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Abstract

The field of chemical process estimation and control has been intensively explored
in the last decades. However, novel applications, the demands required by strict
safety regulations, tightening environmental standards, operating constraints and
product quality specifications, generate more difficult and challenging situations.
This stimulates the need of more sophisticated solutions than the ones that can
be provided by traditional techniques alone. (i) Exploiting the process model
structure along with (ii) methods to deal efficiently with estimation and control
problems are of paramount importance to reduce the computational load that
new techniques often demand. This dissertation explores these two aspects for
a particular class of first principles dynamic models. On the one hand, structure
exploitation is studied through a widely used input-affine chemical process, namely
distillation. A rigorous model is developed for a packed distillation column, leading
to large scale differential-algebraic equations (DAEs). It is shown that these
DAEs can be reduced by constraints differentiation and algebraic manipulation,
preserving the physical meaning of the states in the representation. This kind of
models exhibits high differentiation index, making its simulation impossible with
off-the-shelf solvers. Hence, a simple procedure, based on the model Jacobian
structural properties, is proposed in order to reduce the index of the model.
Moreover, the reduced index DAEs are cast such that sparse structures are
obtained for simulation tasks, alleviating the computational load when solving
the model. On the other hand, input/parameter-affine models are analyzed in the
formulation of dynamic optimization problems (DOP). It is shown that a DOP
using this kind of models, with convex cost and convex inequality constraints, can
be approximated by a convex formulation. This approximation is performed by
proposing a parametric optimization problem whose extremes correspond to the
original nonconvex DOP and to a convex one. The method is used in the context
of optimal control and parameter estimation, such that a simple 2-step approach
is proposed as an alternative to the solution of the original nonconvex problem.
In this form, the computational load involved in solving a parameterized DOP
exactly, is reduced by a simple 2-step convex optimization method that leads to a
nearly optimal solution.
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Notation

List of symbols

α, β, . . . Greek symbols, scalars
a, b, . . . Scalars or vectors variables
A,B, . . . Matrices
P (α) Parametric problem on α
x̄ Reference or state measured trajectory
¯̄x Noise free or perfect traceable trajectory
L Lagrangian function
R Set of real variables
R

m×n Set of real matrices of size m× n
N Set of strictly positive integers
A(w) Active set evaluated at w
C2 Space of twice continuous differentiable functions

Basic operations

xT Vector transpose
A−1 Matrix inverse
‖x‖2 2-norm of a vector
‖x‖Q Weighted 2-norm of a vector
∇wF

T Jacobian of F with respect to w
∇2

wL Hessian of L with respect to w
diag(x) Squared diagonal matrix with vector x as diagonal
>,≥, Scalar inequality
≻,� Matrix inequality
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Abbreviations

CIT Chemische Ingenieurstechnieken
CG Conjugate gradient algorithm
CPE Chemical process engineering
CSTR Continuous stirred tank reactor
CVX-OP Convex optimization problem
DAE Differential-algebraic equation
DES Differential equations solver
DMS Direct multiple shooting
DOP Dynamic optimization problem
DSS Direct single shooting
FRBM Full rate based model
KKT Karush-Kuhn-Tucker
MPC Model predictive control
NMPC Nonlinear model predictive control
NLP Nonlinear programming problem
OCP Optimal control problem
ODE Ordinary differential equation
OP Optimization problem
PCG Preconditioned conjugate gradient algorithm
PEP Parameter estimation problem
QP Quadratic programming problem
RBM Rate base model
RHC Receding horizon control
RORBM Reduced order rate based model
SSE Sum of squared errors
SOSC Second order sufficient conditions
SQP Sequential quadratic programming
s.t. Subject to
a.e. Almost everywhere
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Chapter 1

General introduction

1.1 Motivation

A considerable amount of chemical process engineering (CPE) efforts are still
oriented towards modeling and control of individual processing units, e.g.,
distillation columns, chemical reactors, heat exchangers among others. Although
the field of chemical process engineering has been widely explored in the last four
decades, the stringent demands required by strict safety regulations, tightening
environmental standards, operating constraints and product quality specifications
create more difficult and challenging problems (Lukszo et al., 2006), (Harold
and Ogunnaike, 2000). These problems require more sophisticated solutions
than the ones that can be provided by traditional techniques alone (Engell,
2007). Modeling, estimation and control are three key aspects in CPE. Detailed
models for process simulation normally lead to an increased complexity in the
formulation. Nevertheless, they are essential for e.g., experimental design, rapid
evaluation of control techniques, decision-making and operator training tasks,
among others. Certain degree of detail creates challenges at the level of the
computational efficiency in solving those models. Particularly, in a field such
as CPE, where detailed chemical and thermodynamic relations normally lead
to nonlinear behavior and may be used in companion with a large number of
equations and variables that describe the process. Grossmann and Westerberg
(2000) highlight two of the major challenges in computational requirements for
chemical process engineering, (i) the computation requirements increase with the
problem size, and (ii) models might be used in a real-time environment where
constraints in computation time are hard. Hence, the development of detailed
models must be accompanied with computationally efficient methods to solve
them. Moreover, when these models are intended to be used in more advance
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2 GENERAL INTRODUCTION

online strategies, it is necessary to find an efficient problem representation so that
computational constraints can be satisfied.

The first part of this dissertation concentrates on a very common unit operation
in CPE, namely distillation, with the goal of developing a model that allows
for detailed simulation while computationally efficient. Models for distillation
exist in a wide range, but mainly divided in black box (Waller and Böling, 2005),
(Karacan et al., 2007) and white box models. The latter are clearly differentiated
in thermodynamic equilibrium, (Gani et al., 1986), (Skogestad, 1992), (Flatby
et al., 1994), (Wittgens and Skogestad, 2000) and nonequilibrium based models
(Khrishnamurthy and Taylor, 1985), (Kooijman, 1995), (Guo et al., 2004), (Kenig
and Seferlis, 2009). Rigorous first principle models for distillation normally lead
to large scale nonlinear differential-algebraic equations (DAEs). The large scale
issue becomes more serious when nonequilibrium formulations are used, since
the number of equations can easily triplicate the ones of an equilibrium based
formulation. In this case, reduction of model complexity based on approximating
physical properties is normally performed (Peng et al., 2003). Nevertheless, this
stage-wise process exhibits a lot of structure due to the local interaction between
variables of stages which are adjacent. Hence, it is possible to exploit first
principles model structure in order to efficiently deal with the number of variables
and equations used to describe the model dynamics.

In addition to the internal model structure, distillation columns along with
continuous stirred tank reactors (CSTRs) and other dynamic processes, belong
to a particular class of models, namely input-affine dynamic models. This feature
can be exploited when formulating dynamic optimization problems (DOPs) (Kirk,
1970). DOPs with nonlinear models embedded and process constraints normally
lead to Nonlinear programming problems (NLPs) (Nocedal and Wright, 2006),
which, due to the nonlinear nature of the model, are inherently nonconvex (Boyd
and Vandenberghe, 2006). Nonconvex problems are in general more difficult to
solve and methods to solve them usually depend on local convex approximations
e.g., sequential quadratic programming (SQP) methods. The advantages of using
convex formulations lie not only in the fact that local solutions are global, but
also in the feature that algorithms exhibit polynomial-time convergence, and that
efficient methods to solve such convex problems are well developed (Karmarkar,
1984), (Nesterov and Nemirovski, 1995).

Aditionally, there are other kinds of methods that attempt to tackle the nonconvex
problem in a different form. On the one hand, some approaches are based on
relaxation techniques that convexify the problem by iteratively finding convex
upper and lower bounds (McCormick, 1976). The use of spatial Branch and Bound
methods (B&B) (Horst and Tuy, 1996) combined with the convex relaxation
of Bolza-type functionals has been proposed for the solution of parameterized
nonconvex DOPs (Singer and Barton, 2006). Nevertheless, there is still a lot
of ongoing work in improving the computational demand of B&B methods and
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finding tighter convex relaxations to functionals with embedded dynamic equations
(Chachuat et al., 2006). On the other hand, mathematicians and practitioners have
realized that several nonconvex optimization problems may be reformulated so that
the new formulation exhibits convexity (Boyd et al., 1998), (Demeulenaere et al.,
2004), (Verscheure et al., 2009). This is performed by analyzing the structure
of the DOP and/or reformulating the optimization problem in a different search
space when possible.

Consequently, finding convex formulations of optimization problems and exploiting
model structure are necessary steps to efficiently tackle problems that involve a
large number of variables, problems that often appear in the field of chemical
process engineering.

1.2 Research objectives

This research is organized around two major tasks:

• To exploit structure in optimization tasks involving large-scale first-principle
models, in particular distillation.

• To look for reformulations of nonconvex dynamic optimization problems
arising in chemical processing so that convexity can be exploited in a different
form than by linearizing the model and the problem constraints.

1.3 Chapter by chapter overview

The thesis is divided into two main parts. The first part deals with rigorous
models for a widely used input-affine chemical process, namely, distillation. The
second part deals with convex formulations for dynamic optimization problems
with input/parameter-affine dynamic systems. Figure 1.1 displays a general layout
of the thesis structure. In the following, details of the different chapters are given.

Chapter 2 presents the concepts and methods used along the thesis. It starts
with introducing optimization concepts highlighting the importance of dealing with
convex optimization problems. The general dynamic optimization problem (DOP)
is formulated, providing the differentiation between optimal control problems
(OCP), parameter estimation problems (PEP) and receding horizon control (RHC).
Direct approaches for the parameterization of DOPs are presented. In particular,
details for single and multiple shooting parameterization are explained. Moreover,
the nonlinear programming problem (NLP) resulting from the use of direct
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and future work

Figure 1.1: General structure of the thesis.

methods is introduced along with the necessary optimality conditions that a
solution to this problem must satisfy. Numerical methods to solve the problem
based on the differentiability of the functions in the NLP are presented at the end
of the chapter. These methods are the bases for the programmed algorithms used
in the second part of the thesis.
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Part I: Model structure exploitation for simulation of separation processes

Part I deals with a particular kind of input-affine process that is widely used in
the chemical industry, namely distillation. In this part, rigorous models for tray-
based and packed columns are studied. The models are intended to be used for
prediction and control of a real setup, installed at the Department of Chemical
Engineering (CIT) at K.U.Leuven.

Chapter 3 presents a tray-based distillation model for the separation of a
binary mixture in the CIT distillation column. The model is an adaptation
of the system presented in Diehl et al. (2001) and Diehl (2002). The model
based on differential-algebraic equations is presented along with the required
thermodynamic correlations for the calculation of physical and chemical properties.
Contrary to other models presented in literature, the DAE is formulated in
terms of the dynamic variables composition, temperature and molar holdups.
Hence, an analytical differentiation of energy balances is presented. A particular
reorganization of model states is proposed in order to obtain sparse and banded
Jacobian matrices for simulation and optimization. The observability of model
parameters with respect to available measurements is studied through a sensitivity
analysis.

Chapter 4 develops a rate based model (RBM) for distillation in packed columns.
The model is cast as a set of DAEs. The large scale DAEs are reduced by
differentiating part of the algebraic equations and algebraic manipulation. The
origin of the higher index problem for this kind of models is analyzed and methods
for reducing the high index for this particular system are proposed. It is shown
that neglecting part of the dynamics allows for easy simulation of the large scale
problem. A particular arrangement of model states and equations is proposed
so that the model Jacobian is sparse and banded. This structure is exploited in
the simulation and optimization task by off-the-shelf solvers. Finally, a sensitivity
analysis of model parameters with respect to available measurements is presented
indicating that a reduction in the search space for the PEP is possible.

Part II: Convexity exploitation in dynamic optimization problems

The second part of the thesis concerns convex approximations to dynamic
optimization problems with input/parameter-affine dynamics embedded. This
part is further divided into two chapters:
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Chapter 5 presents a continuation method for the solution of nonconvex optimal
control problems. The approach deals with a special class of OCP formulations
where the dynamic system involved is control-affine and the objective is a penalty
on deviations from a reference state trajectory. The nonconvex OCP is modified by
introducing a penalized pseudo state and a homotopy parameter which gradually
transforms the original problem into a convex one. Proofs of convergence of the
parametric DOP to the convex and original OCP are provided. The method solves
first the convex formulation and uses the result to initialize the solution of the next
problem on the zero path, recovering the original OCP. Numerical examples are
presented where the method outperforms a local optimization technique.

Chapter 6 introduces an initialization approach for parameter estimation
problems (PEPs) involving parameter-affine dynamic models. By using the state
measurements, the nonconvex PEP is modified so that a convex approximation
to the original PEP is obtained. The modified problem is solved by convex
optimization methods yielding an approximate solution to the original PEP. The
approximate solution can be further refined by linearizing the original problem
around the obtained minimum. An assessment of the distance between the
real solution and the one provided by the linearization of the problem around
the convex approximation is presented. The optimum obtained by the convex
approximation is used to subsequently initialize a simultaneous Gauss–Newton
(SGN) approach to the original nonconvex PEP. Comparative results for the SGN
with arbitrary initialization and with the proposed approach are presented using
benchmark examples in the chemical and biological fields.

Chapter 7: In this chapter general conclusions and future work are presented.

Appendix A Contains all the thermodynamic correlations required for the
simulation of the distillation models used in Chapter 3 and Chapter 4.

1.4 Contributions

There are two major contributions in this dissertation, which are the basis of
the division into two parts. On the one hand, model formulation, reduction
and structure exploitation for simulation in distillation processes is developed
in Chapters 3 and 4. On the other hand, in Chapters 5 and 6 convexification
methods for DOP with input/parameter affine dynamics are developed. Details
of these contributions are as follows:
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• In Chapter 3 the first contribution of this dissertation is presented. It lies in
the modification of an existing rigorous model for distillation in tray based
columns using equilibrium and tray efficiencies. Although an existing model
is presented in Diehl (2002), the model is fixed to a particular mixture
and correlations are not easily found in literature. In the modified version
presented here, all the correlations used for the calculation of thermodynamic
properties are easily traced back to the existing literature so that the model
can be used for separation of different kind of binary mixtures by simply
modifying well-known correlation coefficients. This leads to an equilibrium
model that can be easily adapted to new operating conditions. Moreover,
the model is formulated so that sparsity can be exploited at the simulation
level.

• In Chapter 4 a rigorous first principle Rate Based Model (RBM) for
distillation in packed columns is formulated. A completely documented set of
thermodynamic properties required for its simulation is provided. It is shown
that a model reduction of around 30% in the number of algebraic variables
is possible by simple algebraic manipulation and constraint differentiation.
An analysis of the high index problem for this kind of system is performed,
highlighting the origins of the problem and providing a simple solution by
neglecting part of the fast dynamics of the process. Moreover, the reduced
index model is formulated in such form that Jacobian matrices, needed for
simulation and optimization tasks, have a sparse and banded structure that
can be exploited by sparse linear algebra solvers. Finally, sensitivity analysis
of the reduced state index-1 RBM is performed, indicating that with a
limited set of measurements only a reduced set of its model parameters
can be estimated. This leads to a reduced search space for the parameter
estimation problem (PEP). Additionally, a novel set of parameter constraints
for the RBM PEP is presented. This set of constraints is intended to be used
in PEP so that the tuned model leads to state trajectories that are physically
possible.

These contributions are reported in

– J. Bonilla, F. Logist, J. Degreve, B. De Moor, and J. Van Impe. A rate
based model for distillation in packed columns: Sensitivity analysis and
structure exploitation. Submitted, 2011.

– J. Bonilla, F. Logist, J. Degreve, B. De Moor, and J. Van Impe. A rate
based model for distillation in packed columns: Dynamic simulation
and the index problem. Submitted, 2011.

– J. Bonilla, F. Logist, B. De Moor, and J. Van Impe. Parameter
estimation of a rigorous rate based model for distillation in packed
columns. In proceedings of the 18th World Congress of the International
Federation of Automatic Control, Milan-Italy, August 2011.
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• In Chapter 5 it is shown that an Optimal Control Problem OCP with input-
affine dynamics can be transformed through a particular homotopy, yielding
a related convex OCP. The solution of this convex problem generates an
approximation to the original nonconvex formulation, so that this solution
can be used to initialize a new OCP on the path of minimizers of the
parametric problem. Proofs of convergence of this parametric OCP to the
original and its convex formulation are provided through Lemmata 5.1.1,
5.1.2 and 5.1.3 in Section 5.1. In addition, conditions for continuity of
the path of minimizers between the convex solution and the solution of the
original OCP are related to the KKT conditions of the parametric OCP in
view of a well developed theory for homotopy methods (Watson, 2000).

These contributions are published in

– J. Bonilla, M. Diehl, F. Logist, B. De Moor, J. Van Impe, A convexity-
based homotopy method for nonlinear optimization in model predictive
control. Optimal control applications and methods, Vol 31 (5), p. 393–
414, 2010.

– J. Bonilla, M. Diehl, F. Logist, B. De Moor, and J. Van Impe. A
suboptimal solution to nonconvex optimal control problems involving
input-affine dynamic models. 20th European Symposium on Computer
Aided Process Engineering–ESCAPE20, Ischia-Italy, 2010.

• In Chapter 6 the method presented in Chapter 5 is refined for PEPs. A
novel approach to calculate the solution of nonconvex PEPs is proposed.
The method only requires to solve sequentially two convex problems. It is
shown in Theorem 6.2.2 that the distance between the near optimal solution
and the optimal one is of second order in the size of the measurement and
modeling errors. In addition, it is numerically illustrated that the method
improves convergence when used with efficient simultaneous optimization
routines. Contributions in this chapter are published in

– J. Bonilla, M. Diehl, F. Logist, B. De Moor, J. Van Impe. An
automatic initialization procedure in parameter estimation problems
with parameter-affine dynamic models. Computers and Chemical
Engineering, 34, 953–964, 2010.

– J. Bonilla, M. Diehl, F. Logist, B. De Moor, and J. Van Impe. A
convex approximation for parameter estimation involving parameter-
affine dynamic models. In Joint 48th IEEE Conference on Decision
and Control and 28th Chinese Control Conference, p. 4670–4675,
Shanghai-China, December, 2009.

– J. Bonilla, M. Diehl, B. De Moor, J. Van Impe. A nonlinear least
squares estimation procedure without initial parameter guesses. In
Proceedings of the 47th IEEE Conference on Decision and Control p.
5519–5524, Cancún-Mexico, December 2008.



Chapter 2

Dynamic optimization: theory

and numerical methods

This chapter presents the basic concepts used throughout the document. In
Section 2.1 basic concepts on optimization and convex optimization problems are
given in order to show the advantages of dealing with convex problems. Section 2.2
presents the optimality conditions for optimization problems. Section 2.3 discusses
classical methods used to solve the nonlinear programming problems obtained from
the parameterization of dynamic optimization formulations. Section 2.4 introduces
standard forms for the dynamic optimization problem obtained from optimal
control and parameter estimation tasks. Section 2.5 presents direct methods for
the solution of dynamic optimization problems, particularly single and multiple
shooting. Those methods are the basis of the algorithms used in Chapter 6 for the
efficient solution of parameter estimation problems. Conclusions to the chapter
follow in Section 2.6.

2.1 Optimization problems

In this section the bases of optimization problems (OP) are presented. For a deep
review the reader is referred to Boyd and Vandenberghe (2006) and Nocedal and
Wright (2006). Features that lead to convexity in an OP are highlighted due to
the advantages of convex formulations with respect to nonconvex ones.

9
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An optimization problem

NLP : min
w

F (w) subject to

{
Gi(w) = 0, i = 1, . . . nG,
Hj(w) ≥ 0 j = 1, . . . nH ,

(2.1)

with w ∈ R
nw , F ∈ C2 : Rnw → R, G ∈ C2 : Rnw → R

nG and H ∈ C2 : Rnw →
R

nH , is a mathematical problem where it is required to find the best value of
a variable w that lies in a predefined region Ω in the space of w. Optimization
problems are, in general, defined by a cost F (w) and a feasible set Ω. The feasible
set is defined in (2.1) by the constraints imposed on the values of the optimization
variable, i.e., each w ∈ Ω must satisfy the equality constraints Gi(w) = 0 and
the inequality constraints Hj(w) ≥ 0. The cost defines the function that needs to
be minimized or maximized while the constraints define the limits of the search
space for the optimization variable. There exist several types of cost functions,
and feasible sets. However, a major classification is related to the complexity they
imply when used in an OP. Assuming smooth cost functions and feasible sets,
hence constraints, they can be classified in convex and nonconvex. Herein, these
concepts are introduced formally since they are used in Chapters 5 and 6.

F2(x, u)

u

x
Ω2

w2

w3

F1(x, u)

x
Ω1

u

(a) (b)

w2 b

b

b

b
b
w1 w3

b

b

b

b

w1

b

F2(w1)

F2(w2)

F1(w1)

F1(w2)

Figure 2.1: Convex (a) and nonconvex (b) optimization problems. The vector w
has been defined as w = [x, u]T .

Definition 2.1.1 (Convex set). A set Ω is called convex iff for every pair of
points in Ω, Ω contains the straight line segment that joins those points.

The sets Ω1 and Ω2 in Figure 2.1(a) and (b) are examples of convex and nonconvex
sets, respectively.



OPTIMIZATION PROBLEMS 11

Definition 2.1.2 (Convex function). A real valued function, F : Rnw → R in
a domain which is a convex set, is convex iff for any two points w1 and w2 in the
domain of F and any λ ∈ [0, 1]

F (λw1 + (1 − λ)w2) ≤ λF (w1) + (1 − λ)F (w2), (2.2)

i.e., the line segment that connects (F (w1), w1)) and (F (w2), w2)) must lie above
the graph of F (w). The functions F1 and F2 in Figure 2.1 are examples of convex
and nonconvex functions, respectively.

Definition 2.1.3 (Convex optimization problem (Boyd and Vandenberghe,
2006)). A problem of the form (2.1) is convex, iff:

• F (w) is a convex function,

• −Hj(w) is a convex function1,

• Gi(w) is an affine map of w, i.e., Gi(w) = aT
i w + bi, ai ∈ R

nw , bi ∈ R.

Remark 2.1.1. Nonlinearities in the inequality constraints and cost do not
necessarily imply nonconvexity in the problem. In contrast to this, nonlinearity in
the equality constraints directly makes the problem nonconvex.

Definition 2.1.4 (Feasible point). A point w in the domain of F (w) is said
to be feasible if it satisfies the constraints, i.e., w ∈ Ω. Otherwise, it is called an
infeasible point.

The point w3 in Figure 2.1(a) corresponds to an infeasible point while w1 and w2

are feasible points.

Definition 2.1.5 (Infeasible optimization problem). An optimization prob-
lem is said to be infeasible if its feasible set is empty, i.e., there exist no value of
w that satisfies all the constraints.

This is an important concept since by definition there exists no solution to an
infeasible OP. However, by relaxing the OP, i.e., dropping or modifying constraints,
feasibility can be regained.

The solution to an optimization problem can be classified as:

Definition 2.1.6 (Global solution). The point w∗ ∈ Ω is said to be a global
solution to the problem (2.1) iff F (w∗) ≤ F (w) for all w ∈ Ω.

The point w2 in Figure 2.1(b) corresponds to a global minimum to the optimization
problem defined by F2(w) and Ω2.

1The minus sign is introduced to be consistent with the notation used in this document.
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Definition 2.1.7 (Local solution). The point w∗ ∈ Ω is said to be a local
solution of the problem (2.1) iff there exists a neighborhood S of w∗ so that
F (w∗) ≤ F (w) for all w ∈ S ∩ Ω.

The point w3 in Figure 2.1(b) corresponds to a local minimum to the optimization
problem defined by F2(w) and Ω2, since it is possible to choose an S around w3

for which definition 2.1.7 holds.

The previous concepts clearly differentiate convex optimization problems (CVX-
OP) from nonconvex ones. This differentiation is presented since CVX-OP exhibit
several advantages with respect to nonconvex problems as presented in Boyd and
Vandenberghe (2006):

• Local solutions are global.

• Very efficient numerical methods to solve CVX-OP exist.

• Initialization is not an issue.

• Convergence rates are guaranteed.

• Can handle efficiently large scale problems.

The conditions that a point w has to satisfy to be a solution of (2.1) are explained
in the following paragraphs since they form the basis of the algorithms used to
solve the optimization problem.

2.2 Optimality conditions

As mentioned before, every w that satisfies the constraints is called a feasible
point. Note that at every feasible w there may be some components j ∈ N

nH

of H(w), i.e., Hj(w), that satisfy Hj(w) = 0, those are called active inequality
constraints Hact(w). Others for which Hj(w) > 0 holds, are called inactive
inequality constraints H inact(w). The active set function for a feasible point w
is defined as

G̃(w) =

(
G(w)

Hact(w),

)

(2.3)

i.e., G̃(w) groups all the constraints that lead to equalities when evaluated at
the feasible point w. All the constraints that belong to G̃(w) are called active
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constraints. The constraints that are left, i.e., the ones which do not belong to
G̃(w), are called inactive constraints.

A regular point w is a feasible point for which ∇wG̃(w) is full rank. This property
is required, e.g, when solving equality constrained problems obtained from the
sub-QP in the sequential quadratic programing algorithm (see Section 2.3.2).

Solving (2.1) implies finding a value w∗ that minimizes the cost and satisfies
the constraints. In order to formulate the optimality conditions, the Lagrangian
function is defined

L(w, λ, µ) = F (w) − λTG(w) − µTH(w), (2.4)

with the Lagrange multipliers λ ∈ R
nG and µ ∈ R

nH .

First order optimality conditions

The necessary conditions for a point w∗ to be a local solution to (2.1) are
summarized in the following theorem due, independently, to Karush (1939) and
Kuhn and Tucker (1951). These conditions are widely known as the first order
optimality conditions or Karush–Kuhn–Tucker (KKT) conditions (Nocedal and
Wright, 2006).

Theorem 2.2.1 (KKT conditions). If a regular point2 w∗ is a local solution
to the NLP, then there exist Lagrange multipliers λ∗ and µ∗ so that the following
conditions are satisfied:

∇wL(w∗, λ∗, µ∗) = 0, (2.5)

G(w∗) = 0, (2.6)

H(w∗) ≥ 0, (2.7)

µ∗ ≥ 0, (2.8)

µ∗
jHj(w∗) = 0, ∀ j = 1, . . . , nH (2.9)

A point that satisfies the KKT conditions is called a KKT point. A proof to
Theorem 2.2.1 can be found in (Nocedal and Wright, 2006, p. 323). If the NLP is
convex, the KKT conditions are sufficient to guarantee a global solution, see e.g.,
Boyd and Vandenberghe (2006). Equations (2.5)-(2.9) define a set of nonlinear
equations known as the KKT system.

2This implies linear independent constraint qualification LICQ (Nocedal and Wright, 2006).
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Note that, at the solution, the complementarity condition (2.9) implies that the
Lagrange multipliers µ∗

j for the inactive constraints H inact
j (w∗) must be zero. For

the set of active inequality constraints Hact
j (w∗) = 0 it can happen that the µ∗

j are
either zero or positive. Algorithms can identify the active set easier if either µ∗

j = 0
or Hj(w∗) = 0 but not both. This condition is called strict complementarity, i.e.,
µ∗

j > 0 for all active inequality constraints.

Second order optimality conditions

Consider the linear approximation of the feasible set around a feasible point w:

G(w) + ∇wG(w)T d = 0, (2.10)

H(w) + ∇wH(w)T d ≥ 0, (2.11)

where d ∈ R
nw represents possible directions of the linear approximation. Any

direction d that satisfies the linearization is called a linearized feasible direction, i.e.,
directions where the optimizer can move while remaining feasible. Since G(w) = 0
and Hact(w) = 0, the set of feasible directions is defined as

F(w) =

{

d

∣
∣
∣
∣

∇wG(w)T d = 0,
∇wH

act(w)T d ≥ 0.

}

(2.12)

First order optimality conditions guarantee that at w∗ any feasible direction d ∈
F(w∗) either increases or keeps the value of the linear approximation of the cost,
i.e., ∇wF (w∗)T d > 0 or ∇wF (w∗)T d = 0. However, for those feasible directions
d for which ∇wF (w∗)T d = 0, or undecided directions (Nocedal and Wright, 2006),
the KKT conditions are not informative enough to guarantee an increase of F (w∗).
Hence, a second order expansion of the Lagrangian is required to verify that a move
along d ∈ F(w∗) provides an increase of the cost and retains feasibility, making
w∗ a local minimum. In this situation, it is necessary to verify second order
information for those d that yield ∇wF (w∗)Td = 0. The directions that satisfy
this condition constitute what is known as the critical cone C(w∗, λ∗, µ∗). Those
directions are obtained by differentiating the Lagrangian, with respect to w i.e.,

∇wF (w∗)Td = λT ∇wG(w∗)T d+ µT ∇wH(w∗)Td = 0. (2.13)
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This condition3 is satisfied for the directions d

d ∈ C(w∗, λ∗, µ∗) ⇐⇒







∇wG(w∗)T d = 0

∇wH
act,s
j (w∗)Td = 0 ∀ µj > 0

∇wH
act,w
j (w∗)T d ≥ 0 ∀ µj = 0

(2.14)

With this definitions the second order necessary conditions are given by Theorem
2.2.2.

Theorem 2.2.2 (Second order necessary conditions). Suppose that a regular
point w∗ is a local solution to (2.1) with associated Lagrange multipliers λ∗ and
µ∗ that satisfy the KKT conditions, then

dT ∇2
wL(w∗, λ∗, µ∗)d ≥ 0, ∀ d ∈ C(w∗, λ∗, µ∗). (2.15)

Theorem 2.2.3 (Strong second order sufficient conditions). If a feasible
point w∗ with associated Lagrange multipliers λ∗ and µ∗, that satisfies the KKT
conditions, satisfies also

dT ∇2
wL(w∗, λ∗, µ∗)d > 0, ∀ d ∈ C(w∗, λ∗, µ∗), d 6= 0, (2.16)

then w∗ is a strict local solution.

2.3 Solving nonlinear programming problems

In this section, well-known numerical methods to tackle problems of the form
(2.1) are introduced. These problems can be the result of parameterizing dynamic
optimization problems (see Section 2.5). There are basically two large groups of
methods to deal with this kind of problems namely, derivative based and derivative-
free methods. However, only derivative based methods are considered here since
they are much faster and the functions involved in cost and constraints are assumed
to be at least twice continuously differentiable.

2.3.1 Quadratic programming

One of the most popular formulations for optimization problems is a quadratic
programming problem (QP). There, problems exhibit a quadratic cost and linear
equality and inequality constraints. This kind of problems can be cast as:

QP : min
x

1

2
xTBx+ bx subject to

{
Cx+ c = 0,
Dx+ d ≥ 0,

(2.17)

3Inactive constraints are not considered since the associated multipliers are zero, thus, they
do not contribute to (2.13).
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The Lagrangian for the QP problem is defined as

L(x, λQP, µQP) =
1

2
xTBx+ bx− λT

QP(Cx + c) − µT
QP(Dx + d) (2.18)

with KKT conditions

∇xL(x∗, λ∗
QP, µ

∗
QP) = Bx∗ + bT − CTλ∗

QP −DTµ∗
QP = 0 (2.19)

Cx∗ + c = 0, (2.20)

Dx∗ + d ≥ 0, (2.21)

µ∗
QP ≥ 0, (2.22)

µ∗
QPj

(Djx
∗ + dj) = 0, j = 1, . . . , nH (2.23)

If the Hessian matrix B in the QP is positive semidefinite, B � 0, i.e., all its
eigenvalues are greater or equal to zero, then the QP is said to be convex. This is
a quite desired feature in the QP since convexity implies that the KKT conditions
are enough to guarantee a global solution (Nocedal and Wright, 2006). Hence,
algorithms that attempt to find a KKT point yield a global solution to the problem.
Among the most popular methods for solving QPs are active set and interior points
methods (Karmarkar, 1984), (Nesterov and Nemirovski, 1995).

2.3.2 Sequential quadratic programming

In order to find a solution to the NLP (2.1), a common approach is to use Sequential
Quadratic Programming (SQP). SQP is an iterative method where the NLP is
approximated at the current iterate k by a quadratic programming problem of the
form

QP (wk) : min
∆w

1

2
∆wTBk∆w + ∇wF (wk)T ∆w (2.24)

subject to

G(wk) + ∇wG(wk)T ∆w = 0, (2.25)

H(wk) + ∇wH(wk)T ∆w ≥ 0. (2.26)

where Bk is an approximation of the Hessian of the Lagrangian ∇2
wL(wk, λk, µk).

This procedure can be seen as finding a KKT point for the original NLP problem
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by obtaining KKT points of the quadratic programming approximations to the
NLP, iteratively. Solving the QPs at each iteration, leads to a KKT point
(∆w, λk

QP, µ
k
QP). The update of the estimate for the NLP solution (w∗, λ∗, µ∗)

is performed by

wk+1 = wk + αk∆w, (2.27)

λk+1 = λk + αk(λk
QP − λk), (2.28)

µk+1 = µk + αk(µk
QP − µk), (2.29)

where αk is obtained, e.g., by a backtracking line search globalization strategy
(Nocedal and Wright, 2006). In this document, a globalization strategy based on a
L1 exact penalty function and a watchdog technique is programmed (Leineweber,
1998) for the SQP method used in Chapter 6. The approximation of the Hessian
of the Lagrangian Bk is obtained at the current iteration by using the well known
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula

Bk+1 = Bk − BkskskT
BkT

skT
Bksk

+
ykykT

ykT
sk
, (2.30)

with sk = αk∆w and yk = ∇wL(wk+1, λk+1, µk+1) − ∇wL(wk, λk+1, µk+1).

Remark 2.3.1. An update using BFGS formula does not preserve the sparsity
structure of the Hessian obtained with simultaneous optimization approaches. The
structure obtained from the parameterization using simultaneous methods allows
for updates of the Hessian per blocks, i.e., high-rank updates (Bock and Plitt,
1984), which demands less storage requirements than a full Hessian update and
preserves the sparsity pattern. A high-rank update algorithm is applied here so
that QP solvers that exploit the structure can be used.

2.3.3 Constrained Gauss-Newton Method

As said before, classical SQP methods require the Hessian of the Lagrangian.
However, there are cases where F (w) can be formulated as a quadratic norm
on some nonlinear function of the optimization variables i.e., F (w) = 1

2 ‖R(w)‖2
2.

In PEP, R(w) corresponds to a residual vector obtained from measuring some
distance between the data to fit and the model response,

R(w) = [ǫ1(w), ǫ2(w), . . . , ǫN(w)]T . (2.31)
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The gradient and Hessian of the cost can be expressed by:

∇wF (w) = ∇wR(w)R(w), (2.32)

∇2
wF (w) = ∇wR(w)∇wR(w)T +

N∑

i=1

ǫi(w)∇2
wǫi(w), (2.33)

respectively. Normally, the second term in the right hand side of (2.33) is neglected
since close to the solution, it is expected that the residuals ǫi(w) are small (Nocedal
and Wright, 2006). Hence, the Hessian of the cost is calculated solely from the
Jacobian of the residual vector. The approximation of the Hessian of the cost leads
to the main feature of Gauss-Newton method where at each major iteration k of
the SQP a subproblem of the form

LSP (wk) : min
∆w

1

2
‖R(wk) + ∇wR(wk)

T
∆w‖2

2, (2.34)

subject to

G(wk) + ∇wG(wk)
T

∆w = 0, (2.35)

H(wk) + ∇wH(wk)
T

∆w ≥ 0, (2.36)

is solved. Hence, no second order information is required and the update of the
estimates is performed as in the SQP approach.

The second part of this document concentrates on finding convex approximations
to nonconvex optimization problems obtained from parameterization of dynamic
optimization problems (DOP). Hence, DOP are introduced in the following section.

2.4 Dynamic optimization problems

A dynamic optimization problem is an optimization problem where the cost and/or
the constraints involve the evolution of a time dependent variable4 obtained from

4Here the time is assumed as independent variable, however, other parameterizations are also
possible.
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the solution of a dynamic model. A DOP can be cast as

min
x(·),u(·),p

J(x(·), u(·), p) s.t.







(x(0) − x0 = 0),
ẋ(t) − f(x(t), u(t), p) = 0, t ∈ [0, T ],

h(x(t), u(t), p) ≥ 0, t ∈ [0, T ],
ritr(x(T )) ≥ 0,
retc(x(T )) = 0,

(2.37)

In a DOP the following building blocks can be distinguished:

• A set of optimization variables x(t) ∈ R
nx , u(t) ∈ R

nu and p ∈ R
np .

Note that depending on the kind of variables to optimize, i.e., controls u
or parameters p, the DOP can be classified in an optimal control problem
(OCP) or a parameter estimation problem (PEP).

• A dynamic model that describes the evolution of the state variables x(t) as
a function of controls u(t) and parameters p and the time index t. The
complexity of the DOP is, in part, determined by the nature of the model.
In this document ordinary differential equations (ODEs) and differential-
algebraic equations (DAEs) of the form

Mẋ(t) = f(x(t), u(t), p), ∀ t ∈ [0, T ] (2.38)

with f : R
nx × R

nu × R
np × R → R

nx , are used. M ∈ R
nx×nx is

commonly known as the mass matrix5. Herein, M is assumed to be a
diagonal nonsingular matrix for ODEs and a diagonal singular matrix for
a particular class of DAEs called semi-explicit DAEs (Hairer and Wanner,
2002). A desirable feature of the dynamic model is linearity with respect to
the decision variables of the DOP. Linearity simplifies the procedures used
to solve the model equations and becomes one of the requirements that leads
to convexity in the DOP (Boyd and Vandenberghe, 2006).

• A set of constraints on the search space of the optimization variables
h(x(t), u(t), p) ≥ 0, known as the path constraints. Additionally, the
inequality terminal constraint ritr(xT ) defines a region in the space of the
states where the final value of the optimal state trajectory x∗(T ) must lie.
Likewise, the equality terminal constraint rzrc(x(T )) defines a point in R

nx

where the final value of the optimal state trajectory must lie. Although the
dynamic model can be seen as a constraint as well, it is normally treated in
a different manner due to its dynamic nature.

• A cost J that constitutes a performance measure of the dynamic model
response along the time horizon.

5Because its elements can be associated to masses when modeling mechanical systems.
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2.4.1 Optimal control problems

Optimal control problems (OCP), constitute a particular class of DOPs where the
decision variables are controls u(t). OCPs have been widely studied and for a deep
treatment of the classical theory, the reader is referred to Kirk (1970) or Bryson
and Ho (1975). In an OCP the performance measure can be cast as

J(x(·), u(·)) =

∫ T

0

L(x(t), u(t)) dt + E(x(T )). (2.39)

This Bolza-type objective is composed of a term that accounts for the history of
the states and controls evolving along the time horizon T , called the Lagrange
term L and a terminal cost E known as the Mayer term.
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Figure 2.2: Dynamic optimization problem classical scenarios. (a) an optimal
control problem, (b) a parameter estimation problem.

The goal in solving an OCP is to find an admissible control profile u∗(t) so that the
performance measure is minimized. This optimal control must generate a feasible
state evolution x∗(t) called the optimal state trajectory. Figure 2.2 illustrates an
OCP scenario where the cost is formulated in terms of deviations with respect to a
desired reference trajectory r(t). The path constraints are split here in hu(u(t)) ≥ 0
and hx(x(t)) ≥ 0 so that it is easier to appreciate the search space of those variables.
In the context of Receding Horizon Control (see Section 2.4.3 ), the terminal
constraint region ritr(x(T )) ≥ 0 along with the terminal cost E(x(T )) are normally
added to the OCP to enforce stability of the finite horizon problem (Findeisen and
Allgöwer, 2002).
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2.4.2 Parameter estimation problems

A second, widely used class of DOPs consider the model parameters p as
optimization variables. For this kind of problem the constraints on the initial state
x(0) and the final state x(T ) normally disappear. The cost is formulated in terms
of a distance measure between some observation function of the state trajectories
l(x(t), p), and a trajectory measured from a real process ȳ(t). Practically, the
measurements are performed at specific time instants ti, hence, the measurement
trajectory is by definition a discrete signal, but an integral cost form is used in
(2.40) for notational coherence with the OCP. The distance between measurements
and the observation function is commonly known as the model residuals ǫ(t). The
goal of the PEP solver is to minimize those residuals by finding a feasible set of
parameters. A typical performance measure is

J(x(t), p) =

∫ T

0

‖Q 1
2 (ȳ(t) − l(x(t), p)‖2

2dt, (2.40)

which corresponds to a least squares cost. Nevertheless, other kinds of norms, e.g.,
the L1 norm, have been shown to be less sensitive to outliers (Kostina, 2004).
Figure 2.2(b) depicts a classical parameter estimation scenario with constraints on
the states and the parameters. Here, only time invariant parameters are illustrated
for simplicity. The 2-norm in (2.40) exhibits certain advantages with respect to
the generation of the second order derivative information that is required for the
numerical solution of the PEP: parameterized DOP with nonlinear least squares
costs like (2.40) are efficiently tackled by the so called Gauss-Newton method, as
explained in Section 2.3.3.

2.4.3 Receding horizon control

A kind of control technique that deserves particular attention due to its wide use is
receding horizon control (RHC) or model predictive control (MPC). This technique
is based on the online solution of an open loop OCP at specific time instants along
the time evolution of the process to be controlled. Figure 2.3 depicts the main
signals in a classic receding horizon strategy (Allgöwer et al., 2004).

In Figure 2.3, at the present time t, the future behavior of the process states,
x̂(t), is predicted over a prediction horizon T , based on the state information,
x(t), and an available dynamic model of the process. The term nonlinear receding
horizon control or nonlinear model predictive control (NMPC) generally refers to
the formulation of predictive control using nonlinear models. A particular feature
of the OCPs used in a receding horizon framework is that the control trajectories
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Figure 2.3: Receding horizon control scenario.

are normally allowed to vary during a finite time interval Tc not necessarily equal
to the prediction horizon T , i.e., Tc ≤ T . The time interval Tc is known as the
control horizon. Based on the prediction of the process behavior, a future control
scenario û(t) is computed by solving the associated OCP. Ideally, there would be
no process disturbances or model uncertainties and the OCP could be solved for
infinite horizon. In this case, the optimized control signal û(t) could be applied
to the process like an open loop control. However, this situation is unrealistic
and feedback needs to be incorporated. Therefore, the optimal control û(t) is
implemented until a new measurement or estimate of the state becomes available.
At that point, a new prediction is executed and a new OCP is formulated based
on the current state, shifting the entire procedure one step ahead. The main steps
of the algorithm are

Algorithm 2.1 Receding horizon control

1: At current time t obtain x(t) by measurement or estimation.
2: Solve the OCP, e.g., the DOP in (2.37)
3: Implement u(t) until the new state measurement becomes available.
4: Return to step 1.

There is a well developed theory based on Pontryagin’s maximum principle
(Pontryagin, 1962) or Hamilton-Jacobi-Bellman equation (Bellman, 1957) that
allows to characterize a solution in the infinite dimensional space of controls and
states using the necessary optimality conditions so that controls are eliminated.
These approaches are known as indirect methods. In this document, methods
based on a finite dimensional representation of the optimization variables are used.
Those methods, known as direct methods, are explained in the following section.
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2.5 Direct methods for dynamic optimization

The optimal control and the state trajectories lie in an infinite dimensional
space in the original continuous time formulation. The key feature of direct
methods is the parameterization of time dependent variables in the DOP, i.e.,
states, controls and possibly model parameters. Once they are parameterized, the
dimensionality of the problem is reduced, i.e., the number of decision variables
is finite, allowing to formulate the DOP as a nonlinear programming problem
(NLP) of the form (2.1). Parameterization of the controls is performed using basis
functions, normally piecewise functions. However, other kinds of basis functions
such as e.g., polynomial or wavelets (Binder et al., 2001) can be used. Figure 2.2
illustrates a possible approximation of the optimal control trajectories u∗(t) using
piecewise constant functions q(ti). Since the finite parameterization constitutes
an approximation to the real decision variables, the solution obtained using direct
methods is by definition a near optimal solution to the DOP. However, the
parameterization can be chosen to approximate the optimal solution to a certain
accuracy, e.g., by increasing the number of parameters to describe the solution.
Direct methods are preferred when the optimization problem possesses inequality
constraints since the indirect methods become difficult to handle in this case, unless
information regarding the active constraints is available (Cervantes and Biegler,
1999). Moreover, the resulting NLP can be solved efficiently using state-of-the-art
numerical optimization routines. There exist two kind of direct methods, namely
Sequential direct methods and Simultaneous direct methods. These approaches are
explained in the following sections.

2.5.1 Sequential methods and direct single shooting

In the sequential direct methods only controls are parametrized and simulation
and optimization tasks are performed one after the other so that only the
parameterized controls are used as optimization variables. Direct single shooting
(DSS) (Sargent and Sullivan, 1978), (Kraft, 1985), (Vassiliadis, 1993), is the most
popular sequential approach. In DSS only the infinite dimensional controls are
represented by a finite number of parameters along the time horizon, i.e.,

u(t) ≈ u(t, q), ∀ t ∈ [0, T ], (2.41)

where the vector q represents the parameters used to approximate u(t), and u(t, q)
represents a set of basis functions. A piecewise constant parameterization is
obtained by introducing a grid in the time interval [0, T ] so that the controls
are represented by constant values qi on each subinterval [ti, ti+1] of the grid, i.e.,

u(t, q) = qi, ∀ t ∈ [ti, ti+1], i = [0, . . . , N − 1] (2.42)
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The states are eliminated from the optimization problem by solving the ODE

ẋ(t) = f(x(t), u(t, q), p) ∀ t ∈ [t0, tN ]. (2.43)

using a dynamic equations solver (DES). Solvers that provide model sensitivities
are desired, since first and second order information is normally required for
the optimization routines (Biegler, 1984). The state trajectories provided by
the dynamic equation solver are used to evaluate cost and path constraints
h(x(t), u(t, q), p). The latter are normally sampled at intervals ti in order to match
the introduced grid and to preserve the finite dimensionality of the problem. This
procedure leads to the NLP

NLPDSS : min
x(t0),q,p

∫ T

0

L(x(t, x0, q, p), u(t, q), p) + E(x(tN )) (2.44)

subject to







(x(t0) = x0),
h(x(ti, x0, q, p), u(ti, q), p) ≥ 0 ∀ i = 0, . . . , N

r(x(tN , x0, q, p)) = 0.
(2.45)

Note that the integral term in the cost can be solved as a part of the dynamic
model. Hence, the dynamic equations solver is used to evaluate model, cost and
to obtain sensitivities of them with respect to the decision variables. Figure 2.4
(a) illustrates the scenario for a DOP which is solved using DSS. The parameters
are assumed constant along the time horizon.

Advantages

The main advantage of sequential approaches is the simplicity in the implemen-
tation of the method. The NLP obtained is solved in the space of parameterized
controls and/or model parameters because the state trajectories are eliminated6.
This leads to small but dense Jacobian and Hessian matrices in the sub-QPs
needed to be solved at each SQP iteration (see Section 2.3). Since the dynamic
model is solved apart, state-of-the-art ODE solvers can be used. Particularly,
solvers with sensitivity generation capabilities are desired. It is important to note
that sensitivity generation is normally the computationally most expensive task in
dynamic optimization solvers. Hence, the computation of model sensitivities with
respect to the decision variables is crucial for the efficiency of the optimization.

6For control problems the initial condition of the states can be eliminated from the decision
variables. On the contrary, for parameter estimation problems the initial condition is often part
of the degrees of freedom of the DOP.



DIRECT METHODS FOR DYNAMIC OPTIMIZATION 25

DE solver

Model

Constraints Optimizer

Objective

x(t)

∂x(t)
∂(x(t0),qi,p)

x(t0), q, p
J

b
b

b b

b b

tN

x(t)

q0
q1

q2
qN−2

qN−1

t0 t1 t2 t3
tN−2 tN−1

p

(a) (b)

h(x(t0), q, p)

Figure 2.4: Direct single shooting parameterization (a) and a block diagram of the
corresponding sequential optimization approach (b).

Disadvantages

The main disadvantage is the sensitivity of the method to initialization, which
becomes particularly problematic when the model exhibits unstable modes. Note
that path constraints can be violated since the dynamic simulator generates
trajectories that may not satisfy the original constraints. This may lead to poor
convergence of the NLP. Moreover, the dynamic solver may fail integrating the
model along the time horizon due to an improper initialization.

2.5.2 Simultaneous approaches and direct multiple shooting

In simultaneous approaches controls and states are parameterized, allowing the
formulation of a NLP in terms of states, control and possibly parameters. Hence,
the simulation task needed to determine the state trajectory is coupled to the
optimizer so that states, controls and parameters are optimized all together.
This allows for controlling the feasibility of the state trajectories and improves
convergence rates. Consequently, the dynamic equation is solved simultaneously
with the OCP or PEP and a valid state trajectory is only obtained at the end
of the optimization task. This total parameterization leads to a large scale NLP.
However, there is a lot of structure in the formulation of simultaneous methods,
structure that can be exploited by tailored optimization methods (Biegler et al.,
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2002). There are mainly two well-developed simultaneous methods, namely, direct
multiple shooting (DMS) (Bock and Plitt, 1984) and orthogonal collocation on
finite elements (OCFE) (Biegler, 1984). The former is explained here in detail
since it is the basis of the solver used in Chapter 6 for the efficient solution of
parameter estimation problems.

DMS can be seen as a hybrid or intermediate step between a sequential approach
and a fully parameterized DOP, since a dynamic equation solver is still used. In
DMS the time horizon T is divided in N subintervals,

t0 < t1 < t2 . . . < tN = T. (2.46)

The process states, control and model parameters are parameterized on each
subinterval, N i = [ti, ti+1], i = 0, . . . , N−1. This means that state trajectories are
determined by the state values at shooting nodes s = [s0, s1 . . . sN ], the control
parameters q = [q0, q1 . . . qN−1], local parameters p = [p0, p1 . . . pN−1] and the
model equations. This parameterization allows the model to be independently
integrated from ti to ti+1, ∀ i = 0, . . . , N −1. Figure 2.5(a) illustrates the scenario
for parameters, controls and states in a DMS formulation. The algorithm optimizes
the initial conditions si, controls qi and parameters pi in each shooting interval N i.
Note that for time invariant models, the parameter vector p is a global variable,
i.e., it does not change from one shooting interval to the other. However, to make
each subinterval totally independent, local variables pi are be introduced.

Remark 2.5.1. If the global parameter p is kept as a single variable, the obtained
NLP leads to a Hessian of the Lagrangian which is nearly block diagonal with
doubly-bordered blocks. Applying Hessian updates (see Section 2.3) destroys the
sparsity of the Hessian. Hence, special methods are needed to perform Hessian
updates (Yokoyama et al., 2008). If local parameters pi are introduced, as done
here, a bigger NLP is obtained but the new Hessian is block diagonal without the
double borders. In this form, updates of the Hessian can be easily performed per
blocks, preserving the sparse structure, using the so called high rank updates (Bock
and Plitt, 1984).

In order to guarantee continuity in the solution from t0 to tN and to avoid
time varying parameters, additional equality constraints are imposed on each
subinterval N i, i.e., (i) the final state value of the subinterval N i must match the
initial state value of the interval N i+1, and (ii) pi = p0 for all i = 1, 2, . . . , N − 1.
These conditions are illustrated in Figure 2.5(b) through the global constraints
block. Following the DMS parameterization, a DOP is reformulated as the NLP

NLPDMS : min
s,q,p

N−1∑

i=0

l(si, qi, pi) + E(sN ), (2.47)
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Figure 2.5: Direct multiple shooting (DMS) scenario (a) and a block diagram of
the corresponding simultaneous optimization approach (b). Note that in DMS, a
dynamic equations solver (DES) is still used.

subject to







(s0 − x0 = 0),
si+1 − x(ti+1) = 0, i = 0, . . . , N − 1,

pi − p0 = 0, i = 1, . . . , N − 1,
h(si, qi, pi) ≥ 0, i = 0, . . . , N − 1,
ritr(sN ) ≥ 0,
retc(sN ) = 0

(2.48)

The cost l(si, qi, pi) is obtained from the integration of the original cost, e.g., L
in (2.39), during the shooting interval i. The dynamic equations solver is used to
generate the state value x(ti) on each shooting interval by integrating the model.
In some cases, the solver also provides the model sensitivities (Cervantes and
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Biegler, 1999). Note that path constraints h(si, qi, pi) are normally evaluated at
shooting nodes.

Disadvantages

DMS and other simultaneous methods are generally more complex to implement
and normally lead to a considerably number of variables when compared with the
sequential approaches. Hence, sparse linear algebra solvers needs to be used to
efficiently deal with the increased number of variables. An alternative approach is
to project the involved variables in a lower dimensional space so that the problem is
formulated in a reduced number of optimization variables (Bock and Plitt, 1984).

Advantages

The NLP obtained from DMS and other simultaneous methods, such as collocation,
exhibits a lot of structure. This structure can be exploited by sparse methods
in optimization (Gill et al., 1984). Moreover, in DMS it is possible to reduce
the sparse quadratic programming (QP) problems that need to be solved in the
sequential quadratic programming iterations (see Section 2.3.2) to dense QPs with
the same number of variables as in DSS by a procedure called condensing (Bock
and Plitt, 1984). Due to this procedure it can be said that the computational
effort of DMS and DSS are comparable (Bock and Plitt, 1984), though both
approaches are in many variants. One of the significant advantages of simultaneous
approaches is the improvement of local convergence (Albersmeyer and Diehl, 2010)
and the possibility of providing a better initialization. Because of the state
parameterization, the state trajectories can be initialized close to what is expected
to be the solution. This is visualized easily in a parameter estimation problem
where shooting nodes si can be initialized with the available measurements. This
kind of initialization combined with the Gauss-Newton method leads to faster
convergence to the solution for the PEP (Kostina, 2004). In addition, unstable
modes are in general treated in a better form than in DSS since the rapid growth
of values is bounded due to shorter integration intervals [ti, ti+1]. Moreover, due
to the independent integration in subintervals, the problem can be parallelized.
Figure 2.5(b) illustrates that the optimizer receives information of blocks that can
run in parallel. Each of those blocks corresponds to one shooting interval, and
they are only coupled by the global constraints as previously mentioned.
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2.6 Conclusions

In this chapter the bases of parameterized dynamic optimization problems have
been introduced, highlighting the advantages of obtaining optimization problems
that are convex. Numerical methods based on optimality conditions for the
solution of the resulting nonlinear programming problems have been explained.
Details on the algorithms are presented since a sequential quadratic programming
algorithm is coupled with a dynamic equation solver with sensitivity capabilities
as a part of the convex methods used in this thesis. In addition, direct methods for
the efficient solution of the parameterized DOP have been presented. It has been
discussed that simultaneous optimization methods are in general less sensitive
to initialization values and suitable for processes with unstable modes. This
chapter has provided basic knowledge on dynamic optimization required for the
understanding of the contributions in this dissertation.
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Chapter 3

An equilibrium model for the

CIT distillation column

This chapter describes a rigorous equilibrium model for distillation in tray based
columns with constant pressure drop. The model described in Diehl (2002) is
adapted to the particular mixture used in the CIT distillation setup. This setup is
described in Section 3.1. Section 3.2 introduces the set of relations that leads to a
differential-algebraic equations (DAEs) model. Section 3.3 presents the dynamic
simulation results of the proposed DAEs using an off-the-shelf DAE solver. Model
states are organized so that sparsity is preserved for simulation tasks. An analysis
of model sensitivity with respect to unknown model parameters is performed in
Section 3.4 showing that the search space for parameter estimation problems (PEP)
can be reduced. Conclusions of the chapter follow in Section 3.5.

3.1 Pilot plant description

Industrial distillation is performed in tray based or packed columns, leading to
different approaches for modeling the process. The column studied here is a
packed based column. In this kind of systems, the liquid and vapor phases are
continuously in contact through the column internals. The experimental setup
involves a computer controlled distillation column (see Figure 3.1). The column
is about 6 m high and has an internal diameter of 7 cm containing three sections
of 960 mm each, with Sulzer CY packing (Sulzer, Winterthur). Each section is
subdivided into six smaller packing segments of 160 mm length. This packing
has a contact surface of 700 m2/m3. The feed stream containing a mixture of
methanol and isopropanol can be introduced into the column between the packed

33
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sections S1 and S2 or S2 and S3. Each one of these feeding points has an associated
electric heater of maximum 0.25 kW to adjust the temperature of the feed. These
heaters are activated or deactivated according to the selected feeding point. At
the bottom of the column a reboiler is present containing two electric heaters of
maximum 3 kW each. In the reboiler, a part of the liquid is vaporized while the
rest is extracted as bottom stream. At the column top a total condenser allows
condensing the entire overhead vapor stream, which is then collected in a reflux
drum whose volume is maintained constant. A part of the condensed liquid is
fed back to the column as reflux, while the remainder leaves the column as the
distillate stream.

In this setup the following four variables can be manipulated: the reboiler duty
QR (kW), the feed rate F (g/min), the duty of the feed heater QF (W) and
the reflux flow rate Lr (g/min). The distillate flow D (g/min) is adjusted to
maintain a constant reflux drum volume. Measurements are available for the
reflux flow rate Lr, the distillate flow rate D, the feed flow rate F and twelve
temperatures, i.e., the reflux temperature, the temperature at the top of the
condenser Ts11 , the temperatures in the center and extremes of each packing
section (Ts2 to Ts9 ), the temperature of the feed point TF, and the temperature
in the reboiler Ts1 . All actuators and sensors are connected to a Compact
Fieldpoint (National Instruments, Austin) with a controller interface cFP-2100 and
I/O modules cFP-AIO-610, cFP-AIO-610 and cFP-AI-110. A Labview (National
Instruments, Austin) program is developed to control the actuators and to register
the variables. There is no online measurement of the concentrations in the distillate
and bottom streams but it is possible to measure them offline by sampling the
output streams.

Since the CIT distillation column is a packed one, determining the number
of separation units or stages is an important issue for the model formulation.
The number of stages in a column N , is a design parameter in distillation, so
that the higher the number of stages N , the better the separation among the
components. In tray based columns is not difficult to determine N from the
experimental setup, because each tray can be associated to one stage1. Here it
is not possible to make a direct comparison between stages and trays. However,
packing manufacturers provide an equivalent-tray per length of packing material
factor or height equivalent per theoretical plate (HETP), (Seader and Henley,
2006). In Dewulf (2009) it is shown that for the particular kind of packing used
in the CIT distillation column, the HETP ranges between 8 and 14 per meter of
packing material2. Since the total length of the packing is 2.8 m, Dewulf (2009)
estimates a total of 36 packing stages. Note that for a HETP/m=12 m−1, around
35 theoretical stages are obtained. However, due to an efficiency per tray smaller

1Note that the number of theoretical trays for a given separation level and the number of
physical trays in the setup are related to the tray efficiency.

2This HETP is presented as a function of the F -factor (Seader and Henley, 2006).
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Figure 3.1: General layout of the distillation set-up with the distribution of the
temperature sensors.

than one, the real number of stages associated to the real setup has to be bigger.
Consequently, a total of 38 stages are assumed in the tray based model for the
distillation column. This estimation leads to 12 stages for each one of the 3 packing
sections in the column. Since the column is fed just above the first section, the feed
is located over the 13th stage, i.e., the reboiler plus the 12 stages of the packing
section. This leads to locate the feeding point in the 14th stage, i.e., NF = 14.
The second feeding point would be located above the second packing section, i.e.,
on stage 26.

3.2 Equilibrium based approach for distillation

Most of the models developed for distillation are based on the assumption of
Vapor-Liquid Equilibrium (VLE) between the phases involved. VLE implies that
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in a liquid mixture in contact with its vapor phase, the rates of evaporation and
condensation are equal. This is a very rough approximation since in practice
VLE is not achieved (Seader and Henley, 2006), (Taylor and Krishna, 1993).
VLE possess several advantages when formulating models for distillation with
respect to simplicity in the thermodynamic equations. However, it implies physical
conditions that may not be satisfied in reality, such as the same temperature for
vapor and liquid phase on a stage. The liquid and the vapor leaving a stage
may exhibit different temperatures, e.g., superheated vapor and subcooled liquid.
These situations are not covered by the VLE approach. Moreover, as mentioned
in Seader and Henley (2006), VLE implies relations between liquid and vapor,
through the vapor-liquid distribution ratio or K-values, that do not necessarily
describe the real composition values. This mismatch has created the need for
artificial modification to the equilibrium equations, introducing artificial concepts
such as the stage efficiency. Despite these inconveniences, equilibrium models are
widely used due to their simplicity. In the remainder of this chapter, an equilibrium
based model is described and simulated, based on the following assumptions

Assumption 3.2.1 (Equilibrium model assumptions).

• Binary mixture.

• Vapor-liquid equilibrium on all the stages,

• Molar vapor holdup negligible,

• Total condenser,

• Saturated liquid feed,

• Constant pressure drops, i.e., ∆Pr for rectifying section and ∆Ps for
stripping section,

• Variable tray efficiency per section αs and αr,

• Constant volume holdups in reboiler v̄R and condenser v̄D.

Figure 3.2 illustrates the interaction of flows and local variables on an equilibrium
stage. Note that each stage j is modeled using the same interaction among
the different variables, leading to a highly structured model. Liquid flowing
from the stage above at given temperature and composition, vapor rising from
the stage below at given temperature and composition, and the feed flow with
certain temperature and composition interacts with local holdup, composition and
temperature. Consequently, setting the mass balance for one equilibrium stage is
enough to build the model, because each set of stage equations is repeated N − 2
times in the whole column model.
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Figure 3.2: Equilibrium stage and the variables involved on its mass and energy
balances. Note that the vapor holdup has been neglected. All the variables used
have been defined in Section A.4

In the following paragraphs, a set of variables related to the thermodynamic
properties of the mixture are used. In order to clarify the notation of the model,
those variables have been defined in Section A.4. Moreover, since the vapor holdup
is neglected and pressure is assumed constant, the model can be formulated in
terms of composition dynamics using

ML
i,j = ML

tjxi,j . (3.1)

Likewise,

EL
j = ML

tjH
L
j , (3.2)

is used in the following sections to eliminate energy holdups Ej from the
formulation.

The stages at the top and bottom of the column, i.e., the condenser and the reboiler,
are especial stages since they normally lead to fewer variables and equations than
other sections of the column. Models for those stages are presented independently
in the following paragraphs.



38 AN EQUILIBRIUM MODEL FOR THE CIT DISTILLATION COLUMN

3.2.1 Equilibrium partial reboiler

The reboiler is assumed the first stage of the model, i.e., j = 1. Due to the
neglected vapor molar holdup and the binary mixture assumption, (3.1) can be
used to derive an expression for the change of composition of the light component
in the liquid phase with respect to time, i.e.,

ẋj =
Lj+1(xj+1 − xj) + Vj(xj − yj)

ML
tj

. (3.3)

The energy balance is, in principle, a dynamic equation. However, if the pressure
on a stage is assumed constant in time, it is possible to find an explicit expression
for Ṫj from Raoult’s law, i.e.,

Ṫj = Gj ẋj , (3.4)

Gj = − P s
1 (Tj) − P s

2 (Tj)
∂P s1 (Tj)

∂Tj
xj +

∂P s2 (Tj)

∂Tj
(1 − xj)

, (3.5)

This expression can be used in combination with (3.2) to transform the dynamic
energy balance into an algebraic equation of the form

gEj = Vj

(
(xj − yj)Zj +HV

j −HL
j

)
−Q−Qloss

+Lj+1

(
HL

j+1 −HL
1 − (xj+1 − xj)Zj

)
, (3.6)

Zj =

(

∂HL
j

∂x
+
∂HL

j

∂T
Gj

)

, (3.7)

where expressions for the partial derivative of liquid enthalpies HL
j and vapor

pressures P s
i with respect to temperature and composition are given in Appendix

A. Equation (3.6) determines the vapor flow V1. Qloss is a constant parameter
that accounts for the heat losses in the column as presented in Diehl (2002).

Assuming constant volume in the reboiler v̄R leads to the algebraic equations

gLj = BυL
j − Lj+1

(
(xj+1 − xj)Yj + υL

j

)
+ Vj

(
(xj − yj)Yj − υL

j

)
(3.8)

Yj =
∂υL

j

∂x
+
∂υL

j

∂T
Gj ,
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and

gMtj
= vL

j M
L
tj − v̄R. (3.9)

Partial derivatives of the molar volume υL
j with respect to temperature and

composition are given in Appendix A.

Temperature at stage j is calculated from the Raoult’s law

gKj
= 1 −K1,jxj −K2,j(1 − xj) (3.10)

with K-values3 obtained from (A.45).

The vapor composition yj can be calculated using the K-values and the tray
efficiencies αj

gyj = yj − αjK1,jxj . (3.11)

with one α for the stripping section and another for the rectifying section, i.e.,
αj = αs for all j = 1, . . . NF and αj = αr for j = NF + 1, . . . N − 1.

Pressure in the reboiler is determined from the constant pressure drop in the
stripping section ∆Ps, and the pressure of the stage above, as in

Pj = Pj+1 + ∆Ps. (3.12)

This model of reboiler leads to 1 differential and 5 algebraic equations/variables4.
The equations and variables can be grouped as

f1 = [gL1 , gMt1
, ẋ1, gE1 , gK1 , gy1 ]T , (3.13)

and

x1 = [B, ML
t1
, x1, V1, T1, y1]T , (3.14)

respectively.

3In Diehl (2002) the effect of non ideal activity coefficients is neglected, i.e., γ1 = γ2 = 1
4Note that P can be included as system state. However, since there is an explicit expression

for it, it is not included in the state vector xj .
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3.2.2 Equilibrium stage

The equilibrium stages corresponding to the trays, i.e., j = 2, . . . , N − 1, are
modeled in the following paragraphs. Total molar holdup and light component
composition are defined by total mass and component balances

ṀL
tj = Lj+1 + Vj−1 − Lj − Vj + Fj , (3.15)

ẋj =
Lj+1(xj+1 − xj) + Vj−1(yj−1 − xj) + Vj(xj − yj) + F (xF − xj)

ML
tj

, (3.16)

respectively.

As in the reboiler, due to the constant pressure assumption, the dynamic energy
balance can be cast as the algebraic equation

gEj = Lj+1

(
HL

j+1 −HL
j − Zj(xj+1 − xj)

)

+Fj

(
HF

j −HL
j − Zj(xF

j − xj)
)

+Vj−1

(
HV

j−1 −HL
j − Zj(yi−1 − xj)

)

+Vj

(
HL

j −HV
j − Zj(xj − yj)

)
. (3.17)

Liquid flows are calculated from the geometry of the tray. In Diehl (2002) this is
performed using the Francis weir formula

gLj = Ljυ
L
tj −Wj

(

υL
tjM

L
tj − υref

j

)

, (3.18)

where the weir coefficient Wj and the reference volume per tray υref
j are model

parameters.

Equilibrium temperature for the stage j is determined by (3.10), while vapor
composition is calculated from the equilibrium relation modified with tray
efficiencies αj ,

gyj = yj − αj
P s

1 (Tj)

Pj
xj − (1 − αj)yj−1. (3.19)
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Pressure at the stage j is obtained as in the reboiler, by using (3.12). The model
of the equilibrium stage involves 2 differential and 4 algebraic equations/variables.
They can be arranged as

fj = [gLj , gKj
, ẋj , Ṁ

L
tj , gEj , gyj ]

T (3.20)

xj = [Lj , Tj , xj , M
L
tj , Vj yj ]T (3.21)

3.2.3 Equilibrium condenser

The condenser and the reflux drum are modeled as a whole unit at the top of the
column, i.e., j = N . A component mass balance, assuming a binary mixture, leads
to:

ẋj =
Vj−1(yj−1 − xj)

ML
tj

. (3.22)

Although no energy balance around the condenser is specified in Diehl (2002), an
energy balance in the condenser determines the value of the removed heat QC , i.e.,

gEj = Vj−1H
V
j−1 − LjH

L
j +QC . (3.23)

QC is not included as a model state here, but can be calculated explicitly from
(3.23) since temperature and composition at the top stage are determined by the
model.

Due to the constant volume assumption for the condenser, the distillate flow D
and the molar holdup ML

tj are determined by

gLj = υL
tjD − Vj−1

(

(yj−1 − xj)Yj + υL
tj

)

+ υL
tjLj , (3.24)

and

gMtj
= vL

j M
L
tj − ῡD, (3.25)

respectively. Note that LN corresponds to the reflux, which is a manipulated
variable. Hence, HL

N must be calculated at the measured reflux temperature TC . In
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Table 3.1: Summary of variables and equations involved in the equilibrium based
model proposed in Diehl (2002).

Stage Variablesa Associated Total

name units typeb equation var./eq.

Reboiler
j = 1

ML
t1

mol A (3.9)
x1 mol/mol D (3.3)
T1 K A (3.10)
V1 mol/s A (3.6)
y1 mol/mol A (3.11)
B mol/s A (3.8) 6

Equilibrium
j = 2, . . . , N − 1

xj mol/mol D (3.16)
Tj K A (3.10)
ML

tj
mol D (3.15)

Vj mol/s A (3.17)
yj mol/mol A (3.19)
Lj mol/s A (3.18) 6(N − 2)

Condenser
j = N

xN mol D (3.27)
TN mol A (3.10)
ML

tN
kW A (3.25)

D mol/s A (3.24) 4

aConsidering a binary mixture
bD and A stand for differential and algebraic variables, respectively.

Diehl (2002) TC is not equal to TN , since TC normally corresponds to a subcooled
liquid, a condition that cannot be described by equilibrium.

Temperature, pressure and vapor composition are determined using (3.10), (3.12)
and (3.19), respectively, considering j = N . This model of the condenser leads to
1 differential and 3 algebraic equations/variables. Hence, the equations and states
for the condenser can be grouped as

fN = [gKN
, ẋN , gMtN

, gLN ]T , (3.26)

xN = [TN , xN , M
L
tN , D]T . (3.27)

Table 3.1 summarizes the model states, and the equations that determine those
states, for the model presented in Diehl (2002)5.

5Some of the equations have been modified and analytical expressions for some derivatives of
component properties with respect to time have been calculated.
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3.2.4 Equilibrium model structure

The presented model leads to 2N − 2 differential and 4N algebraic vari-
ables/equations, where N represents the number of stages including reboiler and
condenser. Equations and variables can be organized in the particular form

f = [f1, f2 , . . . , fN−1, fN ]T , (3.28)

x = [x1, x2 , . . . , xN−1, xN ]T , (3.29)

with the vectors fj and xj ∀ j = 1, . . . , N given by (3.13), (3.20), (3.26) and
(3.14), (3.21), (3.27), respectively. This particular form of organizing states and
equations leads to a banded structure in the model Jacobian which can be exploited
when solving the system. The structure in separation processes is obtained by
associating variables involved on a stage with the equations that are determined
from energy, mass balance and equilibrium at the same stage. Note that this
creates blocks of non-zero entries in the system Jacobian since only a subset of the
total states is involved in the equations modeling the stage.

Note also that, although vapor composition yj can be explicitly determined from
(3.11), (3.19), and vapor flows Vj determined from (3.6), (3.17), eliminating those
states from the model, destroys the banded structure of the Jacobian. This is
easily explained, because (3.19) and (3.17) are recursive equations, i.e., Vj depend
on Vj−1, Tj−1 and xj−1 and yj depends on yj−1, xj and Tj . Due to the recursion
required to calculate Vj and yj explicitly, some of the states involved in the previous
j− 1 stages need to be used. Hence, the mass balance at stage j would depend on
almost all the states involved in the j−1 previous stages. This dependence leads to
a Jacobian that is not block diagonal. The dependency is avoided by considering
Vj and Vj−1, yj and yj−1 as variables that do not depend on each other but satisfy
the model equations.

Consequently, although vapor flows and composition can be calculated explicitly
leading to a reduced number of model states, in the presented model, they are
included as states, because this formulation does not destroy the block diagonal
structure of the model Jacobian.

3.3 Dynamic simulation

The equations presented involve a series of parameters that need to be tuned.
Table 3.2 summarizes the parameters used in this equilibrium model. Some of the
values of those parameters are taken from Diehl (2002), while others are adapted to
the CIT distillation column described in Section 3.1. For instance pressure drops
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are considerably smaller since a structured packing is used as column internals.
The temperature of the reflux TC , is assumed a measurable disturbance for the
model and it is correlated with the removed heat in the condenser and the heat
losses in the top stage (Diehl, 2002).

Table 3.2: Initial guess for parameters in the equilibrium model for the CIT
column.

Parameter Value Unit Description
p1 αr 0.35 Rectifying section tray efficiency
p2 αs 0.62 Stripping section tray efficiency
p3 Qloss 0.51 kW Heat losses in the reboiler

p4 Wtray 5.2494 m− 3
2 s−1 Tray geometry coefficient

p5 M ref 0.155×10−3 m3 Reference volumetric holdup
p6 ∆Pr 19 Pa Rectifying section pressure drop
p7 ∆Ps 25 Pa Stripping section pressure drop
p8 Ptop 101325 Pa Top pressure
p9 ῡR 5×10−3 m3 Reboiler Liquid volume
p10 ῡD 2×10−3 m3 Reflux drum Liquid volume
p11 xF 0.67 mol/mol Methanol composition in the feed
p12 M ref

F 0.17 m3 Reference volume for the feed tray

Table 3.3 illustrates the variables that can be manipulated in the distillation setup.
Note that, although top and bottom flows are manipulated variables, they have
not been included here since values for those flows are indirectly set by the liquid
volumes in the reflux drum and reboiler.

Table 3.3: Manipulated variables in the CIT distillation setup.

Value Unit Description Control
u1 4.5 kW Reboiler duty QR

u2 80 g/min Reflux Lr

u3 150 g/min Feed flow F
u4 318.15 K Feed temperature TF

In order to run a dynamic simulation, initial values for the model states have to be
provided, i.e., stages composition, temperatures, molar holdups, liquid and vapor
flows. Here, initialization is performed by interpolating initial values from the
model presented in Diehl (2002). However, it is possible to calculate initial values
for temperature, compositions and flows from the temperature measurements if
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pressure is assumed constant along the column as it is presented in Section 4.3.1.
Nevertheless, molar holdups have to be estimated from liquid flows using the
Francis weir formula. The resulting DAE does not exhibit stiffness since the fast
dynamics due to the vapor holdup have been neglected. Moreover, this assumption
allows an easy integration of the DAE using off-the-shelf solvers (Shampine et al.,
1999), (Hindmarsh et al., 2005). Figure 3.3 displays the dynamic response of the
equilibrium model when a change of 10% is applied to the manipulated variables
QR and Lr. Note that the model response to a step change in reboiler duty QR

leads to an instantaneous change in vapor flow. This behavior originates from the
lack of equations that properly model the heat transfer between the actuator and
the mass of liquid in the reboiler. Equations to model this heat transfer resistance
are not considered. Consequently, due to the saturated liquid in the reboiler an
increase or decrease of heat immediately changes the vapor flow. Filters can be
added to the actuator to mimic the real behavior of the setup. On the other hand,
it is possible to notice the asymmetric gain of the process when the manipulated
variables are increased or decreased by the same amount.

3.4 Sensitivity analysis of model parameters

The equilibrium model presented uses the set of parameters listed in Table 3.2.
Figure 3.4 shows the steady state temperature profile, obtained by simulating the
model and sampling the real setup, under the conditions described in Table 3.3.
The model temperatures for the N stages have been linearly interpolated to obtain
eleven samples corresponding to the sensors in the real setup.

It is clear that the set of model parameters requires a proper tuning to fit the
measured profile. Since the set of measurable states is limited to temperatures,
and offline measurement of top and bottom compositions, it is convenient to verify
if the model parameters can be estimated from the available measurements. A
simple procedure to perform this analysis is to calculate the state sensitivities with
respect to model parameters. Here, the DAE solver with sensitivity capabilities
proposed in Hindmarsh et al. (2005) is used. Figures 3.5 and 3.6 illustrate the
time evolution in top and bottom temperature trajectories due to a 10 percent
change in the four manipulated variables. These trajectories are compared when
a 10 percent change is performed on each one of the 12 parameters considered in
the model. The change in temperature profile is calculated from

∆Tj(t, pi) ≈ ∂Tj

∂pi
(t)∆pi, (3.30)

where i is the index of the parameter and the sensitivity of the temperature at
stage j,

∂Tj
∂pi

(t), is obtained using the solver mentioned above. This procedure
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response of vapor flows to changes in reboiler duty, due to the neglected dynamics of the heat transfer from the actuator.
A similar behavior is expected from top and bottom flows due to the perfect volume control assumption.
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Figure 3.4: Steady state profiles obtained from model and real process under the
conditions in Table 3.3.

gives an indication of the parameter influence over the temperature at stage j. As
noticed in Figures 3.5 and 3.6, all the parameters related to liquid dynamics, i.e.,
Wtray, M ref , M ref

F , ῡR and ῡD only influence the dynamic response.

The total influence of parameter pi over the temperature profile along the column,
i.e., over the N stages, when the four manipulated variables are perturbed, is
quantified in the norm

‖Si‖ =
1

4Nkf

4∑

m=1

N∑

j=1

kf−1
∑

k=0

‖∆Tm
j (tk, pi)‖2

2. (3.31)

Here, kf corresponds to the number of integration steps used by the DAE solver
to represent the dynamic trajectory of the sensitivities, while m is the number
of manipulated variables. The same norm can be applied to other states, e.g.,
compositions and holdups to study the influence of parameters on those states.
Figure 3.7 shows the proposed norm when ∆T and ∆x are calculated from 10
percent changes on each one of the 12 parameters independently. Note that
parameters such as pressure drops do not have a big influence on the change
in temperature. In this particular case, since the pressure drop is relatively low
due to the packing material and with respect to the pressure at the top, the
change in pressure drop must be considerably high to have noticeable effect on
the temperature trajectories. Hence, only a subset of p has a significant influence
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on the temperature. Consequently, the set of parameters can be reduced to the
following seven: αr, αs, Qloss, Wtray, M ref , Ptop and xF . Volumes in the reboiler
and condenser need to change considerably to influence the temperature profiles
appreciably.

3.5 Conclusions

This chapter has presented an equilibrium based model for distillation. The
necessary dynamic and algebraic equations along with the required thermodynamic
correlations have been introduced through the chapter and the included appendices.
A particular form of organizing states and equations is proposed so that the
resulting model Jacobian is banded and its structure can be easily exploited by
nonlinear equations solvers. This structure is obtained by grouping states and
equations per stage and clearly associating a state in an stage to the equation
that determines it. Moreover, it is concluded that the structure of the problem
is preserved if the vapor flow and composition are not eliminated from the model
states, as could be done using explicit expressions for those variables. Although the
used model is based in previous work (Diehl, 2002), modifications to the existing
model are performed so that well documented correlations are used instead of
particular ones, allowing for the formulation of a more general model that can
be easily employed to represent the behavior of separation of different binary
mixtures.

Due to the limited number of measurements available, a sensitivity analysis of
models states with respect to parameters is performed. This test allows for a
classification of parameters that cannot be identified from steady state data, since
their sensitivities vanish in time. Moreover, the test shows that only a reduced set
of the proposed model parameters exhibit a high influence on the measurable states.
Hence the search space for parameter estimation routines can be reduced from
twelve parameters to seven in the proposed model. The non identified parameter
values can be set to their initial guesses.



C
O

N
C

L
U

S
IO

N
S

4
9

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−3

0 0.2 0.4 0.6 0.8 1
0

1

2

3
x 10

−3

 

 

0 0.2 0.4 0.6 0.8 1
0

1

2

3

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20
x 10

−4

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

(
K

)

(
K

)

(
K

)

(
K

)

(
K

)

(
K

)

(
K

)

(
K

)

(
K

)

(
K

)

(
K

)

(
K

)

TimeTimeTime

∆T1 due to ∆αr ∆T1 due to ∆αs ∆T1 due to ∆Qloss

∆T1 due to ∆Wtray ∆T1 due to Mref ∆T1 due to ∆Pr

∆T1 due to ∆Ps ∆T1 due to ∆Ptop ∆T1 due to ∆ῡR
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Figure 3.6: Change in condenser temperature due to changes in the 4 manipulated variables when the 12 model parameters
are perturbed 10 percent over their initial guesses.
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Chapter 4

A rate based model for

separation in packed columns

This chapter presents the bases for the dynamic simulation and parameter
estimation of a Rate Base Model (RBM) for distillation in packed columns.
The differential-algebraic equations that describe the system are explained in
Section 4.1. The number of states required to describe the model is reduced by
constraint differentiation and algebraic manipulation in Section 4.2. Nevertheless,
the model still involves a large number of differential and algebraic variables.
As a first approach to evaluate the model properties, a steady state simulation
is performed in Section 4.3, where model structure is exploited to reduce the
computational cost involved due to the considerable number of states. In
Section 4.4 the parameter estimation problem for the steady estate model is
introduced, highlighting the constraints that the parameters need to satisfy
in order to obtain state trajectories that are physically possible. Section 4.5
introduces the higher index DAE problem and proposes an index reduction
procedure based on model dynamic properties. The reduced index model is
simulated using a sparse formulation and a dynamic sensitivity analysis is
performed in order to study the influence of model parameters in measurable
trajectories. Conclusions to the chapter follow in Section 4.6.

The classical approach for modelling stage-wise columns employs models where the
stages are considered in thermodynamic equilibrium. However, this equilibrium-
stage approach is not completely valid since, in general, vapor and liquid leaving
a stage are not necesarily at the same temperature. To cope with this problem
the concept of stage efficiency is introduced. Nevertheless, the stage efficiency
method is still deficient when multicomponent processes are analyzed or when the
efficiency is relatively low (Seader and Henley, 2006). To this end, mass transfer

53



54 A RATE BASED MODEL FOR SEPARATION IN PACKED COLUMNS

N
E

T V

Vapor phase

Liquid phase

TL

T I

yi,j

xI
i,j

yI
i,j

Vj

HV
j

yi,j−1

Vj−1

HV
j−1

xi,j

Lj

HL
j

xi,j+1

Lj+1

HL
j+1

ML
i,jMV

i,j

EV
j EL

j

Figure 4.1: Non-equilibrium stage in the rate based model.

considerations are used to more accurately model the interaction between vapor
and liquid phases along the column. In this approach, each stage is assumed
in mechanical but not thermal equilibrium and it is composed of bulk phases,
normally liquid and vapor, that are in contact at the stage interface.

Following a two film theory (Seader and Henley, 2006), a non-equilibrium stage is
modeled so that mass and energy transfer are performed between the bulk phases
through an interface. This transfer is driven by temperature and composition
gradients. This division of the stage in three regions, namely vapor bulk phase,
liquid bulk phase and interface, allows the modeling of superheated and subcooled
phases. These regions are normally not covered in equilibrium based approaches.
Figure 4.1 depicts a non-equilibrium stage in the rate based model (RBM) as
proposed by Khrishnamurthy and Taylor (1985). Mass and energy transfer
between molar holdups in each phase MV

j , ML
j and EL

j , EV
j is accomplished

through the interface by the energy E and mass N flows. Independent balances
are obtained for each phase, while equilibrium conditions, linking the bulk phases
and the interface, are formulated as presented in the following paragraphs.

The model presented in this chapter is based on the following assumptions

Assumption 4.0.1 (Rate based model).

• A binary mixture is considered.

• Each stage is in mechanical equilibrium.

• Bulk phases are perfectly mixed with respect to temperature and composi-
tion.
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• Vapor-liquid equilibrium is only assumed at the vapor-liquid interface.

• The reboiler and condenser are assumed at thermal and mechanical
equilibrium.

• A partial reboiler is modeled.

• The condenser is at atmospheric pressure.

• The pressure drop in the condenser is constant and known.

4.1 The rate based model

A dynamic model is developed, based on the work presented in Kooijman (1995),
Taylor and Krishna (1993) and Taylor et al. (1994). Steady state and dynamic
simulations are considered here along with the necessary changes to successfully
find a solution to both formulations. The packed column is divided in three
sections, i.e., (i) reboiler, (ii) non-equilibrium stages and (iii) condenser plus reflux
drum. Each one of these sections is modeled in the following paragraphs using
dynamic and algebraic equations1.

4.1.1 Reboiler

A partial reboiler is considered, assuming thermal and mechanical equilibrium.
Under these conditions, the equilibrium stage is modeled by the following mass,
energy balances and equilibrium equations:

ṀL
1,1 = L2x

I
1,2 −BxI

1,1 − V1y
I
1,1, (4.1)

ṀL
2,1 = L2x

I
2,2 −BxI

2,1 − V1y
I
2,1, (4.2)

ĖL
1 = L2H

L
2 −BHL

1 − V1H
V
1 +QR −QL

1 , (4.3)

gML
t1

= ML
1,1 +ML

2,1 −ML
t1
, (4.4)

gEL1
= ML

t1
HL

1 − EL
1 , (4.5)

gML
υ1

= B −Bref , (4.6)

1Inhere, g is used to represent the algebraic constraints.
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gK1,1 = yI
1,1 −K1,1x

I
1,1, (4.7)

gK2,1 = yI
2,1 −K2,1x

I
2,1, (4.8)

gSy,1 = yI
1,1 + yI

2,1 − xI
1,1 − xI

2,1, (4.9)

gP1 = P2 + ∆P2 − P1. (4.10)

This model of the reboiler leads to 3 differential and 7 algebraic equations involving
10 local2 variables. The system of equations and the vector of variables can be
summarized as:

f1 = [ṀL
1,1 Ṁ

L
2,1 Ė

L
1 gML

t1
gML

υ1
gEL1

gK1,1 gK2,1 gSy,1 gP1 ]T , (4.11)

and

x1 = [ML
1,1 M

L
2,1 E

L
1 ML

t1
B TL

1 yI
1,1 y

I
2,1 V1 P1]T , (4.12)

respectively. Liquid and vapor compositions x and y, respectively, are calculated
from molar holdups using expressions such as

xi,j =
ML

i,j

ML
tj

, ∀ j = 1, . . . , N, (4.13)

yi,j =
MV

i,j

MV
tj

∀ j = 2, . . . N − 1. (4.14)

4.1.2 Non-equilibrium stages

The dynamic equations for the stages j = 2, . . . , N −1 are described by the energy
and mass balances over the bulk phases for the components i = 1, 2

ṀL
1,j = Lj+1x1,j+1 −Ljx1,j +FL

j x
F
1,j +N1,j, (4.15)

ṀL
2,j = Lj+1x2,j+1 −Ljx2,j +FL

j x
F
2,j +N2,j, (4.16)

2The term local here refers to variables that are uniquely determined by the set of equations
describing the stage. Although there are more than 10 variables involved, the extra ones are
determined by the stages linked to the reboiler by incoming and outgoing flows.
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ṀV
1,j = Vj−1y1,j−1−Vjy1,j +FV

j y
F
1,j −N1,j, (4.17)

ṀV
2,j = Vj−1y2,j−1−Vjy2,j +FV

j y
F
2,j −N2,j, (4.18)

ĖL
j = Lj+1H

L
j+1 − LjH

L
j + FL

j H
L
f,j −QL

j + EL
j , (4.19)

ĖV
j = Vj−1H

V
j−1 − VjH

V
j + FV

j H
V
f,j −QV

j − EV
j . (4.20)

Total holdups are calculated from the geometry of the packing section and the
component holdups are given as

gML
tj

= ML
1,j +ML

2,1 −ML
tj , (4.21)

gMV
tj

= MV
1,j +MV

2,j −MV
tj , (4.22)

gML
tj

= ML
tj − π

4
d2lhL

tjc
L
tj , (4.23)

gMV
tj

= MV
tj − π

4
d2l(ǫ− hL

tj )c
V
tj , (4.24)

gEL
j

= EL
j − π

4
d2lhL

tjc
L
tjH

L
j , (4.25)

gEV
j

= EV
j − π

4
d2l(ǫ− hL

tj )c
V
tjH

V
j . (4.26)

Mass and energy transfer rates between vapor and liquid bulk phases are modeled
using gradient driven mass and energy flows along with mass and heat transfer
coefficients as proposed in Taylor et al. (1994).

gNL
1,j

= N1,j − aIcL
t k

L
j (xI

1,j − x1,j) − x1,j(N1,j + N2,j), (4.27)

gNV
1,j

= N1,j − aIcV
t k

V
j (y1,j − yI

1,j) − y1,j(N1,j + N2,j). (4.28)

The energy flow Ej is calculated from conductive and convective fluxes as:

EV
j = hV

j a
I
j (T V

j − T I
j ) +

2∑

i=1

Ni,jH̄
V
i,j , (4.29)

EL
j = hL

j a
I
j (T I

j − TL
j ) +

2∑

i=1

Ni,jH̄
L
i,j , (4.30)
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gEj = EV
j − EL

j . (4.31)

Equilibrium is only assumed at the interface and it is modeled using the K-values:

gK1,j = yI
1,j −K1,jx

I
1,j , (4.32)

gK2,j = yI
2,j −K2,jx

I
2,j , (4.33)

gSx,j = xI
1,j + xI

2,j − 1, (4.34)

gSy,j = yI
1,j + yI

2,j − 1. (4.35)

Pressure at each stage is obtained by calculating pressure drops ∆P from particular
correlations, such as (A.70), and incorporating them into

gPj = Pj+1 + ∆Pj+1 − Pj . (4.36)

A non-equilibrium stage with this formulation leads to 6 differential and
14 algebraic equations/variables. The system of equations and variables is
summarized in the vectors:

fj = [ṀL
1,j Ṁ

L
2,j Ė

L
j gML

tj

gML
v,j

gEL
j

gK1,j gK2,j gSx,j gSy,j gEj gNL
1,j

gNV
1,j

gEV
j

gMV
tj

gMV
v,j
ṀV

1,j Ṁ
V
2,j Ė

V
j gPj ]

T , (4.37)

and

xj = [ML
1,j M

L
2,j E

L
j ML

tj Lj T
L
j xI

1,j x
I
2,j y

I
1,j y

I
2,j T

I
j N1,j N2,j T

V
j

MV
tj Vj M

V
1,j M

V
2,j E

V
j Pj ]T , (4.38)

∀ j = 2, . . . , N − 1, respectively.

4.1.3 Equilibrium condenser

The condenser is modeled using the following static equations.
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Energy balance

gEL
t,N

= VN−1H
V
N − LcH

L
c +QC . (4.39)

Equilibrium

gK1,N
= yI

1,N −K1,Nx
I
1,N , (4.40)

gK2,N
= yI

2,N −K2,Nx
I
2,N , (4.41)

gS1 = xI
1,N + xI

2,N − 1, (4.42)

gS2 = yI
1,N + yI

2,N − 1. (4.43)

Pressure

gPN = Patm − PN . (4.44)

Vapor composition

gy1,N = y1,N−1 − yI
1,N , (4.45)

Notice that no differential equation is used in this model formulation, leading to
7 algebraic equations/variables. Those variables are summarized in Table 4.1.

Reflux drum

The model is described by the mass and energy balances and total holdup
summations:

ṀL
1,N = Lcx

I
1,N − (Lr +D)x1,N , (4.46)

ṀL
2,N = Lcx

I
2,N − (Lr +D)x2,N , (4.47)

ĖL
N = LcH

L
N − (Lr +D)HL

N , (4.48)

gML
tN

= ML
1,N +ML

2,N −ML
tN , (4.49)
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gEL
N

= ML
tNH

L
N − EL

N , (4.50)

gML
υN

= D −Dref , (4.51)

leading to 3 differential and 3 algebraic equations.

The model for the condenser and reflux drum leads to 3 differential and 10 algebraic
equations and variables organized as follows

fN = [gy1,N ṀL
1,N ṀL

2,N ĖL
N gML

tN

gEL
N

gML
υN

gK1,N gK2,N

gSxN
gSyN

gPj gELtN
]T , (4.52)

and

xN = [yI
1,N yI

2,N ML
1,N ML

2,N EL
N ML

t,N TL
N D xI

1,N xI
2,N T I

N

PN QC ]T , (4.53)

respectively.

It has to be mentioned that for steady state simulation (4.6) and (4.51) are modified
with

gML
υ,1

= υL
t1
ML

t1
− v̄R, (4.54)

gML
υ,N

= υL
tNM

L
tN − v̄D, (4.55)

respectively (Kooijman, 1995). These modifications account for fixed volumes in
the reboiler and condenser. Table 4.1 summarizes the equations and variables used
to simulate the model.

4.2 Reduced order rate based model

In this section, a reduction of the number of states required to describe the model
behavior is performed. Note that compositions are calculated from molar holdups
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Table 4.1: Summary of variables and equations involved in the RBM proposed in
Taylor and Krishna (1993).

Stage Variablesa Associated Total
name units typeb equation var./eq.

Reboiler
j = 1

ML
1,1 mol D (4.1)

ML
2,1 mol D (4.2)

EL
1 kW D (4.3)

ML
t1

mol A (4.4)

V1 mol/s A (4.5)
B mol/s A (4.6)

y1,1 mol A (4.7)
y2,1 mol A (4.8)
T L

1,1 K A (4.9)

P1 Pa A (4.10) 10

Non-equilibrium
j = 2, . . . , N − 1

ML
1,j

mol D (4.15)

ML
2,j

mol D (4.16)

MV
1,j

mol D (4.17)

MV
2,j

mol D (4.18)

EL
j

kW D (4.19)

EV
j

kW D (4.20)

ML
tj

mol A (4.21)

MV
tj

mol A (4.22)

Vj mol/s A (4.23)
Lj mol/s A (4.24)
T L

j
K A (4.25)

T V
j

K A (4.26)

N1,j mol/s A (4.27)
N2,j mol/s A (4.28)
T I

j
K A (4.31)

yI
1,j

mol A (4.32)

yI
2,j

mol A (4.33)

xI
1,j

mol A (4.34)

xI
2,j

mol A (4.35)

Pj mol A (4.36) 20(N − 2)

Condenser
j = N

T I
N

K A (4.41)
QC kW A (4.39)
yI

1,N
mol A (4.45)

yI
2,N

mol A (4.43)

xI
1,N

mol A (4.40)

xI
2,N

mol A (4.42)

PN Pa A (4.44) 7

Reflux drum
j = N

ML
1,N

mol D (4.46)

ML
2,N

mol D (4.47)

EL
N

kW D (4.48)
ML

tN
mol A (4.49)

T L
N

K A (4.50)
D mol/s A (4.51) 6

aA binary mixture is considered
bD and A stand for differential and algebraic variables respectively.
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by

xi,j =
ML

i,j

ML
tj

, ∀ j = 1, . . . , N, (4.56)

yi,j =
MV

i,j

MV
tj

∀ j = 2, . . . N − 1, (4.57)

and energy holdups could be explicitly determined from total molar holdups and
enthalpies using expressions like

Ep
j = Mp

tjH
p
j , (4.58)

where p denotes the liquid bulk phase (p = L), or the vapor bulk phase (p = V ). If
these expressions for holdups are replaced in the differential equations, the whole
model can be expressed in a new set of differential variables, i.e., x, y, TL, T V , ML

t

and MV
t . The advantages are that the number of states and algebraic constraints

are reduced without losing model structure. The disadvantage is that expressions
for the change in enthalpy with respect to time need to be calculated, which can
be a tedious task.

Consequently, the number of algebraic variables required for the model can be
reduced by properly substituting the presented relations into the original RBM.

4.2.1 Enthalpies and their derivatives

The separation model requires enthalpy relations for vapor and liquid bulk phases.
These expressions are composition and temperature dependent.

If the expression (4.58) is substituted in the differential equations involving the
change in energy per time unit for the bulk phase p, Ėp

j , relations of the form

Mp
tj

∂Hp
j

∂t
+Hp

j

∂Mp
tj

∂t
= energy balance in stage j, phase p, (4.59)

are obtained. On the one hand, expressions for the time derivative of total
composition holdups are easily determined from individual component holdups.
For the binary case,

Ṁp
t = Ṁp

1,j + Ṁp
2,j , (4.60)
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x2,j = 1 − x1,j , (4.61)

y2,j = 1 − y1,j, (4.62)

hold. On the other hand, expressions for the change of enthalpy with respect to
time are obtained by the chain rule, i.e.,

∂HL
j

∂t
=
∂HL

j

∂x1,j
ẋ1,j +

∂HL
j

∂TL
j

ṪL
j , (4.63)

∂HV
j

∂t
=
∂HV

j

∂y1,j
ẏ1,j +

∂HV
j

∂T V
j

Ṫ V
j . (4.64)

Hence, the model can be expressed in terms of the new differential variables
ẋ1,j , ẏ1,j, Ṫ

L, Ṫ V , ṀL
t and ṀV

t which are linked to the original variables by
(4.56), (4.57) and (4.58). The derivation of expressions for the enthalpy derivatives
is included in appendix A.

The new reduced order rate based model (RORBM) is formulated only in terms
of the light component composition due to the binary mixture assumption, i.e.,
x = x1, y = y1, xI = xI

1 and yI = yI
1 . In the following the set of equations

describing each stage, with the simplifications proposed, are presented.

4.2.2 Reboiler

With the proper substitutions, the model for the reboiler, j = 1, is reduced to:

ṀL
t,j = Lj+1 −B − Vj , (4.65)

ẋj =
Lj+1(xj+1 − xj) + Vj(xj − yj)

ML
tj

, (4.66)

ṪL
j =

Lj+1

(

HL
j+1 −HL

j − ∂HL
j

∂x (xj+1 − xj)

)

ML
tj

∂HL
j

∂TL

+

Vj

(

HL
j −HV

j +
∂HL

j

∂x (yj − xj)

)

+QR −QL

ML
tj

∂HL
j

∂TL

, (4.67)
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gKx,1 = y −K1,jx, (4.68)

gKy,1 = (1 − y) −K2,j(1 − x), (4.69)

gP1 = Pj+1 + ∆Pj+1 − Pj , (4.70)

gML
v1

= B −Bref . (4.71)

Note that Bref in (4.71) is used as a control variable and helps to determine
the volumetric holdup of the reboiler. For steady state simulation, (4.71) can be
replaced by (4.73)

Further simplifications in the reboiler equations

Although the previous equations for the reboiler describe the dynamics of the
system, it is possible to simplify the model even more by assuming a constant
volume in the reboiler. If that is the case, (4.65) and (4.71) must be replaced by

gML
t1

= υL
tj (Lj+1 −B − Vj) +ML

tj

(

∂υL
tj

∂xj
ẋj +

∂υL
tj

∂TL
j

ṪL
j

)

(4.72)

gML
υ1

= υL
t1
ML

t1
− v̄R, (4.73)

respectively. Note that this kind of assumption transforms ML
t1

in an algebraic
variable, since the differential equation corresponding to that variable is converted
to an algebraic constraint. It is shown during the dynamic simulation that this kind
of assumption presents numerical advantages when solving the model dynamically.
Moreover, if this assumption is made, the bottom flow Bref is not a degree of
freedom anymore and it is determined by the control loop that allows for a constant
volume in the reboiler or, in this case, by the assumption (4.72).

Ordering states and equations in a particular form provides advantages when
solving the nonlinear system. Here the following equations and states order is
proposed for the reboiler:

f1 = [gML
υ1
ṀL

t1
ẋ1 Ṫ

L
1 gK1,1 gK2,1 gP1 ]T , (4.74)
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and

x1 = [B ML
t1
x1 T

L
1 yI

1 V1 P1]T . (4.75)

4.2.3 Non-equilibrium stage

Likewise, the model for a non-equilibrium stage is reduced to the set of differential
equations from mass and energy balance

ṀL
t,j = Lj+1 − Lj + N1,j + N2,j + FL

j (4.76)

ẋj =
Lj+1(xj+1 − xj) + FL

j (xF
j − xj) + N1,j − (N1,j + N2,j)xj

ML
tj

, (4.77)

ṪL
j =

Lj+1

(

HL
j+1 −HL

j − ∂HL
j

∂x (xj+1 − xj)

)

+ EL
j −QL

j

ML
tj

∂HL
j

∂TL

+

FL
j

(

HL
F,j −HL

j − ∂HL
j

∂x (xF
j − xj)

)

− ∂HL
j

∂x N1,j

ML
tj

∂HL
j

∂TL

+

(N1,j + N2,j)

(
∂HL

j

∂x xj −HL
j

)

ML
tj

∂HL
j

∂TL

, (4.78)

ṀV
t,j = Vj−1 − Vj − (N1,j + N2,j) + FV

j , (4.79)

ẏj =
Vj−1(yj−1 − yj) + FV

j (yF
j − yj) − N1,j + (N1,j + N2,j)yj

ML
tj

, (4.80)

Ṫ V
j =

Vj−1

(

HV
j−1 −HV

j − ∂HV
j

∂y (yj−1 − yj)

)

− EV
j −QV

j

MV
tj

∂HV
j

∂TV
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+

FV
j

(

HV
F,j −HV

j − ∂HV
j

∂y (yF
j − yj)

)

+
∂HV

j

∂y N1,j

MV
tj

∂HV
j

∂TV

+

(N1,j + N2,j)

(

HV
j − ∂HV

j

∂y yj

)

MV
tj

∂HV
j

∂TV

, (4.81)

and the algebraic relations presented in the following paragraphs.

Molar holdups are calculated from the geometry

gML
tj

= ML
tj − π

4
d2lhL

tjc
L
tj , (4.82)

gMV
tj

= MV
tj − π

4
d2l(ǫ− hL

tj )c
V
tj . (4.83)

Mass and energy transfer are assumed at the interface

gNL
j

= N1,j − aIcL
t k

L
j (xI

j − xj) − xj(N1,j + N2,j), (4.84)

gNV
j

= N1,j − aIcV
t k

V
j (yj − yI

j ) − yj(N1,j + N2,j). (4.85)

The energy fluxes Ej are calculated from conductive and convective fluxes as

EV
j = hV

j a
I
j (T V

j − T I
j ) +

2∑

i=1

Ni,jH̄
V
i,j , (4.86)

EL
j = hL

j a
I
j (T I

j − TL
j ) +

2∑

i=1

Ni,jH̄
L
i,j , (4.87)

gEj = EV
j − EL

j . (4.88)

The interface equilibrium is modeled by

gK1,j = yI
j −K1,jx

I
j , (4.89)

gK2,j = (1 − yI
j ) −K2,j(1 − xI

j ), (4.90)
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and the pressure at each stage is obtained from:

gPj = Pj+1 + ∆Pj+1 − Pj . (4.91)

Equations and states are organized as

fj = [ẋj Ṫ
L
j ṀL

tj gML
vj

gK1,j gK2,j gEj gNL
1,j

gNV
1,j

gMV
vj
ṀV

tj

ẏj Ṫ
V
j gPj ]

T , (4.92)

and

xj = [xj T
L
j ML

tj Lj x
I
j y

I
j T

I
j N1,j N2,j Vj M

V
tj yj T

V
j Pj ]T , (4.93)

∀ j = 2, . . . , N − 1, respectively.

4.2.4 Equilibrium condenser

The total condenser equations do not change considerably, since no differential
variables are involved in its model. However, due to the binary mixture assumption
only the light component composition is used in the calculations.

The energy balance leads to

gEt,N = VN−1H
V
N − LcH

L
N +QC . (4.94)

Equilibrium relations and pressure are described by

gK1,N
= yI

N −K1,Nx
I
N , (4.95)

gK2,N
= (1 − yI

N ) −K2,N(1 − xI
N ), (4.96)

gyN = yN−1 − yI
N , (4.97)

and,

gPN = Patm − PN , (4.98)

respectively.
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Reflux drum

The reflux drum model is reduced to

ṀL
tN = Lc − Lr −D, (4.99)

ẋL
N =

Lc(x
I
N − xN )

ML
tN

, (4.100)

ṪL
N =

Lc

(

HL
C −HL

N − ∂HL
N

∂x (xI
N − xN )

)

−QL
N

ML
tN

∂HL
j

∂TL

, (4.101)

gML
υ,N

= D −Dref , (4.102)

where the outflow Dref is a control variable that can be used to set the volumetric
holdup in the reflux drum. For steady state simulation, (4.102) is replaced with
(4.104).

Further simplifications for the reflux drum

If the volume in the reflux drum is assumed constant, (4.99) and (4.102) must be
replaced by

gML
tN

= υL
tN (Lc −D − Lr) +ML

tN

(
∂υL

tN

∂xN
ẋN +

∂υL
tN

∂TL
N

ṪL
N

)

(4.103)

and

gML
υ1

= υL
tNM

L
tN − v̄D, (4.104)

respectively3. Note that, as in the reboiler, assumptions of this type transform
the liquid molar holdup in the reflux drum into an algebraic variable.

The equations and states in the condenser plus reflux drum are organized as follows

fT
N = [ẋN ṪL

N ṀL
tN gELtN

gML
υN

gK1,N gK2,N gPj gyN ], (4.105)

3The differential terms in (4.103) may vanish if the volume does not change considerably with
temperature and composition.
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and

xT
N = [xN TL

N ML
tN QC D T I

N xI
N PN yI

N ]. (4.106)

Table 4.2 summarizes the variables and equations used in the RORBM.

Table 4.2: Summary of variables and equations involved in the reduced order
RBM.

Stage Variablesa b Associated Total
name units typec equation var./eq.

Reboiler
j = 1

ML
t1

mol D (4.65)
xL

1 mol/mol D (4.66)
TL

1 K D (4.67),(4.68),(4.69)
V1 mol/s A (4.67)
B mol/s A (4.73)
yI

1 mol A (4.69)
P1 Pa A (4.70) 7

Non-equilibrium
j = 2, . . . , N − 1

xj mol/mol D (4.77)
TL

j K D (4.78)

ML
tj

mol D (4.76)

yj mol/mol D (4.80)
T V

j K D (4.81)

MV
j mol D (4.79)
Vj mol/s A (4.82)
Lj mol/s A (4.83)

N1,j mol/s A (4.84)
N2,j mol/s A (4.85)
T I

j K A (4.88)
yI

j mol A (4.89)
xI

j mol A (4.90)
Pj mol A (4.91) 14(N − 2)

Condenser
j = N

T I
N K A (4.95)
QC kW A (4.94)
yI

N mol/mol A (4.97)
xI

N mol/mol A (4.96)
PN Pa A (4.98) 5

Reflux drum
j = N

xN mol D (4.100)
TL

N mol D (4.101)
ML

tN
kW D (4.99)

D mol/s A (4.102) 4

aConsidering a binary mixture
bFour more differential variables/equations are added by introducing a first order filter for

each one of the four manipulated variables.
cD and A stand for differential and algebraic variables, respectively.



70 A RATE BASED MODEL FOR SEPARATION IN PACKED COLUMNS

On the one hand, the full RBM model in (4.1)-(4.51) uses a total of 6N − 6
differential and 14N − 8 algebraic equations/variables, leading to 20N − 14
equations/variables. On the other hand, the RORBM uses 6N − 6 differential and
8N − 6 algebraic equations/variables, i.e., a total of 14N − 12 equations/variables.
Consequently, there is a reduction of 6N − 5 variables/equations, i.e., approxi-
mately 30 percent of the total number of variables for the original model.

4.3 Steady state model simulation

In order to simulate the dynamic model, consistent initial conditions are required,
i.e., state values that satisfy the algebraic equations and its derivatives. A
consistent initialization is not necessarily a steady state value of the model,
however, every steady state value is consistent by definition. The approach
followed here is to solve the steady state problem first, in order to find an initial
value for the dynamic problem. Although off-the-shelf DAE solvers, such as ode15s
(Shampine et al., 1999) and IDAS (Hindmarsh et al., 2005), provide routines to
automatically calculate consistent initial values based on Newton iterations, these
routines are highly dependent on the initial guess. Moreover, by obtaining the
steady state profiles the capabilities of the model to reproduce measured data can
be analyzed.

In the following paragraphs an initialization method based on available measure-
ments and physical principles is proposed. This method can be related to equation
tearing approach (Seader and Henley, 2006). However, here initial values for some
states are directly obtained from measurements. Hence, a better initial point is
expected.

4.3.1 Initialization of steady state simulation based on temper-

ature measurements

A method to find an initial guess for the state vector in the RBM is proposed here.
This method is based in knowledge of the physical process and although similar
approaches can be derived for equilibrium models, to the author knowledge, there
is no previous reference for its use with rate based models. Particularly, the use
of experimental data along with assumptions based on the process behavior are
expected to provide small residuals at early iterations when solving the model
equations.

It is assumed that numerical values for the following variables are available:
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• vapor temperatures at measurement points along the column including
condenser and reboiler,

• input, output and re-circulation flows,

• temperature of the surroundings,

• pressure at the top of the column,

• reflux temperature.

Conciliating temperatures measurements with vapor-liquid equilibrium

The first step proposed here is to obtain the temperature of the interface T I
j ,

from the available vapor temperature measurements T̄ V
j . Since using equilibrium

equations with the temperature measurements T̄ V
j can lead to composition values

which are beyond the possible values, the interface temperatures T I are estimated
by finding the closest value to the measurements that satisfy equilibrium. This is
accomplished by formulating the convex least squares problem

min
T I

‖T̄ V − T I‖2
Q, (4.107)

s.t. AT I ≥ b, (4.108)

Tb1 ≤ T I ≤ Tb2 , (4.109)

where T I and T̄ V ∈ R
11. Q is a diagonal matrix defined so that the sixth element

of the measurements vector is considered an outlier. This definition is performed
for this particular setup, since an abnormal behavior in the sixth sensor has
been detected (see Figure 4.2). Although, it can be though that the bias in the
measurement corresponding to sensor Ts6 is coming from its proximity to the feed
heater, i.e, QF1 (see Figure 3.1), the author believes that despite the heat source
can perturb the reading, this is not the origin of the problem. In fact, it would
be expected that Ts4 and Ts5 provide readings with a higher deviation from the
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profile than Ts6 , since they are physically closer to the feed heater. In the problem
formulation the matrix

A =















−1 1 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 −1 1















(4.110)

accounts for an increasing temperature profile from condenser to reboiler. Note
that no decreasing-temperature constraint has been imposed on the fourth element
of T I since it corresponds to the sensor location where the column is fed, and the
temperature there, is directly affected by the temperature of the feed. Bounds Tb1

and Tb2 ∈ R11 have all their entries equal to the normal boiling points of methanol
and isopropanol, respectively. These maximum and minimum values are obtained
from Raoult’s law with constant pressure and composition ranging from 0 to 1 in
a binary mixture.

Figure 4.2 illustrates the vapor phase temperature measurements for a steady state
test along with the temperature of the interface obtained by solving the convex
optimization problem (4.107)-(4.109). Note that above 340 K there is perfect
overlap between the measured profile and the possible equilibrium temperatures
since those measurements can be explained by equilibrium equations.

The temperature of the liquid phase is assumed equal to the temperature of the
interface for all stages excluding the reflux drum, i.e., TL

j = T I
j , ∀ j = 1, . . . , N − 1.

The temperature of the liquid at the reflux drum is known, hence, TL
N = Treflux.

This initialization procedure provides values for the vapor temperatures T V , the
liquid temperatures TL and the interface temperatures T I from the available
measurements.

Liquid composition initialization

With known values for the interface temperatures T I
j and a constant pressure

profile given by the pressure value at the condenser, the composition can be
calculated from Raoult’s law assuming constant activity coefficients, γ1 = γ2 = 1,
i.e.,

xI
1,j =

Pj − P s
2,j

P s
1,j − P s

2,j

, ∀ j = 1, . . . , N, (4.111)
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Figure 4.2: Steady state temperature measurements for the vapor phase T̄ V , and
the estimated interface temperatures T I .

with the vapor pressure P s
i,j obtained from (A.71). Likewise, xI

2,j is obtained
from the total component molar fraction summation relation. The liquid bulk
phase composition is assumed equal to the liquid composition at the interface, i.e.,
xi,j = xI

i,j .

Inflow composition

The composition of the input flow can be determined by experimental measure-
ments. However, here it is assumed to be an unknown parameter to be estimated
when the identification problem is formulated. In order to provide an initial guess,
the inflow is assumed in its liquid phase with a composition xF given by

xF =
CsD(x1,N − x1,1)M2 + Fgx1,1

Fg + CsD(x1,1 − x1,N )(M1 −M2)
. (4.112)

Equation (4.112) is obtained from a simple total composition balance around the
column. Values for the light component composition x1,j are estimated through
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(4.111) and the inflow Fg in g/min is a measured variable. M1 and M2 represent
the components molar mass and Cs = 60 s/min is a unit conversion constant. The
top product flow D is given in mol/s and it is obtained from the known value Dg

in g/min using

D =
Dg

Cs(M1x1,N + (1 − x1,N )M2)
. (4.113)

Calculation of internal flows

The liquid internal flow Lj is assumed to be different for stripping and rectifying
sections, i.e., below and above the feeding stage NF , respectively. Since the reflux
is known, it is possible to provide a liquid flow profile by assuming it constant
along the rectifying section, an assumption normally made in binary distillation
and known as constant molar overflow, i.e.,

LN = Lr +D, (4.114)

Lj = Lr, ∀j = NF , . . . , N − 1. (4.115)

On the other hand, the liquid flow for the stripping section is given by

Lj = Lr + F, ∀ j = 1, . . . , NF − 1. (4.116)

with F in mol/s calculated from

F =
Fg

Cs(M1x1,NF
+ (1 − x1,NF

)M2)
. (4.117)

The bottom flow B in mol/s, is obtained from the available value Bg in g/min,
using a relation similar to (4.117). The vapor molar flows Vj are assumed constant
through the whole column and are given by

Vj = V1, , ∀ j = 2, . . . , N − 1, (4.118)

V1 = L1 −B. (4.119)

Vapor composition

Values for the composition in the vapor phase are calculated using T I , xI
1,j , xI

2,j

and activity coefficients (A.1), (A.2) along with the expressions for the equilibrium
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constant (A.45),

yI
1,j = K1,jx

I
1,j , (4.120)

yI
2,j = K2,jx

I
2,j . (4.121)

For initialization, the vapor bulk phase is assumed totally mixed with the interface,
i.e., yi,j = yI

i,j.

Estimation of heat loss

For the simulation of the model not only states are required, but also some
additional tuning parameters. The proposed initialization method provides an
initial guess for some of those parameters.

The heat loss coefficient in kW/K for the reboiler can be estimated from an energy
balance around this stage with the proper calculation of enthalpies as in (A.16)
and (A.19),

ψR =
−BHL

1 − V1H
V
1 + L1H

L
1 +QR

TL
1 − Tamb

. (4.122)

Likewise, the initial value for the heat removed in the condenser QC is obtained
from the energy balance

QC = −VN−1H
V
N + (Lreflux +D)HL

N (T I
N ) (4.123)

Note that the liquid leaving the condenser is assumed at temperature T I
N .

The heat loss coefficient in the reflux drum is obtained from an energy balance
around the reflux drum as in

ψD =
(Lreflux +D)(HL

N (T I
N ) −HL

N (TL
N ))

TL
N − Tamb

. (4.124)

Mass and energy holdups

Mass holdups are used for both, the original and the reduced models presented
here. Initial values for those holdups are calculated from the geometry of the
packing material and the liquid volumes in the reboiler and reflux drum. Note
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that a guess for the liquid volumes in the reboiler ῡR and reflux drum ῡD can be
determined from the experimental setup. Total molar holdups are obtained from
the calculation of liquid and vapor molar densities, cL

t and cV
t as in (A.8) and

(A.7), respectively.

ML
t1

= v̄Rc
L
t1

(4.125)

ML
tj =

π

4
d2lhL

tjc
L
tj , ∀ j = 2, . . . , N − 1 (4.126)

ML
tN = v̄Dc

L
tN (4.127)

Likewise, total vapor holdups are calculated using the packing void fraction ep, as
in

MV
tj =

π

4
d2l(ep − hL

tj )c
V
tj , ∀ j = 2, . . . , N − 1. (4.128)

Component holdups are easily determined from total holdups and compositions as
in

ML
i,j = ML

tjxi,j , ∀ j = 1, . . . , N, (4.129)

MV
i,j = MV

tj yi,j . ∀ j = 2, . . . , N − 1, (4.130)

Energy holdups are obtained from total molar holdups and molar enthalpy values

EL
j = ML

tjH
L
j ∀ j = 1, . . . , N, (4.131)

EV
j = MV

tjH
V
j ∀ j = 2, . . . , N − 1. (4.132)

Mass transfer fluxes

The proposed initialization method does not provide initial values for the molar
transfer rates N1 and N2 based on model equations. As an alternative, the
empirical procedure used in (Taylor and Krishna, 1993, p. 289) is used, i.e.,
small values are given to N1, N2 and a negative sign is used for the molar rate
corresponding to the more volatile component, i.e., N1. The negative value is
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given to this mass flow since it is going from liquid phase to the vapor phase4.
Consequently, the transfer rates are defined as N1,j = −1×10−3, N2,j = 0.9×10−3,
∀ j = 2, . . . , N − 1.

4.3.2 Structure exploitation in the reduced order RBM

Based on the previous initialization procedure, an initial guess for the state vector
can be provided for solving either the full steady state RBM or the steady state
RORBM. The model can be organized so that the dynamic and algebraic equations
and variables are grouped together, i.e., f = [fy gz] and x = [y z] where fy and gz

group all the dynamic and algebraic equations, respectively, while y and z group all
the dynamic and algebraic states, respectively. Although this particular structure
is obtained directly from the formulation of balances and equilibrium relations
separately, it does not present any advantage when solving the model equations.
In order to exploit sparsity in the formulation, the initial vector and the model
equations are organized by grouping the variables and equations directly involved
on each stage, i.e., f = [f1, f2, . . . , fN−1, fN ] and x = [x1, x2, . . . , xN−1, xN ] with fj
defined as in (4.11), (4.37) (4.52) and xj as in (4.12), (4.38) and (4.53). This
particular form of organizing variables leads to a sparse and banded pattern in the
model Jacobian that can be exploited when solving the model equations.

nz = 558nz = 558

fy

gz

y z
f1

f2

f3

f4

f5

x1 x2 x3 x4 x5

Figure 4.3: System Jacobian for a 5 stages column, reboiler, 3 packing stages and
condenser plus reflux drum (right). Note the sparse and banded pattern obtained
when a proper ordering of vector and equations is performed (left).

4Note that a positive sign convention is assumed for flows entering the liquid phase from the
vapor phase, as presented in the mass and energy balance equations.
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Figure 4.3 shows the Jacobian ∂F
∂x for the two kinds of the described equation

arrangements. It is clear that the second form presents numerical advantages if
sparse linear-algebra solvers are used. Off-the-shelf solvers for nonlinear equations
provide options so that the sparsity patterns for the Jacobian can be specified.
Providing such patterns, leads to an improvement in the computation time, since
first order information can be computed in specific directions for each equation
in the model. Since the number of model variables for distillation models scales
linearly with the number of stages, providing sparsity patterns is an advantage for
columns with several stages. Note that the bandwidth of the reorganized Jacobian
does not change with the number of stages, and in this case corresponds5 to 20.
This bandwidth is employed when solving the sparse system using preconditioned
conjugate gradient method PCG (Nocedal and Wright, 2006).

4.3.3 Steady state simulation of the full rate based model

In order to simulate the steady state model response, the set of model parameters
shown in Table 4.3 is required. Note that some of these parameters are estimated
in the initialization procedure while others are set empirically for the initial test.
Manipulated variables are set to the constant values Qr = 4.5 kW, Lr = 80 g/min,
F = 150 g/min and TF = 313.15K.

The model is solved for N = 20, leading to 383 states. Choosing the number of
stages is also a design parameter in separation. The number of stages is associated
with the number of physical separation units, e.g., trays in the column. Here
N = 20 is obtained by counting the physical packing stages. As mentioned before
the column has 3 packing sections of about 1 m each. Each one of these sections is
composed of 6 smaller pieces of packing material leading to a total of 18 packing
pieces for the 3 sections. To these 18 stages, the reboiler and condenser plus drum
are added leading to a total of 20 stages.

Once the number of stages N is defined and the model parameters are given along
with an initial guess for the states, the nonlinear equations can be solved. Since the
states correspond to compositions, temperatures, holdups and pressures, among
others, they vary widely in different numerical ranges, e.g., composition changes
from zero to one mol/mol while pressure is, in the studied case, always around
1 × 105 Pa. Hence, scaling is required for states and model residuals to provide
better condition to the matrices obtained in the optimization tasks.

With the proper scaling selected, a nonlinear equation solver is employed. Here,
the solver uses a trust-region method with a preconditioned conjugate gradient
PCG6 linear-algebra solver (Branch and Grace, 2002). Note that the proper

5This bandwidth is determined by the stage with the maximum number of variables acting
on its equations

6Note that this is an iterative method to solve the resulting linear system
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scaling provides a better distribution of the eigenvalues of the Jacobian since it
improves its condition number. Hence, a small number of iterations is expected
when using the CG method (Gill et al., 1984). Table 4.4 illustrates the result
when no sparsity pattern is provided. In that case, the solver evaluates the
model equations 2688 times to find a solution. On the other hand when the
sparse pattern and the bandwidth of the Jacobian are provided, the number of
function evaluations drastically decreases. The bandwidth of the Jacobian is
used when creating the precondition matrix in the PCG method for the resulting
linear subproblems. Results exploiting the sparsity pattern are shown in Table
4.5 where the model equations are only evaluated 161 times to find the solution.
This corresponds to an improvement of 94 percent in function evaluations and a
decrease from 17.06 s to 1.89 s in the execution time.

Table 4.3: Initial guess for parameters in the rate based model.

Value Unit Parameter Symbol
p1 5×10−3 m3 Liquid volume in the reboiler ῡR

p2 2×10−3 m3 Liquid volume in the reflux drum ῡD

p3 0.7004 mol/mol Liquid feed composition xF

p4 0.0 kW/K Heat losses coefficient for liquid ψL

p5 0.0 kW/K Heat losses coefficient for vapor ψV

p6 0.0215 kW/K Reboiler losses coefficients ψR

p7 0.0106 kW/K Reflux drum losses coefficients ψD

p8 1 Liquid holdup tuning parameter Ch

p9 1 Pressure drop tuning coefficients C∆P

p10 1 Liquid mass transfer tuning coefficients CkL

p11 1 Vapor mass transfer tuning coefficients CkV

Figure 4.4 illustrates the steady state profile for most of the FRBM states. Mass
and energy holdups for the liquid phase present big values when compared to
the rest of the column due to the considerable amount of liquid in the top and
bottom stages. Note also that the temperature profile is almost the same for the
bulk phases and the interface, except for the reflux drum where the liquid phase
is expected to be subcooled as it is presented in the figure. The pressure profile
is almost constant and has been normalized to atmospheric pressure in order to
easily plot it with the composition profiles. These profiles show that the binary
mixture in model with the current parameters is not able to reach a high level of
separation and leads to highly mixed products in both top and bottom streams.
Nevertheless, the experimental setup can achieve top composition close to one.
Consequently, it is necessary to tune the parameters in Table 4.3 by formulating a
parameter estimation problem (PEP). In general, this first test provides a feasible
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Table 4.4: Nonlinear equation solver statistics when no information about the
Jacobian pattern is provided in the FRBM

Iteration Func-count ‖F (x)‖ First-order
optimality

CG-
iterations

0 384 2.61×103 1.14×104

1 768 4.37×102 6.35×103 0
2 1152 1.94×101 2.84×102 0
3 1536 3.26×10−1 8.97×100 0
4 1920 2.35×10−4 7.43×10−1 0
5 2304 1.36×10−10 1.33×10−3 0
6 2688 1.42×10−20 1.15×10−8 0

Table 4.5: Nonlinear equation solver statistics when the Jacobian pattern and its
bandwidth are provided in the FRBM

Iteration Func-count ‖F (x)‖ First-order
optimality

CG-
iterations

0 23 2.61×103 1.14×104

1 46 4.37×102 6.35×103 1
2 69 1.94×101 2.84×102 1
3 92 3.26×10−1 8.97×100 1
4 115 2.35×10−4 7.43×10−1 1
5 138 1.35×10−10 1.32×10−3 1
6 161 1.57×10−19 4.81×10−8 1

steady state value for analysis of model properties and initialization of parameter
estimation routines.

4.3.4 Steady state simulation of the reduced order rate based

model

In order to check the validity of the reduced order rate based model (RORBM) in
steady state, the same procedure, as in the FRBM, for the solution of the resulting
nonlinear equations is performed. The initialization vector for the states, obtained
previously, can be used considering reduced sizes due to the smaller number of
states in the RORBM. Scaling of the model residuals is slightly changed since the
model dynamic states are different. This leads to different values in the cost for the
initial states with respect to the FRBM. The RORBM is solved on its sparse form
by reorganizing the residuals fT = [f1 f2, . . . , fN−1, fN ] according to (4.74), (4.92)
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Figure 4.4: Steady state simulation for the full RBM with the parameters given in
Table 4.3 and the initial guess obtained by the procedure proposed in Section 4.3.1.
Note the big values in energy and mass holdups at the extremes of the profiles due
to the considerable amount of liquid in top and bottom stages when compared to
the rest of the column. Moreover, the current set of parameters does not allow for
a high separation of the mixture as it is done in the real setup.

and (4.105), and the states xT = [x1 x2, . . . , xN−1, xN ] following the definitions in
(4.75), (4.93) and (4.106).

The sparsity pattern for the RORBM using two different vector structures is shown
in Figure 4.5. Note that, as in the FRBM, by reorganizing the states and equations
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Figure 4.5: System Jacobian for a 5 stages column, reboiler, 3 packing stages and
condenser plus reflux drum using the RORBM in its original form (left). Note
the sparse and banded pattern in obtained when a proper ordering of vector and
equations is performed (right).

appropriately a banded Jacobian can be obtained7 . The steady state simulation
is performed by solving the model equations using the same methods as in the
FRBM. Tables 4.6 and 4.7 illustrate the solver statistics while Figure 4.6 displays
the steady state simulation results when the parameters in Table 4.3 are used
with a model of 20 stages. Note that the profiles obtained exactly match the ones
displayed in Figure 4.4, numerically verifying the correctness of the reduced order
model. Solving the model equations exploiting the sparsity information leads to
108 function evaluations and a computation time of 0.883 s while the original
problem is solved using 1638 function evaluation and 11.96 s. Obtaining a steady
state solution is 93 percent more efficient in terms of function evaluations per
iteration when the sparse RORBM is used instead of the original FRBM. Hence,
the former model is selected for the dynamic simulation, which requires much more
computations than solving for the steady state behavior.

Table 4.8 summarizes the computational demand of the full rate based model
without exploiting sparsity (FRBM-NSP), the full rate based model exploiting
sparsity (FRBM-SP), the reduced order rate based model without exploiting
sparsity (RORBM-NSP) and the reduced order rate based model exploiting
sparsity (RORBM-SP) in terms of solution time and memory usage. Note the
significative improvement in execution time and memory usage when the FRBM-
NSP and the RORBM-SP are compared. It has to be mentioned that the solution

7The Jacobian in this representation exhibits four states more than in the model presented in
Table 4.2. Those four states correspond to first order filters added to the actuators. The addition
of these filters is justified in the following sections.
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Table 4.6: Nonlinear equation solver statistics when no information about the
Jacobian pattern is provided in the RORBM.

Iteration Func-count ‖F (x)‖ First-order
optimality

CG-
iterations

0 273 1.14×103 8.94×104

1 546 2.95×102 3.85×104 0
2 819 1.43×100 1.62×103 0
3 1092 3.97×10−3 2.67×101 0
4 1365 5.86×10−8 5.95×10−2 0
5 1638 5.62×10−17 6.20×10−5 0

Table 4.7: Nonlinear equation solver statistics when the Jacobian pattern and its
bandwidth are provided in the RORBM.

Iteration Func-count ‖F (x)‖ First-order
optimality

CG-
iterations

0 18 1.14×103 8.94×104

1 36 2.95×102 3.85×104 1
2 54 1.45×100 1.62×103 1
3 72 3.95×10−3 2.64×101 1
4 90 4.10×10−8 5.34×10−2 1
5 108 8.84×10−17 6.86×10−5 1

time, for all the cases, can be further reduced if the model equations are coded
using a high level language, e.g., C or pascal and precompiled.

Table 4.8: Performance comparison between the full rate based model and the
reduced rate based model when sparsity is exploited.

FRBM-NSP FRBM-SP RORBM-NSP RORBM-SP
Number of variables 383 383 272 272
Function evaluations 2688 161 1638 108
Execution time (s) 17.6 1.89 11.96 0.883
Memory useda (kB) 1146 4.36 578 2.73

aOnly the number of kilobytes to store the Jacobian in double precision format are considered
as indication of the memory usage.
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Figure 4.6: Steady state simulation for the RORBM with the parameters given in
Table 4.3 and the initial guess obtained by the procedure proposed in Section 4.3.1.
The profiles obtained for the RORBM matches the ones obtained with the FRBM
in Figure 4.4.

4.3.5 Parameter sensitivity analysis for the steady state reduced

order rate based model

As mentioned previously, the set of parameter in Table 4.3 does not induce model
profiles that represent properly the real measurements, e.g., the composition
profiles given by the model do not reach high levels as it is expected in the real
column. Hence, the set of parameters needs to be tuned. Since only temperature
measurements are available, it is necessary to verify if the whole set of parameters
can be estimated from the real data. It could be possible to attempt an analysis



STEADY STATE MODEL SIMULATION 85

of the identifiability of model parameters using local observability theory for the
nonlinear system, .e.g, linearizing the model around working points and study
the observability of the obtained linear systems with classical systems theory.
Despite this interesting approach, here the identifiability of the parameters is
studied through the sensitivity analysis of state trajectories with respect to the
change of the model parameters. Two approaches can be mentioned. On the
one hand, it is possible to formulate the PEP considering all the parameters and
include some regularization in the cost so that parameters with small or no effect
over the model response are close to the regularization value p̄i. On the other
hand, it is possible to make an analysis of the effect of parameters over the model
states profiles, i.e., a parameter sensitivity analysis. The advantage of calculating
model sensitivities with respect to parameters is that it allows for a classification
of parameters, i.e., it provides a criterion for selecting which parameters can be
easily estimated from the measurements and which not. Hence, the PEP can be
formulated in a reduced search space, i.e., in terms of those parameters with higher
sensitivities. This requirement can be translated to check how sensitive the states
are to fit with respect to model parameters i.e., to calculate ∂x/∂p. Analytical
expressions for sensitivities in the RBM are hard to obtain due to the complexity
of the nonlinear equations describing the model. Hence, a numerical method based
on finite differences is used. The model sensitivities ∂x/∂p can be defined as

∂x

∂p

∣
∣
∣
∣

x = x0
p = p0

=

(
∂F (x, p)

∂x

)−1
∂F (x, p)

∂p

∣
∣
∣
∣

x = x0
p = p0

. (4.133)

Since only temperature measurements are available in the real setup, only
the parameters which have the highest sensitivity with respect to the model
temperature are selected8. Note that sensitivities can change depending on the
chose of the evaluation point (x0, p0). Figure 4.7 displays an estimation of the
sensitivity of vapor and liquid temperatures with respect to model parameters
along with sensitivities for the liquid composition at the top and bottom stages9.
Note that heat loss coefficients and feed composition have a considerable effect
on the steady state profiles. Mass transfer coefficients have less influence in the
steady state profiles. On the other hand, it is clear that volumes in the reboiler
and condenser along with pressure drop and liquid holdup coefficients cannot be
estimated from the steady state temperature measurements in the current model.

An important remark here is that some of the parameters mentioned may have no
influence on the steady state profile but can be critical for the dynamic behavior.
Consequently, this steady state analysis is valid if the final objective is to tune the
parameters for a steady state model or to provide initial values for a parameter

8Changes in those parameters have the highest effect on the trajectories to fit.
9These compositions can be measured offline and integrated to the parameter estimation

problem.
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F (x0, p0) = 0. The values for the sensitivities have been normalized.

estimation problem with a dynamic model. In that case, the parameter estimation
can be formulated in two stages as proposed in (Diehl, 2002). Figure 4.7 shows
that seven out of eleven model parameters can be estimated from the steady state
data obtained from the experimental setup.

4.3.6 Physical constraints on the reduced order rate based

model parameters

The presented set of parameters has a physical meaning. However, combination of
its positive values could lead to state trajectories that are not physically possible.
Although this can be seen as a serious problem, it can be solved by properly
constraining the possible values of p. The RORBM does not incorporate any
constraint by itself that restrict pairs (yV , T V ) or (xL, TL) to superheated vapor
or subcooled liquid regions, respectively. Figure 4.8 (right) displays a case where an
initial guess of p leads to a steady state solution that exhibits a vapor temperature
in the bulk phase lower than the one at equilibrium for the same vapor composition,
i.e., the pair (yV , T V ) lies below the pair (yI , T I). Physically, this would mean
that there would be superheated vapor at a temperature that is below the dew
point of the mixture, which is not possible, because it would be liquid. Figure 4.8
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(left) displays the same kind of plot when a different p is used. In this case, the
steady state trajectories have a physical meaning. These two tests illustrate that
it is not enough to guarantee the positiveness of p in the parameter estimation
problem but extra constraints must be added to ensure that the pairs (yV , T V ) lie
in the superheated vapor region C1 and that pairs (xL, TL) lie in the subcooled
liquid region C3. These conditions can be translated into inequality constraints
by using the associated partial pressures to each point, i.e., a point (xL, TL) is in
the subcooled region if the sum of its components partial pressures equals or does
not exceed the pressure of the stage. On the other hand a point (yV , T V ) is in the
superheated region if the sum of its component partial pressure equals or exceeds
the pressure of the stage. This is translated to the inequalities

Pj − γ1(xL
j )P s

1 (TL
j )xL

j − γ2(xL
j )P s

2 (TL
j )(1 − xL

j ) ≥ 0 ∀j = 2, . . ., N, (4.134)

γ1(x∗
j )P s

1 (T V
j )x∗

j + γ2(x∗
j )P s

2 (T V
j )(1 − x∗

j ) − Pj ≥ 0 ∀j = 2, . . ., N, (4.135)

yV
j (1 − x∗

j ) − x∗
j (1 − yV

j )
γ1(x∗

j )P s
1 (T V

j )

γ2(x∗
j )P s

2 (T V
j )

= 0 ∀j = 2, . . ., N, (4.136)

that are obtained from boiling and dew10 point curves definition (Seader and
Henley, 2006) and delimit the region C2 in Figure 4.8.

Note that evaluating superheated points with the inequality (4.135) implies the
solution of the equality (4.136) for x∗, which is a dew point calculation. This
inequality poses an embedded root finding problem into the inequality constraints.
However, (4.136) can be solved as a part of the model equations by adding x∗ to
the state vector and (4.136) to the model residuals, so that the inequalities are
reduced to (4.134) and (4.135).

4.4 Steady state parameter estimation of the reduced

order rate based model

Five experiments for identification and two for validation are used to fit the steady
state RORBM to the setup. The manipulated variables are presented in Table
4.9 while the measured steady state profiles for eleven temperature sensors are
illustrated in Figure 4.9. Note that the measurement coming from the sensor

10Note that the fractional expression on the left hand side of (4.136) corresponds to the relative
volatility for a binary mixture.
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Figure 4.8: Boiling point diagram for the mixture of methanol-isopropanol given
by the steady state solution of the RORBM. Regions C1 and C3 correspond to
superheated vapor and subcooled liquid, respectively. The markers in the plots
show temperature-composition pairs obtained with the parameters proposed in
Table 4.3 (left) and a perturbed version of them (right). Note the physically
inconsistent values obtained in the boiling point diagram for some arbitrary values
of p > 0 (right).

in the condenser Ts11 corresponds to a temperature below the boiling point of
pure methanol at atmospheric pressure, i.e., Ts11 < 338 K. Hence, assuming that
the methanol composition at the top is close to one, it would be difficult for an
equilibrium condenser to fit this temperature. Consequently, in the parameter
estimation, the measurement coming from the condenser is weighted in a small
proportion with respect to the rest of measurements. On the other hand, the PEP
is formulated so that the temperature of the liquid phase of the model fits the
measurement data. The vapor phase is not used here since measured profiles seem
to adjust better to a subcooled liquid phase than to a vapor phase. There is a
physical explanation for this, and it is associated with the fact that temperatures
are taken at points in the column where the sensor probe can be wetted with liquid
falling down through the walls of the column. Hence temperature measurements
are lower than the ones predicted by the model vapor phase or equilibrium.

Since only temperature measurements are available, the parameters that have the
highest sensitivity with respect to the temperature provided by the model, are
selected11. It is important to mention that this approach requires an initialization
point for the parameters p0 and the states x0. In the current study, some of the
parameters are initialized with the procedure used in Section 4.3.1, while others

11Changes in those parameters have the highest effect on the trajectories to be fitted.
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Table 4.9: Steady state experiments used for identification and validation.

Expa QR LN Fin TF Tamb D B
1 4.0 60.0 150 313.15 292.90 70 80
2 4.5 86.0 110 313.15 292.95 70 40
3 4.5 80.0 150 318.15 292.45 70 80
4 4.0 59.0 150 313.15 295.20 70 80
5 4.5 76.5 150 313.15 298.85 70 80
6 4.0 65.0 150 313.15 294.95 70 80
7 4.5 77.2 150 313.15 287.45 70 80

aApplied power in kW, mass flows in g/min and temperatures in K
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Figure 4.9: Experimental data coming from the 11 sensors located along the
column as illustrated in Figure 3.1. Temperature of the subcooled reflux has
not been included in the plot but is used in the estimation.
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are given a value based on process knowledge.

Table 4.10: Initial and optimized parameters for the steady state RORBM.

Parameter Initial value Bounds Optimuma Units
xF 0.67 [0.4 0.7] 0.4670 mol/mol
φL 0.0 [0 5] 2.3 W/K
φV 0.0 [0 5] 0.0 W/K
φR 21.6 [0 10] 0.0 W/K
φD 10.6 [0 10] 8.3 W/K
CkL 1 [0 3] 0.22 W/K
CkV 1 [0 3] 2.12 W/K

aOnly identifiable parameters are optimized.

Since only parameters φL, φV , φR, φD, CkL , CkV and xF have an influence on the
temperatures, these parameters are selected to be tuned. Hence, the number of
parameters is reduced from eleven to seven. Initial values and bounds for these are
presented in Table 4.10. The experiments are performed under different conditions,
allowing for different input composition, xF . Consequently, a different value of xF

is estimated for each of the experiments. This increases the number of parameters
again to Np = 6+M where M is the number of experiments used for identification.
It is important to mention that the neglected parameters are discarded here due
to a lack of proper measurements that allow for their estimation.

4.4.1 Problem formulation

The parameter estimation problem can be formulated only in terms of the
parameter vector, p, and solved using a Gauss-Newton method (see Section 2.3.3).
However, the model equations have to be solved at each Newton-iteration.
Consequently, the model equations are introduced as equality constraints and the
problem is optimized in parameters and states x at the same time. This is a
more efficient approach that preserves sparsity in the optimization, at the cost of
increasing the number of optimization variables. Hence, the optimization problem
is cast as:

min
x,p

‖ȳ − Cx‖2
Qx

subject to







F (x, p) = 0
xmin ≤ x ≤ xmax

pmin ≤ p ≤ pmax

(4.137)

where the vector ȳ represents the measurement data, C is a positive-semidefinite
diagonal matrix with zero entries in the diagonal corresponding to the states that
are not measured and Qx a weight matrix. Note that this formulation accounts
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only for one experiment. In order to use multiple experiments, the optimization
vector, the residual vector and the constraints are increased so that

ỹT = [ȳT
1 , . . . , ȳ

T
M ], wT = [xT

1 , . . . , x
T
M , p],

F(w)T = [F (x1, p)
T , . . . , F (xM , p)T ] (4.138)

and the problem is formulated as

min
w

‖ỹ − C̃w‖2
Qw

subject to

{
F(w) = 0
wmin ≤ w ≤ wmax

(4.139)

with appropriate matrices Qw, C̃, and bounds.

Five experiments are used for the estimation task, leading to Np = 11 and a total
size of the optimization problem of M(14N−12)+Np. Due to the structure of the
setup, N = 20 is selected, yielding an optimization vector w ∈ R

1351. Figure 4.10
(top) illustrates the fitting results for the identification set containing data from the
first five experiments presented in Figure 4.9, while Figure 4.10 (bottom) displays
the results for the validation set. Note that there is a group of points that lies
outside the ±3K band around 335 K, those are measurements obtained from the
condenser which cannot be totally explained by the model due to the inability
to model subcooled liquid. Figure 4.11 shows the boiling point diagrams for the
validation set with experiments 6 and 7 in Table 4.9, illustrating the consistency
of the results.

4.5 Dynamic simulation

As mentioned previously, the RORBM described in Section 4.2, is used for dynamic
simulation. However, writing down the equations that appropriately describe the
system dynamics is not a guarantee for obtaining a model that can be simulated
dynamically. There exist several numerical problems that need to be considered
before being able to run a simulation. Among these typical problems are: (i) a
high differentiation index, (ii) model stiffness and (iii) a considerable number of
variables to solve for. Distillation models can exhibit these three features. Here,
the model size or large scale issue, is addressed by reducing the model from the
FRBM to the RORBM and exploiting the reduced model sparsity when possible as
it is shown in Section 4.3.4. In the following paragraphs the differentiation index
problem is explained and analyzed for the RBM along with the inherent stiffness
of the model.
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Figure 4.10: Fitted results for five steady state experiments (top), and validation
test with two new experiments (bottom). Note that almost all the predicted
temperatures lie in a ±3 K error band.

4.5.1 The differentiation index in DAEs

Since the RBM lies in a particular class of DAEs, namely, semi-explicit DAEs
(Hairer and Wanner, 2002), the following definitions are given based on this
particular class.

Definition 4.5.1 (Differentiation index). Given a semi-explicit differential
algebraic equation of the form:

ẏ = f(t, y, z), (4.140)

0 = g(t, y, z), (4.141)

with y ∈ R
ny , z ∈ R

nz , f : Rny ×R
nz ×R → R

ny and g : Rny ×R
nz ×R → R

nz . The
differentiation index I is defined as the number of times the algebraic constraints
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Figure 4.11: Boiling point diagram for the mixture of methanol-isopropanol
with states given by the steady state solution of the RORBM. These diagrams
correspond to experiment 6 (left) and 7 (right) in Table 4.9 with the tuned
parameters. Note the subcooled liquid on both cases, which describes
approximately the data of the setup as presented in Figure 4.10(bottom).

g(y, z, t) have to be differentiated with respect to time in order to obtain an explicit
expression for the time derivative of the algebraic variables z, i.e., ż.

The differential index is a measure of how far a DAE lies from an ODE. In fact
a DAE could be transformed into an ODE after I differentiations with respect to
time and algebraic manipulation, generating what is called the underlying ODE
(Ascher and Petzold, 1998).

Numerical solvers find a solution to (4.140)-(4.141) by obtaining an expression for
the time derivative of the algebraic variables ż. This set of ODEs can be obtained
by differentiating the algebraic constraints with respect to time, leading to

ż = −
(
∂g(y, z)

∂z

)−1
∂g(y, z)

∂y
f(t, y, z). (4.142)

It is possible to find a solution to ż if the Jacobian of the algebraic equations

with respect to the algebraic variables ∂g(y,z)
∂z , is nonsingular (Hairer and Wanner,

2002). If that is not the case, the algebraic constraints are differentiated until an
index-1 system is obtained, i.e., I − 1 times. Off-the-shelf solvers are only capable

of dealing with index-1 problems, i.e., ∂g(y,z)
∂z in (4.142) must be nonsingular. In

general, the underlying ODE formed by (4.140) and (4.142) provides a family of
solutions that do not necessarily satisfy the original constraints. Hence, in order
to achieve the required constraint satisfaction, the correct initialization must be
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done, i.e., the initialization of the underlying ODE must be performed considering
the original constraints and the derivatives12 that lead to the underlying ODE.

Definition 4.5.2 (Consistent initialization). An index-1 system of the form
(4.140)-(4.141) is consistently initialized iff the initial value (y(0), z(0)) satisfies the
algebraic constraints, i.e., g(0, y(0), z(0)) = 0. For higher-index DAEs, i.e., I ≥ 2
an initialization vector (y(0), z(0)) is consistent iff it satisfies g(0, y(0), z(0)) and
the I − 1 derivatives with respect to time of the algebraic constraints, i.e.,

g(0, y(0), z(0)) = 0, (4.143)

dg(0, y(0), z(0))

dt
= 0, (4.144)

... (4.145)

dI−1g(0, y(0), z(0))

dtI−1
= 0. (4.146)

Note that (4.143)-(4.146) ∀ t define a manifold, where not only the initial vector
lies but the solution of the underlying ODE must lie as well. Consequently, from
the family of solutions provided by the underlying ODE only the ones that lie on
this manifold are actually solutions of the original DAE.

When a numerical method is applied to the integration of the underlying ODE, a
common feature is the drift of the solution trajectories from the manifold defined
by the hidden constraints, i.e., the solution of the ODE does not satisfy the
original constraint and its I − 1 derivatives (Hairer and Wanner, 2002). Hence,
reducing the index by differentiation of the constraints is always accompanied
by methods for stabilization of the error in the solution. Among the most
widely used are Baumgarte’s stabilization (Baumgarte, 1972) and projections of
the solution on the manifold (Hairer and Wanner, 2002). If the differentiated
constraints are just appended to the original set of constraints, the system
becomes overdetermined. There exist other methods that attempt to solve the
overdetermined system resulting from this index reduction procedure. However,
differentiation of constraints can create new differential variables making the
solution even more involved. Among the most used methods for overdetermined
systems are the least squares minimization applied to the nonlinear equations
(Hairer and Wanner, 2002) and the method of the dummy derivatives (Mattsson
and Söderlind, 1993). All those methods depart from a DAE reduced to index-1
by differentiation. Pantelides (1988) proposes an algorithm that identifies the
minimum set of equations from the DAE that need to be differentiated, so that an

12These constraints imposed by the derivatives with respect to time are called the underlying
or hidden constraints
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index-1 system can be obtained for further stabilization with one of the methods
mentioned.

4.5.2 Distillation models and the index problem

The DAEs high-index problem has been previously mentioned in several works
for different kinds of distillation models, e.g., Pantelides et al. (1988), Gani and
Cameron (1992), Kreul et al. (1998), Peng et al. (2003) among others. There are
basically two approaches to tackle the problem. On the one hand, the complexity
of the model is reduced by making several assumptions that lead to an index-
1 DAE. On the other hand, the constraints that need to be differentiated are
detected by, e.g., Pantelides algorithm. The differentiated constraints are added
to the system, leading to an overdetermined model that can be solved by one of the
methods mentioned previously. Although this method preserves the original set of
variables, it can become involved. The method requires: (i) the implementation
of the graph-theory based Pantelides algorithm, (ii) tools to obtain the derivatives
of the equations detected by the algorithm and (iii) procedures to solve the
overdetermined model dynamically.

The approach used here lies in the first class of the mentioned methods. The index
problem for the RORBM is analyzed and the proper assumptions are justified
physically and numerically, highlighting the limitations of the resulting model.

Pantelides et al. (1988) traced back the index problem to the appropriate links
between vapor flows and pressure drops. Kreul et al. (1998) refers to the index
problem and confirms that this appears when there is no relation between pressure
drops in a non-equilibrium stage and vapor or liquid flowing through the stage. As
it is shown here, this is a necessary condition but it is not the only one that helps
to avoid the problem. In general, from the numerical viewpoint, each algebraic
variable must appear at least once in the algebraic equations. This avoids what
is called structural singularities. The flows in a stage, an algebraic variable, must
appear in the algebraic equations either through the pressure drops or through
the calculation of mass transfer coefficients13. Consequently, assuming pressure
drops constant or transfer coefficients constant remove the flows from the algebraic
equation. Since flows are algebraic variables, this leads to a singular Jacobian ∂g

∂z
and to the higher index problem unless extra assumptions are considered. These
extra assumptions must imply an extra algebraic equation involving the flows in a
stage that were suppressed by assuming, e.g., constant pressure. This is illustrated
in the following paragraphs.

13Note that both pressure drops and mass and heat transfer coefficients involve the vapor and
liquid flows in a stage.
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Structural singularity detection

A particular procedure to detect structural singularity problems is proposed in
Gani and Cameron (1992) by analyzing the incidence of algebraic variables in
the algebraic equations. By analyzing this incidence matrix, it is possible to
suggest modifications to the model that avoid the higher index problem. Note
that this procedure is restricted to structural singularity, numerical singularities
are in general more difficult to avoid by this method. Gani and Cameron (1992)
proposes to choose the variables that do not appear in the incidence matrix as
degrees of freedom. This approach is certainly effective, however, in practical
cases not always the variables that create the higher index can be assumed as
given.

In order to check the origins of this higher index problem a simple 3-stages system
is analyzed, i.e., only one packing section is assumed and it is modeled using
the non-equilibrium equations (4.76)-(4.91), along with the reduced models of
reboiler (4.65)-(4.71) and condenser plus reflux drum (4.94)-(4.102). The Jacobian
of the nonlinear set of equations, composed of dynamic and algebraic relations, is
calculated numerically. Note that the numerical values of the Jacobian change as
a function of the states values, however, the purpose of this calculation is to check
the structure of the Jacobian and not its numerical values. The equations and
states are organized as f = [fy gz]T and x = [y z]T , respectively, to clearly identify
the dynamic and algebraic parts in the Jacobian in the analysis14.

The results are illustrated in Figure 4.12. Note that, in this model, the pressure
drops and the transfer coefficient are calculated as a function of the flows in the
stage as suggested in Kreul et al. (1998). However, the DAE system still exhibits
a differentiation index bigger than one. It is easy to see that the vapor flow in the
reboiler V1, does not appear in the algebraic constraints, causing the structural
singularity problem. Any other algebraic variable missed in ∂g

∂z leads to the same
structural singularity problem.

Higher index reduction

Once the structural singularity has been detected, there are some options to obtain
an index-1 system. In order to reduce the differentiation index of the proposed
model, it is required to include all the algebraic variables at least once in the
algebraic equations. Hence, assumptions that lead to that inclusion avoid the
structural singularity. In this particular case, assuming vapor molar holdup MV

2 ,
constant solves the problem. This common assumption transforms (4.79) into
an algebraic constraint, i.e., shifts the row corresponding to ṀV

2 , in Figure 4.12,

14Although, a different organization presents advantages when solving the system of equations,
with this form of organizing variables, the analysis of the index problem is easily performed.
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ṪL
3

ṀL
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Figure 4.12: Jacobian of a 3 stages distillation system using the RORBM. Note that
the Jacobian of the algebraic equations with respect to the algebraic variables lacks
of elements in the column corresponding to the reboiler vapor flow V1, originating
the singularity in ∂g

∂z and the higher index problem in the DAE.

down to the algebraic part of the Jacobian, allowing for V1 to appear once in the
algebraic constraints. There exists a second effect of this assumption, since the
fast dynamics associated with the vapor holdups are being neglected, the stiffness
of the DAE is expected to be alleviated. This kind of common assumption reduces
on the one hand, the index problem to one and, on the other hand, the stiffness
of the whole DAEs system, facilitating the dynamic simulation task.

Detecting structural singularities can be generalized by analyzing the Jacobian of
the algebraic constraints with respect to the algebraic variables. A procedure
for reducing the index from structural singularity problems is summarized in
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Algorithm 4.1.

Algorithm 4.1 Index reduction from structural singularities

1: Organize the DAE in the form (4.140)–(4.141)
2: Obtain the incidence matrix (sparsity pattern) of the problem by, e.g.,

numerical perturbation.
3: Detect the empty columns ie of the block corresponding to the incidence of

algebraic variables z into the algebraic equations g.
4: Identify the variables that originates the structural singularity z(ie).
5: Scan the rows of the incidence matrix corresponding to the dynamic equations
f detecting the ones that contains the variables z(ie), i.e, f(z(ie))

6: Based on ”know-how” of the process evaluate which ones of the f(z(ie)) can
be consider as algebraic equations.

Note that neglecting the dynamics of one or more of the f(z(ie)) solves the
structural singularity problem, but such kind of assumptions have to be determined
in agreement with the physical features of the process. Moreover, Algorithm 4.1
does not account for singularities that appear from numerical values of the system
equations but for singularities coming from the structure of the equations.

4.5.3 Further simplifications to the RORBM and actuator

dynamics

Once the index problem has been solved a simulation of the system, under the
assumption of constant molar vapor holdup, can be performed. Note that the
dynamic model has as degrees of freedom four manipulated variables, namely
Lr, B, D and Qr. By simple inspection, it is possible to note that the system
is not BIBO (bounded input bounded output) stable (Ogata, 2010). If one of
these variables is changed, the volumes in the reboiler and condenser can reach
saturation. Starting from an equilibrium value, a step in the reboiler power
Qr, induces a higher vapor flow V1. If B is not changed, the reboiler volume
decreases until it reaches its lower level, i.e., it saturates. At the top of the
column, if D and Lr are kept constant, the level in the reflux drum increases
since more vapor is flowing through the column. This excess of vapor condensates
and induces an increase of liquid volume in the reflux drum until it saturates to
its maximum volume. Consequently, the model with these four degrees of freedom
is unstable. A very simple approach to avoid this kind of instability is to close
loops between liquid volumes in the reboiler and reflux drum with bottom and top
flows, respectively (Skogestad, 1997). The dynamics of these liquid loops is, in
general, faster than the one associated with temperature and composition. Hence,
in many distillation models it is assumed that there exist perfect controllers that
keep these volumes constant. In practice, simple PI controllers can be tuned so
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that correction for volume variations is rapidly achieved. This perfect control on
volumetric holdups in the reboiler and reflux drum is represented by equations
(4.72)-(4.73) and (4.103)-(4.104), respectively. The advantages of incorporating
these assumptions into the model is an easier simulation, avoiding saturation of
variables without the need of considering control loops for the volumes in the top
and bottom stages. However, the real dynamics of the liquid loops is merged with
the dynamics of the temperature inside the column. As mentioned, if desired, the
model can be used without this assumption, however the proper control loops need
to be designed and incorporated into the model.

The presented model does not consider the dynamics of the actuators. If a step
change is performed in the reboiler duty, the extra heat applied directly propagates
to the vapor flow, i.e., the extra heat added, generates an instantaneous change in
the vapor flow since the liquid in the reboiler is saturated. Figure 4.13 shows the
response of some model states when changes of ±10% in the reboiler duty and the
reflux are performed. Although, part of the vapor dynamics have been neglected
with the constant molar vapor holdup assumption, there is a very fast response
due to the lack of proper modeling for the heat transfer between the actuator and
the saturated liquid in the bulk phase.

The real setup exhibits a different behavior. The applied heat takes some time
until it is transferred to the surroundings of the actuator and to the vapor due to
the heat resistance in the liquid bulk phase, which has not been considered in the
model. Similarly, the dynamics of the reflux pump, the feed pump and the feed
heater are not considered. Hence, in order to provide a model closer to what is
expected in the real setup, first order filters of the form

q̇(t) =
1

τ
(u(t) − q(t)), (4.147)

are added to each one of the command signals. Here, u(t) represents the command
sent to the actuator while q(t) accounts for the filtered command signal that
reaches the process. The time constants for those filters are tuning parameters
that can be easily estimated in the real setup since measurement of slave control
loops are available. Table 4.11 displays the extra parameters added to the model,
including the tuning value for the fixed vapor molar holdup M̄V

tj . Those parameters
are added to the ones presented in Table 4.3, leading to 16 model parameters for
the dynamic RORBM.

The four added filters increase the order of the model to 5N-2 dynamic
variables/equations and 9N-3 algebraic variables/equations15. The banded
Jacobian structure is preserved by allocating these new dynamic states in the

15Note that N − 2 dynamic equations corresponding to ṀV
tj

have become algebraic due to the

constant molar vapor holdup assumption.



1
0
0

A
R

A
T

E
B

A
S

E
D

M
O

D
E

L
F

O
R

S
E

P
A

R
A

T
IO

N
IN

P
A

C
K

E
D

C
O

L
U

M
N

S

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

 

 

0 1 2 3 4 5
0.4

0.6

0.8

1

0 1 2 3 4 5
345

350

355

0 1 2 3 4 5

340

342

344

346

0 1 2 3 4 5
310

312

314

316

318

320

0 1 2 3 4 5
338

340

342

344

0 1 2 3 4 5
0.1

0.11

0.12

0.13

0 1 2 3 4 5
0.045

0.05

0.055

0.06

0.065

0.07

0 1 2 3 4 5
60

65

70

75

0 1 2 3 4 5
30

35

40

45

0 1 2 3 4 5
0.02

0.03

0.04

0.05

0 1 2 3 4 5
0.005

0.01

0.015

0.02

0.025

0.03

Reboiler composition Reflux drum composition Reboiler temperature Feed stage liquid temperature

Reflux temperature Condenser vapor temperature Reboiler vapor flow Condenser vapor flow

Reboiler molar holdup Reflux drum molar holdup Bottom flow Top flow

Time (h) Time (h) Time (h) Time (h)

(
m

o
l/

m
o

l)

(
m

o
l/

m
o

l)

(
K

)

(
K

)

(
K

)

(
K

)

(
m

o
l/

s
)

(
m

o
l/

s
)

(
m

o
l)

(
m

o
l)

(
m

o
l/

s
)

(
m

o
l/

s
)

∆Qr= +10%

∆Qr= −10%

∆Lr= +10%

∆Lr= −10%

Figure 4.13: RORBM response to to ±10 percent changes in the reboiler duty and the reflux. First order filters have
been added to the actuators to model the actuator dynamics



DYNAMIC SIMULATION 101

Table 4.11: Actuator related and vapor holdup parameters in the RORBM.

Value Unit Parameter Symbol

p12 0.018 mol Molar vapor holdup M̄V
tj

p13 180 s Heater time constant τR

p14 20 s Reflux pump time constant τLr

p15 20 s Feed pump time constant τF

p16 90 s Feed heater time constant τTF

reboiler, feed and condenser stages. Jacobian patterns are provided to the DAE
solver, achieving an improvement of 63% in the computation time with respect
to the dense version of the Jacobian. Note that in online control and estimation
the model need to be solved at each sampling instant several times. Hence, the
improvement in solving the model has a direct implications on the computation
time and memory usage for dynamic optimization algorithms.

4.5.4 Dynamic sensitivity analysis of the RORBM

As noted in Figure 4.13, the steady state value of model compositions for the
top stage does not reach the one of a pure component. In the real setup that is
approximately the case and the mismatch between the dynamic simulation and the
experimental setup is due to non-optimal values for the model parameters. Hence,
a dynamic parameter estimation problem needs to be formulated. Note that the
formulated model presents 16 parameters. However, the number of parameters
that can be estimated, depends on the available state measurements. Since in this
particular setup only measurements of temperatures are available, it is necessary to
check which parameters can be estimated from those measurements. The analysis
performed in the steady state case in Section 4.3.5 can be extended so that the
dynamic case is covered. For the index-1 DAE

ẏ = f(y, z, p, t), (4.148)

0 = g(y, z, p, t), (4.149)

the sensitivities of states xT = [yT zT ] with respect to parameters p, i.e.,

sT =
∂x

∂p

T

=

[

∂y

∂p

T ∂z

∂p

T
]

= [sy
T sz

T ] (4.150)
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are obtained by solving the DAE
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∂g
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 . (4.151)

Although the required differentiation could be performed symbolically, the DAE
solver with sensitivity generation capabilities presented in Hindmarsh et al. (2005)
is used here to obtain and solve (4.151) together with the RORBM. Figures 4.14-
4.15 present the sensitivities of temperature trajectories at the top and the bottom
of the column as a function of the 16 model parameters. A 10% perturbation is
performed in the 4 possible manipulated variables of the setup16, i.e., Qr, Lr, F
and TF . The sensitivities can be seen as the gain k in the linear approximation of
the states

x(p) = x(p̄) + k(p− p̄). (4.152)

Consequently, the higher the sensitivity the larger the effects of variation in p
over the analyzed state trajectories. On the contrary, lower sensitivities lead to
almost no change in the measured states trajectories with respect to changes in the
parameters. Hence, parameters with lower sensitivities, i.e., low effect on measured
trajectories are difficult to estimate from the available measurements.

In order to use the sensitivities to reduce the search space for the model parameters
p, a criterion based on a 2-norm of the form

‖Si‖ =

4∑

i=1

N∑

j=1

kf∑

k=0

‖ ∂xj
∂pi

(k)‖2
2

4kfN
(4.153)

is proposed as an indicator for the relevance of parameters in the estimation
procedure. kf is the number of values used for describing the numerical solution of
the sensitivities. N denotes the number of states analyzed, i.e., for the temperature
of the liquid or vapor N corresponds to the number of stages and m = 4 input
variables perturbed. This criterion adds all the contributions of the sensitivities
associated to a set of N states with respect to the parameter pi along one
simulation test for the four tests. Figure 4.16 illustrates ‖Si‖ for the 16 parameters
proposed, when the temperature of the vapor phase, liquid phase and top and
bottom concentration are assumed measurables.

Based on the sensitivities it is possible to reduce the search space for the parameter
estimation problem. In this case the original vector p ∈ R

16 is reduced to pr ∈ R
11

16These signals can be manipulated when gathering data for model identification
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and liquid composition with respect to the 16 model parameters when changes of
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as shown in Table 4.12. Note that some of the parameters clearly influence the
dynamic and static response while others only the dynamic part. This is a clear
difference to be taken into account for the parameter estimation of steady state
and dynamic models since only one part of those parameters can be obtained from
steady state data.

4.6 Conclusions

In this chapter a rate based model for separation in packed columns has been
introduced. It is demonstrated that the number of states involved in the model
formulation can be reduced by 30% by manipulating the model states and
introducing extra equations involving the enthalpy dynamics. It is shown that
both the FRBM and the RORBM are highly structured. This structure is better
exploited by reorganizing equations and variables by stage so that a banded
Jacobian is obtained for the numerical solution.

Steady state simulations are presented for both models. An initialization method
based on available measurements is proposed. This method provides initial values
for almost all the states involved in the model and for some of the parameters
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Table 4.12: RORBM parameters and its influence on the dynamic and static
response.

Parameter Dynamic Static pr

ῡR ⋆ ⋆
ῡD ⋆ ⋆
xF ⋆ ⋆ ⋆
ψL ⋆ ⋆ ⋆
ψV ⋆ ⋆ ⋆
ψR ⋆ ⋆ ⋆
ψD ⋆ ⋆ ⋆
Ch ⋆ ⋆
C∆P

CkL ⋆ ⋆ ⋆
CkV ⋆ ⋆ ⋆
MV

T ⋆ ⋆
τR ⋆
τLr ⋆
τF ⋆
τTF ⋆

used in model simulation. It is shown that when the initial guess, provided by
the method, is used in combination with the structure exploitation of the model
equations are solved in a few iterations.

This chapter also provides an analysis of the model parameters, showing that only
a reduced set of them can be estimated from the available measurements. Indeed,
due to the reduced number of measurement, a steady state sensitivity analysis has
shown that steady state data only allow for the estimation of parameters associated
to process heat loss in the liquid and vapor phases. The other parameters in the
model have no significant influence on the steady state trajectories. Moreover,
they are hard to estimate from the steady state measurements of variables such
as temperature and concentration in the top and bottom stages.

Additionally, it is shown that positiveness of the proposed parameters is not
enough to ensure model state trajectories that are plausible. It can happen that
for a particular combination of model parameters the obtained trajectories for
vapor and liquid temperature and composition do not lie in the overheated or
subcooled regions of a boiling point diagram. Hence, a novel set of constraints
on those parameters has been proposed so that the model can provide reasonable
results. These constraints are to be used in the formulation of the parameter
estimation problem for the reduced set of parameters. It has been noticed that
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these constraints must be enforced when trying to fit vapor measurements, since
for low temperature measurements the heat loss coefficient can increase leading to
vapor lying below the dew point curves, which is physically inconsistent. To the
author knowledge there is no previous study of this kind of constraints and their
use in parameter estimation of rate based models. The PEP for the steady state
RORBM has shown that with the reduced set of measurements from the setup,
heat loss coefficients are most likely to be identified.

A dynamic model based on the reduced state procedure is proposed. The high
index problem presented in the model is detected by analyzing the model Jacobian.
It is shown that the model exhibits a structural singularity since the variable
associated with the reboiler vapor flow does not appear in the algebraic equations.
Among the possible model assumptions, one that leads to including vapor flow in
the algebraic equations is selected. The advantages of this kind of assumption are
not only justified numerically but also physically since it also leads to reduce the
model stiffness. As in the steady state case, the sensitivity of model states with
respect to parameters is studied using a DAE solver with sensitivity capabilities.
The dynamic sensitivity analysis shows that some of the parameters neglected
in the PEP for the steady state model, influence the dynamic response, such as
the volume in the reboiler and reflux drum. The sensitivity analysis also leads
to reducing the search space for the parameter estimation problem from 16 to 11
parameters. As in the steady state case, the reduced set of parameters must satisfy
positiveness constraints as well as the constraints that define superheated and
subcooled regions for temperatures and compositions in the bulk phases. Finally, a
reduced state rate based model with a reduced set of parameters is proposed so that
the parameter estimation problem can be efficiently formulated in companion with
numerical solvers that can exploit the sparsity of this highly structured problem.
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Chapter 5

A homotopy-based convex

approximation of input-affine

optimal control problems

In this chapter, a method to solve nonconvex OCP with a particular structure
in the cost and constraints is proposed. In particular, a control-affine model
structure is assumed together with an objective which penalizes deviations from
a desired reference trajectory. Many nonlinear dynamic systems of practical
interest present the control-affine structure which enables the applicability of the
method. Examples of these kinds of systems arise, for instance, in the chemical
industry (e.g., distillation columns and continuous stirred tank reactors -CSTRs),
mechanical engineering (e.g., car maneuvering and robot arm manipulators) and
power electronics (e.g., DC-DC converters). The convergence to the solution for
these OCPs, can be improved by first solving a related convex formulation, which
is connected by a homotopy path to the original problem, and using this solution
to initialize the original OCP. The proposed technique resembles a continuation
method for global optimization (Moré and Wu, 2006) where, by means of filtering
techniques, the original cost is gradually transformed into a smoother function
with fewer local minimizers. An optimization algorithm is then applied to the
transformed function, tracing the minimizers back to the original cost.

The chapter is organized as follows: Section 5.1 introduces the main features of
the method along with proofs of convergence of the homotopy to its extremes.
Section 5.2 presents numerical examples for the method. An application of the
method in the context of predictive control is presented in Section 5.3. Conclusions
follow in Section 5.5.
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5.1 A convex-homotopy based method for the solu-

tion of optimal control problems

The approach proposed here deforms the original nonconvex OCP using a
homotopy, such that the deformed problem becomes convex, i.e, the original OCP
and the convex OCP are homotopic. The convex problem is easier to solve and
homotopy methods (Watson et al., 1987) may be used to trace back the solution
from the deformed problem to the original one. In the following the details of the
method are introduced and numerical results are presented for OCP.

A general dynamic optimization problem is introduced in Section 2.4. However,
herein the OCP treated is restricted to DOPs with dynamic models that exhibit
an input-affine feature and a particular Bolza-type functional, i.e.,

OCP : min
x(·),u(·)

∫ T

0

‖x(t) − x̄(t)‖2
Q dt+ ‖x(T ) − x̄(T )‖2

QT , (5.1)

subject to

ẋ(t) = f(x(t)) + g(x(t))u(t), t ∈ [0, T ], (5.2)

x(0) = x0, (5.3)

h(x(t), u(t)) ≥ 0, t ∈ [0, T ], (5.4)

r(x(T )) ≥ 0. (5.5)

It is assumed that the optimization task involves a desired state trajectory, x̄(t)
(x̄(t) ∈ C1) and no knowledge of a desired input trajectory ū(t) is provided.
Moreover, x̄(t) is considered feasible with respect to the inequality constraints
(5.4) and (5.5).

Additionally, the following assumptions are introduced:

Assumption 5.1.1.

1. The sets defined by the inequalities h(x(t), u(t)) ≥ 0 and r(x(T )) ≥ 0 are
convex (see Definition 2.1.1).

2. The state penalization matrix Q is positive definite and QT is positive semi-
definite.

3. f(x(t)) and g(x(t)) ∈ C1 and the solution of ẋ(t) = f(x(t)) + g(x(t))u(t) is
uniquely determined by u(t) and x(0).



A CONVEX-HOMOTOPY BASED METHOD FOR THE SOLUTION OF OPTIMAL CONTROL PROBLEMS

113

Remark 5.1.1. Convexity in the set defined by (5.4) is, e.g., satisfied if the controls
and states are constrained by simple bounds, thus (5.4) is a hypercube.

In order to simplify the notation, the norm

‖x‖2
J =

∫ T

0

x(t)TQx(t)dt+ x(T )TQTx(T ), (5.6)

is introduced. Additionally, as Q ≻ 0, x = y a.e. if ‖x− y‖2
J = 0.

A homotopy formulation is presented by introducing a pseudo state xc(t) ∈ R
nx

and a scalar parameter α ∈ (0, 1) that interpolates between the original problem
(α → 1) and one of its possible homotopies (α → 0) as follows:

P (α) : min
x(·),u(·),xc(·)

1

α
‖x− x̄‖2

J +
1

1 − α
‖xc − x‖2

J (5.7)

subject to

ẋc(t) = f(x(t)) + g(x(t))u(t), t ∈ [0, T ], (5.8)

xc(0) = x0, (5.9)

h(xc(t), u(t)) ≥ 0, t ∈ [0, T ], (5.10)

r(xc(T )) ≥ 0. (5.11)

This augmented parametric OCP defines a family of optimization problems as a
function of the parameter α. Other forms of homotopy maps are also possible
where the parameter enters linearly or nonlinearly in the problem. Linear
homotopy parameters are widely used in root finding problems (Watson, 2001).
However, the particular choice proposed here is twofold. On the one hand, the
homotopy parameter is restricted to lie in the interval (0, 1). On the other
hand, there is an equivalence of the presented formulation with quadratic penalty
methods for constrained optimization (Gould, 1989). This equivalence allows
showing the convergence conditions of the parametric problem minimizer to the
solution of the original OCP. Additionally, consider the related convex problem

CVX : min
xc(·),u(·)

‖xc − x̄‖2
J (5.12)
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subject to

ẋc(t) = f(x̄(t)) + g(x̄(t))u(t), t ∈ [0, T ], (5.13)

xc(0) = x0, (5.14)

h(xc(t), u(t)) ≥ 0, t ∈ [0, T ], (5.15)

r(xc(T )) ≥ 0. (5.16)

The following additional technical assumptions on the presented optimization
problems are introduced:

Assumption 5.1.2. There exist unique global solutions for the problems OCP
(5.1)-(5.5), P (α) (5.7)-(5.11) and CVX (5.12)-(5.16), namely (x∗

ocp(t), u∗
ocp(t)),

(x∗
P(α)(t), u

∗
P(α)(t), x

∗
c P(α)(t)) and (x∗

c cvx(t), u∗
cvx(t)), respectively.

Assumption 5.1.3.

1. The parametric problem solution (x∗
P(α)(t), u

∗
P(α)(t), x

∗
c P(α)(t)) converges

pointwise to (x∗
P(1)(t), u

∗
P(1)(t), x

∗
c P(1)(t)), when α goes to one, i.e.,

lim
α→1

(x∗
P(α)(t), u

∗
P(α)(t), x

∗
c P(α)(t)) = (x∗

P(1)(t), u
∗
P(1)(t), x

∗
c P(1)(t)).(5.17)

2. The parametric problem solution (x∗
P(α)(t), u

∗
P(α)(t), x

∗
c P(α)(t)) converges

pointwise to (x∗
P(0)(t), u

∗
P(0)(t), x

∗
c P(0)(t)), when α goes to zero, i.e.,

lim
α→0

(x∗
P(α)(t), u

∗
P(α)(t), x

∗
c P(α)(t)) = (x∗

P(0)(t), u
∗
P(0)(t), x

∗
c P(0)(t)).(5.18)

Based in the previous assumptions, the following lemmata are introduced:

Lemma 5.1.1 (Convergence of P (α) when α → 1). The solution of the parametric
problem (5.7)-(5.11) approaches the solution of the original OCP (5.1)-(5.5) in the
limit when α goes to one, i.e.,

(x∗
P(1)(t), u

∗
P(1)(t)) = (x∗

ocp(t), u∗
ocp(t)), ∀ t ∈ [0, T ] a.e. (5.19)

x∗
c P(1)(t) = x∗

ocp(t), ∀ t ∈ [0, T ] a.e. (5.20)

Proof. Consider the augmented OCP

min
x(.),u(.),xc(.)

‖x− x̄‖2
J , (5.21)
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subject to

ẋc(t) = f(x(t)) + g(x(t))u(t), t ∈ [0, T ], (5.22)

xc(0) = x0, (5.23)

h(xc(t), u(t)) ≥ 0, t ∈ [0, T ], (5.24)

r(xc(T )) ≥ 0, (5.25)

xc(t) = x(t) t ∈ [0, T ], (5.26)

whose solution exactly matches the solution of the original problem (5.1)-(5.5),
since the added equality constraint (5.26) can be trivially satisfied by the new
added variable xc(t). This additional degree of freedom is introduced in order to
provide the same number of optimization variables for the original OCP and the
parametric one, P (α).

The proof to Lemma 5.1.1 is presented by reformulating the parametric OCP
(5.7)-(5.11) such that the homotopy term penalizing the original cost is factorized,
i.e.,

P (α) : min
x(.),u(.),xc(.)

1

α

(
‖x− x̄‖2

J + β(α)‖xc − x‖2
J

)
(5.27)

subject to

ẋc(t) = f(x(t)) + g(x(t))u(t), t ∈ [0, T ], (5.28)

xc(0) = x0, (5.29)

h(xc(t), u(t)) ≥ 0, t ∈ [0, T ], (5.30)

r(xc(T )) ≥ 0, (5.31)

and

β(α) =
α

1 − α
. (5.32)

The formulation (5.27) resembles the cost used in quadratic penalty methods
(Nocedal and Wright, 2006), where the second term in the right-hand side of (5.27)
corresponds to an equality constraint. The scaling factor 1

α in (5.27) is neglected
since, theoretically, scaling has no effects on the solution. Moreover, for the case
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analyzed here, i.e., α increasing towards 1, this factor tends to one. Note that
(5.32) defines an equivalence between α going to 1 and β going to +∞.

Now, suppose that (x∗
ocp(t), u∗

ocp(t), x∗
c ocp(t)) is a global solution to the OCP (5.21)-

(5.26), hence x∗
c ocp(t) = x∗

ocp(t). Suppose also that (x∗
P(α)(t), u

∗
P(α)(t), x

∗
c P(α)(t))

is a global solution to the parametric OCP (5.7)-(5.11). Note that any solution to
the OCP (5.21)-(5.26) lies in the feasible set of the parametric OCP, i.e., (5.28)-
(5.31) are satisfied by (x∗

ocp(t), u∗
ocp(t), x∗

c ocp(t)) ∀ t ∈ [0, T ].

Since (x∗
P(α)(t), u

∗
P(α)(t), x

∗
c P(α)(t)) is a unique global solution of the parametric

problem and ‖x∗
c ocp − x∗

ocp‖2
J = 0, the following inequality holds:

‖x∗
P(α) − x̄‖2

J + β(α)‖x∗
c P(α) − x∗

P(α)‖2
J ≤ ‖x∗

ocp − x̄‖2
J (5.33)

After dividing (5.33) by β(α) and re-arranging terms,

‖x∗
c P(α) − x∗

P(α)‖2
J ≤ 1

β(α)

(

‖x∗
ocp − x̄‖2

J − ‖x∗
c P(α) − x∗

P(α)‖2
J

)

, (5.34)

is obtained. Following Assumption 5.1.3, taking the limit when α tends to 1 in
(5.34), yields

‖x∗
c P(1)−x∗

P(1)‖2
J ≤ lim

α→1

1

β(α)

(

‖x∗
ocp − x̄‖2

J − ‖x∗
c P(α)−x∗

P(α)‖2
J

)

=0. (5.35)

Due to Assumption 5.1.1, Q ≻ 0 and QT � 0, hence, the left-hand-side of
inequality (5.35) cannot be negative. Consequently,

‖x∗
c P(1) − x∗

P(1)‖2
J = 0, ∀ t ∈ [0 T ] a.e. (5.36)

This condition corresponds to the additional constraint (5.26) imposed to the
augmented OCP in (5.21) with the new variable xc(t).

Additionally, taking the limit in (5.33) gives

lim
α→1

(

‖x∗
P(α) − x̄‖2

J + β(α)‖x∗
c P(α) − x∗

P(α)‖2
J

)

≤ ‖x∗
ocp − x̄‖2

J . (5.37)
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The nonnegativity of β(α) directly implies positiveness of the limit in left-hand
side of (5.37), yielding

‖x∗
P(1) − x̄‖2

J ≤ ‖x∗
ocp − x̄‖2

J . (5.38)

Hence, due to the uniqueness of the solution the following equalities hold,

x∗
P(1)(t) = x∗

ocp(t), a.e., (5.39)

x∗
c P(1)(t) = x∗

P(1)(t), a.e., (5.40)

x∗
ocp(t) = x∗

c ocp(t), a.e. (5.41)

and u∗
P(1) is uniquely determined by the set of constraints (5.28)-(5.31) which is

the same set as the original OCP (5.22)-(5.26). Consequently,

(x∗
P(1)(t), u

∗
P(1)(t), x

∗
c P(1)(t)) = (x∗

ocp(t), u∗
ocp(t), x∗

c ocp(t)), a.e., (5.42)

meaning that the solution of the parametric OCP (5.7)-(5.11) converges to the
solution of the original OCP (5.1)-(5.5) in the limit when α goes to one.

Now the other extreme of the parametric DOP is investigated.

Lemma 5.1.2 (Convergence of P (α) when α → 0). The solution of the parametric
optimization problem P (α) is in the limit, when α goes to zero, equivalent to the
solution of the convex optimization problem in (5.12)-(5.16), i.e.,

(x∗
c P(0)(t), u

∗
P(0)(t)) = (x∗

cvx(t), u∗
cvx(t)), ∀ t ∈ [0, T ] a.e., (5.43)

x∗
P(0)(t) = x̄(t), ∀ t ∈ [0, T ] a.e.. (5.44)

Proof. The proof of Lemma 5.1.2 follows the same structure as the proof of
Lemma 5.1.1. Consider an equivalent formulation of the convex optimization
problem (5.12)-(5.16):

min
xc(·),u(·),x(·)

‖xc − x̄‖2
J (5.45)

subject to

ẋc(t) = f(x(t)) + g(x(t))u(t), t ∈ [0, T ], (5.46)
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xc(0) = x0, (5.47)

h(xc(t), u(t)) ≥ 0, t ∈ [0, T ], (5.48)

r(xc(T )) ≥ 0, (5.49)

x(t) = x̄(t), ∀ t ∈ [0, T ]. (5.50)

whose solution exactly matches the solution of the original convex problem (5.12)-
(5.16) since the added equality (5.50) is satisfied by the extra variable x(t).

The parametric OCP is reformulated as:

P (α) : min
x(.),u(.),xc(.)

1

1 − α

(
γ(α)‖x− x̄‖2

J + ‖xc − x‖2
J

)
(5.51)

subject to (5.28) - (5.31) with

γ(α) =
1 − α

α
. (5.52)

The cost in (5.51) corresponds to a quadratic penalty formulation (Nocedal and
Wright, 2006) where the first norm in the cost is considered an equality constraint.
Note also that γ(α) goes to +∞ as α goes to zero. Again, the scaling factor 1

1−α
has no influence on the cost in the limit case considered here.

Assume that (x∗
cvx(t), u∗

cvx(t), x∗
c cvx(t)) is a unique global solution to the convex

OCP (5.45)-(5.50), and (x∗
P(α)(t), u

∗
P(α)(t), x

∗
c P(α)(t)) is a unique global solution to

the parametric OCP P (α). Note that any solution to the convex OCP in (5.45)-
(5.50) is a feasible trajectory for the parametric OCP P (α) i.e., (5.8) to (5.11) are
satisfied by (x∗

cvx(t), u∗
cvx(t), x∗

c cvx(t))) ∀ t ∈ [0, T ].

Since the reformulated parametric problem (5.51) exhibits the same structure as
the problem in (5.27) in the proof of Lemma 5.1.1, the same procedure presented
there can be applied here, leading to:

‖x∗
P(0) − x̄‖2

J = 0 (5.53)

and

‖x∗
P(0) − x̄‖2

J ≤ ‖x∗
c cvx − x̄‖2

J . (5.54)
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where (x∗
P(0)(t), u

∗
P(0)(t), x

∗
c P(0)(t)) is a limit trajectory according to Assump-

tion 5.1.3. Hence, the following equalities hold

x∗
c P(0)(t) = x∗

c cvx(t), a.e., (5.55)

x∗
P(0)(t) = x̄(t), a.e., (5.56)

x∗
cvx(t) = x̄(t), a.e., (5.57)

and u∗
P(0) is uniquely determined by the set of constraints (5.28)-(5.31) which is

the same set in the original convex problem (5.46)-(5.49). Consequently,

(x∗
P(0)(t), u

∗
P(0)(t), x

∗
c P(0)(t)) = (x∗

cvx(t), u∗
cvx(t), x∗

c cvx(t)), a.e., (5.58)

meaning that the solution of the parametric OCP (5.7)-(5.11) converges to the
solution of the original convex OCP (5.12)-(5.16) in the limit when α goes to
zero.

Lemma 5.1.3 (Perfect traceable trajectory x̄(t)). If x̄(t) is a feasible trajectory,
with respect to equality and inequality constraints, for some unknown controls ū(t),
i.e., ẋref(t) = f(x̄(t)) + g(x̄(t))ū(t), then ū(t) is obtained exactly by solution of the
convex problem (5.12)-(5.16). Moreover, (x∗

P(α), u
∗
P(α)) = (x̄, ū) for all α ∈ [0, 1].

Proof. If x∗
ocp(t) = x̄(t), (x̄(t), ū(t), x∗

c ocp(t)) is a solution of the OCP (5.21)-
(5.26). Moreover, (x̄(t), u∗

ocp(t), x∗
c ocp(t)) minimizes the objective of the para-

metric OCP in (5.7) with function value zero. Due to Assumption 5.1.2,
(x∗

P(α)(t), u
∗
P(α)(t), x

∗
c P(α)(t)) = (x̄(t), ū(t), x̄(t)) for all α ∈ [0, 1].

Convergence of the parametric problem solution to the global solution of the
original OCP is guaranteed only if we are able to find the global solution for
each P (α). This condition is only easily satisfied for the first problem on the
homotopy path namely P (0) where a convex problem is addressed as shown in
Lemma 5.1.2. In this context, it is proposed to solve the nonconvex OCP with the
given structure, by convexifying it through the formulation in (5.7)-(5.11) with
α = 0. The solution of the convex homotopy is used to initialize successive OCPs
when moving α towards 1 in order to recover the original formulation.

Remark 5.1.2 (Increments on the homotopy parameter). With the use of homotopy
methods, the question of how to determine the increments of the homotopy
parameter arise. Continuation methods increase this value monotonically.
However, even with small increments of the homotopy parameter, the zero path
cannot be followed if turning points appear. Consequently, practical homotopy
methods do not attempt to increase the homotopy parameter monotonically but
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allows for decreasing it to track turning points. In order to do so, the zero
path is parameterized in terms of its arc length. The parameterization allows
for calculating (ẇ, α̇) from the original system of equations1 (see (Nocedal and
Wright, 2006, pag. 297)) such that dynamic equation solvers can be used track
the zero path in the space defined by w and α. Numerical algorithms to efficiently
perform this procedures are presented in Watson et al. (1987).

Numerical examples illustrate how the method can be applied in the predictive
control frameworks in Section 5.2. It is difficult to guarantee that the method
finds a global solution to the nonconvex original problem. However, in view of
Lemma 5.1.3, it finds the solution to the nonconvex DOP by solving a simpler
convex problem. This situation is presented in Figure 5.1(a). For small values
of ‖x − x̄‖2

J the situation in Lemma 5.1.3 is nearly recovered as presented in
Figure 5.1(b). Nevertheless, complications can appear for higher values of ‖x−x̄‖2

J

such as bifurcations as illustrated in Figure 5.1(c).

Situation in Lemma 3 Benevolent Situation Possible complications

‖x∗

ocp − x̄‖2
J

= 0 ‖x∗

ocp − x̄‖2
J

small ‖x∗

ocp − x̄‖2
J

big

local min.

local min.local min.
global min.

global min.
global min.

u∗
cvx

u∗
cvx

u∗
cvx

ααα 000 111

(a) (b) (c)

Figure 5.1: Some possible behaviors of the homotopy path in the space (x, u, xc).
Note that the benevolent situation in (b) is covered with Assumptions 5.1.2 and
5.1.3 for small trajectory changes. However, if Assumption 5.1.2 does not hold,
complications like bifurcations or the emergence of a new local minima can appear
as in (c).

5.2 Optimal control numerical example

In order to illustrate the applicability of the proposed method to the solution
of dynamic optimization problems, the optimal control of a continuous stirred
tank reactor (CSTR) is considered. Since the continuous time OCP is an infinite
dimensional optimization problem, the decision variables are parameterized in
direct solution approaches so that the problem can be formulated as a finite

1w accounts for the optimization variables.
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dimensional nonlinear programming problem (NLP). Here, it is assumed that the
controls are first parameterized by piecewise constant functions and that the model
is discretized using finite differences or higher order schemes for its numerical
solution. Although direct single shooting is used in the current study, the method
can be easily employed in the context of direct multiple shooting (see Section 2.5).

Consider the benchmark problem presented in Sistu and Bequette (1995), where
an isothermal CSTR with the Van de Vusse reactions

A
k1−→ B

k2−→ C, (5.59)

2A
k3−→ D,

is analyzed. The CSTR dynamics are governed by the set of nonlinear differential
equations

Ċa(t) =
F (t)

V
(Ca,0(t) − Ca(t)) − k1Ca(t) − k3C

2
a(t), (5.60)

Ċb(t) = k1Ca(t) − k2Cb(t) − F (t)

V
Cb(t), (5.61)

where F (t) represents the feed flow, while V is the reactor volume. Ca(t) and Cb(t)
represent the concentrations of the reactantA and the intermediate B, respectively
(see Figure 5.2). Constants k1, k2 and k3 are reaction rate constants. It is assumed
that the reactor volume V , remains constant and that the feed consists of pure A
with a concentration Ca,0(t). The intermediate concentration Cb(t) is controlled
by manipulating the feed rate.

Table 5.1 summarizes the parameters and nominal conditions for this benchmark
problem. This particular system exhibits input multiplicity as illustrated in
Figure 5.3. Consequently, the formulation of a cost in terms of the errors with
respect to a desired trajectory can generate two possible control values. Hence, a
local optimization technique can easily be attracted by a local minimum, delivering
a suboptimal solution, if it is initialized inappropriately. However, for this
particular application, global optimization approaches are able to find a better
solution as shown in Long et al. (2006). The approach proposed here suggests
a computationally less demanding heuristic to address the problem of finding a
global solution to this problem.
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Table 5.1: CSTR parameters and nominal conditions.

Parameter Value

k1 50 1/h
k2 100 1/h
k3 10 L/(gmol.h)
V 1 L
Fmin 0 L/h
Fmax 200 L/h
F̄ 180.95 L/h

C̄a,0 10 gmol/L

C̄a 6.181 gmol/L
C̄b 1.1 gmol/L

By redefining x(t) = [Ca(t) Cb(t)]T and u(t) = F (t)
V , the OCP for the CSTR

output concentration can be formulated as in (5.1)-(5.5), with

h(x(t), u(t)) =







x(t),
u(t),

200h−1 − u(t),
(5.62)

and no terminal region r(x(T )). x̄(t) represents the state trajectory and no
reference trajectory for the controls is provided. In the numerical solution, the
control u(t) is discretized by a piecewise constant discretization with Nu intervals.

F (t)

Ṫ = 0

Ca(t) Cb(t)

Ca,0(t)

V̇ = 0

Figure 5.2: Isothermal CSTR.
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Figure 5.3: Steady state gain for the CSTR process for different values of the input
concentration Ca,0.

The presented nonlinear dynamics is discretized with a sampling rate of 0.002 h
(7.2 s) and solved for a prediction horizon T = 0.06 h (30 samples) with a constant
control along the prediction horizon (Long et al., 2006), i.e., the control horizon,
Nu is set to one. The differences between model states and state trajectory are
penalized in a different proportion along the time interval [0, T ]. The discrete
version of the penalization matrix Q is set to diag(1e−3 2e−1) L2/(gmol2h) while
QT is diag(1e−3 80)L2/(gmol2).

The cost defined by

ψ(u) = min
x(.)

‖x− x̄‖2
J , (5.63)

subject to the dynamic equations (5.60) and(5.61) is illustrated in Figure 5.4. It
corresponds to the cost to minimize when a step change on the reference trajectory,
x̄(t), is performed. The original problem has one global and one local solution.
Clearly, if a local optimization technique starts with an initial guess close to the
constraints, the solution to the original NLP locks on to the upper bound of u(t)
leading to the local minimizer, ulm(t).

The OCP for the CSTR is modified using the proposed approach by introducing
the norm on xc(t)−x(t) and the homotopy parameter α leading to the parametric
problem (5.7)-(5.11) with no terminal constraint. Figure 5.5 illustrates the
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Figure 5.4: Original cost for the CSTR open loop optimal control problem when
first optimized over x(t). The value ulm corresponds to the local minimizer

homotopy maps for different values of α in the interval (0, 1). The cost value
in (5.7) is first minimized with respect to x(t) and xc(t). Note that the extremes
of the map correspond to a convex function, and to the cost given by the original
problem in Figure 5.4, respectively. In this example it is possible to attain the
global optimum, if the OCP is convexified with the proposed approach and a local
optimization technique is employed for increasing values of α performing each time
the initialization with the previously computed optimal solution, i.e., tracking the
zero path by a simple continuation method.

Figure 5.6 presents the behavior of ‖xc − x‖2
J as a function of the homotopy

parameter. This norm it tends to zero as α goes to one, recovering the original
OCP. This plot corresponds to the values of ‖xc −x‖2

J on the zero path illustrated
in Figure 5.5.

Additionally, the condition presented in Lemma 5.1.3 is illustrated in Figure 5.7,
where the problem is assumed in steady state and neither changes in the reference
nor disturbances are considered. Following this condition the optimal state
trajectory for the OCP satisfies x∗

ocp(t) = x̄(t) meaning that the system remains in
steady state. As stated in Lemma 5.1.3, the optimal solution of the original OCP
equals the solution provided by the convex cost given by P (0). Hence, in order
to obtain the global solution for the original OCP for x∗

ocp(t) = x̄(t) it would be
enough to solve the convex OCP P (0). Note that the original OCP for α = 1 is
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Figure 5.5: Cost functions for a set of the problems between the original OCP and
its convex formulation for the CSTR control example when a step change in the
reference is performed. The zero path has been obtained by minimizing each one
of the parametric OCPs, P (α), for discrete values of α increasing monotonically,
leading to u∗(t) when α → 1.

still highly nonconvex.

5.3 Receding horizon control numerical example

In order to illustrate the applicability of the method in the NMPC framework, a
closed loop simulation study is performed. It is important to mention here that a
control horizon Nu = 1 has been selected only for visualization porpoises, since it
is easier to visualize the cost and locate global and local solutions by enumerating
the possible control values u ∈ R. A more realistic case with increased control
horizon is presented at the end of the current section. Note that in NMPC, the
parameterized OCP has to be solved at each sampling instant. A nonlinear open
loop observer is implemented in order to estimate the possible process disturbances
and model states. The state reference trajectory is calculated from the desired
process output (intermediate concentration Cb(t)) and the estimated disturbance
as proposed in Rossiter (2003). No knowledge of the input reference trajectory is
provided. At each sampling instant the problem is solved first using the homotopy
approach with α = 0, i.e., the convex problem is addressed, and after, the original
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NLP (α = 1) is solved using as initial guess the solution provided by the convex
OCP. Consequently, one quadratic programming problem (QP) and one NLP are
solved every 7.2 s. The former one to obtain the initial guess for u(t) and the latter
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to refine the approximated solution. Nevertheless, whenever necessary, methods
to follow the zero path may be incorporated (Watson et al., 1987). In view of
this procedure, it could be possible to think about an algorithm that solves the
convex approximation normally and only goes for the NLP when the size of the
disturbance ‖x− x̄‖2

J is above a predefined threshold.

In order to evaluate the performance of the closed loop using a NMPC with the
presented method, a test scenario is proposed. The test consists of reference
changes and disturbance rejection. During the first 0.05 h of simulation, the
system reaches steady state. There, the output reference trajectory is changed
at 0.15 h and 0.6 h. On the other hand, disturbances are applied by changing
the feed concentration at 0.3 h and 0.45 h. Figure 5.8 presents the results
for a tracking and disturbance rejection test using both an NLP solver based
on sequential quadratic programming (SQP)2 and the proposed convexity-based
homotopy approach. Both algorithms are initialized with the same initial state
[x1, x2]T = [6.18, 1.1]T gmol/L. On the one hand, to calculate the first control
move, the proposed approach does not require an initialization in u(t) since the
first problem to solve is convex. On the other hand, the NLP solver requires an
initialization which clearly affects the convergence to a solution. In this simulation
study, the control is initialized to u(t) = 180.94h−1 which corresponds to the
control value for the given initial state. The proposed approach immediately finds
the right control, causing the strong change in the control action and the big peak
in Cb(t). Note that the homotopy approach finds the global solution while the local
optimization technique, which is each time initialized with the previous solution,
finds only a local optimum. For the tracking problem, evaluated by performing the
changes in reference as mentioned, the NLP locks onto the upper bound of u(t).
On the other hand, the homotopy approach finds the global solution as illustrated
in the cost function plot. Similar behavior can be noted when evaluating the
disturbance rejection properties. When the process is perturbed, the classical
technique finds a local solution while the proposed method is able to compute the
global solution. Note also that for this cost formulation, a local minimum leads to
steady state errors with respect to the reference trajectory.

For the 0.8 h simulation, 400 NLP problems are solved. The test has been executed
using a Intel Core 2 Duo microprocessor at 1.6 GHz running a linux distribution
with 2 GB of RAM. Figure 5.9 presents the computational demand of the evaluated
algorithms. In both cases, the computational demand is below the time constraint
of 7.2 s, making the approach feasible for implementation.

The OCP is also solved when increasing the degrees of freedom to Nu = 30.
Figure 5.10 displays the optimal control provided by the local optimization
technique and the proposed method for the case studied in Figure 5.5 but using 30
control moves. The convex initialization combined with the local optimizer is still

2The MATLAB (The Mathworks Inc., Natick, MA.) NLP, the fmincon routine is used for
this simulation study
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Figure 5.8: Tracking and disturbance test for the NMPC applied to the CSTR
using a local optimizer and convexity-based homotopy approach. The problem is
solved with a control horizon Nu = 1. The convex approach is switched on at
t = 0.05 hours with the same initialization as in the local approach.
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Figure 5.9: Computational demand for the studied test scenario with Nu = 1.
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Figure 5.11: Computational cost for the studied test scenario in Figure 5.12 with
increased control horizon Nu = 30.

able to provide what it is believed to be the global solution with a considerably
lower objective3. Additionally, the closed loop behavior of the process is evaluated
with the test scenario described previously and an increased control horizon,
Nu = 30. Figure 5.12 depicts the behavior of the NMPC when input concentration
and reference changes are performed. In this case, the proposed method is still
able to compute the appropriate control sequence, while the local optimization
technique provides an optimal solution which drives the system to the wrong
steady state value exhibiting steady state errors. The computational demand
of the simulation is presented in Figure 5.11 where the time employed by both
algorithms is still smaller than the sampling period Ts of 7.2 s.

5.4 Discussion of the homotopy approach

In general, it is not possible to guarantee continuity of the path of solutions,
i.e., the zero path. However, continuity of this path and bifurcations on it are
directly related to the singularity of the KKT-system jacobian obtained from the
finite-dimensional PDOP. Note that the solution of the DOP in the convex and

3For this nonconvex problem in 30 variables it is nearly impossible to verify that the global
solution is found.
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Figure 5.12: Tracking and disturbance test for the NMPC applied to the CSTR
using a local optimizer and convexity-based homotopy approach. The problem is
solved with a control horizon Nu = 30. The convex approach is switched on at
t = 0.05 hours with the same initial states as in the local approach.
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nonconvex extremes correspond to KKT points of the parameterized problems
with α → 0 and α → 1. If derivative-based local optimization techniques are used,
the solutions in between these extreme KKT points are calculated from the KKT-
system with embedded α parameter. In view of Theorem 2.3 in Watson (2002),
the continuity of the path and the non-existence of bifurcation are guaranteed
if the Jacobian of the parameterized KKT-system is nonsingular along the zero
path, i.e, along the solutions of the PDOP when α moves from zero to one. If in
addition, the zero path is bounded, the path of minimizer from the convex OCP to
the nonconvex can be followed, since this condition along with continuity ensure
a finite path length (Watson, 2002). Consequently, there is still an open question
with respect to the properties of the cost and constraints of the PDOP in order to
guarantee non singularity of the KKT system along the zero path. This question
remains for future investigations on the convex approximation method.

5.5 Conclusions

In this chapter a homotopy method is presented to initialize nonconvex OCPs
arising in optimal control problems where the dynamic model involved is affine
in the controls and the objective is a penalty on deviations from a desired state
reference. It has been shown that by modifying the nonconvex OCP through a
homotopy it is possible to find a convex OCP. The homotopy from the nonconvex
to the convex OCP is analyzed as a parametric dynamic optimization problem
(PDOP). The necessary assumptions and the proofs of convergence of this PDOP
to the original and convex DOPs in the extremes of the homotopy map are provided.
Despite the limitation discussed in Section 5.4, the applicability of the method to
two particular examples in the field of optimal control is presented. It is shown
that the likelihood of finding a global solution to the nonconvex OCP is greatly
improved when compared to standard local optimization techniques. Moreover,
the validity of the method for NMPC applications has been illustrated through a
benchmark problem in chemical process control where the approach is able to find
the optimal control trajectory while a classical technique locks onto a local solution.
Finally, computational aspects of the method have been addressed in order to
illustrate feasibility with respect to implementation. In summary, the presented
approach promises to become an attractive heuristic for a smart initialization of
a specific class of nonconvex optimal control problems, using the power of convex
optimization.



Chapter 6

A near optimal solution to

parameter estimation problems

with parameter-affine dynamics

embedded

Chapter 5 shows that a dynamic optimization problem (DOP) with input-affine
dynamics can be recast to obtain a convex DOP through a homotopy. This
chapter focuses particularly on parameter estimation problems (PEP) and develops
a method to use this convex problem solution either as initialization point of
more advanced simultaneous optimization routines, such as Simultaneous Gauss-
Newton (SGN), or to perform a refinement of this guess by solving one more
convex problem. Since the latter approach provides a suboptimal solution, proofs
of the loss of optimality are provided for the method. Moreover, numerical results
are presented for the SGN with arbitrary initialization and with the proposed
approach using benchmark examples in the chemical and biological fields.

6.1 Convexification of parameter estimation prob-

lems with parameter-affine models

Consider the PEP :

min
x(·),p

1

2
‖x(ti) − x̄(ti)‖2

Q (6.1)

133
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subject to

ẋ(t) = f(x(t)) + g(x(t))p, t ∈ [0, T ], (6.2)

h(x(t), p) ≥ 0. t ∈ [0, T ], (6.3)

where the inequality constraints are assumed convex and Q � 0, ∀ t ∈ [0, T ]. The
process inputs u(t) that are used to modify the dynamics in (6.2) are assumed
known, such that they are not optimization variables and are not explicitly
presented in (6.2) for simplicity.

If this problem is deformed using the homotopy approach presented in Chapter
5, it is clear that a convex PEP is obtained. Other well-known procedures
leading to convex PEP have been proposed for parameter-affine systems, such
as Least Squares Prediction Error Methods (LS-PEM) (Ljung, 2002). Although
these methods are widely used, they are sensitive to noisy data and in order to
work well in practice, they need to filter the residuals, i.e., noise models have
to be proposed as a part of the estimation of parameters. In contrast to this,
the approach presented here does not involve the use of arbitrary filters over the
residuals and can be shown to be less sensitive to noisy data, leading to less biased
results without previous knowledge of the errors’ behavior. In order to illustrate
this property, one of the PEP examples presented in Bonilla et al. (2008) is used.
Consider the attractor introduced by Edward Lorenz in 1963. The dynamics of
the Lorenz attractor is governed by a set of differential equations of the form

ẋ(t) = σ(y − x), ẏ(t) = x(ρ− z) − y, ż(t) = xy − βz (6.4)

where σ, β and ρ are positive parameters. Typical values to illustrate the chaotic
behavior of this set of nonlinear equations are σ = 10, β = 8/3 and ρ = 28. Note
that the system presents the parameter affine structure with p = [σ, ρ, β]T . The
multiple time scale evolution and the chaotic behavior of (6.4), is often used to
illustrate the internal dynamics of the earth atmosphere (Palmer, 1993) and it has
been used as case study for parameter estimation methods as well in Lea et al.
(2000) and Annan and Hargreaves (2000).

It is assumed that a sequence containing measurements for all states x̄(t), ȳ(t) and
z̄(t) at time instants ti is provided as illustrated in Figure 6.1(b). This sequence is
contaminated with colored noise. Thus, it is expected that the LS-PEM without
any noise information provides a biased solution (Ljung, 2002).

In order to better visualize the cost functions for the presented approaches, σ and
β are considered constant and only ρ is estimated. The NLP is formulated by
discretizing the PEP at ti instants. The obtained cost as a function of ρ ∈ [10, 40]
is presented in Figure 6.2. In this case the initial condition has been assumed fixed.
Clearly this cost is non-smooth and contains several local minima due to the high
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Figure 6.1: Chaotic behavior of Lorenz attractor, σ = 10, β = 8/3 and ρ = 28 (a),
and noisy data used for estimation (b).

sensitivity of model states for values of ρ > 24. Consequently, derivative-based
techniques hardly find the right solution when initialized far from the optimum.
Due to the noise added, and due to the fact that a noise model is not considered,
the global solution provided by LS-PEM methods is biased with respect to the
optimum. Consequently, it is required to define a filter for the residuals based on
the analysis of the noise spectrum of the collected measurements in Figure 6.1(b).
For this particular example, it is not difficult to recognize noise in the range 100-
150Hz. Hence, a simple approach is to propose a filter with a bandwidth matching
this band. Note that this is a heuristic approach and it is not always easy to
isolate the noise spectrum from the measured data. A second order bandpass filter
is designed and added to each output of the original model. The improved results
of the LS-PEM including this filter (LS-PEM+NF) are illustrated in Figure 6.2.

The convex PEP obtained from the homotopy approach is introduced for this
parameter estimation problem, by using the Lorenz model (6.4) and the noisy data
shown in Figure 6.1(b) with a fixed initial condition. The cost to be optimized,
obtained with this formulation, is presented in Figure 6.2 as CVX-H. Similarly
to LS-PEM and LS-PEM+NF, the cost is convex. However, the minimum of the
convex cost obtained with the homotopy method is less biased w.r.t. the nonlinear
least squares (NLS) PEP solution. Note that the plots for all the costs in Figure 6.2
have been scaled for visualization purposes. The same test is run with colored noise
in other frequencies, in all cases, the proposed methods showed less bias than its
LS-PEM counterpart with and without filter (Bonilla et al., 2008).

Table 6.1 summarizes the optimal values ρ∗ for the presented costs considered in
the domain of ρ. Additionally, the absolute error e(ρ) with respect to the real
value of ρ = 28 is presented.
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Table 6.1: Optimum values for the PEP of the Lorenz attractor with ρ = 28.

Cost ρ∗
100−150Hz e(ρ∗)100−150Hz ρ∗

400−450Hz e(ρ∗)400−450Hz

NLS 28 0.0 28.0 0.0
LS-PEM 24.60 12.14 12.9 53.93

LS-PEM+NF 24.40 12.85 25.8 7.86
LS-CA 27.90 0.36 28.6 2.14

6.2 A 2-step procedure for the solution of estimation

problems with parameter-affine dynamics embed-

ded

The solution presented by the convex homotopy can be further improved by simply
linearizing the original nonconvex PEP around this minimum. In such a case only
two convex problems are solved and the solution is expected to be less biased.
Although, the solution is still suboptimal it is possible to provide a measure for
the loss of optimality in this procedure. In the following, an assessment of the
distance between the real solution to the PEP and the solution provided by the
refined convex problem is analyzed. The optimization problem (6.1)-(6.3) and its
convex extremes are parameterized under an appropriate discretization method,
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leading to:

PEPNL(x̄) : min
p,x

1

2
‖ x − x̄ ‖2

Q, s.t.

{
A(x) −B(x)p −Wx = 0,

h(x, p) ≥ 0,
(6.5)

PEPCVX(x̄) : min
p,xc

1

2
‖ xc −x̄ ‖2

Q s.t.

{
A(x̄) −B(x̄)p−Wxc = 0,

h(xc, p) ≥ 0
(6.6)

where x = [x(t0)T , x(t1)T , . . . , x(tN )T ]T and x̄ = [x̄(t0)T , x̄(t1)T , . . . , x̄(tN )T ]T

correspond to the discrete time model state dynamics and the state measurements,
respectively. A(x), B(x) and W represent the nonlinear dynamics of the model
along with the discretization method. Q is a positive definite penalization matrix
of the appropriate dimensions. If the original NLP is approximated by a QP
around the solution obtained by the convex approximation, a problem of the form

PEPCVX−REF(x̄) : min
p,x

1

2
‖ x − x̄ ‖2

2, s.t.

{
ALx −BLp+ b = 0
Hxx +Hpp+ c ≥ 0,

(6.7)

is obtained. The model and constraints are linearized around the solution of the
convex problem (x∗

CVX, p
∗
CVX).

6.2.1 Loss of optimality

The minimum proposed by the method is a near optimal solution. In this
section, an assessment of the distance between this near optimal solution and
the solution provided by a fully converged SQP methods is performed. For
comparison, consider the unperturbed original PEP where a set of noise-free state
measurements ¯̄x is obtained and no modeling errors are present. In addition, the
following assumptions are introduced:

Assumption 6.2.1.

A1 : The functions A(x) and B(x) are twice continuously differentiable.

A2 : There exist a pair ¯̄x ∈ X and ¯̄p ∈ P such that 0 = A(¯̄x) −B(¯̄x)¯̄p−W ¯̄x.

A3 : Both problems, PEPNL(¯̄x) and PEPCVX(¯̄x), satisfy the strong second order
sufficient conditions (SOSC) in Theorem 2.2.3, strict complementarity and
constraint regularity (see Chapter 2) at their solution, (¯̄x, ¯̄p).

Corollary 1. Under assumptions A2 and A3, the Lagrange multipliers associated
with the inequality constraints at the solution (¯̄x, ¯̄p) are zero, and none of the
inequality constraints are active.
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Lemma 5.1.3 in Chapter 5 states that the convex approximation provides an exact
solution if the measured trajectory can be exactly generated by the model to fit,
i.e., x̄ is noise-free and there are no modeling errors. Hence the pair (¯̄x, ¯̄p) is a
solution to the original NLP and to its convex modification for x̄ = ¯̄x.

In view of the previous assumptions, the following lemmata can be formulated:

Lemma 6.2.1. If assumptions 6.2.1 hold, then

‖p∗
cvx(x̄) − ¯̄p‖ = O(‖x̄ − ¯̄x‖), (6.8)

i.e., the distance between the perturbed convex problem solution and the unperturbed
one is a function of the size of the perturbation.

Proof. Consider the PEP

min
p,x

1

2
‖x − x̂‖2

Q s.t. A(x̂) −B(x̂)p−Wx = 0, (6.9)

which corresponds to the convex problem for unperturbed (x̂ = ¯̄x) and perturbed
(x̂ = x̄) measurements. Note that the inequality constraints can be neglected
for x̂ = ¯̄x due to Corollary 1. Additionally, for sufficiently small perturbations,
the inequality constraints remain inactive, this allows to neglect the inequality
constraints when x̂ = x̄. Consequently, the convex formulation is reduced to (6.9)
for the unperturbed measurement set and in a small neighborhood of it ‖¯̄x−x̄‖ ≤ ǫ,
ǫ > 0.

The Karush-Kuhn-Tucker (KKT) optimality conditions for (6.9) yield:

F (x∗,p∗, λ∗, x̂)=





Q 0 −WT

0 0 −B(x̂)T

−W −B(x̂) 0









x∗

p∗

λ∗



−





Qx̂
0

−A(x̂)



 = 0, (6.10)

which provides the solution (x∗(x̂), p∗(x̂), λ∗(x̂)) for the perturbed problem x̂ = x̄
and the unperturbed one x̂ = ¯̄x. Under the small perturbation condition, the



A 2-STEP PROCEDURE FOR THE SOLUTION OF ESTIMATION PROBLEMS WITH PARAMETER-AFFINE

DYNAMICS EMBEDDED 139

change in the solutions given a change in the measurement data is given by





∂x∗(x̂)
∂x̂

∂p∗(x̂)
∂x̂

∂λ∗(x̂)
∂x̂




 =





Q 0 −WT

0 0 −B(x̂)T

W −B(x̂) 0





−1

(6.11)












0 0 0

0 0 − ∂B(x̂)T

∂x̂

0 − ∂B(x̂)
∂x̂

0










x∗(x̂)
p∗(x̂)
λ∗(x̂)



+





Q
0

∂A(x̂)
∂x̂











.

Due to assumptions A1 to A3, the Jacobian of F (x∗, p∗, λ∗, x̂) is invertible at

(¯̄x, ¯̄p, ¯̄λ). Moreover, the perturbed Jacobian remains invertible for small changes
in the measurement data ‖x̄ − ¯̄x‖. Consequently, the change in the optimal values
also depends on the size of the perturbation as can be inferred from the smoothness
of the involved functions in (6.11).

Theorem 6.2.2. If Assumptions 6.2.1 are satisfied, then

‖p∗(x̄) − p∗
CVX−REF(x̄)‖ = O(‖x̄ − ¯̄x‖2) (6.12)

holds. Equation (6.12) gives an assessment of the distance between the original
problem solution and the solution provided by the refined convex approach
p∗

CVX−REF(x̄) as a function of the size of the perturbation ‖x̄ − ¯̄x‖.

Proof. In order to simplify the notation, the following definitions are introduced:

w = [xT , pT ]T , Qw =

[
Q 0
0 0

]

. (6.13)

Consider the original PEP with the set of perturbed measurements x̄. Following
Corollary 1, the original PEP can be formulated as:

PEPNL(w̄) : min
w

1

2
‖w − w̄‖2

Qw

, s.t. g(w) = 0. (6.14)

Note that Corollary 1 implies that the inequality constraints can be neglected for
‖¯̄x − x̄‖ small enough. Now, the KKT conditions for the quadratic programming
problem:

PEPLIN(w̄, ŵ) : min
w

1

2
‖w − w̄‖2

Qw

, s.t. g(ŵ) + ∇g(ŵ)T (w − ŵ) = 0, (6.15)
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at the linearization point ŵ, are formulated as

F (w, λ, w̄, ŵ) =

[
Qw(w − w̄) + ∇g(ŵ)λ
g(ŵ) + ∇g(ŵ)T (w − ŵ)

]

= 0, (6.16)

where λ represents the Lagrange multipliers for the equality constrained problem.
This set of equations provides a solution w∗

LIN(w̄, ŵ) as a function of the
linearization point and the set of measurements.

For sufficiently small perturbations ‖x̄ − ¯̄x‖ and considering Assumptions 6.2.1, it
is possible to establish the following relations

A : ‖w∗(w̄) − w∗
LIN(w̄, ¯̄w)‖ = O(‖w̄ − ¯̄w‖2) (6.17)

and

‖w∗
LIN(w̄, ¯̄w) − ¯̄w‖ = O(‖w̄ − ¯̄w‖) (6.18)

Equation (6.17) states that the solution provided by the first-order predictor
w∗

LIN(w̄, ¯̄w) differs from the real solution w∗(w̄) by O(‖w̄ − ¯̄w‖2) as presented
in (Diehl, 2002, Theorem 3.6 and Section 3.4.1). Equation (6.18) is a
result of perturbation analysis of optimization problems (Robinson, 1980) under
Assumption A1 to A3 and can easily be proved by linearizing the original problem
around the unperturbed solution.

Considering (6.17) and (6.18), Theorem 6.2.2

C : ‖w∗(w̄) − w∗
LIN(w̄,w∗

cvx)‖ = O(‖w̄ − ¯̄w‖2) (6.19)

is proven by showing that the distance between the first-order predictor solution
w∗

LIN(w̄, ¯̄w) and the solution provided by w∗
LIN(w̄,w∗

cvx) is of second-order in
‖w̄ − ¯̄w‖, i.e.,

B : ‖w∗
LIN(w̄, ¯̄w) − w∗

LIN(w̄,w∗
cvx)‖ = O(‖w̄ − ¯̄w‖2). (6.20)

Note that in this proof what is basically used is an inequality triangle, i.e.,
A&B ⇒ C. Consequently C is proved by proving B. In order to do so,
consider the series expansion of the linear predictor solution around the minimizer
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provided by the convex problem using the perturbed set of measurements1,

w∗
LIN(w̄,w∗

cvx) = w∗
LIN(w̄, ¯̄w) +

∂w∗
LIN(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w (w∗

cvx − ¯̄w)

+O(‖w∗
cvx − ¯̄w‖2). (6.21)

The term

∂w∗
LIN(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w (w∗

cvx − ¯̄w) (6.22)

is investigated in detail. By evaluating (6.16) at the solution (w∗
LIN, λ

∗
LIN),

F (w∗
LIN, λ

∗
LIN, w̄, ŵ) = 0, (6.23)

and applying the implicit function theorem, it is possible to obtain an expression
for the first factor in (6.22),

∂w∗
LIN(w̄, ŵ)

∂ŵ
= −[I 0]J(ŵ)−1 ∂F

∂ŵ
, (6.24)

with

J(ŵ) =
∂F (w∗

LIN, λ
∗
LIN, w̄, ŵ)

∂(w∗
LIN, λ

∗
LIN)

=

[
Qw ∇g(ŵ)

∇g(ŵ)T 0

]

,

and

∂F

∂ŵ
=

[
∇2g(ŵ)λ∗

LIN

∇2g(ŵ)(w∗
LIN − ŵ)

]

. (6.25)

Equation (6.24) is obtained by considering that ∂w̄
∂ŵ

= 0, i.e., the measurement data
does not depend on the linearization point. Assuming A3, and the invertibility of
J( ¯̄w), at the linearization point ,ŵ = ¯̄w, J( ¯̄w)−1 and ∇2g( ¯̄w) become constants
yielding

∂w∗
LIN(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w = O

(∥
∥
∥
∥

λ∗
LIN(w̄, ¯̄w)

w∗
LIN(w̄, ¯̄w) − ¯̄w

∥
∥
∥
∥

)

. (6.26)

1This linear predictor is the model used in the first SQP iteration.
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Note that w∗
LIN(w̄, ¯̄w) − ¯̄w corresponds to the distance between the unperturbed

solution ¯̄w and the perturbed one provided by the use of a linear predictor in the
constraints. This distance is given by (6.18) and leads to

∂w∗
LIN(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w = O(‖w̄ − ¯̄w‖). (6.27)

Hence, combining (6.27) and Lemma 6.2.1 yields

∂w∗
LIN(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w (w∗

cvx − ¯̄w) = O(‖w̄ − ¯̄w‖2). (6.28)

Consequently, (6.21) is rewritten by using (6.28) leading to

w∗
LIN(w̄,w∗

cvx) = w∗
LIN(w̄, ¯̄w) + O(‖w∗

cvx − ¯̄w‖2), (6.29)

i.e., the solutions w∗
LIN(w̄,wcvx), and w∗

LIN(w̄, ¯̄w) are identically apart from
second order perturbations.

6.2.2 A numerical example

Theorem 6.2.2 is numerically corroborated by formulating the PEP of an harmonic
oscillator using different experiments (Bonilla et al., 2008). In each one of these
experiments, a state sequence, contaminated with Gaussian noise with different
variances, is generated. The distance between the solution to the PEP (6.5),
provided by a nonlinear optimizer, and the solution proposed by the linearization
of the original problem around p∗

CVX, i.e., (6.7), is calculated along with the
size of the perturbation with respect to the noise-free data. Figure 6.3 (bottom)
illustrates that the distance between the actual solution p∗(x̄) and the one provided
by solving the two convex least squares problems sequentially, i.e., (6.7) after
(6.6), is of second order in the size of the perturbation. Note that a second
order polynomial accurately fits the data corresponding to the six experiments.
In addition, the method is evaluated on the Lotka-Volterra model using a similar
approach, showing also that the loss of optimality is of second order in the size of
the perturbations (Bonilla et al., 2009).

In the following, the presented convex approximation is combined with a
simultaneous optimization algorithm in order to provide an initialization-free
estimation methodology for parameter-affine models.
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Figure 6.3: Cost functions generated by the PEP of a harmonic oscillator when a
noisy state sequence is measured (top). NL corresponds to the original problem
formulation while CVX to the convex approach. The plot in the bottom illustrates
that the errors in the solution provided by the proposed approach are of second
order in the size of the perturbations.

6.3 Automatic initialization for PEP in simultaneous

optimization

The approach proposed in Section 6.2 can be used in combination with
simultaneous optimization methods to provide an initialization-free procedure
for parameter estimation with parameter-affine dynamic models. Note that in
Simultaneous Gauss-Newton (SGN) (see Section 2.3.3), the shooting nodes are
initialized with the available measurements, improving the convergence (Kostina,
2004). However, it is still necessary to provide an initial guess for the parameter
vector to be optimized. The proposed initialization approach complements this set
of available state measurements by providing an initial guess to the parameters
and avoiding an arbitrary initialization.

A dynamic optimization solver using DMS parameterization is programmed in
MATLAB (The Mathworks Inc, Natick, MA). The first-order information required
to build the Jacobians of the cost and inequality constraints can be obtained
by several methods (finite differences, automatic differentiation or symbolic
calculations). However, due to the static characteristic of the cost in least
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squares problems and the inequality constraints, these Jacobians can be easily
calculated by finite differences2. On the other hand, the Jacobian of the equality
constraints, imposed by the dynamic model, is obtained, in this document, by using
the dynamic equation solver with sensitivity generation capabilities proposed in
Hindmarsh et al. (2005). The SQP and SGN algorithms presented in Chapter 2
are coupled with the ODE solver, and sensitivities are used to build the sparse
sub-QPs at each major iteration of the SQP or SGN methods. Figure 6.4 shows
the sparsity patterns in the Jacobian matrices presented in (2.34)-(2.36). These
patterns are obtained when using multiple shooting parameterization for an LS-
PEP involving a dynamic model with 2 states, 3 parameters, 4 measurement points
and bound constraints on the parameters. The sparse and banded structures in
the formulation can be either exploited by sparse solvers or a condensing strategy
can be applied in order to reduce the size of the matrices. This procedure leads
to a smaller least squares problem involving dense matrices as described in Bock
and Plitt (1984).

In the following, the multiple shooting parameterization is used to estimate the
parameters in two benchmark case studies. Comparative results are illustrated
for an arbitrary initialization against an initialization based on the solution of the
convex modification introduced in Section 6.2.

6.3.1 Lotka-Volterra equations

Consider the Lotka-Volterra model independently introduced by Alfred J. Lotka
in 1925 and Vito Volterra in 1926. The nonlinear differential equations (6.31)-
(6.32) describe the time evolution of the population density for two species in a
biological system, i.e., a predator x2(t) and its prey x1(t). The dynamic behavior
of this interaction is characterized by the following parameters:

α: The intrinsic rate of prey population increase,
β: The predation rate coefficient,
γ: The reproduction rate of predators per 1 prey eaten,
δ: The predator mortality rate,

leading to a parameter vector p = [α, β, γ, δ]T . Equations (6.31)-(6.32) exhibit
two fixed points [0, 0] and [α/β, γ/δ]. The first one corresponds to a saddle
point while the second one to a center-stable, generating periodic solutions with
an amplitude depending on the initial values. The oscillatory behavior of this
pair of nonlinear equations is illustrated in Figure 6.5, where a set of noisy
state measurements is obtained by simulating the model with nominal parameters
p = [0.6, 0.5, 0.7, 0.4]T , x(t0) = [1, 0.5]T and adding Gaussian noise with a

2Note that an integral cost can be embedded into the dynamic equations of the model.
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Figure 6.4: Sparsity patterns for the Jacobians in a multiple shooting
parameterization. In this example, the non-zero entries of the cost residuals
Jacobian, and the equality and inequality constraints Jacobian are illustrated.
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Figure 6.5: Data set for the PEP of the Lotka-Volterra model generated by
simulating the model with nominal parameters p = [0.6, 0.5, 0.7, 0.4]T , x(0) =
[1, 0.5] and adding Gaussian noise with a variance σ2 = 0.05 (left). SSE as
a function of the variation of parameters α and γ for the PEP (right). The
parameters β, δ and the initial condition are constant and equal to their original
values, i.e., β = 0.5, δ = 0.4 and [x1(t0), x2(t0)]T = [1, 0.5]T .

variance σ2 = 0.05. This benchmark problem can be found in Floudas et al.
(1999) where only two of the four parameters are estimated.

Although, the system (6.31)-(6.32) is parameter-affine, the estimation of the
parameter vector p is not a simple task. The PEP can be formulated as:

min
p,x(.)

J =
1

2

20∑

i=0

2∑

j=1

(xj(ti) − x̄j(ti))
2 (6.30)

subject to

ẋ1(t) = αx1 − βx1x2, (6.31)

ẋ2(t) = −γx2 + δx1x2, (6.32)

0 ≤ α, β, γ, δ ≤ 2, (6.33)

where x̄(ti) represents the noisy state measurements in Figure 6.5. The
contaminated data sequence is used to evaluate the cost (6.30) when the pair [α γ]
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changes while the parameters β and δ remain constant and equal to their original
values. Figure 6.5 (right) presents the obtained nonconvex cost as a function
of the varied parameters for a fixed initial condition [x1(t0), x2(t0)]T = [1, 0.5]T .
Note that in this case a local minimum can be easily attained by the arbitrary
initialization of the problem.

The PEP is parameterized using the DMS approach by introducing shooting
nodes at each measurement point. In this example 21 shooting nodes are
optimized along with the four model parameters α, β, γ and δ. Initialization
of the parameter vector p is arbitrarily performed first by setting the initial
guess to the center of the hyperbox defined by the bounds constraints (6.33),
i.e, p0 = [1, 1, 1, 1]T . This initialization leads to an optimal value p∗ =
[0.6700, 0.5455, 0.6288, 0.3501]T . In a second test, the initialization is performed
with the value p∗

CVX = [0.6343, 0.483, 0.5617, 0.288]T, corresponding to the solution
of the convex optimization problem described by

min
p,xc(.)

J̃ =
1

2

20∑

i=0

2∑

j=1

(
xcj(ti) − x̄j(ti)

)2
(6.34)

subject to

ẋc1(t) = αx̄1 − βx̄1x̄2, (6.35)

ẋc2(t) = −γx̄2 + δx̄1x̄2, (6.36)

0 ≤ α, β, γ, δ ≤ 2, (6.37)

and leads to the same optimum obtained with the arbitrary initialization. Table 6.2
summarizes algorithm parameters along with the results obtained with both
approaches and Figure 6.6 illustrates the performance of both approaches, where
it is possible to appreciate the faster convergence of the SGN method with the
convex initialization. Note that already in the second iteration, the continuity
conditions in the DMS are almost totally satisfied.

6.3.2 Complex batch reaction

The batch reaction of formaldehyde, A, and sodium p-phenol sulfonate, B, exhibits
a complex dynamic scheme with four intermediates, C,D, F and G, and a final
product, E. All the reactions follow second order kinetics and are modeled as
proposed in Ingham et al. (2000). Table 6.3 lists the reactions, their reaction rate
constants and their nominal values.
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Table 6.2: Algorithm parameters for the Lotka-Volterra PEP using arbitrary and
convex initialization approaches.

Parameter Arbitrary Convex

TOLSQP 1 × 10−10 1 × 10−10

ATOLODE 1 × 10−6 1 × 10−6

RTOLODE [1, 1]×10−4 [1,1 ]×10−3

KKTTOL(p∗) 5.8486 × 10−11 3.7386 × 10−11

J (p∗) 0.80318 0.80318

NIter 11 6

In order to simplify the notation, the concentration of the reactants, products
and intermediates, A to G are represented by x1(t) to x7(t), respectively, and
the parameter vector is defined as p = [k1, . . . , k8]T . The parameter estimation
problem can be cast as

min
p,x(.)

J =
1

2

10∑

i=0

7∑

j=1

(xj(ti) − x̄j(ti))
2

(6.38)
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(b) Convex approach

Figure 6.6: Convergence results for the simultaneous Gauss-Newton method
applied to the PEP in the Lotka-Volterra model. The optimization is performed
using an arbitrary initialization (a) and the proposed convex approach (b).
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Table 6.3: Reaction rates for the batch reaction of formaldehyde with sodium
p-phenol sulfonate.

Reaction
Rate

coefficient

Nominal
value

(m3/kmol s)

A+B→C k1 0.16

A+C→D k2 0.05

C+D→E k3 0.15

B+D→F k4 0.14

C+C→F k5 0.03

C+B→G k6 0.058

A+G→F k7 0.05

A+F→E k8 0.05

subject to

ẋ1(t) = −k1x1x2 − k2x1x3 − k7x1x7 − k8x1x6, (6.39)

ẋ2(t) = −k1x1x2 − k4x2x4 − k6x3x2, (6.40)

ẋ3(t) = k1x1x2 − k2x1x3 − k3x3x4 − 2k5x
2
3

−k6x3x2, (6.41)

ẋ4(t) = k2x1x3 − k3x3x4 − k4x2x4, (6.42)

ẋ5(t) = k3x3x4 + k8x1x6, (6.43)

ẋ6(t) = k4x2x4 + k5x
2
3 + k7x1x7 − k8x1x6, (6.44)

ẋ7(t) = k6x3x2 − k7x1x7, (6.45)

0 ≤ k1, k2, . . . , k8 ≤ 1, (6.46)

0 ≤ x1, . . . , x7. (6.47)

Figure 6.7(left) depicts the noisy state measurements x̄(ti), obtained when (6.39)
to (6.45) are simulated with the initial condition x(t0) = [0.15, 0.1, 0, 0, 0, 0, 0]T .
This data set has been contaminated with Gaussian noise with standard deviation
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Figure 6.7: Data for the formaldehyde-sodium p-phenol sulfonate reaction PEP,
generated by contaminating the model states with Gaussian noise with standard
deviation σ = 1×10−3 for x1, x2, x3 and x5 and σ = 2.23×10−4 for x4, x6 and x7

(left), and SSE as a function of the variation of parameters k1 and k3 (right). The
remaining parameters and the initial condition are fixed to their nominal values.

σ = 1 × 10−3 for x1, x2, x3 and x5 and σ = 2.23 × 10−4 for x4, x6 and x7
3.

Figure 6.7(right) illustrates the nonconvex cost (6.38) when 6 parameters are fixed
and the initial condition is set to the one introduced previously. It is not difficult to
see that despite the linearity in the parameters, the optimization problem becomes
nonconvex due to the nonlinearity in the states.

The PEP (6.38)-(6.46) is parameterized using the DMS approach and solved with
initialization of the shooting nodes at the measurement points and arbitrarily
setting p0 = [1, 1, 1, 1, 1, 1, 1, 1]T . In this case, it takes eight iterations to reach
the optimum p∗ = [162.03, 41.13, 142.57, 32.87, 44.71, 57.46, 50.33, 54.91]T ×
10−3. In order to improve convergence rate and avoid arbitrary initialization, the
proposed approach is applied and the convex problem

min
p,xc(.)

J̃ =
1

2

10∑

i=0

7∑

j=1

(
xcj(ti) − x̄j(ti)

)2
(6.48)

subject to:

ẋc1(t) = −k1x̄1x̄2 − k2x̄1x̄3 − k7x̄1x̄7 − k8x̄1x̄6, (6.49)

3Different levels of noise are used due to different amplitudes in the states trajectories
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Table 6.4: Algorithm parameters for the complex batch reaction PEP using
arbitrary and convex initialization approaches.

Parameter Arbitrary Convex

TOLSQP 1 × 10−10 1 × 10−10

ATOLODE 1 × 10−6 1×10−6

RTOLODE [1, 1]×10−4 [1,1 ]×10−4

KKTTOL(p∗) 9.8354 × 10−11 1.556 × 10−11

J (p∗) 1.6996 × 10−5 1.6996 × 10−5

NIter 8 4

ẋc2(t) = −k1x̄1x̄2 − k4x̄2x̄4 − k6x̄3x̄2, (6.50)

ẋc3(t) = k1x̄1x̄2 − k2x̄1x̄3 − k3x̄3x̄4 − 2k5x̄
2
3

−k6x̄3x̄2, (6.51)

ẋc4(t) = k2x̄1x̄3 − k3x̄3x̄4 − k4x̄2x̄4, (6.52)

ẋc5(t) = k3x̄3x̄4 + k8x̄1x̄6, (6.53)

ẋc6(t) = k4x̄2x̄4 + k5x̄
2
3 + k7x̄1x̄7 − k8x̄1x̄6, (6.54)

ẋc7(t) = k6x̄3x̄2 − k7x̄1x̄7, (6.55)

0 ≤ k1, k2, . . . , k8 ≤ 1, (6.56)

0 ≤ xc1, . . . , xc7, (6.57)

is solved first. The obtained solution p∗
CVX = [112.6, 30.4, 125.6, 0, 42.4, 33.7,

30.5, 49.9]T × 10−3 is used to initialize the SGN algorithm, leading to the same
optimal value previously presented. Table 6.4 summarizes some of the algorithm
parameters along with the parameter optimization results for this case study.

Figure 6.8 illustrates the evolution of the iterations for the methods with arbitrary
initialization and the proposed approach. The state evolution of the intermediate
compounds is not presented for clarity in the visualization. Note also that while
convergence is achieved after the fourth iteration when the problem is arbitrarily
initialized, the SGN with the proposed convex initialization method already attains
convergence after the first iteration. Consequently, the advantage of the presented
methodology lies not only in improving the convergence speed but in the fact that
no arbitrary initialization is performed and the initial value is calculated by solving
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Figure 6.8: Convergence results using the simultaneous Gauss-Newton algorithm
for the PEP of the reaction rates in the reaction of formaldehyde with sodium p-
phenol sulfonate. The figure illustrates the time evolution for the state trajectory
using an arbitrary initialization (a) and the convex approach (b) along with the
parameters convergence.

a related convex problem.

6.4 Conclusions

In this chapter a suboptimal solution to the PEP with parameter affine dynamic
models has been proposed. The method relies on the convex approximation to
the PEP by considering full state measurements and further linearization of the
original nonconvex PEP around the convex PEP solution. It has been proven that
the loss of optimality in the suboptimal solution is of second order in the size of
perturbations in the state trajectory from data perfectly reproduced by the model,
i.e., a solution to the NL-PEP with zero cost. Moreover, the proposed approach
implies only the solution of two convex problems, improving the computational
requirements w.r.t. a fully converged SQP method.

Additionally, the application of the approach with more advanced optimization
techniques has been presented. The method is used in order to provide an initial
guess for the parameters in a SGN algorithm coupled with a DE solver with
sensitivity capabilities. Three benchmark examples have been studied, illustrating
that the method reduces the number of iteration required to converge to a solution
when compared with an arbitrary initialization. The advantages of the method not
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only lie in improving convergence properties but also in the fact that no previous
knowledge of an initial guess for the parameter vector is required, allowing an
automatic initialization by solving a convex PEP.

One of the limitations of the method is the applicability to a reduced set of dynamic
models, namely parameter affine, or models which can be reformulated in that
form, e.g.,

ẋ(t) = Γ(x) + Υ(x)M(p), (6.58)

where M(p) is a diffeomorphism. An extension of the method in its current
form to a more general class of systems, where the dynamic is not affine in the
parameters, is not viable. Note that in that case, although state measurements
might be available for performing the convex approximation, the resulting equality
constraint imposed by the model is not affine in the parameters to estimate. Hence,
the PEP is still nonconvex, and the same initialization requirements as in the
original NLP problem would be necessary to obtain a solution.





Chapter 7

General conclusions and future

work

7.1 Concluding remarks

Along this dissertation, the problem of exploiting structure for simulation purposes
and convexity, in dynamic optimization, for a particular class of chemical processes
has been treated. Emphasis is put on a class of dynamic models which appear
often in chemical industry, namely, input/parameter-affine models. Dynamic
optimization problems dealing with these kinds of models are normally considered
as nonconvex optimization problems. However, in this document, it has been
shown that it is possible to find convex approximations to these problems by
using available references/measurements of the process to be controlled/estimated.
Moreover, the efficiency of the optimization routines can be improved if the
structure of model with respect to the optimization variables is exploited,
particularly when hundreds of optimization variables are involved. Distillation has
been chosen in this document showing that this popular chemical process, as many
stagewise chemical applications, is highly structured. Detecting this structure in
advance facilitates not only simulation but optimization tasks as well and leads to
more efficient online computation for control and estimation problems.

In the first part of the dissertation a distillation models are introduced. With
respect to this part, the following conclusions are presented:

• An existing distillation model based on vapor-liquid equilibrium is reformu-
lated so that the thermodynamic correlations used for calculation of the
mixture properties can be easily referenced to the existing literature. This

155
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allows for adaptability of the model for the separation of different binary
mixtures. Moreover, it is shown that simplifying model equations may lead
to destroy the banded patterns in the model Jacobian. Consequently, the
model is formulated such that sparsity can be exploited at the simulation
level, in order to alleviate the use of a considerable number of states in the
description.

• A rate based model for separation in packed columns is proposed. This
model accounts for mass transfer on each stage and it is able to describe
the vapor-liquid interaction along the column without the use of artificial
concepts such as the stage efficiency. However, it leads to a considerable
increase of the number of variables required for process simulation. It is
illustrated that it is possible to perform a model reduction on the basis of
constraint differentiation and algebraic manipulation. Nevertheless, even
with a reduced model, the distillation process generally leads to higher
index differential-algebraic equations (DAEs) which make them impossible
to simulate with off-the-shelf-solvers. For this particular formulation, the
index problem can be associated to structural singularities and solved by
neglecting the dynamics of the vapor holdup on each stage as it is detailed
in Chapter 4. In general, it is shown that structural singularities, hence, the
index problem, appear if there is no correlation between pressure drops or
mass transfer coefficients in a stage with flows coming in and out in the same
stage.

• Model structure can be also exploited by looking how the variables interact
in the model formulation. In this dissertation, rigorous distillation models
have been studied. It has been shown that by a simple reorganization of
variables and equations a sparse and banded structure in the model Jacobian
is obtained. Despite the large number of model states involved in this kind
of formulation, it is illustrated numerically that providing this structure to
a numerical solver reduces the computational requirements for simulation.
These sparse and banded structures can be exploited in parameterized
dynamic optimization problems (DOPs )when the states are not eliminated
from the optimization task.

• It is concluded that for the estimation problems involving the models
presented in Chapters 3 and 4 the search space for the parameters can be
reduced since, due to the limited set of measurements, only a subset of the
total model parameters can be estimated. This allows for minimizing efforts
in the estimation task. These results can be the bases of a more detailed
analysis on instrumentation required to estimate particular parameters.

With respect to the convex exploitation in DOPs, the following conclusions are
presented:
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• An homotopy method to approximate a nonconvex dynamic optimization
problem with a convex DOP has been proposed. It has been proven in
Chapter 5 that the proposed parametric DOP leads to the original optimal
control problem (OCP) in one extreme and to the convex OCP in the other
extreme. For particular examples, simple continuation methods lead to
the solution of the original OCP and the method can be used to improve
convergence in a OCP formulation.

• Despite the uncertainty for the continuity of the zero path in the homotopy
method presented in Chapter 5, it has been shown in Chapter 6 that the
convex extreme of the DOP can be exploited for initialization tasks in
simultaneous optimization, where it improves convergence with respect to
an arbitrary initialization. Moreover, the convex initialization delivers a
solution that can be refined by simple linearization. It has been proven that
the loss of optimality for this 2-step approach is of second order in the size of
the modeling and measurement errors in the parameter estimation problem
(PEP).

The sparse formulation of the rigorous dynamic rate based model presented in
this thesis can be used for prediction and adapted to model more advanced
separation process, such as reactive adsorption where separation is performed
far from equilibrium (Kenig and Seferlis, 2009). Concerning the applicability of
the methods developed in the second part of the thesis, despite the fact that
they require estimation of the full state vector, there are processes where this
requirement can be achieved. However, these processes lie mainly in mechanical
and electrical fields where acceleration, velocity and position or voltage and
currents can be easily measured.

7.2 Future work

In the following paragraphs some possible directions for future research are
proposed:

Simulation of high index rate based models In order to provide a model that
can be simulated with off-the-shelf solver, the vapor holdup dynamics of the
system have been neglected. This is clearly explained in Chapter 4 and justified
using the structural singularity analysis of an incidence matrix. However, there
are methods that attempt to solve the system by detecting the constraints that
need to be differentiated (Pantelides, 1988) and adding additional variables and
constraints to the DAE (Mattsson and Söderlind, 1993). These methods provide
an augmented DAE with index-1. The advantage of having an index 1 RBM
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without neglecting vapor holdup, is its applicability for modeling columns where
pressure dynamics plays an important role. Pressure has a high impact on the
quality of the separation when using temperatures as an indication of composition
(Sloley, 2001). This condition is specially noticed in low pressure columns.

Efficient parameter estimation using dynamic RBMs In Bonilla et al. (2011)
the steady state PEP of a RBM for the CIT distillation column is proposed
using multiple experiments. There, a sparse formulation is used by stacking
constraints related to each test and keeping model states as optimization variables
for all the experiment scenarios. This leads to a problem with 1940 variables
for a 20-stages RBM. A future direction to explore is to address the dynamic
PEP using the direct multiple shooting (DMS) parameterization for the multiple
experiment case. This leads to a large scale PEP where the sparsity patterns of
the RBM Jacobian need to be exploited using sparse QP solvers. Moreover, the
initialization method explained in Section 4.3.1 can be used to provide a guess
for the model states in the NLP. Note that the sensitivity analysis for the RBM
in Section 4.5.4 yields that most of the identifiable parameters are affine in the
model, e.g., heat losses. The proposed method in Chapter 6 can be used along
with the initialization in Section 4.3.1 to obtain a convex PEP which provides an
initial guess for the parameters which are affine in the model equations, reducing
the arbitrary initialization to those parameters who cannot be estimated by the
method. In this case improvements in the convergence are expected as presented
in the numerical examples shown in Chapter 6.

Continuity of the zero path for the homotopy method. As mentioned in
Chapter 5, the homotopy method still lacks clear conditions on the nature of
the functions involved in the DOP in order to guarantee continuity and finite
length of the zero path. A possible research direction would be to characterize
the constraints h(x, u) and the nature of f(x) and g(x) in the model ẋ(t) =
f(x) + g(x)u(t) such that singularities of the KKT system for the parametric
DOP in (5.7)-(5.11) are avoided along the zero path. As explained in Chapter 5,
if this is guaranteed and the path has a finite arc length, it is possible to use well
developed methods (Watson et al., 1987) to track the path of minimizers from the
convex problem to the original DOP.

Feedback linearization for convex formulation of DOP. Along this dissertation
a particular class of dynamic model has been assumed, namely input/parameter
affine models. The nonconvexity has its origin in the structure of these models,
since cost and constraint have been assumed convex. A classical approach to deal
with the control of input affine models is feedback linearization (Isidori, 1989).
Although it is not included in the present dissertation, it was explored in the
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beginning of this research as a possible alternative to convexification of input-affine
dynamic models. In this kind of method states and inputs (x(t), u(t)) are mapped
to a different space (z(t), v(t)) through a nonsingular transformation Φ(x), the
advantage is that the dynamic system becomes linear in the new space of variables,
the disadvantage is that constraint and cost have to be mapped as well, possibly
translating the nonconvexity to constraints and cost and leading to a problem of
the form

OCP : min
z(·),v(·)

∫ T

0 ‖Φ−1(z(t)) − Φ−1(zref(t))‖2
Q dt

+‖Φ−1(z(T )) − Φ−1(zref(T ))‖2
QT
, (7.1)

subject to

ż(t) = Az(t) +Bv(t), t ∈ [0, T ], (7.2)

z(0) = T (x0), (7.3)

hz(z(t), x(t)) ≥ 0, t ∈ [0, T ], (7.4)

rz(z(T )) ≥ 0, (7.5)

where the inequality constraints functions hz(z(t), x(t))and rz(z(T )) are obtained
by mapping the original constraint in x, u into the space of z, v, using the
mentioned transformation.

It is clear that introducing a nonlinear transformation Φ(x) affects the convexity of
the constraints and cost, i.e., even for simple bound constraints and quadratic cost,
the DOP in the new space (z, v) leads to nonlinear constraints, possibly nonconvex.
Following this direction, the research question arise:

• Are there nonsingular transformations Φ(x) such that the nonlinear input
affine system is transformed into a linear one and the constraint and cost
in the space of z, v remain convex?. The kind of nonlinearities handled in
f(x) and g(x) have to be well identified and reduced to specific cases. It is
possible to analyze first the simple unconstrained case with quadratic cost,
and gradually add complexity in the constraints of inputs and states.

• In the general case where the transformation Φ(x) leads to nonconvex
inequality constraints and cost in the space of (z, v), it is worth to solve the
NLP in the space of (z, v) and not in the space of (x, u)? Notice that now
a linear model is obtained but the problem includes nonconvex constraints
and cost.
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• Is it possible to find convex relaxations to the nonconvex inequality
constraints such that a sequential convex programing method can be used
to solve the nonconvex problem in the space of (z, v)?. Is it an advantage in
the efficiency of the method with respect to solving the parameterized DOP
in its original space (x, u) with the nonlinear model?



Appendix A

Correlations for calculation of

thermodynamic properties

The purpose of the current appendix is to provide the necessary correlations to
calculate the physical properties of a binary mixture. All the correlations used
have been properly referenced to the literature such that the sources can be easily
located and the correlation coefficients can be modified when dealing with different
mixtures.

A.1 Correlations for binary mixtures

The physical properties of the components are presented here in alphabetical order.
The index i corresponds to the component (i = 1, for methanol and i = 2
for isopropanol). The stage subindex, j, has been omitted for simplicity in the
notation but it is clear that the correlations apply for each of the one stages
considered in the model.

A.1.1 Activity Coefficients

The activity coefficients γi for the binary mixture are calculated using the Wilson
model (Wilson, 1964):

ln(γ1) = − ln(x1 + Λ12x2) + (A.1)

161
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x2

(
Λ12

x1 + Λ12x2
− Λ21

x2 + Λ21x1

)

,

ln(γ2) = − ln(x2 + Λ12x1) − (A.2)

x1

(
Λ12

xj + Λ12x2
− Λ21

x2 + Λ21x1

)

.

In general, the binary interaction parameters Λ, are function of the mixture
temperature. However, here they are assumed constant with the temperature and
calculed from the activity coefficients at infinite dilution as presented in Gmehling
and Onken (1977), i.e., for methanol and isopropanol, γ∞

1 = 1.22, γ∞
2 = 1.37,

respectively, and Λ1 and Λ2 must satisfy

ln(γ∞
1 ) = 1 − ln(Λ12) − Λ21, (A.3)

ln(γ∞
2 ) = 1 − ln(Λ21) − Λ12, (A.4)

as proposed in Seader and Henley (2006). This procedure leads to Λ12 = 1.2914
and Λ21 = 0.5454, for a mixture of methanol and isopropanol.

A.1.2 Density of the mixture

The mass and molar densities of the mixture for the liquid and vapor phases at
each stage are calculated based on the total molar volume of the bulk phase vt

provided in section A.1.15, i.e.,

ρV
t = MV cV

t (kg/m3), (A.5)

ρL
t = MLcL

t (kg/m3), (A.6)

and,

cV
t =

1

υV
t

(mol/m3), (A.7)

cL
t =

1

υL
t

(mol/m3), (A.8)
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A.1.3 Diffusion coefficients

The vapor phase binary diffusion coefficient is calculated as proposed in Seader
and Henley (2006) using the Fuller, Schettler and Giddings correlation1

DV = 0.00143 × 10−4 T V 1.75

MabPVab
(m2/s) (A.9)

where Vab is determined from the atomic volumes of elements in the components
(Seader and Henley, 2006), i.e.,

Vab = (V
1
3

a + V
1
3

b )2 (m2) (A.10)

Va(CH4O) = 15.9 + 4 × 2.31 + 6.11, (A.11)

Vb(C3H8O) = 3 × 15.9 + 8 × 2.31 + 6.11 (A.12)

Mab =

√

2
1

M1
+ 1

M2

(kg/kmol) (A.13)

with the pressure and temperature given in atmospheres and Kelvin, respectively.

The binary liquid diffusion coefficient (DAB = DBA) is calculated using the Wilke-
Chang technique (A.14) and the Vignes relation (A.15) for infinite dilution (Reid
et al., 1987) with φi = 1.9 i = 1, 2. The pure component liquid viscosity is
obtained from (A.77) and transformed to centiposes cP to be used in (A.15).

DL
j = DL

1,2

x2
DL

2,1

x1
, (A.14)

DL
a,b = 7.4 × 10−12 (φaMa)

1
2TL

ηL
a υ

0.6
b

. (m2/s) (A.15)

Ma is the molecular weight of solvent a in kg/kmol. Molar volumes for pure
components υi are given by (A.66) and calculated at normal boiling temperature
Tbi for the component i as illustrated in Table A.1.

1Reid et al. (1987) provides an alternative formulation using a collision integral for diffusion,
however, that formulation is more involved.
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A.1.4 Enthalpies of the bulk phase

In order to calculate heat balances, enthalpies of the mixture for vapor and liquid
phases are required. The enthalpy for the vapor phase is calculated as an averaged
quantity from the vapor enthalpy of the pure species (Seader and Henley, 2006):

HV = y1H
V
p1

+ y2H
V
p2

(kJ/mol), (A.16)

where the pure component enthalpies HV
pi are obtained as functions of the ideal-gas

species molar enthalpy HV
0,i and the heat of formation ∆Hf

i , i.e.,

HV
pi = ∆Hf

i +HV
0,i (A.17)

The ideal-gas molar enthalpy of the pure species i is obtained by integrating the
vapor molar heat capacity CV

P with respect to the vapor temperature:

HV
0,i = Ai(T

V − T0) +
1

2
Bi(T

V 2 − T 2
0 ) +

1

3
Ci(T

V 3 − T 3
0 ) +

1

4
Di(T

V 4 − T 4
0 ), (kJ/mol) (A.18)

with the coefficients used to calculate the molar vapor heat capacity as shown in
Tables A.2 and A.3 and ∆Hf

1 = −200.67 kJ/mol, ∆Hf
2 = −272.42 kJ/mol and

T0 = 298.15K.

On the other hand, the liquid phase enthalpy is calculated as a function of the
pure component enthalpies and the heat of mixing ∆Hmix (Sandler, 1999):

HL = x1H
L
p1

+ x2H
L
p2

+ ∆Hmix, (kJ/mol) (A.19)

where the pure component liquid entalphies HL
i are given as a function of pure

component enthalpies for the vapor phase and the heat of vaporization:

HL
pi = HV

pi − ∆Hvap
i . (A.20)

Simplified models often require expressions which involve the changes of enthalpy
with respect to composition and temperature. Those expressions are presented
here.

∂HV

∂T V
= CV

Pm (kJ/(mol.K)), (A.21)
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∂HV

∂y
= HV

p1
−HV

p2
(kJ/mol). (A.22)

Changes in liquid enthalpy with respect to liquid temperature and composition
are given by

∂HL

∂TL
= x

(

CV
P,1 − ∂∆Hvap

1

∂TL

)

+(1−x)

(

CV
P,2 − ∂∆Hvap

2

∂TL

)

(kJ/(mol.K)), (A.23)

∂HL

∂x
= HL

p1
−HL

p2
+
∂∆Hmix

∂x
(kJ/mol), (A.24)

respectively.

A.1.5 Heat of mixing

The heat of mixing ∆Hmix is calculated from correlations for the particular
mixture of methanol-isopropanol as proposed in Christensen (1982):

∆Hmix =
x1(1 − x1)

(
−302.6 − 126(1 − 2x1) − 8(1 − 2x1)2

)

1 × 103
(kJ/mol)(A.25)

with

∂∆Hmix

∂x1
=

128x3
1 − 948x2

1 + 1441.2x1 − 436.6

1 × 103
(A.26)

A.1.6 Fractional Liquid Holdup

Two correlations have been considered for the calculation of the fractional liquid
holdup in the packing. On the one hand, Bravo et al. (1986) propose a simple
correlation, as a function of the Froude number Fr, i.e.,

hL
t = ChFr

0.5. (A.27)

This correlation can be tuned to experimental data using the parameter Ch.
Equation (A.27) is valid below the loading point where the liquid holdup does
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not depend on the gas velocity. The dimensionless Froude number is determined
from the liquid speed uL and the equivalent diameter of the packing channel2 deq.

Fr =
uL2

deqg
(A.28)

On the other hand, Billet and Schultes (1993) propose the correlation

hL
t = 12

(
FrL

ReL

)1/3 (ah

a
ChFr

L0.1
) 2

3

, (A.29)

with

ah

a
= ReL0.15

if ReL < 5, (A.30)

ah

a
= 0.85ReL0.25

if ReL ≥ 5, (A.31)

and the Reynolds number

ReL =
uLρL

apηL
, (A.32)

to predict liquid holdup in structured packing. This correlation is used in Bonilla
et al. (2011) for the parameter estimation in a steady state rate based model with
Ch obtained from experimental data.

Although this correlation is tested on more than fifty kind of packings by Billet
and Schultes (1993), it is considered too complex for the set of equations already
formulated in this model. Hence, the simpler approach based on the work of Bravo
et al. (1986) is considered for the development of the dynamic model. Nevertheless,
(A.29) can be used instead of (A.27) if desired, with the proper changes in pressure
drops and the calculation of the mass transfer coefficients.

The relation used in (A.27) agrees with the equation used to determine the pressure
drop proposed by the same author.

2Bravo et al. (1986) assumes deq = S, with S given in Table A.3
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A.1.7 Heat Capacities

Vapor and liquid3 heat capacities of the mixture are mole-fraction averaged and
calculated from pure component heat capacities (Perry and Green, 1985):

CV
P m = y1C

V
P,1 + (1 − y1)CV

P,2 kJ/(mol.K), (A.33)

CL
P m = x1C

L
P,1 + (1 − x1)CL

P,2 kJ/(mol.K). (A.34)

Expressions for liquid and vapor heat capacities of pure components are obtained
from Daubert and Danner (1989) and Sandler (1999), respectively. The values are
given by the polynomial

Cp
P,i = Ai +BiT

p + CiT
p2 +DiT

p3, (A.35)

with p = V, L. The polynomial coefficients for methanol, i = 1 and isopropanol
i = 2 for the liquid and vapor phases are presented in Tables A.2 and A.3.

Specific heat capacities for the bulk phase can be calculated from the molar mass
of the mixture, Mp, (A.55):

Cp
P =

Cp
P m

Mp
with p = V, L (kJ/kg.K) (A.36)

A.1.8 Heat Losses

Heat losses are assumed functions of the bulk phase temperature at the stage and
the temperature of the surroundings i.e.,

QL = ψQL
(
TL

j − Tamb

)
(kW) (A.37)

QV = ψQV
(
T V

j − Tamb

)
(kW) (A.38)

and tuned experimentally using heat loss coefficients ψQL and ψQL in (kW/K) .

3The procedure neglects heat of mixing effects for the liquid heat capacity calculation.
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A.1.9 Heat of vaporization

The heat of vaporization for pure components ∆Hvap
i is calculated using the

correlation

∆Hvap
i = Ai

(

1 − TL

Tci

)

(

Bi+Ci
TL

Tci

)

(kJ/mol) (A.39)

presented in Daubert and Danner (1989). The changes of ∆Hvap with respect to
temperature are given by

∂∆Hvap
i

∂TL
= ∆Hvap

i

BiTci + Ci

(

TL + log
(

Tci−TL

Tci

)

(TL − Tci)
)

Tci(T
L − Tci)

. (A.40)

A.1.10 Heat transfer coefficients

Heat transfer coefficients hV and hL are calculated using the Chilton-Colburn
analogy between heat and mass transfer (Seader and Henley, 2006):

hV = kV cV
t C

V
P

(
ScV

PrV

) 2
3

(A.41)

hL = kLcL
t C

L
P

(
ScL

PrL

) 1
2

(A.42)

where the Schmidt and the Prandtl numbers are function of the bulk phase
viscosity η, density ρ and conductivity λ among others.

Scp =
ηp

ρpDp
p = L, V, (A.43)

Prp =
Cp

P η
p

λp
p = L, V. (A.44)

A.1.11 K-values

The K-values are calculated using the Modified Raoult’s Law (Seader and Henley,
2006):

Ki = γi
P s

i

P
, (A.45)
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where γi and P s
i represent the activity coefficients and the vapor pressure for the

species i.

A.1.12 Mass transfer coefficients

The correlations proposed by Bravo and Fair (1982) for structured packings are
used here to calculate the mass transfer coefficients in the liquid and vapor phases.
The mass transfer coefficient for the vapor phase is defined as

kV =
SrV DV

deq
, (m/s). (A.46)

The equivalent diameter of the packing channel deq is given by

deq = Bhc

(
1

B + 2S
+

1

2S

)

(m) (A.47)

where B, hc and S are packing-dependent channel parameters shown in Table A.3
for the particular type of packing.

The liquid mass transfer coefficient is calculated using a penetration model (Taylor
and Krishna, 1993), based on the correlations proposed by Bravo and Fair (1982),

kL = 2

(
DLuL

e

πS

) 1
2

(m/s). (A.48)

The Sherwood number, Sr, is calculated according to the Johnstone and Pigford
(1942) correlation

SrV = 0.0338ReV 0.8
ScV 0.333

. (A.49)

The vapor phase Reynolds number

ReV =
ρV (uL

e + uV
e )deq

ηV
, (A.50)

is defined as a function of the effective velocities for the vapor and liquid phases
uV

e and uL
e , respectively by

uV
e =

uV

ǫ sin θ
(m/s). (A.51)
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uL
e =

3Γ

2ρL

(
(ρL)2g

3ηLΓ

) 1
3

(m/s). (A.52)

where Γ is the liquid flow rate per unit length of packing perimeter

Γ =
ρLuL

Pφ
(kg/s.m). (A.53)

and the packing perimeter Pφ is determined as in Taylor and Krishna (1993)

Pφ =
4S +B

Bh
(m/m2), (A.54)

A.1.13 Molar Mass

The molar mass of bulk phases is calculated as a composition average of molar
masses for pure components

MV = y1M1 + y2M2 (kg/mol), (A.55)

ML = x1M1 + x2M2 (kg/mol) (A.56)

(A.57)

A.1.14 Partial Molar Enthalpies

In order to calculate the energy flows E , the changes of enthalpy with respect to
composition in the liquid and vapor phases H̄L = ∂HL/∂x, H̄V = ∂HV /∂y are
required. The partial molar quantities are, in general, not equal to the pure molar
quantities (Sandler, 1999). Hence, for the liquid phase, partial molar properties
are calculated as:

H̄L
1 = HL

p1
+ ∆Hmix − x2

∂∆Hmix

∂x2
(kJ/mol) (A.58)

H̄L
2 = HL

p2
+ ∆Hmix − x1

∂∆Hmix

∂x1
(kJ/mol) (A.59)

with,

∂∆Hmix

∂x1
=

x2(8(2x1 − 1)2 − 252x1 + 2143
5 )

1000
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−x1x2(64x1 − 284)

1000
(kJ/mol) (A.60)

∂∆Hmix

∂x2
=

x1(8(2x1 − 1)2 − 252x1 + 2143
5

1000
. (A.61)

On the other hand, the calculation of the partial molar property for the vapor
phase, leads to:

H̄V
1 = HV

p1
(kJ/mol), (A.62)

H̄V
2 = HV

p2
. (A.63)

A.1.15 Molar Volumes

The molar volume for the vapor phase is calculated as proposed in Taylor and
Krishna (1993)

vV
t =

RT V

P
(m3/mol), (A.64)

with R = 8.314472 J/(mol.K). On the other hand, liquid molar volumes are
calculated as averaged values using pure component quantities as proposed in
Daubert and Danner (1989):

υL
t = x1υ

L
1 + x2υ

L
2 (m3/mol) (A.65)

with

υL
i =

B
1+(1−TL

Ci
)Di

i

Ai
, i = 1, 2. (m3/mol) (A.66)

Changes in molar volume with respect to temperature and composition are given
by

∂υL
t

∂T
= x

∂υL
1

∂TL
+ (1 − x)

∂υL
2

∂TL
(m3/(mol.K)), (A.67)

∂υL
t

∂x
= vL

1 − vL
2 (m3/mol), (A.68)
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respectively, with

∂υL
i

∂TL
= −

Di log(Bi)
(

1 − T L
Ci

)Di−1

B

((
1−TL

Ci

)Di
+1

)

i

AiCi
. (A.69)

A.1.16 Pressure Drop

There are several approaches to calculate the pressure drop in structural packing.
Among the most used are the ones by Bravo et al. (1986) and Billet and Schultes
(1999). Due to the simplicity in the equations, the former is used in the current
formulation, i.e.,

∆P =

(

0.171 +
92.7

ReV

)(

ρV uV
e

2

deq

)(
1

1 − C3

√
Fr

)5

(Pa), (A.70)

with4 deq = S and C3 = 3.38. The equation is expected to be valid below the
loading point. The Froude and Reynolds numbers are calculated as in (A.28)
and (A.50), respectively. This pressure drop formulation matches the formulae
proposed by the same author for the mass transfer coefficients and the fractional
liquid holdup.

A.1.17 Vapor pressures

Vapor pressures are required for the calculation of K-values. They are obtained
from an extended Antoine equation as presented in Daubert and Danner (1989):

P s
i = exp

(

Ai +
Bi

T V
+ Ci ln(T V ) +DiT

V Ei
)

, (Pa) (A.71)

and their derivatives with respect to temperature are calculated as:

∂P s
i

∂T V
=

(

− Bi

T V 2 +
Ci

T V
+
DiT

V EiEi

T V

)

P s
i , (Pa/K) (A.72)

4The value for C3 corresponds to Sulzer BX packing
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A.1.18 Viscosity

The viscosity of the vapor phase at low pressure is determined using an
approximation obtained from Chapman-Enskog kinetic theory (Reid et al., 1987)

ηV
t =

y1η
V
1

y1 + y2φ12
+

y2η
V
2

y2 + y1φ21
. (A.73)

In order to reduce the complexity of the expression (A.73), φij is calculated using
the Herning and Zipperer approximation (Reid et al., 1987),

φ12 =

(
M2

M1

) 1
2

=
1

φ21
. (A.74)

The pure component viscosities for the vapor phase are calculated as proposed in
Daubert and Danner (1989)

ηV
i =

(

AiT
V Bi

1 + Ci
TV

)

, i = 1, 2. (Pa.s). (A.75)

The viscosity of the liquid phase is obtained by aplying the mixing rule proposed
in (Reid et al., 1987)

nL = nL
1

x1
nL

2

x2
(Pa.s), (A.76)

where the pure component liquid viscosity is calculated using the correlations
proposed in Daubert and Danner (1989)

ηL
i = exp

(

Ai +
Bi

TL
+ Ci ln(TL)

)

, i = 1, 2. (A.77)

A.1.19 Velocities of liquid and vapor

Velocities for the liquid and vapor streams are calculated from molar flows V, L,
the molar volume of the bulk phases and the cross section area of the column Ac,
as presented in
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uV =
V υV

t

Ac
(m/s) (A.78)

uL =
LυL

t

Ac
(A.79)

A.1.20 Thermal conductivities

The thermal conductivity coefficients for the mixture in the vapor and liquid phases
are calculated as in Taylor and Krishna (1993), i.e.,

λV = y1λ
V
p1

+ y2λ
V
p2
, (kW/(m.K)) (A.80)

λL = x1λ
L
p1

+ x2λ
L
p2
, (kW/(m.K)) (A.81)

where the pure component conductivities λpi are given by the correlations proposed
in Daubert and Danner (1989):

λV
pi =

AiT
V Bi

1 + Ci
TV + Di

TV
2 i = 1, 2 (kW/(m.K)) (A.82)

λL
i = Ai +BiT

L + CiT
L2

i = 1, 2 (kW/(m.K)) (A.83)

Note that the coefficients for pure liquid and vapor conductivities have not the
same values, they are given similar names for simplicity in the formulation, but
are clearly differentiated in Tables A.2 and A.3.

A.2 Pure components properties and coefficients

Pure component properties such as molar mass, Mi, normal boiling point5 Tbi and
critical temperature Tci for the methanol, i = 1, and isopropanol, i = 2 are shown
in Table A.1.

Correlation coefficients for all the thermodynamic properties of pure components
introduced in Section A.1 are summarized in Tables A.2 and A.3. These coefficients

5Normal boiling points are, by definition, calculated at atmospheric pressure.
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Table A.1: Component parameters for the binary mixture.

Componenta Formula Mi (g/mol) ρi(kg/m3)b Tbi (K) Tci (K)
methanol CH4O 32.042 0.07918 337.851 512.58

isopropanol C3H7OH 60.096 0.0786 355.41 508.31

ai = 1 for methanol and i = 2 for isopropanol
bCalculated at ambient temperature T = 25oC.

are obtained mainly from Daubert and Danner (1989), Reid et al. (1987) and
Sandler (1999). Hence, those sources can be used as references when a different
mixture is being analyzed.

A.3 Structural parameters for sulzer CY packing

The geometry parameters for the particular class of structured packing are
obtained from Kister (1992) and Sulzer Chemtech technical data. These
parameters describe the geometry of the channels on each packing section. Details
of the description are presented in Bravo et al. (1986) and Taylor and Krishna
(1993).
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Table A.2: Pure component coefficients for different properties of methanol CH4O, (i = 1)

Property Ai Bi Ci Di Ei Equation
Liquid heat capacity 1.076×102 -3.8060×10−1 9.79×10−4 (A.35)
Vapor heat capacity 19.038×10−3 9.146×10−5 -1.218×10−8 -8.034×10−12 (A.35),(A.18)
Heat of vaporization 5.270×101 3.766×10−1 0.0 (A.39)
Liquid molar volume 2.3080×103 2.7192×10−1 5.1258×102 2.3310×10−1 (A.66)

Vapor pressure 1.0993×102 -7.4713×103 13.988 1.5281×10−2 1.0 (A.71)
Liquid viscosity -7.2880 1.0653×103 -6.6570×10−1 (A.77)
Vapor viscosity 3.0663×10−7 6.9655×10−1 2.05×102 (A.75)

Liquid thermal conductivity 2.837×10−4 -2.81×10−7 0 0 (A.83)
Vapor thermal conductivity -7.7630×10−3 1.0279 -7.436×107 6.77×109 0 (A.83)
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Table A.3: Pure component coefficients for different properties of isopropanol C3H8O, (i = 2)

Property Ai Bi Ci Di Ei Equation
Liquid heat capacity 4.664×102 -4.1086 1.4506×10−2 -1.4126×10−5 (A.35)
Vapor heat capacity 3.321×10−3 35.573×10−5 -20.987×10−8 48.368×10−12 (A.35),(A.18)
Heat of vaporization 5.698×101 8.700×10−2 3.007×10−1 (A.39)
Liquid molar volume 1.18×103 2.6475×10−1 5.0831×102 2.43×10−1 (A.66)

Vapor pressure 92.935 -8.1771×103 -10.031 3.9988×10−6 2.0 (A.71)
Liquid viscosity -8.2300 2.2822×103 -9.8495×10−1 (A.77)
Vapor viscosity 1.9993×10−7 7.2330×10−1 1.78×102 (A.75)

Liquid thermal conductivity 2.029×10−4 -2.2780×10−7 0 0 (A.83)
Vapor thermal conductivity -80.642×10−3 -1.4549 -6.0442×102 0 (A.82)
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Table A.4: Geometry parameters of Sulzer CY packing (Kister, 1992).

θ(deg) Sc (mm) hc (mm) B (mm) ǫ6 ap (m2/m3)
45 6.3 4.5 9.0 0.85 700

A.4 List of properties and variables used in distillation

models

P Pressure
T p Temperature in the phase p
x Composition of the light component in the liquid phase
y Composition of the light component in the vapor phase
Mp

t Total molar holdup of the phase p
L Liquid molar flow
V Vapor molar flow
Ep Energy holdup in the phase p
γi Activity coefficient of component i
Λi Binary interaction parameter
ρp

t Mass density of the phase p
cp

t Molar densities for phase p
vp

t Molar volumes of phase p
Dp Diffusion coefficients for phase p
Hp Enthalpies for phase p
∆Hmix Heat of mixing
hL

t Fractional liquid holdup
Cp

P m Molar heat capacities of phase p
Cp

P Heat capacities phase p
Qp Heat losses for phase p
∆Hvap

i Heat of vaporization for component i
hp Heat transfer coefficients for phase p
Ki Vapor-liquid ratio for the i component
P s

i Vapor pressure for the i component
kV Mass transfer coefficients for phase p
MV

t Molar holdups for phase p
H̄V Partial molar enthalpies for phase p
∆Pj Pressure drop
ηV

t Viscosity for phase p
uV Velocities for phase p
λV Thermal conductivities for phase p
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thesis, Interdisziplinäres Zentrum für Wissenschaftliches (IWR), University of
Heidelberg, 2002.

M. Diehl, I. Uslu, R. Findensen, S. Schwarzkopf, F. Allgöwer, H. G. Bock,
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