reformulation (see Section 6.1.2), but instead di-
rectly apply standard nonlinear optimization to the Huber function. Since the Huber
function is not twice differentiable, the convergence of any Newton method might be
jeopardized. Nevertheless, the authors propose a quasi-Newton method using limited-
memory BFGS updates and report satisfying results.

In the area of power engineering, Kyriakides et al [122] haveapplied the Huber
penalty to estimate the parameters of a synchronous generator using a linear regres-
sion model with structural defects,i.e. rank deficiency, in the process matrix. They
present a statistical test and conclude that the Huber method outperforms the least-
squares method especially when several parameters are unknown. Jabr [104] applied
the Huber norm in the context of power system state estimation with output resid-
ual penalization only. The author derives the quadratic reformulation and applies a
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primal-dual interior-point method for offline state estimation with equality and in-
equality constraints. The method is applied it to a network model of IEEE bus test
systems. A posterior analysis of the performance and ability to detect outliers of the
method is performed for two fixed values of tuning parameter for the Huber function.

Robust model identification using theℓ1 norm and the Huber function with application
to type 1 diabetes modelling has recently been presented by Finan et al [58].

Wang et al [193] present a data dependent heuristic for determining the optimal tun-
ing parameter for the Huber penalty and demonstrate their method on some robust
regression examples.

Estimation problems using Huber penalty function have beenapproximated often
throughout the literature by iteratively reweighted least-squares (IRLS), which avoids
explicit optimization and thereby allowed its applicationto large offline problems or
to online problems. With the advances in numerical optimization and increasing com-
puting power, it has been applied using optimization methods in more recent years,
although applications in state estimation are rare and no publications of Huber-based
MHE are known to the author. The aim of the work presented in this chapter is
twofold: first, we show that the use of Huber penalty functions in online estimation
can yield an estimator with excellent robustness with regards to outliers and can be
used to identify and reject otuliers, and second, we show that Huber penalty MHE
can be solved efficiently using (square-root) Riccati basedmethods in combination
with interior-point (Chapter 4) or active-set (Chapter 5) methods allowing computa-
tion times comparable to standard MHE.

6.1.1. Robust moving horizon estimation

Let us consider the general batch estimation problem introduced in Section 1.4.2.

minx,w,v ρ(S−T
0 (x0− x̂0))+ ∑T−1

k=0 ρ(W−T
k wk)+ ∑T

k=0 ρ(V−T
k vk)

s.t.
xk+1 = fk +Akxk +Gkwk, k = 0, . . . ,T−1,

yk = hk +Ckxk +vk, k = 0, . . . ,T,

(6.3)

where the common least-squares terms are replaced with arbitrary penalty functions
ρ(·) not necessarily identical for every term or for everyk. S0,Wk andVk are weighting
matrices.

In caseρ(·) is the squaredℓ2 norm and the weighting matrices are chosen as the
Cholesky factors ofP0, Qk andRk respectively, the above estimation problem equals
the standard least-squares batch estimation problem (1.13).
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The problem (6.3) can be complemented with constraints, seeSections 4 and 5.

Traditional least squares estimation or smoothing ignoresmeasurement anomalies and
therefore can produce biased estimates in the presence of outliers. Robust estimators
relying on Huber penalty functions or other hybridℓ1 - ℓ2 type penalty functions are
less affected by extreme values and provide heuristics for identifying outliers. The
main purpose of the work presented here is to show that MHE with good robustness
properties may be obtained in a computational time comparable to the least squares
approach. In particular, the presented robust estimator leads to a convex optimiza-
tion problem for which a custom method was developed that scales linearly with the
horizon length.

Several robust measures including the Huber penalty are discussed in more detail in
Appendix C. From this discussion it follows that the Huber penalty is a robust and
stable measure. In contrast, theℓ2 norm is not robust and theℓ1 norm is not stable.
Furthermore, the Huber penalty is the best convex approximation to the quadratic-
constant penalty which is the most robust measure. in this chapter we present a Huber
based MHE method and compare it to the standard least-squares formulation and an
ℓ1 based MHE method.

6.1.2. The Huber penalty function

The Huber penalty function was first proposed by and therefore named after American
statistician Peter Huber ([102]). It is given by

ρ(u) =

{
u2 |u| ≤M
M(2|u|−M) |u|> M,

(6.4)

Note that the Huber function isnot a norm, because the triangle inequality is not
satisfied.

The Huber penalty function has been found very practical forrobust estimation. This
penalty function agrees withℓ2 for u smaller thanM, and then reverts toℓ1-like linear
growth for largeru. For a constant outlier contamination rate, the choice of tuning
parameterM does not influence the estimation result much. If required, the tuning
parameter can be simultaneously optimized to improve the estimator performance.
The 95% asymptotic efficiency on the standard normal distribution1 is obtained with
a tuning constantM = 1.345 [103, 205].

We cannot directly apply Newton’s method to the estimation problem (6.3) if non-
smooth measures likee.g. the Huber penalty function, are employed. However, the

1Meaning that 95% of the data is weighted appropriately in case the data is standard normally dis-
tributed.
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Figure 6.1.Approximation of the Huber function with parameterM = 1 by a barrier function
with different values for the barrier parameterκ.

problem of optimizing a variable in Huber sense can be reformulated as a quadratic
program (QP). Consider a Huber penalized variable2 ‖u‖huber and introduce (scalar)
auxiliary variablesα andβ such that

D = {(u,α,β ) |− (α + β )≤ u≤ (α + β ),0≤ α ≤M,0≤ β}.

Then

‖u‖huber= inf
D

(α2 +2Mβ )

Hence, minimizing‖u‖huberis equivalent to the following QP

minu,α ,β α2 +2Mβ
s.t. −(α + β )≤ u≤ (α + β ),

0≤ α ≤M,

0≤ β .

(6.5)

This QP can be solved with interior-point methods or active-set methods. First, let us
consider a primal barrier method (see Chapter 4 or references [29, 136, Chap. 11]).
Replacing the inequality constraints with a barrier term inthe objective results in the
approximate problem

minu,α ,β α2 +2Mβ + κφ(u,α,β ) (6.6)

2Note that the penalization of a variable, i.e.‖u‖huber by itself is not very useful. The trivial example
is given here to simplify the derivation and illustrate the variables involved. It becomes useful when it is
employed in an optimization problem, for example minx‖Ax−b‖huber
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6.1. Robust estimation using Huber penalty function

whereκ > 0 is a barrier parameter, andφ is the log barrier associated with the in-
equality constraints, defined as

φ(u,α ,β) =

{
− log(β)− log(α(M−α))− log(−u−α−β)− log(u−α−β), (u,α ,β) ∈D
∞ otherwise.

As κ approaches zero, the solution of (6.6) converges to the trueHuber penalty func-
tion, as depicted in Figure 6.1. In a basic primal barrier method, we solve a sequence
of problems of the form (6.6), using Newton’s method starting from the previously
computed point, for a decreasing sequence of values ofκ . A typical strategy is to
reduceκ by a factor of 10 each time a solution of (6.6) is computed (within some
accuracy). See Chapter 4 for a more detailed discussion of interior-point methods.

Alternatively, the QP (6.10) can be solved using the Schur-complement active-set
method of Chapter 5. The Huber penalty implies two additional variables and five
additional linear constraints of which three are bound constraints.

6.1.3. The multivariate Huber penalty function

The huber penalty is typically applied componentwise. However, this assumes the
components are independent,i.e. diagonal covariance or weighting. As stated by
Huberunivariate techniques should not be applied to multivariate data because of the
existence of correlations between the variables[103]. Sometimes multivariate outliers
are simply not detectable by univariate techniques [97].

The multivariate formulation of the Huber penalty for a vector x∈Rn is given as

ρmvhuber(x) =

{
‖x‖22 ‖x‖2≤M
M(2‖x‖2−M) ‖x‖2 > M.

(6.7)

Minimizing ρmvhuber(x) is equivalent to solving an second order cone program (SOCP)
(see Section 2.3.6)

minx,α ,β ‖α‖22 +2Mβ
s.t. ‖x−α‖2≤ β ,

‖α‖2≤M,

α ≥ 0,

β ≥ 0,

with auxiliary variablesα ∈ Rn andβ ∈ R.

This multivariate or circular Huber penalty has been formulated by other researchers,
e.g.[9, 28]. It is also available as a function incvx, a Matlab frontend for disciplined
convex programming which uses SeDuMi or SDPT3 as underlyingconvex solver,
developed by Grant, Boyd and Ye [81, 82].
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Figure 6.2.Graphical representation of the Huber penalty function applied componentwise (top
figures) versus the multivariate Huber penalty function (bottom figures)

A graphical representation of the componentwise versus themultivariate Huber func-
tion is given in Figure 6.2.

Figure 6.2 shows the computation times in seconds usingcvx for evaluating the mul-
tivariate Huber function and the componentwise univariateHuber function for varying
vector lengths. Computing times correspond to an Intel Core2-Duo processor at 2.13
GHz with 2 MB cache and 2 GB RAM, running Matlab version R2010bandcvx ver-
sion 1.21. For both problems the underlying solver is SeDuMi. It can be seen that
the multivariate form can be motivated not only by statistical arguments but also by
computational complexity. For a vector of length one, the computation times for the
SOCP and for the QP are comparable. However, for vectors of length n, the multi-
variate form involves the solution of one optimization problem with n+ 1 variables
while the componentwise application of the univariate forminvolves the solution ofn
optimization problems with 2 variables. This implies a linear scaling of the latter with
vector length while the complexity of the former is almost unaffected by the vector
length, as can be seen from Figure 6.2.

6.1.4. Selecting the tuning parameter

As noted before, the valueM = 1.345 yields 95% asymptotic efficiency on the stan-
dard normal distribution, so it is an obvious choice. As we will show in the numerical
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Figure 6.3. Computation times in seconds usingcvx for evaluating the multivariate Huber
function (dashed line) and the componentwise univariate Huber function (solid line) for varying
vector lengths.

examples below, the optimal tuning parameter may change depending on the data. We
investigate two methods for selecting the optimal tuning parameter.

A first method is obtained by simultaneously optimizing the tuning parameter. The
resulting optimization problems are still convex,i.e. QP and SOCP for the univariate
and multivariate Huber functions respectively.

A second method was proposed by Wang et al [193] and is based onstatistical prop-
erties of the Huber function. They define an efficiency factorbased on the influence
function, which was also proposed by other researchers including Huber [103], and
derive a data driven estimator for this efficiency factor. The value of tuning factor
yielding a maximum efficiency factor is selected. However, since the estimator func-
tion is non-smooth, a grid search over a number of tuning parameter values is sug-
gested.

6.1.5. Huber penalty MHE

Problem (6.6) is a convex optimization problem with smooth objective. Employing
this approximate Huber penalty function in problem (6.3) again leads to an equality
constrained convex program that can be solved efficiently using Newton’s method.
Consider the problem of state estimation with outlier contaminated measurements.
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Then the batch estimation problem can be formulated as

minx,w,v ‖S−T
0 (x0− x̂0)‖2 + ∑T−1

k=0 ‖W−T
k wk‖2 + ∑T

k=0‖V−T
k vk‖huber

s.t. xk+1 = fk +A xk +G wk, k = 0, . . . ,N−1,

yk = hk +Ck xk +vk, k = 0, . . . ,N.

This problem can be reformulated as a QP using the result of Eq. (6.10) and solved
e.g.by an interior point method.

Similarly, if the multivariate Huber penalty is used, the problem can be formulated
with two second order constraints per penalized vector, andsolved as an SOCP.

6.1.6. Smooth hybrid ℓ1 - ℓ2 MHE

Another hybridℓ1 - ℓ2 measure which approximates the Huber penalty is given by

ρsh(u) = M(
√

M2 +u2−M), (6.8)

and is referred to assmooth hybrid penalty function.

Optimization over this penalty function also yields an SOCP

minu ρsh(u) = minu,t t s.t.‖
[
1 u

M

]
‖2−M2≤ t. (6.9)

6.1.7. L1 norm MHE

Another robust method for state estimation in the presence of outlier contaminated
measurements is byℓ1 norm penalization

minx,w,v ‖S−T
0 (x0− x̂0)‖2 + ∑T−1

k=0 ‖W−T
k wk‖2 + ∑T

k=0‖V−T
k vk‖1

s.t. xk+1 = fk +A xk +G wk, k = 0, . . . ,N−1,

yk = hk +Ck xk +vk, k = 0, . . . ,N.

Minimizing the‖u‖1 norm is equivalent to solving the following LP

minu,t t
s.t. −u≤ t,

u≤ t.
(6.10)

Hence, the MHE formulation is adapted by(T + 1)ny additional variables with as-
sociated linear terms (instead of quadratic) in the objective and twice this number
additional bound constraints.
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6.1. Robust estimation using Huber penalty function

6.1.8. Numerical example

In order to to evaluate the robustness of Huber based MHE and investigate the in-
fluence of the tuning parameterM, we compare the mean squared errors of standard
least-squares MHE, Huber penalty MHE andℓ1 norm MHE. In our simulations, we
consider a fixed random LTI system of order 4 and random noise realizations. The
system is disturbed with normally distributed process noisew and output noisev with
covariances respectivelyQ = 0.01I4 and R = 1. We assume that the measurement
noise is contaminated with added sparse noise,i.e. occasional peaks due to sensor fail-
ure. Two contamination types are considered: two-point contamination which yields
values−7 or 7 with equal probability ofλ/2, and contamination with a distant nor-
mal distributionN (0,7). Different contamination rates are considered:λ = 1%, 5%,
10%, 20%, 30% and 40%.

The results on independent test sets for batch estimation of200 samples (in both train-
ing and test set) are shown in Table 6.1. It can be seen that theHuber method with
optimized tuning constant almost always outperforms theℓ2 andℓ1 methods. Note
that theℓ1 method performs well over a wide range of contamination rates, which is
surprising especially for the low contamination rates, andmay be attributed to the fact
that the weighting of theℓ1 norm is low compared to the other terms,i.e. the initial
condition and the process disturbance terms. Note also thatthe Huber method per-
forms well for a wide range of tuning parameter values, but inthe case of two-point
contamination a slight improvement is achieved by optimal tuning of the value.

Next, let us analyse the capability of the robust Huber MHE method to detect outliers
and compare this with the robust smooth hybrid MHE, which should yield similar
performance but is characterized by a smooth transition betweenℓ1 andℓ2 behavior.

Consider thereto the same random system as before, contaminated with normally dis-
tributed sparse noise sampled fromN (0,5) with occurence rate 2.5%. Figure 6.4
shows a typical time evolution and probability density. Oursimulations are for batch
estimation with 500 samples and a prediction horizon of 50. The results are averaged
over 100 runs.

The mean squared error is shown in Figure 6.5 for the standardleast squares estima-
tor, the Huber estimator and the smooth hybrid estimator. Itis clear that the added
robustness of the Huber penalty and the smooth hybrid penalty reflects in improved
state estimation performance. Moreover, the Huber estimator outperforms the smooth
hybrid estimator in a wide range of tuning parameter values.

It can be seen from Figures 6.6-6.8 that the ability to detectoutliers is comparable
for both methods. The smooth hybrid approach yields more false positives when
the cut-off point is relatively small, which can be explained by the smooth influence
function. On the other hand, it can be seen that for relatively large values of the tuning
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Table 6.1.Mean squared errors (MSE) evaluated on an independent test set for (1) standard
least-squares orℓ2 norm MHE, (2)ℓ1 norm MHE, (3) Huber MHE with fixed tuning constant
M = 1.345, (4) Huber MHE with optimized tuning constant, and (5) Huber MHE with tun-
ing constant determined by the data-driven heuristic. Two types of outlier contamination are
considered and the contamination rateλ is varied from 1 % to 40 %.

λ 1% 5% 10% 20% 30% 40%

(a) two-point contamination
L2 0.033 0.046 0.050 0.080 0.213 0.129
L1 0.038 0.038 0.042 0.042 0.049 0.027

HuberM = 1.345 0.037 0.038 0.035 0.036 0.055 0.027
Huber opt 0.033 0.038 0.035 0.037 0.049 0.026

Mopt 2.3 0.5 0.6 0.6 0.3 0.5
Huber tuned 0.033 0.037 0.035 0.038 0.069 0.026

Mtuned 2.5 0.2 1.9 0.5 1.3 0.6

(b) contamination with N(0,7)
L2 0.035 0.030 0.050 0.063 0.142 0.109
L1 0.036 0.028 0.029 0.031 0.036 0.035

HuberM = 1.345 0.033 0.028 0.028 0.032 0.034 0.033
Huber opt 0.032 0.028 0.029 0.032 0.034 0.033

Mopt 0.7 0.5 0.6 0.6 0.6 0.5
Huber tuned 0.031 0.027 0.030 0.030 0.036 0.033

Mtuned 1.2 0.2 0.3 0.2 0.2 0.3

parameter, the Huber approach generates more false negatives. However, at this point
the ratio of correctly identified outliers is already below 65% and the mean squared
error starts increasing, so we can argue that the method willnot be operated in this
region if the tuning parameter is set right.

From these results, it is clear that the outliers (peaks) canbe identified quite accurately
using a Huber penalty robust batch estimator. Furthermore,if the outliers are success-
fully removed, the noise will be Gaussian. This motivates the following strategy: use
Huber penalty robust MHE in a first step to identify and removethe outliers, then
in a second step use either standard MHE or Huber penalty MHE to further improve
the quality of the estimates. The results are shown in Table 6.2. The Huber tuning
parameter in the simulations was set to 1.345 and the results are averaged over 50
repetitions.
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Figure 6.4. Top panel: Time evolution of a typical noise realization contaminatedwith nor-
mally distributed sparse noiseN (0,7) with occurence rate 2.5%. Bottom panel: Correspond-
ing distribution.

Table 6.2.Mean squared simulation and prediction errors (MSE) for batch estimation on 500
samples using different norms and contaminationN (0,5) with occurence rate 2.5%. Prediction
horizon is 50 samples and the results are averaged over 50 repetitions.

Algorithm Simulation Prediction
standard BE 0.0302 0.0486

L1 norm robust BE 0.0313 0.0653
Huber norm robust BE 0.0283 0.0529

Huber norm robust BE + standard BE 0.0256 0.0408
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Figure 6.5.Influence of the tuning parameterM on the mean squared error for batch estimation
using Huber (solid blue line) and using the smooth hybrid penalty (dash-dotted green line).
For comparison, the mean squared error of the standard leastsquares estimator is also shown
(dashed red line).
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Figure 6.6.Percentage of correctly identified outliers as a function ofthe tuning parameterM
for batch estimation using Huber (solid blue line) and usingthe smooth hybrid penalty (dash-
dotted green line).
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Figure 6.7.Number of false positives (Type I errors) as a function of thetuning parameterM for
batch estimation using Huber (solid blue line) and using thesmooth hybrid penalty (dash-dotted
green line).
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Figure 6.8.Number of false negatives (Type II errors) as a function of the tuning parameterM
for batch estimation using Huber (solid blue line) and usingthe smooth hybrid penalty (dash-
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Throughout, we have assumed the weightings or covariancesQ andR to be known. If
they are unknown, they should be estimated from the data. A model based approach
for estimating covariances from data was proposed by Odelson et al [137]. In the pres-
ence of contaminated data, a more robust covariance estimation method is desirable.
In such a case, a median absolute value approach could be useful [193].

6.2. Joint input/parameter and state estimation

Recursive methods for simultaneous estimation of states and inputs have been con-
sidered ina.o. [72, 73, 114]. In order to permit a recursive formulation, the input
variations are typically penalized in least-squares sense. However, any convex pe-
nalization of the input or parameter variation yields a convex MHE problem. Robust
norms can be used for penalization of input or parameter variations. In this chapter, it
is shown that abrupt changes in the parameters or inputs are appropriately modelled
by robust penalizations of the variations instead of by theℓ2 norm. In particular, it
is shown that the joint input and state estimation problem with piecewise constant
(or piecewise linear) inputs is best described by a cardinality problem which can be
solved iteratively by a number ofℓ1 type MHE problems. It is further shown that these
types of problems can also be solved by dedicated Riccati-based methods along the
lines of Chapters 3-5. As such, an algorithm is obtained which allows fast detection
of within-horizon parameter jumps and this is especially useful for moderate to large
horizon lengths, where the standard MHE formulation smooths out these parameter
switches.

Here we present an MHE algorithm for simultaneous estimation of parameters and
states for systems with piecewise constant parameters or inputs. This robust formula-
tion allows fast detection of parameter jumps and improves the quality of both param-
eter and state estimates compared to the standard MHE formulation, which smooths
out sharp parameter variations.

6.2.1. Cardinality problems

Let us introduce the notion of cardinality of a vectorx∈Rn, i.e. the number of nonzero
components

card(x) =
n

∑
i=1

card(xi),

with

card(xi) =

{
0 xi = 0
1 xi 6= 0,
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Some authors use the termℓ0 norm instead of cardinality,i.e. ‖x‖0 ≡ card(x). How-
ever, note that this function is not a norm because it is not homogeneous,i.e.

‖2e1‖0 = 1 6= |2|‖e1‖0 = 2.

for a unit vectore1.

It is not a convex function either because, for anyα ∈ (0,1) and unit vectorse1 and
e2 holds

‖(1−α)e1+ αe2‖0 = 2

while

(1−α)‖e1‖0 + α‖e2‖0 = 1−α + α = 1.

In optimization problems, the cardinality function can be useful as objective or as
a constraint. For example, in sparse design the aim is to find the sparsest vector
satisfying a set of specifications

minx card(x)

s.t. x∈ C .
(6.11)

In sparse signal reconstruction or sparse regressor selection, the aim is to find the best
fit to the observations using a combination ofM components/regressors

minx J(x,η)

s.t. card(x)≤M.
(6.12)

whereJ is some (convex) objective andη are the observations.

Both cardinality problems (6.11) and (6.12) are NP hard combinatorial problems.
They can be solved globally by branch-and-bound problems orlocally by convex ap-
proximations. We will only consider convex approximationshere and focus on car-
dinality constraints since our interest is in signal reconstruction. Convex cardinality
problems are discussed in more detail in [29] and [38].

Cardinality problems have recently caught increasing attention in the machine learn-
ing community. Many algorithms in machine learning are based on (approximate)
convex cardinality problems,i.e. compressed sensing [49], sparse PCA [37, 204], and
sparse support vector machines [32].

The convex least-squares cardinality problem

minx ‖Ax−b‖2
s.t. card(x)≤M,

(6.13)
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is often approximated by the followingℓ1 heuristic, known as the LASSO algorithm
[176] with shrinkage parameterβ

minx ‖Ax−b‖2
s.t. ‖x‖1≤ β .

(6.14)

Another popularℓ1 heuristic for (6.13) is called basis pursuit denoising and is formu-
lated as

minx ‖Ax−b‖2+ γ‖x‖1 (6.15)

6.2.2. Joint estimation with piecewise changing parameters

Now consider the problem of joint state and input estimation. If we know the input is
piecewise constant, then the proper way to formulate it is asfollows

minx,w,v,u ‖S−T
0 (x0− x̂0)‖2 + ∑T−1

k=0 ‖W−T
k wk‖2 + ∑T

k=0‖V−T
k vk‖2

s.t. xk+1 = A xk +B uk +G wk, k = 0, . . . ,N−1,

yk = hk +Ck xk +vk, k = 0, . . . ,N,

card(Du)≤M,

whereD is chosen equal to the first derivative operator matrix

D1 =








1 −1
1 −1

...
...

1 −1








and whereM represents the maximum number of jumps.

Note that when the input is piecewise linear, then the same strategy applies withD
equal to the second derivative matrix

D2 =








−1 2 −1
−1 2 −1

...
...

.. .

−1 2 −1








andM represents the maximum number of breakpoints.
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The non-convex problem (6.18) can be written as a sequence ofconvex problems
where the cardinality constraint is moved to the objective [38]

minx,w,v,u,t ‖S−T
0 (x0− x̂0)‖2 + ∑T−1

k=0 ‖W−T
k wk‖2+ ∑T

k=0‖V−T
k vk‖2 + tT(z+ ε1)

s.t. xk+1 = A xk +B uk +G wk, k = 0, . . . ,N−1,

yk = hk +Ck xk +vk, k = 0, . . . ,N,

−t ≤ Du≤ t,

(6.16)

minz tT(z+ ε1)
s.t. 0≤ z≤ 1,

zT1 = nu−M
(6.17)

wherenu denotes (with some abuse of notation) the number of elementsin Du and
t,z ∈ Rnu. 1 denotes a vector of appropriate length with all ones. This sequence is
iterated until|Du∗|Tz∗ vanishes or until a maximum number of iterations is reached.
The vectorz can be interpreted as a search direction.ε is a relatively small positive
constant. The motivation for adding a small positive termε is to allow determination
of the absolute value|Du∗| for the zero components oft∗.

By initializing z to (1− ε)1, the first iteration is a problem withℓ1 norm penalization
of parameter changes

minx,w,v,u ‖S−T
0 (x0− x̂0)‖2 + ∑T−1

k=0 ‖W−T
k wk‖2 + ∑T

k=0‖V−T
k vk‖2 +‖Du‖1

s.t. xk+1 = A xk +B uk +G wk, k = 0, . . . ,N−1,

yk = hk +Ck xk +vk, k = 0, . . . ,N,

Subsequent iterations can be interpreted as corrections tothis ℓ1 norm regularized
problem. The sequence converges to a locally optimal solution of the original cardi-
nality problem (6.18) [38].

A similar ℓ1 heuristic was proposed for trend filtering in [158] and for portfolio optimi-
zation in [126]. The iterative weightedℓ1 heuristic proposed there is a simplification
of the one presented here. It avoids the optimization step (6.17) and instead keepsz
fixed. We have experienced substantial convergence improvements by the optimiza-
tion step and hence suggest the above strategy.

6.2.3. Riccati based solution

It is easily seen that problem (6.16) is a modified MHE problemwhich only adds
inequality constraints and gradient terms, but no quadratic penalties on the auxiliary
variables. Therefore, the matrix Riccati recursions remain the same.
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Problem (6.17) on the other hand is a Linear Programming problem and can be solved
using the simplex method or an interior point method [29, 136].

6.2.4. Polishing

A standard approach is to solve the above convex cardinalityproblem to identify the
break points and then solve a standard joint estimation problem with unknown piece-
wise constant input with the given jump locations. This technique is described ine.g.
[29, §10.3.2] and [158].

6.2.5. Numerical example

The algorithms are illustrated on a linearized model of the pitch dynamics for a highly
manouvrable aircraft. The data correspond to representative trimmed3 flight condi-
tions during pull-up. The model and data are thoroughly described in [168]. The
continuous-time representation of the model is

ẋ(t) =







−.0193 8.82 −32.2 −.48
−.000254 −1.02 0 .91

0 0 0 1
0 .82 0 −1.08







x(t)+







.17
−.00215

0
−.18







u(t)

y(t) =

(
0 0 1 0
0 −1 1 0

)

x(t),

wherex =
(
V α θ q

)T
with V the velocity (ft/s),α the angle of attack (rad),θ

the pitch angle (rad) andq the pitch rate (rad/s). The control inputu is the elevator
deflection (deg). The outputs are the pitch angleθ and the flight path angleθ −α.
The linear model is discretized in time using a first-order-hold method with time step
0.1s resulting in an LTI discrete-time state-space model. The system is disturbed with
random process and measurement noise with covariances respectivelyQ = 10−4 and
R= 10−2.

The input estimates are shown in Figure 6.9 for the standardℓ2 norm MHE,ℓ1 norm
MHE and the proposed method using a cardinality formulationwith a polishing step.
All joint input and state estimators are able to detect the input jumps, however, the pro-
posed method is much less sensitive and more adequate in estimating the determinstic
input variations.

3The aircraft is in in a stable condition; no unbalanced forces or moments are acting to cause it to
deviate from steady flight.
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Figure 6.9. Input estimates usingℓ2 norm MHE,ℓ1 norm MHE and the proposed cardinality
MHE formulation with a polishing step.

6.3. Conclusions

The goal of this chapter was to show that several robust MHE formulations may be
described by a convex problem. Two types of robust convex problems were investi-
gated. The problem of state estimation in the presence of outlier contaminated data
was considered first. A Huber penalty MHE formulation and anℓ1 formulation were
studied and compared with the standard least-squares formulation. It was shown that
Huber penalty MHE provides a performance improvement to thestandard MHE in
case of outlier contaminated data while preserving the performance of the standard
formulation when the frequency of outlier occurance is rather low. A second convex
formulation concerned the joint input and state estimationfor systems with piecewise-
constant or piecewise-linear inputs. It was shown that thisproblem is best formulated
as a cardinality problem which can be solved by a sequence of convex MHE problems.
More specifically, it concerns anℓ1 norm MHE problem and subsequent modifications
which can be solved using dedicated Riccati based methods. The performance of the
methods is shown through numerical simulations.
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CHAPTER 7
Nonlinear MHE algorithms and

application to estimation and control of
blood-glucose in the Intensive Care

7.1. Introduction

Two important characteristics distinguish MHE from other estimation strategies, such
as the Extended Kalman Filter (EKF). First of all, prior information in the form of
constraints on the states, disturbances and parameters canbe included. Second, the
nonlinear nonlinear model equation is directly imposed over the horizon length. The
most important advantage of using a larger window size is that this mitigates problems
due to poor initialization or poor arrival cost approximation which results in improved
estimation performance especially when the problems are highly nonlinear.

Stability of nonlinear moving horizon estimation (NMHE) was studied by Rao et al
[149] and Alamir et al [1]. Raff et al [171] proposed the use ofobservability maps
in the context of NMHE to yield a scheme with guaranteed convergence. Stability of
NMHE with no assumptions on the noise distributions was addressed by Alessandri
et al [5] Zavala et al present stability results for an advanced-step NMHE approach
[201, 202]. An overview of optimal control methods for estimation and control on
moving horizons is given by Binder et al [19]. An adaptive discretization scheme
for NMHE in a single shooting framework was investigated by Binder et al [20].
Multiple shooting for NMHE has been proposed recently [45, 117, 118]. An overview
of numerical aspects of NMHE and NMPC was given by Diehl et al in [44].
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In this chapter we outline an algorithm for nonlinear MHE andMPC using a direct
multiple shooting Gauss-Newton method which we then apply to a biomedical prob-
lem: the normalization of blood-glucose of patients in the intensive care unit. The
application of multiple shooting to MHE including the implementation of a real time
iteration scheme has been investigated and presented by Kraus et al [117, 118] and
Kühl [119]. The aim in this chapter is to introduce the framework and show that
Gauss-Newton SQP iterations yield quadratic subproblems which can be solved effi-
ciently using the methods presented in the previous chapters.

7.2. Brief overview of recursive nonlinear estimation methods

7.2.1. The Extended Kalman Filter (EKF)

Optimal filtering for nonlinear systems is in general infeasible for practical appli-
cation. Therefore approximate nonlinear filtering algorithms have been proposed in
literature. The best known approximate nonlinear filter is theExtended Kalman Filter
(EKF) (seee.g.[6]). The EKF linearizes around the trajectory of estimatesand applies
the time-varying Kalman filter recursions in any of the formulations described above.
At time instantk the nonlinear discrete-time model (1.5) is linearized as follows. For
the measurement model

Ck =
∂hk(x,u)

∂x

∣
∣
∣
∣
x=x̂k,u=uk

. (7.1)

And for the state model

Ak =
∂ fk(x,u, p,w)

∂x

∣
∣
∣
∣
x=x̂k+ ,u=uk,p=pk,w=0

, Gk =
∂ fk(x,u, p,w)

∂w

∣
∣
∣
∣
x=x̂k+,u=uk,p=pk,w=0

.(7.2)

Although the implementation of EKF is straightforward and intuitive, the resulting
error from linearization may cause filter divergence. As shown by Song and Grizzle
[165] the EKF provides only weak local stability guarantees. Problems of divergence
and poor performance of the EKF (seee.g.[89, 110]) are related not only to the extent
of nonlinearity of the model but also to the amount of noise entering the system [197].
If the noise is small and the nonlinearities are mild, the performance of EKF can be
expected to be nearly optimal [146].
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(a) (b)

Figure 7.1. Comparison of Extended and Unscented Kalman filter information propagation.
(a) The EKF linearizes the nonlinear function around the mean of a Gaussian distribution and
propagates the mean and covariance matrix through this linearized model. (b) The Unscented
Kalman filter propagates a set of sigma-points through the nonlinear function and constructs a
Gaussian distribution by calculating the mean and covariance of the set of propagated sigma-
points.

7.2.2. The Unscented Kalman Filter (UKF)

An improvement to the Extended Kalman Filter led to the development of the Un-
scented Kalman filter (UKF), also a nonlinear filter. In the UKF, the probability den-
sity is approximated by the nonlinear transformation of a random variable, which re-
turns much more accurate results than the first-order Taylorexpansion of the nonlinear
functions in the EKF. This is depicted in Figure 7.1.

When the system model is highly nonlinear, the Extended Kalman Filter can give par-
ticularly poor performance [89, 110]. This is because the mean and covariance are
propagated through linearization of the underlying non-linear model. The Unscented
Kalman Filter (UKF) [110] uses a deterministic sampling technique known as the un-
scented transform (UT) to select a minimal set of sample points, called sigma points,
around the mean. This is in contrast to techniques such as particle filtering which
sample randomly and it allows to use a relatively small number of samples. These
sigma points are propagated through the nonlinear functions, from which the mean
and covariance of the estimate are then recovered. The result is a filter which captures
the mean and covariance accurately to the second order for any nonlinear state equa-
tion. For a state dimensionnx a set of 2nx +1 points are necessary. This number was
further reduced tonx +1 by Julier in 2003 [109]. In addition, this technique removes
the requirement to explicitly calculate Jacobians and therefore it is sometimes referred
to asderivative-free filter.
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7.3. Introduction to nonlinear MHE using multiple shoothing and
SQP

Methods for solving optimal control problems can be classified in three major groups

I Dynamic programming,

II Indirect methods,

III Direct methods.

Dynamic programming, introduced by Bellman in the 1940s [12], describes a process
of breaking the dynamic optimization problem into simpler subproblems based on the
principle of optimality. For every subproblem a value function is defined which can be
found by recursively working backwards from the final time step. For linear quadratic
problems there is an analytic solution, viz the LQR Riccati equation. For nonlinear
problems, however, this approach involves a discretization and tabulation of states
and controls and therefore suffers fromthe curse of dimensionality. For this reason
dynamic programming is typically restricted to control problems with very small state
dimension and has not found acceptance for state and parameter estimation problems.

Indirect methods are based onPontryagin’s Maximum Principle[143] and proceed by
maximizing the Hamiltonian matrix. An intricate multi-point boundary value problem
is formulated. In every iteration, the model is numericallyintegrated forward in time
and the adjoint equations are integrated backward in time. Indirect methods suffer a
number of practical drawbacks. First, significant knowledge and experience in optimal
control is required from the user of an indirect method sincethe adjoint equations and
boundary conditions need to be derived for every specific application. Furthermore,
(de)activiation of a state constraint leads to a discontinuity in the adjoint equation.
Finally, stable processes have associated unstable adjoint equations and vice versa,
hence, indirect methods always involve solving an unstabledifferential equation.

The basic idea of direct methods is to transcribe the infinite-dimensional dynamic op-
timization problem into a finite-dimensional NLP by discretizing the nonlinear func-
tions. Direct methods have proven to be the most successfullfor real-time, moderate
to large scale, optimal control problems [16, 19, 43, 45, 46,47]. Only direct methods
are considered in this thesis.

For an overview of solution methods for optimal control problems, we refer to [19]
and the references therein.
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7.3.1. Discretization

In order to obtain a tractable finite-dimensional optimization problem, the continu-
ous nonlinear model needs to be discretized. We distinguishbetween the following
discretization strategies

I Single shooting,

II Multiple shooting,

III Collocation.

In single shooting, the system equations are used to eliminate the states from the op-
timization problem, regarding them as a function of thecontrols, or in the context of
MHE the state disturbances. As such, the system equations and the optimization prob-
lem are treated sequentially, one after the other, in each optimization iteration. This
approach, although very intuitive and popular throughout the literature, frequently
fails even when good initial estimates are available [124].The problem is that the
error introduced by discretization, roundoff or poor initial data may be propagated by
inherent instabilities in the differential equations and grow exponentially thus prevent-
ing numerical integration to the end point [124].

These convergence problems can be considerably improved byusing the multiple
shooting method [23, 25]. The basic idea of the direct multiple shooting approach
is to do a time-discretization of all state and control trajectories in the overall op-
timization interval and to solve the resulting subproblemssimultaneously in each
of the discretization intervals, which are referred to as multiple-shooting intervals.
This means that the original problem is divided into multiple subproblems that can be
solved in parallel. Additionally, continuity constraintsor matching conditionshave to
be imposed between neighboring intervals to guarantee a continuous solution over the
whole optimization interval. By dividing the initial valueproblems into subintervals
and allowing discontinuous trajectories at intermediate iterations, the growth of error
in case of inherent instabilities is effectively limited. Compared to single shooting, the
method shows greatly improved convergence and numerical stability [124]. We refer
to the original papers by Bock and Plitt for a discussion on direct multiple shooting
for optimal control [23, 25]. The multiple shooting method can be viewed as a hybrid
sequential-simultaneous method.

The collocation method is a simultaneous discretization approach in which the dif-
ferential equations are discretized in both state and control space. The simultaneous
discretization and optimization potentially leads to faster convergence compared to
shooting methods. However, due to this full discretization, the resulting NLPs tend
to become large but are typically sparse [19]. Efficient collocation methods therefore
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exploit the structure inherent in the NLPs. Compared to shooting methods, colloca-
tion cannot make use of existing highly reliable integration routines. Both collocation
and multiple shooting can make use of initial guesses over the whole state trajectory,
which is advantageous especially in online applications,i.e. MHE and MPC. Both are
well-applicable to highly unstable systems in contrast to single shooting.

In this thesis we use the multiple shooting method for nonlinear MHE and MPC.

7.3.2. Constrained Gauss-Newton Sequential Quadratic Programming
(CGN-SQP)

Consider the nonlinear MHE problem

minx,w ‖S−T
0 (x0− x̂0)‖2 + ∑N−1

k=0 ‖W−T
k wk‖2 +‖V−T

k (hk(xk,wk)−yk)‖2

+‖V−T
N (hN(xN)−yN)‖2

s.t. xk+1 = fk(xk,wk,uk, p), k = 0, . . . ,N−1,

gk(xk,wk)≤ 0, k = 0, . . . ,N−1,

gN(xN)≤ 0,

(7.3)

Let us denote the overall optimization vector as

z= (x0,w0, . . . ,xN−1,wN−1,xN) ∈ Rnz,

wherenz = (N+1)nx +Nnw.

Then problem (7.3) can be written as

minz
1
2‖F1(z)‖22

s.t. F2(z) = 0,

F3(z)≤ 0,

(7.4)

where

F1(z) =













S−T
0 (x0− x̂0)

W−T
0 w0

V−T
0 (h0(x0,w0)−y0)

...
W−T

N−1wN−1

V−T
N (hN(xN)−yN)













,
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F2(z) =








f0(x0,w0)−x1

f1(x1,w1)−x2
...

fN−1(xN−1,wN−1)−xN








,

F3(z) =











g0(x0,w0)

g1(x1,w1)
...

gN−1(xN−1,wN−1)

gN(xN)











.

The Lagrangian is given by

L(z,λ ,µ) =
1
2

F1(z)
TF1(z)+F2(z)

Tλ +F3(z)
Tµ . (7.5)

whereλ and µ are multiplier vectors associated with respectively the equality and
inequality constraints.

Assume the nonlinear functionsf , g andh are twice differentiable. Their first order
Taylor expansions are given by

fk(xl
k,w

l
k) ≈ fk +Ak∆xk +Gk∆wk, k = 0, . . . ,N−1,

gk(xl
k,w

l
k) ≈ gk +Dk∆xk +Ek∆wk, k = 0, . . . ,N−1,

hk(xl
k,w

l
k) ≈ hk +Ck∆xk +Hk∆wk, k = 0, . . . ,N−1,

gN(xl
k) ≈ gN +DN∆xN.

hN(xl
k) ≈ hN +CN∆xN.

(7.6)

Any locally optimal solution to (7.4) defined by the triplet(z∗,λ ∗,µ∗) has to satisfy
under mild conditions the following KKT conditions

J1(z
∗)TF1(z

∗)+ λ ∗TJ2(z
∗)+ µ∗TJ3(z

∗) = 0 (7.7)

F2(z
∗) = 0 (7.8)

F3(z
∗) ≤ 0 (7.9)

µ∗ ≥ 0 (7.10)

µ∗j F3, j(x
∗) = 0, j = 1, . . . ,np (7.11)
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Here, the JacobiansJi and function evaluationsFi are highly structured and sparse

J1 =















S−T
0

V−T
0 C0 V−T

0 H0

W−T
0

. . .

V−T
N−1CN−1 V−T

N−1HN−1

W−T
N−1

V−T
N CN















, F1 =















S−T
0 (xl

0− x̂0)

V−T
0 (h0−y0)

W−T
0 wl

0
...

V−T
N−1 (hN−1−yN−1)

W−T
N−1wl

N−1
V−T

N (hN−yN)















,

J2 =









A0 G0 −I
A1 G1 −I

. . .

AN−1 GN−1 −I









, F2 =









f0
f1
...

fN−1









,

J3 =











D0 E0

D1 E1

. . .

DN−1 EN−1

DN











, F3 =











g0

g1

...
gN−1

gN











.

Newton-type methods search for a point satisfying the KKT conditions by succes-
sively linearizing the problem functions. The main difference between the two big
families of nonlinear optimization methods, Sequential Quadratic Programming and
Nonlinear Interior-Point methods, is in how the complementarity condition (7.11) is
handled (see Chapter 2). We will only consider Sequential Quadratic Programming
here.

By linearizing in every iteration all nonlinear functions occurring in the KKT condi-
tions around the current iterate, one arives at a linear complementarity problem which
can be interpreted as the KKT conditions of a QP (see also (2.65))

minz J1(zl )Tz+ 1
2(z−zl )T∇2

zL(zl ,λ l ,µ l )(z−zl )

s.t. F2(zl )+J2(zl )T(z−zl) = 0,

F3(zl )+J3(zl )T(z−zl)≤ 0,

(7.12)

wherezl is the current iterate around which the functions are linearized.

The Lagrange Hessian is given by

∇2
zL =

1
2

JT
1 J1 +∑

j

F1, j∇2F1, j +∑
j

λ j∇2F2, j +∑
j

µ j∇2F3, j (7.13)

The first term often dominates the summations either becauseof near-linearity of the
model close to the solution,i.e. small second order derivatives, or because of small
residuals,i.e. F1, j small. One can show thatλ becomes small ifF1 is small and the last
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term vanishes at the solution by the complementarity condition (7.11). This motivates
the following Gauss-Newton approximation to the Hessian for least-squares problems

∇2
zL ≈

1
2

JT
1 J1 (7.14)

Hence, in a generalized Gauss-Newton method the original problem (7.4) is solved
iteratively by computing in every iterationl a search direction∆zl as the solution to
the following QP

min∆z
1
2‖J1(zl )∆z+F1(zl )‖22

s.t. J2(zl )∆z+F2(zl ) = 0,

J3(zl )∆z+F3(zl )≤ 0.

(7.15)

With the functions and Jacobians as defined above this corresponds to the constrained
linear MHE problem (4.6)-(4.7) or (5.1)-(5.15) consideredin the previous chapters.

The constrained Gauss-Newton method has only linear convergence but often with a
surprisingly fast contraction rate [41, 44]. The contraction rate is fast when the resid-
ual norm is small or the second derivatives are small [44, 136]. It was developed and
extensively investigated by Bock and coworkers, seee.g.[23, 24, 42, 124]. For param-
eter estimation problems, the method is typically able to outperform methods using
higher order derivatives or derivative-free methods. Thisis because the method is
not attracted by large residual local minima, which are so-calledstatistically unstable
estimates[24].

Globalization

The quadratic problems (7.15) which are solved in every Gauss-Newton iteration are
only local approximations of the true nonlinear problem. Toenforce convergence from
arbitrary starting points two types of globalization strategies are commonly used for
the search directions obtained from the QP subproblems: line-search and trust-region
methods.

In a trust-region approach, the constraint‖∆z‖≤ d is added to the QP. The trust-region
parameterd is adjusted based on the agreement of predicted reduction (from the QP)
and actual reduction of a merit function. If sufficient reduction is obtained for the next
iteratezl+1 = zl +∆zl then the step is taken, otherwise the trust region is shrinked, i.e.
d is decreased. On the other hand, if the agreement of predicted and actual reduction
is good, the trust-region may be enlarged in order to speed upconvergence.

In a line-search strategy on the other hand, QP (7.15) is solved in every iteration
without additional constraints, and a suitable step size ordamping factorα l ∈ (0,1]
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Figure 7.2.Solution strategy for continuous-time nonlinear MHE problems: (a) flowchart for
a multiple shooting strategy, (b) hierarchy for an Sequential Quadratic Programming strategy
with active-set or interior-point method and structure-exploiting KKT solver.

is chosen such that for the next iteratezl+1 = zl + α l ∆zl sufficient decrease of a merit
function is obtained. Hence, after computing the search direction the step size can
be obtained by solving a one-dimensional optimization problem (in α). However, in
almost all implementations the step size is computed approximately by backtracking
as it does not make sense to aim for an exact solution to a problem which is only an
approximation of the real (nonlinear) problem. The choice of merit function is crucial
for fast convergence. A merit function which is affine invariant and has been found
to yield excellent convergence performance in difficult applications [24, 41] is the
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natural level function

TA(z) = ‖J(zl )−1F(z)‖22 (7.16)

with

F(z) =





F1(z)
F2(z)
F3(z)



 , J(z) =





J1(z)
J2(z)
J3(z)



 . (7.17)

The natural level function will be used for globalizing convergence in the numerical
examples presented below.

Calculating derivatives

The succesful convergence of the multiple shooting method is depending on the avail-
ability of accurate function evaluations and derivatives.With the development and
increasing application of automatic differentiation tools, accurate first and second or-
der derivatives can be generated [18]. We use the publicly available set of integration
routines of ACADO [99]. The ACADO integrator package consists of several Runge-
Kutta and a BDF integrator which allow the simulation and sensitivity generation for
ODE and DAE systems based on internal numerical or automaticdifferentiation.

7.3.3. Arrival cost updates

As discussed in Chapter 1, a popular strategy for computing an approximate arrival
cost is to use a first-order Taylor expansion around the trajectory of past estimates.
This is equivalent to applying an EKF recursion for the covariance update. The
smoothed update linearizes around the current best estimate but applies a correction
to the state prediction in order to prevent accounting for some measurements twice.

The covariance update is given by the standard EKF update formula (2.75) using the
following first order derivative matrices around the current best estimate

Ck−N+1|k, Ak−N+1|k, Gk−N+1|k (7.18)

The state update can be derived by linearizing around the current best estimatexk−N+1|k
and relating it to the filter estimatexk−N+1|k−N. This was done in [117] and is pre-
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sented here for compactness of presentation.

h(x) ≈ h(xk−N+1|k)+Ck−N+1|k
(
x−xk−N+1|k

)
(7.19)

= h(xk−N+1|k)+Ck−N+1|k
(
x−xk−N+1|k

)

+Ck−N+1|k
(
xk−N+1|k−N−xk−N+1|k−N

)
(7.20)

= h(xk−N+1|k)+Ck−N+1|k
(
xk−N+1|k−N−xk−N+1|k

)

+Ck−N+1|k
(
x−xk−N+1|k−N

)
(7.21)

Hence the constant term in the linearization is

h(xk−N+1|k)+Ck−N+1|k
(
xk−N+1|k−N−xk−N+1|k

)
(7.22)

and the state update is given by

x̂k−N+1 = Ak−N+1|kxk−N+1|k−N + K̄(−yk−N+1

+h(xk−N+1|k)+Ck−N+1|k(xk−N+1|k−N−xk−N+1|k)) (7.23)

whereK̄ is the gain matrix, see Eq. (2.76), calculated around the current best estimate
(7.18).

A major advantage of using Riccati-based methods at the coreof an SQP strategy
for NMHE is that the arrival cost updates are obtained as a natural outcome of the
solution process. That is, the matrix Riccati recursion computes covariances around
successive trajectories and the covariance update (7.23) is obtained as the forward
second order matrix associated with the second within-horizon state. The state update
is obtained by applying the above described correction to the second state calculated
by the forward vector recursion, see Figure 3.1.

Although this arrival cost update is only locally valid and discards constraints. It often
provides a reasonably well approximation and yields a performant MHE estimator. If
this is not the case, and poor estimator performance or divergence is encountered,
which may be due to plant-model mismatch or highly nonlineardynamics, then an in-
crease of the horizon length and/or omitting of the arrival cost term solves the problem
in many practical cases. Other people have looked at better arrival cost approxima-
tions,e.g.using a particle filter [153].

7.4. Application of MHE based NMPC to normalize glycemia of
critically ill patients

In this section the clinical ICU dataset that is used for the design and evaluation of the
control system is described. Next, the considered patient model is described, followed
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by a short description of the NMPC control strategy. Finally, the results of numerical
simulations are discussed.

7.4.1. Tight glycemic control in the Intensive Care Unit

Hyperglycemia (i.e., an increased glucose concentration in the blood) and insulin re-
sistance (i.e., the resistance of the glucose utilizing tissues to insulin) are common
in critically ill patients even if they have not had diabetesbefore and are associated
with adverse outcomes. Tight glycemic control (between 80 and 110 mg/dl = target
range) by applying intensive insulin therapy in patients admitted to the medical and
the surgical Intensive Care Unit (ICU) results in a spectacular reduction in mortality
and morbidity [179, 181].

Currently, ICU patients are treated through a manual and rigorous administration of
insulin [180]. In literature several physical models that describe the glucose dynamics
and the insulin kinetics of healthy and diabetic subjects are used for glycemia control
simulations in ‘mathematical’ diabetic (type I) patients (e.g., Hovorka et al. [101],
Parker et al. [141, 142], among others). Analogously, we want to design a semi-
automatated control system for glycemia control in the ICU.This system could reduce
the workload for medical staff and could also introduce the glycemia normalization
concept in hospitals that are currentlynot making use of the manual intensive insulin
protocol [180], world-wide leading to a possible further reduction of mortality and
morbidity [184].

7.4.2. ICU Dataset

A set of real patient data is used to evaluate the NMPC controlstrategy with state and
disturbance estimation. The dataset is extensively described and discussed in [182].
It contains data of 19 adult critically ill patients who wereadmitted to the surgical
ICU of the University Hospital K.U. Leuven (Belgium) for a variety of reasons. The
data comprises recorded near-continuous subcutaneous glucose levels, more specifi-
cally three-minute-averaged values, as well as the administered flows of carbohydrate
calories and insulin. In our setting, the Glucoday system (A. Menarini Diagnostics,
Florence, Italy), a portable instrument provided with a micro-pump and a biosensor,
coupled to a microdialysis system, was used to measure the glucose concentration (see
[182]).

We want to point out [182, 185] that a near-continuous glucose sensor device is cur-
rently not standard practice in the ICU and was only used for this study. In current
ICU practice, the used protocol [180] requires blood glucose levels to be measured
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every four hours, or more frequently, for instance in the initial phase or after com-
plications, and is done by blood gas sampling using the ABL machine (Radiometer,
Copenhagen, Denmark). This method of measurement was also used for retrospective
sensor calibration of the the near-continuous sensor (see [182]). Thus, for practical
application of a control system in a semi-automated setting, the frequency of blood
glucose measurement and adaption of insulin rate should be restricted. In this chapter
we consider two realistic frequencies: once per hour and once per four hours.

In this chapter the observed near-continuous glucose test data are used for estimat-
ing the model and for comparing the MPC proposed control actions with the control
behavior of a trained nurse.

7.4.3. ICU Minimal Model (ICU-MM)

The presented model structure originates from the knownminimalmodel that is devel-
oped by Bergman et al ([13]). In ([183]) the original minimalmodel was extended to
the ICU minimal model (ICU-MM) by taking into considerationsome features typical
of ICU patients. The new model was also validated on a real-life clinical ICU data set.
The ICU-MM is presented as follows:

dG(t)
dt

= (P1−X(t))G(t)−P1Gb +
FG

VG
+FM, (7.24a)

dX(t)
dt

= P2X(t)+P3(I1(t)− Ib), (7.24b)

dI1(t)
dt

= α max(0, I2)−n(I1(t)− Ib)+
FI

VI
, (7.24c)

dI2(t)
dt

= β γ (G(t)−h)−nI2(t), (7.24d)

whereG and I1 are the glucose and the insulin concentration in the blood plasma.
The second insulin variable,I2, is a purely mathematical manipulation such thatI2
does not have any direct clinical interpretation. The variable X describes the effect
of insulin on net glucose disappearance and is proportionalto insulin in the remote
compartment.Gb andIb are the basal value of plasma glucose and plasma insulin, re-
spectively. The model consists of two input variables: the intravenously administered
(exogenous) insulin flow (FI ) and the parenteral carbohydrate calories flow (FG). The
glucose distribution space and the insulin distribution volume are denoted asVG and
VI , respectively. There is an unknown disturbance input that we ascribe to adminis-
tered medication (FM) and which directly influences the glucose concentration. This
to the MPC unknown input could also account for other unknowndisturbance factors.
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The coefficientP1 represents the glucose effectiveness (i.e., the fractional clearance
of glucose) when insulin remains at the basal level;P2 andP3 are the fractional rates
of net remote insulin disappearance and insulin dependent increase, respectively. The
endogenous insulin is represented as the insulin flow that isreleased in proportion (by
γ) to the degree by which glycemia exceeds a glucose thresholdlevelh. The time con-
stant for insulin disappearance is denoted asn. In case glycemia does not surpass the
glucose threshold levelh, the first part of 7.24c (that represents the endogenous insulin
production) equals 0. In order to keep the correct units, an additional model coeffi-
cient, β = 1 min, was added. Finally, the coefficientα amplifies the mathematical
second insulin variableI2.

The units of all used variables and parameters and their initial coefficient values are
represented in Table 7.1.

Table 7.1.States, inputs, patient features (constants) and parameters of the ICU minimal model.

States Units
G mg/dl
X 1/min
I1 µU/ml
I2 µU/ml

Inputs Units
FI µU/min
FG mg/min
FM mg/dl/min

Patient
features

Units Value

VG dl Dep. on body mass
VI ml Dep. on
Gb mg/dl Basal glycemia
Ib µU/ml Basal insulin

Parameters Units Value(1)

P1 1/min -1.31 10−2 (1)

P2 1/min -1.35 10−2 (1)

P3 ml/(min2µU) 2.90 10−6 (1)

h mg/dl 136(1)

n 1/min 0.13(1)

α 1/min 3.11
β min 1

γ
µU
ml

dl
mg

min2 5.36 10−3 (1)

(1) As initial value for the model estimation process, the mean
model coefficient values for the obese - low glucose tolerance pa-
tient group (described in [13]), are used.
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7.4.4. Smoothing of discontinuities

The nonlinear model (7.24) contains a discontinuity in the form of amax term. In
order to avoid problems of differentiability themaxterm was smoothed using expo-
nential smoothing max(0, I2)∼ sln(1+exp( I2

s )) with a smoothing parameters= 0.1.

7.4.5. Closed-loop nonlinear control system set-up

The complete closed-loop control system is depicted in Figure 7.3. Its components
will be described in detail in this section. A nonlinear continuous-time system model
is assumed (1.1). That is, the system is described by a set of nonlinear index-one
ordinary differential equations of the form

ẋ(t) = f (x(t),u(t),w(t),d, p), (7.25)

wherex are the differential states,u the inputs,w the system noise accounting for
modeling errors,d the unknown disturbances andp the set of free parameters. We
will also allow bounds on the variables

xmin≤ x(t)≤ xmax,

umin≤ u(t)≤ umax,

wmin ≤ w(t)≤ wmax,

dmin≤ d≤ dmax,

pmin≤ p≤ pmax.

The measurement data are generated as

yk = h(x(tk))+vk, (7.26)

wherevk represents measurement noise (sensor noise) and the subscript k indicates
the fact that measurements are obtained at discrete time instants.

Thus, the disturbances that enter the closed loop system canbe summarized as

1. process noisew, which is usually assumed to be zero-mean random noise but in
the MHE-setting can also be regarded purely deterministic as bounded optimi-
zation variables with the only assumption that zero is contained in the feasible
set,

2. unknown model disturbanced which is assumed to be slowly varying. In the
presented application the unknown disturbance representsthe effect of medica-
tion, to which we assigned a typical realization and which weassumed to have
direct influence on the glycemic level,
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3. sensor noisev which we will assume to be normally distributed with mean zero
and known covariance matrix,

4. unknown initial states, disturbance and parameters. We will assume that ex-
pected values for the states, disturbance and parameters (¯x0, d̄0 and p̄0 resp.)
are given as well as the corresponding covarianceP0. After a transient, the ef-
fect of the initial conditions usually diminishes and the estimates converge to
the true values provided that the measurements contain sufficient information.

Figure 7.3. Illustration of the closed-loop control scheme.

7.4.6. Target calculation

The goal of target calculation is to find a steady state of the closed loop system and a
corresponding input that yields the output at the set point.This is an inverse problem
that can be formulated as an optimization problem. Due to constraints or nonlineari-
ties it might occur that no steady-state targets can be foundcorresponding to the set
point. In that case we require the output target to be the closest output to the set point
for which a steady state exists. If there are multiple steadystates satisfying the out-
put set point, the one that is closest to the previous input target is selected. At each
time instant a new target must be calculated to account for changing parameters and
integrated disturbances.

We formulate the target calculation as the following optimization problem (see [172])
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min
xt (t0),ut(t0),η

1
2

ηTQ̄η + q̄Tη

+
1
2
(ut(t0)−ut(t−1))

T R̄(ut(t0)−ut(t−1)) (7.27a)

subject to

xt(t0) = f (xt (t0),u
t(t0), d̂, p̂), (7.27b)

h(xt(t0))−η ≤ yset≤ g(xt(t0))+ η , (7.27c)

umin≤ ut(t0)≤ umax, (7.27d)

xmin≤ xt(t0)≤ xmax, (7.27e)

η ≥ 0. (7.27f)

Hereut(t−1) is the input target calculated in the previous time step. This is an exact
penalty method ([61, 147]) which relaxes the problem in al1/l22 sense if the set point is
infeasible by introducing theslack variableη . In general, ¯q is chosen to be relatively
large and strictly positive and both̄Q andR̄ are positive definite. By shifting the state
and input targets, the target calculation accounts for modeling error and adjusts the
model to remove offset from the closed-loop system.

7.4.7. Model predictive control

Given the current state, disturbance and parameter estimatesx̂(t0), d̂, p̂ of the system
at timet0, NMPC predicts the future dynamic behavior of the system over a horizonT
and determines the future inputs such that an open-loop performance objective func-
tion is optimized. Due to disturbances and/or model-plant mismatch the true system
behavior is different from the predicted behavior. Therefore, in order to incorporate
feedback, only the first of this optimal input sequence is applied to the system. When
a new measurement and new estimates are obtained the horizonis shifted and the
previous steps are repeated.

The use of Model based Predictive Control to normalize glycemia in the ICU allows to
take into account the effect of current and future control moves,i.e. insulin dosing, on
the future outputs,i.e. glycemia. For medical reasons the maximum insulin infusion
rate (i.e., the control input) is 50 U/hr. In addition, the administered insulin flow is
obviously constrained to be positive.
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The open-loop optimization problem addressed in NMPC is

min
x(·),u(·)

∫ t0+T

t0
‖x̃(t)‖2Q +‖ũ(t)‖2R dt (7.28a)

subject to x(t0) = x̂(t0), (7.28b)

ẋ(t) = f (x(t),u(t), d̂, p̂), (7.28c)

c(x(t),u(t), d̂, p̂)≥ 0, t ∈ [t0,t0 +T]. (7.28d)

Here x̃(t) = x(t)− xt and ũ(t) = u(t)− ut with xt andut the target state and input
determined by the preceding target calculation. This approach of penalizing devia-
tions from target states and inputs provides integral (offset free) control. In order to
guarantee theoretical stability of the MPC controller, oneshould add to the above for-
mulation either a terminal constraint, or a terminal cost, or both. We implemented a
terminal constraint but it was found that in order to achieveguaranteed theoretical sta-
bility the control performance was deteriorated. Other stability measures are currently
being investigated. For a detailed treatment of stability theory for NMPC, we refer to
the excellent textbook by Rawlings and Mayne [152].

Move blocking

A rule of thumb in control theory (and practice) states that the output should be sam-
pled fast enough to capture all the important system dynamics. Often, however, the
inputs are allowed to change only at a lower rate. In such cases integration time in-
tervals for the state-space model are taken as short as necessary while the inputs are
blockedduring several time intervals. A strategy formove blockingof the inputs was
added to the MPC formulation. For the glycemia control problem, integration time
intervals of 5 min and a future horizon ofNmpc = 240 min are used, while the insulin
flow input is allowed to change only every 60 min. This specification is imposed by
the medical staff for clinical validation reasons.

7.4.8. ICU-MM parameters

The model has been described before and units of state variables, inputs and param-
eters are given in Table 7.2. The used parameter values are represented in Table 7.2.
These values result from an estimation process applied to a real-life data set of 19 criti-
cally ill patients as described by Van Herpe et al [185]. The parameter and state values
after the first 24 hour estimation for an arbitrary patient were chosen. Proceeding in
this way the control system could be assessed using a realistic parameter realization.
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Table 7.2.Units and values of the parameters applicable in the ICU minimal model. These
values result from an estimation process applied to a real-life data set of 19 critically ill patients.

Parameters Units Value
VG dl 116.8
VI ml 8760
Gb mg/dl 95
Ib µU/ml 10.7
P1 1/min -1.71 10−2

P2 1/min -2.24 10−2

P3 ml/(min2µU) 2.5 10−3

h mg/dl 107.4
n 1/min 0.2623
α 1/min 0.35
β min 1

γ
µU
ml

dl
mg

min2 1.4001 10−4

Figure 7.4.The top panel shows the evolution of the simulated glycemiaG with added sensor
noise (solid line) and the target range of 80−110 mg/dl (dashed lines). The flow of the carbo-
hydrate caloriesFG (second panel) is the known disturbance factor whereas the insulin rateFI
(third panel) is the insulin sequence that is proposed by MPCcontroller. A fictitious medication
disturbance factorFM (that is unknown to the MPC) is visualized in the bottom panel.

7.4.9. Results and discussion

Closed-loop control performance

In Figure 7.4 the simulated glucose course with added measurement noise and the ad-
ministered known and unknown input flows are illustrated. Starting from a high initial
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blood glucose concentration, the closed-loop control system is able to regulate to the
normoglycemic range (80−110 mg/dl) in a considerably short time span by admin-
istering a still clinically acceptable insulin flow. The MPCcontroller was precisely
tuned to obtain both good control performance and clinical acceptability. Further-
more, the control system is able to suppress the unknown disturbance input. When the
rather large disturbance (i.e., medication) enters, the glycemic level is raised into the
modesthyperglycemic range, after which the insulin flow is adjusted and the glycemic
level is steered to the normoglycemic range again. Further on, aslight hypoglycemic
event occurs when the large disturbance suddenly drops. This result shows the po-
tential of the proposed control system to normalize the blood glucose exploiting the
nonlinear model dynamics and taking into consideration unknown disturbance factors
that are omnipresent in the ICU.

Moving horizon estimation

In Figure 7.5 the courses of the four states and their estimates are depicted as well
as the unknown disturbance and its estimate. The measurements are corrupted with
zero-mean random noise with standard deviationσ = 7.5 mg/dl. For the estimator a
time horizon ofNmhe= 5 min was employed. The true initial state of the system was
x0 =

[
207 58.0 0.0005 1.49

]
(see Table 7.1) while the estimator was initialized

with x̄0 =
[
180 20 0 0

]
. Despite this rather large initial error a fast convergence

to the true state values could be obtained leading to a minimal impact of initial error
on the closed loop performance. Furthermore, also the unknown disturbance could be
perceived with reasonable accuracy from the output measurements.

Target calculation

Figure 7.6 shows the target input (insulin flow) and the corresponding optimal input
computed by the MPC controller. The target input is influenced by the estimated un-
known disturbance input and (less noticeable) by the changing carbohydrate calories
flow. The MPC computed input is expected to track the big changes of the target but
not the fast fluctuations, which is reasonably well achievedas can be seen from the
figure. The effect of move blocking can be seen when a change inthe influencing
parameters occurs, for example at time instantst = 360 min andt = 665 min a sud-
den change in the unknown disturbance occurs, which is detected (estimated) shortly
thereafter. Due to move blocking of the input the controlleris not able to instantly
react to these changes, leading for instance to a short hypoglycemic event around time
t = 750 min (see Figure 7.4).
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Figure 7.5.The four top panels show the evolution of the true states (solid lin) and its estimates
(dashed line). The bottom panel shows the true (solid line) and estimated (dashed line) unknown
disturbance input.

Figure 7.6.Evolution of the computed target input (dashed line) and theoptimal input proposed
by the MPC controller (solid line).

7.5. Conclusions

In this chapter nonlinear MHE algorithms were discussed. Inparticular, a multiple
shooting Gauss-Newton SQP type algorithm was presented fornonlinear MHE, using
at its core the efficient MHE algorithms presented in the previous chapters.

MHE based MPC was proposed as a control strategy for regulating the blood-glucose
level in critically ill patients at the Intensive Care Unit.The moving horizon esti-
mator accurately estimates the true states from noisy output measurements of the
blood-glucose. MHE is able to recover quickly from a wrong initial guess of the
state vector. A target calculation is proposed to remove theeffect of disturbances and
changing parameters. The ability of the closed-loop control system to regulate to the

192



Nonlinear MHE algorithms and application to estimation andcontrol of blood-glucose in the
Intensive Care

normoglycemic range in a short time span and to suppress disturbances is shown for
a realistic disturbance realization. The proposed controlsystem shows potential for
application to glycemia regulation in the ICU. Future research is directed towards in-
vestigating other patient models in a closed-loop control strategy, see [27, 186] for
prediction performance comparisons of several patient models. In addition, we aim
to further investigate the robustness of the methods under different scenarios as well
as the impact of data quality. If these further steps are successful, the control strategy
may be proposed for clinical trials at the ICU in the near future.
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CHAPTER 8
General conclusions and outlook

The framework of MHE allows incorporation of first-principles dynamic models and
constraints and permits flexibility in the objective functions. This provides an un-
precedented potential for real-time state and parameter estimation. However, it also
presents many computational challenges. In this chapter, we summarize our contribu-
tions and present suggestions for future research.

8.1. Conclusions

The optimality conditions simply reveal the structure and symmetry inherent in MHE
problems. They are due to the Markov property of the dynamic models and the sym-
metric objectives. These properties are also fundamental to the recursive solution
provided by the celebrated Kalman filter. In this thesis, we exploit the structure and
symmetry by using exactly these recursive methods for solving the systems of KKT
optimality conditions. Since MHE considers a past window ofdata this corresponds
to a smoothing problem. In Chapter 3 Riccati based methods were derived from de-
composition of the KKT system. In particular a square-root version using numerically
stable orthogonal operations was proposed as a robust and efficient method for solving
MHE problems.

Constraints can be imposed in a natural way, leading to quadratic programs which can
be solved using either interior-point or active-set methods.

In Chapter 4, interior-point methods were investigated. Itis shown that the log-barrier
terms enter on the block diagonal of the KKT system and thereby preserve the struc-
ture and symmetry. More specifically, the barrier terms alter the measurement update
step and constraints can be interpreted as perfect measurements. The Riccati based
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methods are modified to account for these terms. Several types of constraints were
considered: mixed or separate, general or bound constraints. It was demonstrated
that an intelligent initialization can significantly reduce the number of iterations re-
quired for convergence. In this context, a hot-starting strategy was proposed. It was
shown that in a primal barrier interior-point method the barrier Hessian of an actively
constrained variable grows logarithmically as the constraints are approached. This
directly yields a logarithmic growth of the condition number of the matrices in the
recursions. This strongly motivated the use of the square-root version of the Riccati
based method within an interior-point MHE method. A C implementation demon-
strated the performance of the square-root algorithm. It was shown by numerical
examples that the method can be run in the milisecond range ona standard computer
for moderate horizons.

In Chapter 5, a Schur complement active-set method for MHE was presented. The
method was motivated by the observation that for MHE typically a small number
of constraints is expected to be active at the solution. Therefore, it uses the uncon-
strained MHE solution, which is efficiently computed by Riccati based methods, as a
starting point. By projecting onto the reduced space of active constraints a small non-
negativity constrained QP is obtained. If a square-root Riccati method is used, the
Hessian of this reduced QP is computed by partial forward solves. The Schur com-
plement method allows for multiple updates to the active setper iteration. Between
active-set iterations the Hessian and gradient change onlyby addition constraints to
the working set. This is because constraints are only added to prevent cycling. The
proposed method exploits these Hessian changes by applyinga Cholesky downdate.
In order to solve the reduced non-negativity constrained QPs, a gradient projection
method is proposed, consisting of two stages per iteration:a Cauchy step and a pro-
jected Newton step. The projected Newton step uses the Cholesky factorization of
the Hessian and applies Cholesky updates during the iterations. The solution to the
reduced QP is expanded by a Schur complement technique to update the primal and
dual variables. It is demonstrated that the method typically needs only a few active-
set iterations. C implementations demonstrated the performance of the novel Schur
complement active-set method for MHE.

The MHE framework offers great flexibility in the problem formulation. Not only
can constraints and nonlinear dynamics be imposed, but alsonon-standard objectives
can be considered. The aim of Chapter 6 was to show that certain convex formula-
tions may be more adequate than the least-squares formulation for certain problems
and can still be solved by efficient Riccati based methods. Robust penalties such as
the ℓ1 norm and the Huber penalty were investigated in the context of MHE with
the aim of improved robustness with respect to outliers. It was concluded that the
Huber penalty MHE formulation provides a performance improvement in case of out-
lier contaminated data while preserving the performance ofthe standard formulation
when the frequency of outlier occurance is rather low. A second convex formulation
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investigated in Chapter 6 concerned the joint input and state estimation for systems
with piecewise-constant or piecewise-linear inputs. It isshown that this problem is
best formulated as a cardinality problem which can be solvedby a sequence of convex
MHE problems. More specifically, it concerns anℓ1 norm MHE problem and subse-
quent modifications which can be solved using dedicated Riccati based methods. The
performance of the methods is shown through numerical simulations.

The developed quadratic MHE methods can be used for nonlinear MHE (NMHE)
in an SQP algorithm. In Chapter 7, a NMHE method is investigated using multi-
ple shooting and a constrained Gauss-Newton method. A majoradvantage of using
Riccati-based methods at the core of an SQP strategy for NMHEis that the arrival cost
updates and final estimate covariance are obtained as a natural outcome of the solution
process. The NMHE method is demonstrated on some numerical examples. Finally,
the application of an MHE based predictive control strategyto regulate the blood-
glucose level in critically-ill patients at the intensive care unit was investigated. It was
demonstrated that the moving horizon estimator accuratelyestimates the true states
from noisy output measurements of the blood-glucose and is able to recover quickly
from a wrong initial guess of the state vector. A target calculation was proposed to
reduce the effect of disturbances and changing parameters.The ability of the closed-
loop control system to regulate to the normoglycemic range in a short time span and
to suppress disturbances was shown for a realistic disturbance realization. Despite
model imperfections and large intra and inter patient variability, the proposed control
system seems applicable for normalizing glycemia in the ICUand will possibly be
tested in real-life circumstances in the near future.

8.2. Future work

8.2.1. Sum-of-norms regularization

Recently, another generalization ofℓ1 regularization for state smoothing was pre-
sented by Ohlsson [138]. Their (convex) formulation bears resemblances with the
cardinality formulation proposed in Chapter 6 for MHE with abrupt input changes.
Furture work will be directed to compare both approaches in accuracy and computa-
tional efficiency.

8.2.2. Emerging applications: fast and large-scale systems

The development of fast and robust methods creates a multiple of opportunities to
expand the application scope of MHE and MHE based NMPC.
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One emerging field of applications concernsfast systems, i.e., operating at a sampling
rate of 1kHz or more. Applications are in mechatronics, automotive, power electron-
ics, aerospace, and many other areas. In this thesis the focus was on fast structured
methods for MHE optimization problems. Further progress towards ultra fast NMHE
methods can be made by developing dedicated integration routines, since the inte-
gration and sensitivity generation is the most time consuming step in the current im-
plementations. One promising direction for such a fast dedicated ODE/DAE solver
could be an explicit Runge-Kutta scheme with limited numberof stages or with a grid
adapted to the measurements. Finally, automatic code generation and implementation
on embedded hardware,e.g.FPGA or DSP, will further reduce computation times and
widen the application scope.

On the other side of the spectrum arelarge-scale systems, i.e., with system orders of
10,000 to one million or larger. Here applications arise for instance in process indus-
try, and in forecasting andnowcastingof weather, oceans, climatology and ecosys-
tems. While Riccati based methods are well-suited for smallto medium scale systems
and large horizon lengths due to their linear scaling with horizon length, they become
intractable for (extremely) large-scale systems due to their cubic scaling with the sys-
tem order. In this case, other structure-exploiting MHE methods should be developed.
One possibility is to use preconditioned conjugate gradient methods. If the system
dimensions are such that even a single state covariance cannot be stored, one could
resort to reduced rank Kalman filter recursions or Ensemble Kalman filter type meth-
ods. However, the question arises if there is a benefit in using a larger window,i.e.
MHE versus Kalman filtering, if acrudeapproximation to the full state evolution is
made. Mostly, however, the large system dimensions stem from a discretization of
partial differential equations. Therefore, instead of discretizing first and applying ap-
proximate methods or model reduction methods in order to make the large discretized
system tractable, a better compromise is probably found in simultaneous discretiza-
tion and optimization methods such as collocation with an adaptive grid. Also here,
preconditioned conjugate gradient can be used to solve the optimization problems.
PDE constrained MPC is an active research area, seee.g.[123].

8.2.3. Decentralized and distributed MHE

Decentralized or distributed MHE can also provide a solution to MHE for large-scale
systems, but its scope is broader. It is especially useful when when there are different
time scales into play. The fast dynamics can be considered insmall scale estimation
problems using fast MHE methods implemented on embedded systems, while slower
time scales can be handled on a higher hierarchical level. The topic is being actively
researched [53, 54].
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8.2.4. Interaction between MHE and MPC

Although in reality the state of a dynamic system has to be estimated based on output
measurements of the system, an MPC controller typically assumes that the current
state is known exactly at all times. The MPC controller is designed assuming exact
state information after which in reality it is then connected to a state estimator. When
one uses an LQR controller combined with a Kalman filter one can prove that stability
and optimality is preserved. However, due to the nonlinear nature of MPC controllers,
this property does not hold anymore and one has to explicitlytake into account the
estimation errors. This methodology, called output feedback MPC, has received some
attention in recent years [60]. but the existing results areonly valid for rather restric-
tive settings. A future research direction could be to extend the existing results of
output feedback MPC towards MHE based MPC. The interaction between MHE and
MPC goes in two directions:

I Extension of the MPC algorithms to include the MHE estimation error. Instead
of one current state a set of possible current states is used and a robust MPC is
applied to this set. The set of states can for example be defined by the covariance
of the state estimate possibly restricted to a feasible set.

II MPC algorithms that yield improved future state estimates. Recent results [100]
show that it is possible to consider this interaction in the design of MPC con-
trollers. When current estimates are uncertain, the systemis probed in a di-
rection where the uncertainty is present so as to improve thequality of future
estimates. Researchers have already looked into the related topics of simultane-
ous regulation and model identification [65] and adaptive control, however, for
the combination of MPC with MHE the topic is nearly unexplored apart from
[100]. We believe this combination could lead to very strongresults although
finding formal proofs of asymptotic stability of the closed-loop system in the
presence of constraints can be very difficult.

199





APPENDIX A

Simplification of Riccati methods
for case H ≡ 0

In Chapter 3 we presented Riccati based methods for a generalMHE formulation
(3.1), i.e. with H 6= 0. If Hk = 0 for all k, there is nomixingbetweenx andw and the
Riccati recursion involves covariances of ordern×n. In this case the algorithms can
be simplified.
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A.1. Normal Riccati based method

If H ≡ 0, theLU decomposition (see Lemma 3.2.1) modifies to

L =




















P−1
0+

Q−1
k

A0 G0 −P1

0 0 −I P−1
1+

. . .

P−1
N−1+

Q−1
N−1

AN−1 GN−1 −PN

0 0 −In P−1
N+




















,

U =






















In 0 P0+AT
0

Im Q0GT
0

In P−1
1
In 0 P1+AT

1
Im Q1GT

1

. . .

In PN−1+AT
N−1

Im QN−1GT
N−1

In P−1
N
In






















,

The algorithms can be modified accordingly.

Algorithm 1 (b). [Riccati recursion, case H≡ 0]

1. Initialization: P0

2. For k= 0, . . . ,N−1:

a) Measurement update step

Pk+ = Pk−PkCT
k

(
Rk +CkPkCT

k

)−1
CkPk

b) Model forwarding step

Pk+1 = AkPk+AT
k +GkQkGT

k

endfor.

3. Final time step:

a) Measurement update step

PN+ = PN−PNCT
N

(
RN +CNPNCT

N

)−1
CNPN
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Algorithm 4 (b). [Forward vector recursion, case H≡ 0]

1. Initialization:

x̂0 := x̂0− x̄0

2. For k= 0, . . . ,N−1:

x
′
k = x̂k−PkC

T
k

(
Rk +CkPkC

T
k

)−1
(Ckx̂k +hk)

w
′
k = −w̄k

x̂k+1 = fk +Akx
′
k +Gkw

′
k

endfor.

3. Final time step:

x
′
N = x̂N−PNCT

N

(
RN +CNPNCT

N

)−1
(CNx̂N +hN)

Algorithm 5 (b). [Backward vector recursion, case H≡ 0]

1. Initialization (k= N:

xN = x
′
N

λN−1 = CT
N

(
RN +CNPNCT

N

)−1
(CNx̂N +hN)

2. For k= N−1, . . . ,1:

wk = w
′
k−QkG

T
k λk

xk = x
′
k−Pk+AT

k λk

λk−1 = AT
k λk +CT

k

(
Rk +CkPkC

T
k

)−1[
Ck(x̂k−PkA

T
k λk)+hk

]

endfor.

3. Final step (k= 0):

w0 = w
′
0−Q0GT

0λ0

x0 = x
′
0−P0+AT

0λ0
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A.2. Square-root Riccati based method

Also for the square-root Riccati method, the algorithms canbe simplified ifH ≡ 0. In
this case theL factor of theLDLT decomposition (see Lemma 3.2.5) modifies to

L =

















S−1
0+

W−1
0

A0ST
0+ G0WT

0 ST
1

0 0 −S−1
1 S−1

1+

. . .

S−1
N−1+

AN−1ST
N−1+ GN−1WT

N−1 ST
N

0 0 −S−1
N S−1

N+

















,

And the algorithms are adapted accordingly as shown below.

Algorithm 6 (b). [Square-root Riccati recursion, case H≡ 0]

1. Initialization: S0

2. For k= 0, . . . ,N−1:

a) Measurement update step

Compute QR-factorization:
[

Vk

SkCT
k Sk

]

=
[
Q̄k Q̃k

]
[
(R̃e

k)
−1 K̃T

k
0 Sk+

]

with R̃e
k =

(
Rk +CkPkCT

k

)−1/2
andK̃k = PkCT

k R̃e
k.

b) Model forwarding step

Compute QR-factorization:
[
Sk+AT

k

WkGT
k

]

=
[
Q̂k+1 Q̌k+1

]
[
Ŝk+1

0

]

endfor.

3. Final time step:

a) Measurement update step

Compute QR-factorization:
[

VN

SNCT
N SN

]

=
[
Q̄N Q̃N

]
[
(R̃e

N)−1 K̃T
N

0 SN+

]

with R̃e
N =

(
RN +CNPNCT

N

)−1/2
andK̃N = PNCT

NR̃e
N.
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Algorithm 7 (b). [Square-root forward vector recursion, case H≡ 0]

1. Initialization:

x̂0 := x̂0− x̄0

2. For k= 0, . . . ,N−1:

x
′
k = x̂k− K̃k(R̃

e
k)

T(Ckx̂k +hk)

w
′
k = −w̄k

x̂k+1 = fk +Akx
′
k +Gkw

′
k

endfor.

3. Final time step:

x
′
N = x̂N− K̃N(R̃e

N)T(CNx̂N +hN)

Algorithm 8 (b). [Square-root backward vector recursion, case H≡ 0]

1. Initialization (k= N:

xN = x
′
N

λN−1 = CT
NR̃e

N(R̃e
N)T(CNx̂N +hN)

2. For k= N−1, . . . ,1:

wk = w
′
k−WT

k WkG
T
k λk

xk = x
′
k−ST

k+Sk+AT
k λk

λk−1 = AT
k λk +CT

k R̃e
k(R̃

e
k)

T [Ck(x̂k−ST
k SkA

T
k λk)+hk

]

endfor.

3. Final step (k= 0):

w0 = w
′
0−WT

0 W0GT
0λ0

x0 = x
′
0−ST

0+S0+AT
0λ0
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APPENDIX B
QR factorization methods

This appendix considers QR factorization based on Householder reflections and Givens
rotations. Both methods are known to have excellent numerically properties: both are
stable. The Givens QR method is about twice as expensive as the Householder QR
method, but can be more selective in zeroing elements and is therefore generally used
or recommended for sparse matrices [66].

B.1. Dense QR methods

The QR factorization of a rectangular matrixA∈ Rm×n with m≥ n is given by

A =
(
Q1 Q2

)
(

R
0

)

, (B.1)

with Q1 ∈ Rm×n, Q2 ∈ Rm×(n−m) orthogonal andR∈ Rn×n triangular. IfA has full
column rank, then the columns ofQ1 form an orthonormal basis for the range space of
A. This computation is typically done by Householder or Givens transformations or
by Gram-Schmidt orthogonalization. Here only Householderand Givens QR methods
are discussed because numerical stability is guaranteed for these methods while this
is not the case for (classical or modified) Gram-Schmidt.

B.1.1. Householder QR methods

A Householder reflectionis a symmetric and orthogonal matrixH = I −βvvT, where
b is a scalar andv is a column vector of lengthn. Applying H to any vector of
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B.1. Dense QR methods

length n takes about 3n flops compared to a general matrix vector product which
requires about 2n2 flops. Geometrically the operationHx can be interpreted as a
reflection of the vectorx through the plane with normal vectorv. The importance of
Householder reflections follows from the orthogonality andthe fact that by choosingb
andv appropriately, the reflection can be used to zero selected components of a vector.
The Householder reflection is a rank-one modification of the identity.

The algorithm below, written in C, computes the QR factorization of A based on
Householder reflections.

Algorithm 9. [Householder QR.]

for k = 1 to ndo
v = Ak:m,k

ρ = max(|v|)
r = 0
for i = 1 to m−k+1 do

vi = vi/ρ
r = r +vivi

end for
if v1 > 0 then

σ =
√

r
else

σ =−√r
end if
t = σv1 + r
β = 1/t
v1 = v1 + σ
Ak,k =−ρσ
for j = k+1 to ndo

l = 0
for i = k to mdo

l = l +vi−k+1Ai, j

end for
l = β l
for i = k to mdo

Ai, j = Ai, j −vi−k+1l
end for

end for
end for

This algorithm requires aboutn2(m− n
3) = 2mn2− 2

3n2 flops (formandn large). The
algorithm applies a preliminary scaling to avoid overflow. Note that the algortihm
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does not compute an explicit representation ofQ (Q-less QR factorization). If Q is
needed, it can be computed out of the vectorsv.

B.1.2. Givens QR methods

A Givens rotation is an antisymmetric and orthogonaln by n matrix

G(i,k,θ ) =

















1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

0 · · · c · · · s · · · 0
...

...
.. .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

















i

k

i k

with c= cos(θ ) ands= sin(θ ) for someθ (consequentlyc2+s2 = 1). Premultiplying
a vector withG(i,k,θ )T can be interpreted as a counterclockwise rotation in the(i,k)
plane overθ radians. This operation requires about 6n flops. The Givens rotation is a
rank-two modification of the identity.

The standard Householder QR method proceeds by zeroing the elements below the
diagonal column by column. The Givens method can be implemented in a row-wise
or column-wise elimination form. Both have instead been preferred and used [129].
The column-wise strategy uses the same elimination order asused in the Householder
method. The Householder and column-wise Givens method are illustrated in Fig-
ure B.1. It is well known that application of a Householder reflection or a Givens
rotation to a matrix with two rows yields identical results [66, 69], which can be seen
from the figure.

The algorithm below computes the QR factorization ofA based on Givens rotations.

Algorithm 10. [Givens QR.]

for k = 1 to ndo
for j = k+1 to mdo

if |A j ,k|== 0 then
s= 0
c = 1

else if |A j ,k|> |Ak,k| then

t =−Ak,k
A j,k

209



B.1. Dense QR methods

0

(a)

0

(b)

Figure B.1. Illustration of QR factorization using Householder reflections (left) and using
Givens rotations (right).

s= 1√
1+tt

c = st
else

t =−A j,k
Ak,k

c = 1√
1+tt

s= ct
end if
Ak,k = cAk,k−sAj ,k

for i = k+1 to ndo
x = cAk,i−sAj ,i

y = sAk,i +cAj ,i

Ak,i = x
A j ,i = y

end for
end for

end for

This algorithm requires about 3n2(m− n
3) flops (for m andn large). The algorithm

guards against overflow. Note that the angleθ does not need to be computed and no
trigonometric functions are required.
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Figure B.2. Numerical results for dense Householder (blue line) and Givens (red line) QR
methods on typical time update matrices of Riccati based MHEalgorithms,i.e. m+ n rows
with m= n andn columns, simulated with random data. Left: error versus number of columns.
Right: computation time versus number of columns.

B.1.3. Numerical results

We have implemented the standard Householder and Givens QR methods in C and
simulated them on typical time update matrices of Riccati based MHE algorithms,i.e.
m+n rows withm= n andn columns. Numerical results were obtained for randomly
generated matrices sampled from the standard normal distribution1 and averaged2 over
500 repetitions. Computing times correspond to an Intel Core2-Duo processor at 2.13
GHz with 2 MB cache and 2 GB RAM, and using the compiler gcc version 4.4.5. The
results are presented in Table B.1 and Figure B.2. It can be seen from these results that
the Givens method is more accurate for small systems, up ton = 7, for moderate or
large systems Householder is more accurate by about a factor1.5. The Householder
method is consistently faster than the Givens method by about a factor 2 as predicted
by the flop counts. The error of QR factorization can be computed by checking the
orthogonality ofQ, i.e. evaluating3 ‖QTQ− I‖2. Since this measure does not take
the error in theR matrix into account which is our primary concern, also the error
‖QR−A‖2 was calculated. We observed that the trends for both errors are actually
very similar. In the figures only this error is shown.

1Using the random number generator from GNU Scientific Library (GSL)
2The median was used rather than the mean in order to remove bursts originating from processes

running in the background.
3The Frobenius norm was used for matrix norms throughout these numerical simulations
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Table B.1. Numerical results for dense Householder and Givens QR methods on typical time
update matrices of Riccati based MHE algorithms,i.e. m+n rows withm= n andn columns,
simulated with random data.

avg time avg error avg error
(s) ‖QTQ− I‖2 ‖QR−A‖2

n = m = 2
Householder 1,00E-06 2,75E-16 5,78E-16

Givens 2,00E-06 1,19E-16 2,45E-16

n = m = 5
Householder 2,00E-06 4,64E-16 2,62E-15

Givens 5,00E-06 3,81E-16 2,10E-15

n = m = 10
Householder 6,00E-06 6,86E-16 8,06E-15

Givens 1,90E-05 7,30E-16 8,75E-15

n = m = 20
Householder 2,60E-05 1,08E-15 2,63E-14

Givens 8,60E-05 1,39E-15 3,51E-14

n = m = 50
Householder 3,28E-04 2,12E-15 1,36E-13

Givens 7,73E-04 3,35E-15 2,19E-13

B.2. Structured QR methods

When applying direct methods to sparse systems, the factorization process is usually
preceded by anordering and symbolic analysisphase. This phase typically involves
graph theoretical models to find optimal row and column orderings and to construct
elimination trees. If the sparsity pattern is known in advance, it can be imposed during
the factorization proces and this preceding phase is omitted.

Consider the QR factorization in the measurement update step of the Riccati based
MHE algorithms investigated in this thesis

[
Vk

TkDT
k Tk

]

= Q

[
(R̃e

k)
−1 K̃T

k
0 Tk+

]

Following the dense Householder QR procedure, large and sparse matrices lead to
long and sparse Householder vectors . This can, however, easily be avoided by sorting
the rows in such a way that rows with leading nonzero element in the first column are
permuted first in the matrix,i.e. a staircase row ordering. This simple rule of thumb
can have substantial impact on the amount of intermediate fill-in and work associated
with the QR procedure[39]. SinceVk is upper triangular, applying the rule of thumb,
yields the following row-reordered fatcorization

[
TkDT

k Tk

Vk

]

︸ ︷︷ ︸

A

= Q̃

[
(R̃e

k)
−1 K̃T

k
0 Tk+

]

︸ ︷︷ ︸

R̃
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n

m

p

p n m

n

p

p n

Figure B.3.Visualization of the block structure in the original matrixfor the general case (left)
and for the caseH ≡ 0 (right).

Note that the R-factor is unaffected by the row re-ordering.The sparsity pattern of the
matrices encountered in the Riccati based MHE algorithms isdepicted in Figure B.3.
This row-reordering for the measurement update step is known to lead to computa-
tional savings in the factorizations, see standard textbooks, i.e. by Verhaegen and
Verduld [190] or Kailath et al [111].

Given a fixed column ordering, it is clear that columns in general must be elimi-
nated from left to right. Fill-in is otherwise introduced inalready processed columns.
However, in some cases the sparsity pattern is such that setsof columns are struc-
turally independent and it becomes possible to eliminate inany order, or in parallel.
This observation forms the basis of the multifrontal sparseQR factorization meth-
ods [96]. Unfortunately, the matrices considered in this thesis in general do not fall
into this class. It can be shown that, although the original matrix A is quite sparse
(see Figure B.3), the R-factor is in general not sparse. Nevertheless, the sparsity
can be exploited during the QR-iterations. Structured versions of QR methods using
Householder reflections and Givens rotations have been implemented for the matrices
considered in this thesis and are compared in this section.

B.2.1. Structured Householder QR method

The row re-ordering can yield a substantial reduction in flops since the firstp itera-
tions deals shorter vectors and matrices. The zeros top right for the general case (see
Figure B.3) and the zeros due to triangularity ofSk andWk can be exploited in the first
iteration only for the structured Householder QR. After thefirst iteration this spar-
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sity is destroyed. Nevertheless, for small systems the reduction in operations can be
significant.

B.2.2. Structured Givens QR method

Similarly to the structured Householder method the row re-ordering can yield a sub-
stantial reduction in flops for the firstp iterations for the structured Givens method.
The zeros top right for the general case (see Figure B.3) can be exploited during the
first n iterations. The zeros due to triangularity ofSk andWk can be exploited in the
first iteration only. After the first iteration this sparsityis destroyed. The sparsity in the
matrices can be exploited more in the structured Givens method than in the structured
Householder method.

B.2.3. Numerical results

We have implemented structured versions of Householder andGivens QR methods
that fully exploit the sparisty pattern in C and simulated them on typical measurement
update matrices of Riccati based MHE algorithms.

Again numerical results were obtained for randomly generated matrices sampled from
the standard normal distribution and averaged over 500 repetitions. Computing time
corresponds to an Intel Core2-Duo processor at 2.13 GHz with2 MB cache and 2 GB
RAM, and using the compiler gcc version 4.4.5. The results are presented in Table B.2
and in Figures B.4 and B.5 for the caseH ≡ 0 and for the general case respectively.
It can be seen from these results that also for these cases theGivens method is more
accurate for small systems, up ton = 7, while the Householder is more accurate for
moderate or large systems. The Householder method is cosistently faster than the
Givens method by about a factor 2 as predicted by the flop counts. Furthermore,
the structured versions of the QR methods are consistently faster (apart from some
anomalies in the simulation results). The speed improvement is more pronounced for
largep. Note that the accuracy of the structured versions is identical to the standard
versions since the same operations are involved, only sparsity is exploited. Therefore,
the developed structured QR methods are used throughout this thesis.
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Figure B.4. Numerical results for structured Householder and Givens QRmethods on typical
measurement update matrices of Riccati based MHE algorithms for the caseH ≡ 0, i.e. n+ p
rows andn+ p columns, simulated with random data. Left: error versus dimensionn. Right:
computation time versus dimensionn. Top: p = 2; middle: p = n/2; bottom: p = n. Standard
Givens in solid red, structured Givens in dashed red, standard Householder in solid blue, struc-
tured Householder in dashed blue. Note that the error is identical for the standard and structured
method, since it involves the same computations except sparsity is exploited.
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Figure B.5. Numerical results for structured Householder and Givens QRmethods on typical
measurement update matrices of Riccati based MHE algorithms for the general case,i.e. n+
m+ p rows andn+m+ p columns, simulated with random data. Left: error versus number of
columns. Right: computation time versus number of columns.Left: error versus dimension
n. Right: computation time versus dimensionn. Top: p = 2; middle: p = n/2; bottom: p =
n. We setm = n throughout. Standard Givens in solid red, structured Givens in dashed red,
standard Householder in solid blue, structured Householder in dashed blue. Note that the error
is identical for the standard and structured method, since it involves the same computations
except sparsity is exploited.
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Table B.2.Numerical results for dense Householder and Givens QR methods on typical mea-
surement update matrices of Riccati based MHE algorithms for the caseH ≡ 0, i.e. n+ p rows
andn+ p columns, simulated with random data.

avg time avg error avg error
(s) ‖QTQ− I‖2 ‖QR−A‖2

n = m = 2 p = 2
Householder 1,00E-06 5,14E-16 8,14E-16

Givens 1,00E-06 2,29E-16 3,05E-16

n = m = 5

p = 2
Householder 3,00E-06 1,48E-15 3,42E-15

Givens 3,00E-06 1,07E-15 2,64E-15

p = 5
Householder 4,00E-06 9,56E-16 2,80E-15

Givens 6,00E-06 6,16E-16 1,73E-15

n = m = 10

p = 2
Householder 6,00E-06 2,20E-15 7,36E-15

Givens 7,00E-06 2,01E-15 7,47E-15

p = 10
Householder 1,30E-05 1,47E-15 7,57E-15

Givens 2,40E-05 1,25E-15 6,46E-15

n = m = 20

p = 2
Householder 2,20E-05 3,51E-15 1,65E-14

Givens 2,60E-05 3,82E-15 2,06E-14

p = 20
Householder 6,10E-05 2,35E-15 2,12E-14

Givens 1,20E-04 2,46E-15 2,45E-14

n = m = 50

p = 2
Householder 2,00E-04 7,15E-15 5,25E-14

Givens 2,56E-04 9,19E-15 8,00E-14

p = 50
Householder 7,72E-04 4,89E-15 9,86E-14

Givens 1,29E-03 5,96E-15 1,45E-13
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APPENDIX C
Robust measures

In this appendix we compare the robustness of several commonly encountered penalty
functions. For every penalty function, we investigate (1) its associated derivative func-
tion or influence functionpsi(u) = dρ(u)

du which measures the influence of a residual

on the estimate, and (2) the weight functionψ(u)
u which measures the relative weight

that is given to a certain residual

First, let us compare two commonly used penalty functions,ρ1(u) = |u|, associated
with theℓ1-norm andρ2(u) = u2, associated with theℓ2-norm. For smallu we have
ρ1(u)≫ ρ2(u), so ℓ1-norm approximation puts relatively larger emphasis on small
residuals compared toℓ2-norm approximation. For largeu we haveρ2(u)≫ ρ1(u),
so ℓ1-norm approximation puts less weight on large residuals, compared toℓ2-norm
approximation. Therefore, the solution of the an estimation problem usingℓ1-norms
is less influenced by large residuals or outliers. Although theℓ1-norm shows improved
robustness with respect to outliers, it also exhibits some undesirable effects. Theℓ1-
norm solution will tend to have more zero residuals, compared to theℓ2-norm solution,
but very few small residuals, which may not always be desirable, e.g. , in the case of
normally distributed residuals contaminated with occasional outliers. Moreover, the
ℓ1-norm is notstablebecauseρ1(u) is not strictly convex,i.e. the second derivative of
ρ1(u) at zero is infinite and an indeterminant solution may result.

The advantages and disadvantages of both norms discussed above, have inspired re-
searchers to propose hybridℓ1 - ℓ2 measures. One such hybridℓ1 - ℓ2 measure is the
penalty function

ρhub(u) =

{
u2 |u| ≤M
M(2|u|−M) |u|> M,
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which is sometimes calledquadratic-tangent penalty function, but is usually referred
to asHuber penalty functionafter its proposer Huber [102]. This penalty function
agrees withρ2(u) for u smaller thanM, and then reverts toℓ1-like linear growth for
largeru. For vectors, we defineρhub(u) to be the sum of the Huber penalty function
applied componentwise.
Another hybridℓ1 - ℓ2 measure is

ρsh(u) = M(
√

M2 +u2−M), (C.1)

which is referred to assmooth hybrid penalty function. Like the Huber penalty func-
tion it corresponds toρ2(u) for small u and it resemblesρ1(u) for large u, but as
opposed to the Huber penalty function it does not have a cut off point. The parameter
M allows to control the smooth transition from quadratic to linear. Again, for vec-
tors, we defineρsh(u) to be the sum of the smooth hybrid penalty function applied
componentwise. From Figure C.1 it can be seen that

• theℓ2-norm isnot a robust measure, since its influence function is unbounded,
i.e. extremely large residuals have extremely large influence,

• the ℓ1-norm is a robust measure - its influence function is bounded,implying
that less relative weight is given to larger residuals - but it is not stable,

• the Huber penalty and the smooth hybrid penalty are robust and stable measures.

The robust penalties described above are still influenced byextreme values, albeit less
than theℓ2-norm. For a measure to be extremely robust, the influence function should
fall to zero quickly after the cut off point, with the ultimate robust measure being the
quadratic-constant penalty function

ρqc(u) =

{
u2 |u| ≤M
M2 |u|> M,

which nullifies the influence of outliers. However, this requirement of decreasing in-
fluence function unavoidably leads to non-convex penalty functions. Smooth approx-
imations to the quadratic-constant penalty are given amongst others by the Cauchy
function M2 log

(
1+(u/M)2

)
, which provides a linear decay of influence of gross

errors, or the Welsch functionM2
[
1−exp

(
−(u/M)2

)]
, which further reduces the ef-

fect of large errors. Both functions cause numerical issuesdue to non-convexity and
moreover they tend to over-smooth the data [194]. Other, even more robust yet com-
plex measures are the Tukey bi-weight criterion or Hampel’sthree-part redescending
function [86]. The Huber penalty function is the convex function which approximates
the quadratic-constant pentalty function closest and has proven to be very useful in
practical applications [29, 58, 84, 85, 104, 122]. It can also be used as an convex
initializer for numerically hard non-convex measures suchas the Hampel function
[205]. According to Zhang [205] a robust esimator should be strictly convex and have
a bounded influence function.
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Figure C.1.Graphical representation of some commonly used penalty functions.
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T. Bürner, E.D. Gilles, A. Kienle, J.P. Schlöder, and E. Stein. Real-Time Op-
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