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Abstract

In model-based predictive control strategies, accuraienates of the current state
and model parameters are required in order to predict thedigystem behavior for
a given control realization. One particularly powerful apgch for constrained non-
linear state estimation is Moving Horizon Estimation (MHE) MHE past measure-
ments are reconciled with the model response by optimiziages and parameters
over a finite past horizon. The basic strategy is to use a ngowimdow of data
such that the size of the estimation problem is bounded bkingoat only a subset
of the available data and summarizing older data in oneainétndition term. This
also establishes an exponential forgetting of past datatwikiuseful for time-varying
dynamics.

Compared to other state estimation approaches, MHE offangyradvantages follow-
ing from its formulation as a dynamic optimization probldmequality constraints on
the variables (states, parameters, disturbances) carclwgéd in a natural way and
the nonlinear model equation is directly imposed over theézbo length. Empirical
studies show that MHE can outperform other estimation aggires in terms of accu-
racy and robustness. In addition to these well-known acyed, the framework of
MHE allows for formulations different from the traditionéleighted) least-squares
formulation.

The greatest impediment to a widespread acceptance of MHEedbtime applica-
tions is still its associated computational complexity.spige tremendous advances
in numerical computing and Moore’s law, optimization-bdi&stimation algorithms
are still primarily applied to slow processes. In this wonle present fast structure-
exploiting algorithms which use robust and efficient nurc@nmethods and we demon-
strate the increased performance and flexibility of nordireonstrained MHE.

MHE problems are typically solved by general purpose (saoptimization algo-
rithms. Thereby, the symmetry and structure inherent inptttbolems are not fully
exploited. In addition, the arrival cost is typically upddtby running a (Extended)
Kalman filter recursion in parallel while the final estimatvariance is computed
from the derivative information. In this thesis, Riccatised methods are derived
which effectively exploit the inherent symmetry and sturetand yield the arrival
cost update and final estimate covariance as a natural oetodrie solution pro-
cess. The primary emphasis is on the robustness of the neet¥tudh is achieved by



orthogonal transformations.

When constraints are imposed, the resulting quadraticraroming (QP) problems
can be solved by active-set or interior-point methods. Wevdenodified Riccati
recursions for interior-point MHE and show that squaretn@ezursions are recom-
mended in this context because of the numerical conditgpnive develop an active-
set method which uses the unconstrained solution obtaioaad Riccati recursions
and employs a Schur complement technique to project onteethéced space of ac-
tive constraints. The method involves non-negativity ¢@ised QPs for which a
gradient projection method is proposed. We implement tgerghms in efficient C
code and demonstrate that MHE is applicable to fast systems.

These QP methods are at the core of solution methods for @lermrvex and non-
linear MHE as is demonstrated. Convex formulations arestigated for robustness
to outliers and abrupt parameter changes. Furthermorant#thods are embedded
in a Sequential Quadratic Programming strategy for noalifMdHE. One application
has been of particular interest during this doctoral redeagstimation and predictive
control of blood-glucose at the Intensive Care Unit (ICUdr Enhis application relia-
bility and robustness of the estimates as well as of the nicalémplementations are
crucial. We evaluate an MHE based MPC control strategy aod $is potential for
this application.
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Korte inhoud

Modelgebaseerde predictieve regelstrategieén vergisearate schattingen van de
modelparameters en de huidige toestand om het toekomgstgesngedrag te kun-
nen voorspellen. Toestandsschatting met schuivend éjdger of moving horizon
estimation (MHE) is een krachtige techniek voor niet-lineachatting met ongelijk-
heidsbeperkingen. Het idee in MHE is om de metingen met helelte combineren
door middel van optimalisatie over een eindig venster. Bbechts een eindig aantal
meetpunten te beschouwen en een schuivend tijdsvenstebteiken blijft het opti-
malisatieprobleem berekenbaar. Zodoende wordt er ookvaatisch een laag gewicht
toegekend aan oude metingen die weinig informatie gevendwduidige toestand
en parameters.

In vergelijking met andere methoden voor toestandsscitpttieeft MHE een aantal
voordelen die volgen uit de formulering als dynamisch opligatieprobleem. On-
gelijkheidsbeperkingen kunnen eenvoudig opgelegd woetede niet-lineaire mo-
delvergelijkingen worden rechtstreeks in rekening gelrawer het volledige tijds-
venster. Empirische studies tonen aan dat MHE accuraterebeiustere schattingen
oplevert dan andere toestandsschattingsmethoden. Nemsgekende voordelen, laat
MHE andere formuleringen toe dan de traditionele kleinstadraten formulering.
Een grootschalige doorbraak van MHE voor real-time todpgses wordt enkel ver-
hinderd door de geassocieerde rekencomplexiteit. In gkstadp dient namelijk een
optimalisatieprobleem opgelost te worden. Ondanks dene@mooruitgang op het
vlak van numerieke methoden en rekenkracht (de wet van Nljoearden optima-
lisatiegebaseerde methoden voor toestandsschatting smrgamelijk toegepast op
relatief trage processen. Deze thesis tracht aan te torteMid& toepasbaar is op
snelle processen door gebruik te maken van structuurhkesrdgtrobuuste algoritmen
en bovendien aanleiding geeft tot een hogere performantiexibiliteit.

MHE optimalisatieproblemen worden typisch met standagtthwalisatiealgoritmen
opgelost. Daardoor kan de structuur en symmetrie die imhée@an deze problemen
niet ten volle benut worden. Bovendien wordt de zogenaaandeal cost typisch
berekend door een (Extended) Kalman filter recursie in [t te voeren en wordt
de covariantie van de laatste schatting berekend door astisthe analyse.

In deze thesis worden Riccati gebaseerde methoden ontwjkkelke de structuur
en symmetrie uitnutten en tezelfdertijd deival cost updateen covariantie van de
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laatste schatting opleveren als bijproduct van het oplgssiroces. De ontwikkelde
methoden maken gebruik van orthogonale transformatiesmagimale robuustheid.
Wanneer ongelijkheidsbeperkingen aanwezig zijn, kuranive-setofwel interior-
point methoden aangewend worden. In deze thesis worden aangdRiasati re-
cursies afgeleid vodnterior-point MHE methoden en wordt aangetoond dqtiare-
root methoden een duidelijk voordeel bieden wat betreft nurkeraonditionering.
Daarnaast wordt eearctive-seimethode voorgesteld welke de MHE oplossing zonder
beperkingen als startpunt neemt en een beperkt aanta¢ aethiteraties nodig heeft
voor convergentie. In elke iteratie wordt geprojecteerddepgereduceerde ruimte
van actieve beperkingen door middel van een Schur completeeimniek. Voor de
resulterende gereduceerde QPs met positiviteitsbeggrkinvordt een gradiént pro-
jectiemethode voorgesteld. Efficiente implementatiesdealgoritmen in C tonen de
toepasbaarheid van MHE op snelle systemen aan.

De ontwikkelde methoden voor kwadratische programmeiggein aan de basis van
algemene convexe of niet-lineaire MHE methoden. In dezsighgorden convexe
formuleringen onderzocht voor robuustheid tegen abnaemmedetwaarden en abrupte
parametervariaties. Tot slot worden de methoden gebmiken SQP strategie voor
niet-lineaire MHE.

Een bepaalde toepassing is van bijzonder belang gewestgidit doctoraat: real-
time schatting en predictieve regeling van de bloedglutigeatiénten op intensie-
ve zorgen. Voor deze toepassing zijn robuustheid en betraavheid van zowel de
schattingen als de numerieke implementaties cruciaal. NBdE gebaseerde MPC
strategie wordt geévalueerd en voorgesteld voor toepgéside nabije toekomst.
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CHAPTER ] -

Introduction

Physical systems are designed to perform specific functistreowing the system

state is necessary to solve many control problems. In mestipal cases, however,
the physical state of the system cannot be determined bgtdibservation. Instead,
the state needs to be estimated from noisy output measutearaha process model
usually obtained from physical insight.

1.1. History

State estimation has had a long and remarkable history imahéral sciences and
engineering and was influenced by some of the most prodigicigntists as Gauss,
Legendre and Maxwell. The first method for forming an optiestimate from noisy
measurements was tineethod of least-squarest was developed during the Age of
Exploration, late eighteenth century, when scientistgbbtor solutions to the chal-
lenges of navigating the oceans. The accurate descriptittredoehavior of celestial
bodies was key to determining the postion of the ships, é@mgathhem to sail in open
seas. Carl Friedrich Gauss is commonly credited with dgmetpthe fundamentals of
the method of least-squares in 1795, although Legendr@éerdiently developed the
method around the same time and was the first to publish &rdstingly, Gauss used
his method to solve a specific problem, namely determinie@thit of the newly dis-
covered planet Ceres, which is still part of our Solar Sysbeitis now categorized as
a dwarf planet. The Italian astronomer Piazzi discovéhnedast missing planéteres
in 1801. He was only able, however, to observe the planetdidy{fone days after
which it moved behind the sun. This launched a scientificlehgle of determining
the orbit of Ceres using Piazzis observations such thadrastners would be able to
locate the planet when it reappeared. The problem of deténgniCeres’ orbit was
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more complex than any other previous problem in astrononwy.tle discovery of
Uranus astronomers had relied on the assumption of a ciretbd, which was nearly
correct, but the orbit of Ceres was elleptic with unknownesttdcity. Apparently,
the orbit could not be determined from the data using knowthods. Under certain
hypotheses which Gauss adopted from Kepler the orbit wardeted by a set of
five parameters. No dynamics of the object itself were needeldng as the object
remained in this orbiti.e. unperturbed by large planets. Gauss solved the nonlinear
least-squares problem by hand calculation and using ordgthut of the twenty-two
observations made by Piazzi over forty-one days. It regluresr one hundred hours
of calculation. His approach was to determine a rough appration followed by iter-
ative refinements, allowing the estimated orbit to fit theavbations smoothly. Using
Gauss'’ predictions astronomers found Ceres again afteerherged from behind the
sun.

In one of his remarks Gauss anticipated the maximum likelthmethod, which was
only introduced in 1912 by Robert Fisher. It is interestihgttGauss rejected the
probabilistic maximum likelihood method in favor of the dahinistic method of
minimizing the sum of squared residuals [166]. Inspiredhmsy maximum likelihood
method Kolmogorov and Wiener independently developedratd941 a least-mean-
square estimation method using autocorrelation functidigs Wiener-Kolmogorov
filter has two important drawbacks. It is only applicable tatisnary processes and it
requires the solution of an integral equation known as thenafi-Hopf equation.

The breakthrough in estimation theory was achieved by Faid#&lalman with the
development of his famous filter. The Kalman filtering altfum was originally pub-
lished by Kalman [112] in 1960 for discrete-time systems apdKalman and Bucy
[113]in 1961 for continuous-time systems. It has been tligesti of many research
works following its initial publication and has been cowtia numerous textbooks.
The Kalman filter provides a solution which is far superiottte Wiener-Kolmogorov
filter [196] due to its recursive nature and effective usehef Riccati equation. The
key idea which led Kalman to derive his filter was equatingestation with pro-
jection [83]. The Kalman filter is applicable to non-station systems. In fact the
first application of the Kalman filter was a nonlinear one jetttory estimation for
the Apollo project, a planned mission to the moon and backclwhesulted in one of
the greatest achievements of mankind with the moon landirgpollo 11 in 1969
(Figure 1.1).

To date the Kalman filter has found widespread applicatiativarse areas including
space- and aircraft navigation, GPS, automotive, mechigspoil refining and chem-
ical process industry, (nuclear) power industry, commatia networks, economics,
computer vision applications, oceanography, weather arglality forecasting, hu-

man gait analysis, fluid dynamics. The impact of the Kalmaerfdéannot be overesti-
mated. Its popularity can be attributed to the fact thatlitagh theoretically attractive
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Figure 1.1. The Kalman filter was used for trajectory estimation in theo#gpspace program.
These missions led to the first manned moon landing in 1969pbthe greatest achievements
of the 20th century.

— because of all possible linear unbiased state estimatisréhie one that is optimal
in the sense of minimum variance estimation error and intaudtdit is asymptotically
stable — and at the same time yields a very simple yet powerégtical implementa-
tion. Historical surveys on the development of Kalman filtgrcan be found in [166]
and [111].

In 1963 Bryson and Frazier [30] first showed the connectiawben Kalman filter-
ing and optimization. Early formulations of linear uncaasted MHE, sometimes
referred to as limited memory filters, were presented in [1[62] and [175]. Given
the computational limits of the 1960’s it is not surprisihgt recursive solution meth-
ods were proposed for these formulations. For general neatidynamical models
exact recursive solutions are impossible to compute ingfitiihe as the problem be-
comes infinite dimensional as shown by Kushner in 1964 [1Z0refore approxi-
mations must be made, which led to several nonlinear filt€he Kalman filter was
extended to nonlinear models by linearizing through a firdeoTaylor series around
the current estimate [34]. Nonlinear unconstrained MHE firas proposed by Jang
and coworkers [105] in 1986. The formulation, however, igatbdisturbances. Their
work was extended in the following years by Tjoa and Bieglef7], Liebman and
coworkers [125] and Muske and coworkers [134]. Further stigations in the fol-
lowing years have led to a deeper understanding in the ofityn@ad stability prop-
erties resulting in effective and stable MHE formulatiof8,[146, 155]. Stability of
linear constrained MHE was addressed by Findeisen [59],éRab[148], Alessandri
et al [4] and for nonlinear systems by Alamir et al [1], Rao i€tl49], Alessandri et
al [5] and Zavala et al [201, 202]. MHE for hybrid systems wasestigated in [63].

Since MHE is an optimization-based state estimation metihattongly depends on
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the underlying numerical optimization schemes. An ovemid numerical aspects
and techniques for MPC and MHE is given by Diehl et al [44]. udberque and
Biegler [3] first proposed a structure-exploiting algonittior MHE which scales lin-
early in the horizon length. Riccati based methods for MHEbgms have been
proposede.g. by Tenny et al [173], Jorgensen et al [108], Haverbeke et4l §&d
Zavala et al [199, 202].

On the other side, researchers have proposed explicit MHtBods, see.g. [36,
169], which aim to move the computations offline. These mashgpically involve
the solution of a multiparametric (quadratic) program otvex variable space and a
tabulation over all possible regions which is consultedrenl The drawback of this
approach is an exponential growth of the number of regiomz@ef the look-up-
tables when either the number of variables or the estimétioizon are increased.

Algorithms for efficient nonlinear MHE have also been inigasted. Zavala et al [202]
proposed an algorithm based on NLP sensitivity and colionafThis was extended
to a fast but approximate algorithm for MHE [200]. An MHE saie, inspired by the
multiple shooting real-time iteration scheme for NMPC mreed by Diehl [42, 43],
was presented by Kraus et al [118] and Kuihl et al [119].

In addition to these theoretical and numerical advancesstiperiority of MHE over
traditional recursive estimation methods such as the EigdrKalman Filter (EKF)
has been demonstrated empirically by Haseltine et al [89].

1.2. Dynamical system models

Many phenomena in nature can be described by dynamical sotted central idea is
to model the natural process by relations between quamntitid their rates of change,
e.g. relying on laws of nature, thermodynamics, mechanics aitetéty. This leads
immediately to differential equations. Furthermore, aiffedential equation of arbi-
trary order can be transformed into a coupled set of firsepdifferential equations.
A state-spaceepresentation is a dynamical model where vectors of inputtputs
and states are related by first-order differential or ddfeze equations. The states are
the smallest possible subset of system variables that gaiasent the entirstateof
the system at any given time. The state-space representatiwides a convenient
and compact way to model and analyze systems with multigdat;nand outputs.
Throughout this thesis we will consider linear and nonlingi@te-space models in
continuous or discrete time.
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Continuous-time models

Continuous-time systems can often be described by ordidiffigrential equations
(ODEs) as follows

X(t) = f(t,X(t),U(t),p(t),W(t)), (1.1)

wheref is a nonlinear function, the timds the dependent variabbe(t) € R™ denotes
the state vectom(t) € R™ are given inputsp(t) € R" is the set of parameters and
w(t) € R™ is a vector of state or process disturbances. The outputiequaay be
given by the following expression

y(t) = h(t,x(t),u(t)) +v(t), (1.2)

whereh is a nonlinear function and whewt), v(t) € R™ are respectively the output
and the output disturbances or measurement errors.

If the model is affine in the variablesandw, then the following linear continuous-
time model is obtained

+G(t)w(t), (1.3)
+v(t). (1.4)

Here the (time-varying) system matric&f) € R™*™, G(t) € R™*™, C(t) € RV*™

and the offsetd (t) € R™, h(t) € R™ are assumed to be known.

Discrete-time models

Often the output is only measured at discrete samplingritsiEhe state equation may
also be discretized in advance, leading to the followingdinear discrete-time model

X1 = fil(X;, Uk, P, Wk), (1.5)
Yo = he(Xg,Uk) + . (1.6)
wherek denotes discrete timey € R™ is the stateyy € R™ is the state or process

disturbanceyy € R" is the output disturbance or measurement erroryane R"Y is
the observed output.

If the model is affine ik andw, then the following linear discrete-time description is
obtained

X1 = i+ Axic+ Grw, (1.7)
Yk = het+ G+ Wk (1.8)
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Here the (time-varying) system matricag € R™*™, G, € R™*™ C, € R™*™ and
the offsetsf, € R™, h, € R™ are assumed to be known.

1.3. State estimation

This section defines the state estimation problem and itsrdift facets. The reason
of existence of state estimation is given by the followingtivadions and by the fact
that state-space models have become the standard for advieecdback control.

Infer states from outputs

Typically not all states are measured either because ibigostly or simply because
it is impossible. For example the average molecular weiglat polymer in a chem-

ical reactor cannot be measured directly, but it can be ceetpbased on viscosity
measurements. On the other hand, concentrations of chlecoicgponents are of-

ten determined from temperature measurements, which ach easier to measure.
Often the outputs are a subset of states, but in generaltttesgutput relation may

be more complex,e. given by the nonlinear mapping (1.5). Fortunately, states a
outputs are all interconnected by the model equations. €fbee, it is well possible

to estimate a large number of states (and parameters) fra@redtions of a single

output.

In a disturbance-free settingv(, vk = 0,Vk) the main challenge of state estimation
is to retrieve the states that have generated the obsentpdtsugiven the dynami-
cal model. This is an inverse problem which is readily solirethe linear case but
which requires the solution of a nonlinear combinatoriatgem in case constraints
are present and the state and/or output equations are aanlilVhen the model is
nonlinear the inverse mapping may not even be one-to-omeehmultiple state se-
quences could have generated the observed output sequence.

Another goal of a deterministic state estimator is to recéneen a wrong initial guess.
Combining the model predictions with the information coispd in the output mea-
surements allows for asymptotic convergence to the true sequence.

Retrieve states from noisy measurements

Disturbances enter the system at two places. Processlfisites, denoted by,
account for modelling errors as well as for process vaneticOutput disturbances
account for modelling errors and for (random) sensor errAry mathematical model
is a simplification of the processes occurring in reality aod only hope is that the
model captures the most important dynamics. Hence theastglof state estimation
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Filtering

Measurements l

Smoothing

Figure 1.2.1llustration of filtering, prediction and smoothing. Usialjavailable measurements
up until the current time instant the goals are respectitelgstimate the current state, future
states or past states.

is to find good state estimates in the face of noisy measursmaen process distur-
bances. Of course the performance of state estimationitiroy the system set-up,
more precisely by the quality of the model and by the amoudt gumality of data
(information richness).

1.3.1. Filtering, prediction and smoothing

The state estimation problem comes in different forms ddmgon the span of avail-
able measurements used for computing a certain state éstirfiais is illustrated in
Figure 1.2 and formalized by the following definition.

Definition 1 (State estimation, filtering, prediction and smoothin@jven a sequence
of output measurements=¥ {yo, ..., i } generated by a process defined by one of the
models of Section 1.2, the state estimation problem carisisbmputing an estimate
of the state kbased on Y If k = | the estimation problem is called a filtering problem
and the estimateyxa filtered state estimate. If & | the problem (state estimate)
is a prediction problem (predicted estimate) and &Ml it is a smoothing problem
(smoothed estimate).

As time evolves and more measurements are collected, tmeagss of a state at a
certain point in the past (a process calfe@d-point smoothingwill become increas-

ingly accurate as one might expect. There is, however, arlbaend to this accuracy
which is defined by the amount of noise present in the systehbgithe characteris-
tics of the model. Indeed, the more unstable the open-losgesyis the harder it is
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to control it, because more energy needs to be be appliedbid #ve process from
drifting away, but the easier it is to estimate the statesbse small perturbations in
the state estimate lead to widely diverging trajectories.

On the other hand the accuracy of predictions tends to deeitbe further ahead one
wants to predict. The evolution of the prediction errorsavgrned by the open-loop
system dynamics since the feedback mechanism that is mteréhe Kalman filter
and to MHE (see Chapter 3) is broken.

As will become clear, in MHE a number of smoothed estimatelsiiltered estimate
are obtained in each time step. Subsequently, when combiitiec predictive con-
troller, the filtered (current) state estimate and the madelused to predict the future
state trajectory.

1.4. Moving horizon estimation

1.4.1. Least-squares batch state estimation

In the previous section the goal of state estimation was eéfasfinding the state
sequence that is most likely given a sequence of obsergatioth a system model.
Now, let us specify, what exactly is meant impst likely

The objective is defined as
I(T,X,W,V) = Jic(Xo) + ]proc(T,W) + Jout(T, V), (1.9)

whereT is the batch size (number of data points) and whegeR(T+D™ w ¢ RT™W
andv € RT*YY denote the stacked vectors of states, process disturbandesitput
disturbances respectively.

The first term, %, is the cost associated with the initial condition. Usuallys as-
sumed that some prior information is available in the fornaofinitial state estimate
Xo and a corresponding covariance mafix which allows the following definition

Je(X0) = HXO—>”<oH261. (1.10)
HenceP, determines the weight that is given to the initial guesselative to the other

terms in the objective. If we have high (low) confidence in éséimatexg then the
cost of choosingg far away fromxj is large (small).

The second termyroc, is @ penalization of the state or process disturbances.

T-1
Joroc(T, W) = Z) ||Wk||2|;1- (1.11)
k=
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HereQ, ! provides a measure of confidence in the model.

The third term %, is a penalization of the output disturbances or measureensrs
< 2

Jout(T,V) =3 [IVid[5-1- (1.12)
kZO Re

R, ! provides a measure of confidence in the measurement data.

The minimization is subject to one of the system models desdiin Section 1.2. For
nonlinear discrete-time systems this yields the followioglinear least-squares batch
estimation problem

: o T-1 T
Mty (o= 50l2 5+ 513 W2+ 310 Il

Xk+l == fk(Xk,Uk, pkvwk)v k:07"'7T717 (113)
S.t.

Yk :hk(Xk,Uk)+Vk, kio,...,T,
with X = {Xo, ..., x7 } the unknown state sequenee= {wo,...,wr_1} the unknown
process disturbances amne= {vp, ..., vy} the unknown output disturbances. The ma-
trices Py, Qx and Ry are tuning parameters for reconciling the model with the mea
surements and the initial guess.

1.4.2. General batch state estimation

Other relevant state estimation problems can be formulayedtering the definitions
of the objective terms. For example, instead/pfnorms, one could work withfy
norms or Huber penalty functions in order to robustify théneation problem with
respect to outliers in the measurements or with respect tanpeter jumps. If the
objective is composed of convex functions and if the modéhsar,i.e. fix andhy
are affine, the problem (1.13) is convex. Convex MHE formiala are discussed in
Chapter 6.

In order to generalize the batch estimation problem the¥adhg modified definitions
of the objective terms are proposed. The initial conditienmt is given by

Jie(x0) =p(S " (X0 —R0))- (1.14)

wherep(+) is an arbitrary penalty function and whesgis a weighting matrix. In case
p(-) is the squared, norm andS, is a (upper triangular) Cholesky factor B, i.e.
Po= SESO, the newly defined initial condition (1.14) is equivalen{1010).
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The process disturbance term is redefined as

T-1
Joroc(T, W) = ;p(Wk*ka), (1.15)
k=

wherep(-) is again an arbitrary penalty function not necessarily fabahfor everyk
and whera\ is a weighting matrix. Again, the new definition coincideshwihe old
definition (1.11) if the square norm is chosen and W is a Cholesky factor o,
i.e., Q=W W.

Finally, the output disturbance term becomes

;
out(T,V) = Ve Tvi). 1.16
Jout(T, V) k;p( k) (1.16)

where forp(-) andVj the same statements hold as with the previous teerequiva-
lence to (1.12) fop(-) = || - ||3 andR = V,T k.

1.4.3. Constrained state estimation

Because the batch state estimation problem is formulatad aptimization problem,
inequality constraints on the optimization variables cagilg be imposed. This is
useful from an engineering viewpoint since in practice fiddal information about
the process is often available in the form of constraiatg,quantities such as temper-
ature, pressure, mass, postion, speed, acceleratiorgmimatons are often restricted
to a certain range either by definitioa.§. nonnegativity) or by physical or practical
limitations (e.g. for safety reasons). Incorporating this prior knowledge ithe esti-
mation problem typically improves the performance and evgence of the estimator
[89]. In particular, when the system model is nonlinear tp&mization problem is
in general nonconvex with several local minima. In such & cam-physical optima
may be excluded by restricting the search space yieldinguaditic increase in esti-
mation performance, as shown by Haseltine and Rawlings [B&hstraints may also
be used to simplify the model. Explicitly enforcing congtita in the model, if at all
possible, can introduce discontinuities which causes migaldifficulties when the
model is used for estimation or control.

In this thesis the following state-disturbance path indiueonstraints are considered

Ok (X, Whe )

0 (discrete-time)
g(t,x(t),w(t)) <O

i ; 1.17
(continuous- time) ( )

<
<

10
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whereg is an arbitrary (nonlinear) function. After linearizatid¢and discretization)
these inequalities are reduced to the following mixed lineaquality constraints

DX + Exwic < d, (1.18)

whereDy € R"™™ E, € R"™*™ are known matrices andk €€ R" is a known vector.
As a special case, bound inequality constraints are coreside

Xmin® <X < Xmax,
Wmin = <Wk < Wmax, (1.19)
Vmin <V < Vmax

1.4.4. Moving horizon approximation

The batch state estimator described above cannot be agpliedline estimation
problems in general because the problem grows unboundédiméteasing hori-
zon. In order to bound the problem, people have proposed angbwerizon strategy
[59, 148, 149, 155] relying on the ideas of dynamic prograngni

Consider the objective function of the least-squares bastimation problem (1.13)
and let us rearrange it as follows

T-N-1
ITxWY) = fxo—%olZa+ 5 Iwllf 2+ [Ividlf 2
0 = k R¢

T-1 T
+ w2 1+ Vi |2 .- (1.20)
k:;N K k:;N R

Because of the Markov property which arises from the stptes description, the
last two terms depend only on the state y and the model and measurements in the
interval [T —N,T]. Therefore, by Bellman’rinciple of optimality[12], the least-
squares batch estimation problem can be replaced by ttewialy equivalent fixed-
size estimation problem

Mitwy  Zr-n () + 5t Il o+ Sk IVl s

XkJrl - fk(xkvukv pkvwk)v k:TiNavTila

st Yk = hy (X, Uk) + Vk, k=T-N,...,T, (1.21)
o 0 ng(xkawk) k:T_Na '7T_1a
0 > On(XN),

complemented with the requirement that y is reachable. Herd&l is the horizon
length andZt_n(xT_n) is thearrival costwhich compactly summarizes past infor-
mation. The basic strategy of moving horizon estimatioo isalve a growing horizon

11
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® Measurement
— MHE estimate

Estimation
window

Summarized ¢
gby Arrival Cost Ao

Figure 1.3. lllustration of the Moving Horizon Estimation approach: tiosize over a finite
window trading off measurement disturbandata accuracy) and process disturbano@(lel
accuracy) with an additionalrrival costwhich summarizes the data outside the window. When
a new measurement comes in, the window is shifted andrtieal costis updated.

batch estimation problem unfil = N and afterwards solve a fixed-size estimation
problem on a moving horizon. At every iteration the oldesasweement is discarded
and the new measurement is added. This is visualized in &y

Arrival cost is a fundamental concept in MHE as it allows tansform a problem
which grows unbounded into an equivalent fixed-size prob]@d6]. In general,
however, an analytical expression for the arrival cost dossexist and it should be
approximated. We therefore replace the first term in the cibbje with an approxi-
mate arrival coleT,N(xT,N). Rao et al [146, 148, 149] derived conditions for the
approximate arrival cost to guarantee stability of MHE (€bapter 2).

One strategy for computing an approximate arrival cost isge a first-order Taylor
expansion around the trajectory of past estimates. Thigusvalent to applying an
EKF recursion for the covariance update. In this case, ttieahcost is approximated
as

Zr-N(XT-N) = |[XT-N ] (1.22)
TN

wherexXs_y is the MHE estimate obtained at tirke=- T — N and wherd?r_y is the co-

variance propagated by a Kalman filter recursion. This atdest approximation has
several advantages. For linear unconstrained systemsgwéHratic objectives this
arrival cost is exact since in this case the Kalman filter jates a recursive solution to
the problem of estimating the current state (see Chapter & fjooof of equivalence).
Furthermore, Rao et al [146, 148] have proved that this andest approximation
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yields a stable estimator for constrained linear problevideen the model is nonlin-
ear, however, the EKF covariance update does not guaratateiétg and additional
measures are needed for guaranteed stability.

Other arrival costs have been proposed in the literatureuiRgs and Rajamani pro-
pose to approximate the arrival cost using a particle filt&3].

In Chapter 7 so-callesimoothed updatese discussed. These updates generally show
good performance while preserving equivalence in the usttamed linear case.

The most important advantage of using a larger window siz&as this mitigates
problems due to poor initialization or poor arrival cost egppmation [89]. Further-
more, by casting the estimation problem as an optimizatioblpm MHE inherits the
favorable properties of batch estimation being the flekibdf problem formulation,
direct handling of constraints and ability to deal with noelr system models. The
price to pay is an increased complexity as it is required teesan optimization prob-
lem in every time step. However, as shown in this thesis, tmeputational cost can
be made comparable to recursive methods by efficient stereploiting numerical
methods.

1.4.5. Simultaneous state and parameter estimation

Often parameters are unknown in addition to the states atdrdances. The problem
is typically tackled by imposing a model on the parameteiatims and treating them
as states. If no explicit model for the parameter variatigrevailable the following
model can be used

Pkr1 = pk+ &k (discrete-time) (1.23)
p =£&(t) (continuous- time) '
whereé are additional disturbances which may be penalized in tlectitze by an ar-
bitrary penalty function. Usually, parameters are modkdle constant (but unknown),
i.e. Pr1= p«k or p=0, which makes sense for MHE when short horizons are con-
sidered since states typically vary much faster than patenseln the case of batch
estimation or MHE with large horizons, it is no longer justifle to model parameters
as constants as the process behavior can substantiallyovarjtime. Then model
(1.23) is usually imposed with a squaréglnorm penalty oné, which is called a
random walkmodel.

Often parameters enter the system in a highly nonlinear weakimg the simultaneous
estimation of states and parameters a difficult problem.nBvieen a linear model
is considered and one desires to estimate both the statah@sgstem matrices the
problem is already quite nonlinear. For such highly nordinestimation problems,
optimization-based estimators such as MHE usually oubperfecursive estimators.
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1.5. Kalman filter

1.5. Kalman filter

The Kalman filter yields a recursive solution to the uncaaiggd linear least-squares
batch estimation problem (1.13). As noted before, such arsae solution is only
possible for very specific cases: unconstrained optimatrobproblems for linear
systems with quadratic objective can be solved recursibglydynamic program-
ming, leading to the well-known Kalman filter for estimatiand the Linear Quadratic
Regulator (LQR) for control. The Riccati equation is cehtiwathis recursive solution
provided by the Kalman filter and LQR, and also to other maabfams in the field
such as#nfty control and the theory of dissipative systems and LMI's [L96he
Kalman filter is briefly reviewed in Chapter 2.

There is a strong connection between MHE and Kalman filterigen constraints
are inactive the linear least-squares batch estimatorfam&alman filter are equiv-
alent. Even when a finite horizon is used (MHE), the estimatéscide with the
Kalman filter estimates, hence are optimal in least-squsease, if the arrival cost
is updated using Kalman filter recursions. This equivaldretgieen the Kalman fil-
ter and weighted least squares estimation is classical asdbéen treated in several
papers and textbooks,g. [170], [195], [111,§10.6], [190, Ch. 1], [71]. A proof of
equivalence between MHE and Kalman filter for linear unc@iséd systems derived
from the optimality conditions is given in Chapter 3.

1.5.1. Nonlinear extensions of the Kalman filter

Extensions of the Kalman filter have been developed for neali systems. The pop-
ular Extended Kalman Filter (EKF) for example linearizegach time step around
the current estimate through a first order Taylor-series@pmation. Although the
EKF has been successfully applied in numerous applicatibase have been several
reports of poor estimation performance and even filter digace (see Chapter 3 fora
discussion).

There are a number of variations on the EKF. Higher orderdreséries expansions
can be used in the filter equations [120]; when two terms oéitpansion are used, the
resulting EKF is called a second-order filter. Other aldoris use more linearization
iterations in every time-step to improve the approximagaouracy; these filters are
termed iterated EKF. Any one of these algorithms may be soiper standard EKF
in a particular application, but there are no real guideiner theoretical proofs [6].

In the Unscented Kalman Filter (UKF) or Sigma Point Kalmatefjlthe probabil-
ity density is approximated by a nonlinear transformatiéa e@andom variable, the
unscented transforrlUT), which is more accurate than the first-order Taylor eri
approximation in the EKF. The approximation utilizes a desample points, which
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guarantees accuracy with the posterior mean and covartartbe second order for
any nonlinearity.

1.6. A note on the deterministic versus stochastic interpretation of
state estimation

In classical text books the Kalman filter is often derivedira stochastic viewpoint
by making assumptions on the characteristics of ib&sesdisturbing the system.
However, the Kalman filter can perfectly be derived from aghpdeterministic least
squares formulation and this avoids unnecessary stochastieling assumptions
which are often difficult to attach physical meaning to. Theedministic interpre-

tation of the Kalman filter has been given in several works,[$&0, 196] and the ref-
erences therein. Willems [196] gives a very comprehengifecontained treatment
of Kalman filtering in its various existence forms from a detiistic perspective.

As indicated by Willems [196], the disturbancesandv should be interpreted as
unknown inputs, which together with the (unknown) initiéhte xo determine the
observationy. Then the goal of state estimation is to find amongdw,v) which
yield y the one that isnost likelyin the sense that it minimizes a specified objective,
i.e. the least squares norm or square root of (1.9)-(1.12). Bgt#uking theseptimal
disturbances in the system dynamics, an estimate of antedetystem variable can
be obtained.

In the context of MHE, in which the estimation problem is egitly formulated as
an optimization problem, the deterministic interpretatis the only reasonable one
since the fundaments of the probabilistic assumptions@mtested when constrainst
come into play. Moreover, for nonlinear MHE, the probabitispproach naturally
leads to stochastic differential equations which wouldegassarily complicate the
numerical algorithms. Robertson et al [155] showed thatndoconstraints on the
disturbancesv andv may be interpreted as truncated normal distributions. Bst,
Rao [146] states, state constraints cannot (easily) bepirieed stochastically as they
may correlate the disturbances and lead to acausality. ntrast, the deterministic
intrepretation is perfectly satisfactory for MHE.

Note that, despite this plea for the deterministic approémhease of reference and
because the terminology is so much established, we stitletietm covariance matrix
although we could equally well speak about the inverse waighinformation or
confidence matrix.
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1.7. Model predictive control

The development of MHE, although proposed much earlier inyrdifferent forms
throughoutthe literature, was pushed in the nineties rataiyby the success of Model
Predictive Control (MPC), its counterpart for control. M@ éredictive Control (MPC)
has gained widespread interest in both academia (see tkalfdl, 121, 128, 156])
and industry (see [145] for a survey) over the past decadeswide range of indus-
tries it has become the method of choice for advanced prooggsol.

The ultimate goal in optimal control is to find a feedback l&aattminimizes a certain
control objective over an infinite horizon, starting fronetburrent stat&, and subject
to a process model (as described in Section 1.2) and camistraiypically, but not
necessarily, the objective is quadratic

< 2 2
J(x;u) = Zo||XkHQk+||ukHRk-
k=

where the weightingQy and Ry are tuning parameters. The optimal solution can
be obtained from the solution of an infinite dimensional jpadifferential equation,
called Hamilton-Jacobi-Bellman (HJB) equation. In geheaaclosed-form expres-
sion for the solution of the HIB equation does not exist. Oxmeption is linear
unconstrained systems with quadratic objectives. In thse¢the solution follows
from a matrix equationi,e. a Riccati equation, and the resulting feedback controller
is called LQR.

Another class of solution methods is basedPontryagin’s Maximum PrinciplfL43]
and proceed by maximizing the Hamiltonian matrix. Pontigsgnaximum principle
is closely related to the HIB equation and provides condtibat an optimal trajec-
tory must satisfy. However, while the HIB equation provisefficient conditions for
optimality, the minimum principle provides only necesseoyditions. The maximum
principle typically leads to an intricate multi-point badary value problem.

Alternatively, and similarly to the MHE case, the infinitesizon control problem can
be replaced by an equivalent finite-horizon problem, dudéMarkov property of
the state-space model.

miney  Sicg X3, + lullE, + V)

Xo = Xo,
st Xk+1 = fk(Xk, U, pk)a k= Oa ) N— 17 (124)
; 0 > 0k(X, W) k=0,...,N—1,
0 =on(xn),

where?/(xy) is the terminal cost or end cost arglis the fixed initial state. The mini-
mization is with regards to the state and control sequefegs. ., xy } and{uo,...,Un-_1}
respectively withu, € R™. Constraints can be imposed on states and controls.
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Since a closed-form expression of the terminal cost rarebt® it should be approxi-
matedrF (xn) = ¥ (xn). Mayne et al [131] derived conditions for stability of the &P
approximation. One popular strategy for approximationhaf terminal cost is to as-
sume that after the horizon the system can be controlledyusgR. In this case the
(approximate) terminal cost is

V) = [xnl3,-

whereR is the solution to the corresponding LQR discrete-algetiRigcati equation.
This approach, sometimes called dual-mode MPC, guaraasyesptotic stability for
linear systems in the absence of disturbances [131].

The strategy of MPC is to solve the open-loop fixed-size ogtition problem i(e.
(1.24) with approximated terminal cost), apply only thetfeement of the optimal
input sequence to the process, obtain a new state estinthtea@at the procedure.

The unique combination of several important featuresmistishes MPC from other
control methods. First, analogous to MHE, it is possiblentoirporate constraints
and impose multivariate nonlinear models in a natural wayngsiraints are even more
relevant for the control problem than for the estimationpeon, because safety limita-
tions, environmental regulations and economic objectigese companies to operate
their processes at the constraints. Second, the exteresieanch on MPC has led to
formulations with guaranteed stability [131]. Finallygethbility to control processes
proactively is a key feature of MPC. When disturbances amnin advanced.g.
grade changes in chemical processes), significant perfarengains can be obtained
in comparison with pure feedback control by incorporatingse future disturbances
into the control problem. A common motivation for the importe of this feature is
by the example of driving a car; in the event of an upcoming tume already takes
this information into account by slowing down and changmthie outer lane in order
to follow an efficient path.

In order to fully exploit the potential of MPC it is requirelét the underlying model
and its parameters are constantly updated to take distcelsaand plant-model mis-
match into account. The performance of the closed loop sy&alirectly influenced
by the quality of the estimates. The combination of MHE andOWrelds a pow-
erful and versatile strategy for advanced process con8tdtes and parameters are
adapted based on incoming measurements leading to imppogdittion accuracies
in turn leading to improved control performance. In additiempirical studies [117]
show that the MPC problem becomes easier to solve when éstrage more accurate
because the predicted behavior resembles the true plaaviogimore closely.
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1.8. Similarities and differences between control and estimation

Optimal control and optimal estimation are closely relategthematical problems.
For linear time-invariant systems without inequality coamts, there exists sepa-
ration principlewhich states that state estimator and controller can begydedisep-
arately. If they are both stable then the closed-loop systesiso stable. If they are
both optimal {.e. Kalman filter and LQR) then the closed-loop system is alsomgit
This combination of steady-state Kalman filter and steddied QR is called.inear
Quadratic Gaussian (LQG) compensation

In the Kalman filter, covariance matrices are propagated a#ix Riccati recur-
sion. For control, the Linear Quadratic Regulator (LQR)de&0 a similar Riccati
recursion and both recursions can easily be related usirapeecsion table for the
matrices involved. Remarkably, the Riccati recursion fQR.runs backwards while
the Kalman filter Riccati recursion runs forward, and theref this duality is only
interesting for linear time-invariant models, since in time-varying case the LQR is
impractical as it involves an infinite backward matrix resion. This so-calleduality
relation between Kalman filter and LQR was noted in the sehpiapers of Kalman
[112, 113].

Interesting similarities can also be discovered betweerEMH21) and MPC (1.24)
from their respective formulations. The MHE problem appneates the batch estima-
tion problem by adding a weighting on the initial state (zaticost or cost-to-arrive)
while the MPC problem approximates the infinite optimal cohproblem by adding
a weighting on the final state (terminal cost or cost-to-g@jnditions to ensure sta-
bility are represented by a dual set of inequalities for titeval cost and the terminal
cost, see [146]. Furthermore, in the MHE problegare the control variables sim-
ilar to ug in the MPC problem. These observations suggest a dualitydsst both
problems. However, as pointed out by Todorov [178], it is dio¢ctly clear from the
conversion tables of the Riccati recursion or from the snity of the formulationsin
which sense estimation and control are dual problems. Ierdmimake it clear, we
will show that the unconstrained batch estimation problamlze rewritten into a form
which can be interpreted as a control problem. Thereto,identhe following simple
discrete linear time-varying (LTV) model (compare to thersageneral discrete LTV
model (1.7))

Xer1 = ArXict W,
Yk = CiXi+ W

If, furthermore, the disturbance variables are eliminathd estimation problem can
be written as

min [0 —%oll3 + Sk ke — Aokl 1+ ko Ve~ Oz (1.25)
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This problem is equivalent to the following one

min - 373 Il + 3o (13, + 240c) (1.26)
with
Re=Q.
Qo=Py "+ CJR;'Co o = —%o— Cok™Ry Yo
Q=GR G« Gk = —Cy R 'Yk 0<k<N,

and where the process disturbances have been replaced toglspire. ux = wi. By
this reformulation, we can see that the unconstrained kegtiimation problem can be
interpreted as reference-tracking optimal control probigith a reference trajectory
specified by the observations and with a free intial state.

This free initial state vectoxg is the most important difference with MPC. These
extra degrees of freedom allow us to fit an observed outputessre according to a
specified objective. Therefore the estimation problemtsrofeferred to as ainverse
problem It must be noted that the addition of an initial conditiopitally increases
the numerical conditioning as the extra degrees of freed@y masult in an infinite
number of solutions to the estimation problem.

Duality relations between MHE and MPC, are further compédalue to the presence
of constraints and possibly nonlinear dynamics. It was shbywGoodwin, De Dona
and coworkers [78, 79, 133] that the dual of the linear caiséd MHE problem is a
reverse-time nonlinear unconstrained control problernlving projected variables, a
special instance of an MPC problem, and that there is notgiugdip. Although this
result is highly interesting from a theoretical view, thes@o direct practical value to
it since the dual problem is not easier to solve than the gnorablem.

Note that the notion of duality in system theory is more vatha Lagrangian du-
ality in optimization. Duality in system theory, as we shale this section, means
for example that a specific estimation problem can be reswitind interpreted as a
specific control problem. Both problems of course yield theme solution(s). La-
grangian duality, on the other hand, implies that the priomimization problem has
a corresponding dual problem where the Lagrange multpkee the variables and
the primal variables are the Lagrange multipliers. If thisrao duality gap, the solu-
tions to both problems are exactly the same. In some caseduhiity relation can
be exploiteck.qg. if the dual problem is easier to solve than the primal probl&ee
Chapter 2 for more details.

Figure 1.4 illustrates the various relations between MHE, Kalman filter, LQR and
MPC.
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Figure 1.4.Relation of Moving Horizon Estimation (MHE) to Kalman filtefinear Quadratic
Regulator (LQR) and Model Predictive Control (MPC).

1.9. Motivation

Several factors justify the increasing research interestal-time optimization-based
estimation methods. First, the recursive solution prodioe the Kalman filter is only
possible when two very specific conditions are fulfilled: adratic objective and a
linear system model. Whenever these conditions are not tmetproblem is to be
solved by optimization or by suboptimal recursive metho8scond, the enormous
advances in computer technology , in numerical linear alyahd optimization of the
last decades now make optimization-based estimation subtHE a viable alterna-
tive to recursive estimation methods. derived from Kalman filtering. Third, due to
its formulation as an optimization problem, inequality staints can be incorprated
in a natural way and the nonlinear model is direclty imposeerdhe entire win-
dow. It also adds flexibility for instance in formulating ethuseful estimation prob-
lems different from the traditional least-squares forntiola Finally, using a window
(horizon) larger than one provides a higher degree of rofasst in the presence of
disturbances and allows to overcome problems of divergeacenonly encountered
with recursive methods such as the Extended Kalman Fil&r [8

The development of MHE, although proposed much earlier inyrdifferent forms
throughout the literature, was pushed in the nineties ratg#ivby the success of MPC,
an optimization-based control technique. MHE is often raiéd as the dual prob-
lem of MPC, although this duality is not directly useful ks for its didactical and
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Figure 1.5. Predicted growth in major markets (left) and new marketghg)i for monitoring
(state estimation) and control. Graphs are taken from arteyoa 2008 workshop by the
European Commission DG Information Society and Media,lalle for download at [52].

theoretical importance (see Section 1.8).

Similar to the least-squares method and the Kalman filterréisearch on MHE and
MPC has been driven by applications. The number of apptinathas increased
rapidly over the past decades (see [145]) and prospecti@nthat the market for

monitoring and control will continue to grow steadily ovéetnext years [52] (see
Figure 1.5). Typical applications are in petrochemicaldp@and paper, food process-
ing, metallurgy, pharmaceuticals or other areas with slamsling rates. Examples
of MHE applications in these areas can be found in the rebe®[?, 45, 46, 64, 67,

95, 118, 130, 157, 201].

In recent years, a shift has started to occur towards agjgicawith high sampling
rates made possible by the development of dedicated digwifor MPC and MHE.
The work presented in this thesis can be situated along tlesearch lines and pro-
poses several dedicated algorithms for fast real-time MHle thesis demonstrates
that MHE is applicable to systems with fast sampling times and formstaactive
alternative to recursive estimation methods because dfdteased flexibility.

For linear systems, moving horizon estimation problemslsaformulated as sparse
convex quadratic programs (QPs) with equality and inetpabinstraints. Also for
nonlinear MHE problems, sparse convex QP subproblems aainell for instance in
every iteration of an SQP approach.

Instead of eliminating the states to obtain a smaller busderonvex QP, it is ad-
vantageous to keep the original sparse and highly struttpreblem and to solve
the corresponding system of optimality conditions by ekpig the structure. It is
shown how this system of optimality conditions can be decosed and solved by
Riccati based methods. These solution methods fully exfileiinherent symmetry
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and structure and furthermore provide improved robusthgssing orthogonal trans-

formations. It is argued in this thesis that for MHE problethe solution method of

choice should be Riccati based. This is in contrast to MPCreytdepending on the

system dimensions and the horizon length, the most efiestilution strategy is either
by Riccati methods (or sparse solvers) ordmndensingi.e. solving the reduced sys-
tem obtained after variable elimination. In MHE, Riccatitiveds are favorable even
for small horizons, because the dimension of ¢batrolsor process disturbances is
typically comparable to the state dimension. Furthermitve arrival cost update and
final estimate covariance are obtained as a natural outcbthe solution process. In

contrast, if the problems are solved using a general purfspsese) solver, the arrival
cost is computed by running a Kalman filter in parallel whiie final state covariance
is computed by a local first order analysis.

When constraints are imposed, the resulting quadraticraroming (QP) problems
can be solved by active-set or interior-point methods.rlotgoint methods preserve
the block diagonal structure of the KKT system and hence eaolved with modified
Riccati recursions. These modifications are investigatele context of MHE in this
thesis. It is shown that square-root versions are espgaiakful for interior-point
methods due to their increased numerical robustness. &estt methods typically do
not preserve the structure. To circumvent this problem, ruScomplement active-
set method is proposed which uses the unconstrained MHE®@DAS a starting point
and proceeds by projecting onto the set of working condsain

In order to guarantee robustness of MHE algorithms, robesgfty functions are in-
vestigated in the framework of MHE. It is shown in this digagon that the use of
convex penalty functions such as thenorm or the Huber penalty function can dra-
matically improve the robustness of the algorithms whifecint structure-exploiting
algorithms can still be derived yielding a computationafpemance comparable to
the standard formulation. Robust norms can also be usecefualjzation of the pa-
rameter changes. Such a formulation allows fast detecfiaitbin-horizon parame-
ter jumps, which is especially useful for moderate to largeZon lengths, where the
standard MHE formulation would smooth out these paramet#éckes.

1.10. Structure of the thesis

The general structure of this doctoral dissertation is ctepliin Figure 1.6.

1.11. Specific contributions

This thesis aims to bridge the gap between classical resuestimation methods and
optimization-based estimation methods. By introducingpiland techniques from
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Figure 1.6. Structure of the thesis.

the well-developed fields of numerical linear algebra antihogl estimation into the
emerging field of MHE, efficient solution methods for the &g optimization prob-
lems are derived yielding fast and reliable algorithms.

In Chapter 2 the mathematical foundation for both practical and thecaéstudy of
MHE is provided. Stability of the constrained estimator dkleessed and the most
important concepts from linear algebra and optimizationiatroduced. A brief in-
troduction to Kalman filtering and Kalman smoothing is givéth a special focus on
the different implementation forms.

Chapter 3 addresses unconstrained MHE. It is shown that the decotigrosif the
KKT system byLU or LDLT factorizations leads to Riccati based solution methods.
The methods fully exploit the structure inherentin the MHBlgem. The square-root

23



1.11. Specific contributions

version further exploits the symmetry in the system and eygpbrthogonalization
methods yielding increased numerical robustness. StredtQR methods are pro-
posed to reduce the computation times of the square-rootRicased MHE method.
A proof of equivalence of unconstrained MHE with the Kalmdtefismoother is

given and the analogy with Riccati methods for MPC is disedss

Publications related to this chapter: [73, 90]

Chapter 4 extends the Riccati based methods of Chapter 3 to constirMiH= prob-
lems using a primal barrier interior-point method. It is simhow the barrier terms en-
ter in the measurement updates and can be interprefeerfect measurementSev-
eral types of constraints are considered in the tailoredhotis. A hot-starting strategy
is proposed and the benefit of a good initialization procedsidemonstrated. Finally,
it is demonstrated that square-root recursions are extyeumseful in an interior-point
method since the condition number of the matrices in thefaztion typically grows
lograthmically for actively constrained components.

Publications related to this chapter: [90]

Active-set methods for the solution of constrained MHE peais are considered in
Chapter 5. In particular, a Schur complement active-set method ippsed. The
presented method starts from the unconstrained MHE solut® without inequal-
ity constraints, which can be computed using the Riccagtasethods of Chapter 3
and solves a number of non-negativity constrained QPs ireitheced space of active
constraints. A gradient projection method using projedtesvton steps is proposed
to solve the reduced QPs and Cholesky updates and downdatesployed to up-
date factorizations at both outer and inner active set cb&n@y using square-root
Riccati approach, the method involves just a small numbgraafial forward solves
and backward solves. It is demonstrated that the methodaljpiconvergesin only a
few iterations.

Publications related to this chapter: [93]

Chapter 6 addresses general convex MHE formulations. The focus isvortypes

of robust convex MHE formulations which are particularlyefid in practical appli-
cations. First, robustness with regards to occasionalesstis investigated by means
of Huber penalty MHE and; penalty MHE. The former is shown to have excellent
performance in terms of outlier rejection and estimatioouaacy. Second, the joint
estimation of states and parameters or inputs is considéiezlresuling MHE prob-
lem is formulated as a convex cardinality problem yieldiogustness with respect
to rapid parameter changes. jumps or break points. It is shown that this leads to
an MHE problem with¢; penalty on the parameter variation and a small number of
subsequent corrections to tiie norm MHE problem. Significant improvements in
estimation performance are obtained using this procechd@agolishing step.

Publications related to this chapter: [91, 92]
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In Chapter 7 the application of MHE to nonlinear constrained problemsassid-
ered. This is done in a direct multiple shooting Gauss-Nawtamework. The
Gauss-Newton SQP iterations yield quadratic subproblehishwcan be solved ef-
ficiently using the methods presented in the previous chapide Chapter discusses
the application of MHE and MPC to the normalization of blagideose of patients
in the intensive care unit. The problem, model and data tedditom a collaborative
research with the ICU of the University Hospital K.U.Leuvefin existing patient
model is used for model-based estimation and control. Tha id to monitor and
regulate the blood-glucose level to a normoglycemic rangiegumeasurements of
glycemia and by advising an appropriate insulin dosing. gétgent model is further
complemented with a known disturbance of administeredatartirate calories flow.
It is demonstrated by numerical simulations that a stratfgynodel-based estima-
tion and predictive control is able to provide an adequagelegion of blood-glucose
taking into account model imperfections and large intra iabel patient variability.

Publications related to this chapter: [44, 94, 185]
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CHAPTER

Computational framework

The goal of this chapter is to provide the mathematical fatiwh for
both the theoretical and practical aspects of MHE. A frameufor the
stability properties of the moving horizon approximatisnintroduced.
Furthermore, the most important concepts from numericeddr algebra
and optimization which constitute the basis of future chegpare briefly
reviewed.

2.1. Stability framework for MHE

One important desirable property of any estimator is aspitipstability. For MHE
this framework emerged from the theoretical work that haehbdone earlier for MPC
and is based on Lyapunov theory. For details we refer to [86, 152].

Consider again the MHE problem with approximate arrivatc%fiN(-)

Mincwy  Zr-N(XT-N) + Sp 7N HWKHZEI + hoT-N HVkll%l

Xer1 = f(Xi, U, P, Wk), K=T—N,...., T—1,

st Yk = hx (X, Uk) + Vi, k=T-N,...,T, (2.1)
o 0 > O Xk, Wk) k=T-N,...,T—-1,
0 ZgN(XN)v

and define the stage costlagwi, k) = 31+ HWk||2;1 + YhoT-N ||Vk|\§;1.
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Definition 2 (Lower semi-continuity). A functiona(-) is lower semi-continuous at
Xo if for everye > O there exists a neighborhoad of Xy such that

ox)>o(x)—¢&, Vxe U (2.2)

Definition 3 (Lipschitz continuity ). A functiono(-) is (globally) Lipschitz continu-
ous if there exists a constant K such that for allx € doma,

l[o(x2) — o (xa) ]| < Klx2 =] (2.3)

If a function is twice differentiable then it is Lipschitz etinuous.

Definition 4 (X function). A functiono(-) is a X function if it is continuous, strictly
increasing ands(0) = 0.

Consider the nonlinear discrete-time system model of (Zhgn the following defi-
nition can be given.

Definition 5 (Uniform observability ). A system is uniformly observable if there ex-
ists a positive integer lNand a X function ¢(-) such that for any two statesg xand
X2

No—1
@[} —Xel]) < zo [y(k+ j;x1,K) —y(k+ j;x2,K)[[,  Vk=>0,
J:

where yk+ j;x1,k) denotes the output obtained at discrete time stepj kvhen the
model is initialized with x at time step k.

This uniform observability condition states that if the puitresiduals are small, then
the estimation error is also small.

For a (discrete-time) linear system, the definition of unii@mbservability condition
is given as follows.

Definition 6 (Uniform observability for linear systems). A linear system is uni-
formly observable if the observability Grammian given by
N-1 - .
Vic= zo(ck+jAtj<+j) Ciet iAs
J=

is positive definite for all &= 0 and N> nj.

In order to derive conditions for existence of a solution te MHE problem, we
introduce the following assumptions (see [149]).
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Assumption 1. The functionsf(-) and h(-) are Lipschitz continuous for all k 0.

Assumption 2. The stage costy(-) is a continuous function for all k 0 and the
arrival cost Zr_n(+) is a continuous function.

Assumption 3. There existX functionsn (-) andy(-) such that

n([l(wv)ll)
n([1x—%oll)

Lk(W,v)

Zu(x)

vl (wv)|) (2.4)

<
< Y(lIx—%oll) (2.5)

<
<

for all w, v, x andXy satisfying the constraints and for all 0.

Furthermore, it is necessary to impose similar conditiomshe arrival cost. Letpr
be the objective function value at the solution for probl@m}, then we require [149]

Condition 1. There exists & functiony(-) such that
0< Zr(@-or <y(z—%|) (2.6)

for all z satisfying the state constraints and>T0.

Theorem 2.1.1(Existence of a solution to MHE problem (2.1). If the following
conditions are fulfilled

e assumptions 1 - 3 hold
e the arrival cost satisfies condition 1

o the system is uniformly observable and>NNy

then a solution to problem 2.1 exists for &)l satisfying the state constraints and for
alT >0.

Proof. See [149]. O

To guarantee stability of MHE, the arrival cost should $gtibe following condition
[149]

Condition 2. Let®N denote the set of reachable states defined as

RN = {X(1;2T =N, {w})} (2.7)

where X1;z,T — N,{w}) represents the state at tinrewhen the model is applied
forward from initial condition z at time — N using the disturbance sequence w.
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e For T <N the approximate arrival cost satisfiés(~) < Z ().

e For T > N the approximate arrival cost satisfies

Ze(p) < o1 (2.8)
and p equals the final state of the solutign 1.

Theorem 2.1.2(Asymptotic stability of MHE ). If the following conditions are ful-
filled

e assumptions 1 - 3 hold
e the arrival cost satisfies conditions 1 and 2

e the system is uniformly observable and>NNp

then for all Xy satisfying the state constraints, MHE is asymptoticalabkt for the
system model of (2.1).

Proof. See [149]. O

2.1.1. Linear time-invariant systems

For linear time-invariant (LTI) systemsgg. system model (1.7) withy = A, Gy =G
andCy = C for all k > 0, properties such as observability and asymptotic stgluiéin
be checked more easily.

In the sequel, lef\(A) denote the set of eigenvalues of the ma#xix
Definition 7 (Asymptotic stability). Consider the following disturbance-free and
offset-free LTI system

Xer1 = AX, (2.9)
Yk = Cx (2.10)

The system is asymptotically stable, i.e—xO0, if and only if for allA € A(A) holds
Al <1
If the observability matrix of ordeN is defined as

C

CA
o= . |,

cAN

then the following theorem holds.
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Theorem 2.1.3(Uniform observability for linear time-invariant systejnsA linear
time-invariant system is uniformly observable if and ofiahk (Op,—1) = ny.

Proof. see [14, 71]. O

Observability can also be formulated directly in terms & fair{A,C}.

Definition 8 ([14, 71] Uniform observability for linear time-invariasystems in terms
of {A,C}). LetA € A(A), thenA is said to be an observable mode{#f,C} if

- nX7

rank([)\I _A])

otherwiseA is said to be an unobservable mode{8{C}.

Consider the following state equation with contrajsc R™ and control system ma-
trix B e R™*M

Xkr1 = AX+ Buk. (2.12)

Definition 9 ([14, 71] Detectability for linear time-invariant systein3he pair{A,C}
is detectable if alA € A(A) with |A| > 1 are observable modes ¢A,C}.

In words this definition states that if a system is observablstable, then it is also
detectable; if a system is unobservable or unstable, thisndigtectable if its unob-
servable modes are stable.

The concepts of controllability and stabilizability arealldo observability and de-
tectability, respectively. Algebraically this implies:
e [AC]is observable iffAT,CT] is controllable,

e [AClis detectable iffAT,CT] is stabilizable.

2.2. Linear algebra

The basic idea behind methods for solving a system of lingaagons is to transform
the problem into one that is easy to solve [68, 203]. This ecty what people do
when they are asked to solve a set of linear equations by h@nd. systematically
eliminates variables.e. eliminatex; from all equations except the first by subtracting
multiples of the first equation and so on, a procedure knowroasreductionor
Gaussian elimination
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2.2. Linear algebra

Consider am x n system of linear equations written in matrix formMgz = w. Write

1
M= <i b > whereb,c € R™ 1, D € R"Y*(-1) "anda e Ro. After applying the

D
elimination process to the first column the following eqléva system is obtained
a b" X1 Wq
= . 2.12
(O D - Cale) (XZ:n) (Wz;n - Caﬁle_ ( )

Next the same process is applied to the- 1) x (n— 1) submatrixD — ca *b" and so
on, untilM is transformed into an upper triangular matrix. This system be solved
easily,i.e. the value ofx; is immediately obtained as; /a, nextx; is obtained after
substituion ofx; and so on.

Block elimination, Schur complement and the matrix inversion lemma

The Gaussian elimination idea can be extended to lineagsgdtlz = w with block-
partitioning

M = (é g) . (2.13)

Supposd\is square and nonsingular and partitioa (§> andw = <\Lj> conformally
with M.

After eliminating the vector the problem reduces to solving a smaller linear system
(D-CA'B)y=v-CA'u. (2.14)

Definition 10 (Schur complemen). Consider a matrix M with block partitioning as
given by equation (2.13) and assume A is square and nonsingtihen the matrix
Sy =D —CA 1B is called the Schur complement of A in M. Likewise, the matri
S = A—BD !Cis called the Schur complement of D in M.
With this definition equation (2.14) can be written as

y=S'(v—-CA ). (2.15)

Substituting this into the first block equation and collegtterms yields

x=(At+ABS'CA u—A'BS v (2.16)
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Hence, this derivation leads us to the following expres&ohe inverse oM

4 (AlralBslcal —AlBs!?
M= : 2.17
( —Sy'CA! St 10

Similarly, if D is nonsingular one could start by eliminatipgo obtain
x=St (u-BD ). (2.18)

whereS; is the Schur complement @f in M. Substituting this into the second block
equation and collecting terms yields

y=(D*+D'cg'BD ) v-DcKlu. (2.19)

Putting everything together leads us to the expression

1 1 -1
_ —-S,°BD
M ! = (inc%l D71+ §1C$18D1) . (220)

Equating the elements in the equivalent representatio@8)and (2.17) gives imme-

diately the following lemma known as ti\atrix Inversion Lemma

Lemma 2.2.1. Let A, D and D- CA~1B be nonsingular square matrices. Then
(A-BDC) '=A1+AB(D-CAB) 'CA L (2.21)

and

1

(A-BD'c) 'BD '=A'B(D-CA'B) . (2.22)

Symmetry and positive definiteness

When a matrixM is symmetric or symmetric and positive (semi)definite, ttas be
exploited in block elimination and variants of the Schur gd@ment and the matrix
inversion lemma can be formulated. The following theoreee (203]) will be useful.

Theorem 2.2.2.Let M be a symmetric matrix partitioned as

A B
M =
(= o)

in which A is square and nonsingular. Then
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e M= 0iffbothA-0and S =D —-BTA"1B - 0.

e M = 0iffboth A= 0and S =D —-BTA" 1B~ 0.

Consequently if M= 0 and A 0, then D> Sy and

detD) > det{Sa) = detM)/det D) > 0.

Generalized inverse and generalized Schur complement

In the definition (10) of the Schur complemektvas assumed to be square and non-
singular. By introducing a generalized inverse this dafinitan be extended allowing
Ato be an arbitrary matrix.

Definition 11 (Generalized inversg. A generalized inverse for a givenxm matrix
M is an nx m matrix denoted by M (not necessarily unique) such that Ml = M.

If M is square and nonsingular, its only generalized inverdeg®tdinary inverse.

The best known generalized inverse is Meore-Penrose generalized invexsgseu-
doinversedenoted as/ ', which is a unique matrix satisfying

MMM =M, M'MMT=M" —(M"M)T =M"Mm. (2.23)

(0 7
|v|u<O 0>v, (2.24)

is a singular value decompositionMdfin which X has positive diagonal elements and
U andV are orthogonal, then

-1
MT=v (ZO g) uT. (2.25)

Now, the pseudoinverse is used to define the generalized 8omplement.

Definition 12 (Generalized Schur complement The generalized Schur comple-

ment of A in M with M= (é 5) is defined as §= D — CA'B.
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Matrix factorizations

Gaussian elimination describes a process of transformimgtaix into upper triangu-
lar form by reducing it column by column. Alternatively, a tria can be expressed
as afactorizationor decompositioni.e. a product of matrices with special proper-
ties. Thesingular value decompositiaiv = U3V T) for instance expresses a matrix
as a product of two orthogonal matricas andV) and a diagonal matrix3). The
factorization associated with Gaussian elimination isltiefactorization

M = PLU

whereP is a permutation matrix, is lower triangular andl is unit upper triangular
(upper triangular containing only ones on the diagonal)erg\nonsingular matrix
M € R™" can be factorized in this form. Thel factorization is the standard ap-
proach for solving a general linear system [29]. When theimad is sparse théU
factorization usually includes both row and column pivgtine. M= P;LUP, with

P; andP, permutation matrices. Also whevi contains very large elements including
row and column pivoting typically improves numerical stéi

SupposeM is nonsingular symmetric and suppose it can be factorizeld asLU
without row interchanges. Then, by the uniqueness ot thdactorizationM can be
written as

M=LDL'
with D = diag(u;i). In order to preserve symmetry interchanges must be apfdied
both rows and columns yielding a factorization

M = PLDL'PT. (2.26)

This factorization is known as tHeDLT factorizationor indefinite Cholesky decom-

position Unfortunately, in contrast to tHaJ factorization existence is not guaranteed
L 0 1

for theLDLT factorization. For example [68] the matit = (1 0) cannot be fac-

torized by (2.26).

WhenM is symmetric positive definite theDLT factorization always exists and all
elements oD are strictly positive. This allows us to write

M=LDLT =LD?D:LT =L =R'R (2.27)

which is known aCholesky factorization The lower (upper) triangular matrix (R)
is uniquely determined bW and is called th€holesky factoof M.
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2.3. Convex optimization

Every nonsingular matrif € R™" can be factored as
M= QR

whereQ is an orthogonal matrix@Q" = Q'Q = I, henceQ ! = Q") andR s upper
triangular. This is the)R factorizationand will be used frequently throughout this
doctoral thesis. Note th& does not need to be computed explicitly to solve the linear
system, only matrix-vector produc'w are needed which saves storage space and
computation time. It is important to note that orthogonahsformations preserve
Euclidean length of each column and therefore no error bufidbceurs (in contrast

to Gaussian eleminiation for example).

It can be shown that th@R method when applied to symmetric matrices yields an
eigenvalue decompositione. AQ= QA or R = QA with A the diagonal matrix of
eigenvalues.

The QR factorization is most often applied to linear least-sqagmblems (overde-
termined systems) and is also useful for underdetermineditisystems [29, 68].

A numerically robust way of achieving triangular form invek orthogonal matrices.
Such factorization methods are referred tooathogonal triangularizatiormethods.
The most popular techniques for orthogonal triangulaiiratises Householder or
Givens transformations.

2.3. Convex optimization

Convexity is a fundamental concept in optimization [29, [L36he class of con-
vex programming problems includes linear least-squaigsat programming and
quadratic programming problems, all of which have by now idyfaomplete the-
ory and can be solved numerically efficiently [29]. In thicten a brief overview
is given of the theory and numerical solution methods fors@anvex programming
problems that are used in this thesis.

In the sequel the following standard form of nonlinear ojitimtion problem (Nonlin-
ear Program or NLP) is used

miny  fo(x)
s.t. (x) <

()

L i=1,....m, (2.28)

fi 0
h; 0, i:l,...,p7

with x € R". The domair® = ", dom(fi) N N, dom(h;) is assumed to be nonempty.
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2.3.1. Definitions

Definition 13 (Convex se}. A sets C R"is convex iff for any two points ¢ € S
all convex combinations of these points also lie within #iess

(1-0)x1+0x2€ S, VO € [0,1],¥x1,%2 € S.

Definition 14 (Affine function). A function f: R" — R is affine if it is the sum of a
linear function and a constant, i.e. :

f(x) =a x+bh, acR"beR.

It is worth clarifying that in this thesis, as it is frequemt ¢ontrol and estimation
theory, the term linear function is sometimes used for fiomst which are actually
affine.

Definition 15 (Convex function). A function f: R" — R is convex iff its domain
dom(f) is convex and for every;x € dom(f) and 8 € [0, 1] following inequality
holds

F((1— 0)xa+ O%2) < (1— 0)f(x1) + Of (x2). (2.29)

Definition 16 (Strictly convex function). A function f: R" — R is strictly convex
iff its domaindom(f) is convex and strict inequality holds in (2.29) fdk ¥ x2 and
0 <(0,1).

Definition 17 (Convex optimization problem). Problem (2.28) is a convex opti-
mization problem if the objective and inequality consttdimctions, §,..., fm are
convex and the equality constraint functions are affine, hgx) := a/x — by with
acR" bjeRfori=1,...,p.

The following theorem explains the importance of convexity

Theorem 2.3.1(see [29, 136]) If problem (2.28) is a convex optimization problem
then any local solution is also a global solution and the Soluset is itself convex.
Moreover, if the objectiveyfis strictly convex, the solution is unique if it exists.

2.3.2. Dudlity and Karush-Kuhn-Tucker conditions

The Lagrangianassociated with the standard optimization problem (2.28eifined
as

L(xA,v) = fo(x) Jri/\i fi (X) +ivihi (X).
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The vectorsA andv are calledLagrange multipliersassociated with the inequality
and equality constraints respectively.

ThelLagrange dual function gR™ x RP — R is defined as the minimum value of the
Lagrangian ovex: for A € R™, v € RP,

g(A,v) = )!Q;L(X,)\,V) = xIQL (fo(x) +ii)\i fi(x) +i§lVi hi (x)) .

Note that the dual function will take on the valueo when the Lagrangian is un-
bounded below. The dual function is concave even when thielgmmo (2.28) is not
convex.

Proposition 2.3.2. The dual function yields a lower bound on the optimal vak(e*)
of the problem (2.28), i.e.

g(A,v) < fo(X*), VA >0,v. (2.30)

See [29] for a proof.

For any primal feasiblex and for anyA > 0 andv the differencefo(x) — g(A,v) is
non-negative and is called tldeiality gap The optimal lower bound can be found by
maximizing the dual function with respect to the Lagrangétipliers which leads to
the following optimization problem

max g(A,v)

st. A>0. (2.31)

This problem is called theagrange dual problerassociated with the problem (2.28).
The original problem (2.28) is called theimal problem

The dual problem (2.31) is a convex optimization problemgsithe objective to be
maximized is concave and the constraint is convex. Thisis#ise whether or not the
primal problem is convex.

When the equality holds for expression (2.30) at the sahytie. g(A*,v*) = fo(X*),
the optimal duality gap is zero, and it is said teabng dualityholds. Otherwise, one
speaks ofveak duality

An important property is that for feasible convex primal pplems strong duality holds
if the constraints are linear and défp) = R", see [29] for a proof. As a result strong
duality holds for the QPs considered in Chapters 3 to 4.

Under the assumption of strong duality, it follows from thefidition of the dual
function that

fo(X") = g(A™,v*) < L(X,A*,v). (2.32)
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Writing out the Lagrangian yields
m
fo(x*) < fo(x*) + ZAi* fi(x), (2.33)
i=

where the term of the equality constraints vanishes bed#wsg= 0. Thus it follows
that

i/\i* fi(x*) > 0. (2.34)

But sinceA* > 0 andf;(x*) <0, it also holds that

A fix) <0, i=1,...,m (2.35)
Combining the two expressions (2.34) and (2.35) leads tcdhnelusion that

A fid)=0 i=1,....m (2.36)

This is called thecomplementary slacknessndition. This condition states that for
convex problems for which strong duality holds every activequality has a corre-
sponding strictly positive Lagrange multiplier while eydnactive inequality must
have a zero Lagrange multiplier.

Now, if all functions in problem (2.28) are assumed to beat#htiable, then it fol-
lows that the gradient of (x,A*,v*) vanishes ak = x*. This means that for any
optimization problem with differential objective and camasnt functions for which
strong duality holds, the tripléix,A,v) can only be (primal and dual) optimal if the
following set of conditions, known as théarush-Kuhn-Tucker (KKT) optimality
conditions, are satisfied

Ofo(x*) + 3 AFOfi () + 32, wOhi(x*) = 0,
fix) < 0, i=1,....m
hi(x) = 0, i=1,...,p (2.37)
A > 0, i=1,....m
Arfilxs)y = 0, i=1,...,m

These KKT conditions are the first order necessary conditionoptimality for con-
strained optimization, hence are the equivalentléfx*) = 0 in unconstrained opti-
mization. For convex optimization problems the KKT cortits are also sufficient
first order optimality conditions. As a consequence the Kiiiditions are necessary
and sufficient optimality conditions for the QPs considdre@hapters 3 to 4.
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2.3.3. Linear least-squares

The linear least-squares problem (LS) can be formulated as
ming|[Ax—bl||3, A€ R™" pbeR™M (2.38)
It can be reduced to solving a set of linear equations
(ATA)X" = ATb, (2.39)
or in other words yields an analytical solution given by
X = A'b, (2.40)

whereAT = (ATA)~2AT is the pseudoinverse @&

LS and the Schur complement

Consider a block partitioned matri = <SQT Ii = 0. Then, the least-squares prob-
lem over some of the variables has an analytic expressioollas/é
T S\ /X —~
o= () (3 ()<

whereQ = Q— SR'ST is the Schur complement &in M.

Numerical solution methods for LS

The classical method for solving the least-squares prok?ed8), which can be traced
back to the work of Gauss, proceeds by forming the normaltaous[22]

ATAx=ATb (2.42)

and solving them through a Cholesky decomposition of thensgtric positive definite
matrixM = ATA, i.e. M= RTRwith R upper triangular. In statistical applications this
is known as thesquare-root methad The normal equations approach can however
give rise to numerical difficulties. First, some significaigits might get lost during
explicit formation ofM = ATA andM may not be positive definite or even nonsingular
due to round-off. Second, the normal equations approactduates errors larger than
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those inherentin the problem due to the fact that its sahudiepends upon the square
of the condition number ofA. Methods based on orthogonal triangularization which
work directly onA such as th&QR factorization on the other hand have shown to
possess very good stability properties.

For A ¢ R™" with m > nthere exists ®Rfactorization such that
Q'A— (E) , (2.43)

whereQ € R™™M is orthogonal andR € R™" is upper triangular with nonnegative
diagonal elements. See [22] for a proof.Atas full rank (rankA) = n) thenR has
strictly positive diagonal elements, hence is nonsingdlaen one can write

A-(@ ) (§)-ar (2.44)

Here,Q1 andR are uniquely determined. The mati@; is in general not uniquely
determined.

The following theorem shows how tiggRfactorization may be used to solve the linear
least-squares problem

Theorem 2.3.3(see [68]) Let Ac R™" m>n and be R™ be given. Assume that
rank(A) = n and that a QR factorization is computed such that

R C1
Q'A= (0) ., Qb= (Cz) . (2.45)

Then the least-squares solutiohand the corresponding residuaks b — Ax* satisfy
RX = ¢y, Irll2 = llczl|2- (2.46)
Proof. SinceQ is orthogonal the objective can be expressed as
1A= b5 = [|QT (Ax— b)[|3 = [|Rx—cxl[3 + [ clI3. (2.47)

And becaus® is nonsingular by the full rank condition gdthe minimum is attained
atx* = R 1c; and its residual equals the normmf O
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2.3.4. Linear programming

A Linear Program (LP), another important class of convexgpaonming problems,
can be written as

miny c'x
sit.  Ax<b, (2.48)
Cx=d,

withceR", Ac R™" b e R™ C e RP*" d e RP.

2.3.5. Quadratic programming

A convex optimization problem is called a Quadratic Progi@®) if the objective
funtion is convex and the constraint functions are affineatt be written as

min,  $X"Hx+g'x
s.t.  Ax<b, (2.49)
Cx=d,

whereH € R™" is symmetric positive semidefinitg,c R", Ac R™", be R™ C ¢
RP*" d € RP.

When linear constraints are added to the least-squaretepndB.38) the solution can
no longer be computed analytically, but a QP must be solved.

2.3.6. Second-order cone programming
A constraint of the form
|Ax+b||2 < c"x+d, (2.50)

is asecond-order cone constrainf convex optimization problem with such a con-
straint is called a Second-order Cone Program (SOCP) andecamitten as

min,  3fTx
st ||Ax+b|2<cTx+d, (2.51)
Fx=g,

wheref,ce R",d e R, Ac R™" be R™ F € RP*", g € RP. Second-order Cone
Programs are more general than (and include) Quadratia sy
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2.4. Nonlinear optimization

If the objective function and/or some of the equality or inality constraints are non-
linear, the mathematical program is called a nonlinear gnagning problem. Even
when the objective and constraint functions are smoothgémeral nonlinear optimi-
zation problem can be very difficult to solve. Indeed, forwanproblems any local
solution is also a global solution (Theorem 2.3.1), howgfegmon-convex problems
the KKT conditions can only characterize local optimalifglobal optimization is
used for problems with a small number of variables, wherefmating time is not crit-
ical, and the value of finding the true global solution is vaigh. Therefore, only
local optimization methods are considered in this theshis Should not temper our
ambition of findinggood solutionghough, since in moving horizon estimation (and
control) a good initial guess is often available and if inglifies can be imposed,
the search region can often be dramatically reduced sudtb#ithlocal optima are
excluded. Furthermore, with the help of efficient numerteghniques for dynamic
programming such as multiple shooting convergence to gocal loptima, in many
cases even the global optimum, is typically obtained.

Nonlinear optimization algorithms are iterative processéich differ by the strategy
to move from one iterate to the next. The methods typicailglve trade-offs between
speed of convergence and computer storage, between rebasind computational
speed, and so on. In this thesis so-called Newton-type rdstlvehich make use of
first and/or second order derivatives, are employed.

2.4.1. Newton’s method for unconstrained optimization

The generic unconstrained nonlinear problem is
mink  fo(X), (2.52)

with x € R". Assumefy is twice continuously differentiable.

This nonlinear problem is solved in (exact) Newton’s methganinimizing in every
iteration a quadratic approximatione. the next iteratet! = x¥ 4 pK is found by
minimizing

fo() + Do)+ 5 P o) (253)
fo(X“+ p) (2.54)

m(X*+ p)

12

with respect top. Here O fo(xK) and 0% fo(xX) are the gradient and Hessian respec-
tively of fg evaluated ax. This minimum is directly found by setting the gradient to
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zero, yielding
pK = — (02 fo (X)) "0 fo (XX), (2.55)

Newton’s method converges quadratically close to the gwiut

The steepest descent method is a Newton-type method thatndbeake curvature
information into account but instead takes stpps= — O (x¥). It is computationally
cheaper but converges only linearly.

In order to enforce convergence of Newton’s method from ditrary starting point,

a suitable globalization strategy is necessary. Therevasdamilies of globalization

strategies, line-search and trust-region, see [33, 136jnfaepth treatment of the
topic.

Nonlinear Least-Squares (NLS)

In nonlinear least-squares the following special objeotionsisting of a sum of squared
nonlinear functions is assumed

fo(x) = 5lIr 013 (2.56)

withr : R" — RY.
The Jacobian of, theq x n matrix of first partial derivatives, is defined as

dl’j
J(X) - [a} j=1...9
i=1....n

geeny

With this definition the gradient and Hessian of the objex{®.56) can be written as

Ofo(x)  =J(X)Tr(x),
2fo(x) =JI(X)TI(X) + Z?:lrj (X)02r (x). (2.57)

Near the solution the first term is typically dominant be@agher the residuals are
small orDZrJ— (x) are small (near-linearity of the model close the solutidrijerefore,
the following Hessian approximation is typically used

W = 3¢ . (2.58)
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with Ji := J(xXX) This iterative procedure for solving the NLS problem is kmoas
Gauss-Newton methoth every iteration a linear least-squares subproblemligesio

1
s = argmingrc 37 pl (2.59)
= (33 (2.60)
= —Jn, (2.61)

wherery == r(xX) and\];r is a pseudo-inverse. Reliable and efficient orthogonattria
gularization methods can be applied to these LS subproldsmdscussed before, see
also [22, 136].

In order to enforce convergence from far-off starting psiatsuitable globalization
strategy is necessary. One particularly popular and éffegiobalization strategy is
theLevenberg-Marquardt methotarge steps are penalized by this method by adding
a regularization term.

1 (008
plw = argming i+ Jpl2+ =l pll3 (2.62)

= —(WItad) o, (2.63)

wherel is the identity matrix andx is the so-calledlamping parameter For ag
small the method resembles Gauss-Newton whilerfdarge the behavior of steepest
descent is obtained.

Now, let us consider constrained nonlinear optimizatiome $tandard form was given
before (problem 2.28) and is repeated here for convenience.

miny  fo(X)
st filx) <0, i=1,....m (2.64)
hi(x):()? i:]-a"'vpv

with x € R". The domair® = ", dom(f;) N N, dom(h;) is assumed to be nonempty.

There are two big families of Newton-type algortihms for strained nonlinear prob-
lems, Sequential Quadratic Programming (SQP) type methiod$nterior-Point (IP)
methods, that differ mainly by the way the complementargigi@ss condition is han-
dled.

2.4.2. Sequential Quadratic Programming (SQP)

One of the most effective methods for nonlinear optimizatenerates steps by solv-
ing quadratic subproblems. As such, this SQP approachiesppl every iteration a
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2.4. Nonlinear optimization

Newton step to the KKT system of the nonlinear programmirgpf@am which leads
to a fast rate of convergence. It has been shown that SQPrsabauire the fewest
number of function evaluations to solve NLPs [19, 159]. Byehrizing in every it-

eration all nonlinear functions occurring in the KKT conalits around the current
iterate, one arives at the following QP

min,  3(x—x<)TOZL (XK AK, vE) (x — XK) + O fo(x<)Tx
st fE) +OfRKOT(x—xK) <0, (2.65)
hi(¢) + DR (X)T (x = x) = 0,

wheredfo(x¥) denotes the gradient of the objective evaluated at the miitezatex*

and wherd12 £(xX, A%, vK) is the Hessian or matrix of second order derivatives of the
Lagrangian evaluated at the current iterate of primal arad gariables. If the Hessian

is positive semi-definite, this QP is convex.

Sequential Quadratic Programming can be implemented bothline search or a
trust-region framework, see [33, 136]. SQP methods shoivgtrength when applied
to problems with significant nonlinearities [136].

Full quasi-Newton methods

In quasi-Newton methods, also known as variable metric otthapproximationdk

of the Hessian matrixi2 £(x¢, Ak, v¥) are maintained. In each iteration a new Hessian
approximationM 1 from the previous by a low-rank update. The Broyden-Fletche
Goldfarb-Shanno (BFGS) update is the most widely used asgraven to be very
successful. It is given by

ViV WMtk

B _ 2.66
Vise  SPWhs (2.66)

Wi = W+

If the process is started with a positive definite approxiarat\p then all subsequent
Hessian approximations are positive definite. Damped BF@fates and other vari-
ants have been proposed to deal with the problem of nonip®siéfinite true Hes-
sians, see.g.[136].

Constrained Gauss-Newton (CGN) method

Another particularly successful SQP variant is the Conmrsééh Gauss-Newton (or
Generalized Gauss-Newton) method. It uses the Gauss-Nédéssian approxima-
tion (2.58). The constrained Gauss-Newton method has aréai convergence but
often with a surprisingly fast contraction rate. The coati@n rate is fast when the
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residual norm||r(x*)|| is small or the problem functionf, f;,h; have small second
derivatives. It has been developed and extensively inyatstil by Bock and cowork-
ers, see e.g. [23, 160]. The CGN method is central in Chapdéthis dissertation.

2.4.3. Interior-point methods

In interior-point methods, in contrast to SQP methods, tiiat®n of the KKT sys-

tem is attempted by replacing the non-smooth complemersiagkness condition
Aifi(x) = 0 by a smooth nonlinear approximatidnf; (x) = k, with so-called barrier
parameterk. This amounts to replacing the inequalities with a loganith barrier

term in the objective weighted with the barrier parameterstéad of the original
problem (2.28) a sequence of problems of the following form

miny  fo(x) —k 34 log(—fi(x))

st. h(x)=0, i=1,...,p, (2.67)

is solved using Newton’s method for decreasindAfter a limited number of Newton

iterations a quite accurate solution of the original Noeéin Program (NLP) is ob-
tained. By this approach the iterates are forced to remaiinarnterior of the set de-
scribed by the inequality constraints, and convergendeddrtie solution is achieved
by gradually reducing the barrier parameter. We refer toetkeellent textbook [198]

for details. A widely used implementation of nonlinear hide Point methods is the
open source code IPOPT [191].

2.5. Algorithm complexity and memory storage

2.5.1. Flop count

The complexity of a numerical algorithm is typically expsed by the number of
floating point operation®r flopsit requires. In this thesis we follow the definition
used by Boyd and Vandenberghe [29], Golub and Van Loan [7@]Jmgnmany other
authors of a flop being one arithmetic operation, that is, atdition, subtraction,
multiplication or division of two floating-point numbérs

Of course the computation time of an algorithm depends onyroérer factors such
as processor speed, choice of compiler, data motion, meitmiergrchy and cache
boundaries [29, 77], yet the number of flops gives a good atitin of the computation
time as a function of the problem dimensions. Only the legdéims are typically
taken into account.

1Some authors define a flop as a multiplication followed by aditih, also known as a DAXPY
(double-precision real Alpha times X Plus Y), since thisresponds to one instruction on many processors
and is a basic operation in the well-known packages BLASABR and LINPACK. Their flop counts are
a factor 2 smaller.
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2.6. Brief introduction to the Kalman filter

Vector operations

Consider two vectors,y € R".

° Addition of x andy requiresn flops.
° Multiplication of any of the two vectors with a scalar alsguéesn flops.

° Computation of the inner produxty requiresn multiplications anch— 1 addi-
tions, or 2 — 1~ 2nflops.

Matrix-vector multiplication

A matrix-vector multiplicationy = Axwith A € R™" requiresm(2n— 1) ~ 2mnflops.

Matrix-matrix multiplication

The product of two matriceS = AB with A € R™" andB € R"*P requiresmn(2p —
1) ~ 2mnpflops.

2.5.2. Memory dllocation

The memory that needs to be allocated for an algorithm israéted by the nature
of the dataj.e. structure or sparsity, and by the implementation of the rtlga, i.e.
structure/sparsity exploitation, data overwrite.

In general, storing a vector or matrix requires memory altamn for at least the num-
ber of non-zero elements. A densex n matrix requiresmn memory entries. If the
matrix, however, contains onlj}f < mnnon-zero elements it can be stored using only
N entries. A triangular or symmetritx n matrix require%n(nwL 1) entries, while a
diagonah x nmatrix - of course - requiresentries. Other structured matrices such as
Toeplitz, Hessenberg, Sylvester or banded matrices catoledsfficiently as well.

2.6. Brief introduction to the Kalman filter

In his seminal paper [112] Kalman derived his filter using argetric approach, the
orthogonal projection theory. The filter may also be deriusthg a rigourous prob-
abilistic setup (see.g. [6, 107]) or using maximum likelihood statistics (sed.
[107, 174]), which is the most straightforward and populayvef deriving the fil-
ter formulas but has the drawback that several stochastiogstions are needed, see
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the discussion in Section 1.6. The filter equations may b&atén using a purely
deterministic least-squares approach,esee[71, 190, 196].

In this section derivations are omitted and instead thedaswn the different imple-
mentation forms of the Kalman filter and their relations.

2.6.1. The covariance Kalman filter (CKF)

For compactness we shall write

X =Rqk-1, Fc=Rqk1
Rer =Rk P = P

unless amplification is necessary for clarity. The Kalmaterfischeme consists of
two distinct stages: a measurement update or correctigie stand a time update or
prediction stage.

In the measurement update stagedt@riori state estimate"and its associated co-
variance matrix are combined with measurement information to give an imgdov
estimate and covariance matrix.

Measurement update

RE = GARG +R (2.68)
Re = RA-RGIR] 'GA (2.69)
Ke = RC(RY) (2.70)
Yo = Yk—he—C& (2.71)
Ry = X+ Kk (2.72)

HereKj is theKalman gain iy is called thennovation(i.e. , the deviation of predicted
output from observed output) ariRf is the innovation covariance. Ttaeposteriori
estimatexi, with its associated covarian&, is now the best linear estimate xf
using all data up to the current time.

In the time update stage the model is used to propagate tieeestémate and covari-
ance matrix one time step forward.

Time update
Adt = ARGAL+GQGE (2.73)
X1 = et AR (2.74)
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2.6. Brief introduction to the Kalman filter

Provided the initial estimate is a true minimum mean-sugarer estimate of the
statexp, all subsequent estimates computed by the Kalman recsrai@nbest linear
estimates in mean-square sense for the given data. If iiaddhe disturbances
andv are Gaussian, then the state estimates delivered by theakdilter areoptimal
in mean-square sense.

Note that the error covariance and consequently the Kalraamage independent of
the data. Hence, the matrix and vector recursions can be u®ahn parallel.

Time update and measurement update may be combined yielding

Por = ARA — ARCE R 'CRAL + GQiGE (2.75)
Ke = ARCIRI™ (2.76)
Rpr = ot Akt Kidi (2.77)

Notice that the gain matrik, = AKx. Matrix equation (2.75) yields a recursion for
P and is termedRiccati difference equation

2.6.2. The Kalman filter as a feedback system

Equation (2.77) provides insight into the mechanics of tlankan filter. It can be
viewed as a feedback system where the innovations througiirangatrix K. are

injected into the process. This approach was first consideyd uenberger [127] in
a deterministic setting. Any gain which stabilizes the edynamics given by

&1 = (Ax— KiC)ex (2.78)

yields a stable obsenver It suffices to choose a gain such that all eigenvalues of
Ay — K¢ Cx are smaller than onee(g. by pole placement The Kalman filter delivers
an optimal gain under the assumed conditions.

2.6.3. The time-invariant and steady-state Kalman filter

For linear time-invariant (LTI) systems the Kalman filtecuesions as given before
can be applied with constant system matrices, howevercdesd algorithms can be
derived in order to speed up computations.

2When the system is assumed to be disturbance-free (detstic)im state estimator is callebserver
when disturbances are considered the téiter is preferred.
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Consider a recursive estimator for the disturbance-frekaifset-free Linear Time-
Invariant (LTI) system (2.9) given by the recursion

)zkle == A)zk + Kyka

whereK is a gain matrix (not necessarily the Kalman gain) sine- yx — CX is the
innovation vector. Then the estimation erepi= xx — Xk obeys the following recursion

&+1= (A—KC)ex.

Consequently, the estimation error converges asymptlyticezero if the gain matrix
is chosen such théd | < 1 forallA € A(A—KC).

Theorem 2.6.1(Exponential convergence of the error covariandé){A,C} is ob-
servable and A, W'} with Q= WTW is controllable, then the sequenged@nverges
exponentially to a limit R and consequently the Kalman gain converges to a ligit K

The convergence rate depends on the process and outpuiacmes and on the sys-
tem dynamicsi,e. the eigenvalues of the system matixin the limit the (combined)
Kalman filter recursion becomes a discrete-time algebraicd equation (DARE):

P. =ARAT - ARCTR+CR,.CT"ICR.AT +GQG"
T -1 (2.79)
Ko =APRCT[R+CR,CT|™L

Using the steady-state Kalman filter instead of the (timexdiiant) Kalman recursions
can yield significant computational savings but involvesslof precision. Whether
this trade-off if acceptable depends on the particulariappbn.

The DARE (2.79) can be solved by spectral decomposition ®fHamilton matrix
or by iterative methods such as step-doubling or the Newdi@mman algorithm [6,
116].

2.6.4. The square-root covariance Kalman filter (SRCF)

A well-known problem with the normal Kalman filter recurs®is that they can re-
sult in a covariance matrix which fails to be symmetric amgfasitive definite [6, 71].

This might happen if some measurements are very accuratehwhuses numerical
ill-conditioning. To cope with this difficulty Potter ande3t [144] introduced the idea
of expressing the Kalman filter recursions in terms of a sejwaot, more precisely
a Cholesky factor of the covariance matrix. By propagatinchsa Cholesky factor,
the computed covariance matrix remains symmetric andigeslefinite at all times.

Moreover, the numerical conditioning is generally muchtéresince the condition
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2.6. Brief introduction to the Kalman filter

number of the Cholesky factor is the square root of the camditumber of its cor-
responding covariance matrix. This means that the preatisi@ffectively doubled.
Finally, these square-root recursions are numericallyamobust due to the use of
orthogonal transformations such@®& factorizations [189].

Suppose a square-root or more precisely a (upper) trian@Hhalesky factorS; of
the state covariance matrix at tilkds given such thab = SISK Assume that also
square roots of the covariance matri€gsandRy are given such thady = WkT W and
Ry :VkTVk. Then, themeasurement update as described in [6], amounts to finding
an orthogonal transformation such that

T(Vk 0) N ((Rk+CkH<C1Dl/2 Kk) (2.80)

3

S,(Cg & 0 St

whereK] = RC/ (Rk+CkF1(C[)71/2 and withR;. = SI, S¢;. HereT is any orthog-
onal matrix making the right hand side triangular. Henc®R¥factorization gives us
bothT and the right hand side.

Subsequently the state estimate is updated as
~ ~ ST T™-T/2~
R = K- RE(ReFGRST) i (2.81)

Another form of the measurement update suggests compuinfptiowing QR fac-
torization

(o) = 12 ()
and subsequently updating

S. = RTs, (2.83)

S — RtS.QT (vkgyk)' (2.84)

This form requires invertibility of the measurement weightmatrixRy (hence o).
The formulation can easily be verified as follows

Re = (R HGRIG) T = [SIST+alv v Tad (2.85)
=[S0 +SGV TV TGS) ST (2.86)
= [S'(RQQRS"] . (2.87)
- SRRs, (2.88)
- 9.S.. (2.89)
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And for the state update

Zr = ft+AC (Re+CACH i
= X%+SIRIRTSCV VT,
+

To—1AT 0
()

(2.90)
(2.91)

(2.92)

where the second step comes from the Matrix Inversion Lemmdamvnere for the last

step we need to prove that
T ~Ty—1y-T T( O
R'SGV, V' = Q ( T>.
Vi
Left multiplying both sides withR" gives
Ty —Lyy-T T~T( O
s T = RQT().
Vk
and using the definitions from th@R factorization (2.82) yields
1y, _ 0
SGVVT = (1 SGv) (VkT> )

which concludes the proof.

Thetime update is found by computing the followin@R factorization

Scr AL A A [
(war) = @ (%)
and the state update remains as in the CKF given by

X1 = T+ A

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

Note that the following modified combined update equatiam{pare with (2.75))

Rer = (Ax— KGC)P(Ax — KiCi) T + KiReK, + GQkGL

(2.98)

tends to promote nonnegative definite covariance matritgsvever, if B fails to

be nonnegative for some reasom® (numerical approximation errors), all subsequent

covariance matrices will fail to be nonnegative as well. didigion, this modification
lacks the good numerical conditioning and robustness oSREF implementation.

53



2.6. Brief introduction to the Kalman filter

2.6.5. The information filter (IF)

Instead of propagating the covariance matrix and the ctigtate estimate the infor-
mation filter propagates the inverse covariance matrilfarmation matrixand the
information vector The information filter is especially useful when the inistate is
completely unknownife. R = ), since the covariance Kalman filter would fail in
this case. On the other hand, the IF fails when covarianceeeatecome singular. If
the output dimension is large compared with the state diinartken the information
filter is more efficient than the covariance filter, which expk its popularity as an
observer in large sensor networks. A drawback of the infdionéilter is the loss of
physical interpretation of state vector components anéuGarces [83].

The following information vectors are introduced
A _ p-lg A _ p-1l¢
& =P R A =B R

Application of the Matrix Inversion Lemma to (2.69) and (2) ¥ields the following
expressions for the measurement update

Pk:»l pk*1_|_c;(nglck (2.99)
a: = A+CR M(yk—hy) (2.100)

Note that the measurement update is simpler in the infoomditier. The time update
equations on the other hand are slightly more complicatessufeA is invertible
and define

—Tp-1p-1
M= A RAC

Then applying the Matrix Inversion Lemma to (2.73) yields

— _ -1
Pi = MT+GQGE) (2.101)
(I — NGy ) M, (2.102)

with Nk = MGy (GE MG + Q[l)fl. And furthermore

a1 = (1 — NG Mic(fie+ A ) (2.103)
= (1= NG}) (Micfic+ A Tar) (2.104)

Note that compared to the covariance Kalman filter this fdation requires inverses

of Ay and Qy which involves extra computations and causes numericddl@nas in
case these matrices are (near) singular.
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If Gx =1 for all k, the expressions can be simplified and the requirement of non
singularAx can be dropped, since in this case applying the Matrix Ineerisemma
to (2.73) withGy = | yields

_ _ _ _ -1 -

Poi = Q' QlACAIQIARY TAIQY (2.105)

a1 = Py (fot AR &) (2.106)

The problem with this formulation, apart from the requirath@y = |, is that the in-

formation vector time update can only be formulated in teofrisformation vectors if
invertibility of Pkf is assumed which is in contradiction with one of the mainoeas
of existence of the information filter, the possibility ofimte B .

Another possibility which allowsy # | and avoids the assumption of invertilfie
was given by Mutambara [135]. He proposes to perform thergior of B 1 explic-
itly instead of applying the Matrix Inversion Lemma. Howevia this case invert-
ibility of both Pkf and Pk;ll is required which undermines the spirit of information
filtering. The time update in this formulation is given by

R = (APGAL+GQGT) (2.107)
A1 = P@ll( fi + AP 8kt )- (2.108)

Comparing the information filter to the covariance Kalmatefijlit is seen that the
measurement update is simpler whereas the time update & coanplex. Further-
more, the information filter needs inversesGIMkaJr Q;l while the covariance
Kalman filter needs inverses @LFLC[ + Rk. Hence ifny < ny the IF will be more

efficient, if the reverse is true the CKF is favorable [6].

Interestingly there exists duality between the CKF and the IF [6, 71]. Table 2.1
contains the duality relations to convert between both fdations.

CKF time update| IF meas. update
Pt P
A cl
Pt R*
GkQkG] Rt
CKF meas. update IF time update
Rt P
R Mk
Cl Gk
Rq Qt

Table 2.1.Duality relations between the covariance Kalman filter ($liRd the information
filter (IF).
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The square-root information filter (SRIF)

In analogy to the covariance Kalman filter, a square-roahfof the information filter
can be derived [6]. Let us define the following (square-rgwipvation vectors

b =S b =S R

whereS, denotes a square-root Cholesky factoRpés before. Then the measurement
update is given by the followin@R factorization

(Vji TCK) = Q9 (%T)’ (2.109)

and the (square-root) information vector is updated asv|

<6i+) =<' <VkT(S: - hk)> ’ (2.110)

wherex denotes entries which are not important for our discussidre time update
is defined (analogously to (2.80)) by the following orthogbimansformation

_/ow T 0 1, GIMG) Y2 BT
: 3 ) _ [(Qt+GIMGK) <) (2111
(§7h 16 somt < 0 sn) &Y

<6k*+l) - T_(5k++$o+1Ak1fk)- (2.112)

with By = MGy (lel + G M Gx) “7/2 and wherd is any orthogonal matrix making
the right hand side triangular.

Table 2.2 gives an overview of the differentimplementafams of the Kalman filter.
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Form Normal Square-root
Measurement update Measurement update
P = R—RC (GAG +R) G T( Vi 0) <(Rk+ckw)” &)
- S o 0
K = RS (GAC+R) « Ser
(0] ~ ~ N ~ ~ -T/2 o
8 f = yk—h—Gek % = ftRe(Re+GAST) i
3 e e
g R = Rt Kidk Time update
8 Time update T
(we¥) - © 9%
Aot = ARCAL+ GG WGy A0
i1 = fot AR Rt = ek A
Measurement update Measurement update
P = RIHGRIG ( &' > _ 6 9 (%()I)
&: = A+CRI(y—h Vi ACk .
) ki) AT bx
Time update * = Q Vi T(yk—hy)
5 Ph = (I-NGf)M Time update
© A T ~Ta
&1 = (1 =NGy) (M + A it T2 g
g ( ) ( > T—( T\Mfl T0 71> _ [ (x%+GIAGK) / BIT
= with SACG SITA 0 S
_ pA-Tpip-1 Uk _ 7. 0
Mc = ACPCA ) (bk+l> T (bk+ + i&"\?lflj
Ne = MGy (GI MGy + Q;l)

with By = M Gy (Qc+ GTAGY) /2

Table 2.2.Different implementation forms of the Kalman filter.
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2.7. Brief introduction to Kalman smoothing

2.7. Brief introduction to Kalman smoothing

In the setting of filtering, the Kalman filter provides the bestimate based on past
data. Iffuturedata are also available, they can be used to further imphavedtimate.
In the following discussiork denotes the current time instant.

In one scenario we may be interested in obtaining an estiofdtee state at a fixed
time j < k given measurements up to tirke As more and more measurements are
collected, the estimatg ¢an be systematically refined. Consider for example a satel-
lite taking pictures at a fixed rate [164]. As the satellitetioues to orbit, additional
range measurements can be used to improve the picture telerea. This situation

is calledfixed-point smoothing

In another situation it might be useful to estimate the stttmek — N whereN
represents a fixed lag and where the in#éx continually changing. In other words,
at every time step a state is estimated using a fixed numbefafuremeasurements.
In our satellite example this situation occurs wiNetime steps are needed before the
picture is transmitted and processed. This case is knoireslag smoothing

Finally, in fixed-interval smoothingtate estimates in a some intenalg. [0,...,N]
are computed based on all measurements in this intervak Situiation occurs if a
sequence of satellite pictures is available for post-pssicg and the goal is to obtain
a time history of optimal estimates given all collected d&iaed-interval smoothing
has significant resemblance with MHE as discussed in thevigllg sections. It is
possible to employ a single smoothing scheme based on fitedsal smoothing to
solve all three classes of smoothing problems.

The improvement due to smoothing is monotone increasing@s measurements
become available. The maximum improvement possible is meeeby the system
dynamics and the signal-to-noise ratio and can vary froro eone hundred percent.

Traditionally Kalman smoothing has been primarily useddifiine estimation (fixed-
interval smoothing) or for online estimation problems whaan tolerate some delay
(fixed-lag smoothing).

2.7.1. Fixed-point smoothing

The fixed-point smoother equations are summarized bdlatialization

R = % (2.113)
Py = P (2.114)
My = P (2.115)

(2.116)
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Fork=j,j+1,...
RE = GACGK+R (2.117)
R = R—RAGIRIT'GHA (2.118)
Ke = RCIRI™ (2.119)
Yo = Yk—he—Ci (2.120)
R = R+ Kk (2.121)
Aot = APGAL+GQGE (2.122)
K1 = fot Adr (2.123)
Kik = Mjp&RI™ (2.124)
Rikrr = K+ Kjd (2.125)
Mier = M (A —CTKj)' (2.126)
Pikir = Py~ MG K]l (2.127)

2.7.2. Improvement due to smoothing

From equations (2.124) and (2.127) it can be seen that

Pk = Pic1—MiCr (GRS +Ro) ™ Clljjk (2.128)
k

= Pji_1— Y Mycl (GRCT+R) "GNy, (2.129)
1=)

Or, equivalently, the improvement due to smoothing can htemras

k
Pii-1—Pix = 3 Mjcl (GRCT+R)"any, (2.130)
1=]

Usually, the relative improvement is expressed as a peagerds follows

tr[Pyj-1—Pji/

« 100%
tr [Pyj-1]

Now consider the time-invariant case and suppose the fiteréached steady-state,
i.e.limg . P =P. Then, from the initialization, eq. (2.115) and recursign.126),
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Mjk can be written as

Mk = FE(A—lKC)k’Hl, (2.131)
popk-i+t, (2.132)

Plugging this into expression (2.130) evaluated at stesde yields the maximum
possible improvement due to smoothing:

00

P-P. = Z (@") T (GRCT+R) ‘g | P (2.133)

From this it can be seen that the improvement due to smoothtrgases propor-
tianally to the signal-to-noise ratioe. R— 0. For estimation problems with a high
signal-to-noise ratio the improvement of smoothing canigeificant, even close to

100 percent [6, 164]. The improvement increases monottyieéh a rate governed

by the eigenvalues of the filter dynamigds= A — KC. For the time-invariant case,
a rule of thumb states that practically all possible improeat due to smoothing is
obtained after two or three times the dominant time congtdctral radius). For the
time-varying case, the eigenvalues of the filter dynamicggothe rate of change of
improvement with lag, in this case no general conclusionquantification can be

made since the dynamics are changing.

2.7.3. Fixed-lag smoothing

Let us definex| as the state estimaxg_j 1 propagated time steps forward with an
identity transition matrix and no disturbance. Or writteatirematically

Re1=%e, R2=%Re-1, ... Re)=RKls1-

With this, the augmented system can be defined as

Xic+1 Ac 0 - O Xk I Gk
Xk4+1,1 I 0 --- 0 Xk 1 0
: = |. : L] R Wi, (2.134)
Xk+1,N+1 0 -~ I 0] [Xknt1 0 0
Xi
Xk,1
Y« = h+[C 0 -+ O | | |+W (2.135)
Xk, N+1

60



Computational framework

Or, written in terms of Kalman gains

Kic+1 Rk—1 0 0 - 0] X Kk
)’zk+l,l 0 N | o --- 0 )zk,l + Kk,l -
. = . . ) . . . Yk,
R+ 1N+1 0 0 -« I 0] [KN+1 Ky N+1

where X, 11 is obtained from a normal Kalman filter recursion. By apptyithe
Kalman filter equations to this augmented model, smoothate ststimates for all
lagsl =1,...,N are obtained. In fixed-lag smoothing, however, one is ortlyrested

in the state with ladN + 1. For this reason, the fixed-lag smoother for time-varying
models and significant lags is computationally involved paned to the Kalman fil-
ter. For the time-invariant steady-state case, howeverfited-lag smoother is very
practical and reduces to

Rk = Rak—1+ KV (2.136)
Kaia = PA—KC)KI1CT (CRCT +R0) . (2.137)

2.7.4. Fixed-interval smoothing
Forward-backward smoothing

The forward-backward algorithm, derived by Fraser and é?dti2], computes the
smoothed estimates as a linear combination of two optintafdil

In afirst step the standard Kalman filter is applied. Insacond stepa backward
filter is applied. Since forward and backward estimates rhashdependent and no
further information is available, the backward filter neéalbe initialized a$}, n = .

In order to make this recursion computationally feasiliies initialization implies the
backward filter needs to be run in information form. The baatdhinformation filter
is initialized as follows

Y = Pyl=0 (2.138)
av = Pytw=0, (2.139)

and subsequently, in every time step, the following reaunsiare performed

Yoo = YW+CGIRICK (2.140)
&; = &+CR (yk—hw) (2.141)
Kok1 = Yie (Yier +Qcly) (2.142)
Y1 = AL ;(I—Kok 1) Y Ac 1 (2.143)
Gc1 = ALl —Kog1) (B — Vi fi) (2.144)
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In athird step, the smoothed estimates and covariances are computed iefort
ward and backward filtered estimates as follows

KE = P +RcY) (2.145)
R = (I-K)R« (2.146)
o= (1=K R + P& (2.147)

The optimal weighting between forward and backward esésié also known as
Millman'’s theoren{35]. The derivation of the forward-backward smoother iaigtht-
forward but the algorithm is computationally expensivee Thllowing algorithm, best
known as Rauch-Tung-Striebel (RTS) smoothing, is comjmrtally more efficient.

Two-pass smoothing or Rauch-Tung-Striebel (RTS) smoothing

The Rauch-Tung-Striebel algorithm [151] employs the ragilalman filter in a for-
ward pass whereafter the backward pass applies a correctiog only the data pro-
vided by the forward pass.

Analogous to the forward-backward smoother, fiist step of RTS smoothing in-
volves a forward run of the standard Kalman filter.

In asecond stepthe smoothed estimates are computed as a correction tdténedi
estimates obtained by the forward run.

P = P (2.148)
£ = S (2.149)

and subsequently, in every time step, the following recunsiare performed

Ke = PeAPRY (2.150)
PO = P — K (R —Fye) (KT (2.151)
R = R HKE (R —Ren) - (2.152)

We note thaKg = R(Ax — Kka)TP[fl-

In order to prove these recursions, observe from eq. (2.t2h)

XN = Rign—1 + Kign Tk (2.153)
N

= R+ Z Kt ¥i- (2.154)
I=k+1
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and similarly

N
RN = Rkt Z Kics-119i- (2.155)
11

Furthermore, it can be shown thiif = KgKy,.1. Using this information, allows us
to write

N
R = AN = RgetKg Z Kicr 1191, (2.156)
I=k+1
= Sk KL (Reran —Repak) » (2.157)
g.e.d.

The equation foP¢ = By can be obtained after a similar calculation.

Note that the smoothed covariances are not needed to cortiputemoothed esti-
mates. Also note that invertibility of the covariances canegl by the forward pass is
required.

Similarly to the filtering problem, steady-state smoothaigorithms can be derived
for LTI systems to save computational effort. An early syreésmoothing algorithms
is givenin [132].
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CHAPTER

Efficient methods for unconstrained
MHE

In this chapter efficient methods for the solution of MHE (eofs are
discussed for the case when no inequalities are active. Niaand square-
root Riccati based solution strategies are derived fromoegositions of
the KKT system. These solution methods provide insigtdsthiet me-
chanics of MHE and yield an update formula for the arrival ttdsquiv-
alence of unconstrained MHE and Kalman filtering/smootligshown
and the analogy with MPC is discussed. Structured QR fazation
methods are proposed to speed up the computations in theescpa
method. The performance and robustness of these solutitirodseare
compared for optimized C implementations and illustratgdvistue of
numerical examples.

3.1. Introduction

In this chapter efficient solution methods for unconstrdiMHE are discussed. It
is well known that a rearrangement of the variables revdwsypical block diago-
nal structure of the Karush-Kuhn-Tucker (KKT) system ofimatl control problems.
This special structure can be exploited using either Rigeaursions or sparse de-
composition methods. As shown in this chapter, Riccati m#$hsolve an optimal
control problem by: (1) factorizing the KKT system using aiti recursion, and (2)
applying the factors through a forward and a backward vestibwre. Riccati methods
for optimal control have been investigated for example bgdznd Jonson[75], Rao
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et al [150] and Vandenberghe et al [188]. Wang et al [192] agsbaothers proposed
a sparse Cholesky decomposition. Normal Riccati basedodsttor MHE problems
have been proposed befoeeg.by Tenny et al [173] and Jorgensen et al [108].

The most important difference between both is that the MHiblem has a free initial
state vectorg. These extra degrees of freedom allow us to fit an observgolibut
sequence according to a specified objective. It must be ribtgdhe addition of an
initial condition typically increases the numerical cataiing as the extra degrees of
freedom may result in an infinite number of solutions to thiéeetion problem.

As we discussed in Section 1.8 and show in Section 3.4 thersti®ng analogy be-
tween MPC and MHE. Both are similar in nature, yielding sanKKT systems. The
MPC algorithms can be applied with some modifications to Midibfems (and vice
versa); more specifically using conversion tables for thee &t and vector recursions,
adaptation of the right hand side.§. to include the observations) and a modifica-
tion for the initial state. However, while the Riccati appoh for MPC is merely an
efficient way of solving the KKT system by exploiting the GstMarkov structure,
it is much more valuable in the MHE context. In MPC, the terahiweight if cal-
culted by LQR is typically constant because the infinitegttégry beyond the horizon
remains infinite. In contrast, in MHE the arrival cost is ufathin every time step by
one combined Kalman filter update step which is exactly tts¢ $iiep in the solution
method if a Riccati approach is used. Furthermore, the tyuafithe final state esti-
mate, which is the variable of interest in MHE, is importantidhe Riccati recursion
computes a covariance matrix representing second ordmmniation for the problem
discarding constraints, which is a usual confidence measstate or parameter esti-
mation and is typically obtained in standard methods by allficst order (statistical)
analysis around the estimate. This solution method andaheal outcomes are de-
picted schematically in Figure 3.1. Furthermore, note thatweighting matrices in
the MHE problem are inverses and therefore it can be thatriblelggm may not even
be formulated if a singular initial covariance (or infiniteitial weighting matrix) is
supplied while a (unique) solution is easily found using #nian filter recursion. On
the other hand, the initial covariance can be chosen infifvite initial guess is avail-
able and in this case information filter recursions can béiegpThe applicability of
the numerical algorithms is improved by designing them whhparticularities of the
problem in mind. In this chapter we derive normal and squam#-Riccati methods
for unconstrained MHE from respectively) andLDLT decomposition of the KKT
system. The equations may also be derived using the equésaleetween weighted
least squares (MHE) and the Kalman filter or fixed interval sther, as presented in
several text books.g.[111, 190].

The complexity of the Riccati based solutions is dominatedthie cost of factoriza-
tion and isO(N(nx + ny)3). The same complexity is achieved with a sparga. "
factorization method applied to the KKT system, but in trasecthe arrival cost up-
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_________ Updated initial Final state
condition covariance
A
Forward vector solve T /_\‘ T YRR
[ i @ ® o - L] ® 9!
Riccati matrix recursion @ 1 >C1 >O """ O:[>O::>O
° ° ° e e ° 'y
Backward vector solve LA A 4 x___Ix__/

Figure 3.1. Schematic representation of the MHE solution strategyguSiitcati and vector
recursions. The updated initial condition (arrival costlage) and the final state covariance are
obtained as a by-product of the solution strategy.

date and final state covariance are not obtained from thdigolprocess. Hence,
the cost of the Riccati based solution methods grows ongalily with the horizon
lengthN and, as with any Kalman filter strategy the scales cubicailly the system
dimensions. In contrast, a dense solver applied to the KT Kystem has complexity
O(N3(ny+ny)®).

Another approach for solving optimal control problems i®Wm ascondensingand
was first proposed by Bock and Plitt [25]. For MHE this apptoadses from the ob-
servation that the state equatian; = fx + AxXk + Gk allows reconstruction of the
complete state sequen¢ry,...,xn} from the knowledge okg and{wp, ..., Wn_1}
only. Hence, the states,...,Xy can be eliminated yielding a reduced optimization
problem. The cost of this condensing approach is again datediby the cost of fac-
torizing the reduced system and is rougBIgN3n,,2). Alternatively, if ny ~ n,, which
is typical in MHE problems, one could eleminate the distad®s{wo,...,Wn_1}
and obtain a reduced system with a cost of factorizatio@@®n,®). This approach
can be categorized as a reduced Hessian QP method, wheréotth@fefinding an
orthogonal basis for the constraint matrix is avoided byalae elimination.

For control problems, the control dimension is typicallychismaller than the state
dimension. Therefore, for MPC, condensing is often faviawen though it has
some extra overhead due to the computation of the reduceshsyblock elimination)
which is often not mentioned. For MHE problems, where theatigion of thecon-
trols or process disturbances is typically equal or comparabtbdastate dimension
nw = Ny, the Riccati approach is practically always favorable Basonable horizons.
Comparing the order estimates, hence neglecting the caditwst and smaller terms,
of both approaches we see that flpr= ny the Riccati approach is already favorable
for N > 2 for any system dimension. Foy, = % the breakpoint occurs &t ~ 5.

Due to the cubic scaling we note that for large systeamsstate dimensions of 1000
or more, the Riccati approach or any (sparse) direct faxation method will be com-
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3.2. Structure-exploiting algorithms for unconstraine¢i

putationally expensive. Therefore, for large-scale aggpions, other methods such as
conjugate gradient may be more suitable for solving the Ki&tesm.

We conclude that the Riccati based methods are most suftatNeEHE problems with
small to moderate system order and large horizons.

3.2. Structure-exploiting algorithms for unconstrained MHE

Consider the following general linear unconstrained MH&gbem

Mincu 150+ X0 = Roll21 + Ziccg W+ Wi 51 + 1P+ Cio - Hiwk 2 4
+HhN+CNXN||§RN1 (3.1)
s.t. X1 = fkt+AX+Gwk, k=0,...,N—1,

with X = {xo,...,Xn} the unknown state sequence amd= {wp,...,wn—_1} the un-
known process disturbances.

This equality constrained QP is obtained after linearoratit x= {Xo,...,xn} and
w= {Wp,...,Wn_1} of the unconstrained nonlinear MHE problem (1.13) in a Gauss
Newton framework. More precisely, the nonlinear functidremdh are approximated
by first order Taylor expansions

fic (X, Wi ) ~ fi+ Adxc+ Gdwg, k=0,..
Vi — (i, W) ~ i+ Celdxc + Hildwi, k=0, ..
W —hn(xn) =~ hy+ Cudxw.

)

1,
1

L N-—
LN-1 (3.2)

)

For notational convenience we will from now on rename thdesysdimensions as
n=ny, m=nyandp=ny.

Let us write the KKT system agdé = r, with

T® g0 1 [ ] [ rao ]
T
o 0 -Y Ao po
0 -Y @ .
M= . &= . or= ' . (33
T IN-1 FdN-1
Oy L, O

FN_1 0 _ AN-1 rpN-1

0 —I Dy N L ran |
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whererg  (resp.rqn) denotes the dual residual associated itk (X7, W) )T (resp.
zy = X\ ), andrpk denotes the primal residual associated viigrand where we de-
fined
Oy — Pyt +CoRy'Co CIR; *Ho o= Po (%0 —%0) — IRy 'ho
0— H(‘)l'RalCO Qal + HgRalHO ; d,0—= _Qalvvo _ H(-)I—R&lho 3

T 1, TR 1H —CTR
o= | KRG GRCH }7 r :{ 1 k- }7 1<k<N-1
“ {HJRklck Q+H{R tHk T Q- HIR M -
oy =[ CiRy'Cn |, ran = [ —CIRy*w |,
Ne=[ A Gk ] rok=1[ —f |, 0<k<N-1

3.2.1. Normal Riccati based solution method

Lemma 3.2.1. The KKT matrix M (3.3) can be factorized by an LU decompasitio
M = LU with

)
2oy
Ffo —-P
o -y !
L =
1
ZNC1t
MN-1 —A
L 0l It ]
In+m ZOJS 1
In P lyT
In+m Zl+rI
u = : ,

T
In+m zN—1+FN,1
In Pyt

In

which can be recursively computed by Algorithm 1.

Algorithm 1. [Riccati recursion]

1. Initialization: Ry
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3.2. Structure-exploiting algorithms for unconstraine¢i
2. Fork=0,...,.N—1:

a) Measurement update step
Let>, = {H‘ } and D =[G Hy]
Qk
Calculate:
-1 _
S = (St + DR MDK) = Xk — ZDY (Re+ DkZkDy) Dy
b) Model forwarding step
Letle=[ A G |
Calculate:
Per1 = M g
endfor.
3. Final time step:

a) Measurement update step
LetZy =Py and Dy =Cy

Calculate:

_ _ -1 _
Ine = (St +DYRN'DN) = En — SnDf (Ru + DnEnDY) D

A proof of Lemma 3.2.1 is now given.

Proof. To find out howZg,, Pi, 21, etc. can be computed, it suffices to multiply out
LU and equate with. This yields

Sr = @ (3.4)

YR YT+5 1 = o (3.5)
Mg Me—Pyr = 0 (3.6)
RS = oy 3.7)

Equation (3.6) yields exactly the model forwarding step lué Riccati recursion.
Equations (3.4), (3.5) and (3.7) follow directly from thefid@ion of @y, ®x and
®y respectively. O
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The block structure of the KKT matrix and itdJ factorization corresponding to
Lemma 3.2.1 are illustrated in Figure 3.2. In order to solve KKT system the
matricesL andU do not need to be constructed, instead the fadeys P1, 1+ etc.
are computed and directly applied to the residual vectore Stlution vecto of
primal and dual variables can be obtained after a forwardesof = r followed by

a backward solv&J & = E’. This is formalized in Theorem 3.2.2. First, the direct
calculations are presented by the following algorithmg@kithms 2 and 3).

Algorithm 2. [Direct forward vector recursion]

1. Initialization (k= 0):
Zy = Zo+ldo
Ao = Pri(—Tpo+Toz)

2. Fork=1,...,.N—1

4o = T (YAcq+Tak)
A = Pﬁll(*rp,kﬂerZL)

endfor.

3. Final time step:

Zn = Ine(Anyt rdN)

Algorithm 3. [Direct backward vector recursion]

1. Initialization:
N = 2

2. Fork=N-1,...,0:

A = )‘I; - ijrllzkﬂ
Z = Z—ZaTik
endfor.

Theorem 3.2.2. (KKT solution using directU factor-solve methodJhe KKT sys-
tem M =r with M,& and r as defined before (3.3) can be solved by performing the
following steps
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3.2. Structure-exploiting algorithms for unconstraine¢i
1. Factorize M= LU according to Lemma 3.2.1 using the Riccati recursion of
Algorithm 1,
2. Solve E' =r using Algorithm 2,

3. Solve f = &' using Algorithm 3.

Proof. The proof follows directly from Lemma 3.2.1 and block eliration using the
block structure irL, U andr. O

The forward and backward vector solves proposed in Theor@m Bequires invert-
ibility of matricesP for all k not only in solving the KKT system but also in forming
the first dual residualy o which contain?gl. This can be avoided by matrix calcula-
tion as formalized in Theorem 3.2.3 and Algorithms 4 and 5.

Algorithm 4. [Forward vector recursion]

1. Initialization:

2. Fork=0,...,N—1:

/ -1
z, = dc— 2Dy (Re+DyZkD)  (Ditk+ i)
1 = T+ rkZL
| R
dk+l = {val]
If (k=N-—1)then
dn = Xn
else
| R
Ot = |:_Vvk+1]
endif.
endfor.
3. Final time step:
Zy = On—3nDf (RN+DNZND1[\-|)71(DNdN+hN)
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Algorithm 5. [Backward vector recursion]

1. Initialization (k= N:
Z
-1
An-1 = CJ(Ru+DnENDY) ~ (Dndn+hn)

2. Fork=N-1,...,1

Z— T T A
1
A A+ C{ (Re+DkZkDy) ~ [Di(di — Skl g Ak) + hi]

Z
Ak-1

endfor.

3. Final step (k= 0):
2 = Zy—Zo Ao

Theorem 3.2.3. (KKT solution using modified.U factor-solve methodJhe KKT
system M =r with M,§ and r as defined before (3.3) can be solved by performing
the following steps

1. Factorize M= LU according to Lemma 3.2.1 using the Riccati recursion of
Algorithm 1,
2. Solve ' =r using Algorithm 4,

3. Solve & = E' using Algorithm 5.

Proof. The factorization step is identical to Theorem 3.2.2, heitcemains to prove
that the second and third step (Algorithms 4 and 5) yield antidal optimal vector
& asin Theorem 3.2.2 (Algorithms 2 and 3).

First, consider the forward vector solve. At time stepg 0 we have that

/

Zy = 204rdo
= (%' +D§R; Do) " (25" do—DERy o)
= do—ZoD§ (Ro+ DoZoD}) ™ (Dodo+ ho)
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3.2. Structure-exploiting algorithms for unconstraine¢i

with dg = [XO _VVXO] andZy andDg as defined in Algorithm 1. For the last step we
0

used the results from Equations (3.24) - (3.27). Next, thiabhes)\é, which are not
calculated in Algorithm 4, can be written as
M = Pera(—Tpk+ M)
= BA(f+Naz)
= P|;r11>zl<+1
= BiY'dea

with die, 1 = { X\i(vtll] andY = H
— Wit

Then

Ze1 = Zkerr (YAg+rdkin)
= Zk+1+(zi+11dk+l - DLlR@llhkﬂ)

-1
= Oky1— zk+l|:)-|[+1 (Rk+1 + Dk+1zk+1D-ll<-+1) (Dkt20kr1+hiia)

which concludes the proof that identi(zélare obtained in Algorithms 2 and 4.

Second, consider the backward vector solve.

M1 = M—Rta
— CJ (Ru+CnANCT) ™ (Cud +hn)

where we plugged iy, _; = Py 'dy andzy = 7 = dy — PG (Ru+CuPNCT)  (Cudn + ).
Fork < N we pluginA, ; = % YT dg andz = Z.— Zk, T Ak into

M1 = ARt
= I YT YT+ I YT S TRk
— -1
+Z,'YT5 Dy (Ry+DnEnDY)  (Dndn + i)

which concludes the proof that identicglare obtained in Algorithms 3 and 5. [

Lemma 3.2.4. The MHE problem (3.1) has a unique optimal primal-dual p&iA )
if the KKT matrix M (3.3) is full rank. Sufficient conditionsea

e -0
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Figure 3.2.Visualization of the block structure in the KKT matrix and it decomposition.

e Q> 0,vk

e R 0,YK

Proof. From Lemma 3.2.1itis clear that the KKT matrix is full rankttie factorL is
full rank. This occurs whely for k € [0,N] andR for k € [1,N] are positive definite.
A necessary condition is thgRy -+ DZkDy ) is positive definite fok € [0,N]. This
is guaranteed iR¢ >~ 0 andXy - 0 Vk. The latter is fulfilled ifPy > 0 andQ > 0, vk
(see [107] for a proof). O

Remark 1. In practical implementations the forward Riccati matrixcaiorward vec-
tor recursion are combined in a single loop.

Remark 2. We opted to present the methods in a general formulationwiite H
0. If Hx = 0 for all k, then there is namixing between x and w and the Riccati
recursion involves covariances of ordexxm. The resulting algorithms are similar
but simplified. The modified decomposition and algorithnesgiwen in Appendix A.

3.2.2. Square-root Riccati based solution method

Suppose a square-root or more precisely a (upper) trian@hlalesky facto, of the
state covariance matrix is given such tiat= %So. Assume that also square roots
of the covariance matrice® andRy are given such thadx = W] W andR = V,T V.
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3.2. Structure-exploiting algorithms for unconstraine¢i
Then the cost function of MHE problem (3.1) can be written@ivs

N = S (X0+x%—%0)|3
N—-1
+ Z) W T (Wi -+ W) |5 + Vi T (i + Cioxic + Hiowi) |13
k=

+[IViy T (hn + Crxn) [3- (3.8)

The symmetry which is inherent in the KKT system (3.3) canygaited. Here we
describe a symmetric decomposition and a resulting resssilution strategy which
uses square-roots and orthogonal transformations thémelsasing the robustness of
the methods. The block structure of the KKT matrix and its sygtric decomposition
are illustrated in Figure 3.3.

Lemma 3.2.5. If the KKT matrix M (3.3) is full rank (see Lemma 3.2.4 for suffi
cient conditions), then it is symmetric indefinite and carfidmtorized by an indefinite
Cholesky decomposition M LDLT with

- 1 -
T0+T T
FoTo. S 1 N
o vstoT
L = s
-1
TNy
rN*lTl:lr—lJr STI
1 —1
I o vst T

[ |n+m

In+m

which can be recursively computed by Algorithm 6.

Algorithm 6. [Square-root Riccati recursion]

1. Initialization: $

2. Fork=0,...,N—1:
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a)

b)

Measurement update step
X

LetTk= {
Wk

and D= [Cc  Hy]

Compute QR-factorization:

] sl [®T &

} (note thatsy = T Ti)

with Iiﬁ = (Rk + DkaDD -1/2 and Kk = Zleﬁﬁ.

Model forwarding step

Letlyx = [ Ay Gy ]
Compute QR-factorization:

Tk+r1k- = [Qkﬂ Qk+1} [Skg l}

endfor.

3. Final time step:

a)

Measurement update step
Let Ty = Sy (note thatsy = Ty Ty)
and Dy =Cy
Compute QR-factorization:
e

.~ }{(F?ﬁ)l K,E]

TNt

|-1& o

with R = (Ry+ DnEnDY,) 2 andKy = SyDLRS,.

A proof of Lemma 3.2.5 is now given.

Proof. To find out howTy,, S;, T1 etc. can be computed, we multiply dubLT and
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3.2. Structure-exploiting algorithms for unconstraine¢i

equate withM. Then,

TorTor = Po (3.9)
“YSAS YT + T = oy (3.10)
M T Mg —SgaSqr = 0 (3.11)

SIS T TN = O (3.12)

First we prove the measurement update step, i.e. EquaBa®s (3.10) and (3.12).
Let us defindDy = [Cx  Hy|. Note that

1T
—1y,-T

Py = [% S W WOT:| -|-D-(|)—VO Vy Do,

0 T (3.13)
Oy = { WklwkT] +DgV 'V 'Dk, 1<k<N-1
®dy = DV *Vy 'Dn.

Let us compute th@Rfactorization
Vi ~ 1 [(Re+DEDN Y KT
— 3.14

R S Y : TH (314)

with Ty = {Sk WJ andK] = (Rq+ DkaDI)fT/ZZka and whereQy and§y are

orthogonal matrices. To see that this is a valid choiceTfgr, invert the triangular
matrix on the right-hand-side

(Re+DizDy) 7% — (Re+ DEZDE) M 2RIT

0 Tt

—+

a1
(Re+Dedl) " KT~ _
0 Tt

which follows from application of the Schur complement (sgaations (2.13)-(2.17)).
From theQRfactorization (3.14) we know that

o711 -1
Re+DEO)™ KT gr [ W (3.15)
0 Tk+ TkD-[I(- Tk .
V71
= {Df{/kl Tkl} (3.16)

where we assumed without loss of generality tha\gT T ] is invertible.
kg k
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Now, it can be seen that

~ -1 - -T
(Re+ D D] )2 KkT] (Re+ D] ) M2 KkT]

O Tk+ 0 Tk+
—1/2 P T 1o —
_ * — (Re+ D) ARITITT
Ty ~T/2 I
_Tk+lTk+T Kk (Rk + Dk« DD / Tk+1Tk+T
T\ 1 T Y2 T —11-T T\~ T/2
wherex = (R¢+DiZkDJ )~ + (Re+ DD ) 7 “KI T ' T T Ki (Re+ DDy )~ /%
Moreover, we have
-1 -T —1y,-T —1y,-T
Vi Vi [ eV Vo VD
Dl Tk WDl Tl DIV VT DIV D+ T T

Since both expressions are equal by the orhtogonali@, ofe obtain by equating the
bottom right elements

T T’ = T T T+DRVi 'V Dk (3.17)

which concludes the proof for Equations (3.9) and (3.10)e Pphoof for Equation
(3.12) is similar.

Next, we prove the model forwarding step. From Eq. (3.6)iit lba seen that with any
orthogonal matrixQy. 1

Si1 = QpuTeelf, 0<k<N-1 (3.18)

We compute @R factorization

T g = [Qir Quea [Skg l] (3.19)
whereQy, 1 andQy1 are orthogonal matrices arg, 1 is upper triangular. O

Theorem 3.2.6. (KKT solution using direci.DLT factor-solve methodYhe KKT
system M =r with M,§ and r as defined before (3.3) can be solved by performing
the following steps

1. Factorize M= LDL" according to Lemma 3.2.5 using the Riccati recursion
of Algorithm 6,

2. Solve IE/ =,
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3.2. Structure-exploiting algorithms for unconstraine¢i

3. Solve (D& = &'

Proof. The proof follows directly from Lemma 3.2.5 and block eliration using the
block structure irL andr. O

Similarly to the direct solution of Theorem 3.2.2 the fordlaand backward vector
solves according to Theorem 3.2.6 require invertibilitynoétricesS, for all k not
only in solving the KKT system but also in forming the first ttssidualry o which
contains%l%T. This can be avoided by using the approach of Theorem 3.2.3 bu
reformulated in terms of square-roots. More specificallg $quare-root Riccati re-
cursion of Algorithm 6 is performed, but the forward and baekd solves corrspond

to theLU factorsization in order to avoid unnecessary matrix iniers. This is pro-
posed in Theorem 3.2.7.

Theorem 3.2.7.(KKT solution using modified. DLT factor-solve method employing
square-rootsJhe KKT system 1= r with M, and r as defined before (3.3) can be
solved by performing the following steps

1. Factorize M= LDLt according to Lemma 3.2.5 using the Riccati recursion of
Algorithm 6,

2. Forward vector solve using Algorithm 7,
3. Backward vector solve using Algorithm 8.

Algorithm 7. [Square-root forward vector recursion]

1. Initialization: _
4 - [f(oxo]

o = _

—Wo

2. Fork=0,...,N—1:

/

Zo = d—Ki(RY) (Dydk + hy)

1 = T+ FkZL
Ry 1
d = l
o [_Wk+1]
If (k=N-—1)then
dv = XN
else
Rir1
d = =
o [_Wk+1]
endif.
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endfor.

3. Final time step:

/

zy = dv—Kn(RR) (Dndn +hn)
Algorithm 8. [Square-root backward vector recursion]
1. Initialization (k= N:

n o= %y
A1 = CGIRS(RS)T(Dndn +hy)

Ze— Tl Tier TR A
AL+ CURE(RE)T [Die(dk — T Tl {Aw) + i

>

T

A
o

endfor.

3. Final step (k= 0):
2 = 7T, TorZo+MjAo

A proof of Theorem 3.2.7 is now given.

Proof. The first step follows from Lemma 3.2.5.

For the second step it suffices to prove equivalence of Aflgo$ 4 and 7, which
amounts to verifying that

-1
2Dy, (Re+ DyxZkDy) = Ke(ROT.
This follows directly from the definitions dfy andliﬁ, repeated here for convenience

~ ~1/2
Re /

(Re+ DDy
Kk = ZkDy (Re+DkZkDy)

~1/2

Similarly, for the third step equivalence of Algorithms 5da8 is easily verified by
checking that

Cl(R+DEDL) " = CHR)TR

which follows from the definition oR¢. O
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AN

Figure 3.3. Visualization of the block structure in the KKT matrix and indefinite Cholesky
decomposition.

Note that only the R-factors of both the measurement update step and the time
update step are needed for the forward and backward solves. &hce the algo-

rithms can useQ-lessQRfactorizations. See Appendix B allowing a reduction in

computation time.

Remark 3. Also for the square-root Riccati method, the algorithms barsimplified
if H = 0. The adapted algorithms are given in Appendix A.

3.2.3. Structured QR factorizations

The systematic use of orthogonal transformations to faarbitrary matrices was
initiated by Givens [74] and Householder [98]. In AppendiaRorithms and flop

counts are provided for Givens and Householder methodshnduie still standard

practice due to their excellent numerical stability pra@es[22, 77]. A row-reordering

of the matrices involved in the measurement update stemd&/k to lead to compu-
tational savings in the factorizations, see standard teib,i.e. by Verhaegen and
Verduld [190] or Kailath et al [111]. Both standard and roserdered (structured)
versions have been implented in C and numerical simulagsalts are presented in
Appendix B. In the numerical examples presented in Sectibitse structured QR
methods are used in the square-root MHE algorithms.

3.3. Proof of equivalence of unconstrained MHE and the Kalman
filter/smoother

The equivalence of the Kalman filter/smoother to a weightadt-squares estimator is
well-known and is described in several papers and text hagq170], [195], [111,
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§10.6], [190, Ch. 1], [71]. However, because the derivatiantiae optimality con-

ditions (see also [146]) is crucial in showing that the mawvitorizon approximation
with the arrival cost computed from the forward recursigmsxact in the linear un-

constrained case and that MHE yields a sequence of smoathiethées and a filtered
estimate, we present the derivation in this section.

Consider the following optimization problemldt= 0

MiNgy,  3{(X0—%0) "Ry (X0 — %0) + VG Ry v},

3.20
s.t. Yo = ho+ Coxo+ Vo. ( )
The optimality conditions are
R C ] [P
Co | | = |Yo—ho|, (3.21)
I Ry [vo 0

where 1 is the vector of Lagrange multipliers corresponding to tly@adity con-
straints and represents the identity matrix of appropriate dimensions.

Block elimination yields

™ = Rovo (3.22)
Vo = Yo—ho—CoXo (3.23)
Xo = (Pyt+CJRy Co) H(Py R0+ CRy (Yo — ho)). (3.24)

The following equalities are a direct result of thatrix Inversion Lemma

(Py *+CoRyCo) ™ = Py — RuCq (Ro+ CoPuCq ) ~'CoP, (3.25)

(Po ' +Co Ry "Co) ' Ry = PuCg (Ro+CoPoCq ) ™ (3.26)
Using this and some matrix calculation the following exgies forxy can be obtained

Xo = %o+ PoCq (Ro +CoRuCd ) (Yo — ho — Co%o).- (3.27)

Note that this exactly corresponds to the Kalman filter mesament updatex0 = X,
and(Py* +C{ Ry *Co) 1 = Py (see equations (2.72) and (2.69)).

Next, consider the cagé = 1. The optimization problem now becomes

Ming oo 31 (X0 —%0) TPy (X0 — o) +Wg Qg "Wo + Vg R Vo + VI Ry v},
Yo = ho+ CoXo+ Vo,

S.t. y1  =hy+Cixg + v,
X1 = fo+ AoXo+ Gowo.

(3.28)

IMeaning that the results for all three estimators, the bastimator, MHE and the Kalman filter,
coincide.
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The recursive solution can again be obtained from the KK Thagdity conditions

Rt G A
Co |
I Ryt
Q"' G
A Go —
—1 o)
C1
I |

Ry

Xo
o
Vo
Wo
Ao
X1
m

L V1]

RigT
Yo — ho
0
0
ifo
0
y1—m
0

(3.29)

Here p and m are the vector of Lagrange multipliers corresponding tofitst two
equality constraints (measurement equations), whilis the vector of Lagrange mul-
tipliers corresponding to the last equality constrairdtgtequation).

Using the insight obtained from the casle= 0 the variablesp andvg can be elimi-

nated, yielding

[Pyt +CoRy 'Co

Q!

Go
—I

§
o
0

Ao

Block elimination of the variablesp, Ag andx; gives

I

ASC]
—ClGoQoGSC-lr |
| Ryt

Pyt +CoRy'Co
Ci1A0

Xo
Wo
Ao
X1
m

Xo
m
Vi

_Vl_

|

[Py %0+ C{Ry (Yo — o)
0

_ fo
0
y1—
0
(3.30)

y1—h1 —Csfo

Py %0+ CgRy (Yo — hO)]
0

(3.31)

We know that by constructioxy = fo+ Aoxo + Gowo, which can be rewritten with the

optimalwg = —QoG{C/ 4 as

x1 = fo+ AoXo — GoQoG{Cl .

(3.32)

Furthermore, the following definitions are introduced ic@aaance with the Kalman

filter covariance time update formula (2.69)

Py = AgPo+ Af + GoQoGy,
X1 = fo+ AoXos,

with P andxg; as defined before.
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Then, an equivalent representation of the above set of afitintonditions (3.31) is

Pt oCl X1 P %
Ct | m| = |Y1— hl . (335)
I RY w1 0

To verify that this is indeed an equivalent representabn$ start from the first block
equation of (3.31)

Poi 0+ AGCI T = Py %0+ Co Ry (Yo — ho).
with P = (Py 1+ CJRy*Co) * as before.
Left multiplication of both sides witgPy and addition offp gives

fo-+ Aoxo+ AoPo: ASCI T
= fo + AoPo [Py o + CI Ry L (yo — ho)).- (3.36)

Adding and subtractinGoQoG]C{ r we obtain for thdeft hand side of eq.(3.36)

LHS = fo+AoXo — GoQuGHCl m + GoQoG{Cl 1 + AgPo AIC] 8,
=X+ P1CI .
Where we used eq. (3.32) fgr and the definition of;.

The right hand side of eq.(3.36) can be reformulated using thiatrix Inversion
Lemma

RHS = fo+AoRy: [Py "0 +CJRy (Yo —ho)],
= f0+AO)’€0+a
= X1.
Where we used the definitionsxf,”(3.27) andx] (3.34).

Finally, left multiplication of both sides WitHPl’l gives the first block equation of
(3.35).

Block elimination applied to (3.35) leads to the solutiongguous to (3.27))
x1 = %1+ PiC{ (R+C1PIC]) L (y1 — i — City). (3.37)
This concludes the proof fod = 1.

By comparing the equivalent representations (3.31) aribj3t is seen how the in-
formation of the first time step is propagated to the nextdjej a recursive solution.
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3.3. Proof of equivalence of unconstrained MHE and the Kalfiteer/smoother

The proof forN > 1 follows by recursively applying the procedure describledee

Equivalently, it can be proven that solving the optimizatoblem (3.28) yields not
only afiltered estimate of; but also a smoothed estimate #gr To this end, consider
again the optimality conditions fo¥ = 1 written compactly as follows

Por M Xo Py Yo+
Q' & Wo | 0
A Go 0 Aol = o . (3.38)
-1 CIR ] |x CIR Y (yr—m)
The first block equation gives
Xo = %o+ — Po+ Al do. (3.39)
The second block equation gives
Wo = —QoGJ Ao. (3.40)
Plugging this into the third block equation yields
xi = fo+Adfor — AoPorAjAo — GoQuGjo, (3.41)
fo + Ag%o+ — P1Ao, (3.42)
= X1—PiAo. (3.43)
Now, since the optimat; equals the filtered estimaxe,, it follows that
Ao = PR %) (3.44)
Plugging this into eq. (3.39) gives
Xo =Ko+ + Por AGPL (81 — %), (3.45)

which is exaclty the RTS smoothed estimate (equations (2.46d (2.152) ). The
proof forN > 1 follows by recursively applying the same procedure.

Remark 4. Having proven the equivalence between kalman filteringdéhiog and
unconstrained MHE it is clear that their estimates are glbpaptimal in least-
squares sense. This again emphasizes the remarkable pragehe Kalman filter
of being a recursive solution to the optimal estimation peol. This, as mentioned
before, is attributed to the two special properties; lin@aodel and quadratic objec-
tive.
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3.4. Andlogy with Riccati methods for MPC

As discussed in Section 1.8, batch estimation or MHE problara essentially opti-
mal control problems.

Consider the following unconstrained MPC problem.

mity %+ xll3, SR %3+ [ i,

s.t. Xer1 = fk+Axx+Bruk, k=0,....N—1 (3.46)
Xo =X, k=0,...,.N—1,

with as optimization variables the state sequexee{xo,...,xn} and the input se-
quenceu = {Up,...,uy—1}. The sequences,...,Xn} and{up,...,un—_1} describe
nominal or reference trajectories for the states and insggectively.

This optimization problem leads to the following KKT system

f o0 1 ] [ % ]
-1 Mo © o0 4] rdo
® 0 -l A o1
0 -1 Ty .
= : . (3.47)
T IN-1 FdN-1
My-1 Oy, O
On 1 0 _ AN-1 IpN-1
0 —I My 1 | v | L ran |

where we defined

nk:[Qk 9}, rd‘k:{’gkxfk}, 0<k<N-1

0 R —RiUy
M= . ran=[ —Qnin |,
&= A Bc], rpx=[ -], 0<k<N-1

Note that in the literature the initial state is often elimied in the KKT system rep-
resentation, see.q.[150] or [192], since it is fixed anyway. We preferred to keke t
equations foky gndAg in, because it facilitates the comparison with the KKT syste
for MPC (3.47) and MHE (3.3).
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The KKT system (3.47) can be factorized using the followingnibined) Riccati
recursion

Vk = AlVie1Ax — AV 1Bi(Re+ BE Vi 1BK) 1B Vi 1A + Qk (3.48)

which runs backwards starting from the terminal weigkt= (5,\,. Hence, the MPC
KKT system can be solved by a backwards vector and Riccairseam followed by
a forward vector recursion. See the references [150, 188hfwe details.

By comparing (3.48) to the Kalman filter recursion for factorg the MHE KKT
system, see (2.75) or Appendix A, we find the well knadwrality relations (see also
the discussion in Section 1.8) which are summarized in Taldle

Table 3.1.Conversion table between LQR and Kalman Riccati recursions

IOR | kK [V]A[B]|] Q |RJ|On
Kalman| n—k | P | AT | CT | GQG' | R| Py,

3.5. Numerical examples

To illustrate the efficiency of the unconstrained MHE altfuris using normal or
square-root Riccati recursions and their properties, linear scaling in the hori-
zon length, we have implemented both Riccati based metimo@saind applied them
to random linear time-varying systems with dimensi¢ng ny,ny) = (5,5,2). The
square-root version employs structured QR methods (seerdip B).

Numerical results were obtained for randomly generatedioest sampled from the
standard normal distributidrand averagetiover 100 repetitions. Computing times
correspond to an Intel Core2-Duo processor at 2.13 GHz wiliB2cache and 2
GB RAM, and using the compiler gcc version 4.4.5. The resaifts presented in
Figure 3.4.

The linear scaling property is clear from the growing horizzase, while the com-
putation times are bounded for the moving horizon impleraton. For this system
with dimensiongny, nw, ny) = (5,5, 2) the computation times are all belowsdms for

horizon lengths up to 50. For the MHE version with horizon Bhpaitation times are
even below 6 ms. The square-root algorithm is slower by about a factectm-

pared to the normal algorithm. Both codes were equally aggdhi.e. unnecessary
calculations are avoided, previously computed quantdiesreused, multiplications

2Using the random number generator from GNU Scientific Lip(@SL)
3The median was used rather than the mean in order to remowsgshuriginating from processes
running in the background.
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with triangular matrices are executed efficiently, etc. @dlculations have been im-
plemented in a self-contained code, which differs from a@vipus implementation
(see [90]) where calls to BLAS and LAPACK were used for matriatrix and matrix-
vector operations and other linear algebraic computatidvks have noticed that our
implementations are faster compared to the BLAS/LAPACHscal

The increased computational complexity of the squareisomimpletely attributed to
the QR factorizations involved, which motivates our efdid develop structured QR
methods. This increased computational burden is compethbgtan increased accu-
racy and stability of the square-root version as demorestraext. Furthermore, the
square-root version is more memory efficient as it works wrigngular covariances.
This becomes apparent from Figure 3.5 where we ran into a mepmoblem. Since
the normal algorithm is more memory intensive it causes tiognam to exceed the
cache boundaries as the amount of data grows while thisteffetelayed with the
square-root algorithm.

In order to compare the accuracy of both methods, we apglieh to random linear
time-varying systems with stable system matrices,A« = mAk withc< 1, and
with ny, = ny, Gk = | andQy = |, Vk. For this case the covariance evolve®to= | or
|So| = | and the error can be readily checked.

Application to random linear time-varying systems with @insions(ny, ny,ny) =
(2,2,2) and stability factorc = 0.1 averaged over 100 repetitions yields the results
presented in Figure 3.6. Both the error in smoothed stateowdg* — x||» divided

by the horizon length and the erfon final covariance matriY{Pr — 1|2 or |||Sr| —

[]|2 with T the horizon length are computed. For this stability factmmergence to
the steady state covariance is obtained after only 1 or 2 st@ps. It can be seen
that the square-root algorithm is consistently more adetiraboth the estimates and
covariances. Note that the non-smoothness in the erroriemea evolution is due to
the time-variance of the system.

The difference in accuracy grows dramatically when largstesms are considered. In
Figure3.7 the final covariance error is presented for sysi&itin dimensionsrx,nw,ny)

= (5,5,5) and ix,nw,ny) = (10,10,5). The errors of the square-root algorithm are tw
orders in magnitude smaller compared to those of the nortgatighm.

3.6. Conclusions

TIn this chapter the problems of state estimation were pitesein an optimization
framework and connections with Kalman filtering and MPC weliseussed. It was
shown how the KKT system can be decomposed.-byand LDLT factorizations.

4The Frobenius norm was used for the covariance matrix error
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3.6. Conclusions

These decompositions yield normal and square-root Ritxzeted solution methods
for the MHE problem. The methods fully exploit the structimberent in the MHE
problem. The square-root version further exploits the swtmynin the system and
employs orthogonalization methods yielding increased erical robustness. Struc-
tured QR methods were proposed for the square-root Ricaagdmethod to reduce
its increased computation time.

The methods have been implemented in C in a fully self-capthiand optimized
code and numerical results were presented illustratindjrilear scaling with horizon
length. Computation times below®ms are obtained for order 5 time-varying sys-
tems and horizon lengths of up to 50. For the moving horizasisa computation
times below 006 ms are possible. The simulations further demonstratelieanor-
mal Riccati algorithm is faster than the square-root Ricgbrithm by about a factor
1.5. This increased computational burden of the square-resion is compensated
by a substantial increase in numerical accuracy and robsstas demonstrated by
numerical examples. The developed Riccati based solutiethads form the basis
for constrained and nonlinear MHE methods presented inath@fing chapters.
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Figure 3.4.Computation times in seconds for random linear time-vangystems and estima-
tion with growing horizon {op) and with moving horizon of lengths 1, 2, 5 and Hb{tom).
The results for the normal Riccati based algorithm are degim solid line; the results for the
square-root Riccati based algorithm in dashed line.
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Figure 3.5.Computation times in seconds for random linear time-vayygystems and estima-
tion with growing horizon. The results for the normal Riddaased algorithm are depicted in
solid line; the results for the square-root Riccati basemthm in dashed line. The normal
algorithm is more memory intensive which causes the progmexceed the cache boundaries
as the amount of data grows. The square-root algorithm &lglenore memory efficient.
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Figure 3.6. Errors for the normal Riccati based algorithm (solid linedasquare-root Ric-
cati based algorithm (dashed line) for the growing horiza@sec and system dimensions
(nx,Nw,Ny) = (2,2,2). Top panel: error in smoothed state vecdx* — x||» divided by T.
Bottom panel: error in final state covariandgPr —1 || or ||St — I||2 with T the horizon length.
It is seen that the square-root algorithm is consistentlyenaccurate.
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Figure 3.7. Error in final state covariancgPr — I||2 or |||Sr| — ]|z with T the horizon length
for the normal Riccati based algorithm and square-root &idzased algorithm for growing
horizon length. Top row: system dimensiongn,nw,ny) = (5,5,5). Bottom row: system
dimensions(ny, nw, ny) = (10,10,5). Left column: normal Riccati based algorithmRight
column: square-root Riccati based algorithm. The errors of the iggr@ot algorithm are two
orders in magnitude smaller.
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CHAPTER

Interior-point methods for MHE

In this chapter the solution of constrained MHE problems hyirdeasi-

ble start primal barrier method is addressed. Modificatiohthe normal

and square-root Riccati based methods presented in théqueehapter
are proposed yielding MHE methods which scale linearly ithh the

horizon length and the number of interior-point iterationgypically a

limited number of interior-point iterations is sufficientachieve conver-
gence as is demonstrated by numerical examples. It is shwatagood

initialisation strategy improves the performance of thgalthms. The
primal barrier method experiences a logarithmically grogyicondition

number near an active constraint, which motivates the usewére-root
methods because of their numerical accuracy.

4.1. Introduction

Riccati based solution methods for optimal control protddrave been investigated
before in the literature [10, 17, 44, 75, 80, 87, 88, 108, 11HY, 188, 192]. Almost
all of these publications focus on the control problem,M&C. The state estimation
problem, i.e. MHE, is closely related to the control problend has largely the same
optimal control structure. However, the main differencéwWIPC are that the initial
value is free and typically theontrol vector called state disturbance in MHE, has
about the same dimension as the state vector while in the MBldgm the control
vector is typically much smaller allowing an effective retion in problem dimen-
sions by eleminating the state variables.

The interior-point method presented here closely resesrthkeone for MPC problems
presented in [192] in the sense that an infeasible startgbfrarrier method is used.
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However, the method presented in [192] solves the KKT systgblock-Cholesky
decomposition which is only applicable to strictly positidefinite Hessians. In MHE
problems the Hessian is typically positive semidefinitertfr@rmore, the algorithms
presented here employ Riccati based solution methodsdéaKKiT system along the
lines of the methods presented in Chapter 3.

Riccati based methods for MHE problems have been propodedshe.g. by Tenny
et al [173] and Jorgensen et al [108]. In these works normé&hida filter recursions
were proposed to factorize the KKT system. As mentioned @vipus chapters, a
well known problem with the normal Kalman filter recursiossitis numerical sta-
bility [6, 189]. The recursions depend on the square of thed@@®mn number of the
matrices involved. When the process is well knowa, small covarianc&)y, it is
often observed that rounding errors render the state caveei matrix invalid: neg-
ative diagonal entries or otherwise loss of positive sedfiniteness. The stability
issue is even more important when these recursions areedpiplian interior-point
method, since the barrier term can have extremely largedétgrathe conditioning of
the matrices to be propagated, as shown in this chapter.

To avoid these problems, square-root Riccati based metregsoposed in this chap-
ter and are demonstrated to provide reliable estimates imtanor-point context.
Extracts of this chapter were published in [90].

4.2. Overview of interior-point methods for quadratic programming

The standard convex QP may be expressed as (see (2.49))

min, 3z'Hz+g'z
s.t.  Cz=d, (4.1)
Pz<h,

with HessianH € R™" symmetric positive semidefinite, gradiegpte R", equality
constraint€C € R™", d € R™and inequality constrainf € RP*", h € RP.

4.2.1. Primal barrier method

We will use a primal barrier method to solve the QP [29, 136he Thequality con-
straints in the QP (4.1) are replaced with a barrier term & dbjective, to get the
approximate problem

min, zZ'Hz+g'z+ k(2

st. Cz=b, (4.2)

96



Interior-point methods for MHE

wherek > 0 is a barrier parameter, arylis the log barrier associated with the in-
equality constraints, defined as

p
®(2) = 5 —log(h — p2),
2 |
wherep! denotes théth row of P. The problem (4.2) is a convex optimization prob-
lem with smooth objective and linear equality constraiatg] can be solved by New-
ton’s method.

In a basic primal barrier method, a sequence of problemseofdtm (4.2) is solved,
using Newton’s method starting from the previously compudeint, for a decreasing
sequence of values &f. As k approaches zero, the solution of (4.2) converges to a
solution of the QP (4.1).

Let us introduce a dual variablec R™ associated with the equality constraii= b.
The optimality conditions for (4.2) are then

rg=Hz+g+kP'd+CTv=0

rp=Cz—b=0 “43)

with rg the dual andp the primal residual and whe = 1/(h — p[2). The term
kPTd is the gradient ok @(z). We also have the implicit constraifz < h. The
stacked vector = [r] r7]T is called the residual. The optimality conditions for (4.2)
can then be expressedras 0.

The algorithm is initialized with & point that strictly satisfies the inequality con-
straints but need not satisfy the equality constraints. ditrary initial value can be
used forv?. This is called an infeasible-start Newton method.

An approximatez (with Pz < h) and v is computed at each step. The optimality
conditions (4.16) are linearized and primal and dual stepd\v are calculated for
whichz+ Az, v + Av yield zero residuals in the linearized approximation.

The primal and dual search directioAg and Av can be computed by solving the
following KKT system

H 4 kPT diag(d)?P CT Az ] [ rg
S PR b “9

Here the ternkP' diag(d)?P is the Hessian of the barrigmp(z) and

Having obtained this Newton step, a feasibility search ahdcktracking line search
on the norm of the residual(see, e.g., [29]) are performed. Finally, the primal and
dual variables are updater:= z+ sAzandv := v + SAv. This procedure is repeated
until the norm of the residual is below an acceptable thriesho
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4.3. Structure-exploiting interior-point methods for MHE

It can be shown that primal feasibility (i.&Cz= b) is achieved in a finite number of
steps, assuming the problem (4.2) is strictly feasible. friveal and dual variables
andv will converge to an optimal point. A typical method is to regw by a factor
T each time a solution of (4.2) is computed (within some aaoytal he total number
of Newton steps to convergence is bounded and depends ourtiteen of constraints,
the initial point2 (andv©®), the initial barrier parametet, and the reduction factor
7 [29]. However, it is observed that an accurate solution efdhiginal QP can be
obtained with a limited number of Newton steps, far less thartheoretical bound.

4.2.2. Primal-dual interior-point methods

In a standard primal-dual interior-point method the priraad dual variables are ob-
tained from the solution of two similar linear systems witffetent right hand side
corresponding to an affine scaling step and a centering stege(itering-corrector if
this step is combinete. with the popular Mehrotra’s corrector step), see [150]. The
search directions are similar but not identical to thosénefririmal barrier method. A
primal-dual method typically yields more aggressive steps(close to the bound-
aries). In practice the primal-dual methods are often femtel more reliable. It can
be shown that the linear systems to be solved for obtainiagéarch directions are
structurally identical to those of the primal barrier madhsee [29, 150]. For this
reason the interior-point methods for MHE have been deeldpr the primal barrier
method and can be extended to a primal-dual method.

4.3. Structure-exploiting interior-point methods for MHE

In this section structure-exploiting primal barrier irntgrpoint methods for solving
linear constrained MHE problems are described. Considsiaffowing general linear
constrained MHE problem

Mitcu %0430 = Kol + 31 Ik -+ Wi, 2 + I+ Cox+ Hwkl o + 1w + Ol o

Xer1 = e+ A+ Gk,  k=0,...,N—1, (4.5)
s.t. T+ T wi <ty k=0,....N—1
TKI(XN <tn

with X = {Xo,...,xn} the unknown state sequence ama= {wp,...,Wn_1} the un-
known process disturbances.

Let us first define an overall optimization variable

Z= (X0, W0, X1 ..., Wn_1,Xy) € RINFLMHNm
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Then the QP may be expressed as

min, 2z'Hz+g'z
st. Cz=b (4.6)
Pz<h

with

$'S$T+CC  CiHo

HJ Co Im-+H{J Ho
CﬁCN
~S '8 "X+ Clho
HOTho fo
g = ) b = 9
Hu_1hn-1 fn—1
4.7
C&hN ( )
AO GO —|n
C= ,
An-1 Gnor =l
Té( TaN to
P= , h= : ,
Tlil(fl Tl:lel IN-1
Tlil( (N

wherel, denotes the unit matrix of dimension

The Newton steppzandAv can be computed by solving the KKT system (4.4) for this
specific problem, which can be done efficiently using Ricbased solution methods
along the lines of the previous chapter. This is describetktail in the next section
for the different use cases: mixed linear constraintsestainstraints, disturbance
constraints and bound constraints.

4.3.1. Computing the Newton step

By rearranging the KKT system, the block diagonal structfrthe KKT matrix is
revealed (see Section 3.2). Let us write the KKT systei &s=r, with
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4.3. Structure-exploiting interior-point methods for MHE

M ] 0 T Az fa.o
T
lo 0 =Y Avo fpo
0 -Y & .
M = E=| |, r=| |, @8
Azy-g Fd,N-1
Ong N, O
MN1 0 _ Avn_1 p.N-1
L 0 -1 o Azy rd.N

whererg i (resp.rqn) denotes the dual residual associated with = (Ax], Aw] )T
(resp.Azy = Axy ), andrp denotes the primal residual associated with

We will now consider different types of constraints and presRiccati based solution
methods for the different cases.

Mixed linear constraints

Mixed linear constraintere commonly encountered in optimal control problems and
are given by

T+ T <t k=0,...,N—1

4.
T[\)](XN <tn (4.9)

For this type of constraints the Hessian of the barrier fiomchas block diagonal
structure. It can be expressed as

MTg Mo MTg Lo
LIMo  L{Lo
P diag(d)?P= | ° o : (4.10)
MMy
with
My = diag(1/(tk — TXX — T¢'wWi)) TS, O<k<N-1

Lkzdiag(l/(tk—TkXXk—TkWWk))TkW, 0<k<N-1 (4.12)
Mn = diag(1/(tn — TKI(XN))T&(.

The gradient of the barrier function is given by
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o= |MJ |1 (4.12)

wherel represents a column vector of all ones with appropriatetieng
Plugging this into the KKT system (4.8) yields
o — Py 1 +CJRy ¥Co + KM Mo CoRyHo +KkMJ Lo
O 7| HIRy™Co+KLIMo Qo1+ HJRytHo + KL Lo

o - CrR G+ kM M CY R MHK + kM Ly
g HeR "Gt kLMK Qi+ H R MH+ KL Ly |

Oy = [GIRy'Cn + kMM
e {P&l(fojfo)—C3R51ho—(P61+CER51C0)X0—A5V0—K9M]
- Qo "W —HG Ry "o — (Qp "+ HG Ry "Ho)Wo — Gg Vo + KGpug

—CIR My — CT R "G — (— Vi1 + AT Vi) — KGpxg }
r = ] B « X , ., 1<k<N-1
o {—Qk Wi — HTR My — (Q t+ HY R MHi) Wk — GLvic + Kp w,

ran = Ry — CIRy 1N + V-1 — KOy

ok = [+ A+ Giwi —Xir1], 0<k<N-—1

wheregpx, (resp.gpw,) denotes the barrier gradient associated With (resp.Aw).
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4.3. Structure-exploiting interior-point methods for MHE

Riccati based IP method A Riccati based solution method has been developed for
constrained MHE using interior-point methods. The comstsaenter the Riccati re-
cursion in the measurement update step, which is intuitiveesactive constraints can
be interpreted as measurements with very large weight (privalently, with very
small covariance).

The normal Riccati recursion is modified as follows (compaite Algorithm 1).

Set3yx = {H( } andDy = [

Ck Hy ]
Q« VKM VL]

Calculate the covariance update:

-1
R }—i—DkaDI) D2

(4.13)

_ - -1
e = (P +DIRMDK) T = — DY ([

|nik

with nix the number of inequality constraints for time step

The measurement update of the square-root recursion medifi@larly. LetTy =

{Sk W[J (note thaty = T, Ti)

G Hk
a”deL/EMk ﬁLk]
Dy T

|:Vk |nik] =[x & [(ﬁ%l } (4.14)

with F’éﬁ = (Rk—|— DkaDI)il/z andlzk = Zleﬁﬁ.

Remark 5. It can be seen that in case of mixed linear inequalities, #reegal form of
Riccati based solution is necessary whether H is zero orTius is one of the motiva-
tions for developing the algorithms for this general cas€mapter 3 and throughout
this thesis.

Note that in comparison with the previous chapter, the blogks of the matrix to be
factorized have been interchanged since this is how theseais have been imple-
mented (see Appendix B for a discussion on struct@&dactorization). These row
interchanges do not change tRéactor.

A solution method for interior-point MHE using square-ragetursions is now pre-
sented.
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Interior-point methods for MHE

Lemma 4.3.1. If the KKT matrix M (4.8) is full rank (see Lemma 3.2.4 for suffi
cient conditions), then it is symmetric indefinite and caffidotorized by an indefinite

Cholesky decomposition M LDLT with

I 1
TO+T T
Moo, S

o vstoT!

-1
TN—ZLI_+ .
MN-1Tn- 14 SN . .
L 0 -Y&© Tns

[ |n+m

|n+m

which can be recursively computed by Algorithm 9.

Proof. See proof of Lemma 3.2.5. O

Algorithm 9. [Square-root Riccati recursion for interior-point MHE]

1. Initialization: $

2. Fork=0,....N—-1

a)

Measurement update step
Let k= {Sk W[J (note thatsy = T Ti)

G Hi
andD([\/EMk \/ELk]

Compute QR-factorization:
TKDI Tk Sey—1 T
-~ = K
|:Vk } =[Q Q {(Rﬁ) k
|nik

with R = (R + DZDJ ) "% andKy = 5D Re.
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4.3. Structure-exploiting interior-point methods for MHE

b) Model forwarding step

Letly = [ A Gy ]
Compute QR-factorization:

Tk+rl = [Qk+l Qk+1} { gl}
endfor.
3. Final time step:

a) Measurement update step
Let Ty = Sy (note thatsy = T Ty)

_| &N
and Dy = L/EMN]
Compute QR-factorization:
TnDJ, T ~ .
{VNN " } " =[Qn On] [(Rﬁo)l .F'E]
|niN Nt

with ﬁﬁl = (RN + DNZNDL)71/2 and KN = ZND-I{IQIEI'

Note that the dimensions of the matrices resulting from tle@snrement update be-
comeﬁﬁ e R(P+nii) x (p+nik) ande e R(PHNi) x(n+m)

Theorem 4.3.2.(KKT solution using modified. DLT factor-solve method employing
square-rootsJhe KKT system 1= r with M, and r as defined before (4.8) can be
solved by performing the following steps

1. Factorize M= LDLT according to Lemma 4.3.1 using the Riccati recursion
of Algorithm 9,

2. Forward vector solve using Algorithm 10,

3. Backward vector solve using Algorithm 11.
Proof. See proof of Theorem 3.2.7. O

The computation of the newton step in an interior-point rodtis preceded by a
calculation of barrier Hessian and gradient and primal aurel cesiduals

rg=Hz4+g+kP'd+CTv=0

rp=Cz—b=0 (4.19)
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Hence the ternC™ v with
Ao Go —ln
C= . (4.16)
An-1 Gn-1 —ln
has been computed and can be used in the following recursimsotational con-

venience we writecy as the component a8"v corresponding to time stely that
is

o = v

Vk—
Ck = rl k|: 01:|
CN = —WN

(4.17)

The following square-root forward and backward vector rsimns can be derived for
the IP MHE case

Algorithm 10. [Square-root forward vector recursion for interior-poiMHE]

1. Initialization:

2. Fork=0,...,N—1

o — [hk+ckxk+Hka:|
“ VKeni,
Dz, = dy—Ri(RE)T(Dih+ 0k) — T Thes G
R = Tt Te(Agc+20)
o R |
dert = [VVHJ
endfor.

3. Final time step:

N = |:hN+CNXN:|
N \/EeniN

Azy = dn—Rn(RS)T(Dndn+gn) — T, T ON
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4.3. Structure-exploiting interior-point methods for MHE

Algorithm 11. [Square-root backward vector recursion for interior-poMHE]

1. Initialization (k= N):

Azy = DAz
nN = CN
Avn-1 = nn+DIRY(RY)T [Dn(dn — Ty Tan) + |

2. Fork=N-1,...,1:

Az = DZ—Td T TR
Mk = Ck+AlAY
Av_1 = nk+ DIﬁﬁ(ﬁE)T [Dk(dk — TkTTkI']k) + hk}
endfor.

3. Final step (k= 0):
D2y = Azg—T4 ToT3Avo

with Az = [Axk} .

Awy

Note that only the R factors of the QR factorizations in measurement and time
update steps are required, henc®-lessQR factorizations (see Appendix B) are
used to improve computation speeds.

Separate state and disturbance constraints

In case the inequality constraints are nikedandH = 0 the updates of states and
disturbances can be decoupled. General (linear) statéraoris are given by

Tk < i, (4.18)

with TX € R"" andty € Rk,

General (linear) disturbance constraints are given by
Tewi < s, (4.19)

with T € R"k*" ands, € R"K.
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For this type of constraints the Hessian of the barrier fiemchas block diagonal
structure. It can be expressed as

M Mo
PT diag(d)?P — Loto _ . (4.20)
| MMy
with

My = diag(l/(tk—TkXxk))TkX, 0<k<N

Ly = diag(1/(s— T"wi))TY, 0<k<N-1. (4.21)

The gradient of the barrier function is given by (4.12).

If state constraints are present afds 0 the measurement update step of the square-
root algorithm involves covariances of ordex n and reduces to

D= L/T% 'V'k]
D . .
VkSk |:i§ ) =0 & [(Rﬁgl ;ﬂ

with Re e R(PHMX(PHi) and Ky e R(PHN*N. The forward and backward vector
recursions are modified accordingly.

In case no state constrains are pregant Cy and the algorithms of Appendix A are
valid andRe € RP*P, K € RP",

If disturbance constraints are present, the disturbanctksecan be recursively up-
dated separately from the state uppdates as follows

T _ N SWy —1 W\ T
- )

w
Inlk

with RY € RN, KW € RMC™ andW. € R™M,

Wit = diY — KY(RY) TLIWE W (6 + K

wherec! is the part oftk corresponding tov.
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4.3. Structure-exploiting interior-point methods for MHE

Bound constraints

In case of bound constraints the barrier gradient is congpate

di = 1/0§™—x)
de = 1/0¢"M—x0)
Opx = dk+ - d[

(4.22)

Furthermore, the matricédy andLy are sparse. They can be constructed in two ways

e = [Gootd)]

or

Mk

ding/0)7+ @, 7

The latter version is more compact, while the first versiom&re consistent with the
general state constraint case and yields slightly simmetor updates.

For disturbance constrainisg. matriced_g, both versions are possible as well. In this
case consistency with the general constraint case is pegséar the both version and
there is no difference for the vector update.

The sparsity of these barrier term matrices is exploitedhéliound constrained ver-
sions of the algorithms.

Fixed initial state In order to be able to solve general optimal control problésee
Section 3.4), the possibility of a fixed initial state shobéhandled. When the initial
state is exactly known, its covariance becomes singulaingutarS, does not present
any problems to the algorithm for finding the Newton stepaict anyS, andS+ can
be singular in the algorithm. However, in order to compute dwal residual, which
is required by the interior-point method for performing adisearch, the objective
gradient and hessian are needed and they are infinite in €as®alar covariance of
the initial state. The problem can be circumvented throughireor modification of
the KKT system. The following constraint is added to the MH&lpem

AXg = X — Xo.

108



Interior-point methods for MHE

Let us denote byyg the dual variable associated to this constraint. Then irkik&
matrix an extra row and column are added to the top left, legadhe the following
modified KKT system:

0 Ih O ... O

In _

0 Avg | | X=X

: M Sl L r I

0
The optimal vectok is obtained as before by solving the original KKT system with
singularS and the dual variablAvg is obtained from the modified KKT system.

4.4. Numerical examples

The interior-point method presented in this chapter has l@lemented in C. The
implementation is an extension of the square-root Riccasied codes for uncon-
strained MHE presented in Chapter 3 and employ structuredr@tods (see Ap-
pendix B). All calculations have been implemented in a selftained code, which
differs from our previous implementation (see [90]) wheedisto BLAS and LA-
PACK were used for matrix-matrix and matrix-vector opevati and other linear
algebraic computations. We have experienced that thecealfained code is faster
compared to the BLAS/LAPACK calls.

Computing times correspond to an Intel Core2-Duo procestsbrl3 GHz with 2 MB
cache and 2 GB RAM, and using the compiler gcc version 4.4.5.

4.4.1. Constrained linear system

Consider the following linear discrete-time system [149]

0.99 02 0
Xk+1=|:_01 03:|Xk+|: 1]Wk, k=0,1,...
Ye=[1 =3 ]X+Vi k=0,1,...

We assumey to be zero-mean normally distributed random noise witharsze 001,
andwy = |z with z, zero-mean normally distributed random noise with unitaace.
We also assumgy to be normally distributed with zero mean and unit covareanc
We formulate the constrained estimation problem v@itk- 1, R=0.01,Py =1, and

<[8]
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Figure 4.1. Top left: First state and MHE estimates for horizon length T6p right: Second
state and MHE estimates for horizon length 10. When the nuwitiaterior-point iterations is
limited to 10 (dashed red line), the performance is still @itnidentical to the full convergent
estimator (solid black line). True states are depicted liddmue line. Bottom left: Compu-
tation times for the algorithm with limited number of itei@is (ten) and a growing horizon
(solid black line) as well as horizon 10 (dashed red lirdpttom right: Computation times
per iteration for the growing horizon case.

Simulations were performed for this example. Good perfaroeavas obtained with
Kinit = 1 and decreasing factar= 0.2. The results are shown in Figure 4.1. The top
panels show the true states and MHE estimates for horizgtHet®. When the num-
ber of interior-pointiterations is limited to 10, the penfieance is still almost identical
to the full convergent estimator. In the bottom left pan@ tomputation times are
shown for the algorithm with limited number of iterationsrf) and a growing horizon
as well as horizon 10. In the bottom right panel the compaontetimes per iteration
are shown for the growing horizon case. As expected, the otettipn times scale
linearly with the number of iterations for the interior-pbimethod. From the figures
it can be concluded that the moving horizon estimator withiZom length 10 and
limited number of iterations can be run at 1 ms per time stepkiz.
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4.4.2. Waste water treatment process

Consider a waste water treatment process, shown in FigBreWaste water enters
the equalizing tank which is designed to equalize concgatrdluctuations of the

incoming wastewater and to attenuate the effects of flowesyrg. due to a batch

processing facility, on the treatment tanks. The contehte@equalization tank are
continuously stirred.

In the primary sedimentation stage, the sludge settlesevgndase and oils rise to the
surface and are skimmed off. Secondary treatment is destgrseibstantially degrade
the biological content of the sewage which are derived froman waste, food waste,
soaps and detergent.

Tertiary treatment removes stubborn contaminants thairskry treatment was not
able to clean up. Wastewater effluent becomes even clearnhisitreatment pro-

cess through the use of stronger and more advanced treasystaims. All tanks are
continuously stirred.

Now suppose there is a leak in the process and our goal is ¢éztdet location and
magnitude. The example is taken from [146]. The processssri®d by the follow-
ing linear model

0.89168 O 0 0 10
0.10832 090518 0 004306 O
X1 = 0 009482 089524 0 0 | Xt
0 0 010476 089235 O
0 0 0 0 0
1 0 0 0 O
0O -1 0 0 O
0 0 -1 0 0 |w
0O 0 0 -1 0
O 0 0 0 -1
100 0 0
01000
Ww=|0 0 1 0 Ofx+Vv
00010
00001

T .
Here the state vector represerts- [ My M M Mg Mpy } with mp the mass
in the equalizing tankm, the mass of waste water entering the equalizing tank and
m; the mass in treatment tamk= 1, 2, 3.

Suppose the masses are measured with error covariance

R = diag(8 8 8 8 4)
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The leak is located in treatment tank 2. The leak is modeltedia= |z| with z a
normally distributed random variable with error covarianc

Q = diag(0 0 5 0 15)
As the location of the leak is unknown, the estimator is desibwith

Q = dag(5 5 5 5 15)

In order to satisfy the mass balances, the constraints 0 andwy > 0 are added:
tanks have positive mass and mass is only lost through a leak.

Mean losses are represented in Table 4.1. It can be seendtratHE and the
Kalman filter are able to detect the leak in treatment tank@the resulting waste
losses entering the equalizing tank as one would expec}.[WBen there is no leak,
the Kalman filter would predict a net addition of mass to thktprocess, which is
physically impossible.

The state constraints do not add much information, but theidiance constraints do.
The results are Figures 4.4 to 4.13. As can be seen from tiphgend from the mean
squared errors, represented in Table 4.2, MHE is clearlypéter estimator.

Computation times are shown in Figure 4.2 for MHE with honzaf 10. For this
horizon length high estimation accuracy was obtained andcad® of the interior-
point algorithm yields computation times of5lms. Hence, for this problem size the
estimator can be run at almost 1 kHz on a standard computer.

Table 4.1.Mean losses - MHE and Kalman filter estimates.

mean losses
equal. Tank Tank1l Tank2 Tank3 Waste
Actual 0 0 17514 0 32396
MHE 0.2909 02959 10198 03069 30795
Kalman filter —0.1818 -0.0189 15709 01533 30466

Table 4.2.Mean squared errors for state estimates.

X1 X2 X3 X4 X5
MHE 24619 19164 48446 13962 08280
Kalman filter 28675 25624 54899 21047 08921
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Figure 4.2. Computation times in seconds for the waste water treatmeftigm and MHE
with horizon of 10.

4.4.3. A hot-starting strategy

In MHE similar optimal control problems are solved repeftedrherefore, it is a
reasonable assumption that the solution of an MHE problembesshifted one time
step forward to yield a good starting point for the next MHBIgem. Unfortunately,
as pointed out in [150], in interior-point methods it is leetto use a starting point
away from the boundary (a strictly feasible point). Moredfieally we recall that
in interior-point methods a sequence of problems of the f#) is solved for de-
creasingk, however if we shift from one MHE problem to the next, we stariew
optimization problem, i.e. witlk = kinit. Hence it turns out that the solution to the
previous MHE problem (i.e. with smak) is not always a good initialization. The
procedure we suggest here, illustrated in Figure 4.4.3, $olve a sequence of prob-
lems for decreasing until reasonable accuracy is obtained, but use the solofitre
problem withk = Kinit as an initialization for the next time step. Note that, aspexd
out in [192], the particular value it turns out not to matter much; any value over
a wide range seems to give good results. In both cases we dihiftothe trajectory,
but instead omit the first time point and use the model withra gtate disturbance to
simulate a new final state, since this typically yields betteults than a shift provided
that the constraints do not change from one problem to thé iégure 4.15 shows
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Waste

Treatment, Treatment, Treatment,
Tank #1 Tank #3 Tank #3
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5 sl I A il B Bl & 2 Bl )

=0

Leak i
Eflnent

Figure 4.3. Detection of a leak in a waste water treatment process (fram [R46]). Top:
lllustration of the connected tanks procesBottom: Aerial photograph of a typical waste
water treatment plant.

the results for the waste water treatment problem over 506 steps and MHE with
horizon 10.kjnjt = 0.01 and decreasing factor= 0.9. When the number of iterations
is limited, the hot-starting strategy yields a slight bunsibent improvement com-
pared to initialization using the solution of the previoimsd step. For comparison the
results with initialization at zero in every time steg. no hot-starting, are depicted
as well. From this, it is clear that a smart re-use of infoiprafrom the previous
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Figure 4.4.Disturbance estimates in the equalizing tank.
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Figure 4.5.Disturbance estimates in treatment tank 1.
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4.4. Numerical examples
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Figure 4.6.Disturbance estimates in treatment tank 2.
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Figure 4.7.Disturbance estimates in treatment tank 3.
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time step allows a significant reduction in the number otiti®ins to convergence, or
equivalently, in computation time.
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Figure 4.14. lllustration of the hot starting procedure. Solve a seqeeofproblems with
decreasing, starting withki,it, until reasonable accuracy. Use the solution of the problem
with Kinit @s an initialization for the next time step.
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Figure 4.15. Left: Mean squared error between the true constrained solutidrirensolution
for a fixed number of iterations initialized by shifting theepious solution (solid line) versus
the hot-starting strategy (dashed lin®ight: Mean squared error for initialization at zero (no
shift). The plots were generated for the leak detection lprabwith 500 time steps and MHE
with horizon 10.

4.4.4. Numerical conditioning

In order to analyse the numerical conditioning of the squad and the normal Ric-
cati method, we applied them to the waste water treatmertigmofor ki, = 0.01
and decreasing factar= 0.9 and for a fixedk = 0.01. The top panels in Figure 4.16
show the condition number of a matrix involved in the measweet update for a state
with an actively constrained component. For the normal &icoethod the condition
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number of the following matrix is depicted

({R“ Imk] + DkszI) (4.25)

which needs to be inverted (see Eq.(4.13)), or in practi¢easorized and its factors
are applied. For the square-root method, the condition reurob

Dy Tk
{vk ] ; (4.26)
|nik

is depicted. Which is the matrix that is factorized in the sweament update of the
square-root method (see Eq.(4.14)). The bottom panelgur&i4.16 show the loga-
rithmic growth of the condition number of the square-roatriga HessiarMy. In case
of a decreasing barrier parameter, the effect is slightlpliiad. For a decreasing
the algorithm converges in 10 iterations while for a fixedonvergence is achieved in
14 iterations. It can be seen from Figure 4.16 that the cmditumber for the typcial
matrix in the square-root method is the square of the oneémtirmal method, as
expected. This motivates the use of the square-root Riogatthod in the context of
(primal barrier) interior point methods.

The same problems of numerical conditions are also obsémtkd method of weight-
ing for constrained least-squares (see [22, 77]). In thée dais recommended to use
row and column permutations in the factorization proce&.[Zor most problems
it is sufficient to initially order the rows with potentiallarge terms first as done in
the proposed row-reordering for the measurement updatbodgh Van Loan [187]
shows on certain contrived examples that this is not alwafgficent, we have not
experienced any problems in our implementations.

4.5. Conclusions

In this chapter Riccati based solutions for constrained Misthg a primal barrier
interior-point method were presented. It was demonstriatedthe barrier terms en-
ter in the measurement update step of the recursion andragrstcan be interpreted
asperfect measurement3 he square-root algorithm exploits both the structure and
the symmetry in the problems and employs structured QR ndsthbthe core. Sev-
eral types of constraints were considered: mixed or sepaganeral or bound con-
straints. A hot-starting strategy was presented which gladowproved performance

in the first iterations. The use of square-root Riccati mdthwithin an interior-point
method could be strongly motivated by the fact that the dosrdnumber of the matri-
ces involved in the factorization typically grow logaritically. A C implementation
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Figure 4.16.Logarithmic growth of the numerical conditioning in furmti of the iteration num-
ber for a state with actively constrained componerifigsp row: Evolution condition number
of a matrix involved in the measurement update of the squ@oe{solid) and normal Riccati

method (dashed), for a fixed barrier paramé¢left) and a decreasing barrier paramdtéght) .

Bottom row: Inverse barrier parameter (dashed) and evolution of theition number of the
square-root of the barrier hessian (solid), for a fixed leanparametefleft) and a decreasing

barrier parametefright) .

demonstrated the performance of the square-root algorithmvas shown by nu-
merical examples that the method can be run in the milisecange on a standard

computer for moderate horizons.
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CHAPTER

Active-set methods for MHE

In this chapter active-set strategies are proposed for thaten of con-
strained MHE problems. In particular a Schur complemenivacset
method is presented. The method uses as the starting peininton-
strained MHE solution which can be computed efficiently gigticcati
based algorithms as discussed in Chapter 3 and allows nheiltipdates
to the active set per iteration. These properties are désérdor MHE
since only a small number of inequality constraints is exgeto be ac-
tive at the solution. The proposed active-set method iegotlie solu-
tion of reduced non-negativity constrained QPs in the wuglkset null
space. For this, a gradient-projection method using prtgedcNewton
steps and Cholesky factorizations is proposed. Cholesttgitep are em-
ployed in the projected Newton iterations. Once a solutiptié reduced
QP is found, it is used to update primal and dual variablesigs Schur
complement technigue. Between (outer) active set iteratioe reduced
Hessian changes by adding some constraints to the workingrsese
changes are exploited by a Cholesky downdate. Applicatian® im-
plementation of the method to several numerical exampleasits ex-
cellent performance on typical MHE problems.

5.1. Introduction

Albuquerque and Biegler [3] first proposed a structure-eitjplg algorithm for MHE

which scales linearly in the horizon length. They applied/jgetof condensing in
which thecontrolsand multipliers are eliminated and the reduced QP is fortedla
and solved in the state space. By construction this apprshaohld have a strong
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5.1. Introduction

relation with Riccati recursion, although the proposedé&thm does not explicitly
employ a Riccati recursion. Riccati based methods for MH&bfgms have been
proposed beforege.g. by Tenny et al [173] and Jorgensen et al [108]. Typically,
normal Riccati (Kalman filter) recursions are proposed toesthe KKT system. A
structure-exploiting interior-point MHE method using sge-root was presented in
[90].

Active-set methods for quadratic programming can be diassinto primal feasible
or dual feasible methods. In primal feasible methods, a Phase ulagicn to find
an feasible initial point is typically required. Subseqtgrconstraints are added or
deleted in order to reduce the objective while maintainingnpl feasiblity. Upon
convergence, dual feasibility is obtained. Dual methodshe other hand start with
a dual feasible point, which usually can be computed che@olyPhase 1), and main-
tain dual feasibility during subsequent QP iteratio@®0PT [140] is a primal fea-
sible active-set method which uses the null-space approéichaintains a dense
Cholesky factorization of the reduced HessiQPKWIK [161] is a dual feasible active-
set method based on the famous method of Goldfarb and Idr@hiBothQPOPT and
QPKWIK are dense methods and both require a positive definite HesSizerefore,
they are not directly suitable for MHE problems.

A primal Schur complement active-set method, cafledurQP, was presented by Gill
et al [70]. This method applies the Schur complement foryegbange in the working
set which can be addition or removal of one constraint. A @&aiur complement
active-set method, callegPSchur, was presented by Bartlett et al [10, 11]. It allows
structure exploitation in the KKT system matrices and isliaplpo MPC problems.
The method, however, still requires a positive definite iéesand proceeds by adding
or deleting one constraint at a time as usual in active-sétoas.

Axehill and Hansson [7, 8] have presented a dual active-s¢hod for MPC which
uses gradient projection. In their algorithm the two stepcpdure, comprising a
Cauchy point calculation and a Newton direction computatie directly applied to
the dual MPC problem. Inequalities are discarded in the @ayoint calculation
and (forward) normal Riccati recursions are used in thequtejd Newton step. Their
method permits multiple active-set changes per iteratiequires few QP iterations
and is shown to perform very well on several linear and hyMRIC examples.

In this chapter, we present a Schur complement active-stétadédailored to MHE
problems. The method inherits properties from both prinmal dual methods. The
algorithm is motivated by two observations: (1) theconstrainedMHE problem, i.e.
discarding inequalities, can be solved very efficientiyngdRiccati recursions and (2)
in MHE only a small number of inequality constraints is exigeldo be active at the
solution. Therefore, the method uses the unconstrained BiiEion as the starting
point and solves a number of QPs in the reduced space of wpskinconstraints until
the active set is determined. The method allows multiply@etet changes per itera-
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tion and typically converges in a few iterations. For theamstrained MHE solution,
a Riccati based method using square-roots is proposed velimivs fast computa-
tion of the QP matrices. The underlying QPs are non-neggatieinstrained quadratic
problems for which a gradient projection method using prtgd Newton steps is
presented Modified Cholesky factorizations are suggested for solving the QA KK
systems and subsequent changes are exploited by Choleskydtes and updates
at the level of outer and inner active set iterations. Thehoetears resemblances
with the method for MPC by Axehill et al [7, 8], but differs ihé following: (1) it

is specifically designed for MHE, (2) it uses the unconsedisolution, hence empty
initial working set, as a starting point, which can be mathfor MHE, (3) it pro-
ceeds by adding sets of constraints per iteration and @ntrare only removed upon
convergence, inactive constraints are automaticallygassi multipliers equal to zero
(4) by using Cholesky factorizations for the solution of erging KKT systems and
updating factorizations at both the lower and higher leirei€r and outer active set
iterations), the efficiency is maximized.

5.2. Overview of active-set methods for quadratic programming

In this section, we give a brief introduction to standardvasset methods.

Unlike for interior-point methods, no polynomial bound dretcomplexity of the
active-set method can be given. In fact, active-set metbhaddisplay exponential-
time behavior on certain problems [115]. However, in peethey can outperform
interior-point methods on many problems and the numbeegdiitons required is typ-
ically a small polynomial function of the dimension [198h& key successs factor for
active-set methods is a good warm starting strategy, shmeaumber of iterations to
reach the optimum is greatly influenced by the initial wotkset. In a typical active-
set method, one constraint is added or deleted from the wgsdet per iteration. Even
when there is more than one blocking constraint. For exanifpleconstraints in the
initial working set are inactive at the solution, at lebgerations are required to con-
verge. More thamhiterations may be required if constraints are added dutargiions
but removed later.

The standard convex QP may be expressed as (see (2.49))
min, 1z'Hz+g'z
st Cz=d, (5.1)
Pz<h,

with HessianH € R™" symmetric positive semidefinite, gradiegte R", equality
constraintC € R™", d € R™ and inequality constrain® € RP*", h € RP.
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5.2. Overview of active-set methods for quadratic programgm

5.2.1. Solving equality constrained QPs

Standard active-set methods proceed by adding or deletingt@ints. Therefore,
factorization updates for the KKT matrix are typically eoypéd and are crucial to the
efficiency of the active-set method. Here, we briefly introelthe three most popular
approaches to factorize and update the KKT matrix.

The direct factor-solve method

One approach to solving the equality constrained QP is ttoifae the full KKT
matrix and solve the following KKT system using the factors

EHIEIEE!

HereC, d_represent the equality constrairfisd augmented with the working set of
active inequality constraintg,h; for i € W. Since the KKT matrix is indefinite,
the Cholesky factorization cannot be us&R or LU factorization can be used, but
in order to exploit the symmetry thieDLT or indefinite Cholesky decompositii
typically used,i.e. M= PLDLTP'. The direct factor-solve method using indefinite
Cholesky can be effective on some problems. However, if tK& Kystem is sparse
then this sparsity might be destroyed in thactor unless the permutation matrix can
be chosen by prior knowledge of the KKT structure. In factiheonstrained MHE
problem is an equality constrained QP and the square-rauaRibased MHE algo-
rithm formalized in Theorem 3.2.6 follows exactly from aetit factor-solve method
using prior knowledge of the KKT structure to construct aisture-preserving fac-
torization. WherH andC are large and sparse, the KKT system may also be solved
using a sparse symmetric linear solver such as MA27 [50] oBVIf51].

Range-space method
In the range-space method, the Hessian is used to elimimaf@imal direction

CH'C"™A = CHlg—d. (5.3)

This assumes that the Hessian is strictly positive defihitege that this is not the case
for typical MHE problems.

Afterwards, the primal variables are recovered from the gadables

HAz = C'A—g. (5.4)
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The range-space method works well if the Hessian is easyéotiand the number of
equality constraints is smallg. yielding an effictive data compression 61 ~1CT.

Null-space method

The null-space method allows a positive semi-definite Hesdt builds on the obser-
vation that any vector can be decomposed in two orthogomtd pa

Az = YAz +NAzy, (5.5)

whereN € R™ ("~ is the null-space matrix andis any matrix such that Y N |
is nonsingular. By substituting this decomposition inte KKT system, the following
equations are obtained

CYdz = d, (5.6)
HYAz +HNAzZy—C'A = —g. (5.7)

Multiplying the second equation by yields
N'THNAzy = —NT(HYAz +g). (5.8)

This system with reduced HessiBRHNAzy € R("™™* (=M i5 always positive defi-
nite and can be solved using Cholesky decomposition. THespate method works
well when the number of degrees of freedam mis small.

5.2.2. Primal active-set methods

Primal active-set methods start with finding a feasibleainierate. If a (good) feasible
initial point is not immediately available, it can be comgdiby solving a feasibility
problem (typically an LP), which is termedhase | Afterwards, equality constrained
QP are solved iteratively in which the original equality staints are complemented
with the inequality constraints in theorking set(equation (5.2)). 1Az £ 0, then the
objective function is decreased along this search diractithe goal is to select the
largest possible step, 0 < a < 1, that does not violate the constraints.

_plZ
a=min( 1, min w . (5.9
pfaz-0 Py Az

where | denotes the active set iteration index. A constraint whaidersa < 1 is
called ablocking constraintlf there is a blocking constraint, it is added to the working
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set. If not, then a full step is taken= 1 and the working set is left unchanged. Next,
optimality is checked. If there are negative multiplietsen the constraint with most
negative multiplier is removed from the working set and ttezation is repeated.
Hence, in every iteration primal feasibility is maintaindalal feasibility is obtained
upon convergence.

There is flexibility in the choice of initial working set anéeh initial choice leads
to a different iteration sequence. If it is possible to obimigood choice of the initial
working set from prior knowledge of the QP, then a substreuction in the number
of active-set iterations can be achieved.

5.2.3. Dual active-set methods

In the dual approach, a dual feasible initial iterate is regiwhich is usually com-
puted cheaply. Hence a Phase | is avoided, which is the mativation for dual
active-set methods. More specifically, the following ialization is dual feasible

= 7H*lg
0
=0

TSN

wherey represents the multipliers for the inequalities in the vilogkset.

We give a short description of the famous dual active-setoteby Goldfarb and

Idnani [76], which is applicable to strictly convex QPs. Axtension to convex QPs
was given by Boland [26]. At every iteration in a dual actset-method, a violated
constraint is selected to be added to the working set. Leeunsté this constraint as
g. Then the step directions for the primal and dual variabteslatermined as follows

Az = [H7ICT(CHICT) "CH—H™| pf, (5.10)

-1

AN = —(CH'CT) "CH'p. (5.11)

Note that these step directions are very similar to the raspgee approach (equations
(5.3) and (5.4)).

Theprimal-dual step lengtlt is chosen such that constragbecomes active (primal
feasible), but small enough to maintain dual feasibility.

T = min {rp”ma', rd”a'} , (5.12)
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with
primal ® ifAz=0
tPimal — & T by . (5.13)
quAZ otherwise
]
1448 — min _/\—W||AAi>0 : (5.14)
iew | QA

If the primal step directio\z is non-zero, a primal-dual step is taken. There are
two possibilities. Ift = tP™™al 3 full primal step is taken and constraipts added

to the working set. Ift = r9a only a partial step can be taken, since the blocking
constraint determined by (5.14) must be dropped from theingrset. If theAz= 0,
constraintg cannot be be satisfied simultaneously with all other coimgan the
working set. Therefore, no primal step is taken. A partialdiep is taken, provided
9 < o0, such that one constraint can be removed from the workingrsease such

a constraint cannot be found, the QP is infeasible. Oncelatip can be taken, a
new violated constraint is selected and added to the woidéh@nd the procedure is
repeated. If there are no violated constraints, the algorguccessfully terminates.

Summarizing, in a dual active-set method, the KKT matrixpslated as constraints
are added or removed from the working set and the dual okgeétinction is iter-
atively increased while maintaining dual feasibility. Takgorithm terminates at a
primal feasible point.

5.2.4. gpOASES - an online active-set strategy

Ferreau et al [56, 57] have developed an online active-ssegly which is extremely
useful for parameterized successive QPs as it employs atepspath from one QP
to the next thereby allowing warm starting without a phas€he original method
[56] uses a null-space method for solving the equality cainstéd QPs. An open-
source implementation of the method is available under tmeenqpOASES [55].
The method cannot be strictly classified as either primaluai.d

5.3. A Schur-complement active-set method for MHE

The main motivation for the proposed algorithm is that theanstrained problem,
i.e. discarding inequalities, can be solved very efficie(@hapter 3) and that in MHE
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only a small number of inequality constraints is expecteblda@ctive at the solution.
The latter is due to the stochastic nature of the estimatioblpm: different obser-

vation sequences will yield (slightly) different solut@mhich prevents that certain
inequalities are always active. Constraints are often iyewided to avoid divergence
or convergence to far-off local optima.

5.3.1. Outline of the active-set method

Let us recapture the standard QP formulation (5.1)

min, 3z'Hz+g'z
s.t. Cz=d,
Pz<h,

which represents a linear constrained MHE problem if thénogition variables are
defined as
7= (XO;WO7X1 - 1WN717XN) c R(N+1)n+Nm-

and the matrices are composed as follows

$'S +GG  CHo

B Hg Co Im-+H{J Ho
ClCn
-$'S% " X+Cgho
HOTho fo
g = 9 b = : )
Hy_1hn-1 N1
A
Clhn (5.15)
AO GO —In
C= ;
An-1 Gnor =i
Té( TaN to
P— Ch=| |,
Tlil(fl T&H IN-1
Tlil( N

wherel,, denotes the unit matrix of dimension
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Furthermore, let us introduce multiplielsc R™ associated with the equality con-
straintCz= b and multipliersy € R"r associated with the inequality constraiRts< h.

We denote thé-th row of the inequality constraints g8 z < h and say that this
constraint i|activeatz if piTzo = h; holds. Active-set algorithms search iteratively for
the binding set or set of active constraints at optimalityeVery iteration a working
setis keptl C {1,...,np}.

Then the KKT optimality conditions for QP (5.1) are given lsg¢ Chapter 2):
Hz+g+C"A +3icaplyi =0
Cz—b =0,
Pz—h <0, (5.16)

y >0,
vi(pfz—h) =0, ieA

The dual problem of QP (5.1) is

maxy -—3z'Hz+y'b

s.t. Cz=d,
Hz+g=PTy, o
y >0,
or, equivalently
max-o min, 3z"Hz+g"z+y"(phz—ha) (5.18)

st. Cz=h,

A solution for the equality constrained problem, discagdinequalities, is found by
solving the KKT system

KE=r, (5.19)

with
o[t S [- [

Now, for the definitions (5.15), this corresponds to theonstrained MHE problem
and we have presented in Chapter 3 efficient Riccati baseldanefor this problem.
The active-set method we propose here, uses the uncomstisiHE solution as a
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starting point. Next, if there are violated inequality ctsagts, they are added to the
working setl C {1,...,np}. A solution to the equality constrained QP

min, 1z'Hz+g'z
s.t. Cz=hb, (5.21)

prz<hy,

can then be obtained by a Schur complement technique.

Proposition 5.3.1. Under the conditions of Lemma 3.2.4, the KKT matrix K is itver
ible.

Proof. See Lemma 3.2.4. O

Let us define/T = [p!  0]. Then our aim is to findZ"™®¥,A"®") such that the in-
equality constraints are satisfied, or

T znew
VT Snew| <7 - (5.22)

By projecting onto the space of active constraints the falhg reduced QP is obtained

min, Zy"My+cTy

st y>0, (5.23)
with

M = V(K1) (5.24)

c = V' [Aﬂm]. (5.25)

, , K
Note thatM is the Schur complement &f in the KKT matrix {VT O} :

Proposition 5.3.2. The reduced Hessian M VTK~1V is positive semidefinite.
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Proof. First, note thatV exists by Proposition 5.3.1. SubstitifeandK from their
definitions (5.19) resp. (5.22)

H ¢ 'ps
= [pT? , 5.26
M = [p] o][c 0] M (5.26)
with H symmetric positive semidefinite. The proof is giverj139]. O

Corollary 5.3.3. As a consequence of Proposition 5.3.2 the reduced QP is xonve

After a solution of the reduced QP is obtained, the uncom&thMHE solution can
be expanded using a Schur complement technique as follows

[Aznvvvv] = m — (K™V)y. (5.27)

Lemma 5.3.4.Given a pair(z,A) and a working set defined by matriX\= [p! 0]
and vector h, the solution of the reduced QP (5.23) and Schur complenesrior
update (5.27) yield a paifz"", A"") with "¢V satisfying the inequality constraints
in the working set and corresponding multipliers y

Proof. The KKT conditions of the reduced QP (5.23) are

My+c—pu =0,

y >0,
p >0, (5.28)
Vil =0.
From the first equation we can elimingteleading to
My+c >0,
y >0, , (5.29)

yi(My+C)i :07
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By substitutingM andc from their definition, we get for the first equation
Tr-1 T[?2 h
V'K Vy-V 0 +h; >0,

& -VT( K%] —K~Vy) > —hy,

ew

z"
VT [)\new] <hy,

= p;z”ewg h],

which yields the following equivalent set of KKT conditiofts the reduced QP

przrew <hy,
y >0, (5.30)
yi(p-Tz”e""—hi) =0.

Hence, the solution of the reduced QP gives ¥4 which satisfies the inequalities
in the working set and corresponding multipligrs O

Next, the new solution is checked with the inequalities.hBre are (other) violated
inequalities, they are added to the working set and the pireeis repeated. The
procedure is summarized in Algorihtm 12. Convergence oétberithm is formalized
by Theorem 5.3.5. Figure 5.1 represents a flowchart of thpqeed algorithm.

It is important to note that the working set is growing andciing constraints are
only removed from the working set upon convergence, simplyclbecking which
constraints have multipliers equal to zero. This strategygnts cycling.

Algorithm 12. [Active-set Schur-complement method]

1. Initialize iteration counter j= 0, working set/ = 0 and compute the uncon-
strained solution

KR

2. Add the violated inequalities tb

I=T1uU{ilpfz>h}
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Compute
(2°N°)
Update
(z.\)
I Y

Are there
violated
constraints?

yes

Add violated
constraints to
working set

Remove inactive
constraints from
working set

'

Set up and
solve reduced
QP

Figure 5.1. Flowchart for the Schur-complement active-set method.

DefineV = [pl  0]. Then we want to findZ"*¥, A"®") such that

sew
VT L\ new] <h;

Define
M :VT(K*1V)
cC = vl |:;00:| +h;

3. Solve the reduced QP

miny, 3y"My+cTy
s.t. y>0

terminate

which yields the multipliers for inequalities (5.22).
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4. Expand the solution using a Schur complement technique
Zew zO B
|:Anew] = |:)\O] —(K lv)y

5. Verify that 2°V satisfies all other inequalities. If so, go to step 6. If not,
increase the iteration counter<- j + 1 and go to step 2.

6. Solution obtained. Drop all inactive inequalities, ivéith multipliers equal to
zero. This gives the set of active constraisfgnd corresponding components
of the constraint matrix and vectompha.

Theorem 5.3.5. After termination of the algorithm all KKT conditions of theginal
QP (5.1) are satisfied.

Proof. To verify this, let us denote theonzerovalues ofy asy*. Then the KKT
conditions for QP (5.1) are given as

[V}f'{ \ﬂ Ef*] N M ! (5.31)

or after substituting< andr

H CT P\ [Z —g
C 0 O||[Al=|b]. (5.32)
PL 0 0] Ly ha

Which is equivalent to (5.16), g.e.d. O

Furthermore, from the following equation

[ﬂ - [ﬁ] _ KW,y (5.33)

it is clear how the constrained solution relates touheonstrainedolution.

Note the difference with a classical (primal) active-sehi@ecomplement method
which typically starts with a guess for the active §eh (without solving the un-
constrained system), solves a KKT system of the form

ERSIEEER
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and then iteratively adds violated inequalities, one atreetiand updates the KKT
solutions. If there are many active constraints, this appihaequires many iterations
which can be time consuming. The proposed Schur complenséweaset method on

the other hand allows larger working set updates in eversgtiten.

5.3.2. MHE solution using Riccati recursions

The unconstrained MHE solution can be obtained efficierglpginormal or square-
root Riccati recursions as described in detail in Chapteft8se methods comprise
of a forward matrix recursion, which factorizes the KKT niatrcombined with a
forward vector solve followed by a backward vector solvee filormal Riccati method
essentially factorizes the KKT system asldh factorization (Lemma 3.2.1), while
the square-root Riccati method representd Bh" factorization (Lemma 3.2.5). A
square-root version using structur@i-factorizations was shown to exhibit excellent
numerical robustness properties (see Chapter 3). These MeétRods scale linearly
with the horizon length.

5.3.3. Forward and backward vector solves

In order to calculated the Schur complement mai(5.24), we need to solué~1V.
Fortunately, from the Riccati based solution of the unc@ised MHE problem we
already have a factorization & 1. If the square-root Riccati method is employed it
is given as

Kl=L"TD L (5.34)

Recall thatD = blkdiag (In+m, —In, - - -, In+m, —In, In), henceD~* = D.

Thus, to comput® T (K~1V), we need to solve
LX =V, (5.35)

change the sign of the componentsdrassociated with the multipliers (let us denote
it X1), and left-multiply with the originak ™.

Equation (5.35) can be solved using direct forward solvegleying square-root fac-
tors (see Theorem 3.2.6). Furthermore, note thdtas special structure. It only
contains non-zeros at the locations of the violated coimétraT herefore, only partial
forward solves are needed starting at the location of thetcaimt violation, which
further reduces the computation times.
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After obtaining the reduced QP solutignthe primal and dual variables are updated
using equation (5.27). Here, we need to comptéVy. This is done by multiplying
the already obtained; = DL~V with y which yields a vector. And apply one
direct backsolve (see Theorem 3.2.6).

For comparison, the dual active-set algorithm for MPC by Wilkeet al [7, 8] which
applies gradient projection to the dual MPC problem and egsph (forward) nor-
mal Riccati recursion requires one partial forward solvd ane backward solve per
active-set change. The latter is avoided in our algorithnthgySchur complement
expansion.

5.3.4. Gradient projection method

Notice the special form of the reduced QP (5.23): only nogatigity constraints and

no equalities. Several methods exist for solving thesestygpeptimization problems.

We propose a gradient projection method which is designedake rapid changes
to the active set allows to exploit the factorizations adye@omputed in previous

iterations at the highest and lowest level by Cholesky ugglathe method was also
adapted to work on semidefinite matrices.

The gradient projection is described in detail below and ezaspared with two other
QP methods: gpOASES, an open-source C++ implementationeobmline active
set strategy developed by Ferreau et al [56, 57], and a pitiaaler interior-point
method. The reduced QP is indeed also an ideal case for alfyémger interior-point
method, since any point in the positive orthant is a validistg point. Hence, a Phase
I can be omitted. With suitable values for the initial barparameter and descreasing
factor, we observed that the algorithm typically converafsr only 10-20 iterations.
Unfortunately, factorizations cannot (easily) be re-uisetthe interior-point method.

The presentation of the gradient projection method is Igrgessummary of the ones
presented in [136] and [7]. The gradient projection methakists of two stages, see
Figure 5.2. In the first stage, the Cauchy poinis computed by searching along a
piecewise linear path starting from the current iteratdnangteepest descent direction.
The working set is then defined as the set of active conssrainthe Cauchy point.
By this stage, global convergence of the gradient projeatiethod is guaranteed.
However, the convergence rate can be improved by addingandestep in which a
QP in the subspace defined by the working set is solved appetgly.
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Figure 5.2.The figure illustrates that it is not sufficient to project tieconstrained minimizer

in order to solve the non-negativity constrained QP. Thaaanlines of the quadratic objec-
tive are plotted in gray. The constrained solution is dethate The unconstrained minimizer

is denotedx, and its projection is denoted. The gradient projection method first computes
the Cauchy poink. by searching along a piecewise linear path starting fronctiveent iter-

ate in the steepest descent directtg This step guarantees global convergence. Next, the
convergence rate is improve@. by a projected Newton step. The gradient projection method
converges in two iterations for this example.

Cauchy point computation

For the non-negativity constrained QP (5.23), the pieceVugar path from the cur-
rent pointxX in the steepest descent directipiis given by

X(t) = [X+tp] (5.36)

where the scalarr parametrizes the path and where the projection onto theiymsi
orthant is defined as

The Cauchy point is then computed as the first local minimifer univariate piece-
wise quadratic function. To find this minimizer, the breakp® are computed, and
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then each of the line segments is examined seperately untitianizer is found. The
breakpoints are given explicitly as [7, 136]

i«
ﬁ{ﬁv pi <0 (5.38)

The components of(t) can then be expressed as

‘ _
X, t<
%(1) { 0 otherwise (5-39)

)

Duplicate values and zeros have to be removed and the rergaralues are sorted
into an ordered set such thatOt; <t < ... <tf. On each interval0,ty], [t1,t2],
..,[ti—1,ts], the objective function is quadratic and can be optimizealyaitally if
the upper and lower bounds are temporarily discarded. Feirtterval [tj_1,t;] it
follows that

X(t) = X(tj_1) + AP L At € [0,t) —tj_1] (5.40)
with

N B < 1<t

b _{ 0, otherwise (5-41)

Inserting this into the objective function results on a acainconstrained quadratic
optimization problem on each interval, which can be solvealyically. After such
an unconstrained minimizer for one of these quadratic salidpms has been found,
it has to belong to the currentintervak. be attj_; +At*, At* € [0,t; —t;_1), or be
at the boundary;_;. In all other cases, we move on to the next interval and castin
the search.

Projected Newton method

After the Cauchy point has been computed, the working setfimeld as the compo-
nents ofx® which are at the boundsg. which are zero. The following QP can be
formulated

140



Active-set methods for MHE

min;  $x"Mx-+c'x
st x=X,ie€A4(x), (5.42)
% >0,i¢AX)

Solving this QP exactly may be as hard as solving the origdalTherefore, it is com-
monly approximated by an equality constrained QP ignorirggliounds and solved
iteratively usinge.g. a projected conjugate gradient method or a projected Newton
method [7, 15].

min,  2xTMx+cTx (5.43)
st. x=0icW, '
where 7/ denotes the working set. The projected Newton method hasdyged for,
motivated by the fact that it yields a Newton step in the sabsplefined by the active
components and thereby allows a substantial improvemetitetaonvergence rate
obtained from the Cauchy steps. Indeed, the gradient mé@emachy steps) typically
converges in a zig-zag path yielding slow convergence. Bjireda Newton step
with quadratic convergence rate, the performance of therdlgn can be drastically
improved. This is illustrated in Figure 5.3 for a problem aéler 50 with 31 active
constraints and condition numbg(M) = ‘\9\:?:((“'\2))\‘ = 1€*. The two-stage gradient
projection method converges in less than 5 iterations.

The KKT conditions for QP (5.43) are given by

mx =-c, i¢wW
mx—A =-¢, icW (5.44)
X =0 iew

Hence, a Newton step in the subspace defined by the non-zemporents remains
to be calculated. This can be done by a Cholesky factor-sdti@vever, since the
matrix M can be positive semidefinite, a modified outer product Clydiestorization
[77, page 148] is developed. It is described in Algorithm Nate that when a zero
pivot is encountered nothing is to be done. This is verifieiAdy Theorem 4.2.6].

Algorithm 13. [Cholesky decomposition for positive semidefinite masrice
fori=1tondo
if L(i,i) > Othen

L(i,i) = /L(i,i)
Li+1:ni)=L({+21:n,i)/L(i,i)
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for j=i+1tondo
Lejong) =L :n ) — LG ni)L(j.i)
end for
end if
end for

The projected Newton method proceeds by finding a Newton istépe subspace
defined by the working set. If negative components of the mirér are encoutered,
they are added to the working set and a new problem is solvecomtrast to an
ordinary active set method, several constraints can bedadd®sery iteration.

Algorithm 14. [Projected Newton algorithm]

1={ij¢ =0}
J=A{1,...,n}
while p> 0do
J=I\I
L" = rows and columns deletion (Algorithm 15}, I)
Solve lower triangular system k= —cy
Solve upper triangular system(L")Tx' = X
Setp=0
fori=1tolength7) do
if |x[| < le~14then

I=TU1(i)
else ifx' < Othen
I=T1U4(i)
p=p+1
else
X7 =X
end if
end for
end while
Xr=0
Ar =My x+c;

5.3.5. Updating/downdating Cholesky factorizations
In this work we further improve the performance of the progecNewton method

by re-using factorizations. Note that successive Newtep sbmputations involve
reduced Hessian obtained by deleting rows and columnsiasstddo the working
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Figure 5.3.The convergence improvement of the projected Newton stépeajradient projec-
tion method is illustrated. Like in the unconstrained cése gradient descent method typically
converges in a zig-zag path yielding slow convergence @tathe). By adding a Newton step
with quadratic convergence rate, the performance of theritigm can be drastically improved
(solid line). The plot was generated for a non-negativitystoained QP of dimension 50 with
31 active constraints. The method converged in less thaar&iibns.

set. The Cholesky decomposition can be updated to incamplma rank additions or
downdated for low rank subtractions [163].

Deleting a row and column

Deleting row and columhk of a matrix actually means setting all entries to zero except
for the diagonal entry. which is set to an arbitrar value [40je original factorization
can be written as

Cun ¢ Cl L11 L], 12 LY

T T _ T T
Cip C2 Cypo| = |12 |22 |22 |?3|-2 (5.45)
C31 c32 Cas3 L3 I32 Las L;
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After deleting row and columk, we have

Cnn O Cgl L11 L-{l 0 Lgl
o' p2 0" |=(0" p p O (5.46)
Ca1 0 GCas Lz 0 Lgss LI

Hence, we only need to set row and colukwf L to zero, set the diagonal entry o
and computé. 33.

For this term, the original factorization is

Laslds=Cas—Lail ], — 132, (5.47)
while the new factorization is

Lasll3=Cas—Lail]; (5.48)

Combining these equations, we observe that deleting a rovcalumn is equivalent
to a rank-1 update

|__33|:|;3 = L33L§3 + ww’ (5.49)

with w = |30

Several methods for rank modifications of a Cholesky have Ipeeposed in the lit-
erature. A review can be found in [69]. Here we disucss onehefrost stable
techniques, due to Stewart and available asd#tead routine INLINPACK [48]. See
[163] for a more detailed discussion.

The idea is to apply Givens rotatiods(see Appendix B) to the augmented matrix

R [VL\;] = E] (5.50)

leadingtoLLT = LL T +ww". If a rotation results if i < 0, we simply flip signs of
the Givens rotation factorg := —cx andsc := —s. The computation takes roughly
O(n?) flops (compared t®(n®) for a full factorization).

Algorithm 15. [Row and column deletion]

1={ip¢ =0}
J=A{1,...,n}
fori=1tolength(7) do
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w=L(I ()+1 end I(i))
L(1(i),1:1())=1)=0

L(I(|)+1 n, I()) 0

L(1(i), 1(1)) =

L(1(i)+1:n, I(|)+1:n):rankflupdate(L(I(i)Jrl:n,I(i)+1:n),W)
end for

Algorithm 16. [Rank-1 update]

fori=1tondo
if L(i,i) # O0then
if w(i)| > [L(i,i)| then
t=—L(,i)/w(i)
s=1/V1+t?
c=st
else
t=—w(i)/L(i,i)
c=1/V1+t?
s=ct
end if
a=cL(i,i) —sw(i)
if a< Othen
c=-C
S=-s
a=cL(i,i) —sw(i)
end if
b=sL(i,i)+cw(i)
L(i,i)=a
w(i)=Db
forj:i+1t0ndo
a=cL(i,i) —sw(i)
b=sL(i,i)+cwi)
(J,i)=a
w(j)=b
end for
end if
end for

—

We apply these updates in the projected Newton method whexeery iteration one
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or multiple rows are deleted. Afterwards, the updated facéme used to solve

L™ = —c (5.51)

Lx = -X (5.52)

At the higher level, we apply rank-1 updates to remove thetina constraints from
the active-set upon convergence of the Schur complemengeszt method (see Fig-
ure 5.1).

Adding rows and columns

As we will show below, adding a row and column to a matrix cep@nds to a negative
rank-1 modification or downdateL. T = LL T —ww". This connection between modi-
fication of a matrix and modification of the factorization @sewhat counterintuitive.
Removing elements from a matrix correspond to an updatesdfittorization, while
adding elements corresponds to a downdate.

In the context of our Schur complement active-set methodtjpheirows and columns
are added in every iteration. Hence, we are interested tkidddition of the existing
Cholesky factor of the reduced Hessian.

Consider an existing factorization
Cuu=Lyl], (5.53)

and suppose it is extended as follows

[Cll CL] _ {L_ll _ } [L_L '—51} (5.54)
Car C22 Lor La2o| |L3
Ll Ll }
- = 2 5.55
{L 21L{; Laal ) +Lool ), (5:59)
Hence the new factors can be computed as follows
Lo1=Coalqf (5.56)
Losldy=Coo—Laildy (5.57)

The latter is indeed a downdate. It can be calculated usipgbplic rotations po-
tentially in combination with Givens rotations for numeicstability, we refer to
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[21] for a detailed treatment. In our case, we do not have ifaation of Cop =

LooL,. Therefore, it makes more sense to compute the Choleskgrization of
C22—L2iLt,. Since the subtraction can give negative diagonal entaiesheck is
made before executing the factorization.

5.3.6. Computational burden

Let np denote the number of inequalities in the active setmgnithe number of (outer)
active-set iterations. Then the computational burdennsmsarized in Table 5.1. Here
we subdivide the work needed for solving the unconstrairretdlpm and the work
needed for the constrained solution, i.e. the iteratiorth®fctive-set method.

Table 5.1.Overview of the computational burden subdivided into theamstrained problem
(unc) and the constrained problem (con). The operationsaiRiccati recursion, a forward
vector solve (fsolve), a partial forward vector solve (rfsolve),a backward vector solve
(bsolve) and solving a reduced QP (rQP).

Riccati | fsolve | partial fsolve | bsolve | rQP
unc 1 1 0 1 0
con 0 0 na Nit Nit
total 1 1 Na nic+1 | Ny

5.4. Numerical examples

5.4.1. Waste water treatment process

Consider again the waste water treatment problem presémt8dction 4.4.2. The
state and disturbance estimates are identical (up to noateccuracy) to those ob-
tained with the interior-point MHE method and were shown distussed in Chap-
ter 4. Hence, we will only compare the performance of botloatgms and discuss
the working of the Schur complement active-set method. Tmeputation times are
shown in Figure 5.4. It can be seen that the algorithm neelys®a ms if an hori-
zon of 10 is used. Hence, the algorithm is about a factor 2fdktin a comparable
interior-point method, see Section 4.4.2.

Figure 5.5 shows that the algorithm typically needs only 3 aictive-set iterations.
Once the number of active constraints stabilizes, also tineber of constraints in the
final working set stabilizes around the same number.
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Figure 5.4. Computation times in seconds for the waste water treatnpgitcation and MHE
with horizon 10. The Schur complement active-set MHE meffaadhed line) is about a factor
2 faster than the interior point method using ten iterati@uadid line).

5.5. Conclusions

In this chapter a Schur complement active-set method wasepted. It uses as the
starting point the unconstrained MHE solution which can @@ puted efficiently us-
ing a square-root Riccati based algorithm. By projectintpdhe reduced space of
active constraints a reduced non-negativity constrainBdiobtained. For this, a
gradient-projection method using projected Newton stejis@holesky factorizations
is proposed. Cholesky updates are employed in the projétedon iterations. Once
a solution to the reduced QP is found, it is used to updategbamd dual variables us-
ing a Schur complement technique. The method allows meltipdates to the active
set per iteration. Between (outer) active set iteratiomsrdduced Hessian changes
by adding some constraints to the working set. These chaagesxploited by a
Cholesky downdate. The performance of the algorithm wasoaestnated by applica-
tion of a C implementation to some numerical examples.
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Figure 5.5. Schur complement active-set method applied to the wasterwagatment process
for MHE with horizon 10.Top: Number of constraints in the final working set (solid linejlan
number of active constraints (dashed linBpttom: Number of (outer) active-set iterations.
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CHAPTER

Convex MHE formulations

The focus in this chapter is on two types of robust convex MiEBU-
lations which are particularly useful in practical applitans. First,
robustness with regards to occasional outliers is invedggéd by means
of Huber penalty MHE and; penalty MHE. The Huber formulation is
shown to have excellent performance in terms of outlieccteja and es-
timation accuracy. Second, the joint estimation of state$@arameters
or inputs is considered. The resuling MHE problem is fornediaas a
convex cardinality problem yielding robustness with respe rapid pa-
rameter changes, i.e. jumps or break points. It is shown tthiatleads
to an MHE problem witt/; penalty on the parameter variation and a
small number of subsequent corrections to thenorm MHE problem.
Significant improvements in estimation performance araiokt using
this procedure and a polishing step.

6.1. Robust estimation using Huber penalty function

Traditionally, state estimators are based on a least-squanalization of residuals.
For linear unconstrained systems, this leads to the cabsbiealman filter. For con-
strained and/or nonlinear systems, moving horizon estmaiMHE) [44, 59, 89,
108, 134, 146, 155, 157, 202], has emerged as an attractarmaive. In MHE, a
finite horizon optimization problem is solved in every timefs Past data outside the
window is summarized in a so-calladrival cost When a new measurement becomes
available, the arrival cost is updated, the window is sHifiad the process is repeated.

The least-squares approach, however, is not always seietiegn the process is char-
acterized by structural defects in the model or by imperfeeasurements. In such
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6.1. Robust estimation using Huber penalty function

cases, robust methods, which are less sensitivive to largese are desirable. In
robust statistics, estimators involving explicit or resive optimization over (robust)
penalty functions are referred to Bsestimatorgd103]. According to Zhang [205] a
robust esimator should satisfy the following specificasiofl) have a bounded influ-
ence functioni.e. derivative of the penalty function, and (2) return unigugneates,
which implies that the norm function should be strictly cerv The/; norm is such
robust measure. However, in the least absolute deviatidn approach, gross errors
can still have a significant impact on the estimates as thegiaen equal weight as
small residuals. A generalization of this is the least p@meethod of, approach, us-
ing functionsju|P which are convex fop > 1 [29]. The selection of an optimal value
of p for robust estimation has been ivestigated, andpfaround 12 good estimates
may be expected [154, 205].

Unfortunately, both the least absolute deviation and thstlpowers approach tend to
produce more zero residuals than can be statistically égaan many cases. These
drawbacks have motivated research into even more robusbagipes.

Hybrid ¢1 - ¢, combine robust treatment of large residuals with Gausseatrment
of small residuals. The Huber penalty function, introduged973 by Peter Huber
[102], is one such hybrid; - /> norm. It has been found very practical for robust
estimation by several authors in certain areas.

For example, in geophysics, Guitton and Symes [29, 84, 85 haplied it to seismic
data represented by a linear regression maddaela robustinverse problem

mxin||Ax— bl huber (6.1)
instead of the standard least-squares problem
mXin||Ax— b2 (6.2)

The authors do not employ the QP reformulation (see Sectib2); but instead di-
rectly apply standard nonlinear optimization to the Huherdtion. Since the Huber
function is not twice differentiable, the convergence of Alewton method might be
jeopardized. Nevertheless, the authors propose a quagieNenethod using limited-
memory BFGS updates and report satisfying results.

In the area of power engineering, Kyriakides et al [122] happlied the Huber
penalty to estimate the parameters of a synchronous geneisihg a linear regres-
sion model with structural defectse. rank deficiency, in the process matrix. They
present a statistical test and conclude that the Huber m™aihtperforms the least-
squares method especially when several parameters arewnkdabr [104] applied
the Huber norm in the context of power system state estimatibh output resid-
ual penalization only. The author derives the quadratiorratilation and applies a

152



Convex MHE formulations

primal-dual interior-point method for offline state estitioa with equality and in-
equality constraints. The method is applied it to a netwoddei of IEEE bus test
systems. A posterior analysis of the performance and pbditetect outliers of the
method is performed for two fixed values of tuning parametettie Huber function.

Robust model identification using tlienorm and the Huber function with application
to type 1 diabetes modelling has recently been presentechlay et al [58].

Wang et al [193] present a data dependent heuristic for hétérg the optimal tun-
ing parameter for the Huber penalty and demonstrate thehadeon some robust
regression examples.

Estimation problems using Huber penalty function have bagporoximated often
throughout the literature by iteratively reweighted lesgtiares (IRLS), which avoids
explicit optimization and thereby allowed its applicatimnlarge offline problems or
to online problems. With the advances in numerical optitiizeand increasing com-
puting power, it has been applied using optimization meshiadmore recent years,
although applications in state estimation are rare and itigations of Huber-based
MHE are known to the author. The aim of the work presented is thapter is

twofold: first, we show that the use of Huber penalty funcsigm online estimation

can yield an estimator with excellent robustness with régao outliers and can be
used to identify and reject otuliers, and second, we showHiuder penalty MHE

can be solved efficiently using (square-root) Riccati basethods in combination
with interior-point (Chapter 4) or active-set (Chapter 5¢thods allowing computa-
tion times comparable to standard MHE.

6.1.1. Robust moving horizon estimation

Let us consider the general batch estimation problem intted in Section 1.4.2.

Mincwy  P(S " (X0 —%0)) + Zkog PW "W + 350 (Vi Vi)
Xer1 = fu+ A+ Guwg, k=0,..
Yo o =+ G+ Vi, k=0,..

(6.3)

T
t b
S T

where the common least-squares terms are replaced wittnaaybpenalty functions
p(-) not necessarily identical for every term or for evén&y, W, andV are weighting
matrices.

In casep(-) is the squared, norm and the weighting matrices are chosen as the
Cholesky factors oPy, Qx andR respectively, the above estimation problem equals
the standard least-squares batch estimation problem)(1.13
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6.1. Robust estimation using Huber penalty function

The problem (6.3) can be complemented with constraintsSeetions 4 and 5.

Traditional least squares estimation or smoothing ignoreasurement anomalies and
therefore can produce biased estimates in the presencélief®uRobust estimators
relying on Huber penalty functions or other hyb#id- ¢, type penalty functions are
less affected by extreme values and provide heuristicsdientifying outliers. The
main purpose of the work presented here is to show that MHE gdibd robustness
properties may be obtained in a computational time compatatthe least squares
approach. In particular, the presented robust estimatatsiéo a convex optimiza-
tion problem for which a custom method was developed thdesdmearly with the
horizon length.

Several robust measures including the Huber penalty aceisiged in more detail in

Appendix C. From this discussion it follows that the Hubenaléy is a robust and

stable measure. In contrast, thenorm is not robust and th& norm is not stable.

Furthermore, the Huber penalty is the best convex appraioma&o the quadratic-

constant penalty which is the most robust measure. in tldpteln we present a Huber
based MHE method and compare it to the standard least-sgfarsulation and an

¢1 based MHE method.

6.1.2. The Huber penalty function

The Huber penalty function was first proposed by and theeafamed after American
statistician Peter Huber ([102]). It is given by

o lul <M
mw{MQMW U > M, (6.4)

Note that the Huber function isot a norm, because the triangle inequality is not
satisfied.

The Huber penalty function has been found very practicatdbust estimation. This
penalty function agrees witfy for u smaller tharM, and then reverts t6;-like linear
growth for largeru. For a constant outlier contamination rate, the choice ointyl
parameteM does not influence the estimation result much. If requirkd,ttining
parameter can be simultaneously optimized to improve thienatr performance.
The 95% asymptotic efficiency on the standard normal distidin is obtained with
a tuning constan¥l = 1.345 [103, 205].

We cannot directly apply Newton’s method to the estimatioobfem (6.3) if non-
smooth measures like.g. the Huber penalty function, are employed. However, the

IMeaning that 95% of the data is weighted appropriately iredag data is standard normally dis-
tributed.
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w

—— Huber
s - barrier methokk =1 |
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Figure 6.1. Approximation of the Huber function with parametdr= 1 by a barrier function
with different values for the barrier parameter

problem of optimizing a variable in Huber sense can be refgaied as a quadratic
program (QP). Consider a Huber penalized variatilg|nunerand introduce (scalar)
auxiliary variablesx andf such that

D={(ua,B)|—(a+B)<u<(a+p),0<a <M,0<B}.
Then

[[ullhuber= i%f(az+ 2Mp)
Hence, minimizingd|u||nuberis €quivalent to the following QP

mingg g a?+2MB

s.t. —(a+B)<u<(a+p),
0<a<M,
0<B.

(6.5)

This QP can be solved with interior-point methods or acteémethods. First, let us
consider a primal barrier method (see Chapter 4 or refeefR® 136, Chap. 11]).
Replacing the inequality constraints with a barrier ternthie objective results in the
approximate problem

mingg g a2+2MB+Kke(u,a,B) (6.6)

2Note that the penalization of a variable, i|e1]|huber by itself is not very useful. The trivial example
is given here to simplify the derivation and illustrate traiables involved. It becomes useful when it is
employed in an optimization problem, for example pijAX— b||huber
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6.1. Robust estimation using Huber penalty function

wherek > 0 is a barrier parameter, anglis the log barrier associated with the in-
equality constraints, defined as

_ | —log(B) —log(a(M—a)) —log(—~u—a —B)—log(u—a—p), (ua,B)eD
p(u.a,B) = { © otherwise.

As k approaches zero, the solution of (6.6) converges to theHuleer penalty func-
tion, as depicted in Figure 6.1. In a basic primal barrierhndt we solve a sequence
of problems of the form (6.6), using Newton’s method staytirom the previously
computed point, for a decreasing sequence of values oA typical strategy is to
reducek by a factor of 10 each time a solution of (6.6) is computedHinitsome
accuracy). See Chapter 4 for a more detailed discussiontefan-point methods.

Alternatively, the QP (6.10) can be solved using the Sclumyzlement active-set
method of Chapter 5. The Huber penalty implies two additimagiables and five
additional linear constraints of which three are bound taiTsts.

6.1.3. The multivariate Huber penalty function

The huber penalty is typically applied componentwise. Hewvethis assumes the
components are independeng. diagonal covariance or weighting. As stated by
Huberunivariate techniques should not be applied to multivaidata because of the
existence of correlations between the varialplé¥3]. Sometimes multivariate outliers
are simply not detectable by univariate techniques [97].

The multivariate formulation of the Huber penalty for a waot € R" is given as

IXI13 [Xl2<M

pmvhubel(x) = { M(2||XH2* |\/|) Hx||2 > M. ©D

Minimizing Pmvhubef X) is equivalentto solving an second order cone program (SOCP)
(see Section 2.3.6)

Minap [lall3+2MpB
st Ix—all2 < B,
[aflz <M,
a >0,
B >0,

with auxiliary variablesx € R" andg € R.

This multivariate or circular Huber penalty has been foratedl by other researchers,
e.0.[9, 28]. Itis also available as a function évx, a Matlab frontend for disciplined
convex programming which uses SeDuMi or SDPT3 as underlgomyex solver,
developed by Grant, Boyd and Ye [81, 82].
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Figure 6.2.Graphical representation of the Huber penalty functioriegcomponentwise (top
figures) versus the multivariate Huber penalty functiorttgro figures)

A graphical representation of the componentwise versusihiévariate Huber func-
tion is given in Figure 6.2.

Figure 6.2 shows the computation times in seconds usitigor evaluating the mul-
tivariate Huber function and the componentwise univatiiber function for varying
vector lengths. Computing times correspond to an Intel Z&yao processor at 2.13
GHz with 2 MB cache and 2 GB RAM, running Matlab version R20&0dcvx ver-
sion 1.21. For both problems the underlying solver is SeDuNican be seen that
the multivariate form can be motivated not only by statetiarguments but also by
computational complexity. For a vector of length one, thmpatation times for the
SOCP and for the QP are comparable. However, for vectorsngfthen, the multi-
variate form involves the solution of one optimization pleyh with n+ 1 variables
while the componentwise application of the univariate famaolves the solution of
optimization problems with 2 variables. This implies a Binecaling of the latter with
vector length while the complexity of the former is almosatfacted by the vector
length, as can be seen from Figure 6.2.

6.1.4. Selecting the tuning parameter

As noted before, the valud = 1.345 yields 95% asymptotic efficiency on the stan-
dard normal distribution, so it is an obvious choice. As w# shiow in the numerical
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6.1. Robust estimation using Huber penalty function
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Figure 6.3. Computation times in seconds usiagx for evaluating the multivariate Huber
function (dashed line) and the componentwise univariatedttunction (solid line) for varying
vector lengths.

examples below, the optimal tuning parameter may changerdiipg on the data. We
investigate two methods for selecting the optimal tuningpeeter.

A first method is obtained by simultaneously optimizing theihg parameter. The
resulting optimization problems are still convée. QP and SOCP for the univariate
and multivariate Huber functions respectively.

A second method was proposed by Wang et al [193] and is basstitistical prop-

erties of the Huber function. They define an efficiency fati@sed on the influence
function, which was also proposed by other researchersidirog Huber [103], and
derive a data driven estimator for this efficiency factor.eTalue of tuning factor
yielding a maximum efficiency factor is selected. Howevecs the estimator func-
tion is non-smooth, a grid search over a number of tuningmeter values is sug-
gested.

6.1.5. Huber penalty MHE

Problem (6.6) is a convex optimization problem with smoadtfeotive. Employing
this approximate Huber penalty function in problem (6.3}iadeads to an equality
constrained convex program that can be solved efficientiyguslewton’s method.
Consider the problem of state estimation with outlier cariteated measurements.
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Then the batch estimation problem can be formulated as

Min wy H%T(XO*)A(O)HPLzI;(JlHWlZTWkHZJF ZI:0||Vk7TVk||huber
s.t. Xer1= fk+AX%+Gwg, k=0,....N—1
Yk =M+ G+, k=0,...,N.

This problem can be reformulated as a QP using the result o{&40) and solved
e.g.by an interior point method.

Similarly, if the multivariate Huber penalty is used, theplem can be formulated
with two second order constraints per penalized vectorsahged as an SOCP.

6.1.6. Smooth hybrid ¢; - ¢, MHE

Another hybrid¢; - /2, measure which approximates the Huber penalty is given by
psn(u) = M(VM2 412 — M), (6.8)
and is referred to asmooth hybrid penalty function

Optimization over this penalty function also yields an SOCP

minyPsh(U) = mingst stf [1 ] [2—M? <t (6.9)

6.1.7. L1 norm MHE

Another robust method for state estimation in the preseficutier contaminated
measurements is lfy norm penalization

Mincwy ST (%0 —%o)ll2+ Txco [IWe TWkl2+ 3o Vie "Wl1
S.t. Xer1= fk+Ax+Gw, k=0,...,.N—1,
Yk =hk+Cixc+V, k=0,...,N.

Minimizing the|ju||1 norm is equivalent to solving the following LP

mingt t
s.t. —u<t, (6.10)
u<t.

Hence, the MHE formulation is adapted by + 1)ny additional variables with as-

sociated linear terms (instead of quadratic) in the objecsind twice this number
additional bound constraints.
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6.1. Robust estimation using Huber penalty function

6.1.8. Numerical example

In order to to evaluate the robustness of Huber based MHE raresttigate the in-
fluence of the tuning parametkt, we compare the mean squared errors of standard
least-squares MHE, Huber penalty MHE afijchorm MHE. In our simulations, we
consider a fixed random LTI system of order 4 and random n@aézations. The
system is disturbed with normally distributed process @aisind output noisg with
covariances respectivel = 0.01l, andR= 1. We assume that the measurement
noise is contaminated with added sparse ndisepccasional peaks due to sensor fail-
ure. Two contamination types are considered: two-pointaxmmation which yields
values—7 or 7 with equal probability ofA /2, and contamination with a distant nor-
mal distributionA(0, 7). Different contamination rates are considerdd= 1%, 5%,
10%, 20%, 30% and 40%.

The results on independent test sets for batch estimatid@@$amples (in both train-
ing and test set) are shown in Table 6.1. It can be seen thaduber method with
optimized tuning constant almost always outperforms#hand ¢, methods. Note
that the/; method performs well over a wide range of contaminations;atéhich is
surprising especially for the low contamination rates, avay be attributed to the fact
that the weighting of thé; norm is low compared to the other terms. the initial
condition and the process disturbance terms. Note alsalteatuber method per-
forms well for a wide range of tuning parameter values, buhmcase of two-point
contamination a slight improvement is achieved by optimairg of the value.

Next, let us analyse the capability of the robust Huber MHEDe to detect outliers
and compare this with the robust smooth hybrid MHE, whichudthgield similar
performance but is characterized by a smooth transitiowdsen/,; and/, behavior.

Consider thereto the same random system as before, comatiaith normally dis-
tributed sparse noise sampled frami(0,5) with occurence rate.8%. Figure 6.4
shows a typical time evolution and probability density. Gumulations are for batch
estimation with 500 samples and a prediction horizon of 3t fiesults are averaged
over 100 runs.

The mean squared error is shown in Figure 6.5 for the starldastl squares estima-
tor, the Huber estimator and the smooth hybrid estimatois tear that the added
robustness of the Huber penalty and the smooth hybrid pereflects in improved
state estimation performance. Moreover, the Huber estintaitperforms the smooth
hybrid estimator in a wide range of tuning parameter values.

It can be seen from Figures 6.6-6.8 that the ability to detetliers is comparable
for both methods. The smooth hybrid approach yields morgefglositives when
the cut-off point is relatively small, which can be explaingy the smooth influence
function. On the other hand, it can be seen that for relatileebe values of the tuning
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Table 6.1.Mean squared errors (MSE) evaluated on an independentete&irg1) standard
least-squares a norm MHE, (2)¢1 norm MHE, (3) Huber MHE with fixed tuning constant
M = 1.345, (4) Huber MHE with optimized tuning constant, and (5)beluMHE with tun-

ing constant determined by the data-driven heuristic. Type$ of outlier contamination are
considered and the contamination rates varied from 1 % to 40 %.

A 1% 5% 10% 20% 30%

40%
(a) two-point contamination

L2 0.033 0.046 0.050 0.080 0.213 0.129
L1 0.038 0.038 0.042 0.042 0.049 0.027
HuberM =1.345 0.037 0.038 0.035 0.036 0.055 0.027
Huberopt 0.033 0.038 0.035 0.037 0.049 0.026

Mopt 2.3 0.5 0.6 0.6 0.3 0.5
Hubertuned 0.033 0.037 0.035 0.038 0.069 0.026

Mtuned 2.5 0.2 1.9

0.5 1.3 0.6

(b) contamination with N(0,7)
L2 0.035 0.030 0.050 0.063 0.142 0.109

L1 0.036 0.028 0.029 0.031 0.036 0.035
HuberM =1.345 0.033 0.028 0.028 0.032 0.034

0.033
Huberopt 0.032 0.028 0.029 0.032 0.034 0.033
Mot 07 05 06 06 06 05
Hubertuned 0.031 0.027 0.030 0.030 0.036 0.033
Muned 1.2 02 03

0.2 0.2 0.3

parameter, the Huber approach generates more false negatiowever, at this point
the ratio of correctly identified outliers is already belo®% and the mean squared

error starts increasing, so we can argue that the methochaiilbe operated in this
region if the tuning parameter is set right.

From these results, it is clear that the outliers (peakspeddentified quite accurately
using a Huber penalty robust batch estimator. Furthernifdiree outliers are success-
fully removed, the noise will be Gaussian. This motivatesfthiilowing strategy: use
Huber penalty robust MHE in a first step to identify and remtwe outliers, then
in a second step use either standard MHE or Huber penalty MH&rther improve
the quality of the estimates. The results are shown in Taldle Bhe Huber tuning

parameter in the simulations was set t845 and the results are averaged over 50
repetitions.
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Figure 6.4. Top panel: Time evolution of a typical noise realization contaminateith nor-
mally distributed sparse nois& (0, 7) with occurence rate.8%. Bottom panel: Correspond-
ing distribution.

Table 6.2.Mean squared simulation and prediction errors (MSE) fochaistimation on 500
samples using different norms and contaminafig(0, 5) with occurence rate.8%. Prediction
horizon is 50 samples and the results are averaged over Bltieps.

Algorithm Simulation | Prediction
standard BE 0.0302 0.0486
L1 norm robust BE 0.0313 0.0653
Huber norm robust BE 0.0283 0.0529
Huber norm robust BE + standard BE 0.0256 0.0408
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Figure 6.5.Influence of the tuning parametigf on the mean squared error for batch estimation
using Huber (solid blue line) and using the smooth hybridattgn(dash-dotted green line).
For comparison, the mean squared error of the standarddgaates estimator is also shown
(dashed red line).
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Figure 6.6. Percentage of correctly identified outliers as a functiotheftuning parametevl
for batch estimation using Huber (solid blue line) and ugimg smooth hybrid penalty (dash-
dotted green line).
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6.1. Robust estimation using Huber penalty function
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Figure 6.7.Number of false positives (Type | errors) as a function ofttireng paramete for
batch estimation using Huber (solid blue line) and usingstheoth hybrid penalty (dash-dotted
green line).
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Figure 6.8.Number of false negatives (Type Il errors) as a function efttming parametevl
for batch estimation using Huber (solid blue line) and ughmgsmooth hybrid penalty (dash-

dotted green line).
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Throughout, we have assumed the weightings or covarig@esslR to be known. If
they are unknown, they should be estimated from the data. defwased approach
for estimating covariances from data was proposed by Odelsal [137]. In the pres-
ence of contaminated data, a more robust covariance egiimraethod is desirable.
In such a case, a median absolute value approach could hé [i€S].

6.2. Joint input/parameter and state estimation

Recursive methods for simultaneous estimation of statdsrgruts have been con-
sidered ina.o. [72, 73, 114]. In order to permit a recursive formulatione tinput
variations are typically penalized in least-squares sem$@vever, any convex pe-
nalization of the input or parameter variation yields a aconMHE problem. Robust
norms can be used for penalization of input or parameteatiaris. In this chapter, it
is shown that abrupt changes in the parameters or inputsppreriately modelled
by robust penalizations of the variations instead of by#haorm. In particular, it
is shown that the joint input and state estimation probleiti wiecewise constant
(or piecewise linear) inputs is best described by a carifjnptoblem which can be
solved iteratively by a number éi type MHE problems. It is further shown that these
types of problems can also be solved by dedicated Riccatéeethods along the
lines of Chapters 3-5. As such, an algorithm is obtained lvhitows fast detection
of within-horizon parameter jumps and this is especiallgfusfor moderate to large
horizon lengths, where the standard MHE formulation smeailt these parameter
switches.

Here we present an MHE algorithm for simultaneous estimadbparameters and
states for systems with piecewise constant parametergotsnThis robust formula-
tion allows fast detection of parameter jumps and improkegjuality of both param-
eter and state estimates compared to the standard MHE fatioml which smooths
out sharp parameter variations.

6.2.1. Cardinality problems

Let us introduce the notion of cardinality of a veckat R", i.e. the number of nonzero
components

n

cardx) = _anrc{x.-),

with

0 x=0

cardx;) 1 x40

Il
—N
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Some authors use the tefmnorm instead of cardinality,e. ||x||o = cardx). How-
ever, note that this function is not a norm because it is notdgeneous,e.

[2e1]lo=1# |2|||e1]lo = 2.
for a unit vectore;.

It is not a convex function either because, for any (0,1) and unit vectorg; and
& holds

[(1-a)ei+aelo=2
while

(1-a)lelfo+alelfo=1-a+a=1

In optimization problems, the cardinality function can beeful as objective or as
a constraint. For example, in sparse design the aim is to firdsparsest vector
satisfying a set of specifications

miny cardX)

6.11
s.t. xe_C. ( )

In sparse signal reconstruction or sparse regressor ggletite aim is to find the best
fit to the observations using a combinatior\dfcomponents/regressors

mink  J(x,n)

(6.12)
s.t.  cardx) <M.

whereJ is some (convex) objective ampgare the observations.

Both cardinality problems (6.11) and (6.12) are NP hard doatrial problems.

They can be solved globally by branch-and-bound problentscaily by convex ap-

proximations. We will only consider convex approximatidreye and focus on car-
dinality constraints since our interest is in signal recorgdion. Convex cardinality
problems are discussed in more detail in [29] and [38].

Cardinality problems have recently caught increasingnéitia in the machine learn-
ing community. Many algorithms in machine learning are ldage (approximate)
convex cardinality problemsg. compressed sensing [49], sparse PCA [37, 204], and
sparse support vector machines [32].

The convex least-squares cardinality problem

miny ||Ax—Dbl|2

(6.13)
sit.  cardx) <M,
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is often approximated by the following heuristic, known as the LASSO algorithm
[176] with shrinkage paramet@r

miny  |[|AX—Db|2

6.14
st X1 < B. ( )

Another popula¥y heuristic for (6.13) is called basis pursuit denoising atbrmu-
lated as

mink  [|Ax—bll2+ y{[x||1 (6.15)

6.2.2. Joint estimation with piecewise changing parameters

Now consider the problem of joint state and input estimatibwe know the input is
piecewise constant, then the proper way to formulate it fokmwvs

Mincwvu (1S5 (%0 = %o)ll2+ 2o W Widl2+ SV vidl2

s.t. Xer1 =AX+Buw+Gw, k=0,...,.N—1,
Yk = hk+Cu Xk + VW, k=0,...,N,
cardDu) <M,

whereD is chosen equal to the first derivative operator matrix

1 -1

1 -1
D

1 -1
and whereMl represents the maximum number of jumps.

Note that when the input is piecewise linear, then the sana¢egly applies wittD
equal to the second derivative matrix

-1 2 -1
-1 2 -1
D>

-1 2 -1
andM represents the maximum number of breakpoints.
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The non-convex problem (6.18) can be written as a sequencersfex problems
where the cardinality constraint is moved to the object8&] [

Mingwyut 1S5 7 (%0 —%0)ll2+ S o W "Wkl + 5o IVic "Vidl2+T(z+£2)

st X1 =AX+BU+Gw, k=0,...,N-1, (6.16)
Yk =h+Ccx+v, k=0,...,N, '
—-t<Du<t,

min, tT(z+¢€l)
st 0<z<1, (6.17)

Z"1=n,—M

wheren, denotes (with some abuse of notation) the number of eleniersl and

t,z e R™. 1 denotes a vector of appropriate length with all ones. Thigieace is
iterated until|Du*|Tz* vanishes or until a maximum number of iterations is reached.
The vectorz can be interpreted as a search directiens a relatively small positive
constant. The motivation for adding a small positive teria to allow determination

of the absolute valuPu*| for the zero components of.

By initializing z to (1 — €)1, the first iteration is a problem witby norm penalization
of parameter changes
Mincuyu ST (0 —%o)ll2+ Ti-g N Will2 + 3o [V Tl + [Dulx
s.t. X1 =AX+Buw+Gw, k=0,...,N—1,
Yk = +Ci X +V, k=0,...,N,

Subsequent iterations can be interpreted as correctiottigd; norm regularized
problem. The sequence converges to a locally optimal soluf the original cardi-
nality problem (6.18) [38].

A similar ¢1 heuristic was proposed for trend filtering in [158] and fortfalio optimi-
zation in [126]. The iterative weighted heuristic proposed there is a simplification
of the one presented here. It avoids the optimization stef¥j&nd instead keeps
fixed. We have experienced substantial convergence imprents by the optimiza-
tion step and hence suggest the above strategy.

6.2.3. Riccati based solution
It is easily seen that problem (6.16) is a modified MHE problghich only adds

inequality constraints and gradient terms, but no quadhalties on the auxiliary
variables. Therefore, the matrix Riccati recursions rentlé same.

168



Convex MHE formulations

Problem (6.17) on the other hand is a Linear Programminglproland can be solved
using the simplex method or an interior point method [29,]136

6.2.4. Polishing

A standard approach is to solve the above convex cardir@aiitylem to identify the
break points and then solve a standard joint estimationl@nokvith unknown piece-
wise constant input with the given jump locations. This teghe is described ip.g.
[29, §10.3.2] and [158].

6.2.5. Numerical example

The algorithms are illustrated on a linearized model of tiehpdynamics for a highly
manouvrable aircraft. The data correspond to represeataimmed flight condi-

tions during pull-up. The model and data are thoroughly desd in [168]. The
continuous-time representation of the model is

—.0193 882 322 .48 17
. —.000254 —1.02 0 91 —.00215
X(t) 0 0 0 1 X(t) + 0 u(t)
0 .82 0 —1.08, —.18

=g % 1 o).

wherex = (V a 6 q)T with V the velocity (ft/s),a the angle of attack (radj
the pitch angle (rad) and the pitch rate (rad/s). The control inputs the elevator
deflection (deg). The outputs are the pitch ar@jknd the flight path anglé — a.
The linear model is discretized in time using a first-ordeldhmethod with time step
0.1sresulting in an LTI discrete-time state-space model. Tistesy is disturbed with
random process and measurement noise with covariancesctigy Q = 10~* and
R=1072

The input estimates are shown in Figure 6.9 for the stanfiandrm MHE, /1 norm
MHE and the proposed method using a cardinality formulatigh a polishing step.
Alljointinput and state estimators are able to detect tpaijumps, however, the pro-
posed method is much less sensitive and more adequatenraéstj the determinstic
input variations.

3The aircraft is in in a stable condition; no unbalanced fsroe moments are acting to cause it to
deviate from steady flight.
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Figure 6.9. Input estimates using norm MHE, /1 nhorm MHE and the proposed cardinality
MHE formulation with a polishing step.

6.3. Conclusions

The goal of this chapter was to show that several robust MHEGtations may be
described by a convex problem. Two types of robust conveklpros were investi-
gated. The problem of state estimation in the presence tiepabntaminated data
was considered first. A Huber penalty MHE formulation andaformulation were
studied and compared with the standard least-squares fatiou It was shown that
Huber penalty MHE provides a performance improvement tostaedard MHE in
case of outlier contaminated data while preserving theoperdnce of the standard
formulation when the frequency of outlier occurance is eatiow. A second convex
formulation concerned the joint input and state estimaiosystems with piecewise-
constant or piecewise-linear inputs. It was shown thatghodlem is best formulated
as a cardinality problem which can be solved by a sequenaawbx MHE problems.
More specifically, it concerns & norm MHE problem and subsequent modifications
which can be solved using dedicated Riccati based methddsp@rformance of the
methods is shown through numerical simulations.
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CHAPTER

Nonlinear MHE algorithms and
application to estimation and control of
blood-glucose in the Intensive Care

7.1. Introduction

Two important characteristics distinguish MHE from othstimation strategies, such
as the Extended Kalman Filter (EKF). First of all, prior infaation in the form of
constraints on the states, disturbances and parameteisedacluded. Second, the
nonlinear nonlinear model equation is directly imposedrakie horizon length. The
most important advantage of using a larger window size isttlismitigates problems
due to poor initialization or poor arrival cost approxinaatiwhich results in improved
estimation performance especially when the problems gteynonlinear.

Stability of nonlinear moving horizon estimation (NMHE) svatudied by Rao et al
[149] and Alamir et al [1]. Raff et al [171] proposed the useobkervability maps
in the context of NMHE to yield a scheme with guaranteed coyemce. Stability of
NMHE with no assumptions on the noise distributions was esklrd by Alessandri
et al [5] Zavala et al present stability results for an adeahstep NMHE approach
[201, 202]. An overview of optimal control methods for estition and control on
moving horizons is given by Binder et al [19]. An adaptiveadétization scheme
for NMHE in a single shooting framework was investigated bpnd#r et al [20].
Multiple shooting for NMHE has been proposed recently [45/,1118]. An overview
of numerical aspects of NMHE and NMPC was given by Diehl eh§44].
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7.2. Brief overview of recursive nonlinear estimation noelth

In this chapter we outline an algorithm for nonlinear MHE aviBC using a direct
multiple shooting Gauss-Newton method which we then apply biomedical prob-
lem: the normalization of blood-glucose of patients in th&nsive care unit. The
application of multiple shooting to MHE including the impientation of a real time
iteration scheme has been investigated and presented lng €taal [117, 118] and
Kihl [119]. The aim in this chapter is to introduce the framoek and show that
Gauss-Newton SQP iterations yield quadratic subproblehishwcan be solved effi-
ciently using the methods presented in the previous chapter

7.2. Brief overview of recursive nonlinear estimation methods

7.2.1. The Extended Kalman Filter (EKF)

Optimal filtering for nonlinear systems is in general infibées for practical appli-
cation. Therefore approximate nonlinear filtering alduris have been proposed in
literature. The best known approximate nonlinear filtehisExtended Kalman Filter
(EKF) (seee.qg.[6]). The EKF linearizes around the trajectory of estimated applies
the time-varying Kalman filter recursions in any of the follations described above.
At time instantk the nonlinear discrete-time model (1.5) is linearized dlefes. For
the measurement model

dhi(x,u
Ck = % . (7.1)
X X=X¢,U=Uy
And for the state model
A — 2 fk(x,u, p,w) Gr— 2 fk(x,u, p,w) (7.2)
2 X=R1. ,U=Uy, p=px,W=0 ow X=R . ,u=U, p=px,w=0

Although the implementation of EKF is straightforward amduitive, the resulting
error from linearization may cause filter divergence. Asvghdy Song and Grizzle
[165] the EKF provides only weak local stability guarantd@oblems of divergence
and poor performance of the EKF (s&@.[89, 110]) are related not only to the extent
of nonlinearity of the model but also to the amount of noisieeng the system [197].
If the noise is small and the nonlinearities are mild, thefqrenance of EKF can be
expected to be nearly optimal [146].
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v

(@) (b)

Figure 7.1. Comparison of Extended and Unscented Kalman filter infolonapropagation.
(a) The EKF linearizes the nonlinear function around thenmafaa Gaussian distribution and
propagates the mean and covariance matrix through thiarlireedd model. (b) The Unscented
Kalman filter propagates a set of sigma-points through thméimear function and constructs a
Gaussian distribution by calculating the mean and coveeaf the set of propagated sigma-
points.

7.2.2. The Unscented Kalman Filter (UKF)

An improvement to the Extended Kalman Filter led to the depeient of the Un-

scented Kalman filter (UKF), also a nonlinear filter. In the fgJkhe probability den-

sity is approximated by the nonlinear transformation ofrad@m variable, which re-

turns much more accurate results than the first-order Taydpansion of the nonlinear
functions in the EKF. This is depicted in Figure 7.1.

When the system model is highly nonlinear, the Extended ldalFilter can give par-
ticularly poor performance [89, 110]. This is because themand covariance are
propagated through linearization of the underlying novedr model. The Unscented
Kalman Filter (UKF) [110] uses a deterministic samplingeique known as the un-
scented transform (UT) to select a minimal set of sampletppaalled sigma points,
around the mean. This is in contrast to techniques such dlpdiltering which
sample randomly and it allows to use a relatively small nundiesamples. These
sigma points are propagated through the nonlinear fungtitom which the mean
and covariance of the estimate are then recovered. The ieauilter which captures
the mean and covariance accurately to the second orderyar@minear state equa-
tion. For a state dimensiam a set of 2« + 1 points are necessary. This number was
further reduced tow + 1 by Julier in 2003 [109]. In addition, this technique remeve
the requirement to explicitly calculate Jacobians anddfuee it is sometimes referred
to asderivative-free filter
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7.3. Introduction to nonlinear MHE using multiple shoothing and
SQP

Methods for solving optimal control problems can be clasdifin three major groups

I Dynamic programming,
Il Indirect methods,

Il Direct methods.

Dynamic programming, introduced by Bellman in the 19404,[d2scribes a process
of breaking the dynamic optimization problem into simplebgroblems based on the
principle of optimality For every subproblem a value function is defined which can be
found by recursively working backwards from the final timegstFor linear quadratic
problems there is an analytic solution, viz the LQR Riccgtiaion. For nonlinear
problems, however, this approach involves a discretinatiod tabulation of states
and controls and therefore suffers frahe curse of dimensionality=or this reason
dynamic programming is typically restricted to control plems with very small state
dimension and has not found acceptance for state and pana@séitnation problems.

Indirect methods are based Bantryagin’s Maximum Principlgl43] and proceed by

maximizing the Hamiltonian matrix. An intricate multi-pdiboundary value problem
is formulated. In every iteration, the model is numericafliegrated forward in time

and the adjoint equations are integrated backward in timdirdct methods suffer a
number of practical drawbacks. First, significant knowkedgd experience in optimal
control is required from the user of an indirect method sitheeadjoint equations and
boundary conditions need to be derived for every specifidiegon. Furthermore,

(de)activiation of a state constraint leads to a discoitinn the adjoint equation.

Finally, stable processes have associated unstable adpirations and vice versa,
hence, indirect methods always involve solving an unstdifferential equation.

The basic idea of direct methods is to transcribe the infiditeensional dynamic op-
timization problem into a finite-dimensional NLP by disézetg the nonlinear func-
tions. Direct methods have proven to be the most succeésfutbal-time, moderate
to large scale, optimal control problems [16, 19, 43, 45,448, Only direct methods
are considered in this thesis.

For an overview of solution methods for optimal control peohs, we refer to [19]
and the references therein.
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7.3.1. Discretization

In order to obtain a tractable finite-dimensional optimi@atproblem, the continu-
ous nonlinear model needs to be discretized. We distindgagsiveen the following
discretization strategies

I Single shooting,
Il Multiple shooting,

1l Collocation.

In single shooting, the system equations are used to eltmtha states from the op-
timization problem, regarding them as a function of toatrols or in the context of
MHE the state disturbances. As such, the system equatiaitheptimization prob-
lem are treated sequentially, one after the other, in eatim@gation iteration. This
approach, although very intuitive and popular throughdet literature, frequently
fails even when good initial estimates are available [12Bhe problem is that the
error introduced by discretization, roundoff or poor ialtdata may be propagated by
inherent instabilities in the differential equations amdwg exponentially thus prevent-
ing numerical integration to the end point [124].

These convergence problems can be considerably improvadsing the multiple
shooting method [23, 25]. The basic idea of the direct midtghooting approach
is to do a time-discretization of all state and control tc&peies in the overall op-
timization interval and to solve the resulting subproblesiraultaneously in each
of the discretization intervals, which are referred to adtiple-shooting intervals.
This means that the original problem is divided into mugipubproblems that can be
solved in parallel. Additionally, continuity constrairdsmatching conditionbave to
be imposed between neighboring intervals to guaranteetincous solution over the
whole optimization interval. By dividing the initial valygroblems into subintervals
and allowing discontinuous trajectories at intermeditggations, the growth of error
in case of inherent instabilities is effectively limitedo@pared to single shooting, the
method shows greatly improved convergence and numerilisy [124]. We refer
to the original papers by Bock and Plitt for a discussion aedaimultiple shooting
for optimal control [23, 25]. The multiple shooting methaahdbe viewed as a hybrid
sequential-simultaneous method.

The collocation method is a simultaneous discretizatiopr@gch in which the dif-
ferential equations are discretized in both state and obsprace. The simultaneous
discretization and optimization potentially leads to éastonvergence compared to
shooting methods. However, due to this full discretizatidye resulting NLPs tend
to become large but are typically sparse [19]. Efficientazdition methods therefore
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exploit the structure inherent in the NLPs. Compared to §hganethods, colloca-
tion cannot make use of existing highly reliable integratioutines. Both collocation
and multiple shooting can make use of initial guesses owewthole state trajectory,
which is advantageous especially in online applicatioesMHE and MPC. Both are
well-applicable to highly unstable systems in contrasingle shooting.

In this thesis we use the multiple shooting method for n@dirfMHE and MPC.

7.3.2. Constrained Gauss-Newton Sequential Quadratic Programming
(CGN-SQP)

Consider the nonlinear MHE problem

mingw (1S5 (X0 — %)l + Zhoo W Wi+ [1Vie T (i wie) — W) |2
HIIVy (e Ox) =) 12

st X1 = f(X, Wi, Uk, p), k=0,...,N—1, (7.3)
Ok (X, W) <0, k=0,...,N—1,
gn(xn) <0,
Let us denote the overall optimization vector as
7= (Xo,Wo7 .. ,XN,j_,WNfl,XN) S an,
wheren; = (N + 1)nx+ Nny,.
Then problem (7.3) can be written as
min;  3|[Fi(2)]3
st (2 =0, (7.4)
Fs(z) <0,
where
[ 5 (0-%) ]
WoiTWO
Vo T (ho(Xo0,Wo) — Yo)
Fi(2) = . )

W T Wiy 1
Vi T (h(xn) — Yn)
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fo(Xo, Wo) — X1
f1(X1, W) — X2
F(2) = ,
N1 (XN-1,WN-1) — XN
go(Xo0,Wo)
g1 (X1,W1)
Fs(2) = :

ON-—1(XN—1,WN_1)
ON(XN)

The Lagrangian is given by

LEhp) = SRE@RE RO RO (7.5)

whereA and u are multiplier vectors associated with respectively thaadity and
inequality constraints.

Assume the nonlinear functiorfs g andh are twice differentiable. Their first order
Taylor expansions are given by

fk (Xlk7 \le) ~ fk + ADXy + GKAWk7
Ok(Xj W)~ Ok + DX + B,
hk(XL, Wlk) ~ hy + CeAxk + HiAwy,
ON (Xlk) ~ON+ DNAXN.
hn (Xlk) ~ hn + CNAXN .

~ X~ x
I
o oo
Zz Z Z
\
B e

: (7.6)

Any locally optimal solution to (7.4) defined by the triplet’,A*, u*) has to satisfy
under mild conditions the following KKT conditions

WZ)F(Z)+ATH(Z)+uTH(Z) = 0 7.7)
R(Z) =0 (7.8)

R(z) < 0 (7.9)

g >0 (7.10)

HiFsj(x) = 0, j=1...np (7.11)
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Here, the Jacobiark and function evaluations are highly structured and sparse

ey 1 ST 0% %)
VoG Vo THo Vo T (ho —Yo)
w, T Wy Tw
= F :
Vi iCn-1 o Vi iHN-1 Vi1 (e —Yne1)
= T
Wi-1 W Ty g
L Vi 'Cn | )
Ay Go I [ fo ]
AL G I f1
b= i s F= .
L An-1 Gn-a | o1 |
[ Do Eo [ g0 ]
D1 E g1
J3 = 5 F3 = :
Dn-1 En-1 ON-1
L Dn L ON

Newton-type methods search for a point satisfying the KKmditions by succes-
sively linearizing the problem functions. The main diffece between the two big
families of nonlinear optimization methods, Sequentiab@uatic Programming and
Nonlinear Interior-Point methods, is in how the complenaeity condition (7.11) is

handled (see Chapter 2). We will only consider Sequentiadpatic Programming
here.

By linearizing in every iteration all nonlinear functionsaurring in the KKT condi-
tions around the current iterate, one arives at a linear éem@ntarity problem which
can be interpreted as the KKT conditions of a QP (see als&)2.6

min, J1(Z)Tz+3(z—2)T02.(Z, A", 1) (z—2)

st. R(Z)+X(2Z)(z-2)=0, (7.12)
R(Z)+%(Z)"(z—2) <0,
whereZ is the current iterate around which the functions are lizeat.
The Lagrange Hessian is given by
1
O5L =S+ Z Fuj0%Fyj+ ZA,—DZFZJ + ; TRy (7.13)

The first term often dominates the summations either beaafusear-linearity of the
model close to the solutiome. small second order derivatives, or because of small
residualsj.e. F j small. One can show thatbecomes small i, is small and the last

178



Nonlinear MHE algorithms and application to estimation as@htrol of blood-glucose in the
Intensive Care

term vanishes at the solution by the complementarity cand({f7.11). This motivates
the following Gauss-Newton approximation to the Hessiandast-squares problems

1
2L ~ EJlT h (7.14)

Hence, in a generalized Gauss-Newton method the origimddi@m (7.4) is solved
iteratively by computing in every iterationa search directionZ as the solution to
the following QP

miny,  3(|0(2)0z+Fu(Z)|3
st h(Z)Az+FR(Z)=0, (7.15)
J(Z2)bz+F5(Z) <O.

With the functions and Jacobians as defined above this @amneis to the constrained
linear MHE problem (4.6)-(4.7) or (5.1)-(5.15) considenedhe previous chapters.

The constrained Gauss-Newton method has only linear cgamee but often with a
surprisingly fast contraction rate [41, 44]. The contrantiate is fast when the resid-
ual norm is small or the second derivatives are small [44].1188vas developed and
extensively investigated by Bock and coworkers,sege[23, 24, 42, 124]. For param-
eter estimation problems, the method is typically able ttperform methods using
higher order derivatives or derivative-free methods. Tikibecause the method is
not attracted by large residual local minima, which are albed statistically unstable
estimateg24].

Globalization

The quadratic problems (7.15) which are solved in every Ga&lmnton iteration are

only local approximations of the true nonlinear problem endorce convergence from
arbitrary starting points two types of globalization ségies are commonly used for
the search directions obtained from the QP subproblems:dé&arch and trust-region
methods.

In atrust-region approach, the constrdia|| < d is added to the QP. The trust-region
parameted is adjusted based on the agreement of predicted reductimm (he QP)
and actual reduction of a merit function. If sufficient redan is obtained for the next
iteratez *1 = Z + AZ then the step is taken, otherwise the trust region is shdrile

d is decreased. On the other hand, if the agreement of preldicte actual reduction
is good, the trust-region may be enlarged in order to speembopergence.

In a line-search strategy on the other hand, QP (7.15) isedoiw every iteration
without additional constraints, and a suitable step sizéaonping factora' € (0, 1]
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Infinite dimensional
optimization problem

Nonlinear MHE problem

V Structured NLP

Integration and
sensitivity generation
(Finite dimensional
optimization problem)

SQP Gauss-Newton
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constraints
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(Solve structured NLP) interlor-polnt or
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Figure 7.2. Solution strategy for continuous-time nonlinear MHE peshk: (a) flowchart for
a multiple shooting strategy, (b) hierarchy for an Seq@ruadratic Programming strategy
with active-set or interior-point method and structur@leiting KKT solver.

is chosen such that for the next iterate! = 7Z + a'AZ sufficient decrease of a merit
function is obtained. Hence, after computing the searchction the step size can
be obtained by solving a one-dimensional optimization fob(in a). However, in
almost all implementations the step size is computed ajmiately by backtracking
as it does not make sense to aim for an exact solution to agmoWich is only an
approximation of the real (nonlinear) problem. The choitmerit function is crucial
for fast convergence. A merit function which is affine ineari and has been found
to yield excellent convergence performance in difficult laggtions [24, 41] is the
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natural level function

A = 3(Z)'F©@l3 (7.16)
with
F1(2) (2)
F=|R(2|, J2=|Xk2)]. (7.17)
Fs(2) J(2)

The natural level function will be used for globalizing cengence in the numerical
examples presented below.

Calculating derivatives

The succesful convergence of the multiple shooting methdépending on the avail-
ability of accurate function evaluations and derivativ&¥ith the development and
increasing application of automatic differentiation ®alccurate first and second or-
der derivatives can be generated [18]. We use the publicifable set of integration
routines of ACADO [99]. The ACADO integrator package coisisf several Runge-
Kutta and a BDF integrator which allow the simulation ands$@rity generation for
ODE and DAE systems based on internal numerical or autordif@rentiation.

7.3.3. Arrival cost updates

As discussed in Chapter 1, a popular strategy for computingpgoroximate arrival
cost is to use a first-order Taylor expansion around thedtajg of past estimates.
This is equivalent to applying an EKF recursion for the caeee update. The
smoothed update linearizes around the current best estioudtapplies a correction
to the state prediction in order to prevent accounting fensoneasurements twice.

The covariance update is given by the standard EKF updateular(2.75) using the
following first order derivative matrices around the cuttrbast estimate

Cenitks ANtk GroNriik (7.18)

The state update can be derived by linearizing around themtsest estimatg_n 1k
and relating it to the filter estimatg_n.1x—n- This was done in [117] and is pre-
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sented here for compactness of presentation.

h(x) =~ h(4ntak) +Cengak (X—Xe-n1k) (7.19)
= h(Xn1k) + Ceongak (X— Xe-n1k)
+Ci N+ 2k (KN4 2keN = XN 1k-N) (7.20)
= (% Ns1k) + G Nk (KNG 1N — X N1/k)
+Ci N1k (X = XN+ 1k-N) (7.21)

Hence the constant term in the linearization is

h(% N 1ik) F CieNor 1k (KN 2k-N — Xk N--1/K) (7.22)

and the state update is given by

ReN+1 = AN RNk N T K(=Yken+
AN (X-Nt1jk) + Cio N1k kN4 1k—N — Xk—N+1jk)) (7.23)

whereK is the gain matrix, see Eq. (2.76), calculated around theeotibest estimate
(7.18).

A major advantage of using Riccati-based methods at the @oam SQP strategy
for NMHE is that the arrival cost updates are obtained as arabhbutcome of the
solution process. That is, the matrix Riccati recursion patas covariances around
successive trajectories and the covariance update (B2¥)tained as the forward
second order matrix associated with the second withinzoorstate. The state update
is obtained by applying the above described correctionécsttond state calculated
by the forward vector recursion, see Figure 3.1.

Although this arrival cost update is only locally valid anda@hrds constraints. It often
provides a reasonably well approximation and yields a perémt MHE estimator. If
this is not the case, and poor estimator performance or girere is encountered,
which may be due to plant-model mismatch or highly nonlirdgaramics, then an in-
crease of the horizon length and/or omitting of the arriestderm solves the problem
in many practical cases. Other people have looked at betigalacost approxima-
tions,e.g.using a particle filter [153].

7 4. Application of MHE based NMPC to normalize glycemia of
critically ill patients

In this section the clinical ICU dataset that is used for tegigh and evaluation of the
control system is described. Next, the considered patieiaiis described, followed
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by a short description of the NMPC control strategy. Findte results of numerical
simulations are discussed.

7.4.1. Tight glycemic control in the Intensive Care Unit

Hyperglycemia (i.e., an increased glucose concentratidhe blood) and insulin re-
sistance (i.e., the resistance of the glucose utilizingutis to insulin) are common
in critically ill patients even if they have not had diabebefore and are associated
with adverse outcomes. Tight glycemic control (between®® HLO mg/dl = target
range) by applying intensive insulin therapy in patientméted to the medical and
the surgical Intensive Care Unit (ICU) results in a sped&cteduction in mortality
and morbidity [179, 181].

Currently, ICU patients are treated through a manual angtoigs administration of
insulin [180]. In literature several physical models thasdribe the glucose dynamics
and the insulin kinetics of healthy and diabetic subjeatsused for glycemia control
simulations in ‘mathematical’ diabetic (type ) patienésd., Hovorka et al. [101],
Parker et al. [141, 142], among others). Analogously, wetwardesign a semi-
automatated control system for glycemia control in the ITbis system could reduce
the workload for medical staff and could also introduce thesgmia normalization
concept in hospitals that are currentigt making use of the manual intensive insulin
protocol [180], world-wide leading to a possible furtheduetion of mortality and
morbidity [184].

7.4.2. ICU Dataset

A set of real patient data is used to evaluate the NMPC costrralegy with state and
disturbance estimation. The dataset is extensively de=strand discussed in [182].
It contains data of 19 adult critically ill patients who weadmitted to the surgical
ICU of the University Hospital K.U. Leuven (Belgium) for anety of reasons. The
data comprises recorded near-continuous subcutaneocssgllevels, more specifi-
cally three-minute-averaged values, as well as the adtaneis flows of carbohydrate
calories and insulin. In our setting, the Glucoday systemN&narini Diagnostics,
Florence, Italy), a portable instrument provided with amipump and a biosensor,
coupled to a microdialysis system, was used to measuretlegg concentration (see
[182]).

We want to point out [182, 185] that a near-continuous glacEnsor device is cur-
rently not standard practice in the ICU and was only usedHir $tudy. In current
ICU practice, the used protocol [180] requires blood glectevels to be measured
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every four hours, or more frequently, for instance in thei@dhiphase or after com-
plications, and is done by blood gas sampling using the ABchite (Radiometer,
Copenhagen, Denmark). This method of measurement wassdsdar retrospective
sensor calibration of the the near-continuous sensor (&#) Thus, for practical
application of a control system in a semi-automated settimg frequency of blood
glucose measurement and adaption of insulin rate shoulddbeated. In this chapter
we consider two realistic frequencies: once per hour ané pec four hours.

In this chapter the observed near-continuous glucose tgatate used for estimat-
ing the model and for comparing the MPC proposed controbastivith the control
behavior of a trained nurse.

7.4.3. ICU Minimal Model (ICU-MM)

The presented model structure originates from the knmivimalmodel that is devel-

oped by Bergman et al ([13]). In ([183]) the original mininmbdel was extended to
the ICU minimal model (ICU-MM) by taking into consideratisome features typical
of ICU patients. The new model was also validated on a réaElinical ICU data set.

The ICU-MM is presented as follows:

dfj_f) — (Pl—X(t))G(t)—Ple—i-\F/—g—i-FM, (7.242)
P — R (1) + B(1a(t) 1), (7.24)
Wl _ g max0,1z) — (1) 1) + - (7.24¢)
T2Y gy (60) -1 i) (7.240)

whereG and |4 are the glucose and the insulin concentration in the bloadrpé.
The second insulin variablé;, is a purely mathematical manipulation such that
does not have any direct clinical interpretation. The J@daX describes the effect
of insulin on net glucose disappearance and is proportimelsulin in the remote
compartmentGy andly, are the basal value of plasma glucose and plasma insulin, re-
spectively. The model consists of two input variables: titeavenously administered
(exogenous) insulin flowH) and the parenteral carbohydrate calories fl&g)( The
glucose distribution space and the insulin distributiofunte are denoted a4 and
Vi, respectively. There is an unknown disturbance input tregacribe to adminis-
tered medicationRy) and which directly influences the glucose concentratidms T
to the MPC unknown input could also account for other unkndisturbance factors.
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The coefficientP; represents the glucose effectiveness (i.e., the fradtidearance

of glucose) when insulin remains at the basal leflandP; are the fractional rates
of net remote insulin disappearance and insulin dependerease, respectively. The
endogenous insulin is represented as the insulin flow thratéssed in proportion (by
y) to the degree by which glycemia exceeds a glucose threghath. The time con-
stant for insulin disappearance is denoted.al case glycemia does not surpass the
glucose threshold levél the first part of 7.24c (that represents the endogenoubrinsu
production) equals 0. In order to keep the correct units, dditemnal model coeffi-
cient, 3 =1 min, was added. Finally, the coefficiemtamplifies the mathematical
second insulin variable.

The units of all used variables and parameters and theialimibefficient values are
represented in Table 7.1.

Table 7.1.States, inputs, patient features (constants) and pareswétde ICU minimal model.
States Units

G mg/dl
X 1/min
I1 uU/mi
lo uU/mi
Inputs Units
R uU/min
Fo mg/min
Fwv mg/dl/min
Patient Units Value
features
Ve dl Dep. on body mass
\Y/ ml Dep. on
Gp mg/dl Basal glycemia
Ih pu/ml Basal insulin
Parameters Units Valué)
P 1/min -1.31102 @
P 1/min -1.35102 (@)
Ps ml/(min®pU) 2.90106 @
h mg/dl 1361
n 1/min 0.130
a 1/min 3.11
B min 1

LY di
y % 5.36 103 (1

=

) As initial value for the model estimation process, the mean
model coefficient values for the obese - low glucose tolexgre:
tient group (described in [13]), are used.
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7.4.4. Smoothing of discontinuities

The nonlinear model (7.24) contains a discontinuity in tberf of amaxterm. In
order to avoid problems of differentiability thmaxterm was smoothed using expo-
nential smoothing m&x, 1) ~ sIn(1+ exp('—g)) with a smoothing parametse= 0.1.

7.4.5. Closed-loop nonlinear control system set-up

The complete closed-loop control system is depicted infl@igu3. Its components
will be described in detail in this section. A nonlinear doobus-time system model
is assumed (1.1). That is, the system is described by a seatrdihear index-one
ordinary differential equations of the form

X(t) = f(x(t),u(t),w(t),d, p), (7.25)

wherex are the differential states) the inputs,w the system noise accounting for
modeling errorsd the unknown disturbances andthe set of free parameters. We
will also allow bounds on the variables

Xmin < X(t) < Xmax,
Umin < U(t) < Umax
Wimin < W(t) < Wmax,
dmin <d < dmaXa
Pmin < P < Pmax-

The measurement data are generated as

Yk = h(X(t)) + Vk, (7.26)

wherevy represents measurement noise (sensor noise) and theiptiBsadicates
the fact that measurements are obtained at discrete tirtaniss

Thus, the disturbances that enter the closed loop systefecanmmarized as

1.  process noise, which is usually assumed to be zero-mean random noise but in
the MHE-setting can also be regarded purely deterministiscainded optimi-
zation variables with the only assumption that zero is doethin the feasible
set,

2. unknown model disturbanakwhich is assumed to be slowly varying. In the
presented application the unknown disturbance reprefiemtffect of medica-
tion, to which we assigned a typical realization and whichassumed to have
direct influence on the glycemic level,
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3. sensor noise which we will assume to be normally distributed with mearozer
and known covariance matrix,

4, unknown initial states, disturbance and parameters. Weassume that ex-
pected values for the states, disturbance and paramegery(and po resp.)
are given as well as the corresponding covaridRceAfter a transient, the ef-
fect of the initial conditions usually diminishes and théireates converge to
the true values provided that the measurements contaigisuifinformation.

Disturbances

l Sensor noise

Uy, . Y
Controller Patient

Ttk
Utk
T

Estimator

Target

calculation z)

Set point
Figure 7.3.lllustration of the closed-loop control scheme.

7.4.6. Target calculation

The goal of target calculation is to find a steady state of thged loop system and a
corresponding input that yields the output at the set pdihis is an inverse problem
that can be formulated as an optimization problem. Due t®tramts or nonlineari-
ties it might occur that no steady-state targets can be feongsponding to the set
point. In that case we require the output target to be thesstosutput to the set point
for which a steady state exists. If there are multiple stestdtes satisfying the out-
put set point, the one that is closest to the previous inpgetds selected. At each
time instant a new target must be calculated to account fangimg parameters and
integrated disturbances.

We formulate the target calculation as the following op#ation problem (see [172])
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_ 1 .-
min EnTQnﬂfn

X (to).u(to).n
+ %(u‘ (to) — U (t_1)) TR(Ut (to) — U'(t_1)) (7.27a)
subject to
X (to) = f (X (to), U (to),d, p), (7.27b)
h(X(to)) — N < yser< g(X (to)) + 1, (7.27¢)
Umin < U (t0) < Umax, (7.27d)
Xmin < X (t0) < Xmax, (7.27e)
n=>0o. (7.27)

Hereu'(t_1) is the input target calculated in the previous time stepsTéian exact
penalty method ([61, 147]) which relaxes the problemlip/h% sense if the set pointis
infeasible by introducing thslack variablen. In generalgis chosen to be relatively
large and strictly positive and boandR are positive definite. By shifting the state
and input targets, the target calculation accounts for nirglerror and adjusts the
model to remove offset from the closed-loop system.

7.4.7. Model predictive control

Given the current state, disturbance and parameter estxiag), d, p of the system
at timetp, NMPC predicts the future dynamic behavior of the systent averizonT
and determines the future inputs such that an open-loopeaice objective func-
tion is optimized. Due to disturbances and/or model-plaistmatch the true system
behavior is different from the predicted behavior. Therefan order to incorporate
feedback, only the first of this optimal input sequence idiaggo the system. When
a new measurement and new estimates are obtained the haigbifted and the
previous steps are repeated.

The use of Model based Predictive Control to normalize gtyiegn the ICU allows to
take into account the effect of current and future controvesyi.e. insulin dosing, on
the future outputse. glycemia. For medical reasons the maximum insulin infusion
rate (i.e., the control input) is 50 U/hr. In addition, then@distered insulin flow is
obviously constrained to be positive.
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The open-loop optimization problem addressed in NMPC is

_ 0T
min [T RO + ) ot (7.282)
subjectto X(tg) = X(to), (7.28b)

X(t) = f(x(t),u(t),d, p), (7.28¢)
c(x(t),u(t),d,p) >0, t€ fto,to+T]. (7.28d)

Here X(t) = x(t) —x' andu(t) = u(t) — ut with x* andu' the target state and input
determined by the preceding target calculation. This apgiicof penalizing devia-
tions from target states and inputs provides integral ébffeee) control. In order to
guarantee theoretical stability of the MPC controller, sheuld add to the above for-
mulation either a terminal constraint, or a terminal costhath. We implemented a
terminal constraint but it was found that in order to achiguaranteed theoretical sta-
bility the control performance was deteriorated. Otheb#ityg measures are currently
being investigated. For a detailed treatment of stabiligory for NMPC, we refer to
the excellent textbook by Rawlings and Mayne [152].

Move blocking

A rule of thumb in control theory (and practice) states tihat dutput should be sam-
pled fast enough to capture all the important system dynan@ften, however, the
inputs are allowed to change only at a lower rate. In suchscagegration time in-
tervals for the state-space model are taken as short assaggaghile the inputs are
blockedduring several time intervals. A strategy fmove blockingf the inputs was
added to the MPC formulation. For the glycemia control peobl integration time
intervals of 5 min and a future horizon dfnpc = 240 min are used, while the insulin
flow input is allowed to change only every 60 min. This speatifian is imposed by
the medical staff for clinical validation reasons.

7.4.8. ICU-MM parameters

The model has been described before and units of state lesjabputs and param-
eters are given in Table 7.2. The used parameter values esented in Table 7.2.
These values result from an estimation process applieddaldife data set of 19 criti-
cally ill patients as described by Van Herpe et al [185]. Tammeter and state values
after the first 24 hour estimation for an arbitrary patientevehosen. Proceeding in
this way the control system could be assessed using a reglisameter realization.
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Table 7.2.Units and values of the parameters applicable in the ICU mmhimodel. These
values result from an estimation process applied to a rieadthta set of 19 critically ill patients.

Parameters Units Value

Vo dl 116.8
Vi ml 8760
Gp mg/dl 95
Ip puuU/mi 10.7
P 1/min -1.71 102
P 1/min -2.24 102
P3 ml/(min’uU) 25103
h mg/d| 107.4
n 1/min 0.2623
a 1/min 0.35
B min 1
U di
y e 1.4001 10%

I I I I I I | I
100 200 300 400 500 600 700 800

L I ! I ! L 1
0 100 200 300 400 500 600 700 800

Fyg (mafdi/min)
°
& N
T T

=3

! ! ! | L I
100 200 300 400 500 600 700 800
t(min)

15}

Figure 7.4.The top panel shows the evolution of the simulated glyce@weith added sensor
noise (solid line) and the target range of-8210 mg/dl (dashed lines). The flow of the carbo-
hydrate calorie$ (second panel) is the known disturbance factor whereasthéin rater
(third panel) is the insulin sequence that is proposed by Mé&@roller. A fictitious medication
disturbance factofy (that is unknown to the MPC) is visualized in the bottom panel

7.4.9. Results and discussion
Closed-loop control performance

In Figure 7.4 the simulated glucose course with added measent noise and the ad-
ministered known and unknown input flows are illustrate@r@tg from a high initial
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blood glucose concentration, the closed-loop controlksyds able to regulate to the
normoglycemic range (80 110 mg/dl) in a considerably short time span by admin-
istering a still clinically acceptable insulin flow. The MR®©ntroller was precisely
tuned to obtain both good control performance and clinicaleatability. Further-
more, the control system is able to suppress the unknowarestce input. When the
rather large disturbance (i.e., medication) enters, thiegghic level is raised into the
modestyperglycemic range, after which the insulin flow is adjdsted the glycemic
level is steered to the normoglycemic range again. Furtheaslight hypoglycemic
event occurs when the large disturbance suddenly dropss rékult shows the po-
tential of the proposed control system to normalize the thiglncose exploiting the
nonlinear model dynamics and taking into consideratiomaemkn disturbance factors
that are omnipresentin the ICU.

Moving horizon estimation

In Figure 7.5 the courses of the four states and their estisnate depicted as well
as the unknown disturbance and its estimate. The measutgencorrupted with
zero-mean random noise with standard deviation 7.5 mg/dl. For the estimator a
time horizon ofNmhe = 5 min was employed. The true initial state of the system was
Xo=[207 580 0.0005 149 (see Table 7.1) while the estimator was initialized
with X = [180 20 0 q) Despite this rather large initial error a fast convergence
to the true state values could be obtained leading to a minimpact of initial error

on the closed loop performance. Furthermore, also the umkmlisturbance could be
perceived with reasonable accuracy from the output measemts.

Target calculation

Figure 7.6 shows the target input (insulin flow) and the cgpmnding optimal input
computed by the MPC controller. The target input is influehlog the estimated un-
known disturbance input and (less noticeable) by the cimancarbohydrate calories
flow. The MPC computed input is expected to track the big ckargj the target but
not the fast fluctuations, which is reasonably well achieageadan be seen from the
figure. The effect of move blocking can be seen when a changfeeimfluencing
parameters occurs, for example at time instants360 min and = 665 min a sud-
den change in the unknown disturbance occurs, which is tetéestimated) shortly
thereafter. Due to move blocking of the input the controltenot able to instantly
react to these changes, leading for instance to a short hygeygic event around time
t = 750 min (see Figure 7.4).
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Figure 7.5.The four top panels show the evolution of the true stategd o) and its estimates
(dashed line). The bottom panel shows the true (solid lind)estimated (dashed line) unknown
disturbance input.
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Figure 7.6.Evolution of the computed target input (dashed line) andtstenal input proposed
by the MPC controller (solid line).

7.5. Conclusions

In this chapter nonlinear MHE algorithms were discussedpdrticular, a multiple
shooting Gauss-Newton SQP type algorithm was presentetfdinear MHE, using
at its core the efficient MHE algorithms presented in the joes chapters.

MHE based MPC was proposed as a control strategy for regglttie blood-glucose
level in critically ill patients at the Intensive Care Unif.he moving horizon esti-
mator accurately estimates the true states from noisy outasurements of the
blood-glucose. MHE is able to recover quickly from a wrongi&h guess of the
state vector. A target calculation is proposed to removeffet of disturbances and
changing parameters. The ability of the closed-loop cdsirstem to regulate to the
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normoglycemic range in a short time span and to suppreasrb#sices is shown for
a realistic disturbance realization. The proposed corslystem shows potential for
application to glycemia regulation in the ICU. Future ra@shas directed towards in-
vestigating other patient models in a closed-loop contmaitegy, see [27, 186] for
prediction performance comparisons of several patientetsodn addition, we aim

to further investigate the robustness of the methods uniffereht scenarios as well
as the impact of data quality. If these further steps areesstal, the control strategy
may be proposed for clinical trials at the ICU in the near fatu
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CHAPTER

General conclusions and outlook

The framework of MHE allows incorporation of first-princgd dynamic models and
constraints and permits flexibility in the objective fumets. This provides an un-
precedented potential for real-time state and parametienason. However, it also

presents many computational challenges. In this chapgesummarize our contribu-
tions and present suggestions for future research.

8.1. Conclusions

The optimality conditions simply reveal the structure aphmetry inherent in MHE
problems. They are due to the Markov property of the dynanodefs and the sym-
metric objectives. These properties are also fundameattid recursive solution
provided by the celebrated Kalman filter. In this thesis, wel@t the structure and
symmetry by using exactly these recursive methods for sglthe systems of KKT
optimality conditions. Since MHE considers a past windovdafa this corresponds
to a smoothing problem. In Chapter 3 Riccati based methods derived from de-
composition of the KKT system. In particular a square-ragsion using numerically
stable orthogonal operations was proposed as a robustfigidmfmethod for solving
MHE problems.

Constraints can be imposed in a natural way, leading to giagrrograms which can
be solved using either interior-point or active-set method

In Chapter 4, interior-point methods were investigateds hown that the log-barrier
terms enter on the block diagonal of the KKT system and thepeéserve the struc-
ture and symmetry. More specifically, the barrier termsrdatie measurement update
step and constraints can be interpreted as perfect measotenirhe Riccati based
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methods are modified to account for these terms. Severas typeonstraints were

considered: mixed or separate, general or bound congralbhtwas demonstrated
that an intelligent initialization can significantly reduithe number of iterations re-
quired for convergence. In this context, a hot-startingtstyy was proposed. It was
shown that in a primal barrier interior-point method theri&rHessian of an actively

constrained variable grows logarithmically as the comstsaare approached. This
directly yields a logarithmic growth of the condition nunmlzd the matrices in the

recursions. This strongly motivated the use of the squao¢version of the Riccati

based method within an interior-point MHE method. A C impéattation demon-

strated the performance of the square-root algorithm. K& wlown by numerical

examples that the method can be run in the milisecond rangestamdard computer
for moderate horizons.

In Chapter 5, a Schur complement active-set method for MHE pvasented. The
method was motivated by the observation that for MHE tyycal small number
of constraints is expected to be active at the solution. foee, it uses the uncon-
strained MHE solution, which is efficiently computed by Ritidased methods, as a
starting point. By projecting onto the reduced space of/aatonstraints a small non-
negativity constrained QP is obtained. If a square-root&icmethod is used, the
Hessian of this reduced QP is computed by partial forwardesol The Schur com-
plement method allows for multiple updates to the activepsetiteration. Between
active-set iterations the Hessian and gradient changelpniddition constraints to
the working set. This is because constraints are only adu@detvent cycling. The
proposed method exploits these Hessian changes by apply@itmplesky downdate.
In order to solve the reduced non-negativity constrained,@Pgradient projection
method is proposed, consisting of two stages per iteraid@auchy step and a pro-
jected Newton step. The projected Newton step uses the §kyofactorization of
the Hessian and applies Cholesky updates during the @esatiThe solution to the
reduced QP is expanded by a Schur complement technique @euftee primal and
dual variables. It is demonstrated that the method typiaadleds only a few active-
set iterations. C implementations demonstrated the peegoce of the novel Schur
complement active-set method for MHE.

The MHE framework offers great flexibility in the problem foulation. Not only
can constraints and nonlinear dynamics be imposed, bunalscstandard objectives
can be considered. The aim of Chapter 6 was to show that cextavex formula-
tions may be more adequate than the least-squares forowfati certain problems
and can still be solved by efficient Riccati based methoduRibpenalties such as
the /1 norm and the Huber penalty were investigated in the conteMIleE with
the aim of improved robustness with respect to outliers. dswoncluded that the
Huber penalty MHE formulation provides a performance inveroent in case of out-
lier contaminated data while preserving the performanabefstandard formulation
when the frequency of outlier occurance is rather low. A selcconvex formulation
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investigated in Chapter 6 concerned the joint input andegatimation for systems
with piecewise-constant or piecewise-linear inputs. khewn that this problem is
best formulated as a cardinality problem which can be sabyealsequence of convex
MHE problems. More specifically, it concerns &nnorm MHE problem and subse-
guent modifications which can be solved using dedicatedaRibased methods. The
performance of the methods is shown through numerical sitiuls.

The developed quadratic MHE methods can be used for nonliéte (NMHE)

in an SQP algorithm. In Chapter 7, a NMHE method is investidaising multi-
ple shooting and a constrained Gauss-Newton method. A radjmntage of using
Riccati-based methods at the core of an SQP strategy for NMittat the arrival cost
updates and final estimate covariance are obtained as ahatitcome of the solution
process. The NMHE method is demonstrated on some numexiaai@es. Finally,
the application of an MHE based predictive control strategyegulate the blood-
glucose level in critically-ill patients at the intensivare unit was investigated. It was
demonstrated that the moving horizon estimator accurastiynates the true states
from noisy output measurements of the blood-glucose andlésta recover quickly
from a wrong initial guess of the state vector. A target cltian was proposed to
reduce the effect of disturbances and changing paramé@tkesability of the closed-
loop control system to regulate to the normoglycemic ramge $hort time span and
to suppress disturbances was shown for a realistic distedbeealization. Despite
model imperfections and large intra and inter patient \alitg, the proposed control
system seems applicable for normalizing glycemia in the BZId will possibly be
tested in real-life circumstances in the near future.

8.2. Future work

8.2.1. Sum-of-norms regularization

Recently, another generalization &f regularization for state smoothing was pre-
sented by Ohlsson [138]. Their (convex) formulation beasemblances with the
cardinality formulation proposed in Chapter 6 for MHE withrapt input changes.
Furture work will be directed to compare both approachesueacy and computa-
tional efficiency.

8.2.2. Emerging applications: fast and large-scale systems

The development of fast and robust methods creates a neutifpbpportunities to
expand the application scope of MHE and MHE based NMPC.
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One emerging field of applications concefast systems.e., operating at a sampling
rate of 1kHz or more. Applications are in mechatronics, endtive, power electron-
ics, aerospace, and many other areas. In this thesis the feasi on fast structured
methods for MHE optimization problems. Further progressgatals ultra fast NMHE
methods can be made by developing dedicated integratidines since the inte-
gration and sensitivity generation is the most time consignsiep in the current im-
plementations. One promising direction for such a fast cstdd ODE/DAE solver
could be an explicit Runge-Kutta scheme with limited nundfestages or with a grid
adapted to the measurements. Finally, automatic code agmeand implementation
on embedded hardware.g. FPGA or DSP, will further reduce computation times and
widen the application scope.

On the other side of the spectrum daege-scale systemse., with system orders of
10,000 to one million or larger. Here applications arise fotamgee in process indus-
try, and in forecasting andowcastingof weather, oceans, climatology and ecosys-
tems. While Riccati based methods are well-suited for stoafiedium scale systems
and large horizon lengths due to their linear scaling withizom length, they become
intractable for (extremely) large-scale systems due tw thibic scaling with the sys-
tem order. In this case, other structure-exploiting MHE moels should be developed.
One possibility is to use preconditioned conjugate gradieethods. If the system
dimensions are such that even a single state covariancetharstored, one could
resort to reduced rank Kalman filter recursions or Ensemidlenién filter type meth-
ods. However, the question arises if there is a benefit inguaitarger windowj.e.
MHE versus Kalman filtering, if @rudeapproximation to the full state evolution is
made. Mostly, however, the large system dimensions stem &aliscretization of
partial differential equations. Therefore, instead otdisizing first and applying ap-
proximate methods or model reduction methods in order toentlad large discretized
system tractable, a better compromise is probably foundmulsaneous discretiza-
tion and optimization methods such as collocation with aapéide grid. Also here,
preconditioned conjugate gradient can be used to solve filimiaation problems.
PDE constrained MPC is an active research areag $pfL23].

8.2.3. Decentralized and distributed MHE

Decentralized or distributed MHE can also provide a sotutmMHE for large-scale

systems, but its scope is broader. It is especially usefehwithen there are different
time scales into play. The fast dynamics can be considersmail scale estimation
problems using fast MHE methods implemented on embeddeesgswhile slower

time scales can be handled on a higher hierarchical leved.t@pic is being actively

researched [53, 54].
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8.2.4. Interaction between MHE and MPC

Although in reality the state of a dynamic system has to henes¢d based on output
measurements of the system, an MPC controller typicallyrass that the current
state is known exactly at all times. The MPC controller isigiesd assuming exact
state information after which in reality it is then connette a state estimator. When
one uses an LQR controller combined with a Kalman filter omgprave that stability
and optimality is preserved. However, due to the nonlinesumre of MPC controllers,
this property does not hold anymore and one has to explikg into account the
estimation errors. This methodology, called output fee#tdPC, has received some
attention in recent years [60]. but the existing resultscanly valid for rather restric-
tive settings. A future research direction could be to edtére existing results of
output feedback MPC towards MHE based MPC. The interact&wéen MHE and
MPC goes in two directions:

I Extension of the MPC algorithms to include the MHE estimaterror. Instead
of one current state a set of possible current states is uskd eobust MPC is
applied to this set. The set of states can for example be ddfinthe covariance
of the state estimate possibly restricted to a feasible set.

Il MPC algorithms that yield improved future state estinsat@ecent results [100]
show that it is possible to consider this interaction in tlesign of MPC con-
trollers. When current estimates are uncertain, the syssepnobed in a di-
rection where the uncertainty is present so as to improvetiadity of future
estimates. Researchers have already looked into thedetgies of simultane-
ous regulation and model identification [65] and adaptivetied, however, for
the combination of MPC with MHE the topic is nearly unexpkbegpart from
[100]. We believe this combination could lead to very streesults although
finding formal proofs of asymptotic stability of the closkmbp system in the
presence of constraints can be very difficult.
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APPENDIX

Simplification of Riccati methods
for case H =0

In Chapter 3 we presented Riccati based methods for a gelii&l formulation
(3.1),i.e. with H # 0. If Hx = O for all k, there is nanixingbetweerx andw and the
Riccati recursion involves covariances of ordiex n. In this case the algorithms can
be simplified.
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A.1. Normal Riccati based method

A.1. Normal Riccati based method

If H =0, theLU decomposition (see Lemma 3.2.1) modifies to

,l -
P0+ 1
Q
A G P
o o0 -1 P
L =
—1
PN 1
Qu-1
An-1 Gnor —Ph
I 0 0~ R
[Ih 0 PR A] |
Im QOGE
Pt
lh 0 PLA]
Im QiG]
U =
In PN,;HAL71
Im  On-1Gl_;
In Pyt
In

The algorithms can be modified accordingly.

Algorithm 1 (b). [Riccati recursion, case H= 0]

1. Initialization: B
2. Fork=0,...,N—1:
a) Measurement update step
R =P~ RC] (R+GRCT) " GR
b) Model forwarding step
Per1 = AP AL+ QG
endfor.
3. Final time step:

a) Measurement update step

A =P — AVGT (Ru+ CuAVCT) ~ OnAy
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Simplification of Riccati methods
for case H=0

Algorithm 4 (b). [Forward vector recursion, case kE: 0]

1. Initialization:

X = X—X
2. Fork=0,....N—-1

X = %—RCl(R+GACT) " (G+hy)
Wk == —W_k

Re1 = it A+ Giwg

endfor.

3. Final time step:

!

X = n—PCT(Ru+CuACT) " (Cukn+ )

Algorithm 5 (b). [Backward vector recursion, case H 0]

1. Initialization (k= N:

XN = XN

AN-1 = C&(RN+CNPI\IC1N—)71(CN)A(N+hN)

2. Fork=N-1,...,1:

We = W~ QGIA

X = X P AN

M1 = AAHCT (R GRGT) ™ [Celf— PATAK) + hil
endfor.

3. Final step (k= 0):
wo = wo—QuGdAo
X = X—PoiASho
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A.2. Square-root Riccati based method

A.2. Square-root Riccati based method

Also for the square-root Riccati method, the algorithmsloasimplified ifH = 0. In
this case thé factor of theLDLT decomposition (see Lemma 3.2.5) modifies to

w,t
AOs(T)+ GOWOT SI
o o -s' st

1
S
A1 Gn-Wip S|
0 0 St S

And the algorithms are adapted accordingly as shown below.

Algorithm 6 (b). [Square-root Riccati recursion, case H 0]

1. Initialization: $

2. Fork=0,...,N—1:

a) Measurement update step
Compute QR-factorization:

s o @ g

with RE = (Rk+CkF1<ClI)*1/2 andKy = RC/Re.
b) Model forwarding step
Compute QR-factorization:

T X § .
[S‘V\XGALT( ] = [Qk+1 Qk+1} {Skg l}

endfor.

3. Final time step:

a) Measurement update step
Compute QR-factorization:

VN - ~ (N )71 KT

[chﬁ SN][Q“ QN]{REO Sus

with F:),e\l = (RN —I—CNPNCN)%L/Z andKN = F’NC,T,IQ,‘;‘,
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Simplification of Riccati methods
for case H=0

Algorithm 7 (b). [Square-root forward vector recursion, case=-0]

1. Initialization:

X = f— Ku(R)T(Ceke+hy)
W;( = fVVk

Rt 1 fu+ AkX;( + GKWL

endfor.

3. Final time step:

!

Xy = fn—Kn(RR)T(Cnsn -+ hw)

Algorithm 8 (b). [Square-root backward vector recursion, casesH]

1. Initialization (k= N:
XN = X;\l

Ao = CURR(RR)T(Chsn+h)
2. Fork=N-1,...,1:

We = W — W WGEA
X = XL—31—+S(+AIAK
Mer = A+ CIRRRDT [Ci(R— SESACAK) + i
endfor.
3. Final step (k= 0):
Wo = Wo—WgWhGhAo
X0 = ij_SngS(HAgAO
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APPENDIX

QR factorization methods

This appendix considers QR factorization based on Houdehmdflections and Givens
rotations. Both methods are known to have excellent nurakyiproperties: both are
stable. The Givens QR method is about twice as expensiveedddbseholder QR
method, but can be more selective in zeroing elements ahéiisfore generally used
or recommended for sparse matrices [66].

B.1. Dense QR methods

The QR factorization of a rectangular matAxe R™" with m > nis given by

A=(Q Q) (E) | (B.1)

with Q € R™", Q, € R™ (™M orthogonal andr € R™" triangular. IfA has full
column rank, then the columns @& form an orthonormal basis for the range space of
A. This computation is typically done by Householder or Géansformations or
by Gram-Schmidt orthogonalization. Here only Househotohet Givens QR methods
are discussed because numerical stability is guaranteetdee methods while this
is not the case for (classical or modified) Gram-Schmidt.

B.1.1. Householder QR methods

A Householder reflectiois a symmetric and orthogonal matkk= | — Bw', where
b is a scalar and/ is a column vector of lengtih. Applying H to any vector of
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B.1. Dense QR methods

length n takes about B flops compared to a general matrix vector product which
requires about 22 flops. Geometrically the operatiddx can be interpreted as a
reflection of the vectox through the plane with normal vectar The importance of
Householder reflections follows from the orthogonality éimelfact that by choosiniy
andv appropriately, the reflection can be used to zero selectegbonents of a vector.
The Householder reflection is a rank-one modification of tienfity.

The algorithm below, written in C, computes the QR factdi@a of A based on
Householder reflections.

Algorithm 9. [Householder QR.]

fork=1tondo

V= Acmk

p =max(|v|)

r=0

fori=1tom—k+1do
Vi =Vi/p
r=r-+Vvy

end for

if vi > Othen
o=\r

else
o=—Vr

end if

t=0ovi+r

B=1/t

Vi=Vi1+0O

Ak =—pO

for j =k+1tondo
=0
for i = k to mdo

I =1+ Vickr1Aij
end for
| =gl
for i = k to mdo
A=A Vil

end for

end for

end for

This algorithm requires abouf(m— §) = 2mr? — Zn? flops (formandn large). The
algorithm applies a preliminary scaling to avoid overflowotBl that the algortihm
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does not compute an explicit representatiorQofQ-less QR factorization If Q is
needed, it can be computed out of the vectors

B.1.2. Givens QR methods

A Givens rotation is an antisymmetric and orthogomaly n matrix

1 ... 0 -0 --- 0
0 c S 0 i
G(i,k,0) = :
0 -s c 0 k
|0 -~ 0 - 0 - 1]
i k

with ¢ = cog ) ands = sin(8) for somed (consequentlg? 4 s*> = 1). Premultiplying
a vector withG(i,k, 8)T can be interpreted as a counterclockwise rotation in(ithe
plane ove® radians. This operation requires abountf®ps. The Givens rotation is a
rank-two modification of the identity.

The standard Householder QR method proceeds by zeroingdhesets below the
diagonal column by column. The Givens method can be impléaden a row-wise
or column-wise elimination form. Both have instead beerfeared and used [129].
The column-wise strategy uses the same elimination ordesexin the Householder
method. The Householder and column-wise Givens methodllastrated in Fig-
ure B.1. Itis well known that application of a Householddiagtion or a Givens
rotation to a matrix with two rows yields identical resul&6| 69], which can be seen
from the figure.

The algorithm below computes the QR factorizatiodfased on Givens rotations.
Algorithm 10. [Givens QR.]
fork=1tondo

for j =k+ 1to mdo
if |Aj’k| == 0then

s=0
c=1
else if|Aj | > |Ack| then
t— _ Dk
= A
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B.1. Dense QR methods

| ]

@) (b)

Figure B.1. lllustration of QR factorization using Householder refiens (left) and using
Givens rotations (right).

1

S= i
c=st
else
= Ak
Ak
c=
VIt
s=ct
end if
Ak = CAck — SA k
fori=k+1tondo
X=CAcj —SA;;
y=SA+CAj;
Ai =X
Aji=Yy
end for
end for
end for

This algorithm requires abouin8(m— 2) flops (form andn large). The algorithm
guards against overflow. Note that the an@ldoes not need to be computed and no
trigonometric functions are required.
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Figure B.2. Numerical results for dense Householder (blue line) andef@v(red line) QR
methods on typical time update matrices of Riccati based Mkjgrithms,i.e. m+ n rows

with m= n andn columns, simulated with random data. Left: error versus Ioemnof columns.
Right: computation time versus number of columns.

B.1.3. Numerical results

We have implemented the standard Householder and Givens FRods in C and
simulated them on typical time update matrices of RiccagelladMHE algorithmg,e.
m-+ nrows withm= n andn columns. Numerical results were obtained for randomly
generated matrices sampled from the standard normakuliitint and averagedbver
500 repetitions. Computing times correspond to an Intee€dduo processor at 2.13
GHz with 2 MB cache and 2 GB RAM, and using the compiler gccioerd.4.5. The
results are presented in Table B.1 and Figure B.2. It candrefsem these results that
the Givens method is more accurate for small systems, ump=t@, for moderate or
large systems Householder is more accurate by about a faétoirhe Householder
method is consistently faster than the Givens method bytabtactor 2 as predicted
by the flop counts. The error of QR factorization can be comgity checking the
orthogonality ofQ, i.e. evaluating ||[Q"Q — I||2. Since this measure does not take
the error in theR matrix into account which is our primary concern, also theer
IQR—A||2 was calculated. We observed that the trends for both errersctually
very similar. In the figures only this error is shown.

1Using the random number generator from GNU Scientific Lip(@SL)

2The median was used rather than the mean in order to remosgshuriginating from processes
running in the background.

3The Frobenius norm was used for matrix norms throughoutthesnerical simulations
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B.2. Structured QR methods

Table B.1. Numerical results for dense Householder and Givens QR rdstho typical time
update matrices of Riccati based MHE algorithires, m-+ n rows withm = n andn columns,
simulated with random data.

avg time avg error avg error
(s) IQTQ—1]2  [|QR-A|2
Householder 1,00E-06 2,75E-16 5,78E-16

n=ms=2 Givens 2,00E-06 1,19E-16  2,45E-16
Householder 2,00E-06  4,64E-16  2,62E-15
n=m=5 Givens 5,00E-06 3,81E-16  2,10E-15
Householder 6,00E-06  6,86E-16  8,06E-15
n=m=10 Givens 1,90E-05 7,30E-16  8,75E-15
Householder 2,60E-05 1,08E-15 2,63E-14
n=m=20 Givens 8,60E-05 1,39E-15  3,51E-14
Householder 3,28E-04 2,12E-15 1,36E-13
n=m =50 Givens 7,73E-04  3,35E-15  2,19E-13

B.2. Structured QR methods

When applying direct methods to sparse systems, the faatarn process is usually

preceded by anrdering and symbolic analysjzhase. This phase typically involves
graph theoretical models to find optimal row and column ardgs and to construct

elimination trees. If the sparsity pattern is known in adsyit can be imposed during
the factorization proces and this preceding phase is amitte

Consider the QR factorization in the measurement updagedftéhe Riccati based
MHE algorithms investigated in this thesis

e+ o[% 7

Following the dense Householder QR procedure, large andepaatrices lead to
long and sparse Householder vectors . This can, howevdy, basvoided by sorting
the rows in such a way that rows with leading nonzero elenretité first column are
permuted first in the matrix,e. a staircase row ordering. This simple rule of thumb
can have substantial impact on the amount of intermediiea fiind work associated
with the QR procedure[39]. Sind& is upper triangular, applying the rule of thumb,
yields the following row-reordered fatcorization

2 o3

A R
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Figure B.3. Visualization of the block structure in the original matfoc the general case (left)
and for the casél = 0 (right).

Note that the R-factor is unaffected by the row re-orderifige sparsity pattern of the
matrices encountered in the Riccati based MHE algorithrdgscted in Figure B.3.
This row-reordering for the measurement update step is knowead to computa-
tional savings in the factorizations, see standard textbace. by Verhaegen and
Verduld [190] or Kailath et al [111].

Given a fixed column ordering, it is clear that columns in gahenust be elimi-
nated from left to right. Fill-in is otherwise introducedatready processed columns.
However, in some cases the sparsity pattern is such thabsetdumns are struc-
turally independent and it becomes possible to eliminaninorder, or in parallel.
This observation forms the basis of the multifrontal spap$e factorization meth-
ods [96]. Unfortunately, the matrices considered in thissth in general do not fall
into this class. It can be shown that, although the originatrix A is quite sparse
(see Figure B.3), the R-factor is in general not sparse. Mtleskess, the sparsity
can be exploited during the QR-iterations. Structuredigessof QR methods using
Householder reflections and Givens rotations have beeremmhted for the matrices
considered in this thesis and are compared in this section.

B.2.1. Structured Householder QR method

The row re-ordering can yield a substantial reduction inglsjmce the firsp itera-
tions deals shorter vectors and matrices. The zeros topfogkthe general case (see
Figure B.3) and the zeros due to triangularityfandW can be exploited in the first
iteration only for the structured Householder QR. After fhst iteration this spar-
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sity is destroyed. Nevertheless, for small systems theatémtuin operations can be
significant.

B.2.2. Structured Givens QR method

Similarly to the structured Householder method the rown@edng can yield a sub-
stantial reduction in flops for the firgt iterations for the structured Givens method.
The zeros top right for the general case (see Figure B.3) eaxploited during the
first n iterations. The zeros due to triangularity & andW can be exploited in the
firstiteration only. After the first iteration this sparsig/destroyed. The sparsity in the
matrices can be exploited more in the structured Givens oagtian in the structured
Householder method.

B.2.3. Numerical results

We have implemented structured versions of HouseholdeiGinens QR methods
that fully exploit the sparisty pattern in C and simulateethon typical measurement
update matrices of Riccati based MHE algorithms.

Again numerical results were obtained for randomly gereslatatrices sampled from
the standard normal distribution and averaged over 50Qitepes. Computing time
corresponds to an Intel Core2-Duo processor at 2.13 GHz2\MillB cache and 2 GB
RAM, and using the compiler gcc version 4.4.5. The resubpaesented in Table B.2
and in Figures B.4 and B.5 for the cade= 0 and for the general case respectively.
It can be seen from these results that also for these cas€svters method is more
accurate for small systems, uprio= 7, while the Householder is more accurate for
moderate or large systems. The Householder method is en8isfaster than the
Givens method by about a factor 2 as predicted by the flop souRtrrthermore,
the structured versions of the QR methods are consistessheif (apart from some
anomalies in the simulation results). The speed improveémenore pronounced for
large p. Note that the accuracy of the structured versions is idahto the standard
versions since the same operations are involved, only sp&®xploited. Therefore,
the developed structured QR methods are used throughsuh#sis.
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Figure B.4. Numerical results for structured Householder and Givensn@fhods on typical
measurement update matrices of Riccati based MHE algasifonthe caséd =0, i.e. n+p
rows andn+ p columns, simulated with random data. Left: error versusetisionn. Right:
computation time versus dimensianTop: p = 2; middle: p = n/2; bottom: p = n. Standard
Givens in solid red, structured Givens in dashed red, standauseholder in solid blue, struc-
tured Householder in dashed blue. Note that the error idiichdrior the standard and structured
method, since it involves the same computations excepsitpas exploited.
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Figure B.5. Numerical results for structured Householder and Givensn@ggghods on typical
measurement update matrices of Riccati based MHE algasifomthe general casee. n+
m-+ p rows andn+ m+- p columns, simulated with random data. Left: error versus ipemnof
columns. Right: computation time versus number of columreft: error versus dimension
n. Right: computation time versus dimensionTop: p = 2; middle: p = n/2; bottom: p =

n. We setm = n throughout. Standard Givens in solid red, structured Giviendashed red,
standard Householder in solid blue, structured Househahdgashed blue. Note that the error
is identical for the standard and structured method, sih@evolves the same computations

except sparsity is exploited.
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Table B.2.Numerical results for dense Householder and Givens QR rdstho typical mea-
surement update matrices of Riccati based MHE algorithmthfocaseH = 0, i.e. n+ p rows
andn+ p columns, simulated with random data.

avgtime  avgerror avg error
(s) QQ-1l2 [IQR-A|
Householder 1,00E-06 5,14E-16 8,14E-16

n=m=2 p=2 Givens 1,00E-06  2,29E-16 3,05E-16
Householder 3,00E-06 1,48E-15 3,42E-15

p=2 Givens 3,00E-06 1,07E-15 2,64E-15

n=m=5 Householder 4,00E-06 9,56E-16 2,80E-15
p=5 Givens 6,00E-06  6,16E-16 1,73E-15
Householder 6,00E-06 2,20E-15 7,36E-15

p=2 Givens 7,00E-06  2,01E-15 7,47E-15

n=m-=10 Householder 1,30E-05  1,47E-15 7,57E-15
p=10 Givens 2,40E-05  1,25E-15 6,46E-15
Householder 2,20E-05  3,51E-15 1,65E-14

p=2 Givens 2,60E-05  3,82E-15 2,06E-14

n=m-=20 Householder 6,10E-05  2,35E-15 2,12E-14
p=20 Givens 1,20E-04  2,46E-15 2,45E-14
Householder 2,00E-04  7,15E-15 5,25E-14

p=2 Givens 2,56E-04  9,19E-15 8,00E-14

n=m=50 Householder 7,72E-04  4,89E-15 9,86E-14
p=>50 Givens 1,29E-03  5,96E-15 1,45E-13

217






APPENDIX

Robust measures

In this appendix we compare the robustness of several coityranoountered penalty
functions. For every penalty function, we investigate {4 pissociated derivative func-

tion or influence functiorpsi(u) = dﬁ—(u”) which measures the influence of a residual

on the estimate, and (2) the weight functi@ﬂﬁ which measures the relative weight
that is given to a certain residual

First, let us compare two commonly used penalty functigaéy) = |u|, associated
with the ¢1-norm andp(u) = u?, associated with thé-norm. For smalu we have
p1(u) > pa(u), sof1-norm approximation puts relatively larger emphasis onlsma
residuals compared t&-norm approximation. For large we havepz(u) > ps(u),
S0 ¢1-norm approximation puts less weight on large residualmpared to/>-norm
approximation. Therefore, the solution of the an estimmapooblem using1-norms
is less influenced by large residuals or outliers. Althougd?i-norm shows improved
robustness with respect to outliers, it also exhibits somaesirable effects. Tha-
norm solution will tend to have more zero residuals, comgé&mehel,-norm solution,
but very few small residuals, which may not always be desahg., in the case of
normally distributed residuals contaminated with occasal®utliers. Moreover, the
¢1-norm is notstablebecausg; (u) is not strictly convexi.e. the second derivative of
p1(u) at zero is infinite and an indeterminant solution may result.

The advantages and disadvantages of both norms discusses, alave inspired re-
searchers to propose hybrig - />, measures. One such hyb#dgd- ¢, measure is the
penalty function

() = u? lu <M
Prubl =\ M2u=M)  |u> M,
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which is sometimes calleguadratic-tangent penalty functiphut is usually referred
to asHuber penalty functiorafter its proposer Huber [102]. This penalty function
agrees withpp(u) for u smaller tharM, and then reverts té;-like linear growth for
largeru. For vectors, we definphyp(u) to be the sum of the Huber penalty function
applied componentwise.

Another hybrid/s - ¢, measure is

Psr(u) = M(vV/MZ 12— M), (C.1)

which is referred to asmooth hybrid penalty functiorike the Huber penalty func-
tion it corresponds tgy(u) for smallu and it resembleg; (u) for large u, but as
opposed to the Huber penalty function it does not have a ¢pioirit. The parameter

M allows to control the smooth transition from quadratic toelr. Again, for vec-
tors, we defingosp(u) to be the sum of the smooth hybrid penalty function applied
componentwise. From Figure C.1 it can be seen that

° the />-norm isnot a robust measure, since its influence function is unbounded,
i.e. extremely large residuals have extremely large influence,

° the ¢1-norm is a robust measure - its influence function is boundeplying
that less relative weight is given to larger residuals - bis hot stable,

° the Huber penalty and the smooth hybrid penalty are robukstable measures.

The robust penalties described above are still influencezkbgme values, albeit less
than thef,-norm. For a measure to be extremely robust, the influenagtifumshould
fall to zero quickly after the cut off point, with the ultim&atobust measure being the
quadratic-constant penalty function

uw u <M
Pac(u) = M2 Jul>M

which nullifies the influence of outliers. However, this r@g@ment of decreasing in-
fluence function unavoidably leads to non-convex penaltgtions. Smooth approx-
imations to the quadratic-constant penalty are given arstoothers by the Cauchy
function M2|09(1+ (u/M)Z), which provides a linear decay of influence of gross
errors, or the Welsch functiod? [1— exp(—(u/M)?)], which further reduces the ef-
fect of large errors. Both functions cause numerical issligsto non-convexity and
moreover they tend to over-smooth the data [194]. Othemn evere robust yet com-
plex measures are the Tukey bi-weight criterion or Hampélse-part redescending
function [86]. The Huber penalty function is the convex ftioc which approximates
the quadratic-constant pentalty function closest and hagep to be very useful in
practical applications [29, 58, 84, 85, 104, 122]. It carode used as an convex
initializer for numerically hard non-convex measures sashthe Hampel function
[205]. According to Zhang [205] a robust esimator shouldtbietty convex and have
a bounded influence function.

220



Robust measures

penalty fcn influence fcn weight fcn
1 L5
4|
i
3 0 1
0o 2 0
-0 0
1
-1
Y= a1 o 1 2z 2 Mo o 12 3 S ¢ 1 3
3 1 L5
2.5 Bl
2 0.5 1
31 15 0
1 -05 0
0.5 -1
S 4 6 1 : 3 ¥ =2 4 o0 1 2 3 L R R—)
2.5 1 15
2 i
Ny 0 1
smooth * |
I 1
hybrid o o
05 4
1
S 1 0 1 2 3 2 -1 o 1 2 3 S = O o 1 2
25 1 15
2 i
0 1
19
Huber ] o
-0 0
0.5 4
1
Y% 1 0 1 2 3 =% 2 -1 o 1 2 3 S 6 1 3
05 1. 15
0.4 1
. oa 04 1
Quadratic-*
0.2
constant od 0s
0.1 4
-1,
S 1 o0 1 2 3 =% 2 -1 o0 1 2 3 S = 6 1 3

Figure C.1. Graphical representation of some commonly used penalitifums.
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