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Abstract

Unravelling the molecular basis underlying genetic disorders is crucial in order to
develop effective treatments to tackle these diseases. For many years, scientists
have explored which genetic factors were associated with several human traits
and diseases. After the completion of the human genome project, several high-
throughput technologies have been designed and widely used, therefore producing
large amounts of genomic data. At the same time, computational tools have been
developed and used in conjunction with wet-lab tools to analyze this data in order
to enrich our knowledge of genetics and biology.

The main focus of this thesis is gene prioritization, that can be defined as the
identification of the most promising genes among a list of candidate genes with
respect to a biological process of interest. It is a problem for which large quantities
of data have to be manipulated, which typically means that it has to be done in
silico. This thesis describes two gene prioritization methods from their theoretical
development to their applications to real biological questions.

The first part of this thesis describes the development of two data fusion algorithms
for gene prioritization respectively based on order statistics and kernel methods.
These algorithms have been developed for human and also for reference organisms.
Ultimately, a cross-species version of these algorithms have been developed and
implemented. Integrating genomic data among closely related organisms is relevant
since many researchers are studying human indirectly through the study of reference
organisms such as mouse or rat, and are therefore producing mouse/rat specific
data, that is still relevant in human biology. Our method can integrate more than
20 distinct genomic data sources for five organisms and is therefore one of the first
cross-species gene prioritization method of that scale.

Only a fragment of all the computational tools developed each year specifically for
biology are still maintained after three years, and even less are used by independent
researchers. The second part of this thesis focuses on the benchmarks of the
proposed methods, the development of the corresponding web based softwares,
and on their application to real biological questions. By making our methods
publicly available, we make sure that interested users can apply them for their
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own problems. In addition, benchmarking is needed to prove that the approach is
theoretically valid and can estimate how accurate are the predictions. Ultimately,
the inclusion of our computational method within wet-lab workflows show the real
usefulness of the approach.



Contents

Contents vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Human genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Molecular genetics . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Medical genetics . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Gene prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Genomic data sources . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Data versus knowledge . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Primary and secondary data . . . . . . . . . . . . . . . . . 20

1.3.3 Unbalanced data sources . . . . . . . . . . . . . . . . . . . . 20

1.3.4 Missing values . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.5 Multiple data sources . . . . . . . . . . . . . . . . . . . . . 21

1.3.6 Multiple species . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.7 Data type and similarity measures . . . . . . . . . . . . . . 24

vii



viii CONTENTS

1.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.1 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.2 Experimental validation . . . . . . . . . . . . . . . . . . . . 30

1.4.3 External validation . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 A guide to web tools to prioritize candidate genes 35

2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Contribution of the PhD candidate . . . . . . . . . . . . . . . . . . 47

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Assessing the relevance of the predictions . . . . . . . . . . 47

3 Gene prioritization through genomic data fusion 51

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Contribution of the PhD candidate . . . . . . . . . . . . . . . . . . 61

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 ENDEAVOUR update: a web resource for gene prioritization in
multiple species 63

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Contribution of the PhD candidate . . . . . . . . . . . . . . . . . . 73

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 External validations . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Improvement of the text-mining source . . . . . . . . . . . . 79

4.3.3 Optimization of the training . . . . . . . . . . . . . . . . . . 80

5 Kernel-based data fusion for gene prioritization 83

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Contribution of the PhD candidate . . . . . . . . . . . . . . . . . . 93

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



CONTENTS ix

5.3.1 Improved SVM modeling . . . . . . . . . . . . . . . . . . . 93

6 Cross-species candidate gene prioritization with MerKator 97

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Contribution of the PhD candidate . . . . . . . . . . . . . . . . . . 112

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Network based strategy . . . . . . . . . . . . . . . . . . . . 112

7 Large-scale benchmark of Endeavour using MetaCore maps 113

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Contribution of the PhD candidate . . . . . . . . . . . . . . . . . . 116

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Integrating Computational Biology and Forward Genetics in Drosophila 119

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2 Contribution of the PhD candidate . . . . . . . . . . . . . . . . . . 134

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3.1 Congenital Heart Defects . . . . . . . . . . . . . . . . . . . 134

8.3.2 Eye disorders . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3.3 CHD wiki . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3.4 Optimal threshold . . . . . . . . . . . . . . . . . . . . . . . 142

9 Conclusion 143

9.1 Conceptual improvements . . . . . . . . . . . . . . . . . . . . . . . 145

9.1.1 Training set . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.1.2 Biological entity prioritization . . . . . . . . . . . . . . . . . 146

9.1.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . 147

9.1.4 Kernel fusion scheme . . . . . . . . . . . . . . . . . . . . . . 147

9.1.5 Improved statistics . . . . . . . . . . . . . . . . . . . . . . . 148



x CONTENTS

9.2 Technical improvements . . . . . . . . . . . . . . . . . . . . . . . . 148

9.2.1 Simpler inputs . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.2.2 Detailed results . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2.4 Several objectives, a single platform . . . . . . . . . . . . . 151

9.3 More applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.3.1 A sequencing based workflow . . . . . . . . . . . . . . . . . 152

9.4 Long term objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.4.1 Licensing opportunities . . . . . . . . . . . . . . . . . . . . 153

9.4.2 Business plan . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.4.3 Intellectual property . . . . . . . . . . . . . . . . . . . . . . 154

A Algorithm behind Endeavour 157

A.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.1.1 Annotation data . . . . . . . . . . . . . . . . . . . . . . . . 157

A.1.2 Vector based data . . . . . . . . . . . . . . . . . . . . . . . 157

A.1.3 Interaction data . . . . . . . . . . . . . . . . . . . . . . . . 158

A.1.4 Sequence data . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.1.5 Precomputed data . . . . . . . . . . . . . . . . . . . . . . . 158

A.1.6 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2.1 Annotation data . . . . . . . . . . . . . . . . . . . . . . . . 159

A.2.2 Vector based data . . . . . . . . . . . . . . . . . . . . . . . 159

A.2.3 Interaction data . . . . . . . . . . . . . . . . . . . . . . . . 159

A.2.4 Sequence data . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.2.5 Precomputed data . . . . . . . . . . . . . . . . . . . . . . . 160

A.3 Data fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



CONTENTS xi

B Lists of candidate genes 161

Bibliography 163

Curriculum vitae 199





List of Figures

1.1 The research cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The concept of gene prioritization . . . . . . . . . . . . . . . . . . 8

1.3 Data integration schemes . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 A basic model for gene prioritization . . . . . . . . . . . . . . . . . 17

1.5 A more advanced model for gene prioritization . . . . . . . . . . . 19

1.6 Bias in the data sources . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Overlap in interaction data sources . . . . . . . . . . . . . . . . . . 24

1.8 The leave-one-out cross-validation procedure . . . . . . . . . . . . 28

1.9 The IT system behind our tools . . . . . . . . . . . . . . . . . . . . 31

3.1 Comparison of the performance at different time points . . . . . . 62

4.1 Traffic and statistics for the Endeavour website . . . . . . . . . . . 74

5.1 Comparison of three optimization algorithms . . . . . . . . . . . . 95

7.1 Results of a large scale benchmark analysis . . . . . . . . . . . . . 117

7.2 Sampling versus whole genome . . . . . . . . . . . . . . . . . . . . 118

8.1 Tree based prioritization . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2 Expression profiles of eye disease genes . . . . . . . . . . . . . . . . 139

xiii





List of Tables

4.1 External validation of Endeavour . . . . . . . . . . . . . . . . . . . 78

4.2 Effect of noise disease modeling . . . . . . . . . . . . . . . . . . . . 81

8.1 The CHD specific gene sets . . . . . . . . . . . . . . . . . . . . . . 137

8.2 The seven eye disorders gene sets. . . . . . . . . . . . . . . . . . . 138

8.3 Sensitivity for several benchmark datasets . . . . . . . . . . . . . . 142

B.1 The candidate genes from Adachi et al. . . . . . . . . . . . . . . . 161

B.2 The candidate genes from Poot et al. . . . . . . . . . . . . . . . . . 161

B.3 The candidate genes from Elbers et al. . . . . . . . . . . . . . . . . 162

B.4 The candidate genes from Liu et al. . . . . . . . . . . . . . . . . . 162

xv





Chapter 1

Introduction

This introductory chapter presents several basic concept of human genetics and
bioinformatics that are at the core of the work described in the present dissertation.
Section 1 points out some current challenges of human genetics, and describe how
bioinformatics methods are used today in conjunction with wet lab methods to
fasten the research process. Section 2 presents more in details the gene prioritization
problem that is the focus of this thesis and describes the challenges and objectives
of that field. Section 3 describes the genomic data sources that are at the core of
the gene prioritization problem. Section 4 summarizes the options available as for
benchmark and validation of the algorithms. Section 5 outlines the content of the
next chapters.

1.1 Human genetics

1.1.1 Molecular genetics

The basic unit of the human body is the cell, an adult human body contains billions
of cells. Almost every cell contains in its nucleus the human genome, physically a
set of 23 pairs of chromosomes. Chromosomes are very long condensed stretches of
deoxyribose nucleic acid (DNA). Beside its sugar and phosphate backbones, DNA
is made up of four distinct nucleotides: adenine (A), thymine (T), cytosine (C) and
guanine (G). In total, the 23 human chromosomes represent 3 billions nucleotides.
Genes are chromosomal fragments that contain all the necessary information to
create proteins that are the real workers of the cells. According to the latest
estimation, the human genome contains between 20000 and 25000 protein coding
genes [55]. Proteins are acting either alone or within complexes to achieve precise
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2 INTRODUCTION

functions inside and outside the cells. An example is the AMY1A gene, located on
chromosome 1 and associated to a protein termed amylase, an enzyme that digests
starchy food. Although AMY1A is present in every human cell, it is mostly active
in the salivary gland and amylase is therefore mostly present in the saliva. Most
human cells have 46 chromosomes organized in 23 pairs, meaning that each gene is
usually present in two copies (one on each chromosome), exception made of the
genes located on the sexual chromosomes X and Y. The raw information of a gene
resides in its coding sequence, that is the nucleotide sequence that encodes for the
gene products themselves (e.g., proteins), there are however extra elements that
control when and where genes are expressed (including other non protein coding
genes).

In theory, every chromosome is present in two copies in every cell, and therefore
the genes are also present in two copies. However, in practice, it has been noticed
that several genetic alterations can occur:

• Copy Number Variants (CNVs) or Copy Number Changes (CNCs): a
chromosomal region can be deleted (i.e., a single copy is present), double
deleted (i.e., no copy at all), duplicated (i.e., a third copy is observed), or
amplified (i.e., at least two supplementary copies are present). When the
region expands over an entire chromosome, the terms used are triploidy (three
copies), tetraploidy (four copies) and haploidy (single copy).

• Structural rearrangements: this refers to the reorganization of the sequence,
the overall content stays the same (no deletion, no duplication) but the order
is changed. For instance, a chromosomal region can be translocated, meaning
that the region is removed from its original location and inserted into another
location, possibly on a different chromosome, and possibly disrupting the
sequence of a gene.

• Single Nucleotide Polymorphism (SNP): a single nucleotide can be altered
(i.e., mutated, deleted or inserted), changing the gene sequence possibly at a
key position, altering therefore its function.

• Epigenetic modification: epigenetic refers to all factors that affect the use of
the genes without affecting their raw DNA sequences. For instance, genes can
be modified through DNA methylation (addition of a methyl group to cytosine
nucleotides) or chromatin modification (e.g., via histone modification).

Most of the difference observed between human individuals at the genome level
(mostly SNPs and CNVs) are accountable for the differences observed at the
phenotypic level (e.g., eye and hair color, blood type, height). These genomic
variations are frequently observed and are not linked to diseases as shown by
Redon et al. [200]. An example is a locus on chromosome 1 that contains the
AMY1A gene, responsible for the production of amylase, the saliva enzyme that



HUMAN GENETICS 3

digests starchy food. Perry et al. have studied this region in seven populations
and noticed that it is usually repeated several times [189]. Moreover, they show
that the european-american and japanese individuals would have, on average, more
copies than individuals from the Yakut and Biaka populations. The maximum is
observed for the japanese population with up to 16 copies instead of the expected
two copies. The authors also show that this could be explained by their very
different diet (historically a lot of starchy food for the europeans and japanese
populations and a low starchy diet for the Yakut and Biaka populations). There
are however genomic alterations that can predispose or even cause diseases, these
are the focus of medical genetics.

1.1.2 Medical genetics

Human genetics refers to the study of biological mechanisms in order to explain the
similarities and the differences among human beings. Medical genetics refers to the
application of human genetics to medicine. That is how biological processes relate
to human diseases. A disease can be defined as a set of observable characteristics
(termed traits or phenotypes), and is said to be genetic when one contributing
factor is genetic, that is when the phenotypes can be associated to the genome of
the patients and more precisely to the genomic alterations that can be observed.
Beside genetic factors, environmental factors such as smoking and diet can also
contribute.

An example of genetic disease is cystic fibrosis, that mainly affects the lungs and
the digestive system. The malfunction is due to the abnormal accumulation of
a thick mucus that prevents the organs to achieve their function properly. This
condition has been linked to a locus on chromosome 7 where lies the CFTR gene
(Cystic Fibrosis Transmembrane conductance Regulator gene) [203, 256]. More
precisely, it has been observed that any individual with two abnormal copies (e.g.,
with a mutation) of the gene has cystic fibrosis.

Medical geneticists aim at unravelling the molecular basis underlying genetic
disorders, in order to understand what is exactly happening down to the molecular
level. A better understanding of the disease players and their mode of action is
however only the first step towards the development of effective treatments to
tackle these diseases. Although the genetic defects that underlie a disease are
virtually present in every single cell of a patient, it is still possible to develop
effective treatments that will eliminate or reduce the effects of the disease. The
treatments can possibly intervene at the gene level (e.g., to replace a mutant allele),
at the mRNA level (e.g., to keep the expression of a mutant RNA under control), at
the protein level (e.g., to replace the defective protein) or even at the clinical level
(e.g., surgery or transfusion). At the protein level, an example is the administration
of insulin to type 1 diabetes mellitus patients to remedy to the destruction of
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the beta cells of the pancreas that are producing insulin. Another example is
phenylketonuria for which a dedicated diet combined to a light medication can
treat the disease with almost no side-effects [135, 137].

We usually refer to the beginning of genetic with the work of Mendel, a monk who
studied the heredity of physical traits in peas during the 19th century. Medical
genetics, however, had its start at the very beginning of the 20th century, with
the recognition that Mendel’s laws of inheritance explain the recurrence of genetic
disorders within families [56, 60, 247] and therefore the recognition of the hereditary
nature of several human diseases. An example is hemophilia, a disorder that
impairs blood coagulation, that was already reported in antiquity and for which
the underlying factors remained unknown for centuries. The discovery of the first
factor (factor V), in 1947 [176], and the subsequent discoveries of additional factors
proved the hereditary nature of hemophilia.

In the second half of the 20th century, many studies have been performed in order
to discover which genomic alterations are responsible for which disorders mainly
through the study of syndromes such as Marfan [15, 37, 44, 155] and Ehlers-Danlos
syndromes [168, 254]. At that time, the techniques used, such as Southern blot
[223] and Polymerase Chain Reaction (PCR) [125], were mostly wet lab based
and computer science had little if no role to play in this analysis. In 1966, Victor
McKusick created the Mendelian Inheritance in Man (MIM), an extensive catalog
of human genes related to genetic disorders that quickly became a reference in
genetics [156]. As of today, the online version of this catalog, the Online Mendelian
Inheritance in Man (OMIM) represents a comprehensive catalog of the current
knowledge in medical genetics (more than 13000 genes and 4000 phenotypes)
[94, 95, 157].

A major breakthrough in genetics was the sequencing of the human genome (first
draft in 2001 [131] and its completion in 2003 [55]). This task revealed the three
billions nucleotides that encode our genome, and the 20000 to 25000 genes that
make us human. However, rather than the end of genetics, this was more the
beginning of a new era, the post-sequencing era. Indeed, the knowledge of the
genome sequence has led to the development of high-throughput technologies such
as micro-arrays that measure the expression level of thousands of genes concurrently.
The use of these technologies has considerably increased the amount of genomic data
available meaning that the main task is today to harvest the fruits that are hidden
in this data. Altogether, this means that computational biology is now playing
an important role and this thesis serves as an illustration. The computational
approach developed in this thesis has been integrated into wet lab based workflow
(chapters 3, 4, and 8).

Moreover the focus of the studies has shifted towards a ‘systems biology’ approach.
Until recently, reductionist approaches were often used in biology to break down
a complex system into simpler components that were then analyzed individually.
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This very successful approach is now complemented by integrated approaches that
can analyze a complex system at once by taking advantage of the genome wide
data produced in the post-sequencing era and of elaborated computational tools
that can deal with its complexity. Nowadays, ‘systems biology’ is becoming the
standard approach in computational biology and this thesis also illustrates this by
integrating several data sources in order to unravel the biological mechanisms at
the disease level.

Computational biology

As stated in the previous section, a perfect understanding of the molecular
mechanisms that underlie a genetic disorder is crucial in order to develop
efficient treatments. This knowledge about the molecular and cellular processes
is nowadays increasing fast due to the use of systems biology based approaches
[20, 21, 48, 38, 150]. One of the main objectives is to define efficient algorithms that
combine the existing knowledge with raw data in order to create novel hypothesis
to be experimentally assayed and eventually enrich our knowledge. Therefore these
algorithms are fully integrated within a workflow that merges together wet lab
tasks and computational tasks. Such processes are cyclic so that the enriched
knowledge can be used to create additional hypotheses that will undergo the same
validation. The cycle presented in figure 1.1 represents a typical computational
biology approach that mixes together wet lab work with in silico methods.

In the recent years, several computational tools that target biologists and human
geneticists have been developed, this includes tools to organize and query the
scientific literature (Pubmed, GoPubmed [66]), or expression data repositories (Gene
Expression Omnibus [70, 27], ArrayExpress [181]) knowledge bases (Ingenuity® and
MetaCore™) or collaborative knowledge bases (CHDWiki [28], see also chapter
8, WikiGenes [101]), tools to analyze and interpret high-throughput data such as
expression data (GeneSpring, ArrayAssist®, R / Bioconductor [81]), or tools with
multiple functionalities among the ones cited (DECIPHER [76]).

An example of computational tools developed for human genetics is Bench™,
Cartagenia’s platform for Array Comparative Genomic Hybridization (array CGH).
It is made of two components. First, an intelligent repository that allows users to
manage and visualize results from various genetic screening assays, from array CGH
data to next generation sequencing platforms. Second, a software solution that
help users to rapidly interpret the copy number alterations in patient samples, and
to assess their clinical relevance and impact in patient and population genotypes.

Another example is DECIPHER, the DatabasE of Chromosomal Imbalance
and Phenotype in Humans using Ensembl Resources. DECIPHER collects
clinical information about chromosomal microdeletions/duplications/insertions,
translocations and inversions and displays this information on the human
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Figure 1.1: The research cycle that involves wet lab experiments and computational
biology. Computational tools are used to analyze the data and to produce novel
hypothesis. Wet lab experiments are used to produce data and to validate the
hypothesis. The boxes describe such a workflow that involves gene prioritization.
(1) In the first step, high-throughput technologies are used to produce genomic
data that is further used by the gene prioritization approach. In addition, the array
CGH technology can be used to define a region to investigate. (2) In a second step,
the genomic data produced is analyzed and organized, and the biological hypothesis
is defined as a computational problem. (3) In the third step, gene prioritization
is used to predict novel candidate genes. (4) The predictions are experimentally
validated using sequencing or model organism knock-outs. The analysis of this
data is then enriching the current knowledge.

genome map with the aim of improving medical care and genetic advice for
individuals/families with submicroscopic chromosomal imbalance and facilitating
research into the study of genes which affect human development and health.
DECIPHER is a consortium that gathers several research groups and hospitals
world wide, meaning that the information is shared among the members to fasten
the research process.

Another example is the gene prioritization problem and is introduced in details in
the next section.
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1.2 Gene prioritization

Gene prioritization has been defined as the identification of the most promising
genes among a list of candidate genes with respect to a biological process of interest.
It has been designed to augment the traditional disease gene hunting techniques
such as positional cloning. The motivation behind gene prioritization is that, very
often, the gene lists that are generated contain dozens or hundreds of genes among
which only one or a few are of primary interest. The overall objective is to identify
these genes, however the experimental validation of every candidate individually
is expensive and time consuming, and it is therefore preferable to define, in a
preliminary step, the most promising candidate genes and, in a second step, to
experimentally validate these genes only. This conceptual approach is illustrated
in figure 1.2.

The concept of gene prioritization was first introduced in 2002 by Perez-Iratxeta et al.
who already described the first computational approach to tackle this problem [185].
Since then, many different computational methods that use different strategies,
algorithms and data sources, have been developed [275, 2, 110, 4, 50, 273, 211, 268,
205, 152, 51, 240, 102, 248, 272, 82, 265, 126, 196, 80, 163, 148, 39, 239, 77, 235,
169, 236, 187, 186]. Some of these approaches have been implemented into publicly
available softwares allowing their use by researchers worldwide. Eventually, several
of these approaches have been experimentally validated including the approaches
presented in this dissertation. A thorough review of the publicly available gene
prioritization web tools is presented in chapter 2.

1.2.1 Context

This section presents the motivation behind the work presented in this thesis with
the description of three research or clinical practice situations in which there is a
need for gene prioritization. There are of course many other possible applications,
some of them are described in chapter 4, 8, and 9.

Chromosomal aberration in a patient with a genetic condition

In clinical practice, geneticists are often investigating a cohort of patients who
share a genetic condition and for which a recurrent chromosomal aberration has
been detected through the use of array CGH. The aim is then to discover which
genes are responsible for the observed phenotype and, therefore, to get a better
understanding of this phenotype. The chromosomal region corresponding to the
aberration often contains dozens of genes among which only one or a few are
believed to be responsible for the genetic condition under study. Typically, the
validation of individual genes can occur through sequencing in a distinct cohort of
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Figure 1.2: The concept of gene prioritization. The starting point is a large list
of candidate genes (on the left) among which only one or a few are really of
primary interest with respect to the biological process of interest (e.g., a genetic
disorder). The goal is to identify this gene (bottom right corner). One solution is to
experimentally validate all the candidate genes but this can be very expensive and
time consuming (bottom workflow). Another solution is to prioritize the candidate
genes using a computational approach at almost no cost, and in a second step, to
validate only the most promising genes (top workflow). The second strategy has
the advantage of being cheaper and less time consuming.The prioritization can be
achieved manually or automatically through the use of dedicated computational
programs. The latter solution is even faster.

patients (who do not exhibit the aberration) or through the use of model organism
based experiments (e.g., knock out). Although these bio-technologies are getting
cheaper and cheaper, it is still expensive for most labs to perform this validation
for dozens of genes at the same time. In that case, candidate gene prioritization
can be performed beforehand on the chromosomal region to determine the most
promising genes to validate. Only the most promising candidate genes will then be
experimentally assayed. An example is the prioritization of an atypical DiGeorge
syndrome region on chromosome 22q11 that encompasses 68 genes, followed by the
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validation of the most promising candidate genes through knock out in zebrafish
embryos [4] that leads to the identification of YPEL1 as a putative novel DGS gene
(see also chapters 3 and 8).s

Differential expression of genes in a disease tissue

It is sometimes not possible to restrict the analysis to a particular chromosomal
region and the solution might then be to consider the whole genome. An efficient
way to discover new disease genes genome wide is to compare the gene expression
levels between a diseased tissue and a reference tissue. There is a plethora of
methods to detect differential expression such as fold change, t-test, SAM and
Cyber T. These methods have been extensively compared [178, 242, 166] but
in most cases, large lists of differentially expressed genes that contain hundreds
of genes are generated. Similarly to the first situation, only a few differentially
expressed genes are directly involved in the disease under study, and the other
genes are the results of perturbations happening more downstream of the regulatory
cascade. It is again expensive to validate hundreds of genes and prioritization is
therefore key. An example of such gene expression study is shown in Aerts et al.
[4] (see also chapter 3).

Linkage analysis

Identifying novel disease genes genome wide can also be achieved through positional
cloning strategies. Traditional positional cloning strategies involve first a linkage
analysis followed by a closer investigation of the genes located in the region that is
linked to the disease of interest. A linkage analysis is the study of genetic markers
in a population and their correlation with a disease of interest. The markers that do
exhibit correlation with the disease (i.e., low recombination) indicate the presence
of a disease causing gene in the neighborhood. Typically, a region of a few to several
millions of bases around the marker is considered to harbor the disease gene. The
problem is then to find the disease causing gene among the candidate genes and
again gene prioritization can be performed. Linkage studies are very popular and
have allowed a number of important discoveries, for instance for multiple sclerosis
[92, 93], insulin-dependent diabetes mellitus [88, 96] and various X linked disorders
[24, 26], they are now complemented by array CGH in clinical routines.

1.2.2 Algorithms

The traditional approach for gene prioritization is to perform a manual search of
what is known about the candidate genes and to manually select the ones that
seem more interesting based (i) on the small amount of data available at that time



10 INTRODUCTION

and (ii) on the expertise of the user. The main problem of this approach is related
to the amount of genomic data available nowadays in the post-sequencing era.
More and more organisms have seen their genome sequenced and, more important,
annotated. Many high-throughput technologies such as micro arrays [209, 132]
have been developed and widely used to screen the expression level of hundreds of
different conditions genome wide. This is in contrast with the pre-sequencing era
when only little information was available about each gene. This makes the manual
analysis described above at most painful, if not impossible at all. To circumvent
that problem, the development of in silico gene prioritization solutions has received
a lot of interest from the bioinformatics community in the last decade. Most of
the gene prioritization methods are based on the automation of the traditional
approach. At the heart of these methods is the ‘guilt-by-association’ concept: the
most promising candidate genes are the genes that are similar to the genes already
known to be linked to the biological process of interest [219, 87, 115].

This ‘guilt-by-association’ concept has already been used in the past to align gene
sequences. Before any genome was sequenced, small DNA sections were investigated
individually to assess their function. It was soon discovered that the function
is directly linked to the DNA sequence content and that it is therefore possible
to predict the function of an unknown sequence by looking at its similarities to
sequences with known functions. This approach is implemented in the Basic Local
Alignment Search Tool (BLAST) in 1990 [12]. A gene prioritization strategy can
be seen as an extension of the Blast approach [12] in which predictions are made by
looking at the similarities between DNA or protein sequences. For example, when
studying type 2 diabetes (T2D), KCNJ5 appears as a good candidate through its
potassium channel activity [111], an important pathway for diabetes [252], and
because it is known to interact with ADRB2 [133], a key player in diabetes and
obesity. This notion of similarity is not restricted to pathway or interaction data
but can rather be extended to any kind of genomic data. Although the early gene
prioritization methods relied on a single or a few data sources, nowadays most
of the gene prioritization methods take advantage of several data sources. It is
therefore of crucial importance to define an elegant data fusion strategy.

‘Integrative genomics’ or ‘integromics’ is the area of research that focuses on
data integration [253]. It became very popular after the first high-throughput
technologies started to produce a huge amount of data. The motivations behind
data integration are multiple.

1. The first one is linked to the missing data problem, the combination of several
data sources with missing data is likely to increase the overall coverage
therefore reducing the genes with missing data.

2. Second, a synergetic effect is expected: the whole can be more than the sum
of its components, meaning that the combination of several data sets can
perform better than using any of the data set alone. A question that arises
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however is the number of data sources to combine in order to reach critical
power, the rule might not be to inlude as many data sources as possible
stated by Lu et al. who found that 4 out of 16 features is optimal for PPI
prediction [144]. This issue is further discussed in chapter 5.

3. Third, different data sources may be contradictory, by integrating them, a
consensus can be found thus (i) favoring the predictions that are backed
up by multiple data sources (i.e., giving strong confidence) and (ii) rolling
out the spurious predictions that are present in only one data source (i.e.,
assimilated to noise).

4. Fourth, with data integration, an overall strong prediction score can be
obtained through the combination of several weaker prediction scores, which
the study of a single data source alone would not allow.

Nowadays the term ‘integromics’ is not used anymore since almost all ‘systems
biology’ approaches are integrating multiple data sources [108, 63, 136, 9]. However,
the key challenges remain, they are the integration of different data types using
different formats [243], the data quality control, possibly involving correlation
analysis, and the design of a dedicated algorithm (no ‘one size fits all’ paradigm).
One important aspect of data integration is that it should not introduce a bias
towards well studied genes, meaning that even the poorly characterized genes can
be highly prioritized. Another aspect is the use of algorithms that are assuming
independence between the data sources while the underlying data sources are
usually correlated. These weak correlations can bias the results through a rumor
propagation like system therefore increasing the number of false positives. A
third important aspect in data integration approach development is the validation,
either in silico or through wet lab experiments. There exist multiple algorithms
to perform data integration including voting system [249, 90], naive Bayesian
integration [113, 47, 246, 238], likelihood-based algorithms [208], decision trees
[260], and support vector machine (SVM) [130, 31]. For example, Troyanskaya et
al. have developed MAGIC (Multisource Association of Genes by Integration of
Clusters), a general framework that uses formal Bayesian reasoning to integrate
heterogeneous types of high-throughput biological data for gene function prediction.
To build the network, they use yeast protein-protein interactions from GRID,
pairs of genes that have experimentally determined binding sites for the same
transcription factor (from the Promoter Database of Saccharomyces Cerevisiae -
SCPD), and gene expression data (analyzed through clustering). The inputs of
the system are gene clusters based on co-expression, co-regulation, or interaction.
The Bayesian network then combines evidence from input clusters and generates
a posterior belief estimating whether each gene i-gene j pair has a functional
relationship. The present thesis discusses two algorithms: data fusion via Order
Statistics (OS) and support vector machine (SVM).
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Data integration can be realized at different levels. This section and figure 1.3
describes three integration schemes. In the first option the integration happens at
the raw data level, it is then an ‘early integration’ or ‘full integration’ scheme in
which the data sources are combined before applying any algorithm (e.g., modeling
/ training) in order to create a single input data source. An example is the
merging of several small-scale protein-protein interaction datasets into a global
larger dataset. This scheme has the advantage of being rather easy to implement
when the underlying data structure allows such integration but it is not always
the case. It is sometimes preferable to perform the data integration within the
algorithm itself, this is termed ‘intermediate integration’ or ‘partial integration’.
Dedicated algorithms such as kernel based SVM integrate several data sources
during the learning process. Then they produce a single outcome based on all (or
a subset of) the inputs. The last option is integration at the knowledge level, it is
then a ‘late integration’ or ‘decision integration’ scheme. In this case, the algorithm
is applied individually to each data source. It is only then that the algorithm
outcomes (e.g.,hypothesis, predictions, decisions) are combined to generate a global
outcome.

Figure 1.3: Data integration schemes. (Left panel) Early integration. The
integration happens at the raw data level before applying the algorithm on the
merged data source to produce a single outcome. (Middle panel) Intermediate
integration. The integration is realized within the algorithm that accepts several
data sources as input and produces a single outcome. (Right panel) Late integration.
The algorithm is applied to the data sources independently. The outcomes are
then integrated to create a global outcome.

Several candidate gene prioritization have been defined in the last decade, and they
can be divided in three main categories: ab initio methods, classification methods,
and novelty detection methods.
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Ab initio methods

The concept of ab initio methods is to select candidate genes based on a set of
properties that are defined a priori to correspond to the disease under study. These
properties are often based on physical features (e.g., chromosomal location, gene
length) and on expression data (e.g., positive or negative expression in a tissue
of interest). After the selection, only the genes that satisfy all the properties
are considered as promising candidate genes. The use of several properties in
conjunction allows a more conservative filtering that retains only the best candidate
genes. The main limitation of these methods is that filters act as binary classifiers
and do not allow fine candidate prioritization. For example, it is sometimes difficult
to define the optimal properties that limit the number of false positive genes (non
interesting genes included) and false negative genes (interesting genes rejected)
when using gene expression data that is often noisy. A second limitation is that all
the candidate genes that satisfy the properties are all equal and there is no way to
estimate which genes should be experimentally validated first.

An example is the study of Parkinson’s disease by Hauser et al. who used two filters
to identify novel candidate genes. The first filter was based on Serial Analysis of
Gene Expression (SAGE ) data to identify the genes that are expressed in substantia
nigra and adjacent midbrain tissue. The second filter identifies the genes that lay
within five large genomic regions identified through linkage analysis. These two
filters are then combined to identify 402 promising candidate genes for Parkinson’s
disease [97]. Franke et al. created additional filters based on functional data (from
Gene Ontology [17]) to select the functionally related genes and association based
data to select the genes that are associated to the disease in sub-populations. They
have implemented their method into a publicly available software termed TEAM
and have applied it to celiac disease and were able to select 120 candidate genes
[77]. More recently, Bush et al. have developed Biofilter, that integrates even
more databases that contain pathway annotations (e.g., KEGG [118, 120, 119])
and protein-protein interactions (e.g., DIP [263, 262, 264, 206]) [43].

Classification methods

Classification starts with a training step, in which the classifier is trained with
gene sets that correspond to the distinct classes. In a second step, the candidate
genes (unlabeled) are distributed into the classes according to their properties. For
gene prioritization, most methods use binary classification, and the two classes
correspond to the positive genes (known to be involved in the process under study)
and the negative genes (known not to be involved in the same process). The main
challenge of these methods resides in the assembly of the negative training set. It is
often very difficult to guarantee that a gene is not involved in a biological process,
our knowledge is often not elaborated enough to backup such statements [46]. Some
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studies have proposed to use unrelated diseases to built the negative training set
but that could potentially induce spectrum bias in the classification (negative genes
selected not representative of the whole negative population). Others techniques
have been developed to tackle that problem including the use of randomly selected
genes together with repetitions of the classification process (e.g., for a genome wide
approach, use one third of the genome as negative genes to classify the remaining
two thirds, and repeat the procedure for the other two thirds [162]). However, this
problem can sometimes be awkward given that some classification methods are
not efficient with unbalanced data (which we have in our case). A related issue is
that, in practice, the number of known genes for one disease is often too small to
constitute a reliable positive training set.

A proposed solution is to use a group of closely related diseases (e.g., all cancers
[226, 183, 277], dominant versus recessive inheritance [46]) or even to use all diseases
at once [3, 142]. Several classification methods also associate a score with every
candidate gene that makes the method more suitable for prioritization [3, 142]. For
instance, Adie et al. have used sequence based features (e.g., gene length, UTR
lengths, number of exons, CG content, homology, CpG islands) and a decision
tree to classify the human genes between likely disease genes and unlikely disease
genes. They train using all disease genes together and show in addition that smaller
training sets can not be used efficiently so that analysis are restricted to large group
of diseases such as oligogenic or monogenic disorders. Before that, Lòpez-Bigas et
al. have used protein sequence features (i.e., protein length, phylogenetic extent,
degree of conservation, and paralogy) and a decision tree again to reach the same
goal. Training was performed using all disease genes from OMIM but the authors
do not report any experiments with disease specific training sets.

Novelty detection methods

Novelty detection methods are a variant of classification methods for which no
negative training set is needed. Oppositely, they only rely on the positive training
set. Candidate genes are then ranked according to their similarities to the training
genes. This positive set most often consists of genes that are known to be involved
in the disease under study, but it can also be derived from a set of keywords
that describe precisely the genetic condition of interest. In the latter case, the
candidate genes are ranked according to their similarities to the keywords mainly
through text mining. This category is the one that has received the most of interest
in the last decade and several strategies have been defined mainly following the
early classification based methods [4, 205, 240, 80, 163, 148, 239, 187, 186]. The
main characteristic of novelty detection methods is that they are less conservative
since they usually rank the genes instead of filtering them, as opposed to ab initio
methods.
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For instance, Turner et al. have developed POCUS, a tool that prioritizes candidate
genes based on their InterPro domains and Gene Ontology terms that are shared
with the genes from the positive training set (no negative training set needed).
This method allows candidate gene prioritization using disease specific training sets
and therefore was benchmarked with 29 OMIM diseases. Rossi et al. developed
TOM, a tool that uses expression data and functional annotations together to
predict the most interesting candidate genes with respect to a biological process.
This process is defined by a set of genes known to play a role in it, no negative
set has to be defined. The work presented in this dissertation mostly focuses on
novelty detection methods.

Related strategies

A first category of related strategies contains the microarray analysis tools (e.g.,
GeneSpring, ArrayAssist®, ArrayStar, Mapix, Qlucore Omics Explorer, Axon
GenePix, and PathwayArchitectł). These tools allow users to analyze large list of
genes. There are however several differences:

1. They are not making use of various genomic data sources and usually rely
on expression data alone (or in combination with phenotypic data). Gene
prioritization aims at combining many data sources, including, for instance,
literature data, functional annotations, sequences and regulatory information.

2. Microarray analysis is often reduced to clustering/classification of the
genes/conditions. In contrast, candidate gene prioritization represents a
unique process that can not be achieved with regular classification or clustering
processes.

3. Many algorithms exist for classification and clustering, and most of these tools
are actually implementing traditional techniques. The process of prioritizing,
i.e., ranking, genes with respect to a biological process of interest is rather
new. It is therefore interesting to investigate whether advanced machine
learning methods that have been developed only recently in academia can
efficiently and accurately perform gene prioritization.

A second category contains the biological knowledge bases such as Ingenuity
Pathways Analysis® and MetaCore™ GeneGo. These databases are very useful
since they contain high quality genomic data which is in most of the cases manually
curated by experts in the field. For instance, Ingenuity Pathways Analysis® eases
the browsing of the scientific literature by providing manual annotations of the
papers. MetaCore™ GeneGo proposes a module to visualize the results of your
own experiments in a pathway context. Their main drawback is however that
they represent passive knowledge bases. Gene prioritization can add significant



16 INTRODUCTION

value to this field since the knowledge bases can be used to infer new associations
(predictions), or to benchmark the approaches.

A third strategy related to gene prioritization is Gene Set Enrichment Analysis
(GSEA), in which a set of genes is also investigated through the use of multiple
data sources. However the goal of the GSEA strategy is to investigate and to
characterize a complete gene set, without analyzing the individual genes in isolation.
For one gene set, a GSEA will return a set of features, coming from multiple data
sources, that correspond to molecular pathways and gene functions that best
characterize the entire gene set. In addition, several GSEA tools are performing
clustering or classification within the gene set [62, 123]. The main difference with
gene prioritization is that, gene prioritization identifies which genes are the most
promising candidates while a GSEA identifies the global function of the gene set
and the corresponding pathways. These two strategies are complementary and, in
fact, the first step of our gene prioritization strategy is the modeling part and is
very similar to GSEA.

Proposed strategies

The present thesis describes the development of two distinct algorithms for gene
prioritization that can both be classified as novelty detection methods. The first
one is using basic statistics and is described in chapters 3, 4, 7, and 8. The second
one is using a more advanced machine learning strategy and is described in chapters
5 and 6.

The first algorithm is based on simple statistics, accepts two inputs, and produces
one outcome. The two inputs are, on the one hand, the genes known to be associated
to the process of interest (the training genes), and on the other hand, the candidate
genes to prioritize. The aim is to rank the candidate genes from the most promising
genes on top to the less promising genes at the bottom, a three steps algorithm has
been defined to do so. In the first step, the model is trained. More precisely, simple
statistics are applied to the genomic data of the training genes, for instance, for
annotation based data sources, a GSEA is performed in order to detect the most
relevant ontological terms, the ones that best characterize the gene set. For most of
the vector based data, the profiles of the training genes are collected and averaged,
the averaged vector then represents the model of the training set. In the second
step, the candidate genes are scored and ranked accordingly using the models
built in the first step. For vector based data, the cosine of the angle between the
averaged profile and the candidate gene profile is used as a score for that candidate.
This second step results in a set of rankings, one per data source, that contain the
most promising candidate gene at the top and the less promising ones towards
the bottom. In the final step, the rankings are fused using the Order Statistics
(OS), which corresponds to a late integration scheme. This results in a global



GENE PRIORITIZATION 17

ranking with, again, the most promising genes at the top. This strategy is using
basic statistics to build the models and therefore better models could theoretically
be obtained with more advanced machine learning techniques. This method is
described on figure 1.4 and in appendix A, it is further discussed in chapters 3 and
4.

Figure 1.4: A basic model for gene prioritization that is based on simple statistics.
For the three main data types, the training and the scoring schemes are described,
the training information is plotted in blue and the candidate gene information is
in red. (Vector - left panel) The training is performed by calculating an average
vector (bold blue) from the training vectors (dotted blue). A candidate gene is
scored by calculating the cosine similarity, denoted θ, between its vector (red) and
the average vector calculated in the first step. A low cosine value indicates that
the candidate gene profile is similar to the average profile. (Network - top right) In
the training step, the subnetwork that contains the training genes and their direct
partners is gathered (blue and purple nodes - large grey ellipse). The score of a
candidate is based on the percentage of overlapping nodes between its own network
(red and purple nodes - small grey ellipse) and the training network (the two purple
nodes in this example). The larger the number of overlapping nodes compared to
the total number of genes, the better. (Annotation - bottom right) For training,
the annotation terms that are over-represented in the training set compared to the
genome are kept for the second step (they are indicated by grey dotted rounded
boxes in this example). Each term is associated to a p-value that represents the
quality of the over-representation. A candidate is scored by combining the p-values
of the annotated terms that have been kept in the first step using Fisher’s omnibus.
A more detailed description is given in appendix A.
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The second approach presented makes uses of kernel methods. It means that only
the algorithmic part is different, the inputs and outcomes are the same. First
all the data sources are transformed into kernels (i.e., matrices that contain the
distances between the genes pairwise). Then, a one-class SVM algorithm is trained
using simultaneously multiple kernels that correspond to multiple data sources.
The training involves the maximization of a margin M so that on the hyperspace
defined by the data, the training genes are separated from the origin (M represents
the distance between the origin and the hyperplan that separates the training genes
from it). Our implementation uses a soft margin to allow for a few misclassified
data points. The SVM model is then used to score the candidate genes and rank
them accordingly. Once again, the most promising genes are ranked at the top.
The advantage of this technique is that each source is first transformed into a
kernel which makes possible the merging of expression data and text mining data
with minimal effort. The main difference with the previous method is that the
integration happens during the modeling step (intermediate integration). This
method is described in figure 1.5 and discussed in chapters 5 and 6.

1.3 Genomic data sources

The data sources are at the core of every bioinformatics approach, they are the basis
upon which the algorithms derive novel hypothesis that when experimentally verified
reinforce our knowledge. Gathering and analyzing the data therefore represent
critical first steps of any bioinformatics method development. The amount of
genomic data available has started to grow exponentially since the human genome
was first drafted [131]. There are nowadays a plethora of databases that collect
different types of data for different purposes. This section proposes a brief overview
of what is available regarding our gene prioritization strategy.

The candidate gene prioritization problem focuses on genes, the data sources to
consider are then also gene centric or gene product centric (mRNA, proteins). This
means that other types of genomic data such as for instance patient centric data
that are often used in disease marker discoveries [213, 21, 19] or in disease subtype
classification [58, 84] have not been considered. The inclusion of this type of data
is further discussed in chapter 9.

Several gene features can be retrieved including their functions, their expression
profiles, their regulatory mechanisms (e.g., transcription factors, miRNA), their
sequences (e.g., raw DNA/RNA/protein sequences, 2D/3D structures), their roles
in biomolecular pathways, their associations with chemical components (including
drugs), and their ‘literature’ (i.e., what is written about them in the scientific
literature). There exist several databases for each of these features, meaning that
in total, it is a large amount of data to retrieve, analyze, organize and integrate.
Typical data integration problems such as unbalance in data sources size, overlap
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Figure 1.5: A more advanced model for gene prioritization based on a one-class
SVM strategy. (Top-left) Schematic representation of the hyperplane (in grey)
separating the (positive) training genes (filled circles) from the origin, along with
the unlabeled genes (open circles). The larger the margin M, the better. (Top-right)
Similar representation for a second kernel, with a different margin. (Bottom) The
optimal convex combination of two kernels leads to a new kernel, where the margin
between the positive genes and the origin is larger. A candidate is then scored by
projecting its profile xi along the vector that characterizes the hyperplane, the
higher the score f(xi), the better.

between data sources, noise, bias towards well studied genes are discussed in the
following sections.

1.3.1 Data versus knowledge

In bioinformatics, the term ‘data’ often refers to passive and unorganized
information and is opposed to knowledge that is structured information that
can be applied [54]. Gene prioritization is a predictive method, and as such, relies
on the use of both existing knowledge and raw data in order to make predictions
that are both accurate (by relying on knowledge) and novel (by relying on raw
data).

On the one hand, knowledge bases are collection of curated data that represent the
state-of-the-art in one specific domain. The data is often manually curated, meaning
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that experts in the field went through the data and a consensus representation was
created. This process is of course expensive and time consuming and it is often
more efficient to also rely partially on computational tools to help the curation
(e.g., DIP [263, 262, 264, 206]). The goal of the curation is to reduce the number of
false positive points (i.e., noise) in order to obtain high quality data. The curation
process is always a tradeoff between the quality of the data (less false positive
points included) and the amount of data kept in (more data points included). In
addition, knowledge bases such as Kegg [118, 120, 119], MetaCore and Ingenuity
are highly valuable for researchers since they represent gold standards that can be
used to benchmark computational approaches.

On the other hand, data repositories contain large amount of raw data, meaning
that the data was not curated nor analyzed and that the biological signal is possibly
hidden among background signal / noise. Repository such as the Gene Expression
Omnibus (GEO) [70, 27] and ArrayExpress [181] are huge collection of microarray
expression datasets that need to be pre-processed and analyzed. Also, yeast two-
hybrid assays (Y2H) have been used to produce large collection of predicted PPIs
that may contain a significant number of false positive [105, 104].

1.3.2 Primary and secondary data

A distinction is often made between primary data and secondary data [83]. On the
one hand, primary data represents data relevant to the problem currently under
investigation and is therefore case specific. For gene prioritization, it is the training
data, in our case a set of known disease genes for the disease under study. A set
of keywords or a dedicated expression dataset can be used alternatively for other
prioritization methods [240, 248, 51, 169, 268]. On the other hand, secondary data
is gathered beforehand and represents the field of investigation, and is therefore
not case specific. For gene prioritization, the field is genetics and secondary data is
the set of genomic data sources collected from various biological databases that
describe the function of the genes and their roles in biological processes. The
next sections describe in further details some characteristics of the secondary data
sources.

1.3.3 Unbalanced data sources

The data sources differ not only by their content but also by their intrinsic properties.
One property is the amount of data available per gene, if that amount varies between
genes, then the data source is unbalanced and might be biased. This unbalance
often reflects our current knowledge and is often observed between known genes
that have been well studied over the years and almost unknown genes for which only
few studies exist. An example is scientific literature for which well studied genes
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are mentioned in many more publications than poorly characterized genes. At the
contrary, there also exist data sources for which a stable amount of data is available
per gene, they are unbiased. An example is a gene expression data set. Genome
wide expression arrays measure the expression level of the whole transcriptome
at once and therefore produce an unbiased output. This bias towards the known
genes is observed in several of our data sources with sometimes a rather small effect
as can be observed in figure 1.6. As expected, it is stronger for knowledge bases
than for raw data repositories. The use of multiple sources for gene prioritization is
therefore not enough to guarantee reliable novel predictions. On the one hand, the
unbalanced data sources represent the current knowledge and should be used to
obtain reliable results. On the other hand, the balanced data sources contain hidden
knowledge and should be used to make novel predictions. For gene prioritization,
the optimal strategy is to systematically use both types of data sources to leverage
the effect between reliability and novelty.

1.3.4 Missing values

Another related property is the genome coverage, and consequently the missing
value problem. This is a typical characteristic observed in many biological data
sources. There are two scenarios, either the gene profile is missing completely or
only some data points are missing. Although these two scenarios have different
causes and consequences, similar strategies can be used among which the estimation
of the missing values or the use a tailored calculation measure to take missing
data points into account. It is often easier to estimate the missing values using
dedicated algorithms (e.g., replacing missing points by zero, k-nearest neighbors,
local least square imputation or bayesian principal component analysis). For the
knowledge bases, the missing value problem is directly related to the bias towards
the known genes described above. The amount of data available per gene can vary,
the extreme case is off course that nothing at all is known about a gene, then
that gene is considered missing (see figure 1.6). For the raw data repositories, the
amount of data available for each gene is stable. And although the technologies
used are usually genome wide, there are always data points missing due to the
technical limitations (e.g., no probe spotted on the expression array for a gene).
The data sources considered in the present work are also incomplete, we have
circumvented the problem by developing a ranking method that take bias in to
account or by estimating the missing values beforehand.

1.3.5 Multiple data sources

In engineering drawing, a three dimensional object can be represented by multiple
two dimensional drawings, each one representing a view of the considered object
(e.g., front, left, right, top, bottom and rear views). A single view is usually not
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Figure 1.6: Bias in the data sources. The data sources are plotted on a two-
dimension space, with the genome coverage on the x-axis, and the variation in the
amount of data on the y-axis. Genome coverage is defined as the percentage of
protein-coding genes for which data is available. Variation in the amount of data is
defined as the standard deviation of data points (e.g., number of annotated terms,
number of interacting genes, number of samples) normalized by the mean of data
points over the complete set. The blue dotted lines are plotted as guides to the
eyes to discriminate the data sources. The data sources with lowest coverage are
MIPS and DIP with less than 10% of the protein coding genes being present. This
means that these data sources can only contribute to very specific problems. At
the other end of the spectrum, Blast and Motif have the largest coverage since they
are based on the gene sequences that are available for almost all protein coding
genes. For similar reasons, the less biased data sources are sequences based (e.g.,
Motif and ProspectR). Functional annotation data sources are moderately biased
(e.g., Gene ontology and SwissProt) when compared to the interaction sources such
as Intact, Mint, and HPRD that are strongly unbalanced.

sufficiently informative to accurately describe the object while the use of multiple
views in conjunction allows a much clearer definition of the considered object. One
genomic data source can be seen as a single ‘view’ on the genome, and as for
engineering drawing, one data source alone does not contain enough information
to solve most biological questions. This is mainly because the molecular biology of
the cell is not completely understood despite the massive amount of data available.
Therefore, the integration of multiple heterogeneous data sources that can complete
each others is believed to be more efficient than relying on a single source. This
concept is crucial for any ‘systems biology’ approach, and also for the work described
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in this thesis.

The overlap between different data sources has been studied by several research
groups for human data [77, 153, 197, 134] and for model organisms (e.g., worm,
fly or mouse) [79]. These analysis have shown that, usually, a very poor overlap
is observed between several data sources. For example, Franke et al. reported
that only 20 interactions were shared by Reactome [116], Kegg [118, 120, 119],
BIND [22, 23], and HPRD [188, 160, 193] for a total of 55606 interactions [77].
Although a little higher, the overlap is also poor for any pair of data sources
(maximum is between Kegg and HPRD with 1074 common interactions for a
total of 39988 interactions). Franke et al. explain that this is largely due to the
use of different technologies (e.g., yeast-two-hybrid assays, affinity purification by
mass spectrometry, synthetic lethal screens) that create different network types
(e.g., physical interactions, metabolic pathways, genetic interactions, regulatory
networks) with different global objectives [77]. A similar study has been performed
on our data and is shown in figure 1.7. The results show a global agreement with
the results previously reported, the overlap between four protein-protein interaction
data sources is small (875 interactions for a total of 47431 - 1.84%). The biggest
pairwise overlap is observed for BioGrid and HPRD (43.28%), which means that
BioGrid is almost fully included in HPRD. The second biggest pairwise overlap is
observed between IntAct and Mint (21.69%).

Another advantage of the use of multiple data sources is noise reduction. The
fusion of multiple noisy data sources will indeed increase the signal-to-noise ratio
since the noise appears random when compared to the real biological signal [237].
This is further discussed in chapter 4.

1.3.6 Multiple species

The use of model organisms that are close enough to human in the phylogenetic
tree, and that can be easily and quickly bred is an efficient way of extending our
knowledge in genetics in general, and in human genetics in particular through
careful knowledge transfer. The ability of geneticists to study model organisms
such as fruit fly (Drosophila melanogaster) and mouse (Mus musculus) has greatly
contributed to extend our knowledge of several human disorders (e.g., alzheimer’s
disease [276, 74] and diabetes mellitus [112, 40, 49]), to study key developmental
pathways [89, 180, 177], and to produce unique biological datasets such as in situ
fluorescence hybridization experiments in developing embryos [245].

The use of data sources from multiples species is not novel in bioinformatics. It
was for instance used for sequence alignment problems to detect conserved regions
between any two species [267] or to detect regulatory motifs / transcription factor
binding sites in these conserved regions [5, 78]. It has also been widely used for gene
expression data to analyze the co-expression patterns of the genes [145] in order to
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Figure 1.7: Overlap in interaction data sources. The overlap between four protein-
protein interaction data sources is plotted. The numbers on the figure indicates the
number of interactions shared by several data sources. Interactions are summarized
at the gene level (different proteins from a single gene) and direction of the
interactions is not taken into account (‘A interacts with B’ is similar to ‘B interacts
with A’). There are a total of 47431 interactions, among which 875 are shared by
the four sets.

strengthen the further analyses such as motif detection [261, 161, 99] or human
diseases studies [251, 149]. The use of multiple species data sources is however still
an emerging topic for gene prioritization. Only few studies have been performed, and
mainly focused on expression data [50, 106, 175, 179, 214, 14, 152]. Furthermore, the
proposed approach was often disease specific through the integration for instance
of mouse and human expression data sets that examine the insulin resistance
associated with T2D pathogenesis [212]. The model proposed and discussed in the
present dissertation is the integration of multiple data sources (not restricted to
expression data) that cover multiple species in order to enhance candidate gene
prioritization for human (see chapter 6).

1.3.7 Data type and similarity measures

This section describes different data types and the associated algorithms. Examples
and details can also be found in figure 1.4.
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Vector based data

With vector based data, each gene is characterized by a vector of data points. An
example is gene expression data for which the expression level of genes are measured
in several conditions/tissues leading to the generation of one expression vector
per gene. Computing the similarity between two vectors can be achieved though
the cosine similarity or the Pearson correlation coefficient among other techniques.
Creating a model from a set of vectors can be achieved through averaging the
vectors or by selecting a set of representative vectors (e.g., via Principal Component
Analysis - PCA). More advanced techniques such as bi-clustering or clustering can
also be used to make the best of the data, and has proved to be more efficient for
complex and noisy data such as expression data [64, 266, 140].

Network based data

Gene or protein networks are networks in which the nodes are genes or proteins
and in which the edges represent an interaction between two nodes. A network is a
representation that is very often used in bioinformatics due to its easy interpretation.
However, different technologies and different aims will lead to networks that share
only limited informations [77]. There are numerous network based methods available
in order to make the best out of the data. For instance, the shortest path algorithm
can be used to determine how close two nodes are within a network, alternatively,
the overlap between the two neighborhoods can also be compared. For a given
gene, measures such as centrality or connectivity can also assess whether that gene
is key for the network under consideration [85, 20, 143, 8].

Annotation based data

Ontologies are vocabularies whose terms describe, for instance, gene functions
(e.g., Gene Ontology - GO [17]), disease phenotypes (e.g., Mammalian Phenotype
Ontology - MPO [218, 217]), or species anatomy (e.g., Foundational Model of
Anatomy - FMA [204]). Most ontologies are structured trees so that root terms are
general terms and that leaf terms are more specific. Most ontologies also allowed
multiple relationship between parent nodes and child nodes to reflect the complexity
of the modeled system. Most of the annotation based data sources are binary ((e.g.,
Gene Ontology), but some are also associated to a score that assesses the reliability
of the association (e.g., Sequence Ontology - SO [71, 72, 165]). Several algorithms
have been developed to work with ontologies in order to predict novel associations
(e.g., FuncBase [29], PoGo [117]) or to find the more representative terms for a set
of genes (e.g., DAVID [62, 103]). As already described in section 1.2.2, modeling
can be achieved through a GSE analysis to detect the most representative features.
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Sequence based data

Each gene has a DNA sequence, potentially several RNA and protein sequences.
Several tools have been developed to compare sequences (mainly through
alignments), to identify functional and regulatory elements that reside within
them, and to predict their 2D/3D structures. Tools such as BLAST (Basic
Local Alignment Search Tool) and FASTA [184] are based on sequence alignment
algorithms that allow the comparison of DNA, RNA and protein sequences in order
to detect homologous sequences. They can also be used to estimate the similarities
between all proteins pairwise as done in the SIMAP project [16, 198, 199].

Identifying the regulatory elements residing within DNA sequences is a key challenge
in bioinformatics since understanding when, how and where a gene is active helps in
building the cellular functional map. To this end, several computational approaches
have been developed. For instance, putative Transcription Factor Binding Sites
(TFBS) can be identified using Toucan that uses the upstream sequences of the
protein coding genes together with human-mouse conservation [5, 6] among other
tools [194, 61, 141, 98]. Other key players in regulation are miRNAS that have
been recently the focus of bioinformatics tools that try to identify the putative
miRNA binding sites [10, 138].

Similarly identifying the functional elements within sequences has received a lot
of interest from the bioinformatics community, and tools such as InterProScan
[274] are now able to predict accurately the protein functional domains from the
protein sequence. All these tools can be used to mine sequences and to derive more
structured data that are either annotation or vector based data.

Kernel data

An alternative method is the use of kernel methods that approach the problem by
mapping the data from the original feature space into a high dimensional space,
in which each coordinate corresponds to one original feature. This mapping is in
fact a trick, termed the ‘kernel trick’, that allows the use of a linear classifier (e.g.,
SVM) in the mapped space, which would not have been successful in the original
space. The linear classification in the mapped space is equivalent to a non-linear
classification in the original feature space. The best advantage of kernel methods
is that it is in fact not necessary to find the mapping function and therefore to
compute the exact coordinates of the data in the mapped space. The computation
of the similarities between the objects (e.g., through the inner product between
their profiles) creates a kernel matrix and makes sure that the mapping function
does exist (without actually determining it).

In this case, the gene prioritization problem can be defined as a novelty detection
problem, formally a one-class SVM, for which only the positive training genes
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are modeled in order to rank the unlabeled genes. For training, the approach
we propose finds a hyperplane separating the positive data from the origin. For
scoring, the distance between the hyperplane and the projection of the candidate
gene profile along the direction of the hyperplane is used. Figure 1.5 summarizes
schematically the kernel approach.

1.4 Validation

1.4.1 Benchmarking

A key step in algorithmic development is the benchmarking of the approach in order,
first, to validate the global strategy and to get an estimate of the performance on
real data, and, second, to compare it with existing methods. An easy and common
way of benchmarking a predictive algorithm is the cross-validation procedure. In a
cross-validation setup, a proportion of the existing knowledge is used for training
while the remaining part is used for testing. This is usually repeated a number
of times with different repartition of the existing knowledge between training
information and testing information, so that the results do not depend on a single
repartition. The predictions are then compared to the expected values and the
accuracy of the algorithm is estimated by measuring how correct the predictions
are. The proportion of existing knowledge allocated for training can vary, for
instance, in a 10-fold cross-validation, 90% of the data is used for training and 10%
for testing. The most extreme case is the leave-one-out cross-validation (LOOCV)
in which a single data point is reserved for testing. For gene prioritization, the
existing knowledge is represented by the genes known to be involved in a collection
of genetic diseases. LOOCV is usually preferred since it simulates the situation in
which a single novel disease gene is discovered using all currently known disease
genes. For one LOOCV iteration, one of the known disease gene is left out while
the remaining genes are used for training. The left-out gene is then mixed up with
randomly selected genes to build the candidate set of a given size. Alternatively,
the nearest chromosomal neighbors can be used instead to mimic a positive locus.
The candidate set is then scored and a ranking of the candidate genes is recorded. If
the algorithm is working perfectly, the left-out gene ranks first since its implication
in the process under study is in fact already known. This is repeated until every
known gene has been, in turn, left-out. A schematic LOOCV procedure is presented
in figure 1.8. For classification problems, a cross-validation procedure is usually
followed by the a Receiver Operating Characteristic (ROC) analysis. For gene
prioritization, the results of a single run is not a classification but a ranking of the
candidates. However, it is possible to derive a binary classification by applying a
threshold on this ranking, and thus to create a point in the ROC space. The ROC
space is defined by the False Positive Rate (FPR, also one minus specificity) on
the x-axis, and the True Positive Rate (TPR, or sensitivity, recall) on the y-axis.
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By varying this threshold, a complete ROC curve can be created. The goal in
ROC space is to be in the upper-left-hand corner (maximum TPR for a minimum
FPR). The Area Under the ROC Curve (AUC) is often used to summarize the
ROC curve and estimate how well positives are retrieved on average. More details
can be found in figure 1.8.

Figure 1.8: The leave-one-out cross-validation procedure. The validation consists
of a repetition of prioritization runs. For each run, one of the training genes
(orange boxes) is left-out and mixed with candidate genes (light yellow boxes). The
remaining training genes are used for training and, after prioritization, the ranking
of all the candidate genes (including the left-out gene) is recorded. This step is
repeated so that all the training genes are, in turn, left-out. In a second step,
these rankings are used to build a ROC curve. By using a threshold on the matrix
(blue line), it is possible to define a binary classifier, the associated sensitivity
and specificity, and therefore to draw a point in the ROC space. By varying the
threshold along the matrix, it is possible to determine a complete ROC curve and
its AUC.
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A benchmark analysis relies on one, but preferably several gene set to validate. Each
gene set must represent a precise biological process, a function, or a genetic disease.
Therefore, most of them are either manually built or derived from knowledge bases
that contain reliable disease, pathway and functional information. A leave-one-out
cross-validation as defined above will then estimate how easy it is to retrieve one
of the genes when using all the other to modelize the underlying process. Since the
prioritization methods rely on the ‘guilt-by-association’ concept, cross-validation
also assesses whether the genes within the set are similar to each other, therefore
meaning that the entire set is homogeneous. The validations described in chapters
3, 4, and 7 are indeed using OMIM, Gene Ontology, Ingenuity and Metacore among
other sources to build the validation sets.

Many pitfalls are inherent to the cross-validation approach, the main disadvantage
is the optimistic performance estimation [167]. The LOOCV procedure is measuring
the ability of an algorithm to capture what is already known by pretending it is
not known. For some problem, it is however not sufficient since the underlying
data might contain explicitly the same information. For gene prioritization, some
of the underlying data sources that are at the core of the prioritization do contain
information about the gene-disease association, which eases the retrieval of the
left-out genes. To circumvent that problem, one possibility is to discard the data
sources that might contain explicitly the gene-disease associations in order to get a
better estimate of the real performance. It is however not an optimal solution since
a potentially interesting data source might be discarded only because it contains
explicit gene-disease associations among other information. Another solution is
to use rolled back data, that is data prior to the discovery of the gene-disease
association in order to benefit from the data source without including directly the
gene-disease association. However, rolling back genomic data is costly and although
it has already been used for gene prioritization (for literature data only [4]), it is
not yet common in bioinformatics.

A main disadvantage of the AUC is that it aggregates the performance across the
entire curve. It is sometimes more interesting to look deeper at the beginning of
the ROC curve in order to estimate how well the algorithm is working for the top
predictions. To circumvent that, the notion of partial AUC has been defined as the
AUC below the ROC curve after truncation [250, 65]. This allows the measure of
the performance on the top predictions only but have rarely been used to estimate
the performance of the gene prioritization methods, the full AUC is still preferred.
An alternative to ROC curves are Precision Recall curves (PR) that are defined
by the True Positive Rate (TPR, or sensitivity, or recall) on the x-axis, and the
Positive Predicted Value (PPV or Precision) on the y-axis. In PR space, the goal
is to be in the upper-right-hand corner (maximum TPR and maximum PPV). The
main difference is that PR curves are not using the true negatives, that is the
negative predictions that are indeed negative. A direct consequence is that PR
curves give a more informative picture of an algorithm’s performance when dealing
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with highly skewed data sets [36, 41, 86, 127, 215]. Also, looking at PR curves can
expose differences between algorithms that are not apparent in ROC space [59].
PR curves appear thus more suitable for gene prioritization strategies since there
are more negative genes (randomly selected genes) than positive genes (known
disease genes), and since negative genes are not the focus. However, most of the
benchmark results of the existing prioritization strategies are still reported as ROC
curves and not PR curves. There exists other alternatives such as cost functions
[67, 68] that can take into account the cost associated to a false positive and a false
negative. Obtaining a reliable estimate of the real performance is an interesting
problem but it is often not the main concern since this is only an estimate of the
real performance. When possible, it is often more interesting to apply the strategy
to real biological questions to experimentally validate it.

1.4.2 Experimental validation

Benchmarking can prove that the overall method is correct and can be used to
estimate the performance of the approach. However it only represents the first
step of the validation, the second being the experimental validation, that is the
application to real biological problems. Starting from a biological process of interest,
and possibly from candidate genes, predictions are made in silico using prioritization
strategies, and only these predictions are then experimentally validated. Since
experimental validations are costly and time consuming. Several studies that make
predictions do not validate them experimentally but rather estimate how promising
are some of the candidate by examining the existing literature and the publicly
available results of independent experiments [234, 229, 73].

The possible experimental validations very much resemble the three situations
described section 1.2.1 (chromosomal aberration in a patient with a genetic
condition, differential expression of genes in a disease tissue, linkage analysis).
The inclusion of gene prioritization in wet lab based workflows is presented in
chapter 3 and 8.

1.4.3 External validation

Two main goals of bioinformatics are (i) the definition of computational methods
that use existing knowledge (including data) to create additional knowledge
(hypothesis) and (ii) their integration in research workflows to solve real biological
problems. To allow such integration, it is crucial to go further than the development
of conceptual methods and to implement these approaches into publicly available
tools that can be used by bioinformaticians and biologists world wide. Several
technologies and IT models can be used to make the approaches available to the
public, an overview of the models chosen for this thesis is described in figure 1.9.
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The proposed architecture allows multiple interfaces using multiple programing
languages, the use of the tools from the command line or using GUIs facilitating
thus its inclusion within workflows.

Figure 1.9: The IT system behind our tools. At the data level, two different objects:
the raw data in the database (for the basic statistics version) and the kernels
(K) that are created from the raw data (for the kernel based version). The core
level contains all the necessary code to perform gene prioritization. The version
based on basic statistics is written in Perl and in Java. The kernel based version
is written in Matlab and Java. All the core modules can be run on the command
line to perform candidate gene prioritization very efficiently. At the services level,
web services are available publicly in Java, PHP and Ruby on Rails (RoR). When
available, the services can interact with both Perl and Java cores depending on
the task. These can be accessed by computer programs to include prioritization
within computational workflows. At the client level, several interfaces have been
developed including a Java Web Start client (for the basics statistics version only),
classic websites (for both versions), and a Ruby On Rails client (for the basics
statistics version only with a special emphasis on miRNA prioritization). These
three clients are the ones that are mostly used by biologists and geneticists (see
chapter 4 for an overview of the user base).
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An important way to bring these computational methods to researchers is to create
web tools that are easy to use. This statement implies that the tool interface should
be intuitive so that potential users easily find their way and achieve what they
want to achieve. Another feature is the development and the maintenance of tools
and documents to help and guide users (this can include for instance a mailing list,
a FAQ section, and a manual together with running examples). The chapters 4
and 6 present the efforts made towards the development of such interfaces.

Bioinformaticians are very much interested in integrating different tools together
and in querying these tools automatically, which a web interface does not always
allow. In the recent years, web services have emerged as an efficient option to
grant access to computational tools. Also, tools such as Taverna [172, 107], Kepler
[11], and UCSC Galaxy [228, 35] allow the creation of elaborated computational
workflows that combine several web services together. Chapter 4 also presents the
development of such web services.

1.5 Thesis overview

Chapter 2 introduces the scientific topic of the present dissertation. More precisely,
it is a review of the numerous gene prioritization methods that have been developed
in the last decade. It focuses on the tools that are web based, freely accessible, and
available for human, but other approaches are also discussed.

Chapter 3 introduces a first prioritization strategy based on order statistics. It
also describes the implementation of this method into a publicly available Java
based tool termed ‘Endeavour’. In addition, it also presents the validation of the
approach through benchmarking and cross-validation on known gene sets. More
important, the integration of Endeavour into an experimental workflow is described
and applied to the analysis of an atypical DiGeorge syndrome deletion.

Chapter 4 presents a major update of our tool Endeavour. The first improvement
is the support of multiple species through the addition of three model organisms
(mouse, rat, and worm) and their corresponding data sources. The second
improvement is the development of a web based interface, easier to use, to
supplement the java based interface that requires more expertise.

Chapter 5 is a description of a second prioritization strategy. This strategy is based
on kernel methods and is using a 1-SVM algorithm. It outperforms our previous
method based on order statistics using the same benchmark data.

Chapter 6 describes the implementation of the method described in chapter 5 into a
web based tool termed ‘MerKator’. In addition, it describes a major improvement:
the cross-species module, that is the possibility to prioritize genes from one species
using data from multiple other species.
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Chapter 7 presents several large-scale benchmark analysis performed to validate the
approach behind Endeavour. The benchmarks are based on knowledge bases such
as Ingenuity Pathway Analysis, MetaCore GeneGo, Gene Ontology, and Kegg.

Chapter 8 describes the development of a gene prioritization tool dedicated to fruit
fly termed ‘Endeavour-HighFly’, and its experimental validation through the study
of the atonal mediated neural development. In addition, this chapter contains a
collection of experimental validations of Endeavour.

Chapter 9 presents some conclusions about the work described in the present
dissertation. Based on these conclusions, it also elaborates on several research
avenues to be explored in the future.





Chapter 2

A guide to web tools to
prioritize candidate genes

2.1 Summary

In the last decade, the gene prioritization problem has received a lot of attention
from the bioinformatics community. Several approaches have been defined,
benchmarked, and implemented into computational tools [275, 2, 110, 4, 50, 273,
211, 268, 205, 152, 51, 240, 102, 248, 272, 82, 265, 126, 196, 80, 163, 148, 39, 239,
77, 235, 169, 236, 187, 186]. These computational tools differ by the inputs they
accept, the outputs they generate, the genomic data sources they integrate, and
the prioritization strategy they use. Furthermore, several of them have been
experimentally validated and have proved to be useful in finding novel disease
or pathway genes. There was however only few gene prioritization reviews, and
their authors mostly made use of only three to five tools to predict new disease
contributing genes [234, 73]. Furthermore, there were no catalog of tools from
which users could select the tools that suit best their needs. This review is a
remedy to that problem and proposes a website that contains enough information
for the reader to select the web based prioritization tools he wants to investigate
more. The website represents a dynamic version of the static review and is meant
to be updated on a regular basis.
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Abstract
Finding the most promising genes among large lists of candidate genes has been defined as the gene prioritization
problem. It is a recurrent problem in genetics in which genetic conditions are reported to be associated with
chromosomal regions. In the last decade, several different computational approaches have been developed to
tackle this challenging task. In this study, we review 19 computational solutions for human gene prioritization that
are freely accessible as web tools and illustrate their differences.We summarize the various biological problems to
which they have been successfully applied. Ultimately, we describe several research directions that could increase
the quality and applicability of the tools. In addition we developed a website (http://www.esat.kuleuven.be/gpp) con-
taining detailed information about these and other tools, which is regularly updated.This review and the associated
website constitute together a guide to help users select a gene prioritization strategy that suits best their needs.

Keywords: gene prioritization; candidate gene; disease gene; in silico prediction; review

BACKGROUND
One of the major challenges in human genetics is to

find the genetic variants underlying genetic disorders

for effective diagnostic testing and for unraveling the

molecular basis of these diseases. In the past decades,

the use of high-throughput technologies (such as

linkage analysis and association studies) has permitted

major discoveries in that field [1, 2]. These technol-

ogies can usually associate a chromosomal region

with a genetic condition. Similarly, one can also

use expression arrays to obtain a list of transcripts

differentially expressed in a disease sample with re-

spect to a reference sample. A common characteristic

of these methods is usually the large size of the

chromosomal regions returned, typically several

megabases [3]. The working hypothesis is often

that only one or a few genes are really of primary

interest (i.e. causal). Identifying the most promising

candidates among such large lists of genes is a chal-

lenging and time consuming task. Typically, a biolo-

gist would have to go manually through the list of

candidates, check what is currently known about
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each gene, and assess whether it is a promising can-

didate or not. The bioinformatics community has

therefore introduced the concept of gene prioritiza-

tion to take advantage of both the progress made in

computational biology and the large amount of

genomic data publicly available. It was first intro-

duced in 2002 by Perez-Iratxeta etal. [4] who already

described the first approach to tackle this problem.

Since then, many different strategies have been de-

veloped [5–34], among which some have been im-

plemented into web applications and eventually

experimentally validated. A similarity between all

strategies is their use of the ‘guilt-by-association’

concept: the most promising candidates will be the

ones that are similar to the genes already known to

be linked to the biological process of interest

[35–37]. For example, when studying type 2 diabetes

(T2D), KCNJ5 appears as a good candidate through

its potassium channel activity [38], an important

pathway for diabetes [39], and because it is known

to interact with ADRB2 [40], a key player in dia-

betes and obesity. This notion of similarity is not

restricted to pathway or interaction data but rather

can be extended to any kind of genomic data.

Recently, initial efforts have been made to experi-

mentally validate these approaches. For instance, in

2006, two independent studies used multiple tools in

conjunction to propose new meaningful candidates

for T2D and obesity [41, 42]. More recently, Aerts

et al. [43] have developed a computationally sup-

ported genetic screen whose computational part is

based on gene prioritization (Figure 1).

With this review, we aim at describing the current

options for a biologist who needs to select the most

promising genes from large candidate gene lists. We

have selected strategies for which a web application

was available, and we describe how they differ from

each other and, when applicable, how they were suc-

cessfully applied to real biological questions. In add-

ition, since it is likely that novel methods will be

proposed in the near future, we have also developed

a website termed ‘Gene Prioritization Portal’ (avail-

able at: http://www.esat.kuleuven.be/gpp/) that

represents an updatable electronic review of this field.

SELECTINGTHEGENE
PRIORITIZATION TOOLS
In this study, we review 19 gene prioritization tools

that fulfill the two following criteria. First, the strategy

should have been developed for human candidate

disease gene prioritization. Notice that predicting

the function of a gene or its implication in a genetic

condition are two closely related problems.

Moreover, several gene function prediction methods

have indeed been applied to disease gene prioritization

with reasonable performance [5]. However, it has

been shown that gene prioritization is more challen-

ging than gene function prediction since diseases often

implicate a complex set of cascades covering different

molecular pathways and functions [44]. Besides, to our

knowledge, none of the existing gene function pre-

diction methods includes disease-specific data. Thus,

these methods were excluded from the present study.

For gene function prediction methods, readers are

referred to the reviews by Troyanskaya et al. [45] and

Punta et al. [46]. Our second criterion is that a func-

tional web application should be available for the pro-

posed strategy. Since the end users of these tools are

not expert in computer science, approaches only pro-

viding a set of scripts, or some code to download have

been discarded. Furthermore, we focus our analysis on

the noncommercial solutions and thus require the web

tools to be freely accessible for academia. Using these

criteria, we were able to retain a total of 19 applica-

tions that still differ by (i) the inputs they need from the

user, (ii) the computational methods they implement,

(iii) the data sources they use and (iv) the output they

present to the user. The thorough discussion of these

characteristics has allowed us to create a decision tree

(Figure 2) that supports users in their decision process.

In the following section, we summarize the gene

prioritization tools that we have retained. The corres-

ponding references and the URL of their web appli-

cations are presented in Table 1. Several approaches

combine different data sources. SUSPECT ranks

candidate genes by matching sequence features,

gene expression data, Interpro domains, and GO

terms [6]. CANDID uses several heterogeneous data

sources, some of them chosen to overcome bias [7].

Endeavour is, however, using training genes known

to be involved in a biological process of interest and

ranks candidate genes by applying several models

based on various genomic data sources [8].

Among the tools using different data sources,

ToppGene, SNPs3D, GeneDistiller and Posmed in-

clude mouse data within their algorithms, but in a

different manner. ToppGene combines mouse

phenotype data with human gene annotations and

literature [9]. SNPs3D identifies genes that are can-

didates for being involved in a specified disease based

on literature [10]. GeneDistiller uses mouse

page 2 of 11 Tranchevent et al.

 by on M
arch 22, 2010 

http://bib.oxfordjournals.org
D

ow
nloaded from

 



Figure 1: A major challenge in human genetics is to unravel the genetic variants and the molecular basis that
underlay genetic disorders. In the past decades, geneticists have mainly used high-throughput technologies (such as
linkage analysis and association studies).These technologies usually associate a chromosomal region, possibly encom-
passing dozens of genes, with a genetic condition. Identifying the most promising candidates among such large lists
of genes is a challenging and time consuming task. The use of computational solutions, such as the ones reviewed
in that paper, could reduce the time and the money spent for such analysis without reducing the effectiveness of
the whole approach.

Figure 2: Decision tree that categorizes the19 gene prioritization tools according to the outputs they use and the
outputs they produce. This tree is designed to support the end users in their decision so that they can choose the
tools that suit best their needs. By starting from the first question on the top and by going down, the user can de-
termine a list of tools that can be used; in addition, the Figure 3 that describes the data sources used by the tool
can also be used to support the decision.
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phenotype to filter genes [11] and Posmed utilizes

among other data sources orthologous connections

from mouse to rank candidates [12].

G2D uses three algorithms based on different pri-

oritization strategies to prioritize genes on a chromo-

somal region according to their possible relation to

an inherited disease using a combination of

data mining on biomedical databases and gene se-

quence analysis [4]. TOM efficiently employs func-

tional and mapping data and selects relevant

candidate genes from a defined chromosomal

region [13, 14].

Tools that are mainly based on literature and text

mining are PolySearch, MimMiner, BITOLA,

aGeneApart and GenePropector. PolySearch extracts

and analyses relationships between diseases, genes,

mutations, drugs, pathways, tissues, organs and me-

tabolites in human by using multiple biomedical text

databases [15]. MimMiner analyses the human phe-

nome by text mining to rank phenotypes by their

similarity to a given disease phenotype [16] and

BITOLA mines MEDLINE database to discover

new relations between biomedical concepts [17].

aGeneApart creates a set of chromosomal aberration

maps that associate genes to biomedical concepts by

an extensive text mining of MEDLINE abstracts,

using a variety of controlled vocabularies [18].

GeneProspector searches for evidence about human

genes in relation to diseases, other phenotypes and risk

factors, and selects and prioritizes candidate genes by

using a literature database of genetic association stu-

dies [19].

Finding associations between genes and pheno-

types is the focus of Gentrepid and PGMapper.

Whereas Gentrepid predicts candidate disease

genes based on their association to known disease

genes of a related phenotype [20], PGMapper

matches phenotype to genes from a defined

genome region or a group of given genes by com-

bining the mapping information from the Ensembl

database and gene function information from the

OMIM and PubMed databases [21].

Tools, such as GeneWanderer, Prioritizer,

Posmed and PhenoPred, make use of genomewide

networks. GeneWanderer is based on protein–pro-

tein interaction and uses a global network distance

measure to define similarity in protein–protein inter-

action networks [22]. PhenoPred uses a supervised

algorithm for detecting gene–disease associations

based on the human protein–protein interaction net-

work, known gene–disease associations, protein

sequence and protein functional information at the

molecular level [23]. Instead of using a human pro-

tein–protein interaction network, Posmed is based

on an artificial neural network-like inferential pro-

cess in which each mined document becomes a

neuron (documentron) in the first layer of the net-

work and candidate genes populate the rest of layers

[12].

Although we have limited our analysis to the tools

freely accessible via a web interface, we are aware of

other gene prioritization methods that were

excluded of the present analysis but that still repre-

sent important contributions to the field. First,

Table 1: Overview of the 19 tools reviewed in the current study with their corresponding publications and website

Tool References Website

SUSPECT [6] http://www.genetics.med.ed.ac.uk/suspects/
ToppGene [9] http://toppgene.cchmc.org/
PolySearch [15] http://wishart.biology.ualberta.ca/polysearch/index.htm
MimMiner [16] http://www.cmbi.ru.nl/MimMiner/cgi-bin/main.pl
PhenoPred [23] http://www.phenopred.org
PGMapper [21] http://www.genediscovery.org/pgmapper/index.jsp
Endeavour [8, 32] http://www.esat.kuleuven.be/endeavour
G2D [33, 34] http://www.ogic.ca/projects/g2d_2/
TOM [13, 14] http://www-micrel.deis.unibo.it/�tom/
SNPs3D [10] http://www.SNPs3D.org
GenTrepid [20] http://www.gentrepid.org/
GeneWanderer [22] http://compbio.charite.de/genewanderer
Bitola [17] http://www.mf.uni-lj.si/bitola/
CANDID [7] https://dsgweb.wustl.edu/hutz/candid.html
PosMed [12] http://omicspace.riken.jp
GeneDistiller [11] http://www.genedistiller.org/
aGeneApart [18] http://www.esat.kuleuven.be/ageneapart
GeneProspector [19] http://www.hugenavigator.net/HuGENavigator/geneProspectorStartPage.do
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several gene prioritization methods, such as

CAESAR [24], GeneRank [25] and CGI [26] pro-

pose interesting alternatives (e.g. natural language

processing based disease model [24]), however,

they only provide a standalone application to install

and run locally. We believe that a web application is

essential since it does not require an extensive IT

knowledge to be installed and used. Second, there

are methods that were once pioneers in that field and

for which web applications were provided in the

past, but are not accessible any more (e.g. TrAPSS

[27], POCUS [28], Prioritizer [29]). Prioritizer

recently moved from a living web application to a

program to download and was therefore excluded

prior to publication. Third, several studies also pre-

sent case specific approaches tailored to answer a spe-

cific problem [30, 47–53]. For instance, Lombard

et al. [47] have prioritized 10 000 candidates for

the fetal alcohol syndrome (FAS) using a complex

set of 29 filters. Their analysis reveals interesting

therapeutic targets like TGF-�, MAPK and members

of the Hedgehog signaling pathways. Another ex-

ample is the network-based classification of breast

cancer metastasis developed by Chuang et al. [48].

These approaches are, however, case specific and

cannot be easily ported to another disease. Last,

alternative techniques to circumvent recurrent prob-

lems in gene prioritization are currently under devel-

opment. As an illustration, Nitsch et al. [31] have

proposed a data-driven method in which knowledge

about the disease under study comes from an expres-

sion data set instead of a training set or a keyword set.

DESCRIPTIONOF THEGENE
PRIORITIZATIONMETHODS
The genomic data are at the core
We have defined a data source as a type of data that

represents a particular view of the genes (see Box 1—

‘Gene view’) and thus can correspond to several

Box1: Glossary
Gene prioritization
Thegeneprioritization problemhasbeen defined as the identification of themostpromising candidate genes from a
large list of candidates with respect to a biological process of interest.
Data sources
Data sources are at the core of the gene prioritization problem since the quality of the predictions directly correl-
ateswith the quality of the data used tomake these predictions.The different genomic data sources can be defined
as different views on the same object, a gene. For instance, pathway databases (such as Reactome [58] and Kegg
[59]) define a ‘bio-molecular view’ of the genes, while PPI networks (such as HPRD [60] and MINT [61]) define an
‘interactomeview’. A single data typemightnotbepowerful enough to predict the disease causing genes accurately
while the use of several complementary data sources allow much more accurate predictions [8, 29].
SupplementaryTable1contains the list of the12 data sources we have defined.
Inputs
Two distinct types of inputs canbe distinguished: theprior knowledge about the genetic disorder of interest and the
candidate search space.On the one hand, the prior knowledge represents what is currently known about the dis-
ease under study, it canbe represented either as a set of genes known to play a role in the disease or as a set of key-
words that describe the disease. On the other hand, the candidate search space defines which genes are
candidates.For instance, a locus linked to a genomic conditiondefines a quantitative trait locus (QTL), the candidates
are therefore the genes lying in that region. Another possibility is a list of genes differentially expressed in a tissue
of interest that are not necessary from the same chromosomal location. Alternatively, the whole human genome
can be used. An overview of the inputs requiredby the applications can be found in Table 2.
Outputs
For the 19 selected applications, the output is either a ranking of the candidate genes, the most promising genes
being ranked at the top, or a selection of the most promising candidates, meaning that only the most promising
genes are returned. Several tools areperformingboth at the same time (Gentrepid, Bitola, PosMed), that is first se-
lecting the most promising candidates and then ranking only these. Several tools benefit from an additional
output, a statistical measure, often a P-value, which estimates how likely it is to obtain that ranking by chance
alone.The statisticalmeasure is often of crucial importance since therewill always be a gene ranked in first position
even if none of the candidate genes is really interesting.Notice then that a selection canbe obtained from a ranking
byusing the statisticalmeasure (e.g. by choosing a threshold abovewhich all the genes are considered as promising).
You can find an overview of the outputs produced by the different applications inTable 2.
Textmining
It is the automatic extraction of information aboutgenes, proteins and their functionalrelationships from textdocu-
ments [62].
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related databases. Data sources are at the core of the

gene prioritization problem since both high coverage

and high quality data sources are needed to make

accurate predictions. In total, we have defined 12

data sources: text mining (co-occurrence and func-

tional mining), protein–protein interactions, func-

tional annotations, pathways, expression, sequence,

phenotype, conservation, regulation, disease prob-

abilities and chemical components. Using these cate-

gories, we have built a data source landscape, which

describes for each tool which data sources it uses

(Supplementary Table 1). We can observe from the

data source landscape map that text mining is by far

the most widely used data source since 14 out of the

19 tools are using co-occurrence or functional text

mining. Most of the approaches make use of a wide

range of data sources covering distinct views of the

genes, but four tools rely exclusively on text mining

(PGMapper, Bitola, aGeneApart and

GeneProspector), however their use of advanced

text mining techniques still allow them to make

novel predictions. At the other end of the spectrum,

conservation, regulation, disease probabilities and

chemical components are poorly used and only by

two tools at most although they describe unique fea-

tures that might not always be captured by the other

data sources. However, the rule should not be to

include as many data sources as possible but rather

to reach a critical mass of data beyond which accurate

predictions can be made.

Inputs and outputs of the methods
The tools also differ in the inputs they require and

the outputs they provide. Two types of inputs have

been distinguished: the prior knowledge about the

genetic disorder of interest and the candidate search

space. We furthermore consider two possibilities for

the prior knowledge as it can be defined by a set of

genes or by a set of keywords. The retrieval of a

training set requires the knowledge of, at least, one

disease causing gene, but preferably more than one.

In addition, the set needs to be homogeneous,

meaning that it usually contains between 5 and 25

genes that, together, describe a specific biological

process. When no disease gene can be found, mem-

bers of the pathways disturbed by the diseases are also

an option (Thienpont et al., manuscript in prepar-

ation). Alternatively, several tools accept text as

input, text is either a disease name, selected from a

list, or a set of user defined keywords that describe

the disease under study. In the second case, the

expert should define a complete set of keywords

that covers most aspects of the disease (e.g. to

obtain reliable results, ‘diabetes’ should be used in

conjunction with ‘insulin’, ‘islets’, ‘glucose’ and

others diabetes related keywords but not alone).

Regarding the candidate search space, we have

distinguished between a locus, a differentially

expressed genes (DEG) list, and the whole

genome. A locus is a set of neighboring genes

(e.g. all genes from the cytogenetic band 22q11.23)

while the genes in a DEG list are not necessarily

located at the same locus. Although these two

options are similar, the distinction we made is im-

portant since several tools allow the definition of a

locus but not of DEG list and vice versa.

Alternatively, nine tools allow the exploration of

the full genome, in case no candidate gene set can

be defined beforehand.

Regarding the outputs, two types were con-

sidered, a ranking and a selection of the candidate

genes. In a ranking scenario, all the candidates are

ranked so that the most promising candidate can be

found at the top, while for a selection, a subset of the

original candidate set, containing only the most pro-

mising candidates, is returned. From the 19 tools,

four perform a selection of the candidates and

three of these four perform a selection followed by

a ranking. In addition, we record which tools further

measure the significance of their results via any stat-

istical method. Of interest, a selection can then be

obtained from a ranking by using a threshold on this

statistical measure. Table 2 shows an overview of the

input data required by the tools as well as the output

they produce. Also, a clustering of the tools regard-

ing to their inputs and outputs is presented in

Figure 3. In addition, we have created a decision

tree to help users to choose the most suitable tools

for their biological question. The tree is based on

three basic questions that users should ask themselves

before selecting the tools they want to use. By an-

swering these questions, users define first, which

genes are candidate; second, how the current know-

ledge is represented; and third (when necessary),

what is the desired output type.

The importance of biological validation
Since the methods we are interested in are predictive,

an important criterion for selection is the perform-

ance. The tools reviewed here were all originally

published together with the results of a benchmark

analysis as a proof of concept. It is however difficult to
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Figure 3: Repartition of the19 tools according to the data sources they use. The four data sources most common-
ly used areText (functional and interactions mining), protein^protein interactions, functional annotations and path-
ways and are therefore represented as large ellipses. The additional seven data sources are represented with
symbols.

Table 2: Description of the inputs needed by the tools and the outputs produced by the tools

Tool Inputs Output

Training data Candidate genes Ranking Selection of
candidates

Test
statistic

KnownGenes Keywords Region DEG Genome

SUSPECT x x x x
ToppGene x x x x
PolySearch x x x x
MimMiner x x x
PhenoPred x x x
PGMapper x x x x
Endeavour x x x x x x x
G2D x x x x x
TOM x x x
SNPs3D x x x
GenTrepid x x x x x
GeneWanderer x x x x x
Bitola x x x x x
CANDID x x x
aGeneApart x x x x
GeneProspector x x x
PosMed x x x x x x
GeneDistiller x x x x

Wedistinct two types of inputs: theprior knowledge about the genetic disorder of interest and the candidate search space.Theprior knowledge can
be represented either as a set of genes known to play a role in the disease or as a set of keywords that describe the disease.The candidate search
space is either a locus linked to a genomic condition or a list of genes differentially expressed in a tissue of interest (DEG) or the whole human
genome.The output is either a ranking of the candidate genes or a selection of the most promising candidates. In addition, a statistical measure
that estimates how likely it is to obtain that result by chance alone.More details about the inputs and outputs can be found in the Box1.
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compare the performance of these benchmarks dir-

ectly since their setups are different (different diseases,

different genes). Although a rigorous comparison is

still missing, various studies that compare several gene

prioritization tools by analyzing their performance on

a particular disease have been performed (e.g. on T2D

[41, 42, 54]). An overview is presented in

Supplementary Table 2. Although it is of primary

importance, the performance obtained through a

benchmark analysis represents more a proof of con-

cept than a critical performance assessment.

Therefore, it is only an estimation of the real perform-

ance (e.g. for a real biological application) and it is

also most likely benchmark specific. That is the rea-

son why we believe that the definition of the

desired inputs/outputs and data sources, and the

knowledge of real biological applications are also

crucial.

Beside these benchmarks, several biological appli-

cations have been described in the literature.

Supplementary Table 3 gives an overview of these

applications. Interestingly, three of them analyzed

T2D associated loci and are using several gene pri-

oritization tools in conjunction [41, 42, 54]. Elbers

et al. [42] analyzed five loci previously reported to be

linked with both T2D and obesity that encompass

more than 600 genes in total. The authors used six

gene prioritization tools in conjunction and reported

27 interesting candidates. Some of them were already

known to be involved in either diabetes or obesity

(e.g. TCF1 and HNF4A, responsible for maturity

onset diabetes of the young, MODY) but some can-

didates were novel predictions. Among them, five

genes were involved in immunity and defense (e.g.

TLR2, FGB) and it is known that low-grade inflam-

mation in the visceral fat of obese individuals causes

insulin resistance and subsequently T2D. Also, 10

candidate genes were so-called ‘thrifty genes’ because

of their involvement in metabolism, sloth and glut-

tony (e.g. AACS, PTGIS and the neuropeptide Y

receptor family members). Using a similar strategy,

Tiffin et al. [41] prioritized T2D and obesity asso-

ciated loci and proposed another set of 164 promis-

ing candidates. Of interest, 4 of the 27 candidates

reported by Elbers et al. were also reported by

Tiffin et al. (namely CPE, LAMA5, PPGB and

PTGIS). Although there is an overlap between the

predictions, some important discrepancies remain

and can be explained by the fact that the two studies

do not focus on the same set of loci and do not use

the same gene prioritization tools. This indicates that

several gene prioritization tools can be applied in

parallel to strengthen the results. Teber et al. [54]

compared the finding from recent genome-wide as-

sociation studies (GWAS) to the predictions made by

eight gene prioritization methods. Of the 11 genes

associated with highly significant SNPs identified by

the GWAS, eight were flagged as promising candi-

dates by at least one of the method. Another inter-

esting validation is a computationally supported

genetic screen performed by Aerts et al. [43] in fruit

fly. The aim of a genetic screen is to discover in vivo
associations between genotypes and phenotypes. A

forward genetic screen is usually performed in two

steps: in the first step, the loci associated to the

phenotype under study are identified and in a

second step, the genes from these loci are assayed

individually. Aerts et al. have introduced a computa-

tionally supported genetic screen in which the

associated loci found in the first step are prioritized

using Endeavour and then only the genes ranked in

the top 30% of every locus are assayed in a secondary

screen. Additionally, it was shown that 30% is a

conservative threshold since all the positives were

ranked in the top 15%. This shows that gene priori-

tization tools, when integrated into such

workflows, can increase their efficiency for a

decreased cost.

Intuitive interfaces
Beside the data, the inputs/outputs and the perform-

ance, what is critical for a tool to be used is its

interface. Ideally, it has to be an intuitive interface

that accepts simple inputs and provides detailed

outputs. A past success and reference in bioinformat-

ics is basic local alignment search tool (Blast) for

which only a single sequence needs to be provided

[55]. In return, Blast provides the complete detailed

alignments together with cross-links to sequence

databases so that the user can fully understand

why the input sequence matches to a given database

sequence. We, as a community, should develop tools

that answer the end users’ needs and that probably

corresponding to the simple input—detailed

output paradigm described above. Besides, the

presence of an advanced mode that allows users

to fine tune the analysis is also clearly an

advantage (e.g. defining a threshold for the Blast

e-value).

Several gene prioritization tools such as

MimMiner, PhenoPred, aGeneApart and

GeneProspector can already be fed with a single
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disease name that represents the simplest training

input possible. However, an advanced mode to fine

tune the analysis is missing for these applications. The

outputs generated by the tools are very detailed and

almost always contain cross-references to external

databases (e.g. Hugo, EnsEMBL, RefSeq).

However, only few tools present detailed informa-

tion about the data underlying the ranking of the

candidate genes. This data is crucial for the user

who needs to determine which candidates should

be investigated further. This is probably the weakest

point of most of the current tools although several

tools like Suspects and G2D already propose prelim-

inary solutions. In addition, most of the tools benefit

from a user manual and a dedicated help section that

help users to understand how they should interact

with the interface.

FUTUREDIRECTIONS
With the use of advanced high-throughput technol-

ogies, the amount of genomic data is growing expo-

nentially and the quality of the gene prioritization

methods is also increasing accordingly. However,

several avenues need to be explored in the coming

years to increase even further the potential of these

tools. We have already mentioned the interface,

which is sometimes overlooked in the software

development process. More at the data level, some

efforts have already been made to use the huge

amount of data available for species close to human

[9–12]. Already, several tools described in the current

review include rodent data (e.g. SNPs3D,

ToppGene, GeneDistiller, Posmed). However, the

development of gene prioritization approaches com-

bining in parallel many data sources from different

organisms is still to come. Another important devel-

opment is the inclusion of clinical and patient related

data. DECIPHER [56] already represents a first step

in that direction since it includes aCGH data from

patients and allow text mining prioritization (using

the core engine of aGeneApart [18]) of the genomic

alterations, detected in the aCGH data, with respect

to the phenotype of the patient. Efforts should also

be made to include data sources that have been, so

far, rarely included such as chemical components and

miRNA data. Another important research track is to

explore different computational approaches to im-

prove once more the algorithms that are running

the gene prioritization methods. Preliminary results

have shown, for example, that kernel methods are

more efficient than simpler statistical methods

such as Pearson correlation or binomial based

over-representation [57]. The last challenge of this

field is its necessary adaptation to the shift observed

in genetics towards the study of more complex

disorders that is though to be more difficult than

the study of the Mendelian diseases.

Altogether, the methods described in this review

represent significant advances indicating that this

field is still an emerging field. It is therefore most

likely that novel methods will be developed in the

future and that the existing ones will be improved.

To overcome the limitations due to the static nature

of this review, we have developed a website whose

aim is to represent an updatable electronic version of

the present review. This web site, termed ‘Gene

Prioritization Portal’ (available at: http://www.esat

.kuleuven.be/gpp), contains, for every tool, a

detailed sheet that summarizes the necessary infor-

mation such as the inputs needed and the data

sources used. It also builds tables that describe the

general data source usage and the general input/

output usage that are equivalent to Table 2 and

Supplementary Table 1 of the current publication.

We believe that this website represents a first step to

guide users through their gene prioritization

experiments.

CONCLUSION
This review tries to clarify the world of gene priori-

tization to the final user through an exhaustive guide

of 19 human candidate gene prioritization methods

that are freely accessible through a web interface.

This taxonomy has been done according to different

characteristics of the tools, including the type of

input, data sources used during the process of priori-

tization and the desired output. We think that this

review is a useful tool not only to help the wet lab

researchers to dive into gene prioritization, but also

to guide them to select the most convenient method

for their analysis.

To keep up with the especially fast evolving

world of bioinformatics in general and gene priori-

tization in particular, we have developed a website

http://www.esat.kuleuven.be/gpp/ that contains

updated information of all the tools described in

this review. We expect our portal to become a ref-

erence point in gene prioritization where not only

users but also developers will find up-to-date infor-

mation necessary for their research.
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Key Points

� Numerous computational methods have been developed to
tackle the gene prioritization problem in human; we have col-
lected themethods that offer suchweb services freely.

� Wehave describedhow thesemethods differ fromeachotherby
the inputs they need, the outputs they produce and the data
sources they use.

� We have furthermore described some of the biological applica-
tions to which gene prioritization approaches were successfully
applied.

� Awebsite that contains information about the available genepri-
oritization methods has been developed and will be updated on
a regular basis.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.
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CONTRIBUTION OF THE PHD CANDIDATE 47

2.2 Contribution of the PhD candidate

The PhD candidate has reviewed the literature in order to define the list of the
gene prioritization methods to include in the publication. The PhD candidate has
reviewed one third of the associated web tools, and mined the literature to find
experimental validations. The PhD candidate has created the associated website
and has written the manuscript.

2.3 Discussion

In this paper, the discussion of the tools’ characteristics has allowed us to divide
them up into several categories. One can, for instance, clusters the tools according
to the inputs they need or to the data sources they use and therefore select the
ones that fit best his/her needs. For this review, only the 18 prioritization tools
that were publicly available as web servers were retained. This set of 18 tools is a
subset of all the prioritization approaches that have been proposed since many of
them have not been implemented into publicly available computational tools, or
are provided as stand alone scripts / code to download. This selection decision was
motivated by the fact that the end users of these tools are mainly biologists who are
more willing to use web servers than scripts (not mentioning the implementation
of a method from scratch). However, several of the discarded methods were based
on interesting prioritization concepts or algorithms that are often not found in
the existing web tools. It was therefore decided to include them in the web portal
so that users could still consider the use of a method for which no web server
is available. Upon this decision, the portal was then extended with 6 additional
methods which brings the total to 24 prioritization strategies. The website was
also extended with recent publications that describe the application of some of the
existing tools to biological questions. Last update, a search engine was built to
help users to find the tools that fulfill his/her criteria.

2.3.1 Assessing the relevance of the predictions

Creating a portfolio of these web tools and maintaining the corresponding website
is only the first step towards a better understanding of this especially fast evolving
field. A number of independent studies have been performed to identify the
most promising candidates for type 2 diabetes mellitus and obesity [234, 73],
however these predictive studies were not followed up by experimental studies to
estimate the quality of the predictions, and they were only focusing on four or five
prioritization tools at the time. Altogether, this means that a critical assessment
of the tools’ performance on real biological cases is still missing. One possibility is
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to systematically estimate their ability to predict disease-gene associations as they
are reported in the literature but before their inclusion in genomic databases (a
strategy similar to the CASP strategy [164]). A second possibility is to start with
the prediction of interesting candidates for many genetic disorders in a first time,
and to continue, a few years later, with a follow-up study to check the results. This
strategy expands over several years which makes it difficult to realize in practice,
an alternative is the use of rolled back genomic data. With five years rolled back
data, disease-gene associations from the last four years can be assessed directly
without having to actually wait five years (to leave a one year gap). Rolling back
data is however only an emerging research interest in bioinformatics, and many
databases are not keeping data for that long, which does not ease the process.
Furthermore, the data would ideally have to be rolled back to a different time for
every association making the validation of hundreds of genes painful. The chapter
3 describes a small rolled back validation of Endeavour in which the rolled back
literature data is used to prioritize disease genes. It shows that, it would have been
possible to predict the association using literature data 6 months prior to discovery
(three out of nine monogenic disease genes among the top 2% candidate genes).

Following the publication described in this chapter and the conclusions of our
preliminary study (described in the chapter 3), it was decided that a critical
assessment of the tools over a rather short period of time (several months) could
be realized. The two other possibilities should however not be discarded since
they also represent nice opportunities to estimate which prioritization methods are
more efficient than others. The core concept is to use the disease-gene associations
from major human genetics journals as soon as they are published and to check
whether or not the existing tools could have predicted them. A main difference
with the CASP project is that the experiments are not run by the people who
have developed the tools but by our bioinformatics team. This involves that a
fine tuning of the tools is excluded, including for the tools developed internally.
Another difference is that the disease-gene association is not known beforehand
and kept secret as the protein 3D structure is for the CASP experiments, meaning
that the prioritization experiments have to be run as soon as the publication is
made public (advanced publication for most journals). A critical assessment of
several gene prioritization tools is currently realized internally in collaboration with
Daniela Nitsch and Francisco Bonachela Capdevila.

For Endeavour, the preliminary results show that 39 among the 43 associations
could have been predicted using a threshold of 30%, and 18 if a more conservative
threshold of 10% is used. The median over all 43 associations is 11.21%. These
results are a little bit lower than the benchmark results, and correlate with the
observation of Myers et al. that the performance observed in cross-validation studies
is likely to be higher than that observed in prospective studies [167]. Another
possibility is related to the complexity of the disorder. Nowadays most of the
novel disease genes that are reported are associated with complex disorders for
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which accurate predictions are more difficult to make than for disorders with simple
mendelian inheritance pattern. This is mainly due to the fact that our approach
relies on the similarity between candidate genes and the known disease genes. For
a mendelian disorder, this hypothesis has shown to work very well since the disease
genes are often acting together in a protein complex (e.g., Usher syndromes). For
a complex disorder, it is however not a single complex, nor a single pathway that
is disturbed, and the known genes are sometimes active in different processes
that when perturbed are leading to the same type of disease. This is making the
predictions for complex disorders less accurate although still a lot better than
random (see chapter 3). Last point, it might also be the case that a fine tuning
of Endeavour (e.g., selection of the optimal data sources through cross-validation)
is required to make the best predictions. Still, Endeavour remains as one of the
best tools among the tools assayed in the study and this work will serve as a basis
for a large predictive study. In addition, the results do not rely too heavily on the
text data source since the performance when ‘Text’ is excluded remains similar
(median rank ratio 11.21% using all data sources, 13,19% when text is excluded).
This illustrates that literature is not the only informative data source and that
accurate predictions can be made without considering it.





Chapter 3

Gene prioritization through
genomic data fusion

3.1 Summary

This paper describes the development of a gene prioritization strategy, its
implementation into a software termed Endeavour, and its validation. It is therefore
representing the first step of the work described in the present dissertation. It was
published in Nature Biotechnology in May 2006.

The proposed strategy is based on the assumption that the most promising candidate
genes are the ones that exhibit similarities with the genes already known to be
involved in the process under study [115, 219, 87]. It uses a data fusion algorithm
and multiple genomic data sources. The inputs of the methods are a set of genes
known to be involved in the biological process under study (training set), and a set
of candidate genes to prioritize (candidate set). The proposed algorithm is made
up of three steps. The first step is the training step in which the known genes
are used to modelize the process under study. That is, for each data source, the
creation of a model using basics statistics. For instance, for an annotation based
data source (e.g., Gene Ontology), the model contains all the annotation terms that
are over-represented in the training set compared to the genome. In our case, the
over-representation is calculated using the binomial distribution. Next comes the
scoring step in which the models built in the first step are then used individually
to score the candidate genes. The candidate genes are then ranked according to
their scores, resulting in one ranking per model. Within that ranking, the most
promising candidate genes are located at the top, and the less promising at the
bottom. The data fusion happens at the final stage. More precisely the rankings

51
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are merged using the Order Statistics (OS), a method that takes missing data
into account therefore allowing a leverage between well known genes and unknown
genes. The output of the algorithm is a single global ranking of the candidate
genes. More details can be found in appendix A.

The approach was benchmarked on known diseases and pathway sets but was also
experimentally validated. The first validation is the analysis of regulatory genes for
myeloid differentiation. Endeavour was used to prioritize candidate genes predicted
to be upregulated during myeloid differentiation by a cis-regulatory model. The
PCR results showed that 2 out of the top 20 genes predicted by the cis-regulatory
model were upregulated while after prioritization, 8 out of the top 20 genes were
upregulated. The second validation describes the exploration of an atypical deletion
observed in DiGeorge syndrome patients and located on 22q11. The 58 genes that
are located in that region were then prioritized using Endeavour. The candidate
genes were then individually assayed by knock down experiments of zebrafish
embryos. The YPEL1 knock down embryos exhibited physical characteristics that
are compatible with the phenotypes of the DiGeorge syndrome patients. This in
vivo validation suggested that YPEL1 is involved in craniofacial development and
represents a promising candidate gene for the DiGeorge syndrome.
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Gene prioritization through genomic
data fusion
Stein Aerts1,4,5, Diether Lambrechts2,5, Sunit Maity2,5, Peter Van Loo3–5, Bert Coessens4,5, Frederik De Smet2,
Leon-Charles Tranchevent4, Bart De Moor4, Peter Marynen3, Bassem Hassan1, Peter Carmeliet2 & Yves Moreau4

The identification of genes involved in health and disease 
remains a challenge. We describe a bioinformatics approach, 
together with a freely accessible, interactive and flexible 
software termed Endeavour, to prioritize candidate genes 
underlying biological processes or diseases, based on their 
similarity to known genes involved in these phenomena. Unlike 
previous approaches, ours generates distinct prioritizations 
for multiple heterogeneous data sources, which are then 
integrated, or fused, into a global ranking using order statistics. 
In addition, it offers the flexibility of including additional data 
sources. Validation of our approach revealed it was able to 
efficiently prioritize 627 genes in disease data sets and 76 
genes in biological pathway sets, identify candidates of 16 
mono- or polygenic diseases, and discover regulatory genes of 
myeloid differentiation. Furthermore, the approach identified 
a novel gene involved in craniofacial development from a 2-Mb 
chromosomal region, deleted in some patients with DiGeorge-
like birth defects. The approach described here offers an 
alternative integrative method for gene discovery.

With the advent of ’omics, identifying key candidates among the thou-
sands of genes in a genome that play a role in a disease phenotype or a 
complex biological process has paradoxically become one of the main 
hurdles in the field. Indeed, contrary to some early concerns in the 
community that a lack of sufficient global data would still be a limit-
ing factor1, it is precisely the opposite, a bounty of information that 
now poses a challenge to scientists. This has translated into a need for 
sophisticated tools to mine, integrate and prioritize massive amounts 
of information2,3.

Several gene prioritization methods have been developed4–10. Most 
of them determine, either directly or indirectly, the similarity between 
candidate genes and genes known to play a role in defined biological pro-
cesses or diseases. These methods offer several advantages but also pose 

a number of challenges. Indeed, even though multiple data sources are 
available, such as Gene Ontology (GO) annotations4–6,10, protein domain 
databases6,10, the published literature5,7, gene expression data5,7,10 and 
sequence information8–10, most of the available programs access only 
one or two of these databases, which each have their limitations. For 
instance, functional data sources (GO and literature) are incompletely 
annotated and biased toward better-studied genes8, whereas sequence 
databases have thus far been used only to produce general disease prob-
abilities8,9. Some of the existing tools access more than two databases, but 
do not provide an overall ranking that integrates the separate searches5,10. 
Several tools rank disease genes but only one of them prioritizes genes 
involved in biological pathways10, and none offers the combination of 
both. Thus far, only two prioritization tools5,10 are publicly available. 
Thus, there is still a need for improvement of gene prioritization.

Here, we report the development and characterization of a new gene 
prioritization method, and offer its freely accessible, interactive and flex-
ible software1. Compared to existing methods, ours provides additional 
opportunities for candidate gene prioritization: it accesses substantially 
more data sources and offers the flexibility to include new databases; it 
provides the user control over the selection of training genes and thereby 
takes advantage of the expertise of the user; it prioritizes both known 
and unknown genes, ranks genes involved in human diseases and bio-
logical processes, and it uses rigorous statistical methods to fuse all the 
individual rankings into an overall rank and probability.

RESULTS
Principles of prioritization used by Endeavour
Genes involved in the same disease or pathway often share annotations 
and other characteristics in multiple databases. Indeed, genes involved 
in the same disease share up to 80% of their annotations in the GO 
and InterPro databases6, whereas genes involved in a similar biological 
pathway often share a high degree of sequence similarity with other 
pathway members11. It is therefore reasonable to assume that this simi-
larity among genes is not restricted to their annotation or sequence 
alone, but is also true for their regulation and expression. We reasoned 
that a bioinformatics framework capable of comparing and integrat-
ing all available gene characteristics might be a powerful tool to rank 
unknown candidate ‘test’ genes according to their similarity with known 
‘training’ genes, and based on this notion, we developed Endeavour. 
Prioritization of genes using this algorithm involves three steps (Fig. 1). 
To validate its performance, we used several complementary strategies 
discussed below.

1Laboratory of Neurogenetics, Department of Human Genetics, 2The Center 
for Transgene Technology and Gene Therapy, 3Human Genome Laboratory, 
Department of Human Genetics, Flanders Interuniversity Institute for 
Biotechnology (VIB), University of Leuven, Herestraat 49, bus 602, 3000 
Leuven, Belgium. 4Bioinformatics Group, Department of Electrical Engineering 
(ESAT-SCD), University of Leuven, Belgium. 5These authors contributed equally 
to this work. Correspondence should be addressed to S.A.
(stein.aerts@med.kuleuven.be).
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Validation of Endeavour when accessing individual data sources
For each individual data source, we assessed whether our approach is 
capable of prioritizing genes known to be involved in specific diseases 
or receptor signaling pathways. To this end, we performed a large-scale 
leave-one-out cross-validation. In each validation run, one gene, termed 
the ‘defector’ gene, was deleted from a set of training genes and added 
to 99 randomly selected test genes. The software then determined the 
ranking of this defector gene for every data source separately. We used 
627 training genes, ordered in 29 training sets of particular diseases 

automatically selected from the Online Mendelian Inheritance In Man 
(OMIM) database (see Supplementary Notes online for selection pro-
cedure). For pathway genes, we compiled three sets of training genes 
involved in the WNT (43 genes), NOTCH (18 genes) and epidermal 
growth factor (15 genes) pathways. As a negative control for training 
genes, we assembled 10 sets of 20 randomly selected genes.

Thus, a total of 903 prioritizations (627 for the disease genes, 76 for 
the pathway genes and 200 for the random sets) were performed for 
each data source. From these, we calculated sensitivity and specificity 
values. Sensitivity refers to the frequency (% of all prioritizations) of 
defector genes that are ranked above a particular threshold position. 
Specificity refers to the percentage of genes ranked below this threshold. 
For instance, a sensitivity/specificity value of 70/90 would indicate that 
the correct disease gene was ranked among the best-scoring 10% of 
genes in 70% of the prioritizations. To allow comparison between data 
sources we plotted rank receiver operating characteristic (ROC) curves, 
from which sensitivity/specificity values can be easily deduced. The area 
under this curve (AUC) is a standard measure of the performance of 
this algorithm. For instance, an AUC-value of 100% indicates that every 
defector gene ranked first, whereas a value of 50% means that the defec-
tor genes ranked randomly.

For every single data source, Endeavour reached a higher AUC score 
for disease and pathway genes than for randomly selected genes, indi-
cating that it was sensitive and specific in ranking the defector gene, 
regardless of the type of data source consulted (Fig. 2). Not surprisingly, 
the data sources differed in their usefulness and suitability to rank genes 
(Supplementary Notes).

Overall prioritization by fusing multiple data sources
Although in most cases the defector gene ranked high in the prioritiza-
tion list, this was not always the case (Supplementary Fig. 1 online). 

Select known
(training) genes

Data source

Assemble characteristics of the 
training sets for all data sources

Extract from each
data source information 
specific for known genes

A    B  C   D  E   F   G   H   I   J    KRepeat this
procedure
for all data

 sources (A→K)

Step 1

Training

Select candidate 
(test) genes

Step 2

A 

Test for similarity with 
characteristics of the training sets

K

A 

K

1 

n

Obtain rank (1→n) of each 
prioritization per data 

source (A→K) 

Step 3 A 

K

1 

n

1 

n

Fuse data by 
order statistics

Obtain one overall rank (1→n) 

Figure 1  Concept of prioritization by Endeavour. Candidate test genes 
are ranked with Endeavour based on their similarity with a set of known 
training genes in a three-step analysis. In the first step (upper panel), 
information about a disease or pathway is gathered from a set of known 
training genes by consulting various data sources. Training genes can be 
loaded automatically (based on a Gene Ontology term, a KEGG pathway ID 
or an OMIM disease name) or manually. The latter allows the incorporation 
of expert knowledge. The following data sources are used: A, literature 
(abstracts in EntrezGene); B, functional annotation (Gene Ontology);
C, microarray expression (Atlas gene expression); D, EST expression
(EST data from Ensembl); E, protein domains (InterPro); F, protein-protein 
interactions (Biomolecular Interaction Network Database or BIND);
G, pathway membership (Kyoto Encyclopedia of Genes and Genomes or 
KEGG); H, cis-regulatory modules (TOUCAN); I, transcriptional motifs 
(TRANSFAC); J, sequence similarity (BLAST); K, additional data sources, 
which can be added (e.g., disease probabilities). In the second step (middle 
panel), a set of test genes is loaded (again, either manually or automatically 
by querying for a chromosomal region or for markers). These test genes are 
then ranked based on their similarity with the training properties obtained 
in the first step, which results in one prioritized list for each data source. 
Vector-based data are scored by the Pearson correlation between a test 
profile and the training average, whereas attribute-based data are scored 
by a Fisher’s omnibus analysis on statistically overrepresented training 
attributes. Finally, in the third step (lower panel), Endeavour fuses each 
of these rankings from the separate data sources into a single ranking and 
provides an overall prioritization for each test gene. As such, Endeavour 
prioritizes genes through genomic data fusion—a term, borrowed from 
engineering to reflect the merging of distinct heterogeneous data sources, 
even when they differ in their conceptual, contextual and typographical 
representations.
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Figure 2  Cross-validation results. The AUC values obtained for all individual 
data sources are shown for disease prioritizations (black), pathway 
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prioritizations are also shown.
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To minimize this variability and to increase the performance of rank-
ing, we integrated all individual prioritizations into a single overall 
rank by implementing an algorithm based on order statistics. With this
algorithm, the probability of finding a gene at all the observed posi-
tions is calculated and a single overall rank is obtained by ranking genes 
according to these probabilities. To evaluate the performance of this 
overall ranking, we calculated its AUC values, as described above for the 
individual data sources. The AUC scores were 86.6% and 89.9% for dis-
ease and pathway genes compared to 48.4% for randomly selected genes 
(Fig. 3a,b). The correct pathway gene ranked among the top 50% of test 
genes in 95% of the cases, or among the top 10% in 74% of the cases. 
The variability of the overall prioritization was substantially smaller 
than that of individual data sources (Supplementary Fig. 1), and each 

of the data sources contributed to the overall ranking (Supplementary 
Fig. 2 online). Our validation experiment thus results in biologically 
meaningful prioritizations.

Almost every data source but especially functionally annotated data-
bases are incompletely annotated. For instance, only 63% of the genes are 
currently annotated in the GO database. Consequently, existing methods 
using these data sources introduce an undesired bias toward better-studied
genes. Our approach should suffer less from these shortcomings as it also 
uses sequence-based sources containing information about known and 
unknown genes. In support of this, we found that the overall ranking of 
defector genes was not substantially influenced by the number of data 
sources if at least three sources with data annotations were available 
(Supplementary Fig. 3a online). In fact, even unknown genes lacking a 
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Figure 3  Cross-validation results. (a) Rank ROC curves obtained for the disease validation. (b) Rank ROC curves obtained for the pathway validation. In both 
figures, the control ROC curve (red line) was obtained after prioritization with randomly constructed training sets and by using all data sources. For all other 
ROC curves, disease or pathway-specific training sets were generated. The data sources used to construct every ROC curve are indicated on the figure.

Table 1  Prioritizations of recently identified monogenic disease genes
Rank position using the indicated data sources

Disease Gene Ensembl ID Publication date All Literature

Arrhythmia CACNA1C ENSG00000151067 October 2004 (ref. 34) 4 3

Congenital heart disease CRELD1 ENSG00000163703 April 2003 (ref. 35) 3 1

Cardiomyopathy 1 CAV3 ENSG00000182533 January 2004 (ref. 36) 2 1

Parkinson disease LRRK2 ENSG00000188906 November 2004 (ref. 37) 50 *

Charcot-Marie-Tooth disease DNM2 ENSG00000079805 March 2005 (ref. 38) 14 100

Amyotrophic lateral
sclerosis

DCTN1 ENSG00000135406 August 2004 (ref. 39) 27 97

Klippel-Trenaunay
disease

AGGF1
(also known as VG5Q)

ENSG00000164252 February 2004 (ref. 40) 3 39

Cardiomyopathy 2 ABCC9 ENSG00000069431 April 2004 (ref. 41) 1 51

Distal hereditary motor
neuropathy

BSCL2 ENSG00000168000 March 2004 (ref. 42) 15 62

Cornelia de Lange syndrome NIPBL ENSG00000164190 June 2004 (refs. 43,44) 9 75

Average rank 13 ± 5 48 ± 13

For all genes, a mutation was inherited in a mendelian fashion (or was shown to cause the disease phenotype). The name of the disease and disease-causing gene, the Ensembl 
ID and the publication date of the article reporting the gene mutation (month-year) are shown, together with the rank (out of 200 test genes) at which they were prioritized by 
Endeavour, using all data sources or using the pre-publication date literature source alone. The average rank (mean ± s.e.m.) for each prioritization is indicated. For LRRK2, no 
literature information was available. This has been indicated in the table by an asterisk (*).
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HUGO name and with very little information available could be ranked 
highly (Supplementary Fig. 3b). Thus, our method takes into account 
data sources with relevant information, while disregarding noninforma-
tive ones. This may be particularly advantageous for the prioritization 
of disease genes, as unknown genes are not readily considered as disease 
candidates when selected manually.

Endeavour does not rely on literature-derived data alone
For each OMIM gene used in the disease validation, a mutation causing 
the disease had previously been reported in a landmark study. Because 
the inclusion of these publications may artificially increase the relative 
contribution of the literature data source in the overall performance of 
this algorithm, we excluded, as a test, the entire literature database from 
the disease validation protocol. For the same reason, the GO, KEGG 
and literature data sources were excluded from the pathway validation. 
Even under such unrealistic conditions where entire data sources were 
not used, the overall performance of the algorithm was only negligibly 
affected: the performance dropped by only 6.1% for disease genes (from 
86.6% to 80.5%; Fig. 3a) and by only 2.3% for pathway genes (from 

89.9% to 87.6%; Fig. 3b). Thus, the diversity of data sources used in 
our approach enables meaningful prioritizations, even without the use 
of literature information.

Clearly, this caution is only of importance in the context of a valida-
tion. In a more realistic situation, when the precise function of a disease 
gene is not known yet, the literature could still provide valuable indirect 
information about other properties of a gene. In a study of ten mono-
genic diseases (see below), we mimicked this situation by using only 
‘rolled-back’ literature information, available one year before the land-
mark publication. Even then Endeavour provided a high rank for three 
genes (position 1, 1 and 3 out of 200 test genes, Table 1), illustrating that 
the literature contributes to the prioritization of yet undiscovered dis-
ease genes. For the seven other genes, use of the literature as the only data 
source was not very efficient, but inclusion of all the other data sources 
yielded a high rank (Table 1). Overall, even though the literature may 
provide valuable information, our method does not rely on literature as 
the only critical data source. But also, its performance is not restricted 
by the lack of available literature data, because of its ability to access and 
integrate multiple other data sources.

Table 2  Prioritizations of recently identified polygenic disease genes
Disease Gene Ensembl ID Publication date Rank

Atherosclerosis 1 TNFSF4 ENSG00000117586 April 2005 (ref. 45) 54

Crohn disease SLC22A4, SLC22A5 ENSG00000197208 May 2004 (ref. 46) 71

Parkinson disease GBA ENSG00000188906 November 2004 (47) 23

Rheumatoid arthritis PTPN22 ENSG00000134242 August 2004 (ref. 48) 11

Atherosclerosis 2 ALOX5AP ENSG00000132965 February 2004 (ref. 49) 29

Alzheimer disease UBQLN1 ENSG00000135018 March 2005 (ref. 50) 54

Average rank 40 ± 10

The nature of the genetic variation in these genes was in each case a polymorphism, which typically was inherited as a risk factor for the respective disease. The name of 
the complex disease in which these genes were identified, their gene name, Ensembl ID and the publication date when the disease gene was reported as a susceptibility 
gene are given, together with the rank (out of 200 test genes) at which they have been prioritized by all data sources with rolled-back literature. The relative contribution 
of these genetic variations as risk factors for disease susceptibility will become clearer once replication studies are performed. The average rank (mean ± s.e.m.) for each 
prioritization is indicated.
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Figure 4  In vitro functional validation of 
Endeavour. Results of real-time quantitative 
PCR measurements in differentiated versus 
undifferentiated HL-60 cells. Expression 
profiles of 4 out of 18 training genes (left), 
which were tested as a positive control, and 
20 target genes predicted by the cis-regulatory 
module model (center) are shown. Expression 
levels of SPP1 and NGKBIL2 differed more 
than threefold between differentiated and 
undifferentiated cells; expression levels for six 
genes could not be measured. The expression 
profiles of the 20 highest-ranking target genes 
after prioritization by Endeavour (right) are 
also shown. Expression levels of eight genes 
(SPP1, BCL6, PTPRB, MET, TNFRSF6, 
NFAT5, PET112L and EVI2B) differed more 
than threefold between differentiated and 
undifferentiated cells; four genes could not 
be measured. The fold difference is depicted 
on a logarithmic scale; error bars represent 
the s.e.m. The line indicates the threshold 
(threefold up- or downregulation).
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Use of disease-specific data sources
An important asset of Endeavour is that its framework was designed to 
allow the inclusion of additional data sources, such as disease-related 
features, in the prioritization strategy. We illustrate this for the priori-
tization of disease genes. On the basis of a number of selection criteria 
(e.g., protein length, phylogenetic conservation), Lopez-Bigas and Adie 
determined for every gene a ‘general’ disease probability, or its probabil-
ity as a disease candidate gene8,9. When integrating the Lopez-Bigas or 
Adie criteria in Endeavour as an additional data source, we found that 
its performance improved further (AUC scores increased by up to 5% 
regardless of the inclusion of literature sources). Likewise, microarray 
data specific for the process or disease under study can be included. Our 
approach thus allows the user to add, in a flexible and modular man-
ner, additional data sources, such as appropriate disease-specific data 
sources, to enhance its overall performance.

Prioritization of genes causing monogenic diseases
In the large-scale validation, 627 genes were automatically selected from 
the OMIM database, without taking their mono- or polygenic nature 
into account. We therefore assessed whether our approach could be used 
to prioritize genes that cause monogenic diseases. As experimentalists 
often prefer to select their own sets of training genes, instead of rely-
ing on automatically derived genes or characteristics, we selected ten 
monogenic diseases and constructed sets of training genes together with 
a biological expert (Table 1 and Supplementary Table 1). To simulate the 
real life situation, we deliberately chose recently identified disease-caus-
ing genes, and used rolled-back literature together with all other data 
sources. The set of test genes included the gene causing the monogenic 
disease, and 199 genes flanking its immediate chromosomal surround-
ings. The algorithm gave the ten monogenic disease–causing genes an 
average rank of 13 ± 5 out of 200 test genes (Table 1). When using a 
training set not related to the disease under study to prioritize the test 
sets as a negative control, the disease genes ranked randomly (position 
96 on average). As a further validation the algorithm was applied to a 
very large set of test genes (that is, all 1,048 genes from chromosome 3; 
Supplementary Notes and Supplementary Table 2 online).

This pseudo-prospective analysis, using rolled-back literature, reveals 
that expert-based construction of training sets may lead to high discov-
ery rates when hunting for monogenic disease genes in both small and 
large test sets.

Prioritization of genes underlying polygenic diseases
In many cases, human disease is not monogenic, but polygenic in nature. 
We therefore prioritized six genes, recently identified as polygenic dis-
ease genes, together with 199 chromosomal flanking genes (Table 2). 
The sets of training genes used for these prioritizations are explained 
in Supplementary Table 1. On average, the susceptibility genes ranked 
at position 40 ± 10, when using the rolled-back literature together with 
all the other data sources. As expected, the prioritization of polygenic 
disease candidate genes is a greater challenge than ranking monogenic 
disease genes. Nonetheless, the ranking was still specific, as the suscep-
tibility genes ranked at position 96 ± 10, when training sets for these 
disorders were randomly assigned to other test sets as a negative control. 
Thus, although the performance is lower than for monogenic diseases (as 
anticipated), susceptibility genes to polygenic diseases can be enriched 
by Endeavour’s prioritization.

Prioritization of regulatory pathway genes
To analyze whether Endeavour could also rank genes involved in a partic-
ular biological process, we combined computation with functional vali-
dation in vitro. First, using the previously characterized ModuleSearcher 
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Figure 5  Functional validation of Endeavour in zebrafish. (a) Part of 
chromosome 22, illustrating the hemizygous 3-Mb region deleted in many 
DGS patients and the atypical 2-Mb region, which is deleted in some 
(atypical) DGS patients. For clarity, only some of the 58 Ensembl-annotated 
genes within the 2-Mb region, and only TBX1 in the 3-Mb deleted region, are 
shown. It remains unknown whether any of the genes in the 2-Mb region play 
a role in pharyngeal arch development defects seen in DGS. (b) YPEL1 was 
prioritized among the 58 genes of the 2-Mb deleted region by Endeavour as 
the most likely candidate involved in pharyngeal arch development.
(c) Photo of a zebrafish, which has been used as a suitable model to study 
the role of YPEL1 in pharyngeal arch development. (d,e) Lateral view of the 
head in live embryos at 4 d after fertilization. The lower jaw is clearly visible 
in the control, whereas ypel1KD embryos show an underdeveloped lower 
jaw (mandibular arch; indicated by the red dotted line) and open mouth 
(indicated by the vertical line). (f,g) Ventral view of the pharyngeal arch 
cartilage using alcian blue stain at 3 d after fertilization. Black arrow depicts 
the mandibular arch; white arrow depicts hyoid arch. In ypel1KD embryos, the 
jaw arches were severely malformed with the mandibular arch often reduced 
in size. The pharyngeal arch cartilage also showed reduced or no staining.
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algorithm within TOUCAN12,13, we predicted a cis-regulatory module 
(CRM) in the regulatory regions of 18 genes, known to be upregulated 
during myeloid differentiation14. We then selected 100 putative target 
genes containing this CRM from the genome, and ordered them accord-
ing to their CRM score (see Supplementary Notes). These 100 genes 
were then prioritized with the algorithm, using the 18 genes involved 
in myelopoiesis as a training set. To investigate whether it enriched the 
number of true-positive target genes involved in myeloid differentiation, 
we induced differentiation of HL-60 cells in vitro and analyzed which of 
the 20 best ranking genes, before and after prioritization by Endeavour, 
were more than threefold up- or downregulated. Before prioritization, 
the expression of two genes (Fig. 4) was differentially regulated, whereas 
after prioritization up to eight genes were differentially regulated (P < 
0.05; Fig. 4). Importantly, several of these differentially regulated genes 
are implicated in myeloid function: SPP1, BCL6 and MET are known 
to be involved in myeloid differentiation15–17, whereas FRSF6, better 
known as the FAS inducer of apoptosis, is a suppressor of macrophage 
activation18. The possible involvement of PTPRB, NFAT5, PET112L and 
EVI2B in myeloid differentiation was, however, unknown. Our prioriti-
zation protocol can thus be used for gene discovery as well.

Functional validation of Endeavour in zebrafish
As a final and most stringent test, we validated our approach in an animal 
model in vivo. The DiGeorge syndrome (DGS) is a common congenital 
disorder, in which craniofacial dysmorphism and other defects result 
from abnormal development of the pharyngeal arches19,20. Many DGS 
patients typically have a 3-Mb hemizygous deletion in chromosome 22 
(del22q11)19,20. Genetic studies in mice and zebrafish have established 
Tbx1 as a key DGS disease candidate gene in this region21–24 (Fig. 5a). In 
atypical DGS cases, a 2-Mb region, downstream of del22q11 is deleted25, 
but it remains unknown which of the 58 Ensembl-annotated genes in 
this region plays a role in pharyngeal arch development. In this experi-
ment, we first assessed whether the algorithm would prioritize any of 
these genes as a possible regulator of pharyngeal arch development, and 
then analyzed whether this gene indeed affected this process in vivo.

We first tested, as a positive control, whether 
Endeavour would identify TBX1 as a DGS can-
didate when added to the list of 58 test genes. 
To avoid possible selection bias due to an overly 
restricted choice of training genes, we used 
various training sets according to their rela-
tionship with DGS, cardiovascular or cleft pal-
ate birth defects (typical DGS symptoms), or 
neural crest biology (neural crest cell anoma-
lies cause DGS-like symptoms; Supplementary 
Notes). When using these training sets, TBX1 
ranked first or second (Table 3). This prioriti-
zation was specific, as TBX1 was not identified 
as a DGS candidate gene when using train-
ing genes unrelated to DGS. We then used 
our approach to prioritize the 58 genes of the
2-Mb deleted region. When using various sets 
of DGS-related training genes, the top-ranking 
gene was always YPEL1 (Table 3 and Fig. 5b). 
Similar to the TBX1 simulation, use of a set of 
training genes, unrelated to DGS, confirmed 
that the prioritization was specific for DGS.

To assess the functional role of YPEL1 in vivo, 
we used the zebrafish model, which has been 
previously used as a suitable model to study 
pharyngeal arch development26 (Fig. 5c). Ypel1 

protein levels in zebrafish embryos were knocked down using a set of 
antisense morpholino oligonucleotides (morpholinos), each targeting 
different sequences of the ypel1 transcript and dose-dependently and 
specifically inhibiting ypel1 translation (not shown). The role of ypel1 
in pharyngeal arch morphogenesis was evaluated by phenotyping the 
development of its derivatives, that is, the jaws and other skeletal struc-
tures of the skull27. Ypel1 knockdown (ypel1KD) embryos displayed vari-
ous craniofacial defects. In particular, they exhibited an underdeveloped 
jaw, with the most severely affected embryos displaying an open-mouth 
phenotype suggestive of craniofacial dysmorphism (Fig. 5d,e). Ypel1KD 
embryos also displayed defects in pharyngeal arch cartilage formation, 
ranging from an overall disorganization to a complete loss of the jaw and 
pharyngeal arch cartilage. In some ypel1KD embryos, the mandibular 
arch was strongly reduced in size. Occasionally, no staining of cartilage 
could be detected at all (Fig. 5f,g). Ypel1KD embryos exhibited addi-
tional pharyngeal arch defects, which will be described in more detail 
elsewhere.

In summary, our method identified YPEL1 as a candidate DGS gene 
and in vivo experiments confirmed its role in pharyngeal arch develop-
ment. These data raise the intriguing question whether YPEL1 might be 
a novel disease candidate gene of atypical DGS in humans.

DISCUSSION
The number of publicly available databases containing information 
about human genes and proteins continues to grow. Here, we developed 
a method to integrate all this information and prioritize any set of genes 
based on their similarity to a set of reference genes. Such a prioritiza-
tion is not only useful for gene hunting in human diseases, but also for 
identifying members of biological processes.

Our approach is useful in several respects. First, it uses genes to 
retrieve information about a disease or biological pathway, instead of 
disease characteristics. Existing methods that use disease characteristics 
can only retrieve information from databases that use the same dis-
ease vocabulary4,5,7. By using genes, Endeavour accesses not only these 
vocabulary-based data sources, but also other data sources, storing

Table 3  Prioritization of YPEL1 by Endeavour
Training sets used to prioritize TBX1 or 
YPEL1 Rank assigned to YPEL1 Rank assigned to TBX1

DGS-related

DGS (14) 1* 1*

Cardiovascular birth defects (14) 3* 1*

Cleft palate birth defects (9) 2* 1*

Neural crest genes (14) 1* 2*

Average rank 1.75 ± 0.48 1.25 ± 0.25

DGS-unrelated

Atherosclerosis (24) 12 24

Parkinson disease (9) 31 15

Distal hereditary motoneuropathy (8) 13 41

Charcot-Marie-Tooth disease (17) 9 16

Alzheimer's disease (5) 21 14

Rheumatoid arthritis (8) 20 7

Inflammatory bowel disease (7) 7 24

Average rank 16 ± 3 20 ± 4

The set of test genes contained the 58 genes present in the 2-Mb atypical deletion region on chromosome 22q11 
(middle column) or, in addition, the TBX1 gene (right column). These test genes were prioritized by Endeavour for 
their similarity to the indicated set of training genes, which were related or unrelated to DGS. As shown, TBX1 and 
YPEL1 ranked among the first three test genes, indicating their high degree of similarity with the set of training 
genes (*, probability of P < 0.05 that the test and training genes had a similar profile). The number of training 
genes is indicated between brackets.
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information about a gene (e.g., derived from a microarray experiment) 
or a gene sequence (e.g., BLAST sequence similarity). Moreover, by using 
genes, the method is also suitable for gene prioritization in biological 
processes as well.

Second, compared to existing methods, which access only one or two 
data sources4–7, our method accesses many more data sources (cur-
rently up to 12). Importantly, consultation of each of the individual 
sources by Endeavour generates biologically relevant prioritizations. 
We developed an algorithm based on order statistics to fuse all these 
separate prioritizations into a single overall rank. This algorithm is able 
to handle genes with missing values, thereby minimizing the bias for 
known or well-characterized genes. This bias will decrease even further 
in the future, when new and better high-throughput data become avail-
able, and when the genome annotation and curation processes reach 
their finalization.

Third, the algorithm is publicly available as a software tool, built by 
bioinformaticians, but designed for experimentalists, helping them to 
focus readily on key biological questions. The only other available pri-
oritization tool for diseases, G2D, uses GO and literature data sources 
and is therefore restricted in making predictions about annotated or 
known genes5.

Fourth, the approach gives the user maximal control over the set of 
training and test genes. Biologists prefer the flexibility of interactively 
selecting their own set of genes over an automatic and noninteractive 
data-mining selection procedure.

We validated the method extensively, in a large-scale validation study 
of 703 disease and pathway genes, and in a number of case-specific 
analyses. The validation results were remarkably good: on average, the 
correct gene was ranked 10th out of 100 test genes—for monogenic 
diseases, the performance was even better. The algorithm was capa-
ble of prioritizing large test sets (up to 1,000 genes)—the upgrade of 
Endeavour into a package capable of prioritizing the entire genome 
would be an interesting perspective for the future. Functional validation 
studies in vitro further demonstrated that the method worked equally 
well for prioritization of pathway genes. Furthermore, in vivo studies 
in zebrafish revealed that YPEL1, a gene prioritized by Endeavour in a 
2-Mb chromosomal region deleted in patients with craniofacial defects, 
indeed regulates morphogenesis of the pharyngeal arches and their cra-
niofacial-derivative structures.

Lastly, the Endeavour software design is modular and allows the inclu-
sion of publicly available or proprietary data sources (e.g., disease-specific 
microarray experiments). We have illustrated and validated this possibil-
ity by including the general disease probability criteria of Lopez-Bigas9 
and Adie8.

In summary, we present a computational method for fast and interac-
tive gene prioritization that fuses genomic data regardless of its origin.

METHODS
Data sources. A more detailed description of the data sources is available as 
Supplementary Methods online. Briefly, for information retrieved from attri-
bute-based data sources (that is, Gene Ontology, EST expression, InterPro and 
KEGG), the algorithm uses a binomial statistic to select those attributes that are 
statistically overrepresented among the training genes, relative to their genome-
wide occurrence. Each overrepresented attribute receives a P-value pi that is 
corrected for multiple testing. For information retrieved from vector-based 
data sources (that is, literature, microarray expression data or cis-regulatory 
motif predictions), the algorithm constructs an average vector profile of the 
training set. The literature profile is based on indexed abstracts and contains 
inverse document frequencies for each term of a GO-based vocabulary28; the 
expression profile contains expression ratios; the motif profile contains scores of 
TRANSFAC position weight matrices, obtained by scanning promoter sequences 
of the training genes that are conserved with their respective mouse orthologous 

sequences. To rank a set of test genes, attribute-based data are scored by Fisher’s 
omnibus meta-analysis (Σ-2logpi), generating a new P-value from a χ2-distri-
bution. Vector-based data are scored by Pearson correlation between the test 
vector and the training average. The data in the BLAST, BIND and cis-regulatory 
module (CRM) databases are neither vector- nor attribute-based. For BLAST, 
the similarity score between a test gene and the training set is the lowest e-value 
obtained from a BLAST against an ad hoc indexed database consisting of the 
protein sequences of the training genes. For BIND (Biomolecular Interaction 
Network Database)29, the similarity score is calculated as the overlap between all 
protein-protein interaction partners of the training set and those of the test gene. 
Lastly, for CRM data, the best combination of five clustered transcription fac-
tor binding sites—in all human-mouse conserved noncoding sequences (up to 
10 kb upstream of transcription start site) of the training genes—is determined 
using a genetic algorithm12,30. The similarity of this trained model to a test gene 
is determined by scoring this motif combination on the conserved noncoding 
sequences of the test gene.

Order statistics. The rankings from the separate data sources are combined using 
order statistics. A Q statistic is calculated from all rank ratios using the joint 
cumulative distribution of an N-dimensional order statistic as previously done 
by Stuart et al.31

They propose the following recursive formula to compute the above integral:

where ri is the rank ratio for data source i, N is the number of data sources used, 
and r0 = 0. However, two problems arose when we tried to use this formula. First, 
we noticed that this formula is highly inefficient for moderate values of N, and 
even intractable for N > 12 because its complexity is O(N!). We therefore imple-
mented a much faster alternative formula with complexity O(N2):

with Q(r1,r2,...,rN) = N!VN, V0 = 1, and ri is the rank ratio for data source i.
Second, we noticed that the Q statistics calculated by (1) are not uniformly 

distributed under the null hypothesis and can thus not directly be used as P-val-
ues. Therefore, we fitted a distribution for every possible number of ranks and 
used this distribution to calculate an approximate P-value. We found that the Q 
statistics for N ≤ 5 randomly and uniformly drawn rank-ratios are approximately 
distributed according to a beta distribution. For N > 5 the distributions can 
be modeled by a gamma distribution. The cumulative distribution function of 
these distributions provides us with a P-value for every Q statistic from the order 
statistics. Next to the original N rankings, we now have an (N + 1)th that is the 
combined rank of all separate ranks.

Cell culture, RNA isolation and RT-PCR. HL-60 cells were grown in RPMI 1640, 
supplemented with 10% FCS. Differentiation was induced by 10 nM phorbol 12-
myristate 13-acetate (PMA), when cells were grown to a density of 7 × 105/ml. 
Before induction and 24 h after induction, cells were harvested by centrifugation 
and RNA was isolated using the trizol reagent (Invitrogen), and subsequently 
treated with Turbo DNA-free DNase (Ambion). First-strand cDNA was synthe-
sized using Superscript II reverse transcriptase (Invitrogen). Real-time quantita-
tive PCR was performed using the qPCR core kit for SYBR green (Eurogentec), 
on an ABI PRISM 7700 SDS (Applied BioSystems). The mRNA levels were nor-
malized to the geometric average of four different housekeeping genes: ACTB, 
GAPDH, UBC and HPRT1. Numbers of differentially expressed genes before and 
after prioritization were compared with a chi-square test.
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Zebrafish care and embryo manipulations. Wild-type zebrafish (Danio rerio) 
of the AB strain were maintained under standard laboratory conditions32. 
Morpholino oligonucleotides (Gene Tools) were injected into one- to four-cell-
stage embryos27. Alcian blue cartilage staining was carried out as previously 
described33. All animal studies were reviewed and approved by the institutional 
animal care and use committee for Medical Ethics and Clinical Research of the 
University of Leuven.

Software availability. Endeavour is freely available for academic use as a Java 
application at http://www.esat.kuleuven.be/endeavour.

Note: Supplementary information is available on the Nature Biotechnology website.
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3.2 Contribution of the PhD candidate

The PhD candidate has contributed to the programing of the Endeavour software
that implements the gene prioritization strategy described in the publication. More
precisely, he has programed part of the Java interface that is used to load or save
the gene sets to be used in the analysis. In addition, he has also built up a semi
automated update system for the human genomic data sources.

3.3 Discussion

The approach developed in the present paper relies on the ‘guilt-by-association’
concept so that the predicted disease genes are the in fact similar to the ones
already known to be involved in the disease under study. It means that predictions
are optimal when the underlying data is suggesting that the hidden disease genes
could be related, even indirectly, with the training genes and that therefore the
associations can be predicted. A corollary is that it will not work when the hidden
disease gene association is not backed-up by any genomic data, meaning that it is
impossible to predict associations that are coming ex nihilo. This needs to be kept
in mind when analyzing validation results, because some of the associations can
simply not be predicted given the data.

A characteristic of our approach is the use of a set of genes to model the biological
process of interest. This allows a fine tuning of the training since genes can be
added or removed individually (as compared to when the disease name is used
for training, which does not leave a lot of space for fine tuning). However, this
can also be a disadvantage when only a few or even no disease genes are found.
A proposed approach is to use the genes involved in the biomolecular pathways
that are disturbed in the disease process. This can however still be a challenging
task since sometimes no pathway seems to be critical or, at the contrary, many
pathways are concurrently disturbed. Furthermore, the building of a training set is
a time consuming process that requires some expertise, which does not facilitate
the use of the tool. This issue is further discussed in chapter 9.

Since the publication of that paper in 2006, the existing data sources have
been updated several times to reflect more accurately the current knowledge
in human biology and genetics. Furthermore, several additional data sources
have been integrated into the workflow. The performance of Endeavour on the
same benchmark (29 genetic diseases and 3 signaling pathways) has increased
correspondingly as can be shown in figure 3.1. The algorithm and the benchmark
gene sets are the same so the observed differences are only coming from the data
sources (the data sources have been updated, but the data sources that have been
added have not been used). The gain is significant (p-value < 0.05, Wilcoxon
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Figure 3.1: Comparison of the performance on the same benchmark at different
time points. The AUC is plotted in the y-axis for the 29 genomic diseases (620
genes) on the left and for the 3 signaling pathways (75 genes) on the right. The
AUC is plotted for the genomic data sources of 2006 (grey - left columns) and of
2008 (red - right columns). The difference is significant for the genomic diseases
and for the signaling pathways (p-value < 0.05, Wilcoxon rank-sum).

rank-sum) and indicates that as the databases grow, our representation of the
biological knowledge gets better and the predictions become more accurate.

The strategy developed in this publication has also been benchmarked through an
extensive benchmark based on MetaCore disease marker sets and pathway maps.
This and other benchmark experiments are described in chapter 7. The method has
also been extended to cover model organisms as described in chapter 4, and was
further experimentally validated as described in chapter 8. In addition, a second
gene prioritization strategy was developed and is described in chapters 5 and 6.



Chapter 4

ENDEAVOUR update: a web
resource for gene prioritization
in multiple species

4.1 Summary

A first step towards the development of a cross-species gene prioritization method is
the extension of the human method to model organisms for which numerous genomic
data sources are also available. The choice of model organisms phylogenetically
related to human is also motivated by the long term aim of a cross-species
prioritization tool. That is, prioritization for one species using data from related
organisms. Among the available model organisms, mouse (Mus musculus), rat
(Rattus norvegicus), and worm (Caenorhabditis elegans) are chosen because they
have been well studied and therefore several genomic data sources are available for
these. The extension described in this chapter covers the integration of novel data
sources for these model organisms as well as for human, bringing the total to 51
distinct data sources to perform candidate gene prioritization in four organisms. In
addition, this chapter also relates the creation of a web based interface that is more
intuitive and user friendly. This new interface is simpler since it does not propose
all the options that the original interface proposes. This interface is designed to
quickly become the default interface while the original interface is reserved for
advanced users who need to fine tune their prioritization experiments.

Last point, a pathway based benchmark is performed and confirms the quality of
the overall approach (AUC of 88%, 92%, 90% and 86% for human, mouse, rat, and

63



64 ENDEAVOUR UPDATE: A WEB RESOURCE FOR GENE PRIORITIZATION IN MULTIPLE SPECIES

worm respectively with pathway data sources such as Kegg, Gene Ontology, String
and Text excluded). Beside this benchmark, a small scale validation is realized
using 32 disease-gene associations that are reported in the literature at least six
months after the retrieval of the genomic data (to mimic a real situation in which
the association is still unknown). This benchmark revealed that 87,5% (28 genes
out of the 32 genes) rank in the top 20%, and that half of these (14 genes) even
rank in the top 5%. This confirms one finding of the original publication, i.e., that
the performance of the method for real predictive studies is encouraging, although
a bit lower than the performance for benchmark studies as expected [167].
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ABSTRACT

ENDEAVOUR (http://www.esat.kuleuven.be/endeavour
web; this web site is free and open to all users
and there is no login requirement) is a web resource
for the prioritization of candidate genes. Using
a training set of genes known to be involved in
a biological process of interest, our approach
consists of (i) inferring several models (based on
various genomic data sources), (ii) applying each
model to the candidate genes to rank those
candidates against the profile of the known genes
and (iii) merging the several rankings into a global
ranking of the candidate genes. In the present
article, we describe the latest developments of
ENDEAVOUR. First, we provide a web-based user
interface, besides our Java client, to make
ENDEAVOUR more universally accessible. Second, we
support multiple species: in addition to Homo
sapiens, we now provide gene prioritization for
three major model organisms: Mus musculus,
Rattus norvegicus and Caenorhabditis elegans.
Third, ENDEAVOUR makes use of additional data
sources and is now including numerous databases:
ontologies and annotations, protein–protein inter-
actions, cis-regulatory information, gene expression
data sets, sequence information and text-mining
data. We tested the novel version of ENDEAVOUR on
32 recent disease gene associations from the
literature. Additionally, we describe a number of
recent independent studies that made use of
ENDEAVOUR to prioritize candidate genes for obesity
and Type II diabetes, cleft lip and cleft palate, and
pulmonary fibrosis.

BACKGROUND

With the recent improvements in high-throughput tech-
nologies, many organisms have seen their genomes
sequenced and, more importantly, annotated. This process
leads to the generation of a large amount of genomic data
and the creation and maintenance of corresponding
databases. However, converting genomic data into bio-
logical knowledge to identify genes involved in a
particular process or disease remains a major challenge.
Nevertheless, there is much evidence to suggest that
functionally related genes often cause similar phenotypes
(1–3). To identify which genes are responsible for which
phenotype, association studies and linkage analyses are
often used, resulting in large lists of candidate genes. In
many cases, the list of candidates can be narrowed down
to a few dozen. However, it is generally too expensive and
time-consuming to perform experimental validation for all
these candidates. Therefore, these candidates may be
prioritized to first validate the best ones. Given the
amount of genomic data publicly available, it is often
prohibitive to perform the prioritization manually and
consequently, there is a need for computational
approaches.
During the past 5 years, the bioinformatics community

has developed several strategies to address this question,
and several tools are available online (4,5). To our
knowledge, all the tools use the concept of similarity. It
is based on the assumption that similar phenotypes are
caused by genes with similar or related functions (1–3).
However, the tools differ by the strategy they adopt in
calculating the similarity (either between the candidate
genes and the phenotypes or between the candidate
genes and the training genes) and by the data sources
they use. The most commonly used data sources are text-
mining data, gene expression data and sequence informa-
tion. Additionally, phenotypic data, protein–protein
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interactions, ontologies and cis-regulatory information
are sometimes included. However, most of the existing
approaches mainly focus on the combination of few data
sources. For instance, the combining gene expression and
protein interaction data method proposed by Ma et al. (6)
combines expression and interaction data. Several meth-
ods only rely on literature and ontologies: BITOLA (7),
POCUS (8) Gentrepid (9), G2D (10) and the method
defined by Tiffin et al. (11). In contrast, systems that use
more data sources have recently been designed, such as
CAESAR (12), GeneSeeker (13), SUSPECTS (14), TOM
(15) and ENDEAVOUR (16). For a more detailed description
of the available tools, see the reviews by Oti and Brunner
(5) or by Zhu and Zhao (4).
We previously presented the concept of gene prioritiza-

tion through genomic data fusion and its implementation
called ENDEAVOUR (16). This tool requires two inputs: the
training genes, already known to be involved in the
process under study, and the candidate genes to prioritize.
ENDEAVOUR produces one output: the prioritized list of
candidate genes, along with the rankings per data source.
The algorithm is made up of three stages, called the
training, scoring and fusion stages. In the training stage,
ENDEAVOUR uses the training genes provided by the user to
infer several models, one per data source. For example,
with ontology-based data sources, genes are annotated
with several terms and reciprocally one term can be
associated to several genes. The algorithm selects only the
significant terms, the ones that are over-represented in the
training sets compared to the complete genome. Hence,
the model consists of these significant terms together with
their corresponding P-values that reflect the significance of
the enrichment. In the scoring stage, the model is used to
score the candidate genes and rank them according to
their score. For ontologies, the algorithm scores each
candidate independently by combining the P-values of its
associated terms that are, at the same time, present in the
model. The scores are then used to rank the candidates
based on this one data source. In the final stage, the
rankings per data source are fused into one global ranking
using order statistics. Among the existing methods, the
order statistics has the advantage of avoiding penalizing
genes that are absent from a given data source. Indeed, the
genomic data sources are almost always incomplete. For
instance, some genes do not have any ontology annota-
tions, while other genes do not have their corresponding
probes spotted on the microarray platform for which data
is available. The order statistics allows us to combine the
rankings per data source, taking missing values into
account. Thus, the use of ‘unbiased’ data sources (e.g.
gene expression data, cis-regulatory motifs and protein
sequences), together with the use of the order statistics,
allows us to obtain results that are not overly biased
towards the most studied genes (16). The use of several
data sources is indeed an important strength of our
approach: combining two data sources, although possibly
incomplete, can be more powerful than either individual
data source, as shown by our validation experiments (16).
The fact that our approach does not rely only on a single
data source also reinforces its robustness to noisy data
sources like microarray data. More details about the

training and scoring methods, the data sources and the
order statistics can be found in Supplementary Tables 1
and 2 and in Supplementary Note 1.

In the present article, we describe a novel intuitive web
interface in addition to the original Java client.
Furthermore, three major model organisms have been
added to the application: M. musculus, R. norvegicus and
C. elegans (Danio rerio and Drosophila melanogaster
versions will be made available in 2008). Finally, novel
data sources have been integrated including numerous
protein–protein interaction databases and large species-
specific expression data sets, bringing the number of
available data sources to 26. Apart from our extensive
validation (16), other recent independent publications
confirm that ENDEAVOUR is efficient in identifying novel
disease genes. Indeed, ENDEAVOUR was recently applied to
analyze the adipocyte proteome (17) and to propose novel
genes involved in Type II diabetes (18), cleft lip and cleft
palate phenotypes (19), and pulmonary fibrosis (20).

OUTLINE OF THE ENDEAVOUR WEB SERVER

ENDEAVOUR was first implemented as a Java client appli-
cation interacting with a SOAP server and a MySQL
database. To make it more universally accessible, we have
developed a PHP web-based interface that runs with the
most common web browsers, without the need for Java to
be installed. It is freely accessible and there is no login
requirement.

A four-step wizard guides the user through the pre-
paration of the prioritization (Figure 1). The first step is to
choose the organism: human, rat, mouse or worm. The
second step is to specify the training set. The user can
input a mixture of chromosomal bands, chromosomal
intervals, gene symbols, EnsEMBL (21) gene identifiers,
KEGG (22) identifiers, Gene Ontology (23) identifiers or
OMIM (24) disease names. Each input has to be prefixed
according to its type. The rules are explained in the
Supplementary material and in the online manual. The
genes corresponding to the input are retrieved and loaded
into the application. The third step is to select the data
sources to be used. The data sources available depend on
the organism chosen in the first step. Some of these are
species specific (e.g. gene expression data sets) while others
are more generic (e.g. Gene Ontology annotations). The
last step lets the user specify the candidate genes applying
the same rules as in the second step. The user launches the
prioritization by using a dedicated button. The computa-
tion time is dependent on the number of data sources
used, the number of candidates and the load on our
servers. The application can handle the prioritization of
hundreds of genes (e.g. the average computation time for
400 candidates using 10 data sources is 19.14 s over 100
repeats). Warnings and errors, such as unrecognized gene
identifiers, are displayed in the console located in the
middle of the main windows. The results are displayed at
the bottom of the main page in three panels. The first
panel contains the sprint plot, a graphical representation
of the rankings with one column per data source plus an
additional one for the global ranking. The genes are
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represented as boxes and the top ranking boxes are
coloured for better interpretation of the results. The
second panel contains the raw scores and ranks for each
gene in each data source. The user can sort the columns
according to the global ranking or to any ranking per data
source. The third panel allows one to export the results as
a TSV spreadsheet or as an XML file. The user can also
save the sprint plot using several picture formats (i.e.
PNG, JPG and GIF).

NEW MODEL ORGANISMS AND MORE DATA
SOURCES

ENDEAVOUR is designed as a generic prioritization tool and
is equally useful for the prioritization of candidate disease
genes as for candidate members of biological pathways and
processes. This is illustrated in our previous publication
(16) where we used ENDEAVOUR to identify downstream
genes of myeloid differentiation. Since the fundamental
study of biological processes is predominantly performed
in model organisms, we decided to extend our framework
to several model organisms. Currently, gene prioritization
can be performed for M. musculus, R. norvegicus and
C. elegans, and we are also developing the versions for
D. rerio and D. melanogaster. We have designed the web
server so that the organism-specific versions use the same
method for each generic data source (e.g. Gene Ontology
annotations).

The key strength of ENDEAVOUR resides in the fact that
a lot of data sources are available and the user can
select the ones that best correspond to the biological
question under study. There are 8, 11, 12 and 20 data
sources available, respectively, for R. norvegicus,

C. elegans, M. musculus and H. sapiens, which, in total,
result in 26 distinct data sources. They can be classified
into six categories: ontologies, interactions, expression,
regulatory information, sequence data and text-mining
data. Ontologies are structured vocabularies that are used
to describe the function of the gene products. Ontologies
give more insight on the molecular functions performed
[Gene Ontology (23) and SwissProt (25)], on the biological
processes involved in [Gene Ontology and KEGG (22)],
on the cellular components in which the gene products
are active (Gene Ontology) and on the active domains of
the proteins [InterPro (26)]. Interaction data come from
databases that collect pairs of proteins that interact either
physically or genetically. BIND (27) and DIP (28) curate
the experimentally determined interactions collected from
large-scale interaction and mapping experiments done
using yeast two hybrid, mass spectrometry, genetic
interactions and phage display. MINT (29) and MIPS
(30) mine the literature, either manually or automatically,
to find experimentally verified protein interactions. HPRD
(31) does the same with an emphasis on domain archi-
tecture, post-translational modifications, interaction net-
works and disease association. IntAct (32) and BioGrid
(33) collect physical and genetic interactions by combining
analysis of high-throughput experiments and literature
curation. STRING (34) and IntNetDb (35) are large
databases that contain all kinds of interactions. They
rely on a statistical framework to integrate data coming
from numerous experiments and databases (including
several databases described above), and, additionally,
the interactions are transferred across the different
organisms, when applicable. Regarding the expression
data, the preferred studies are the ones that include
a large number of tissues and a large number of genes.

Figure 1. ENDEAVOUR: the algorithm behind the wizard. Once the organism of interest is chosen (Step 1), the user can specify the training genes
(Step 2). Step 3 lets the user select the data sources that will be used to build the models. The models summarize the training gene information. The
candidate genes specified by the user in Step 4 are then scored against the model. This produces one ranking per data source plus one global ranking
obtained by fusion of the rankings per data source. The global ranking together with the rankings per data source are returned to the application and
can be viewed in the ‘Results’ panel.
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Two sets are available for H. sapiens [Su et al. (36) and
Son et al. (37)], three for M. musculus [Su et al. (36),
Hovatta et al. (38) and Lindsley et al. (39)] and one for
R. norvegicus and C. elegans, respectively from the Walker
et al. paper (40) and the Baugh et al. study (41). Addition-
ally, anatomical expression sequence tags (EST) expres-
sion data from EnsEMBL (21) are available for human.
Regarding the cis-regulatory data, we only have informa-
tion for H. sapiens currently. Using the TOUCAN toolbox
(42) and the upstream sequence of the genes, the algorithm
looks for putative motifs and modules (combination of
five motifs). There are two data sources that are based on
sequences: the protein sequence similarities and the disease
probabilities. For the latter, Lopez-Bigas et al. (43) and
Adie et al. (44) (ProspectR) used sequence features (e.g.
length of the sequence, length of the UTRs, number of
introns, length of the introns) and a statistical framework
to discriminate the human disease causing genes from the
rest of the genome. Next, they associated to every gene a
probability of being a disease causing gene, a priori. As for
sequence similarity, an all-against-all similarity search is
performed for all organisms using the NCBI BLAST (45).
The data source based on literature mining relies on the
TxtGate framework (46). The strategy is to screen the
abstracts from PubMed (47) with a manually curated
vocabulary based on Gene Ontology. Similarly to the
ontologies described above, it provides more information
on the molecular functions and biological processes of the
genes. It is important to notice that, except for the
regulatory information category, each organism is pro-
vided with at least one data source per category.
As an alternative to the novel web-based application,

one can use the original Java Web Start client, which is
also extended to include the other model organisms. This
application includes a few additional features, such as a
full description of the models created, a full genome
screening service in which the whole genome of the given
organism can be prioritized and the possibility for users to
make use of their own microarray data sets. A SOAP
service is also available to allow integration in workflows
[e.g. when using Taverna (48) or Kepler (49)].

SOFTWARE DOCUMENTATION

ENDEAVOUR comes with an online manual. A subsection
describes the concept of gene prioritization through
genomic data fusion. Another subsection contains the
answers to frequently asked questions and gives more
details on how to perform a prioritization and how to
interpret the results. Finally, a step-by-step example is
given together with the corresponding screenshots.
The application is provided with three use cases taken

from the literature. The user can run the examples by
clicking on the corresponding buttons situated above the
wizard that cause the training genes, the data sources
and the candidate genes to be loaded automatically into
the application. Then, the user can quickly go through the
four steps and launch the prioritization process. The three
use cases can be used as a first step to understand the
mechanisms of ENDEAVOUR. The first example is derived

from our previous publication in which we studied the
DiGeorge syndrome (16). This example shows why
YPEL1 was first selected for wet lab experiments that
eventually confirmed the phenotypic association in zebra-
fish. The second example is taken from the Elbers et al.
(18) review on obesity and Type II diabetes. They have
prioritized five susceptibility loci to reveal a molecular link
between the two disorders. ENDEAVOUR uncovered the
susceptibility loci located on chromosome 11 for this
example. It contains KCNJ5, a homolog of KCNJ11 that
is known to contribute to the risk of Type II diabetes. We
have built the last example after Ebermann et al. (50)
published their discovery of a novel Usher gene, DFNB31,
that encodes the whirlin protein. By using data six months
prior to the publication, we made sure that the association
was not yet present in the databases. Among the 32
candidates of the chromosomal band 9q32, DFNB31
ranked first, showing that, retrospectively, it was indeed a
good candidate.

VALIDATION

Similarly to our previous work (16), we statistically
validate the approach with a standard leave-one-out
cross-validation using known gene sets. We produced
the corresponding receiver operating characteristic (ROC)
curves and measured the performance by calculating the
area under the curve (AUC) (Figure 2). Here, we focused
on the pathway gene prioritization for the newly added
species by applying this scheme to three signalling
pathways taken from the Gene Ontology database (23).
These pathways are common to the four organisms and
involve, respectively, 193, 170, 126 and 44 genes for
H. sapiens, M. musculus, R. norvegicus and C. elegans. We
performed both a fair validation and a complete valida-
tion. For the fair validation, we excluded the data sources
that might contain explicitly the gene-pathway association
(i.e. Gene Ontology, Kegg, String and Text) while all data
sources were used for the complete validation. The first
observation is that the performance of the four control
validations stays close to the theoretical expectation of
50% (respectively, 48, 39, 45 and 51%). This means that
when using randomly generated gene sets for training, we
obtain random results. In contrast, the performance of
biologically meaningful sets is much higher (respectively,
88, 92, 90 and 86% for the fair validation and 99, 99, 99
and 98% for the complete validation). An analysis per
data source of the fair validation reveals that the global
performance (e.g. 88% for human) is always higher than
the best performing data source performance (e.g. 78%
for human InterPro). It shows that our data fusion
approach is scientifically sound and that it is crucial to
make use of complementary data sources. Altogether, this
indicates that our approach based on the assumption that
functionally related genes often cause similar phenotypes
can be applied successfully.

A difficulty of validating gene prioritization methods is
the fact that known data are used for the ranking. In other
words, for every disease or pathway gene, the link between
the disease and the gene is described in the literature and
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sometimes evidence is also present in the ontologies or in
the interaction information. Therefore, we excluded in the
above analysis the data sources that contain explicit
information about the similarity of the true positive to the
training set. To assess the full performance of ENDEAVOUR

to solve real biological cases, using all data sources, we
therefore focused on genetic disorders for which associa-
tions were reported very recently in the literature, so that
the explicit information is not yet present in our data.
Particularly, we used gene–disease associations that were
reported in Nature Genetics after 1 January 2008 (Table 1),
32 in total. For each disorder, we built a training set
containing all the genes already known to play a role
in that disorder according to the OMIM and Gene
Ontology databases (both downloaded in August 2007).
As candidate genes to be ranked we used the true positive
gene together with 99 genes that flank the true positive in
the genome. These regions were then prioritized with
ENDEAVOUR using all data sources and their specific
training sets. The results are presented in Table 1.
Interestingly, BANK1, CTRC and SORT1 rank first out
of their region and GDF5, RGS1 and SH2B3 rank second.

All genes but four are within the top 20% and half of them
are within the top 9%.
Others have used our gene prioritization tool as well.

Elbers et al. (18) have used ENDEAVOUR in combination
with other prioritization tools to define the best strategy to
search for common obesity and Type II diabetes genes.
They suggest a list of genes indicated as potential
candidates by at least two of the six tools. Tzouvelekis
et al. (20) have used ENDEAVOUR to prioritize a list of genes
differentially expressed in idiopathic pulmonary fibrosis.
They consistently find that among the top candidates, five
and seven genes are targets of, respectively, tumor necrosis
factor (TNF) and transforming growth factor (TGF).
Osoegawa et al. (19) applied ENDEAVOUR to propose novel
genes associated with cleft lip and cleft palate phenotypes.
They analysed 83 syndromic cases and 104 non-syndromic
cases and concluded that estrogen receptor 1 (ESR1) and
fibroblast growth factor receptor 2 (FGFR2) were the most
likely candidates, respectively, from region 6q25.1-25.2
and region 10q26.11-26.13. Using mass spectrometry and
bioinformatics, Adachi et al. (17) explored the proteome
of the adipocyte, a central player in energy metabolism.

Figure 2. Results of the leave-one-out cross-validation. For each organism, the leave-one-out cross-validation was performed on three pathways sets
from Gene Ontology (23), and, as a control, on five sets of 20 randomly selected genes. The ROC curves of the random (dotted green) and pathway
validation (solid red and dashed blue) are plotted for (a) H. sapiens, (b) M. musculus, (c) R. norvegicus and (d) C. elegans. Notice that for the fair
validation (dashed blue), Gene Ontology, KEGG, Text and String were excluded while all data sources were used for the complete validation (solid
red). The AUC of the control validations are respectively 48, 39, 45 and 51% indicating a random performance. On the opposite, the AUC of the
pathway validations are respectively 88, 92, 90 and 86% for the fair validation and 99, 99, 99 and 98% for the complete validation showing the
validity of our approach.
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Using ENDEAVOUR, they were able to associate a number of
factors with vesicle transport in response to insulin
stimulation, which is a key function of adipocytes.

CONCLUSION

ENDEAVOUR is a web server that allows users to prioritize
candidate genes with respect to their biological processes
or diseases of interest. It is provided with an intuitive four-
step wizard and an online manual. It is available for four
organisms (H. sapiens, M. musculus, R. norvegicus and
C. elegans). ENDEAVOUR relies on the similarity between
the candidates and the models built with the training
genes. The approach has been validated experimentally
(16), by extensive leave-one-out cross-validations, and by
analysis of recently reported cases from the literature.
Additionally, several independent laboratories have used
ENDEAVOUR to propose novel disease genes [Elbers et al.
(18) and Osoegawa et al. (19)] or to optimize the analysis
of medium-throughput experiments [Tzouvelekis et al.
(20) and Adachi et al. (17)]. Importantly, the cross-
validation revealed the added value of combining several
complementary data sources. With 26 distinct data

sources (51 in total) covering most aspects of the knowl-
edge available on genes and gene products (functional
annotations, protein interactions, expression profiles,
regulatory information, sequence-based data and litera-
ture mining), ENDEAVOUR exploits the most comprehensive
collection of publicly available knowledge.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Table 1. Results of the thirty two genetic disorder prioritizations

Gene Disorder Reference Endeavour rank

BANK1 Systemic lupus erythematosus Kozyrev et al. (51) 1
ITGAM Systemic lupus erythematosus Nath et al. (52) 3
TNFSF4 Systemic lupus erythematosus Graham et al. (53) 16
DPP6 Amyotropic lateral sclerosis van Es et al. (54) 15
CTRC Chronic pancreatitis Rosendahl et al. (55) 1
ATP6V0A2 Impaired glycosylation Kornak et al. (56) 5
ATP6V0A2 Cutis laxa Kornak et al. (56) 5
GALNT2a LDL/HDL cholesterol Willer et al. (57), Kathiresan et al. (58) 13
SORT1a LDL/HDL cholesterol Willer et al. (57), Kathiresan et al. (58) 1
MLXIPLa LDL/HDL cholesterol Willer et al. (57), Kathiresan et al. (58), Kooner et al. (59), 12
GDF5a Human height Sanna et al. (60) 2
C20orf44a Human height Sanna et al. (60) 41
MSMBa Prostate cancer Eeles et al. (61), Thomas et al. (62) 18
JAZF1a Prostate cancer Thomas et al. (62) 14
CTBP2a Prostate cancer Thomas et al. (62) 4
LMTK2a Prostate cancer Eeles et al. (61) 4
KLK3a Prostate cancer Eeles et al. (61) 9
CPNE3a Prostate cancer Thomas et al. (62) 42
IL16a Prostate cancer Thomas et al. (62) 9
CDH23a Prostate cancer Thomas et al. (62) 40
EHBP1a Prostate cancer Gudmundsson et al. (63) 19
CCR3a Celiac disease Hunt et al. (64) 12
RGS1a Celiac disease Hunt et al. (64) 2
LPPa Celiac disease Hunt et al. (64) 30
TAGAPa Celiac disease Hunt et al. (64) 3
SH2B3a Celiac disease Hunt et al. (64) 2
IL12Aa Celiac disease Hunt et al. (64) 18
SCHIP1a Celiac disease Hunt et al. (64) 20
IL18R1a Celiac disease Hunt et al. (64) 3
IL18RAPa Celiac disease Hunt et al. (64) 4
IL2a Celiac disease Hunt et al. (64) 10
IL21a Celiac disease Hunt et al. (64) 14

Mean (all genes) 12.25
Mean (GWAS excluded) 6.57

aAssociations reported with GWAS (Genome Wide SNPs Associations Studies).
The gene-disease associations were reported in Nature Genetics after 1 January 2008 to exclude the presence of explicit evidence in our data sources.
The training sets were built with OMIM and Gene Ontology; and the candidate regions contain the novel gene and its 99 nearest neighbours. The 20
human data sources were used to perform the prioritizations. The results show that ENDEAVOUR ranked all the novel genes but four within the top
20%, and half of them within the top 9%.
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4.2 Contribution of the PhD candidate

The PhD candidate has gathered the genomic data for the extra three species. He
has also updated the already existing data sources accordingly. He has contributed
to the development of the web interface through the co-development of an XML
based client-server communication module. In addition, the PhD candidate has
performed the benchmark analysis based on OMIM, Gene Ontology and recently
reported disease-gene associations. He has written the paper.

4.3 Discussion

Besides mouse, rat and worm, a fruit fly (Drosophila melanogaster) version was
further implemented and validated. This work is described in chapter 8. In addition,
the tool has recently been extended to zebrafish as well (Danio rerio). Altogether,
this corresponds to 26 additional data sources (14 for fruit fly and 12 for zebrafish).

Tools have been integrated to measure how many people are consulting our web
interface, this was done using the Google Analytics suite. A summary is described
in figure 4.1. There have been a total of 8505 visits between the official launch of
the website in April 2008 and April 2010. That represents an average of 82 visits
per week. Interested researchers are mainly coming from the United States, China,
and Belgium, although other european countries active in bioinformatics have also
shown some interest (e.g., France, United Kingdom, Germany). The figure 4.1
also presents the main events that have contributed to increase the number of
visits such as the original publication, conferences, or courses in which the tool
was demonstrated. Although very modest, these numbers are encouraging and
have resulted into several independent publications. The table 4.1 presents the
4 examples already discussed in the current publication as well as 16 additional
examples found in the literature since then. Most of these publications represent
independent use of our software Endeavour and some have led to some breakthrough
in human genetic. They are all described in details below.

4.3.1 External validations

Selection of genes and single nucleotide polymorphisms for fine mapping
starting from a broad linkage region Windelinckx et al. describe an empirical
two-step fine mapping approach, in which candidate genes are prioritized using
Endeavour, and the top genes are chosen for further SNP selection with a linkage
disequilibrium based method (Tagger) [258]. The authors apply this approach on
two previously identified linkage regions for muscle strength. This results in the
selection of 331 polymorphisms located in 112 different candidate genes out of an
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Figure 4.1: Traffic and statistics for the Endeavour website. The statistics are
obtained for the prioritization interface (A, B, and E), the main page (D), and the
entire website (C) through the use of Google Analytics. (A) World map of the
traffic between April 2008 and April 2010 for the prioritization interface, with the
United states being the best contributor with 1400 visits. (B) A detailed view of
Europe for the same page and covering the same period, showing the best europeans
contributors. (C) The 10 most contributing countries, worldwide, results are merged
for the entire website. (D) The traffic on the main page between April 2009 and April
2010. (E) The traffic on the prioritization interface between April 2008 and April
2010. The four stars represent events that have contributed to an increase of the
traffic. (1) Publication of the web based interface on May 2008. (2) Presentation
at the Genomic Disorders conference on Mars 2009. (3) Course in master of
Biomedicine at the K.U.L. on September 2009. (4) Entry on the BioMed Central
blog (http://blogs.openaccesscentral.com/blogs/bmcblog/entry/chdwiki_
genomemedicine) mentioning the CHDWiki publication. CHDWiki includes a gene
prioritization module (see also chapter 8).

initial set of 23,300 SNPs. Notice that gene prioritization is performed five times
using five different training sets all related to muscle strength, and that results are
further integrated in order to obtain a global ranking. After prioritization, a total
of 129 genes are retained from the 597 genes that lay in the two linkage regions.
This is further narrowed down to 331 SNPs using a SNP selection strategy.

A bivariate whole genome linkage study identified genomic regions influencing
both BMD and bone structure Liu et al. use six gene prioritization tools in
conjunction to propose new candidate for areal BMD (aBMD) and areal bone size
(ABS) that are both risk factors for osteoporosis [139]. They screen seven linkage

http://blogs.openaccesscentral.com/blogs/bmcblog/entry/chdwiki_genomemedicine
http://blogs.openaccesscentral.com/blogs/bmcblog/entry/chdwiki_genomemedicine
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regions associated with both aBMD and ABS and identify 34 promising candidate
genes that are reported by at least three of the six prioritization tools.

A new dominantly inherited pure cerebellar ataxia, SCA 30 Storey et al. report
the analysis of a family manifesting a cerebellar ataxia and identify a locus on
4q34.3-q35.1 associated to the disease [224]. A gene prioritization of the region that
encompasses 19 genes reveals that the gene ODZ3 seems an interesting candidate,
which is confirmed through further expression analysis that reveals adult and fetal
brain expression (very high expression in amygdala and caudate nucleus).

Identification of LTBP2 on chromosome 14q as a novel candidate gene for bone
mineral density variation and fracture risk association Cheung et al. describe
a thorough analysis of a linkage pick at 14q in relation to Bone Mineral Density
(BMD) and fracture risk association [53]. More than 300 genes are located in the
linkage region, only five are retained after prioritization and are further screened
for SNPs. Among the 55 SNPs, 16 show significant associations, 6 of which are
in the LTBP2 gene. In addition, LTBP2 expression is observed in preosteoblast
cells during osteoblastic proliferation and subsequent differentiation suggesting
that LTBP2 might be clinically important in fracture management and therefore
in osteoporosis.

The complexity of genotypic alterations underlying HER2-positive breast
cancer: an explanation for its clinical heterogeneity Vanden Bempt et al.
investigate the impact of HER2 gene amplification on the biology of breast tumors
[30]. They first define regions of interest by comparative expressed sequence
hybridization analysis, they find four regions on chromosomal regions 17q12, 3q24-
q26.3, 14q24-31 and 20q12-q13.1 encompassing more than 500 genes each. Gene
prioritization is performed to narrow this huge list down to eight genes that are
further investigated by quantitative real-time polymerase chain reaction (qRT-
PCR). Two out of these eight genes show significant expression in HER2 amplified
breast carcinomas (HER2 and CRK7) and a trend can be observed for a third gene
(MMP9), although it does not reach significance, suggesting interesting candidate
genes for HER2 amplified breast tumors.

Recurrent copy number changes in mentally retarded children harbour genes
involved in cellular localization and the glutamate receptor complex Poot et
al. identify recurrent Copy Number Changes (CNCs) in mentally retarded children
and propose novel candidate from these CNCs [191]. Starting from 278 patients
and 48 controls and using the array CGH technology, 27 CNCs are identified. Gene
set enrichment analysis, gene prioritization and network based analysis are then
realized using Gather, Endeavour and Prioritizer, and String. The results show
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that genes involved in potassium ion transport and establishment of localization
represent promising candidate genes.

Role of genetic variation in insulin-like growth factor 1 receptor on insulin
resistance and arterial hypertension Sookoian et al. perform a two-stage study
to explore the role of gene variants in the risk of insulin resistance and arterial
hypertension (in relation with type 2 diabetes) [221]. A whole genome prioritization
identified 10 highly significant genes, among which only one (IGF1R) demonstrates
significant association in various Genome Wide Association studies (GWAS).
Further candidate gene association studies show non significant association between
metabolic syndromes and IGF1R. The authors suggest that it might be due to the
low Minor Allele Frequency (MAF) of the patient cohort.

Gene prioritization based on biological plausibility over genome wide association
studies renders new loci associated with type 2 diabetes Sookoian et al.
combine two GWAS for type 2 diabetes with prioritization by Endeavour [222].
Starting from the whole genome, 241 genes are prioritized with significant p-values,
corresponding to a total of 1096 SNPs. The analysis of the GWAS results show that
6 SNPs are associated with type 2 diabetes, corresponding to five genes: TACR3,
ALK, CACNA1D, FOXO1A, and AKT3. The authors report that, in animal models,
the haploinsufficiency of the FOXO1A restores insulin sensitivity and rescues the
diabetic phenotype in insulin-resistant mice and that, conversely, a gain-of-function
FOXO1A mutation results in diabetes. Furthermore, FOXO1A is regarded as a
potential therapeutic target for improving insulin resistance. The other candidates
are involved in energy balance (ALK), regulation of insulin secretion (CACNA1D),
regulation of cell signaling in response to insulin and glucose uptake (AKT3).

The RNA-binding protein Elavl1/HuR is essential for placental branching
morphogenesis and embryonic development Katsanou et al. are coupling gene
expression measurements, in silico data analysis, and HuR-RNA association assays
to identify transcription and growth factor mRNAs controlled by HuR in rodent
embryonic development[121]. First a set of 395 differentially expressed mouse genes
is collected from HuR− and HuR+ embryos. These genes are further prioritized
with Endeavour using three different training sets that describe respectively
placental insufficiencies, limb deformities, and asplenia. Only the 23 genes that are
significantly prioritized by the three training sets are retained for the qRT-PCR
experiments. The results show that 19 out of the 23 genes are indeed differentially
expressed. As a last validation, Immuno-Precipitation (IP) assays are run, 6 of the
19 genes are shown to associate distinctly with HuR, among which five have not
been reported in the literature before, enriching therefore the role of HuR in mouse
embryonic development.
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Phenomic determinants of genomic variation in autism spectrum disorders
Qiao et al. aim at finding Copy Number Variants (CNVs) associated to autism
spectrum disorders through the use of the array CGH technology[195]. They
identify 12 positive regions, among which 6 contain 3 genes or less. The remaining
6 regions that encompass 187 genes altogether were then prioritized individually and
the first 2 genes from each regions were retained. These genes were mostly involved
in either mammalian nervous system development and/or neuronal excitability.
For example, WNK3, and NALCN have been reported to be associated with
neurodevelopmental disorders including NIPA1 (involved in hereditary spastic
paraplegia), and CTNND2 (cri-du-chat syndrome). Some have been reported in
ASD related studies, such as PHF8, WNK3 SEMA5A, GTF2I, STX1A, NIPA1
and UBE3A.

Identification of neuroglycan C and interacting partners as potential susceptibil-
ity genes for schizophrenia in a Southern Chinese population So et al. analyze
a previously reported linkage region for schizophrenia on chromosome 3p [220].
Endeavour is used to prioritize the 129 genes from that region, and results are
combined with the ones of the association screen. At the end, NGC appears as the
best candidate (1st rank), its brain specific expression pattern and its involvement
in neurodevelopment also support this hypothesis.

Genetic modification of the inner ear lateral semicircular canal phenotype of
the Bmp4 haplo-insufficient mouse Vervoort et al. use mice to study ear
development, more precisely the inner ear lateral semicircular canal phenotype
[244]. A genome scan identifies two modifier loci on chromosome 4 and 14. Only the
locus on chromosome 4 undergoes prioritization, six genes are selected for further
experiments. Only one of the associated SNPs is significant and corresponds to
the gene Prdm16. The authors precise that functional assays are still needed to
confirm its role in inner ear development.

Narrowing the critical deletion region for autism spectrum disorders on 16p11.2
Crepel et al. report a small 118 kb deletion within the recurrent 16p11.2 copy
number variant (CNV), segregating with ASD or ASD traits in a three-generation
family [57]. The prioritization of the complete recurrent CNV revealed that 2 of
the top 5 genes, SEZ6L2 and MPV, are located within the small 118kb deletion.
They appear as interesting candidate genes with supporting evidence from human
and model organisms.

NEK1 mutations cause short-rib polydactyly syndrome type majewski Thiel
et al. used homozygosity mapping in two families with autosomal-recessive
short-rib polydactyly syndrome Majewski type to identify mutations [230]. They
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Publication Disease / process Main finding
∗Elbers et al. Type 2 diabetes 27 genesc
∗Tzouvelekis et al. Pulmonary fibrosis HIF1A
∗Osoegawa et al. Cleft lip and palate ESR1 and FGFR2
∗Adachi et al. Energy metabolism 41 genesc
Windelinckx et al. Muscle strength 112 genes
Liu et al. Bone mineral density 34 genesc
Storey et al. Cerebellar ataxia ODZ3
Cheung et al. Bone mineral density TLBP2
Vanden Bempt et al. Breast cancer HER2, CRK7, and MMP9a
Poot et al. Mental retardation 34 genesc
Sookoian et al. Insulin resistance IGF1Ra
Sookoian et al. Type 2 diabetes TACR3, ALK, CACNA1D,

FOXO1A, and AKT3
Katsanou et al. Embryonic

development
Ets2b, Fgf10b, Hoxd13b,
Tbx4b, Foxc1b, and Hoxb9b

Qiao et al. Autism WNK3, NALCN, CTNND2,
PHF8, WNK3, SEMA5A,
GTF2I, STX1A, NIPA1 and
UBE3A

So et al. Schizophrenia NGC
Vervoort et al. Ear development Prdm16ab
Crepel et al. autism SEZ6L2, MPVa
Thiel et al. Short rib polydactyly

syndrome Majewski
NEK1

Dupé et al. Holoprosencephaly DLL1
Tanaka et al. Diabetes (MODY) GCKRa

Table 4.1: External validation of Endeavour. List of the 20 external publications
that use Endeavour to prioritize candidate genes for various genetic disorders and
developmental processes. (∗) Publication is reported in Tranchevent et al. (2008).
(a) The reported association is not significant but authors show evidence that gene
is still a good candidate. (b) Experiments are conducted in mouse and therefore
the reported gene is a mouse gene. (c) The complete gene lists can be found in
appendix B.
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identified one linked interval (LOD score 2.95) representing 17.36 Mb/18.65 cM
on chromosome 4, encompassing 38 genes. To prioritize these genes under the
hypothesis of a defect in cilia function, they used known genes of the cilia proteome
database and compared them with the genes from the candidate interval using
Endeavour. The NEK1 gene ranks second and mutations in that gene were found
in the two families.

NOTCH, a new signaling pathway implicated in holoprosencephaly Dupé et
al. have analyzed 4 holoprosencephaly (HPE) patients through array CGH, and
have defined a redundant 6qter deletion [69]. Through prioritization, the DLL1
gene was identified as the best candidate gene from the region. Expression analysis
and mutation screens indeed showed that DLL1 has is involved in early patterning
of the forebrain and suggested NOTCH as a new signaling pathway involved in
HPE.

GCKR mutations in Japanese families with clustered type 2 diabetes Tanaka
et al. recruited Japanese families with a 3-generation history of diabetes [227].
Genome-wide linkage analysis was performed assuming an autosomal dominant
model. Genes in the linkage region were computationally prioritized using
Endeavour, leading to the identification of GCKR as the best candidate gene
among the 106 genes from the region. They present sequencing evidence that
GCKR is a susceptibility gene in Japanese families with clustered diabetes.

4.3.2 Improvement of the text-mining source

The results presented in this section have been obtained through an internal
collaboration with Shi Yu, a former PhD student in our group [271, 270].

One important data source is ‘Text’ and is built by text mining of the scientific
literature from the Medline repository. The original ‘Text’ model was built using
one vocabulary derived from Gene Ontology using the Term Frequency times
Inverse Document Frequency (TFIDF) representation scheme [4]. It was however
still unknown what was the effect of using various vocabularies, representations and
ranking algorithms for gene prioritization by text mining. We have systematically
investigated this issue by benchmarking five domain vocabularies, two text
representation schemes and four classes of ranking algorithms (for a total of
27 algorithms) [271] representing 270 distinct configurations in total. The five
domain vocabularies are based on reputed biomedical ontologies: eVOC, MeSH,
Gene Ontology (GO), Online Mendelian Inheritance in Man (OMIM) and London
Dysmorphology Database (LDDB). For comparison purpose, text mining with no
predefined vocabulary is also performed. The two text representations are the
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classical Inverse Document Frequency (IDF) and Term Frequency times Inverse
Document Frequency (TFIDF) and the four ranking algorithm classes include one-
class Support Vector Machine (1-SVM) [210], k-nearest neighbors (KNN), and two
clustering based ranking techniques: k-means clustering and hierarchical clustering.
First conclusion, the results show that the IDF representation of gene performs
better than the TFIDF representation. IDF outperforms TFIDF for all vocabularies
and all ranking algorithms. Second conclusion, the eVOC and MeSH domain
vocabularies perform better than the other domain vocabularies (GO, OMIM and
LDDB). This general conclusion stands for the two vector representations and the
best performing algorithms. Last conclusion, the ranking algorithm based on 1-
SVM, standard correlation and ward linkage method provides the best performance.
A direct consequence of this study was to replace the existing text model of our
gene prioritization framework by a model that exhibits a better performance on
benchmark data sets.

We have then investigated if the incorporation of more text mining models may be
beneficial to obtain more refined and accurate knowledge. To this end, we have
developed a multi-view approach to retrieve biomedical knowledge using different
controlled vocabularies [270]. These controlled vocabularies were selected on the
basis of nine well-known bio-ontologies and were used to index the vast amount
of gene-based free-text information available in the MEDLINE repository. Beside
the five vocabularies mentioned above, the Kegg Orthology (KO), the Mammalian
Phenotype Ontology (MPO), the Systematized Nomenclature of Medicine-Clinical
Terms (SNOMED CT), and the Universal Protein Knowledgebase (UniprotKB)
were also considered. The text mining result specified by a vocabulary was
considered as a single view and the obtained multiple views were integrated
by multi-source learning algorithms (order statistics and one class SVM). We
investigated the effect of integration for gene prioritization and systematically
evaluated and compared the performance on benchmark data sets. This revealed
that the multi-view approach could demonstrate significantly better performance
than the other methods. Another finding is that applying Latent Semantic Indexing
(LSI) on the gene profiles reduces the dimension of these profiles but also leads to
an increase in performance for gene prioritization.

4.3.3 Optimization of the training

One of the key step for an effective gene prioritization is the selection of the training
set. Due to the nature of the algorithm, it is important that the training set is
homogeneous and represents a single biological process. The presence of genes that
do not belong to the pathway / disease described by the other genes represents noise
and is likely to have a negative effect on the prioritization results. To estimate this
effect, we have performed an additional cross-validation using gene sets that contain
a mixture of both disease genes and random genes. The results are displayed in
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Percentage of randomly AUCselected genes added
0% 94,35%
25% 84,83%
50% 78,69%
75% 74,12%
100% 71,43%

Table 4.2: Effect of adding randomly selected genes to the disease training sets. An
OMIM benchmark that consists of 29 diseases is used. The amount of randomly
selected genes added is proportional to the size of the original disease set, and the
AUC is computed accordingly.

Table 4.2. The performance with the original training sets is 94,35%, when half of
the sets consist of randomly selected genes, this decreases to 71,43%. Altogether,
these results show that adding randomly selected genes to the disease specific gene
set potentially reduces the quality of the model and therefore the performance of
the associated predictions.

Building such a training set represents a subsequent amount of work, and
therefore users would greatly benefit from methods that can automatically or
semiautomatically build a training set. The retrieval of known disease and pathway
genes from reference databases represents the first step towards this goal, and
has been implemented within our framework. It is however often the case that a
training set built this way is not homogeneous (making its profiling more difficult)
and incomplete. In addition, diseases are often resulting from the perturbation of
complex cascades of pathways making their profiling even more challenging. An
example is leukaemia, a term used to describe a group of phenotypically similar
diseases that, however, differ at the molecular level. To this end, we have developed
two complementary strategies: the automatic clustering of the training set and the
use are several training set in conjunction to prioritize candidate genes.

Clustering is the repartition of elements from one group into several subgroups
so that elements in one subgroup are similar to each other and dissimilar to the
elements of the other subgroups. In our case, the clustering of the training set allows
the definition of several more homogeneous subgroups. Consequently, it allows
the removal of the outliers, i.e., genes that do not belong to any cluster and that
therefore represent noise in the data. In a study performed in collaboration with
Francisco Bonachela-Capdevila, we were able to show that performing clustering
before the prioritization can lead to better cross-validation performance. Clustering
was used on binary annotations data sources using the CLOPE algorithm, these
data sources were then excluded from the prioritization analysis.

The repartition, manually or through clustering, of the training genes in several
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training sets represents the first step. Having multiple training sets means
performing multiple prioritizations and thus multiple rankings. To reconcile these
results, several methods have been investigated. The first method is the use of an
extra layer of order statistics to combine the prioritization results similarly to what
is done within Endeavour to fuse results from different data sources. This method
assesses that the guilty gene is active in all the biological processes described by the
training sets. An example is the prioritization of a region deleted in patients with
several phenotypes (associated to the region), and for which the disease causing
gene is expected to contribute to all phenotypes. The prioritization of the genes
from that region with several training set (one per phenotype) is likely to give
better results than if all phenotypes are grouped together in a single training set.
In collaboration with Bernard Thienpont, we have implemented and applied this
strategy for congenital heart defect (CHD) [232]. A candidate region is defined by
genotype-phenotype correlation on chromosome 6q24-q25. This region that contains
105 candidate genes is then prioritized using seven training sets that are all related
to CHD (first heart field, second heart field, neural crest, vascularization, left-right
asymmetry establishment, valve formation, known dosage-sensitive CHD genes).
The seven prioritizations are then combined with the order statistics to create a
global ranking. The experimental validation that follows these prioritization has
proved that the gene TAB2, ranked first over the locus is associated to CHD, this
part is discussed in further details in chapter 8.

An alternative consists in selecting the best results from all training sets for every
gene instead of using the order statistics. The underlying assumption is then that
the disease gene is involved in one of the biological processes described by all the
training sets but not all of them. However, we have not tested this alternative on
real data.



Chapter 5

Kernel-based data fusion for
gene prioritization

5.1 Summary

The original prioritization strategy presented in chapter 3 is based on basic statistics
and every data source has its own modeling and scoring method, which makes it
difficult to extend with novel data sources and organisms. It also makes difficult the
extension of the approach with new algorithmic developments. The present chapter
investigates the development of an alternative strategy that uses more advanced
machine learning methods, kernel based methods, to solve the same probelm:
candidate gene prioritization through data fusion. In this setup, all the data
sources are first transformed into kernels using a linear function or a Radial Basis
Function (RBF). Then, a one-class SVM algorithm is applied to perform novelty
detection using multiple kernels at the time. A classical one-class SVM algorithm is
using a single data source and finds the hyperplane that best separates the positive
genes from the origin. In our case, multiple data sources, i.e., multiple kernels,
are used in conjunction. We investigate whether the optimal convex optimization
of the kernels performs better than the simple average kernel. We also compared
the developed method with the approach used in the Endeavour software on the
same disease benchmark. The main finding of this study is that kernel methods
outperforms the regular Endeavour approach, this is further discussed in section
5.3.
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ABSTRACT
Motivation: Hunting disease genes is a problem of primary import-
ance in biomedical research. Biologists usually approach this problem
in two steps: first a set of candidate genes is identified using tra-
ditional positional cloning or high-throughput genomics techniques;
second, these genes are further investigated and validated in the
wet lab, one by one. To speed up discovery and limit the number
of costly wet lab experiments, biologist must test the candidate genes
starting with the most probable candidates. So far, biologists have
relied on literature studies, extensive queries to multiple databases,
and hunches about expected properties of the disease gene to deter-
mine such an ordering. Recently, we have introduced the data mining
tool ENDEAVOUR [1], which performs this task automatically by rely-
ing on different genomewide data sources, such as Gene Ontology,
literature, microarray, sequence, and more.
Results: In this paper, we present a novel kernel method that ope-
rates in the same setting: based on a number of different views
on a set of training objects, a prioritization of test objects is obtai-
ned. We furthermore provide a thorough learning theoretical analysis
of the method’s guaranteed performance. Finally, we apply the
method to the disease data sets on which ENDEAVOUR [1] has been
benchmarked, and report a considerable improvement in empirical
performance.
Availability: The MATLAB code used in the empirical results will be
made publicly available.
Contact: tijl.debie@gmail.com, yves.moreau@esat.kuleuven.be

1 INTRODUCTION
Identifying genes whose disruption causes congenital or acquired
disease in humans is a major goal of genetics and molecular biology,
both towards diagnosis and understanding the biology of disease
processes. These genes are calleddisease genes—an example being
the BRCA1 gene whose mutation is responsible for cases of familial
breast cancer. Several biological strategies are available to identify
disease genes. Positional cloning strategies aim at identifying the
position of the gene on its chromosome (linkage analysis, linkage
disequilibrium, association studies, study of chromosomal aberrati-
ons). Most of the time these studies can only restrict the location of
the disease gene to a region containing tens to hundreds ofcandidate
genes. High-throughput genomic studies (microarray analysis, pro-
teomics, and so on) often consider biological samples from patients
or animal models and try to identify which key genes or proteins are
disrupted in the disease process. Again, these strategies often deliver
long laundry lists of hundreds of candidate genes.

In both cases, the candidate genes need to be further investi-
gated to identify the disease causing genes. Because this work is

time consuming and expensive, biologists must prioritize the genes
from most to least promising when carrying out the validation
process—this is calledgene prioritization.

A main strategy to prioritize candidate genes is to compare the
candidate genes (called here thetest genes) to genes already known
to cause the same disease or closely related disease processes (called
here thetraining genes). Hence, the problem faced by the biologist
to determine the implicated gene among the test genes can potenti-
ally be simplified, by concentrating on those test genes that are in
some sense similar to the training genes.

With the advent of high-throughput technologies, many sources
of information, orviewson genes may be useful and relevant in
defining what is ‘similar’. Therefore, this task has become extre-
mely challenging for biologists. For this reason, we have recently
developed the tool ENDEAVOUR [1]. It makes use of statistics to
compute a ranking of test genes according to their similarity to the
training genes, and this once on each of a number of data sources. In
a subsequent step, these rankings are integrated into a single ranking
by making use of order statistics.

1.1 Formal problem setting
In the current paper, we formulate the problem in machine learning
terms, and we develop a kernel-based method to solve it (see [11] for
an introduction to kernel methods). As for the formalization, several
avenues that can be followed. First, one may cast it into theclassi-
ficationframework, regarding the training genes as belonging to the
positive class, and the rest of the genome to the negative. However,
the assumption that the rest of the genome contains only negatives
is false, even though in gene hunting the proportion of positives is
usually small. This means that label noise is unavoidable, which is
detrimental from a robustness point of view. Moreover, the set of
positives is usually extremely small (a few to a couple tens) and is
drawn with major biases from the underlying positive class, which
compromises uniform generalization performance over the whole
space. On the other hand, the large size of the negative training set
would pose computational challenges to data fusion approaches.

The second possible approach formalizes the problem asnovelty
detection, where one tries to model (the support of the distribution
of) the training genes only. Several approaches to novelty detection
have been described in literature [13, 10], and relations between
them have been established. One approach tightly fits a hypersphere
around a vector representation of the data, and considers the inner
volume of the hypersphere as the support of the distribution. Ano-
ther approach finds a hyperplane separating the positive data from
the origin.

The approach proposed in this paper is reminiscent mostly of the
latter: find a hyperplane that separates the vector representations of

c© Oxford University Press 2007. 1
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the disease genes from the origin with the largest possible margin,
and consider a gene more likely to be a disease gene if it lies farther
in the direction of this hyperplane. However, we have an additional
problem to be dealt with: while all methods described so far make
use of just one view on the data, our method should be capable of
taking into account several different views on the genes.

1.2 Data fusion by learning the kernel
The main source of inspiration for our algorithmic and theoretical
contributions is in our previous work [5], and in [7, 6, 3]. They
describe a methodology for learning the kernel matrix relying on a
quadratically constrained linear program (QCLP) for classification
in a transduction setting. Both approaches rely on strong statistical
foundations and performance guarantees are provided. A number of
recent publications have carried this work further, generalizing this
approach towards other problems besides classification [9], working
on algorithmic improvements to reduce time and memory require-
ments [2], or contributing to both these aspects [12]. Still, thus far
data fusion approaches to novelty detection have remained under-
studied. To our knowledge, a statistical study of the problem is still
lacking. Furthermore, empirical studies have remained limited to the
method in [9], which is based on the elegant framework of kernel-
learning with hyperkernels, but which is computationally extremely
challenging as it relies on a semi-definite program with a number of
variables that is quadratic in the training set size.

1.3 Results
We present an approach for gene prioritization based on a novel
kernel-based algorithm capable of integrating various sources of
information in a natural way. Our approach leads to fast algorithms
relying on a QCLP, and we show how it is explicitly guided by a
rigorous statistical study. We demonstrate it on a large number of
disease gene hunting problems, outperforming ENDEAVOUR [1],
which is the first tool to combine many data sources for gene prio-
ritization and to have provided new candidate genes that have been
successfully biologically validated.

2 DATA FUSION, KERNEL COMBINATIONS, AND
NOVELTY DETECTION

We first discuss a variant of a well-known kernel method for novelty
detection, which makes use of a single view on the data only [10].
Let us assume a genex has an associated vector representationx.
Then, this method finds a hyperplane parameterized by a unit norm
weight vectorw, defined by the equalityf(x) , x′w = M , which
separates all training genes from the origin.

Then, for atest genex, the functionf measures its distance
from the origin in the direction of the hyperplane, and can be
used to prioritize the genes: the largerf(x), the higher genex in
the prioritization. See the right part of Figure 1 for a schematic
clarification.

Subsequently, we discuss how different views on the genes can
be integrated naturally and efficiently by convexly combining the
kernels of each of these data sources. The statistical study which
theoretically supports the use of the functionf as a way to prioritize
is left to Section 3.

2.1 Novelty detection
Let us represent the vector representation of the set of training genes
by a matrixX, with theith row of X containing the feature vector

xi of theith training gene. As above, we define a functionf of gene
x asf(x) , x′w. Then, we search for the weight vectorw with
‖w‖2 ≤ 1 such that for all genesxi in the training set the function
f(xi) is larger than a marginM , with M as large as possible (i.e., it
searches for a hyperplane parameterized byw, such that all training
data lie on one side of the hyperplane and the perpendicular distance
M between the origin and the hyperplane is maximized). Formally,
this leads to the optimization problem,

max
M,w

p(M) = M s.t. w′w ≤ 1, f(xi) , x′iw ≥ M (∀i).

The dual of this (convex) optimization problem can be given by

min
α

d(α) =
√

α′XX′α s.t. αi ≥ 0 (∀i), 1′α = 1. (1)

Thanks to strong duality, the primal and dual optima (achieved
for M? and α?) are equal to each other:p(M?) = d(α?).
Furthermore, duality relations show that the optimal value of the
weight vector can be expressed in terms of the dual variables as
w? = X′α?/

√
α?′XX′α?. Note that the square root is a mono-

tonic function and can hence be ignored in the objective of the dual
optimization problem (1).

It is a crucial recurring fact in kernel methods that the dual for-
mulation can be written solely in terms of inner products between
feature vectorsxi. Indeed, the matrixXX′ contains the inner pro-
ductx′ixj on itsith row andjth column, and we denoteXX′ = K,
the so-called kernel matrix. As a consequence, the actual represen-
tationx of data objectx does not need to be known, as long as the
inner product between any pair of objects in this representation is
specified by a kernel functionk(xi, xj).

Equally importantly, instead of the representationx′w of the prio-
ritization functionf(x), we can use the following equivalent dual
formulation, relying on kernel evaluations only:

f(x) =
1√

α′Kα

nX
i=1

αik(x, xi) (2)

2.2 Data fusion
In the method discussed above only a single kernel functionk and
corresponding kernel matrixK on the training set are given. Howe-
ver, in our applicationm different kernel functionskj and kernel
matricesKj are available, each of which is based on a certain repre-
sentation or view on the genes. The availability of these different
views leaves us the freedom to design the kernel matrix such that
the penalized margin is maximized. The challenge is to exploit this
in a statistically and algorithmically sound way.

2.2.1 Averaging the kernelsA first and trivial approach is to
combine the kernel matricesKj by simply computing a weighted
average,

K =
X

j

Kj

βj
,

with βj > 0 positive constants. The choice of the constantsβj may
be arbitrary and at the user’s discretion. However, here we sug-
gest a simple agnostic choice. The concern to address using these
weights is that different kernels may have different scales, such that
their importance in the linear combination may be overly small or
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Fig. 1. Schematic representation of the hyperplane separating the (positive)
training genes (filled circles) from the origin, along with the negative genes
(open circles). Combining two kernels in an optimal way leads to a new
space (right figure) where the distance of the positive genes to the origin is
larger.

large. In order to correct for this, we chooseβj to be proportional
to the trace ofKj . Essentially, this value forβj is chosen in order
to make the kernels comparable to each other. Statistical arguments
for this choice will be given in Section 3. This is the first approach
we propose and compare in the experimental Section. There we will
see that it outperforms ENDEAVOUR significantly and by a large
margin.

Note that, if appropriate, one could hand-tune the weights of the
kernels in the kernel combination based on expert knowledge. I.e.,
instead of usingK as defined above, one can additionally weigh the
kernels with a hand-tuned weightµj ≥ 0:

K =
X

j

µj
Kj

βj

A kernel for a data source deemed relevant for a certain disease
could then be given a largerµj , and hence a larger vote in the
linear combination. Since this requires expert knowledge on indi-
vidual diseases, we choose not to follow this avenue in the present
paper.

Nevertheless, as we will see below, there are other ways to tune
the weightsµj automatically in a data-dependent but agnostic way
(i.e., without taking disease characteristics into account). The goal
of these approaches is to reduce the influence of noisy (or irrelevant)
information sources, and of double counting of information that is
present in more than one of the information sources. Hence, as we
will see in the experimental Section, in cases where noise influences
are large or where redundant information is provided, such methods

may perform better. Let us discuss these methods now in greater
detail.

2.2.2 Optimal convex kernel combinationAs a first method to
achieve automatic tuning of the kernel weights, and in the same
spirit as [7, 5], we propose to convexly combine the kernel matri-
cesKj so as to maximize the marginM between the data points
and the origin. More specifically, withβj positive constants, we
choose the ‘summarizing kernel’K as the one from the setK =nP

j µj(kj/βj) : µ′1 = m, µ ≥ 0
o

that maximizes the optimum

of optimization problem (1):

max
K

min
α

α′Kα s.t. αi ≥ 0 (∀i), 1′α = 1,

K ∈
(X

j

µj
Kj

βj
: µ′1 = m, µ ≥ 0

)
.

which can be shown to be equivalent to

min
t,α

t s.t. αi ≥ 0 (∀i), 1′α = 1, (3)

t ≥ α′
Kj

βj
α (∀j).

This is a QCLP problem that is efficiently solvable using general
purpose software.

2.2.3 A regularized intermediate solutionIn some cases, the
freedom allowed to the optimization problem in this way may be
so large that overfitting occurs, resulting in a bad generalization per-
formance. Therefore, we propose an approach intermediate to the
simple averaging of the kernels and their optimal combination using
convex optimization as explained above. This can be achieved by
specifying a lower bound0 < µmin ≤ 1 on µj in the specification

of K, i.e.K =
nP

j µj(kj/βj) : µ′1 = m, µ ≥ 1µmin

o
. Increa-

singµmin reduces the size ofK, which amounts to regularizing the
problem, and hence reduces the risk of overfitting. Forµmin = 1,
the simple method that computes a weighted average of the kernels
is obtained.

2.2.4 A unifying method Interestingly, the last method contains
the first and the second as a special case. Indeed, by takingµmin =
1, the first method is obtained. By takingµmin = 0, the second
method is obtained. Therefore, in the remainder of the paper, we
can refer to the different methods by choosing the value forµmin.

2.2.5 The functionf For all these data fusion approaches, the
evaluation of the functionf(x) = x′w can now be expressed in
terms of theβj andαi, as

f(x) =
1√

α′Kα

nX
i=1

αi

 
kX

j=1

µj
kj(x, xi)

βj

!
. (4)

In the next Section we will provide a rigorous theoretical evidence
motivating these approaches, which will furthermore point us to
good possible choices for values ofβj .
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3 STATISTICAL GUARANTEES AND
MOTIVATIONS

While earlier approaches to novelty detection based on different
kernel-views exist (e.g. [9, 12]), very few experimental results have
been reported (only in [9], and only in an informal qualitative way).
Furthermore, to our knowledge, none of these were based on sta-
tistical foundations. Still, it is clear that in our above formulation,
certain parameters need to be chosen, in particular the values of
βj . Additionally, we will see that other choices need to be made,
regarding normalizations and centering of the data. In order to make
these choices in a principled way, a statistical study is indispensable.
Here we present such a study, which, as in [7], relies on the use of
Rademacher complexities.

In our discussion, we focus on the unregularized version, where
µmin = 0. All results can quite easily be adapted to the regulari-
zed case, and we will point out consequences of this regularization
where relevant.

3.1 Controlling the number of false negatives
We will assume that the training genes are samplediid from the
distribution of the positive class (the class of disease genes). Admit-
tedly, this is not exactly true, but it is probably a good approximation
given the large number of genes in the genome. We derive a bound
for the probability thatf(x) ≤ M − γ for an iid test genex from
the positive class. This is the probability to make an error of a cer-
tain magnitude in evaluating whether the test pointx is a novelty or
not, i.e., the probability that a test point from the positive distribu-
tion lies a distanceγ at the negative side of the hyperplane. We will
see that this probability quickly decreases for increasingγ, which
means that the probability that for a true disease genex the function
f(x) can be expected to be large. Let us now state the Theorem; for
brevity, we provide its proof in Appendix.

THEOREM 1. Given a setX of n objects (genes)xi sampled
iid from an unknown distributionD. Let λ(Kj) denote the largest
eigenvalue ofKj . Then, for anyM, γ ∈ <+ and for anyδ ∈ (0, 1),
with probability of at least1− δ the following holds for the function
f in Equation (4) as found by optimization problem (3):

PD (f(x) ≤ M − γ) ≤ 1

nγ
C(Kj , βj) +

1√
n

r
2 ln

2

δ
.

whereC(Kj , βj) is a complexity term equal to

C(Kj , βj) = 4

vuutmin

 
n max

j

λ(Kj)

βj
,

mX
j=1

trace (Kj)

βj

!
.

While the Theorem holds for any specific value ofM , it does not
hold uniformly overM . However, as outlined in [7] and references
therein, the theorem can easily be adapted to yield uniform bounds
overM . Note that the complexity term involves the square root of
the minimum of two quantities, the first of which grows quadrati-
cally with n, while the second grows only proportionally withn as
the training set grows. Hence, asymptotically, the bound decreases
as1/

√
n.

A similar Theorem holds for the regularized version, where a
lower bound is imposed on the values ofµj . Interestingly, in that
case the bound is generally tighter, as the Rademacher complexity

of the smaller function class is smaller. We omit the Theorem here
for readability.

In some sense, Theorem 1 bounds the false negative probability
by a value that depends on the value ofβj relative toλ(Kj) and
to trace (Kj), which should therefore be kept under control. We
will now show how an approach to controlling the false positives
motivates a choice for theβj that ensures this requirement is fulfilled
in practical situations.1

3.2 Controlling the number of false positives
Given the full genome, and the probability of false negatives being
bounded, we could control the number of false positives by boun-
ding the total number of positives. Recall that the algorithm tries
to separate the data as far from the origin as possible. With this in
mind, we suggest the following strategy. First, use centered kernel
matrices (or kernel functions), i.e. in gene hunting the kernels are
defined by centering the kernels on the full genome. And second,
equate the value ofβj to the trace of thejth centeredgenome-wide
kernel matrix divided by the total number of genes in the genome.
Such a choice forβj can be expected to yield tight capacity terms in
Theorem 1 in practice, assuming that positive and negative genes are
not too different in norm and in distribution (a reasonable assump-
tion, as it appears so in practice and it is the facts motivating this
work).

This strategy ensures that the trace of the kernel matrix obtained
by linearly combining all genome-wide kernel matrices weighted
by βj has a trace equal to the number of genes in the genome, such
that the normk(x, x) of a gene is equal to1 on average. Hence,
for a functionf(x) as found by any of our 3 data fusion methods,
the centering and choice ofβj imply that Ex(f(x)) = 0 and
Ex(f(x)2) = (w′x)2 ≤ ‖w‖2‖x‖2 = ‖w‖2k(x, x) ≤ 1. In this
way, for a large margin between the training points and the origin,
one can expect that relatively few data points lie at the positive side
of the hyperplane, as quantified by e.g. the one-tailed Chebyshev’s
inequality:

P
�
f(x)− Exf(x) ≥ k

p
Ex(f(x)2))

�
≤ 1

1 + k2
,

where the expectations are over the total gene distribution. Applied
to our problem:

P (f(x) ≥ k) ≤ 1

1 + k2
.

In practice, the number of genes in the genome is so large that
iid assumptions concerning test and training genes become realistic.
In such cases it is possible (and more convenient) to carry out the
kernel-centering and determination ofβj on a smaller number of
genes, such as on the combination of test and training-genes. This is
the approach we take in the experiments below.

1 In this context we would like to note that, while the theory and the algo-
rithm for transduction in [7, 5] is never explicitly expressed in terms of such
βj that weigh the kernel matrices, also there a similar choice has been made.
In that paper, what would be the equivalent of ourβj is chosen to be equal (or
proportional) to the trace of the kernel matrix on the training and test points
together. This choice is also implicitly motivated by the statistical study.
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4 GENE PRIORITIZATION RESULTS
We will now apply our algorithms on a series of actual biological
data on disease gene hunting, taken from a large-scale cross-
validation study from [1]. In this paper, 29 diseases are investigated,
and to each disease a number of genes between 4 and 113 are known
to be associated, with 624 as the total number of disease genes in the
study. To assess the performance of a gene-hunting method the fol-
lowing strategy is used. Note that for comparability, we choose to
use an essentially identical assessment strategy as the one used in
[1]. For each disease, do the following:

1. Choose a set of 99 genes, randomly selected from the genome.

2. Perform leave-one-out cross-validation: Regard one of the trai-
ning genes as a test gene. This test gene is further referred to as
the hold-out gene. Then apply the disease gene hunting method
to the reduced training set which is obtained by omitting the
hold-out gene. Ideally, the hold-out gene will be unveiled as a
disease gene, which means that it will be on top of the list. To
verify this, record the rank of the hold out gene in the test set.
Since there are 99 test genes and 1 hold-out gene hidden among
them, this rank will be in between 1 and 100.

Now, based on all these ranks in the cross-validation (over all disea-
ses and all disease genes for these diseases), construct a ROC-like
curve in the following way. Plot the fraction of genes that, when
held out, rank among the topx% of test genes, and this as a func-
tion of x. If in each hold out experiment the hold out gene ranks
first, the ROC-like curve will be 1 for allx, and the area under the
ROC curve, further called AUC (Area Under Curve) is equal to 1.
For a random training and test set combination, the AUC is 0.5 in
expectation.

4.1 Data sources and kernels used
4.1.1 The data sourcesWe are using the following data sources,
based on Ensembl v39[4]: microarray data (MA), DNA sequence
(Seq), EST data (EST), Gene Ontology annotations (GO), InterPro
domains (IP), KEGG pathways (KEGG), motifs (Motif), binding
data (BIND), and literature (Text), just as in [1]. Not to obfuscate the
comparison, in our method we deal with missing values in the most
naive way, e.g. by equating them to genome-wide averages. We
should note that in the ENDEAVOUR paper [1] data from a previous
version of Ensembl was used. Therefore, to ensure a fair compari-
son, we reran their experiments with ENDEAVOUR based on the
most recent Ensembl version v39 as well. Hence, we will compare
our proposed methods with the performance of ENDEAVOUR on
exactly the same data.

4.1.2 The kernel matricesFor each data source except for Seq,
we use three different kernels:

1. the linear kernel followed by normalization,

2. a Radial Basis Function (RBF) kernels with kernel width equal
to twice the average distance of a data point to its nearest
neighbor in the union of the training and the test set,

3. and an RBF kernel with kernel width equal to four times the
average distance of a data point to its nearest neighbor in the
complete data.

The kernel widths are chosen heuristically according to rules of
thumb that often yields good results in practice. For the sequence

data, we also used three different kernels: the 2-mer, 3-mer, and 4-
mer kernels as defined in [8]. Hence, in total 27 kernels are used, 3
for each of the 9 data sources.

4.1.3 Noise data sourcesAs explained below, we have also
carried out a robustness analysis by constructing random noise
data sources to be included as additional data. These noise data
sources consist of 10-dimensional normally distributed random vec-
tors (variance equal to 1). For each noise data source, we constructed
3 kernels to use in the algorithm, a linear one and two RBF kernels,
exactly as for the other vectorial data sources. Constructed in this
way, a noise data sources should quite accurately mimic real-life
data with no relevance to the problem. Note that a comparison with
ENDEAVOUR in terms of noise robustness is hard to design, since
true noise models cannot as easily be generated as we can generate
noise kernels. Therefore, we will exclude ENDEAVOUR from the
noise robustness analyses below.

4.2 Disease genes hunting: results
We have carried out a number of experiments to assess the follo-
wing:

1. the performance gain when compared to ENDEAVOUR of the
simple method with uniformly weighted kernels (µmin = 1),

2. the use of automatically tuned weights when noisy data sources
are taken into account, or when a small number of data sources
is much more informative than the others (µmin > 0),

3. the use of automatically tuned weights with a lower bound in
the same scenario (µmin ≥ µmin = 0.5).

In order to assess noise resilience, we examined the performance as
a function of the number of noisy data sources, ranging from 4, over
8, to 16 noise sources, yielding 12, 24, and 48 kernels respectively.

Lastly, we performed each of these same experiments in three
scenarios: (i) based on all data sources listed above, (ii) based on
all but Text, (iii) based on all but Text and GO, and (iv) based on
all but Text, GO and KEGG. We have performed these exclusions
in order to investigate to what extent the methods are capable of
extracting information from data that may lead to novel discoveries,
as opposed to for example Text data that may contain known clues
of disease implications. We will now discuss the results in detail.

In order to obtain stable results, we performed 10 randomization
for each experiment reported below. In each of these randomizati-
ons, a different set of test genes has been chosen, randomly selected
from the genome. The same random test set was used in the different
methods being compared.

4.2.1 Comparison of the uniformly weigthed method with ENDEA-
VOUR We compared the performance of ENDEAVOUR with our
method withµmin = 1. The results are summarized in Table 1, and
clearly show that the proposed method outperforms ENDEAVOUR
significantly, and by a large margin. This is the case for all (sub)sets
of data sources investigated.

Furthermore, we should note that the proposed method is com-
putationally extremely fast: finding the optimalα takes a negligible
time for up to 100s of training genes, and computing the ranking
function f on a test gene (the testing phase) is extremely fast as
well.
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Table 1. Comparison of the simple, uniformly weighted, kernel method
with ENDEAVOUR. Different scenarios are considered, taking into account
all 9 data sources, all but Text, all but Text and GO, and all but TEXT,
GO, and KEGG. The first two lines show 1-AUC (lower is better) for both
methods, averaged over 10 random selections of the test genes. The last line
shows a p-value computed by means of a paired t-test, testing the null hypo-
thesis that the expected 1-AUC is not smaller for the kernel method than for
ENDEAVOUR. Clearly, the difference is highly significant for all but the last
set of data sources used. Furthermore, the AUC value differs considerably
for the first 3 scenarios considered.

No Text, No Text,
1-AUC All No Text GO GO, KEGG

ENDEAVOUR 0.0833 0.1290 0.1698 0.1698
Kernel method 0.0686 0.1043 0.1491 0.1675

p-value 7.4e-10 7.5e-11 3.3e-7 2.4e-1

4.2.2 Performance in the presence of one or few dominantly infor-
mative information source It can be assumed (and it is observed)
that in general, Text and GO contain the most accessible informa-
tion relevant to disease gene hunting. While this may not always be
the case, it is possible that in other cases another data source con-
tains is much more relevant than any of the others. Therefore, it is
of interest to assess to what extent the different methods are able to
disregard the less informative data sources.

To assess this, in Table 2 we summarized the 1-AUC scores for
different subsets of data sources, and this for our proposed methods
and for ENDEAVOUR. We can conclude that if there is a clear best
information source (e.g. Text or GO), it pays off to tune the weights
automatically (either withµmin = 0 or, better, withµmin = 0.5). If
all or most information sources are roughly equally good, the uni-
form weighting performs better than with the automatically tuned
weights. In all cases except when all data sources including Text
are being used,µmin = 1 seems to perform comparably well to
the other kernel methods, and in all cases it performs better than
ENDEAVOUR (see higher).

4.2.3 Investigation of the noise sensitivityTable 2 reveals that
for increasing amounts of noise, the uniformly weighted method
degrades much more rapidly than the methods with tuned weights.
This can be explained by the fact that the tuned weights are usually
lower for noise kernels than for the informative kernels. Similarly, a
larger number of (approximate) copies of the same bad kernel would
degrade the performance of the naive method with equal weights,
while the methods with tuned weights are insensitive to this. For a
discussion of similar observations in a related context, see [7, 5].

Overall, when large amounts of noise are to be expected or when
one or few of the data sources is much more discriminative than
the others, the regularized method (µmin = 0.5) seems the most
robust and performant method. If less than half of the information
sources are suspected to be irrelevant, it is better to use the uniformly
weighted kernel method (µmin = 1).

4.2.4 Performance of individual kernels versus the overall per-
formance Besides comparing the different proposed data fusion
methods, we should assess whether it makes sense at all to perform
data fusion. To this end, consider Figure 2. We now only consi-
der the regularized method withµmin = 0.5, which seems to be

a safe approach, though the method withµmin = 1 performs even
slightly better in most noiseless cases we investigated. Nevertheless,
it is interesting to investigate the weights attributed to the individual
kernels by the method withµmin = 0.5. Our findings are:

1. When using all data sources, the performance is not signifi-
cantly different from the performance based on single-kernel
novelty detection on Text, in particular for the linear kernel.
The most likely reason is that the genes in this study have been
well-described, such that Text is likely to be most informative
by far. Then, taking other less informative (or more ‘noisy’)
data into account may be expected to worsen the result. Howe-
ver, it is encouraging that this is not the case. (See Figure 2
above.) One may argue that it is as good to simply pick the
Text data source (if it is available), and discard the others. It
should be noted however that in general it is not known a priori
which data source is clearly the better. Hence, also the task
to pick the best kernel has to be made in a data drive way,
and imperfections in this selection process would degrade the
result. Hence, comparing the data fusion methods with any of
the single kernels is unfavorable for the data fusion methods.

2. When applied to all data sources except the suspectedly richer
ones such as Text, GO and KEGG, our method based on kernel
combinations is clearly better than any of the separate ker-
nels. This effect is stronger if more informative data sources
are excluded.

3. The weightsµi attributed to each of the kernels are summa-
rized in the bottom four bar plots of Figure 2. Clearly, when
taken into account, Text, and to a lesser extent GO data, get the
largest part of the weight. When Text data, or Text and GO, are
absent the weights are more evenly distributed. Overall, linear
kernels yield better results and get higher weights on this data
set. The Seq data gets small weights all over, despite its good
individual performance. A potential explanation is that intere-
sting aspects of the sequence information are contained in other
information sources, such as InterPro.

In summary, our method effectively integrates complementary infor-
mation from different sources.
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Table 2. The mean AUC performances, for all 3 methods: automatic tuning withµmin = 0, regularized automatic tuning withµmin = 0.5, and uniformly
weighted (equivalent with usingµmin = 1). ENDEAVOUR’s performance is shown for comparison. Clearly, overall the simple kernel-based method with
µmin = 1 comes out best, despite a slightly lower performance than the methods withµmin = 0 andµmin = 0.5 for when the Text data is included.

µmin = 0 µmin = 0.5 µmin = 1 ENDEAVOUR
All data 0.0505 0.0477 0.0686 0.0833
No Text 0.1241 0.1121 0.1043 0.1290
No Text/GO 0.1902 0.1644 0.1491 0.1698
No Text/GO/KEGG 0.2121 0.1828 0.1675 0.1698

Table 3. The mean AUC performances, for all 3 methods: automatic tuning withµmin = 0, regularized automatic tuning withµmin = 0.5, and uniformly
weighted (equivalent with usingµmin = 1), and this for varying number of noise sources. Clearly, the method withµmin = 0.5 is the most robust against
noise. However, also withµmin = 1 a good robustness is achieved.

µmin = 0 µmin = 0.5 µmin = 1

All data No noise 0.0505 0.0477 0.0686
sources 4× noise 0.0596 0.0579 0.0950

8× noise 0.0656 0.0644 0.1144
16× noise 0.0702 0.0694 0.1420

No Text No noise 0.1241 0.1121 0.1043
4× noise 0.1411 0.1330 0.1395
8× noise 0.1520 0.1444 0.1629

16× noise 0.1624 0.1566 0.1943
No Text, No noise 0.1902 0.1644 0.1491
no GO 4× noise 0.2186 0.2034 0.2005

8× noise 0.2375 0.2257 0.2275
16× noise 0.2554 0.2496 0.2599

No Text, No noise 0.2121 0.1828 0.1675
no GO, 4× noise 0.2410 0.2245 0.2296
no KEGG 8× noise 0.2626 0.2500 0.2612

16× noise 0.2825 0.2770 0.2963
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Fig. 2. The top figure shows the AUC performances of each individual kernel, three for each data source (in each triplet the left bar corresponds with the
linear kernel, the middle one with the RBF with small kernel width, the right one with large kernel width). For comparison, the 4 full red lines indicate the
performance of the kernel combination method withµmin = 0.5, using all data sources, all but Text, all but Text and GO, and all but Text, GO and KEGG (in
order of decreasing AUC). The lower 4 bar plots show the weightsµj attributed to each of the kernels by the kernel combination method withµmin = 0.5,
using each of these 4 (sub)sets of data sources.
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5 CONCLUSIONS AND OUTLOOK
We have presented a new approach and its theoretical analysis, to
provide an adequate answer to a recently identified highly relevant
problem in bioinformatics. All presented data fusion methods follo-
wing this approach are shown empirically to outperform the method
that has currently been most successful in this setting. Two aspects
contribute to its success. First, the kernel method on itself seems to
ensure a good performance in this context. Second, a uniform linear
combination of all kernel matrices appears to be a robust and highly
performant method for data fusion for disease gene hunting. And
third, the data-dependent automatic weighting procedures ensure
robustness against irrelevant or too noisy data sources.

A particularly appealing aspect of the method is its computational
efficiency. The kernels can be computed offline, which makes their
computation time less relevant. All other tasks, training is extremely
fast (with relatively small training sets of up to a few hundreds),
and even more so prioritizing genes can be carried out extremely
efficiently, easily scalable to a genome-wide scale.

As further work, we plan to investigate whether a hand-tuning of
the weights is a feasible and useable approach in practice. The main
question to be answered here is whether the optimal values for the
kernel weights represent some intuitive notion of relevance of the
kernels.
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CONTRIBUTION OF THE PHD CANDIDATE 93

5.2 Contribution of the PhD candidate

The PhD candidate has gathered the genomic data sources used to build the kernels.
He has also prepared the benchmark analysis and has performed the Endeavour
benchmark to compare with the kernel based method. He has participated in the
writing of the gene prioritization section of the paper.

5.3 Discussion

Following the results described in the paper that show an improvement in
performance, it was decided to develop a software tool implementing the approach
and to make it publicly available. The algorithm described in this paper is
implemented in Matlab, which was chosen for its ability to handle fast matrix
based calculations and its compatibility with the optimization toolbox SeDuMi. It
is however only commercially available, so a different implementation was chosen
and led to a tool termed ’MerKator’. This work is described in chapter 6.

A recurring discussion in machine learning is whether the gain in performance
obtained by optimizing the weights of the different kernels worths the computing
time and power spent for this convex problem. This is still very much an open
question, and the results presented in this chapter show that the difference exists
but is still small (error of AUC is 0.0686 using uniformly weighted kernel and 0.0505
for automatically optimized fusion). This confirms previously reported results that
using the uniformly weighted kernel leads in general to results similar to the ones
obtained via the complex optimization [158, 130]. This issue is further discussed in
chapter 9.

5.3.1 Improved SVM modeling

We have defined the gene prioritization problem as a novelty detection problem
using one-class SVM, thus relying only on the presence of positive genes (the
disease causing genes). We motivate our choice by the fact that gene prioritization
is not a classification task since the true negative genes are unknown. Several
studies propose an approach in which negative sets are approximated by randomly
building gene sets from the whole genome. This approach together with repetition,
to reduce noise, is used to predict novel transcription factors targets for instance
[162]. The authors have observed that using a one class SVM method for the same
problem leads to worse performance.

Another recurring problem with the algorithm implemented in the paper is the
sparsity of the solution. That is in a majority of cases, the convex optimization
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procedure results in one or a few data sources to be favored (high weight), while
the other data sources contribute only modestly (e.g., very low weight).

Regarding the disease based benchmark, the most often favored data sources
is ‘Text’. However, when removing it, the most favored source becomes ‘Gene
Ontology’, without decreasing the performance too much. When both data sources
are removed, the weights are distributed to other data sources, again without
significant decrease in performance. Furthermore, in some cases, it is possible
to obtain better results by removing the data sources that get the higher weight.
This shows that the sparseness of the solution does not reflect the relevance of the
data sources regarding the benchmark but rather represents an artifact introduced
by the algorithm. In the paper, a first solution is introduced by way of adding
an additional constraint to the problem that defines a minimal boundary on the
weights. This constraint results in a decreased overall performance although it
stays higher than the classical approach and also higher than any of the other data
sources when used individually. This minimal boundary can be set to 1 so that all
data sources contribute equally, which means that the uniformly weighted kernel is
used. This approach has however several shortcomings: setting a minimal boundary
might not always be a good idea if some of the data sources are indeed noisy or
useless regarding the problem under consideration. In this case, a sparse solution is
still optimal to avoid predictions based on noisy / useless data. Also, the minimal
boundaries are set to be the same for all the data sources. Therefore the majority
of the weights that would have been zeros without this additional constraint are
still assigned the same value (that corresponds to this minimal boundary). At the
end, the solution is not sparse but still no distinction is made between the data
sources except for the ones that get the higher weights. A solution obtained with
minimal boundary is treating the different data sources equally, which might be
suboptimal in some cases.

In a follow-up paper, the effect of optimizing different norms in the dual problem
is investigated for gene prioritization, clustering and classification[269]. In
optimization, the dual problem is complementary to the primal problem and,
in fact, solving one of them solves both. Most of the existing Multiple Kernel
Learning (MKL) methods are based on the formulation proposed by Lanckriet et
al. [130], which can be defined as the optimization of the infinity norm (L∞) of
kernel fusion. Optimizing L∞ MKL in the dual problem corresponds to posing L1
regularization on the kernel coefficients in the primal problem, which results in
sparseness of the kernel coefficients. Thus, the solution obtained by L∞ MKL is
also sparse, with dominant coefficients to only one or two kernels. At contrary, the
L2 MKL yields a non-sparse solution, which smoothly distributes the coefficients
on multiple kernels and, at the same time, leverages the effects of kernels in the
objective optimization. Benchmark results show that the L2-norm kernel fusion
leads to a better performance in gene prioritization by data fusion. The figure
5.1 contains the results on a disease benchmark. The L2 based method shows
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the best performance, ahead of the L∞ based method, showing that it reflects
better the relevance of the kernels. The performances of L2 and the regularized
L∞ are comparable. However, the minimal boundary of the regularized L∞ is
usually predefined empirically while the main advantage of the L2 approach is that
boundaries are kernel specific and are determined automatically. This illustrates
that the method and the associated web application can still be improved.

Figure 5.1: Comparison of three optimization algorithms. The error of AUC
(one minus the AUC, or Area Above the Curve, AAC) is plotted on the y-axis,
the lower the better. The three optimization algorithms are (i) L∞, described
and implemented in De Bie et al. that calculates sparse solutions for the kernel
coefficients (grey, left bar), (ii) a regularized version of L∞, in which a minimal
boundary is set for the kernel coefficients (red, middle bar), and (iii) L2, that can
calculate non sparse solutions as in Yu et al., (2010) (blue, right bar). L2 and
regularized L∞ achieve similar performance (error of 0.0780 and 0.0806 respectively)
while L∞ performs significantly worse (0.0923, p-value < 0.001, paired t-test).





Chapter 6

Cross-species candidate gene
prioritization with MerKator

6.1 Summary

The computational method presented in the previous chapter (5) is based on
the use of kernel methods to perform candidate gene prioritization. It is shown
to outperform our first strategy based on Order Statistics (chapter 3). The
present chapter describes a cross-species prioritization strategy that is based
on our previously described kernel based method augmented with a Noisy-Or
model responsible of the cross-species data integration. This chapter also presents
‘MerKator’, a software that implements this strategy for five organisms, and
discusses the computational challenges that this represents (e.g., kernel computation,
kernel centering, missing values).
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Abstract

In biology, there is often the need to prioritize large list of candidate
genes to further test only the most promising candidate genes with respect
to a biological process of interest. In the recent years, many computa-
tional approaches have been developed to tackle this problem efficiently
by merging multiple genomic data sources. We have previously described
a gene prioritization method based on the use of kernel methods and
proved that it outperforms our previous method based on order statistics.
In the present paper, we report the extension of the method to support
data integration over multiple related species and the development of a
web based interface termed ‘MerKator’ that implements this strategy and
proposes candidate gene prioritization for five species. Our cross-species
approach has been benchmarked and cases studies demonstrate that hu-
man prioritizations can benefit from model organism data.

1 Introduction

In modern biology, the use of high-throughput technologies allows researchers
and practicians to quickly and efficiently screen the genome in order to identify
the genetic factors underlying a given disorder. However these techniques are
often generating large lists of candidate genes among which only one or a few are
actually associated to the disease of interest. Since the individual validation of
all these candidate genes is often too costly and time consuming, only the most
promising genes are experimentally assayed. In the past, the selection of the
most promising genes relied on the expertise of the researcher, and its a priori
opinion about the candidate genes. In the post-sequence era, the use of high-
throughput technologies has generated a large amount of complex data, that
is analyzed using in silico methods. In the last decade, several methods have
been developed to tackle the gene prioritization problem (recently reviewed in
[12]). Most of them combine genomic knowledge with pure experimental data
to leverage the effect between reliability and novelty. For instance, POCUS,
one of the earliest gene prioritization solution was developed by Turner et al.
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in 2003 [14]. POCUS relies on Gene Ontology annotations, InterPro domains,
and expression profiles to identify the genes potentially related to the biological
function of interest. The predictions are made by matching the Gene Ontology
annotations, InterPro domains and expression profiles of the candidate genes to
the ones of the genes known to be involved in the biological function of interest.
The POCUS system favors the candidate genes that exhibit similarities with
the already known genes. Most of the proposed prioritization methods also rely
on this ‘guilt-by-association’ concept.

Most of the existing prioritization approaches are restricted to integrating
information in a single specie. However, people have recently started to col-
lect evidence among multiple species to facilitate the prioritization of candidate
genes. Chen et al. proposed ToppGene that performs prioritization for hu-
man based on human data (e.g., functional annotations, proteins domains) as
well as mouse data (i.e., phenotypic data) [4]. Through an extensive valida-
tion, they showed the utility of mouse phenotypic data in human disease gene
prioritization. Hutz et al. [5] have developed CANDID, an algorithm that
combines cross-species conservation measures and other genomic data sources
to rank candidate genes that are relevant to complex human diseases. Liu et
al. have investigated the effect of adjusting gene prioritization results through
cross-species comparison. They identified the ortholog pairs between Drosophila
melanogaster and Drosophila pseudoobscura using BLASTP and used this cross-
species information to adjust the rankings of the annotated candidate genes in
D. melanogaster. They report that a candidate gene with a lower score in the
main species (D. melanogaster) can efficiently be re-ranked higher if it exhibits
a strong sequence similarity to ortholog genes [6]. According to their evalua-
tion on 7777 loci of D. melanogaster, the cross-species model outperforms other
single species models in sensitivity and specificity measures. Another related
method is STRING developed by von Mering et al. [15]. STRING is a database
that integrates multiple data sources from multiple species into a global network
representation. STRING allows users to look at the interactions between genes
from one specie using data from 630 organisms.

In this paper, we present MerKator, whose main feature is the cross-species
prioritization through genomic data fusion over multiple data sources and mul-
tiple species. This software is developed on the Endeavour data sources [1, 13]
and a kernel fusion novelty detection methodology [3]. Our approach is different
from previous approaches since our cross-species integration scheme is not lim-
ited to a single data source nor to a single specie. At the contrary, MerKator can
integrate 14 genomic data sources over 5 species. To our knowledge, MerKator
is also the first candidate gene prioritization software powered by kernel meth-
ods. In this paper, we present and discuss the computational challenges inherent
to such implementation. We also present a benchmark analysis, through leave-
one-out cross-validation, that shows the efficiency of the cross-species approach.

2 Materials and Methods

2.1 Data sources

The goal of MerKator is to facilitate the understanding of human genetic dis-
orders using genomic information across organisms. MerKator identifies the
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Table 1: Genomic data sources adopted in Endeavour MerKator
data source H.sapiens M.musculus R.norvegicus D.melanogaster C.elegans
Annotation GO

√ √ √ √ √
Annotation-Interpro

√ √ √ √ √
Annotation-EST

√ √
Sequence-BLAST

√ √ √ √ √
Annotation-KEGG

√ √ √ √ √
Expression-Microarray

√ √ √ √ √
Annotation-Swissprot

√ √ √ √
Text

√
Annotation-Phenotype

√
Annotation-Insitu

√
Motif

√
Interaction-Bind

√
Interaction-Biogrid

√ √ √
Interaction-Mint

√ √

homologs of Homo sapiens genes, considered as the main organism, in four ref-
erence organisms: Mus musculus, Rattus norvegicus, Drosophila melanogaster,
and Caenorhabditis elegans. The identification is based on NCBI’s Homolo-
Gene [8, 16, 17], which provides the mapping of homologs among the genes of
18 completely sequenced eukaryotic genomes. For each gene in each organism,
MerKator stores the homolog pair with the lowest ratio of amino acid differences
(the Stats-prot-change field in HomoloGene database). MerKator incorporates
14 genomic data sources in multiple species for gene prioritization. The com-
plete list of the data sources adopted in the current version is presented in Table
1.

2.2 Kernel workflow

MerKator uses a one class SVM [9, 11, 3] to obtain prioritization scores within
a single organism. Then the prioritization scores obtained from multiple species
are integrated using a Noisy-Or model. As mentioned, MerKator is a real bioin-
formatics software powered by kernel methods therefore many challenges are
tackled in its design and implementation. Considering the efficiency of kernel
methods implemented in real full-genomic scale application, MerKator sepa-
rates the program into the offline process and the online process to improve its
efficiency.

2.2.1 Approximation of kernel matrices using the incomplete Cholesky
decomposition

The main computational burden is the kernel computation of various data
sources in the full genomic scale, especially for the data that is represented
in high dimensional space, such as Gene Ontology annotations, gene sequences,
and text-mining among others. To tackle this difficulty, MerKator manages all
the kernel matrices in an offline process using a Matlab-Java data exchange tool.
In Matlab, the tool retrieves the genomic data from the databases and construct
the kernel matrices. The kernel matrices of the full genomic data may be very
large so it is not practical to handle them directly computationally. To solve
this, we decompose all the kernel matrices with ICD (Incomplete Cholesky De-
composition), thus the dimensions of the decomposed kernel matrices are often
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smaller than the original data. In MerKator, the precision of the ICD is set as
95% of the matrix norm, given by

||K −K ′||2
||K||2

≤ 0.05, (1)

where K is the original kernel matrix, K ′ is the approximated kernel matrix as
the inner product of the ICD matrix. In this way the computational burden of
kernel calculation is significantly reduced as the computation of the inner prod-
uct of the decomposed matrices. The Matlab-Java tool creates Java objects on
the basis of decomposed kernel matrices in Matlab and stores them as serialized
Java objects. The kernel computation, its decomposition and the Java object
transformation are computationally intensive processes, and so they are all ex-
ecuted offline. For the online process, MerKator loads the decomposed kernel
matrices from the serialized Java objects, reconstructs the kernel matrices and
solve the 1-SVM MKL optimization problem to prioritize the genes as already
described in De Bie et al. [3]. Then the prioritization results are displayed on
the web interface. In contrast with the offline process, the online process is
less computational demanding and the complexity is mainly determined by the
d number of training genes (O(d3)). In our implementation, the optimization
solver is based on the Java API of MOSEK[2] that shows satisfactory perfor-
mance (presented in Results and Discussion).

2.2.2 Kernel centering

In MerKator, when the prioritization task involves data set of the full genomic
size, some trivial operations become quite inefficient. To control the number of
false positive genes in 1-SVM, De Bie et al. suggest a strategy to center the
kernel matrices that contain both the training genes and the test genes on the
basis of the iid assumption. As mentioned in the work of Shawe-Taylor and
Cristianini [10], the kernel centering operation expressed on the kernel matrix
can be written as

K̂ = K − 1
l
11T K − 1

l
K11T +

1
l2

(1T K1)11T , (2)

where l is the dimension of K, 1 is the all 1s vector, T is the vector transpose.
Unfortunately, when the task is to prioritize the entire genome, centering the full
genome kernel matrices becomes inefficient. For MerKator, we use a strategy
based on the split of the full genomic data into smaller subsets. Let us assume
that the full genome data contains N genes, and is split into several subsets
containing M genes. Instead of centering the kernel matrix sizes of N ×N , we
center the kernel matrix of size A ×A, where A is the number of genes in the
union of theM candidate genes with the training genes. BecauseM is smaller
than N , for each centered kernel matrix MerKator obtains the prioritization
score of M candidate genes, so it need to iterate multiple times (denoted as k,
which is the smallest integer larger than N

M ) to calculate the scores of all the N
candidate genes. According to the iid assumption, if M is large enough then
centering the kernel matrix of size A×A is statistically equivalent to centering
the kernel matrix of the full genome, thus the prioritization scores obtained from
the k iterations can precisely approximate the values obtained when centering
the full genome data. Therefore, we may compare the prioritization scores of
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the N genes even if they are obtained from different centered matrices, and thus
we can prioritize the full genome. All these assumptions come to one non-trivial
question: how to select an appropriate M for an efficient trade off between the
reliability of iid assumption and the computational efficiency? In MerKator,
M is determined via experiments conducted on the text mining data source
with a set of 20 human training genes. First, a prioritization model is built
and the 22743 human genes are scored by centering the linear kernel matrix of
the full genome. The obtained values are regarded as the true prioritization
scores, denoted as f . We also calculate the overall computation time, denoted
as t. To benchmark the effect of M, we try 10 different values from 1000 to
10000. In each iteration, the 20 training genes are mixed with M randomly
selected candidate genes and the prioritization scores of the candidate genes are
computed by centering the small kernel matrix. In the next iteration, we select
M new candidate genes until all the 22743 genes are prioritized. The prioriti-
zation scores obtained by centering this small kernel matrix are denoted as f ′,
and the computation time is also compared. The difference (error) between the
prioritization scores obtained in these two approaches represents how well the
M candidate genes approximate the iid assumption of the full genome, and is
given by

e =
||f − f ′||2
||f ||2

. (3)

We use this difference to find the optimal M. According to the benchmark
result presented in Supplementary Table 2, large M values lead to small error
but take much longer time for the program to center the kernel matrix. In
MerKator, we set the M to 4000, which represents a balance between a low
error (e < 0.05) and a fast computing time (16 times faster than centering the
full genome).

2.2.3 Missing values

In bioinformatics applications, clinical and genomic datasets are often incom-
plete and contain missing values. This is also true for the genomic data sources
that underly MerKator, for which a significant number of genes are missing.
In MerKator, the missing gene profiles are represented as zeros in the kernel
matrices mainly for computational convenience. However, zeros still contain
strong information so that they may lead to imprecise prioritization scores. In
MerKator, kernel matrices are linearly combined to create the global kernel that
is used to derive the prioritization scores. In order to avoid relying on missing
data for this calculation (and therefore to favor the well studied genes), we use a
strategy illustrated in Supplementary Figure 1 to combine kernel matrices with
missing values. This strategy is similar to what is done within Endeavour. For
a given candidate gene, only the non-missing based scores are combined to cal-
culate the overall score. The combined kernel matrix obtained by this strategy
is still a valid positive semi-definite kernel and thus the obtained prioritization
scores only rely on the non-missing information.
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Figure 1: Conceptual overview of Endeavour MerKator software.

2.3 Cross-species integration of prioritization scores

MerKator first uses the one class SVM (1-SVM) algorithm to prioritize genes
in a single specie, and then adopts a Noisy-Or model [7] to integrate prioriti-
zation scores from multiple species. The integration model is given as follows.
We assume the scenario of cross-species prioritization as depicted in Figure 1.
Similar to Endeavour, MerKator takes a machine learning approach by building
a disease-specific model on a set of disease relevant genes, denoted as training
set, then that model is used to rank the candidate genes, denoted as candidate
set, according to their similarities to the model.

Some fundamental notions in cross-species gene prioritization are illustrated
in Figure 2. Suppose in the main organism we specify N1 number of human
genes as {H1, ...,HN1} and MerKator obtains the corresponding training sets
in reference species rat and mouse. The training set of rat contains N2 genes
as {R1, ..., RN2} and the training set of mouse has N3 genes as {M1, ...,MN3}.
Note that MerKator always selects the homolog with the highest similarity ratio
of sequence, so it is a many-to-one mapping thus N2, N3 are always smaller
or equal to N1. We define the homolog scores between the training sets of
human and rat as a1, ..., aN2; Similarly, the homolog scores between human and
mouse training sets are b1, ..., bN3. For the candidate set, each candidate gene
of human is mapped to at most one rat gene and one mouse gene, where the
homolog score is respectively denoted as c0 and d0. The homolog genes and
the associated scores are all obtained from the NCBI HomoloGene database
(release 63). To calculate the cross-species prioritization score, we introduce a
set of utility parameters as follows.

We denote h1 and h2 as the parameters describing the quality of the homol-
ogy, given by:

h1 = min{c0, median(a1, a2, ..., aN2)},
h2 = min{d0, median(b1, b2, ..., bN3)}.
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Figure 2: Integration of cross-species prioritization scores.

z1 and z2 are denoted as the parameters describing the ratio of the number
of homologs in the reference organism with the number of genes in the main
organism, given by

z1 =
N2

N1
, z2 =

N3

N1
. (4)

Next, we denote f0 as the prioritization score of candidate gene H0 ranked by
the training set {H1, ...,HN1}; denote f1 as the score of reference candidate gene
R0 prioritized by the reference training set {R1, ..., RN2} and f2 as the score
of M0 ranked by the set {M1, ...,MN3}. The raw prioritization scores obtained
by 1-SVM are in the range of [−1, +1], thus we scale them into [0, +1]. The
adjustment coefficient adj is defined as:

adj = 1−
∏

organism i

(1− hizifi) . (5)

The adj coefficient combines information from multiple species by the Noisy-
Or model. A larger adj means there is strong evidence from the homologs that
the candidate gene is relevant to the model. Considering the case one may want
to eliminate the homolog bias, we further correct the adj parameter, denoted as
adj+, given by

adj+ =

{
median({adj}), if j has no homolog
1− {∏organism i (1− hizifi)}

1
k if j has homolog(s).

(6)
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The first case of equation (6) means that when gene j has no homolog related,
its adj+ score equals to the median value of the set {adj} that contains the
adjustment values of the genes that have at least one homolog gene. In the
second case, when there are k number of homologs mapped to gene j, we use
the k-th exponential root removes the additional bias of the prioritization score
caused by the multiple homologs (as shown in Supplementary Note 1).

This coefficient adj+ is used to adjust f0, the prioritization score of the main
organism, and we have tried two different versions as follows:

human non-special: fcross-species = 1− (1− f0)(1− adj+), (7)

and

human special: fcross-species = 1− (1− f0)(2− adj+)
2

. (8)

The human non-special version considers the human prioritization score as
equivalent to the homology evidence and combines them again using the Noisy-
Or function. In contrast, the human special version only adjusts the human
prioritization score with the homology evidence by average. In the Noisy-Or
integration, the cross-species score is boosted up if either the main species or
the homology evidence shows good prioritization score. In the average score in-
tegration, the cross-species score compromises between the homology evidence
and the main species score, and is only boosted up if both of them are good.

3 Software structure and interface

This section presents the interface of the software and explains how MerKator
works. Using MerKator, a prioritization can be prepared in 4 steps (see Fig-
ure 3). In the first step, the user has to define the main organism, it will be
the reference organism and will be used to input the training and candidate
genes. In addition, the user can select other organisms to use, the correspond-
ing species specific data sources will then be included further in the analysis. If
no other organism is selected, the results are only based on the main organism
data sources. In a second step, the training genes are inputed. Genes from the
main organism can be inputed using various gene identifiers (e.g., EnsEMBL,
gene name, EntrezGene) or even pathway identifiers from KEGG or Gene On-
tology. In addition, for human, an OMIM entry number can be inputed. Genes
are loaded into the system using the ‘Add’ button. In the third step, the data
sources to be used are selected by checking the corresponding boxes. By default,
only the data sources of the main organism are displayed and the program is
automatically selecting the corresponding data sources in the reference organ-
isms when available. To have a full control on the data sources, the user must
enter the advanced mode by clicking the dedicated button. Using the advanced
mode, data sources from other organisms can be selected individually. In the
fourth step, the candidate genes to prioritize are inputed. The user has two
possibilities, either use the whole genome (in case the results are returned by
e-mail) or input a subset of the genome (in case results are displayed in the web
interface). For the latter, the method is similar to the second step, but genomic
regions can also be inputed (e.g., band q11 on chromosome 22, or region 100k
- 900k on chromosome 19). The prioritization can be launched from this panel.
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Figure 3: Typical MerKator workflow. This includes the species selection step
(first step - top left), the input of the training genes (second step - top right),
the selection of the data sources (third step - bottom left) and the selection of
the candidate genes (fourth step - bottom right). Screenshots were taken from
our online web server.

4 Results and discussion

The present paper introduces MerKator, a novel gene prioritization software
based on kernel methods that can perform cross-species prioritization in five
organisms (human, rat, mouse, fruit fly and worm). Compared to the previous
approaches, our method differs by the number of organisms combined (current
prioritization approaches focus either on mouse or fruit fly ) as well as by the
information that is combined (current prioritization approaches focus on conser-
vation or expression data). The String approach of von Mering et al. is, to some
respect, similar to our approach. The main differences with our method are,
first, that String predicts novel interactions but does not perform prioritization,
and, second, that String relies mostly on its text-mining component while we
aim at integrating several genomic data sources (including but not restricted to
text-mining).

To improve the efficiency of Merkator, we tackle the kernel computational
challenges of full genomic data from multiple aspects. First, most of the com-
putations was done offline and performed only once, restricting the case specific
online computation to a strict minimum. Second, the prioritization of the full
genome utilizes some approximation techniques such as incomplete Cholesky
decomposition, kernel centering in the subsets of genome, and missing value
processing to improve its feasibility and efficiency. Based on these efforts (de-
tails presented in Materials and Methods), Merkator is able to integrate all the
adopted data sources from five species and prioritize the full human genome
within 20 minutes.
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We have developed a Noisy-Or based method to integrate the scores from
multiple species into a global score. This Noisy-Or based method integrates
the species specific scores by taking into account the strength of the homology
between the corresponding species (see Figure 2). The use of a Noisy-Or based
method is motivated by the fact that an excellent prioritization score obtained
in one species should be enough to obtain an overall excellent score, which
other measures such as the average would not allow. We have developed two
scoring schemes termed human special and human non-special. The first one
assumes that the source species (human in our case) is the main organism and
that the other species are only used to adapt the score obtained in the main
organism. The contribution of the other species is a half in total (the other
half is the main organism score). The second solution is however relying on
the hypothesis that all the species can contribute evenly, the main organism
is not distinguished from the others. We have implemented and analyzed the
two methods. In addition, we have implemented and tested two formula for the
adjustment coefficient, adj and adj+, to account for the differences in number
of homolog genes. We have observed that the adj coefficient can introduce a
bias towards the genes that have multiple homologs as compared to the genes
that do not have any homologs. Either the homolog genes are still unknown
or there is no homolog in any of the other species and therefore the gene is a
human specific gene. In both cases, there is no rationale behind the bias and
the gene should get the same chance to rank high than the other genes.

GO:0005104 GO:0007435 GO:0008199 GO:0009791 GO:0008143 Total
0.4

0.5
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0.7
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Human only

Cross−species (HNS)

Cross−species (HS)

Figure 4: Benchmark results on five GO pathways using human only data
sources (grey bars) and our cross-species data integration model (black bars).

As a proof of concept, we have benchmarked MerKator with five biological
pathways (see Supplementary Table 3) using a leave-one-out cross-validation
procedure. The four pathways were derived from Gene Ontology and contain
a total of 37 genes. The validation was performed using all data sources ex-
cept Gene Ontology and all five species. In this case, we have used the human
special formula together with the adj+ coefficient. Similar results are obtained
with any other formula-coefficient combination (Supplementary Table 1). The
Area Under the ROC Curve (AUC) is used as an indicator of the performance.
We obtained a global AUC of 89.38% for the cross-species model, while the
model based on human data alone obtains a smaller AUC of 82.64% (see Figure
4). For four out of the five pathways, the cross-species model performs better
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than the human specific model although significance is not reached given the low
number of genes per pathways (between 6 and 9). For the remaining pathway
(GO:0008199), the two models achieve similar performance. This is because the
human only performance is already too high to allow any significant improve-
ment (AUC >99.9%). These results indicate that our cross-species model is
conceptually valid and that reference organism genomic data can enhance the
performance of human gene prioritization.

5 Conclusion

This paper presents MerKator, a software that combines cross-species infor-
mation and multiple genomic data sources to prioritize candidate genes. The
software is developed using the same databases adopted in Endeavour, but is
equipped with a kernel fusion technique and a cross-species integration model.
To embed kernel methods in a real and large scale bioinformatics application,
we have tackled several computational challenges that are mentioned and dis-
cussed in this paper. Our approach may be concluded with the following three
aspects:

• Combining evidences from multiple species. We proposed a Noisy-Or
model to combine prioritization scores from multiple organisms. The issue
of multiple species prioritization is complicated, which may involve many
factors such as the size of training set, the selection of data sources, the
number of relevant homologies, and so on. Considering so many factors, it
is difficult to make statistical hypothesis, or estimate the data model for
the final prioritization score. Thus our approach alternatively avoids the
assumption about the data model of prioritization scores and calculates
it using support vector machines. The integration methods are adjusted
in the blackbox and the outputs are validated with benchmark data until
satisfying performance is obtained.

• User friendly interface. Gene prioritization softwares are oriented to a
specific group of computational biologists and medical researchers, there-
fore we designed an user friendly interface that is similar to Endeavour’s
web interface, and that does not require advanced mathematical skills
to be used (configuration of the 1-SVM and the integration models are
transparent to the end users). The results of full genomic cross-species
prioritization are either directly returned or stored on the server and de-
livered to the end-user by e-mail messages depending on the number of
candidate genes. When receiving the email notice, the users can either
upload the prioritization results and display them in MerKator or down-
load the results in XML format to extract the relevant information by
themselves.

• Near optimal solution. The performance of kernel-based algorithms is
strongly affected by the selection of hyper-parameters, such as the pa-
rameter of kernel function, or the regularization parameter. The optimal
parameters should be selected by cross-validation, which may not be al-
ways feasible for a software oriented for biologists and medical researchers.
Kernel fusion techniques allow developers to preselect the kernel parame-
ters empirically. The overall performance does not rely on a single kernel
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parameter, so even when the optimal parameter is not involved, the fusion
procedure still can leverage among several near optimal parameters and
provides a near optimal result. For real applications, the 1% difference of
performance is not so critical to the end users. In most cases, a successful
application prefers much the speed of solution than the very optimality of
the parameter or the model.

Future work includes, but is not restricted to, the inclusion of more species
and more data sources, the development of new modules to enhance even further
the performance of our kernel based prioritization algorithm, the parallelization
of computational methods to incorporate more data sources and more species,
and the application to real biological problems, for instance through the inte-
gration of MerKator into research workflows.

6 Funding

This research is funded by the Research Council KUL (ProMeta, GOA Am-
biorics, GOA MaNet, CoE EF/05/007 SymBioSys, START 1), the Flemish
Government: FWO (G.0318.05 (subfunctionalization), G.0553.06 (VitamineD),
G.0302.07 (SVM/Kernel), research communities (ICCoS, ANMMM, MLDM);
G.0733.09 (3UTR); G.082409 (EGFR)), IWT (Silicos, SBO-BioFrame, SBO-
MoKa, TBM-IOTA3), FOD (Cancer plans). Additional funding agencies in-
clude the Belgian Federal Science Policy Office: IUAP P6/25 (BioMaGNet,
Bioinformatics and Modeling: from Genomes to Networks, 2007-2011) and the
EU-RTD: ERNSI: European Research Network on System Identification; FP7-
HEALTH CHeartED.

References

[1] Stein Aerts, Diether Lambrechts, Sunit Maity, Peter Van Loo, Bert Co-
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6.2 Contribution of the PhD candidate

The PhD candidate has gathered the genomic data sources used to build the kernels.
He has developed the web interface. He has also performed the benchmark analysis.
He has participated in the writing of the paper.

6.3 Discussion

6.3.1 Network based strategy

An alternative to kernel based methods might reside in network based methods.
Similarly to kernels, almost every genomic data source can be represented as a
network in which the nodes represents the genes or the proteins and the edges the
links that exist between them. This representation of the genomic data as networks
permits the use of network based methods to prioritize candidate genes. Several
of these methods are very similar to the kernels based methods since there exist
similarities between the kernel and the network representations.

In a preliminary study performed in collaboration with Daniela Nitsch, we used
a network representation to prioritize candidate genes using expression data for
training and illustrate on 4 monogenic disorders [169]. In this study, we assessed
a candidate gene by considering the differential expression of its neighborhood
in a gene network under the assumption that strong candidates will tend to be
surrounded by differentially expressed neighbors. The gene network is built by
considering several genomic data sources from several organisms [246] and by
applying a diffusion (laplacian exponential diffusion) to include indirect links into
the network.

One of the main difference with existing methods is the use of expression data to
represent the disease under study. The existing methods are either using known
disease genes or keywords that describe the disease to train their models, this novel
strategy introduces a novel possibility through the use of an expression data set
that contains the differential expression level of the genes in a disease sample (as
compared to a reference sample).



Chapter 7

Large-scale benchmark of
Endeavour using MetaCore
maps

7.1 Summary

The benchmark of our algorithms is as important as their development, since
benchmarking is a first step towards experimental validation. Originally, Endeavour
was benchmarked by leave-one-out cross-validation on 32 gene sets corresponding to
3 bio-molecular pathways and 29 genetic diseases, representing 695 prioritizations
in total. Although very useful to estimate the performance on real biological
question, this only represents a small fraction of the scientific knowledge of genetic
diseases and bio-molecular pathways. In this chapter, a larger benchmark using
1276 pathway maps and disease marker sets from MetaCore™, totalizing 22343
prioritizations is reported. This benchmark has been realized in the context of a
collaboration with one of the major international pharmaceutical company, Novartis
Pharma AG. In particular, the prioritizations were mainly run at Novartis without
fine tuning the prioritization system. Results show that the hypothesis we derive
from our previous small scale benchmark also stands for larger benchmarks.
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ABSTRACT 
Summary: Endeavour is a tool that detects the most promising 
genes within large lists of candidates with respect to a biological 
process of interest and by combining several genomic data sources. 
We have benchmarked Endeavour using 450 pathway maps and 
826 disease marker sets from MetaCoreTM of GeneGo, Inc contain-
ing a total of 9,911 and 12,432 genes respectively. We obtained an 
AUC of 0.97 for pathway and of 0.91 for disease gene sets. These 
results indicate that Endeavour can be used to efficiently prioritize 
candidate genes for pathways and diseases. 
Availability: Endeavour is available at 
http://www.esat.kuleuven.be/endeavour 
Contact: Sven.Schuierer@novartis.com or Leon-
Charles.Tranchevent@esat.kuleuven.be 

1 INTRODUCTION  
Identifying disease causing genes is a key challenge in human 

genetics. In the process of identifying such disease genes, re-
searchers are often confronted with large lists of candidate genes 
among which only one or a few are actually causal. The validation 
of each candidate is often too costly and time consuming, so that 
only a few candidates are further experimentally validated. A re-
lated problem arises when trying to identify new members of a 
biological pathway. The selection of a small subset of optimal 
candidates for validation is called gene prioritization. Since going 
manually through all possible sources of information is a slow and 
tedious process, several bioinformatics methods have been devel-
oped to tackle this problem (Zhu and Zhao, 2007; Oti and Brunner, 
2007). We previously developed Endeavour (Aerts et al., 2006; 
Tranchevent et al., 2008) whose key feature is that it uses multiple 
genomic data sources (e.g., sequence, expression, literature, anno-
tation) to estimate how promising a candidate gene is by measuring 
its similarity with a set of training genes. The training genes are 
genes which are already known to play a role in the biological 
process under study. The underlying assumption is that the most 
promising candidate genes are the ones that exhibit many similari-
ties with the training genes. A schematic view of the algorithm is 
shown on Fig. 1. Originally, Endeavour was benchmarked by 
leave-one-out cross-validations on 32 gene sets corresponding to 3 
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bio-molecular pathways and 29 genetic diseases, representing 
around 700 prioritizations in total (Aerts et al., 2006). In the cur-
rent study, we briefly report on the largest benchmark to date for a 
gene prioritization method using 1276 pathways and diseases from 
MetaCore and prioritizing a total of 22,343 genes. 

2 METHODS 
We used the MetaCoreTM Pathway Maps and Disease Marker Sets as 

provided by GeneGo, Inc in October 2008. This resulted in 450 pathway 
maps containing a total of 9,991 genes, and 826 disease marker sets con-
taining a total of 12,432 genes (see also Supplementary Material). In addi-
tion, the OMIM and Gene Ontology based benchmarks were built as de-
scribed in Aerts et al. (2006), see also Supplementary Material. The En-
deavour prioritization platform was accessed remotely using a secured 
connection from a command line interface allowing the automatic process-
ing of thousands of prioritizations. 

3 RESULTS 
The cross-validation procedure measures the ability of the program 
to capture the information of the known genes and to correctly use 
this information to prioritize the left-out gene. To assess the ability 
of Endeavour to capture the information of known pathway and 
disease-related gene sets, we used the pathways maps and disease 
marker sets of MetaCoreTM from GeneGo, Inc. Since the gene sets 
in MetaCore are manually curated, we consider them as a reliable 
representation of the current knowledge of the functional contexts 
in which the genes are active. We have benchmarked Endeavour 
using 450 pathway maps and 826 disease marker sets containing a 
total of 9,991 pathway members and 12,432 disease genes respec-
tively. In addition, we have also benchmarked 29 OMIM diseases 
and 37 Gene Ontology pathways that contain respectively 620 and 
1216 genes. For each prioritization run, the position of the left-out 
gene among 99 randomly chosen candidates is recorded gene (see 
also Supplementary Material). We use the area under the Receiver 
Operating Characteristic (ROC) curves (AUC) as a measure of the 
performance. We obtained an AUC of 0.97 for the MetaCore 
pathways. Moreover, 64% of the prioritizations have the left-out 
gene being ranked in the first position. The AUC value obtained 
for the MetaCore disease marker sets is 0.91 and 33% of the priori-
tizations have the left-out gene being ranked in the first position 
(see also Fig. 2). The AUC values obtained for the Gene Ontology 
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pathways and OMIM diseases are respectively 0.93 and 0.94. Al-
together, the results indicate that Endeavour efficiently prioritizes 
candidate genes for both pathways and diseases. As observed and 
discussed in our previous work (Aerts et al., 2006), the perform-
ance of gene prioritization is higher for pathways than for disease 
marker sets because data sources such as Gene Ontology contain 
pathway specific information and because diseases often implicate 
a complex set of cascades making their profiling more challenging. 
Furthermore, the performance is higher for OMIM diseases than 
for MetaCore diseases because the MetaCore sets include markers 
derived from gene expression studies whereas the OMIM sets only 
rely on known causative genes. Such markers are indirectly associ-
ated to the disease and it is therefore harder to prioritize them. 
Assessing the performance of a novel type of bioinformatics tool, 
such as gene prioritization methods, is of crucial importance. Our 
large-scale benchmark demonstrates the effectiveness of Endeav-
our. It should be noted that the evaluation was carried out at No-
vartis by S. Schuierer and U. Dengler independently of the core 
Endeavour team. In particular, the Endeavour platform was used as 
is and no parameter fine tuning was performed (i.e., all available 
data sources were used, see also Supplementary Material). We are 
aware of the many pitfalls of benchmarking gene prioritization and 
function prediction methods (Myers et al., 2006), so that the per-
formance observed in cross-validation studies is likely to be higher 
than that observed in prospective studies. We have recently con-
ducted such a prospective validation in Drosophila (Aerts et al., 
2009), which also confirmed further the effectiveness of our strat-
egy.  

Fig. 1. The Endeavour algorithm. A. The inputs are, on the one hand, the 
training genes (on top - in red), known to be involved in the process of 
interest, and, on the other hand, the candidate genes to prioritize (at the 
bottom – in grey and orange). B. Data are collected for these genes: e.g., 
expression profiles, functional annotations, and protein-protein interactions. 
C. Candidate genes are prioritized, i.e., ranked according to their similari-
ties to the training genes. For example, the gene in orange is the most 
promising candidate (i.e., it ranks in first position) because (i) its expres-
sion profile is similar to the red ones, (ii) it also shares several functional 
annotations, and (iii) it is interacting with several training proteins. 

 

 

 

 

 

 

 

 

Fig. 2. Results of the large-scale validation of Endeavour on the 450 path-
ways and 826 disease marker sets from MetaCore. The disease receiver 
operating characteristic (ROC) curve, in green, results in an AUC of 
91.65% and the pathway ROC, in red, indicates an even better performance 
with an AUC of 97.72%. The dotted curves represent the performance for 
the OMIM diseases (dotted green – 94,12%) and the GO pathways (dotted 
red – 93,37%). The black curve serves as a control (49.86%). The optimal 
control experiment would consist of shuffled gene sets but randomly se-
lected gene sets were used as an approximation. AUCs for diseases and 
pathways are significantly larger than the control AUC (Wilcoxon rank 
sum < 1e-6). 
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7.2 Contribution of the PhD candidate

The PhD candidate has developed a dedicated Java based client for Novartis with
a secure connection between the local server and the Novartis client. He provided
conceptual and technical support during the remote evaluation of the tool. The
PhD candidate also performed locally three additional benchmarks (i.e., control,
Gene Ontology, and OMIM). He has also written the paper.

7.3 Discussion

To complete the benchmark presented in this chapter, 3 additional large scale
benchmark sets have been produced using the Genetic Association Database (GAD),
Kegg and Ingenuity®.

In total, this represents an addition of 94 Ingenuity® pathways, 147 Kegg pathways
and 142 GAD diseases, for a total of 11777 genes. The ROC curves are presented
in figure 7.1, indicating that our approach is able to efficiently validate these sets.
We can observe that the pathway gene sets result in a better AUC (97,63% for
Ingenuity® and 97,78% for Kegg) than the disease gene sets (92,58% for GAD),
which is also true for the OMIM, GO and MetaCore™ gene sets. Of interest, the
pathway validations for Kegg, Ingenuity®, MetaCore™ not only give approximately
the same AUC but also very similar curves as can be appreciated from figure 7.1.
This is most likely due to the overlap in the pathway gene sets that are coming from
the distinct databases. This can also be observed for disease gene sets although
the effect is not as strong as for pathways, the same explanation is valid since
knowledge bases such OMIM and MetaCore™ rely on the same underlying scientific
literature. In this case, more precisely OMIM is probably completely included in
MetaCore™.

One of the weakest point of the LOOCV is the selection of the test genes, we are
usually performing a random selection of 99 genes that constitutes the test set
together with the left-out gene. Selecting a reduced set of 99 genes might induce a
bias since they are unlikely representative of the whole genome, but repeating this
procedure many times is thought to average things out. However, the small number
of repetitions performed in our small scale benchmark might not be enough. To
investigate this, we compare the results of the classical 99 random gene benchmark
and the results of whole genome benchmark. Results are shown in figure 7.2 and
indicate that there is no statistical difference for any of the data sources considered,
nor for the overall performance. This means that for our prioritization experiments,
taking 99 random genes to estimate the background is correct even with a small
number of draws (e.g., 620 for the OMIM based disease benchmark).
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Figure 7.1: Results of a large scale benchmark analysis. Results are presented as
ROC curves. (A) On the left, complete ROC curve for the pathway validation
using Gene Ontology (GO, 93.37%), Kegg (97.78%), Ingenuity® (97.63%), and
MetaCore™ (97.72%). On the right, zoom for the top 3% ranks to distinguish the
overlapping curves. (B) On the left, complete ROC curve for the disease validation
using OMIM (94.12%), the Genetic Association Database (GAD, 92.58%), and
MetaCore™(91.65%). On the right, zoom for the top 3% ranks to distinguish the
overlapping curves. Notice the control curves in dotted black obtained via the
validation of randomly built gene sets. All the pathway and disease AUCs are
significantly larger than the control AUC (Wilcoxon rank-sum < 0.001)
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Figure 7.2: Results of a comparison between leave-one-out cross-validations
performed on the whole genome and performed by sampling 99 candidate genes
from the genome in each run. The AUC is reported for the OMIM based benchmark,
for all models (i.e., data sources), and for both setups (genome wide on the x-axis,
with sampling on the y-axis). The results show that 99 randomly selected candidate
genes can be used as a fast and relatively accurate estimate.of the genome.



Chapter 8

Integrating Computational
Biology and Forward Genetics
in Drosophila

8.1 Summary

The previous chapter (chapter 7) describes the benchmark of our candidate gene
prioritization method. Benchmarking is an effective way to estimate the real
performance, however a real experimental validation, i.e., applying the method
on real biological problems, is always more elegant. This chapter describes the
development of a fly specific version of Endeavour termed ‘Endeavour-HighFly’,
and its experimental validation through a computationally supported genetic screen
performed in collaboration with the laboratory of Prof. Bassem Hassan.

Beside rat, mouse, and worm, fruit fly (Drosophila melanogaster) is a species that is
often used to get more insight into developmental pathways [171, 18, 159, 25, 154].
The development of a fruit fly specific version includes the integration of 12
additional data sources including 2 large expression datasets. The fruit fly version
is made available for both the Java server and the web server. Its is benchmarked
through cross-validation on canonical signaling pathways indicating its validity for
fly prioritization. Its was further experimentally validated through the development
of a computationally supported genetic screen.
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Abstract

Genetic screens are powerful methods for the discovery of gene–phenotype associations. However, a systems biology
approach to genetics must leverage the massive amount of ‘‘omics’’ data to enhance the power and speed of functional
gene discovery in vivo. Thus far, few computational methods for gene function prediction have been rigorously tested for
their performance on a genome-wide scale in vivo. In this work, we demonstrate that integrating genome-wide
computational gene prioritization with large-scale genetic screening is a powerful tool for functional gene discovery. To
discover genes involved in neural development in Drosophila, we extend our strategy for the prioritization of human
candidate disease genes to functional prioritization in Drosophila. We then integrate this prioritization strategy with a large-
scale genetic screen for interactors of the proneural transcription factor Atonal using genomic deficiencies and mutant and
RNAi collections. Using the prioritized genes validated in our genetic screen, we describe a novel genetic interaction
network for Atonal. Lastly, we prioritize the whole Drosophila genome and identify candidate gene associations for ten
receptor-signaling pathways. This novel database of prioritized pathway candidates, as well as a web application for
functional prioritization in Drosophila, called ENDEAVOUR-HIGHFLY, and the Atonal network, are publicly available resources. A
systems genetics approach that combines the power of computational predictions with in vivo genetic screens strongly
enhances the process of gene function and gene–gene association discovery.
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Introduction

The demand by systems biology for bona fide, in vivo validated,

biochemical interaction data and high quality functional annota-

tions is much higher than the supply that geneticists are able to

provide, principally because genetic approaches mainly focus on

generating data on a gene-by-gene basis. On the other hand,

computational predictions of gene function alone remain far from

being accurate enough to be considered high-quality biological

data. Integrated solutions, that combine the advantages of several

approaches, should in theory provide both fast and physiologically

relevant genetic data, while simultaneously increasing our

understanding of biological processes. Genetic interactions in

model organisms constitute a potentially invaluable source of in

vivo interaction data for systems biology provided that throughput

and speed can be increased. Currently, the number of known

genetic interactions remains much smaller than the number of

annotated physical interactions. For example, the BioGRID [1]

database currently contains approximately 53,000 genetic inter-

actions compared to almost 100,000 physical interactions.

Clearly, the power of genetic approaches is that they produce -

by definition - data that is directly relevant in a living system.

Genetic screens, either for specific phenotypes or for modifiers of

gene function, are thus a valuable source of large-scale interaction

data. However, the main disadvantage of large-scale genetic

screens is that they are costly, labor intensive, and time consuming.

Turning in vivo genetic screens into a staple of systems biology by

making them easier and faster without compromising their

accuracy would therefore represent a major advance.

In the bioinformatics community, process- or disease-related

genes are, as of recently, being computationally predicted by

taking advantage of the large amount of available sequence,

function, annotation, and interaction data [2–13]. However to our

knowledge, none of these methods have been used in combination

with large-scale genetic experiments. Therefore, it remains unclear

to what extent genome-wide, or even large-scale, computational

predictions of gene-gene or gene-pathway associations, are

biologically meaningful. Carrying out such screens on a large

scale is difficult in human or mouse genetics, but the availability of

genetic tools in Drosophila melanogaster together with collections of
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deficiency lines, mutants, and insertion lines, makes it an ideal

model organism to investigate the concept of integrating genetic

screens with gene prioritization methods.

Here, we integrate genetics and computational biology to identify

genetic interactions underlying neural development in the Drosophila

Peripheral Nervous System (PNS), a well-established model for

neurogenesis. Proneural genes encoding proteins of the basic-helix-

loop-helix (bHLH) super-family of transcription factors are essential

for the initiation of neuronal lineage development in all species [14–

18]. They act by forming heterodimers with the widely expressed

bHLH E-proteins to bind a DNA motif called the E-box [19] and

regulate the transcription of target genes. The highly conserved

members of the Atonal (Ato) family are one example of proneural

genes whose activity is required for the development of multiple

lineages in vertebrates and invertebrates [14,20–22]. Despite a solid

understanding of when and where ato-like genes are required in the

Drosophila PNS and how they interact with Notch signaling to select

neural precursor cells (NPCs), the mechanisms that mediate their

activity within NPCs and their specificity in inducing neuronal

differentiation remain largely obscure.

To identify genes involved in ato mediated neural development

we propose a strategy for functional gene prioritization in

Drosophila called ENDEAVOUR-HIGHFLY that uses the same data

fusion method and user interface as the human gene prioritization

method ENDEAVOUR [3,23]. We identify 18 genes that interact with

ato in two different contexts, including 2 previously uncharacter-

ized genes, and use them to predict a core Ato interaction network.

Furthermore, to broaden our strategy to other developmental

processes, we prioritize the entire Drosophila genome for each of ten

canonical biological pathways and generate a freely available

database of candidate members or interactors for each pathway.

Results

Identifying Modifier Loci of atonal-Induced Neurogenesis
in the Drosophila PNS

Three amino-acids within the basic domain of the first helix have

been shown to mediate the specificity of ato function [24], and the

same motif enables specific transcriptional activation of the nicotinic

acetylcholine receptor beta-3 subunit by the ato orthologue Ath5

[25]. Substituting the same amino acids in the Ato-related mouse

proneural protein Neurogenin 1 (Ngn1) for Ato group-specific

residues (NgnbAto) allows Ngn1 to induce neurogenesis in Drosophila.

This induction mimics that caused by Ato itself and depends on the

fly E-protein Daughterless (Da) and the proneural co-factor

Senseless (Sens). Also, like endogenous proneural activity, it is

antagonized by the Notch signaling pathway. Expression of the

‘‘Atonalized’’ form of mouse Ngn1, NgnbATO (Figure 1A) under the

control of dpp-Gal4 induces an average of ,30 ectopic sensory

bristles on the adult wing vein (n = 30; Figure 1B, C). This is in

contrast to an average of only ,7 bristles induced by Ngn1 itself

(n = 26; p,0.001), but is similar to the number induced by Ato

(n = 26, n.s.; Figure 1C). However, unlike Ato, NgnbATO induces

significantly less lethality and many fewer wing deformities making

it much easier to use in a large scale, quantitative genetic screen. In

addition, just like for Ato, removal of one copy of sens reduces the

number of NgnbATO-induced bristles by 55.6% (Figure 1C). In

order to bring the screen to a dosage critical value, a heterozygous

sens mutant was introduced into the background of UAS::NgnbATO;

dpp-Gal4. The number of ectopic bristles with this system provides a

sensitized and quantitative read out in which to screen for modifiers

of Ato function.

To test the feasibility of isolating dominant modifiers of the

number of ectopic bristles, we crossed UAS::Ngnbato/Cyo;sens,dpp-

Gal4/TM6c, flies to da or Notch mutant flies. We find that removal

of a single copy of da almost completely suppressed NgnbATO

induced bristle formation (average of 0.760.9 bristles; n = 27,

p,0.001), while removal of one copy of Notch strongly enhanced

the phenotype (average of 43.564.1 bristles; n = 23, p = 0.002;

Figure 1C). All together, these data suggest that the assay is both

robust and sensitive and should enable the identification of specific

quantitative modifiers involved in ato-dependent neurogenesis in

the Drosophila PNS.

Following this strategy, a deficiency screen of the second and the

third chromosomes for modifiers of Ngnbato misexpression was

performed. The deficiency kit is a collection of fly stocks that each

carries a deficiency, or deletion, chromosome uncovering multiple

genes. The different deficiencies encompass most of the chromo-

some and deficiency screening is an established and rapid assay to

identify chromosomal regions with enhancer and suppressor loci

for a given phenotype or pathway [26]. To identify chromosomal

loci that influence ato-induced neural development, 180 deficiency

fly lines were crossed to UAS::Ngnbato/Cyo;sens,dpp-Gal4/TM6c, flies.

Loci were considered positive if they altered the number of ectopic

bristles on the adult wing vein by more than 30% compared to the

number of bristles induced in sibling control flies, as well as in wild

type Canton S flies, and if the change in bristle number was

strongly statistically significant (p,0.01). Following these stringent

criteria, 17 positive regions on chromosome 2 and 14 positive

regions on chromosome 3 were identified. Since induction of

ectopic bristles is a common property of all proneural genes, the

identified loci might be involved in both achaete-scute and ato

dependent neurogenesis. In order to identify Ato-specific loci, the

individual candidate deletion stocks were tested with flies

expressing UAS::ato, UAS::ngn1, and UAS::sc, respectively, under

the control of dpp-Gal4. The loci which modified Ato misexpres-

sion, but not that of Sc or Ngn1 were considered to be Ato-specific

loci. Of the 31 loci identified in the primary screen, only one failed

to interact with any of the genes in the secondary screen. We find

that 15 of the 31 loci interact with both ato and at least one other

proneural gene, while 2 loci interact only with ngn1 and 1 locus

interacts only with sens (data not shown). The remaining 12 loci (6

Author Summary

Genome sequencing and annotation, combined with
large-scale molecular experiments to query gene expres-
sion and molecular interactions, collectively known as
Systems Biology, have resulted in an enormous wealth in
biological databases. Yet, it remains a daunting task to use
these data to decipher the rules that govern biological
systems. One of the most trusted approaches in biology is
genetic analysis because of its emphasis on gene function
in living organisms. Genetics, however, proceeds slowly
and unravels small-scale interactions. Turning genetics into
an effective tool of Systems Biology requires harnessing
the large-scale molecular data for the design and
execution of genetic screens. In this work, we test the
idea of exploiting a computational approach known as
gene prioritization to pre-rank genes for the likelihood of
their involvement in a process of interest. By carrying out a
gene prioritization–supported genetic screen, we greatly
enhance the speed and output of in vivo genetic screens
without compromising their sensitivity. These results mean
that future genetic screens can be custom-catered for any
process of interest and carried out with a speed and
efficiency that is comparable to other large-scale molecular
experiments. We refer to this combined approach as
Systems Genetics.
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on chromosome 2 and 6 on chromosome 3) interact specifically

with ato. Examining the breakpoints of the overlapping deletions

uncovering these 12 loci shows that they harbor 1056 annotated

genes (Figure 1D and Table S1). Each of these loci is expected to

harbor one or more ato-interacting genes.

The identification of the individual modifier genes from these

regions is similar to the problem in human genetics where for a

given human phenotype and its underlying chromosomal locus,

identified by cytogenetic studies or linkage mapping for example,

the individual disease-causing gene(s) need(s) to be identified.

Figure 1. Overexpression of Ngnbato in the sens mutant background provides a robust and sensitive phenotype for screening of ato
dependent enhancers and suppressors. (A) Amino Acid sequence of the basic domain of Ngn (green) and Ato (red). The functionally critical
amino acids are shown in separate colors. (B) Bristle phenotype on the third wing vein induced by Ngnbato driven by dpp-Gal4. (C) Quantitative assay
of ectopic bristle formation induced by Ngnbato in wild type, sens/+, da/+;sens/+ and N/+; sens/+ backgrounds. Ato and Ngn are shown as positive and
negative controls, respectively. Removing one copy of senseless reduces the amount of ectopic bristles. Removing one copy of da in a sens/+
background results in a suppression of the phenotype, whereas removing one copy of N results in an enhancement of the phenotype. (D) Cytological
position of the deficiency regions and amount of genes found within each atonal positive deficiency region on chromosome 2 and chromosome 3.
doi:10.1371/journal.pgen.1000351.g001
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Besides directly providing interaction candidates, the twelve

positive regions resulting from the deficiency screen provide an

excellent opportunity to test the principle of gene prioritization on

a large scale and in an unbiased setup. First we present a redesign

of an existing gene prioritization approach that is specifically tuned

towards the Drosophila genome, and then we use it to select the

most promising candidates from the 1056 genes within the twelve

positive regions.

ENDEAVOUR-HIGHFLY: A Tool to Prioritize Drosophila Genes
through Genomic Data Fusion

To prioritize Drosophila genes we upgraded the existing

ENDEAVOUR tool for gene prioritization [3,23] by including

Drosophila data sources (Table 1 and Materials and Methods) and

we name this version ENDEAVOUR-HIGHFLY, or HIGHFLY for short.

To test the performance of each individual Drosophila data source

we carried out leave-one-out cross-validations (LOOCV; see

Experimental Procedures) on several gene sets. Each set contains

genes that are ‘‘similar’’ to each other for different reasons, for

example genes with similar expression patterns or genes from the

same pathway. We tested whether HIGHFLY could identify the

correct members of each set by leaving out one gene at a time and

calculating the similarity between the left-out gene and the rest of

the set. We found that HIGHFLY ranks highly the left-out genes

when at least one data source holds the information that this gene

is related to the remainder of the gene set (for example, the

expression data source is informative for the expression-related

gene set) (Figure 2). Importantly, regardless of which particular

data sources show the strongest performances, the performance of

the combined or fused ranking (last column in Figure 2) is highly

robust for all sets, it is not influenced by non-informative data

sources, and it is almost always greater than 90% compared to a

performance of ,50% for randomly assembled sets of genes

(Figure 2). These results validate the technical aspects of the

implementation and suggest that HIGHFLY performs robust

prioritizations on Drosophila data sources.

Next, we investigated whether HIGHFLY would be capable of

finding genes that interact in vivo with ato. A training set, called

TRAIN_Ato1 was assembled with the following genes: ato, Brd, rho,

Takr86C, pnt, dpp, Egfr, da, wg, sens, chn, and sca. Because different

sizes and compositions of training sets are possible, we tested the

suitability of this training set for ato-related gene prioritization, by

performing two tests. First, we assessed the content of some of the

trained submodels. The trained GO submodel for this set contains

‘‘peripheral nervous system development’’, ‘‘cell fate specifica-

tion’’, ‘‘eye morphogenesis’’, ‘‘sensory organ development’’, etc. as

highly over-represented terms (p value,10209). The Text

submodel contains stemmed terms like ‘‘cell fate’’, ‘‘notch’’,

‘‘egfr’’, ‘‘disc’’. The InterPro submodel has no highly over-

represented domains, but ‘‘Basic helix-loop-helix dimerization

region bHLH’’ is marginally over-represented (corrected p-

value = 0.07). Secondly, we tested the homogeneity of TRAI-

N_Ato1, by subjecting it to LOOCV and obtained an AUC

performance of 98.5%, suggesting that TRAIN_Ato1 is a coherent

and internally consistent training set. To test the possibility of

obtaining biologically meaningful prioritizations, we performed a

pilot test by prioritizing the right arm of chromosome 3 (chr3R)

using TRAIN_Ato1 and then divided all the genes on the list into

three groups: the top 1/3, the middle 1/3, and the bottom 1/3.

From each group the top 30 genes for which stocks with mutant

alleles are available from the public stock centers were examined

for their modification of ato’s proneural activity, using the same

bristle induction assay described above. Four positive genes were

found in the top group (rn, Antp, gro, and pros), none in the middle

group, and none in the bottom group (Table 2 and Table S2).

Although the power of this preliminary test is greatly limited due

to the relatively small number of genes tested (90) and the

variability of available alleles, we found these results sufficiently

encouraging to proceed with HIGHFLY prioritizations of all twelve

modifier loci found in the deficiency screen. However, to further

evaluate HIGHFLY, we intentionally chose a less stringent threshold

of further validating the top 30% of ranked genes so as to compare

Table 1. HIGHFLY data sources.

Data type Data source Training Scoring

Functional annotation Gene Ontology [27] GO term over-representation Fisher’s omnibus

PubMed abstract profiles Text-mining using gene-reference relations
from FlyBase; average term weight vector

Cosine similarity

SwissProt keywords [43] Term over-representation Fisher’s omnibus

KEGG [44] Pathway over-representation Fisher’s omnibus

Gene expression Life cycle of Drosophila microarray
data [39]

Collection of all the expression profiles of
the training genes

Average of 50% best Pearson
correlation

Tissue-specific gene expression in
Drosophila larvae [40]

Collection of all the expression profiles of
the training genes

Average of 50% best Pearson
correlation

In situ expression [45] FBbt term over-representation Fisher’s omnibus

Protein sequence InterPro [43] Domain over-representation Fisher’s omnibus

BLAST [46] Ad hoc BLAST database of training genes
prot. seq.

Blast test seq. to ad hoc db; rank by e-
value

Allele phenotypes FlyBase records ‘‘phenotype manifest
in’’ [27]

FBbt term over-representation Fisher’s omnibus

Genetic interactions and
protein-protein interactions

BioGRID [1] List of training genes and all their
interactors

Overlap between the test gene plus its
interactors and the training list

STRING [29] Idem BioGRID Idem BioGRID

HIGHFLY training and scoring strategies for each data source.
doi:10.1371/journal.pgen.1000351.t001
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the rankings of positive and negative genes with a sufficiently large

sample size at the end of the screen.

Identification of Novel ato Interacting Genes through the
Integration of Gene Prioritization and Functional Genetic
Modifier Assays

To identify candidate genes within the positive regions, all genes

in each of the twelve positive regions were prioritized separately

using TRAIN_ATO1 as training set and all 12 HIGHFLY data

sources (Table S3). For all genes that were ranked within the top

30%, a mutant stock, when available, was ordered from the public

stock centers. Each mutant was then crossed to the sensitized tester

fly stock (uas::ngnbato/Cyo;sens,dpp-Gal4/TM6c) and the bristles at the

anterior-posterior margin (where dpp-Gal4 is expressed) were

counted and compared to the number of bristles observed in the

control flies as described above. For twelve genes, namely toc, lilli,

Sbb, fj, mus209, zip, shg, Egfr, dom, smg, cas and ppan, the number of

bristles was significantly lower or higher (p,0.01) than in the

control flies (Table 2, bottom panel). Each of these mutants were

Table 2. Validation of the HIGHFLY screen results.

Name Flybase ID Chromosome
Rank on
test region

Rank ratio on
test region

Rank on
chromosome

Rank ratio on
chromosome Phenotypea P-Value

Antp FBgn0000095 chr3 44/3341 1.31% 67/6027 1.10% 231.40% ,0.001

gro FBgn0001139 chr3 58/3341 1.74% 84/6027 1.40% 269.90% ,0.001

pros FBgn0004595 chr3 33/3341 0.99% 48/6027 0.80% dead

rn FBgn0003263 chr3 13/3341 0.39% 21/6027 0.40% 44.20% ,0.001

cas FBgn0004878 chr3 1/103 0.97% 123/6027 2.00% 233.60% ,0.001

dom FBgn0020306 chr2 12/287 4.18% 413/5252 7.90% 231.40% ,0.002

Egfr FBgn0003731 chr2 1/287 0.35% 2/5252 0.03% 251.30% ,0.001

fj FBgn0000658 chr2 3/118 2.54% 63/5252 1.20% 250.00% ,0.001

lilli FBgn0041111 chr2 3/64 4.69% 245/5252 4.70% 235.40% ,0.002

mus209 FBgn0005655 chr2 2/44 4.55% 484/5252 9.20% 236.70% ,0.005

ppan FBgn0010770 chr3 3/58 5.17% 642/6027 10.70% 233.60% ,0.002

sbb FBgn0010575 chr2 2/118 1.69% 207/5252 3.90% 233.60% ,0.001

shg FBgn0003391 chr2 2/287 0.70% 30/5252 0.60% 266.40% ,0.001

smg FBgn0016070 chr3 3/18 16.67% 279/6027 4.60% 2100% ,0.001

toc FBgn0015600 chr2 1/64 1.56% 834/5252 15.90% 233.60% ,0.001

zip FBgn0005634 chr2 1/51 1.96% 123/5252 2.30% 238.10% ,0.001

Validation of HIGHFLY on prioritized 3R chromosome and on different prioritized deficiency regions.
aThe average percentage change of the number of ectopic bristles, compared to wild type controls.
doi:10.1371/journal.pgen.1000351.t002

Figure 2. HIGHFLY cross-validation results. The performance values, measured as Area Under the ROC Curve (AUC), obtained for all individual
data sources (on the x-axis) are shown for several validation sets (each validation set is plotted in a different color; see legend). The AUC values for the
overall prioritization, obtained by integrating all individual rankings, are also shown. Go: Gene Ontology; Sw: SwissProt keywords; Ipr: InterPro protein
domains; Kegg: pathway database; Insitu: BDGP in situ hybridization data; Pheno: FlyBase mutant phenotypes; BioGrid: genetic and protein-protein
interactions; String: protein-protein associations from STRING; Arbeitman: microarray data [39]; White: microarray data [40]; Blast: sequence similarity;
Txt: Text-mining PubMed abstracts; Combined: or fused ranking by order statistics. Genes that are functionally related (e.g., same GO annotation or
co-occurrence in abstracts) are prioritized well with the GO and text submodels, but also with the STRING and BioGRID submodels. Similarly,
prioritization of genetically interacting genes works well with the BioGRID, STRING, GO and Text submodels. Genes that share similar microarray
expression profiles or similar in situ expression patterns are prioritized well with their respective submodels. Lastly, genes that share similar protein
domains are prioritized best by the InterPro and BLAST submodels.
doi:10.1371/journal.pgen.1000351.g002
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then tested against uas::sc; uas::ngn1, and uas::ato under the control

of dpp-Gal4 to check for the specificity of ato interaction. All of the

genes modified only the ato gain of function phenotype (data not

shown). We note that although mutants of genes that ranked in the

top 30% of each locus were tested, 11 of the 12 ranked in the top

6% of their locus (Table 2 and Table S3), suggesting that HIGHFLY

prioritizations enrich strongly for positive interactions. Similar

prioritizations were obtained by using a different high-quality

training set (LOOCV AUC = 99.5%), assembled by selecting all

18 known interactors of ato from BioGRID (data not shown). In

contrast when the same 12 genes were prioritized using 100

randomly assembled training sets, the median rank ratio was 0.247

compared to 0.02 for the ato training set (Figure 3).

An alternative analysis, instead of prioritizing each deficiency

region separately, is to pool all candidate genes from the positive

deficiency regions and prioritize this set in one analysis. We

performed such a prioritization as post-analysis and found all 12

positives ranked in the top 10% (Table S1 and Figure S1). An

examination of the contribution of individual data sources to the

high rankings of the positive genes shows that for all positives, their

high ranking is caused by high rankings for several data sources,

rather than a single high ranking for one of the data sources

(Figure S1), which supports our initial assumption of the added

value of data integration for gene prioritization. In a second post-

analysis, by comparing HIGHFLY with existing online tools such as

FlyBase [27], UCSC Gene Sorter [28], and STRING [29], we

found that the use of a training set of genes related to ato is more

favorable than a single gene query; and also that a gene ranking is

more favorable for gene identification than a gene filtering (e.g.,

using a selection of Gene Ontology terms or a selection of FlyBase

expression terms) (Text S1).

Functional inspection of the 16 positive genes (12 from the

deficiency screen +4 from the pilot screen of 90 genes on

chromosome 3R) by Gene Ontology statistics [30] revealed that

this gene set is significantly enriched for developmental processes

that require ato such as eye development and regulation of

transcription (Table 3). Finally, we compared the phenotypic

distribution of the effects of the modifier genes identified in our

screen with the distribution documented for saturating forward

genetic screens and cellular siRNA screens [31]. We find that

despite the relatively small number of genes that need to be tested

in a HIGHFLY screen, the distribution of phenotypes mirrors that

obtained in genome wide forward and reverse genetics screens

(Figure 4). These data further support the power and accuracy of

the integration of computational biology and genetics.

ato acts as a proneural gene for two different types of founder

cells. The first is a subset of sense organ precursor (SOP) of the

body wall and appendages and the second is the R8 founder cell of

the retina. The major difference between the SOP and the R8 is

that the SOP undergoes cell division to generate the sensory

organ, whereas the R8 cell terminally differentiates. However,

both cells share the property of recruiting neighboring cells into

the ato-dependent fate; a property unique to ato, not shared by

other proneural genes. We assessed whether genes identified in

one context, also operate in the other. To this end, we tested the

relationship between ato and its putative interactors in the

developing fly retina, where ato function is well described [32].

In the retina, ato specifies the first photoreceptor, or R cell, the R8

(Figure S2A, B). The R8 then releases an ato-dependent EGF

signal that organizes the rest of the retinal field and specifies the

R1–R7. Loss of ato function in the retina results in the complete

failure of retinal specification [33]. Expression of an ato-RNAi

construct (A kind gift of A.P. Jarman) in the eye in ato heterozygous

flies (uas::ato-RNAi;h-Gal4, ato1; see Materials and Methods) reduces

R8 specification and consequently the recruitment of other R cells

in a dose dependent fashion (Figure S2C,D). One copy of ato-RNAi

produces a smaller eye with approximately half the normal

number of ommatidia (Figure 5A,B). Mutants for the 16 genes

identified in the screen were crossed to the ato-RNAi flies and

scored for their ability to dominantly modify the ato RNAi

phenotype. Ten of the 16 tested genes, namely gro, rn, EGFR, cas,

ppan, toc, sbb, fj, shg and dom dominantly enhanced the ato-RNAi

Figure 3. Ranking specificity of the ato interacting genes in the bristle assay. The observed rank of a positive gene, using the Atonal specific
training set is compared to its rank obtained with a random training set (100 times). Shown is a boxplot of the 100 rankings of each positive gene
using random training sets (y axis). The green asterisk represents the rank of the positive for the Atonal training set.
doi:10.1371/journal.pgen.1000351.g003
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phenotype, with nine showing further reductions in eye size to

approximately 250 ommatidia (Figure 5C, D). An 11th gene, pros,

was semi lethal. The remaining five genes, namely Antp, smg, lilli,

mus209, and zip, did not appear to alter the ato-RNAi induced small

eye size.

The data thus far suggest that at least 10 of the 16 genes we

identified in the sensory bristle screen also interact with ato during

retina development. Some of these genes such as pros are known

for their role in neurogenesis [34], while the EGF receptor is well

known for its close interactions with ato [35]. However, most of the

genes we identified as genetic interactors of ato have not, to our

knowledge, been previously shown to play a role in ato-dependent

neurogenesis. Next we asked if these genes might be co-expressed

with ato in the various PNS anlagen that derive from ato expressing

precursors. We were able to obtain LacZ enhancer trap lines from

stock centers for 10 of the 16 interacting genes (dom, fj, lilli, mus209,

Figure 4. Distribution of the phenotypic range of the average number of bristles per genotype (n.10) plotted for all ,600 assayed
genotypes (y-axis). The shape of the curve conforms to the expectations for quantitative screens [31].
doi:10.1371/journal.pgen.1000351.g004

Table 3. Enrichment of GO-terms among the positive genes of the screen.

GO ID Genes Group count Total count P value GO term

GO:0007444 rn; pros; lilli; fj; ppan; EGFR 6 259 0.000214 imaginal disc development

GO:0046530 pros; lilli; sbb; EGFR 4 72 0.000255 photoreceptor cell differentiation

GO:0016477 zip; shg; dom; sbb; EGFR 5 160 0.000276 cell migration

GO:0000904 pros; lilli; shg; sbb; EGFR 5 162 0.000284 cell differentiation

GO:0003700 rn; cas; pros; lilli; Antp; sbb 6 314 0.000447 transcription factor activity

GO:0007417 cas; pros; shg; EGFR 4 95 0.000622 central nervous system development

GO:0007420 cas; shg; EGFR 3 34 0.000693 brain development

GO:0007560 rn; pros; lilli; fj; EGFR 5 210 0.000764 imaginal disc morphogenesis

GO:0035218 rn; fj; EGFR 3 37 0.000811 leg disc development

GO:0001745 pros; lilli; fj; EGFR 4 108 0.000811 compound eye morphogenesis

GO:0007164 fj; zip; EGFR 3 38 0.000811 establishment of tissue polarity

GO:0000278 zip; ppan; toc; mus209; EGFR 5 223 0.000811 mitotic cell cycle

Selection of enriched GO-terms across the 16 positive genes. Full results table is available at http://med.kuleuven.be/cme-mg/lng/HighFly. All genes from chr2 and chr3
are used as background set.
doi:10.1371/journal.pgen.1000351.t003

Systems Genetics in Drosophila

PLoS Genetics | www.plosgenetics.org 7 January 2009 | Volume 5 | Issue 1 | e1000351



pros, rn, sbb, shg, toc and zip) to examine their expression patterns in

the third instar larval (L3) imaginal discs. In the eye, antennal, leg

and wing L3 discs, Ato marks the progenitor pools and the very

early precursor cells of specific neuronal lineages. Senseless then

marks the precursor cells during and after Ato expression. One

enhancer trap, rn, did not show any obvious expression

relationship to ato. Two of the 10 genes, mus209 (fly PCNA) and

sbb are generally expressed. An additional two lines, toc and zip

showed expression in the posterior part of the eye disc (Figure

S3A), suggesting a later function than that of ato. Finally, other five

of the 10 tested enhancer traps showed a clear expression

relationship with Ato (Figure S3). We observed strong lacZ

expression in the L3 discs in Ato-expressing and Ato-dependent

cells in the eye disc (fj, lilli, shg, pros), in the antennal Johnston organ

precursor cells (dom, shg, pros), in the chordotonal organ precursor

cells of the wing and leg imaginal disc (dom, shg, pros) (Figure S3 and

data not shown). It should be noted that enhancer trap lines might

reflect only part of the total expression pattern of the trapped gene.

Identification of Uncharacterised ato Interacting Genes
The data above support the feasibility of rapidly and accurately

identifying gene function through the fusion of in silico gene

prioritization and in vivo genetic screens. One issue that faces all

gene prioritization approaches is an expected bias towards genes

with at a large amount of pre-existing information in several

databases. Although this is still valuable in assigning novel

functions to known genes, we reasoned that it would be interesting

to test the performance of HIGHFLY in the prioritization of genes

about which there is little explicit information. Genes with limited

annotations can potentially be ranked high due to data sources

that are independent of existing knowledge, such as sequence

similarity, protein domains, gene expression data, or protein-

protein interaction data from high-throughput experiments.

Indeed, 30 out of 96 genes, known only by their CG numbers,

ranked in the top 10% of the ato-specific deletion loci identified in

the initial bristle screen (Table S4). The recent availability of a

genome-wide in vivo Drosophila RNAi library [36] allowed us to test

these genes for their interaction with ato.

When no off-target effects were predicted, available RNAi lines

were ordered and crossed to the ato-RNAi flies driven by the h-Gal4

driver in an ato heterozygous background (uas::ato-RNAi;h-Gal4, ato1),

as well as two different control lines; h-Gal4, ato1 and h-Gal4 alone.

To avoid potential artifacts resulting from the RNAi approach, we

set relatively stringent criteria: we searched for genes that show

synthetic lethality specifically and only in combination with ato-

RNAi, but show no phenotype under the two control conditions.

We were able to obtain a total of 36 RNAi lines for 24

uncharacterized genes ranking in the top 10% of positive

deficiency regions. Eleven RNAi lines were lethal under all

conditions and could not be evaluated further. The 25 remaining

Figure 5. Effect of modifiers on eye size in atonal sensitized eyes. (A) Wild type eye with around 800 ommatidia. (B) effect from ato-RNAi on
amount of ommatidia resulting in a population of flies with about 400 ommatidia per eye. (C) enhancement of ato-RNAi phenotype resulting in a
population with smaller eyes with around 250 ommatidia per eye. (D) Overview of phenotypes observed when modifiers were crossed with atoRNAi
flies, removal of one copy of the modifier results in a larger population of flies with smaller eyes for 9 of the previously identified modifiers. The other
5 modifiers did not show an alteration in eye phenotype, compared to the ato-RNAi phenotype in controls.
doi:10.1371/journal.pgen.1000351.g005
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RNAi lines allowed us to perform knockdown of 17 genes. Of

these, 2 genes (CG1024, CG1218,) caused lethality only in

combination with atoRNAi, but not under control conditions

(Table 4). As a further confirmation for the specificity of these

interactions, we tested 51 RNAi lines for the bottom 10% ranking

genes in each deficiency. None of these lines showed specific

synthetic lethality in combination with atoRNAi (data not shown).

Thus, the combination of HIGHFLY prioritization, the RNAi

library and genetic screening allows the rapid functional

identification of previously uncharacterized genes.

An Atonal Interaction Network
The combination of forward and reverse genetics tools and

computational biology allowed the identification of 18, mostly

novel, genetic interactions with the proneural gene ato. We sought to

determine if the identified positive genes are functionally associated

with each other, with ato, and with any of the other training genes

that were used originally to identify these genes. To this end we used

the STRING [29] protein-protein association predictions at 0.8

confidence level and determined the optimally connected sub-

network that can be formed among the 18 positive genes, via

maximally two other proteins (see Materials and Methods). We find

that a network can be constructed that includes 12 of the 16 known

genes (data not shown). As expected, the 2 unknown genes play no

role in this analysis because of the lack of STRING data at this high

confidence level. This analysis discovers Ato itself as member of the

best network that connects the positive genes. We found that the

maximal confidence level at which Ato is still part of the network is

0.842, and therefore used this stringency for further analyses. The

network formed by the 16 known genes at this confidence level

(Figure 6A) contains 84 nodes and 250 edges, and now includes 12

of the 16 positive genes and 6 training genes, including ato. Egfr is

directly connected to ato; fj, Antp and gro are connected to ato via one

other protein; pros, rn, shg, lilli are connected to ato via two other

proteins and cas, smg, zip, mus209 via three other proteins.

To determine the significance of finding a large interconnected

network, which includes ato, starting from the 16 positive known

genes, we generated 1000 random sets of 16 known genes.

Specifically, we used only genes with a name in FlyBase and at

least one GO biological process annotation. Only 29 of the 1000

networks contain ato and, on average, they contain 0.70

(S.D. = 1.13) training genes, 7.83 nodes (S.D. = 9.09), and 13.07

edges (S.D. = 19.28). An example of such a network is shown in

Figure 6B. With a p-value of 0.029 to find Ato in the real network,

p,0.001 to obtain 84 nodes, p,0.001 to obtain 250 edges, and

p = 0.001 to recover 6 of the 11 training genes, we conclude that

the positive genes we identified are strongly associated with each

other and with Ato and its known interactors.

A Database of Genome-Wide Gene Prioritizations in
Drosophila for Ten Canonical Signalling Pathways

A particular feature of the HIGHFLY tool is the speed of

prioritization. We wondered whether this computational efficiency

makes it possible to prioritize whole chromosomes or even the

entire genome. To this end we asked if it is possible to rank the 16

known genes identified in our screen on their respective

chromosomes, and if so, whether these rankings would be high.

Table 2 shows the chromosomal rankings of these genes. All

except one of the known genes rank within the top 10% of their

respective chromosome (Table 2).

These data suggest that it is possible to obtain strongly

meaningful gene prioritizations across large data sets. We sought

to illustrate the general applicability of fly gene prioritization and

simultaneously generate a second community-wide resource by

prioritizing the entire genome to identify genes that are related to,

or potentially involved in, either of ten signaling pathways, namely

Transforming Growth Factor beta (TGFb) receptor signaling

pathway (GO:0007179), Epidermal Growth Factor Receptor

(EGFR) signaling pathway (GO:0007173), Fibroblast Growth

Factor Receptor (FGFR) signaling pathway (GO:0008543), Notch

(N) signaling pathway (GO:0007219), Sevenless (Sev) signaling

pathway (GO:0045500), Smoothened/Hedgehog (Smo/H) signal-

ing pathway (GO:0007224), Toll signaling pathway

(GO:0008063), Extracellular signal-Regulated Kinase (ERK;

GO:0007259), JAK-STAT (GO:00016055) and Wnt signaling

pathway (GO:0016055). To investigate the rankings in terms of

biological processes we calculated GO over-representations for

each top 100 ranked genes, excluding the training genes. We also

excluded genes that were ranked in the top 100 for more than two

pathways and GO-terms that were over-represented in more than

four pathways. We find that typical overrepresented functions are

cell adhesion and photoreceptor fate commitment for EGFR-

related genes; cell migration for FGFR; neuroblast fate determi-

nation and equator specification for Notch; defense response for

Toll; and ectoderm development for Wnt, suggesting that the

prioritizations are biologically meaningful. Finally, we compared

prioritizations for 4 of the 10 pathways- namely ERK, Wnt, Hh

and JAK-STAT- for overlap with published genome-wide siRNA

screens. We find significant overlap between the top 10% of the

genome as prioritized by HIGHFLY and the genes scored as

positives in these screens for 3 of these pathways (Figure 7). Only

the Hh pathway screen shows poor overlap with the prioritiza-

tions. Prioritizations and functional analyses, as well as the

HIGHFLY software, are available at http://med.kuleuven.be/

cme-mg/lng/HighFly.

Discussion

The molecular unraveling of biological processes in the post-

genome era is characterized by the use of high-throughput

experiments and the integration of prior knowledge (e.g., the use of

GO-statistics to select microarray generated gene clusters), and is

therefore supported and guided by bioinformatics. Genetic screens

in model organisms such as Drosophila melanogaster are also high-

throughput experiments, but they are yet to be aided by

computational techniques, as an integral part of the screen itself.

We sought to demonstrate the power of an integrated approach

Table 4. Synthetic lethal modifiers of ato-RNAi among the unknown genes.

Clone CG number Rank CG-RNAi+atoRNA ;hGal4, ato1 CGRNAi+hGal4, ato1 CGRNAi+hGal4

18597 CG1024 7.7% Lethal No Effect No Effect

31685 CG1218 6.6% Lethal No Effect No Effect

Results of the phenotypes observed from RNAi screen.
doi:10.1371/journal.pgen.1000351.t004
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that combines high-throughput in silico and in vivo genetic

approaches. This integration allowed us to quickly identify novel

genetic interactions during neural development in the fly PNS,

while significantly reducing the workload of the genetic screen.

First, a classical deficiency modifier screen is performed. Then,

instead of assaying all the genes located within the positive

deficiency regions, the best candidates are selected computation-

ally. This is done by integrating multiple heterogeneous genome-

scale data sources, both representing published knowledge (e.g.,

functional gene annotations or protein-protein interactions),

genome sequences, and experimental data (e.g., gene expression

data or phenotypes). As such, we were able to assign novel

functions for known genes whose involvement in ato-dependent

neural development was unknown, as well as describe functions for

uncharacterized genes.

A major advantage of genetic screens is that they are unbiased:

they can reveal a function for a previously unknown gene.

Although gene prioritization based on available data would have

been expected to affect this property of screens, our data indicate

that this is not necessarily the case. Even genes with very little

explicit information, and no known function could be identified

both as high ranking and as bone fide interactors in vivo in our

HIGHFLY supported screen. In addition, our data suggest that the

combination of HIGHFLY prioritizations and transgenic RNAi lines

can result in very rapid functional gene discovery.

The use of an integrative screening strategy combining

computational biology with medium or high-throughput screening

assays is likely to be applicable to a broad range of screening assays

(from in vitro to in vivo assays) beyond Drosophila genetics. Essentially

any assay designed around evaluating a given gene, and for which

whole-genome screening is outside the reach of the typical lab,

could benefit from strategies similar to ours. Even with more

extensive resources, it may be more productive (at equal time and

cost) to evaluate several prioritized screens than a single whole-

genome screen. Obviously, the strategy we propose is not

applicable in the case where extremely little is known about the

molecular basis of a phenotype (because of lack of a training set)

while a genetic screen would still be feasible. It is a clear research

Figure 6. Protein-protein association subnetworks. The subgraphs are extracted from STRING connections with confidence score above 0.842,
and aim to connect as many seed genes as possible. Seed genes may be connected through maximally two edges from either side. (A) The 16
positive ‘known’ genes are used as seed genes to validate their potential relationship. The resulting network is significantly larger and more
interconnected than expected by chance and recovers Ato itself as member of the sub-network. (B) Example of a subgraph generated from a random
selection of seed genes that does recover Ato. Only 29 out of 1000 random networks recover Ato by chance. These networks are significantly smaller
than the network formed by the 16 genes from the screen. Green nodes are positive genes from our screen, while all other nodes are drawn from
STRING interaction data (square nodes were part of the training set).
doi:10.1371/journal.pgen.1000351.g006
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challenge for computational biology to develop methods applica-

ble to such a situation.

A further advantage of our integrated systems genetics approach

is the combination of speed and accuracy of gene function

discovery. In this work we tested a total of 180 deletion lines, 220

mutants and 36 RNAi lines to identify 18 ato interacting genes,

representing a discovery rate of ,5%. It should be noted that the

220 mutants tested include 90 mutants examined only for the

purposes of testing the prioritizations as well as 78 mutants ranking

between 10% and 30% of their deletion regions. Our data clearly

indicate that testing genes ranked in the top 10% only will suffice

to discover the vast majority of sought after genes: 17 of the 18

genes identified (,94%) rank in the top 10% of their tested

regions. Thus, assuming all genes have available RNAi lines or

mutant alleles, testing only 96 genes, after the initial deficiency

screen, would have identified at least 17 ato interacting genes, a

discovery rate of almost 18%. In this regard we note that

ENDEAVOUR-based prioritizations appear to outperform existing

tools. We believe this to be due to three main properties namely

the use of a multi-gene training set, the integration of multiple data

sources, and the production of gene rankings.

The genes we find to interact with ato reveal an interaction

network underlying early neural differentiation. Network analysis

reveals two important aspects of the screen. Although neither Ato

nor its known interactors were included in the query, the best

network found includes Ato and almost all of its known interactors.

In addition network analysis yields a number of interesting

insights. First, most of the 89 genes in this network are signaling

molecules and transcription factors belonging to the Notch, Wnt,

EGFR, Dpp and Hh pathways. These pathways are known to

interact with ato and our data suggest that the newly identified ato

interacting genes may be members of these pathways or may

implement the interactions between ato and these pathways.

Second, most of the genes tested for both bristle formation and

retinal development interact with ato in both assays. This suggests

that ato may work with a core group of genes to implement

context-specific neural fate decisions. One exception to this

appears to be genes acting in cell division (mus209, lilli, zip) that,

not surprisingly, interact in the bristle assay, but not the R8 assay.

Third, we note that HIGHFLY was able to predict the interaction of

uncharacterized genes with ato, which network analysis alone,

would have not been able to predict.

Figure 7. Comparison of whole-genome prioritizations for signaling pathways with results from RNAi screens obtained from http://
www.flyrnai.org. For each of the four prioritizations the training set is based on Gene Ontology annotation for the respective pathway, namely
GO:0000165 (MAPK) for the ERK pathway (A), GO:0007259 for JAK-STAT (B), GO:00016055 for Wnt (C), and GO:0007224 (smoothened) for hh (D). The
green curve represents the cumulative recovery of positive genes when moving down the top 10% of the ranked gene list, using the full training set.
The orange curve is similar to the green curve, but now excluding the known GO-annotated positives from the RNAi screen from the training set. The
blue control curve is the average recovery curve of the positives, using 100 random training sets of known GO-annotated genes. The grey area
represents a 95% confidence interval above the mean and the dotted curve represents two standard deviations above the mean, so that every point
above the dotted curve represents a significant (p,0.05) enrichment of true positives. For three out of four, namely ERK, Wnt and JAK-STAT, a
significant enrichment of positives is found at nearly all thresholds in the top 10% of the genome.
doi:10.1371/journal.pgen.1000351.g007
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In summary, a systems genetics [37] approach not only

identifies novel functions for individual genes with great speed

and accuracy, but, as would be desirable in a systems biology

context, also uncovers the structure and functional attributes of the

network formed by these genes. Yet, the main advantage of

systems genetics over other systems biology approaches is that the

results are physiologically relevant by definition, because they are

discovered directly in vivo.

The HIGHFLY tool can perform prioritizations on the entire fly

genome. We have done this for ten major signaling pathways, but

many other prioritizations are possible, depending on the interest

of the user. HIGHFLY and its prioritizations are public resources

that we hope will contribute to enhancing the speed and accuracy

of functional gene discovery in vivo and establishing classical

genetics as a fundamental tool of systems biology.

Materials and Methods

Fly Strains and Genetics
All crosses were performed at 25uC, except for the atoRNAi eye

screen crosses which were performed at 28uC, on standard fly

food. Deficiency kits, LacZ enhancer trap flies and all mutant lines

were obtained from the Bloomington and Szeged stock centre.

The atoRNAi lines were kindly provided by Andrew Jarman, and

the RNAi lines for uncharacterized genes were obtained from the

Vienna Drosophila RNAi Center (VDRC).

Immunohistochemistry
Third instar larval imaginal discs were dissected in 16 PBS.

Discs were fixed with 4% formaldehyde in 16 PBT for

15 minutes. Then, washed five times (15 min/T) in 16 PBT.

Blocking and antibody incubation were performed as described

[38]. The antibodies used were: sheep anti-ATO (1:250), rabbit

anti-GFP (1:1000), rat anti-Elav (1:100), guinea pig anti-SENS

(1:1000) mouse anti-bgal (1:1000), rabbit anti–bgal (1:1000).

Secondary antibodies were always used 1 in 500. Samples were

mounted in Vectashield mounting medium and detected using

confocal microscopy (BioRad 1024, Hercules, California, United

States and Leica DM-RXA, Wetzlar, Germany).

Genetic Screen
The fly strain w; UAS::ngnbato/CyO; sens, dpp-GAl4/TM6 was

used to set up crosses with deficiency lines. The number of the

ectopic bristles was used as a parameter to reflect the strength of

the proneural function of Ato in this context [24]. When a

deficiency region caused a significant change in the number of

ectopic bristles, the corresponding deficiency line was further

crossed to three fly lines UAS::ato; dpp-Gal4, UAS::ngn; dpp-Gal4 and

UAS::sc; dpp-Gal4 and the number of ectopic bristles was counted.

Deficiencies were considered ato specific when they altered the

amount of bristles generated by UAS::ato/cyo; dpp-Gal4/TM6, and

not by UAS::ngn, dpp-Gal4/TM6 or UAS::sc, dpp-Gal4/TM6. Within

these deficiency regions, high-ranking mutant lines available in the

stock centre were ordered and crossed to w; uas::Ngnbato/CyO; sens,

dpp-GAl4/TM6. If a mutant still caused a significant change in

bristle number, the corresponding gene interacts with Ato. The

positive genes were tested with flies expressing UAS::ato, UAS::ngn1

and UAS::sc respectively under dpp-Gal4 control to check for

specificity. All ectopic bristles were counted under stereomicro-

scope. For all statistic analysis, the sample number is n = 10, and a

significant difference between two average values is defined as

p#0.01. The eye phenotype screen was performed by crossing w;

UAS::atoRNAi/CyO; h-Gal4, ato1/TM6C, which reduced the eye size

in 50% of the flies, with the mutant strains identified in the bristle

screen. Positive genes for retinal modifiers of ato were mutants that

enhanced or suppressed the atoRNAi phenotype. RNAi strains

were crossed to h-Gal4; ato1/TM6 and h-Gal4 as controls. Only the

one showing synthetic lethality specifically with w; UAS::atoRNAi/

CyO; h-Gal4, ato1/TM6C, but not with two controls was considered

as positive.

Gene Prioritization
The gene prioritization method [3,23] works as follows. First, a

set of training genes is defined to describe the particular process

under study. For each data source, the following data for the

training genes are assembled: (1) a gene’s function derived from

FlyBase GO annotation, textual information extracted from

PubMed abstracts, SwissProt keywords and KEGG pathway

membership; (2) a gene’s expression pattern derived from two

general Drosophila microarray data sets [39,40] and embryonic in situ

expression patterns from the Berkely Drosphila Genome Project

(BDGP); (3) a gene’s protein sequence from Ensembl and its protein

domains from InterPro; (4) described mutant phenotypes from

FlyBase; and (5) described genetic interactions or predicted protein-

protein associations from BioGRID and STRING. The applied

training and scoring strategies for each data source are described in

Table 1. For each gene in a ‘‘test set’’ the similarity with a submodel

is calculated and the ranks according to individual submodel scores

are integrated using order statistics, yielding a q-value. The q-value

is transformed into a p-value according to fitted distributions,

depending on the number missing values. Finally, the test genes are

ranked according to this p-value.

Leave-One-Out Cross-Validation (LOOCV)
We assembled sets of genes involved in the same signaling

pathway, tested on eight pathways defined by GO; genes with

similar expression patterns using an expression cluster from

Arbeitman et al. [39] and a second cluster of all genes expressed

in Bolwig’s organ from FlyBase; genes with the same protein

domain, namely the bHLH domain; all genes that interact with

the same gene, tested on all interactors with Atonal from

BioGRID; and genes that are co-cited with a specific gene in

PubMed abstracts, namely genes cited with ato, extracted using

iHOP [41]. In LOOCV, every gene from every validation set is, in

turn left out, and the ranking of the left-out gene within a set of 99

randomly selected genes is recorded. From all these rankings,

Receiver Operating Characteristic (ROC) curves are generated

and the area under this ROC curve is used as a measure of the

performance of each individual data source and of the integrated

prioritization.

Network Extraction
The aim of the network extraction is to obtain a subgraph that

connects the genes of interest (the seed genes). Network

connections were extracted from the STRING protein-protein

associations, using a minimum edge confidence (above 0.8). We

define the connecting nodes (the non-seed genes) in the subgraph

as the nodes that are on the shortest path(s) between two or more

seed genes. To identify those connecting nodes, a multiple sources

breadth-first search is performed, which is initialized with the seed

genes. During the search, the minimum distance to the seed genes

is recorded until seed genes are reachable from one another. Upon

completion, the final network is obtained by exploring the shortest

paths, starting from the seed genes, that have a maximum length

of 4 and that connect at least two seed genes. Hence, the extracted

network is made of one or more connected components and may

not include all the seed genes. The obtained networks were

visualized using Cytoscape [42].
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Supporting Information

Figure S1 Contributions of the HIGHFLY data sources to the

overall ranking. One HIGHFLY prioritization was performed on

all 1056 genes that are contained within the 12 positive ato-specific

deficiency regions. The first column shows the rank of the positive

genes for the overall ranking obtained by the fusion of all the

individual sources (columns 2–13). Grey squares represent missing

data for that particular gene and data source. The genes with no

or limited existing knowledge, such as CG1218 and CG1024 can

still be ranked high. CG1218 is ranked high because of similarities

with the training set through BioGRID (CG1218 interacts with

sine oculis), BLAST (CG1218 has sequence similarity with chn, E-

value 18.2) and Microarray_2 (similarities between CG1218 and

the training set according to microarray gene expression data).

CG1024 has similarities with the training set through BLAST

(CG1024 has sequence similarity with senseless, E-value 0.54),

InterPro (CG1024 contains a Zinc finger motif, C2H2-type, like

senseless), and Swissprot (CG1024 contains the keyword ‘‘Zinc-

finger, DNA binding’’).

Found at: doi:10.1371/journal.pgen.1000351.s001 (0.51 MB TIF)

Figure S2 Expression of ato-RNAi inhibits retinal differentiation.

Eye discs are oriented with posterior located to the left. A) Scheme

of ato dependant retinal induction using the formation of one

photoreceptor cluster as example, first Ato is expressed in a stripe

of cells, than, due to lateral inhibition ato expressing cells are

restricted to three cells and then a single cell, the R8, which begin

to express Sens. The other 7 photoreceptors are recruited in a

reiterative way. When these neurons mature they express Elav. B)

wild type control eye disc stained for Elav (blue), Sens (green) and

Ato (red). C, D) Expression of ato-RNAi causes dose-dependent loss

of retinal differentiation with one copy (C) leading to the

appearance of gaps in the Elav pattern, and two copies (D)

leading to a major failure of photoreceptor differentiation.

Found at: doi:10.1371/journal.pgen.1000351.s002 (0.93 MB PDF)

Figure S3 Overview of the expression pattern of ato interacting

genes detected using LacZ enhancer trap lines or antibodies. (A)

Overview of eye-antenna imaginal disc, with posterior to the right,

ed: eye disc, ad: antenna disc. (A9) b-gal staining of LacZ enhancer

trap flies mimicking the expression pattern of the genes nearby.

Enhancer traps of zip, fj, sbb, shg, toc, and lilli show expression

patterns in the eye disc. (B) eye disc of lilli enhancer trap flies,

showing co-localization between Ato (B0) Sens (B9) and b-gal (B9).

(C) Eye disc of fj enhancer trap flies, showing co-localization

between Ato (C0) Sens (C9) and b-gal (C9). (D) Leg disc of shg

enhancer trap flies, showing co-localization between Ato (D0) Sens

(D9) and b-gal (D9) in the leg chordotonal organ precursor. (E)

Wing disc of dom enhancer trap flies, showing co-localization

between Ato (E0) Sens (E9) and b-gal (E9) in the wing chordotonal

organ precursor. (F) Antennal disc of dom enhancer trap flies,

showing co-localization between Ato (F0) Sens (F9) and b-gal (F9) in

the Johnston organ precursor.

Found at: doi:10.1371/journal.pgen.1000351.s003 (3.02 MB PDF)

Table S1 Results of the prioritization of all 1056 genes from the

12 positive deficiency regions together, indicating the result of the

bristle assay. Negatives and positives are indicated with orange and

green shading respectively.

Found at: doi:10.1371/journal.pgen.1000351.s004 (0.38 MB

XLS)

Table S2 Results of the prioritization of chromosome 3R. The

first 30 available mutant stocks are shown for the top 1/3, middle

1/3, and bottom 1/3 of chromosome 3R after prioritization.

Negatives and positives in the bristles assay are indicated with

orange and green shading respectively.

Found at: doi:10.1371/journal.pgen.1000351.s005 (0.04 MB

XLS)

Table S3 Results of the prioritization (Dec 2005) of the 12

positive deficiency regions, in 12 sheets, indicating the mutant

alleles tested in each region and the result of the bristle assay.

Negatives and positives are indicated with orange and green

shading respectively.

Found at: doi:10.1371/journal.pgen.1000351.s006 (0.16 MB

XLS)

Table S4 Results of the prioritization (June 2007) of the 12

positive deficiency regions, in 12 sheets, indicating the RNAi lines

tested in each region and the result of the bristle assay. Negatives

and positives are indicated with orange and green shading

respectively.

Found at: doi:10.1371/journal.pgen.1000351.s007 (0.58 MB

XLS)

Text S1 Supplementary Analysis: comparison of HIGHFLY

with existing tools through post-analysis.

Found at: doi:10.1371/journal.pgen.1000351.s008 (0.12 MB PDF)
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8.2 Contribution of the PhD candidate

The PhD candidate has collected the fruit fly specific genomic data, and has
developed the ‘Endeavour-HighFly’ software. He has also contributed to the
computational section of the genetic screen (prioritization of the 12 regions using
the atonal mediated gene sets as well as control gene sets). Last point, he has also
contributed to the full genome pathway prioritizations whose results have been
compared to siRNA screens.

8.3 Discussion

Beside the application described in that paper, we have also applied our gene
prioritization approach to several other genetic disorders. The following section
describes three applications respectively to Congenital Heart Defects (CHDs)
[28, 232] and eye related disorders.

8.3.1 Congenital Heart Defects

The results presented here have been obtained through a close collaboration with
the laboratory for the Genetics of Human Development of the Department of
Human Genetics, headed by Prof. Koen Devriendt. More precisely, the adaptation
of our prioritization strategy for CHD was realized in close collaboration with
Bernard Thienpont. This work has been published in the American Journal of
Human Genetics [232].

Congenital heart defects are the single most important congenital cause for perinatal
mortality and morbidity [100, 233] but despite this manifest importance, their
etiology remains largely obscure. Although epidemiological studies demonstrated
that certain environmental factors are contributory [114], family and twin studies
suggest a major genetic component [45, 151]. Indeed, mutations in several genes
were associated with monogenic CHDs, mainly through linkage analysis in large
families in which a CHD segregates as an autosomal-dominant trait [190]. Given
the mortality associated with CHDs, such large families are rare. Although family
studies suggest that partially penetrant causes of CHDs are much more common
than purely monogenic causes [42, 257] such loci have remained unidentified in
linkage studies. As a result, only few causative genes have been identified, and
mutation analyses have shown that they account for only a very small fraction
(< 1%) of CHD cases [192], representing a serious limitation in the genetic counseling
of CHD patients and their families and in the elucidation of the pathogenesis of
CHD. To accommodate these limitations, identification of loci associated with
CHDs through chromosomal rearrangements was designed as an alternative strategy.
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Such a strategy enables the identification of regions harboring genes involved in
heart development in a dosage-sensitive manner and the construction of a human
morbidity map for CHDs. Already several candidate loci for CHD that were
identified through the screening of patients with a CHD by means of array CGH
have been reported [231, 75].

One locus, located on chromosome 6q24-q25, was further delineated and
characterized through immunohistochemistry analysis, array comparative genome
hybridization, candidate gene prioritization, zebrafish assays, and mutation analysis.
The software Endeavour was used to perform the candidate gene prioritization.
First, a fine mapping of 11 chromosomal aberrations in 6q24-q25 was realized (six
patients with a CHD and five patients without a CHD). This led to the definition
of a commonly deleted region (also termed critical region), shared by the 6 CHD
patients and none of the control patients. The region is rather small (0,85 Mb) and
contains only five genes. The clustering of CHD-associated deletions on 6q24-q25
suggested that haploinsufficiency of one or more genes in this locus causes CHDs.
Although this putative CHD gene most likely resides in the commonly deleted
region, the alternative hypothesis that two or more genes located elsewhere on
6q24-q25 cause CHDs with incomplete penetrance could not be excluded. The
candidate gene prioritization was therefore extended to all genes on 6q24-q25 (105
genes in total).

Endeavour was first adapted to the current problem by adding several novel
data sources and by accounting for correlation between the different data sources.
The novel data sources are an expression microarray data set of murine heart
development (from GEO) and three datasets representing homology data, extracted
from HomoloGene [255, 207], BioMart [91, 216], and Inparanoid [170, 174]. This
data was summarized by vector representations, and scoring was achieved with
the use of Pearson correlation (similar to what is done for expression data). Using
multiple data sources in conjunction is expected to reduce the noise and to yield
better results. However, there is often redundancy between the data sources, and
not accounting for it might biased the analysis towards the knowledge that is
redundant. The spearman rank correlation was calculated between any pair of
data sources over several heart related prioritizations. Data sources that displayed
a moderate to strong correlation (> 0.3) were fused using the order statistics
prior to the global fusion, leading to a tree-based prioritization scheme (see figure
8.1.). Additionally, candidate genes were prioritized on the basis of seven distinct
training sets (see table 8.1), representing discrete aspects of cardiac development
and genetics. Results from the seven sets were fused with the order statistics.
Leave-one-out cross-validation demonstrated that this adapted algorithm readily
ranks genes with an established involvement in heart development, on average in
the top 5%. In addition, and based on this cross-validation, data sources with an
AUC below 0.6 were omitted. Gene prioritization yielded a ranked list of candidate
genes for CHDs, with MAP3K7IP2 (also known as TAB2) ranking first of all 105
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genes from 6q24-q25. Interestingly, it is located in the commonly deleted region.
Upon genome-wide prioritization, TAB2 moreover ranks 44th among all human
protein coding genes (22742). This tree based structure is also though to reflect
more accurately the biology that underlies complex disorders. Indeed these complex
traits can result from the perturbation of distinct pathways, each of which can be
modeled separately by one branch of the tree.

Figure 8.1: Tree based prioritization. The 21 data sources used for the CHD
application are depicted by colored boxes that are grouped into seven categories
according (i) to the a priori knowledge about their content and (ii) to the correlation
they exhibit pairwise (spearman rank correlation). These seven categories are then
used together to perform the last prioritization. A total of 13 prioritizations is
thus needed to obtain the final results. Note: CHD refers to the CHD specific
microarray expression dataset.

Immunohistochemistry analysis showed cytoplasmic expression of TAB2 in various
part of the developing human heart (ventricular trabeculae, endothelial cells of
the conotruncal cushions of the outflow tract, and endothelial cells lining the
developing aortic valves). In addition, TAB2 exhibits a compatible expression
pattern in zebrafish embryos (cardiac outflow tract, dorsal aorta, posterior cardinal
vein). Furthermore, knocked down zebrafish embryos displayed severe heart failure
(the heart tube appeared thin and elongated, with blood pooling in the common
cardinal vein before entry into the heart) in late development. These results indicate
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Biological process Number of genes AUC rank of TAB2
Vascularisation 20 97.98% 5th
Left-right asymmetry 11 92.56% >5th
Neural crest 11 93.94% 2nd
First heart field 12 93.94% >5th
Second heart field 12 96.13% >5th
Valve development 19 93.83% 1st
Known CHD genes 21 93.60% 1st

Table 8.1: The seven CHD specific gene sets used in our CHD application. The sets
describes various biological processes that are related to heart development. They
have been manually built and are manually maintained by Bernard Thienpont.
Their sizes range from 11 to 21, and the estimate of the performance (AUC) of
the leave-one-out cross-validation (LOOCV) is always higher than 90%. The rank
of TAB2 for which experimental validation has been conducted are displayed (the
overall ranking is 1st).

a function of TAB2 in the developing human heart. The role of TAB2 in CHDs was
further confirmed by analyzing the DNA sequence of TAB2 in 402 patients with
outflow tract defects leading to the discovery of two novel heterozygous missense
mutations and by showing that it is disrupted by a balanced translocation in three
family members with a CHD. Altogether, these results provide strong evidence
that TAB2 has a major role in cardiac development and thus that our candidate
gene prioritization method can be tuned and integrated into wet lab workflows to
efficiently discover novel disease genes.

8.3.2 Eye disorders

The results presented here have been obtained through a close collaboration with
the laboratory for Cytogenetics and Genome Research of the Department of Human
Genetics, headed by Prof. Joris Vermeesch. More precisely, the adaptation of our
prioritization strategy for eye related disorders was realized with Irina Balikova.

The aim of this research is to identify novel genes that contribute to different
eye related disorders such as Usher syndromes or cataracts. The poor number of
available patients does not permit the definition of one or several candidate regions
such as described previously for CHD. The strategy is therefore to prioritize the
human genome and to retain the top several hundreds candidate genes that will
be further tested by sequencing on distinct patient cohorts. For a prioritization
adapted to the current problem, the integration of novel data sources (SAGE/EST
eye data) as well as the development of alternative strategies (filtering step and/or
tree-based prioritization) have been investigated and the main results are reported
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Gene set Number of genes AUC
Cilia 19 97.8%
Usher 8 100%
Cilia and usher 27 98.1%
Mac 27 97.7%
Rho cycle 12 90.2%
Connexins 3 100%
Crystallins 7 100%

Table 8.2: The seven eye disorders gene sets used in our eye disorder application.
The sets describes various biological processes that are related to eye development
as well as known eye diseases. They have been manually built by an expert, Irina
Balikova. Their sizes range from three to 27, and the estimate of the performance
(AUC) of the leave-one-out cross-validation (LOOCV) is always higher than 90%.
The smallest gene set was excluded from further prioritization to avoid spurious
results based on a too small training set. An AUC of 100% (perfect validation) is
observed for three of the sets that are very homogeneous and that indeed represent
one very specific process or even one single protein complex.

below.

One important feature in this application is that the candidate selection has to be
optimal so that a minimum of genes selected via prioritization are false positive
genes, that is genes that are not interesting at all regarding eye disorders. One way
to control this is to add expression data to make sure that the selected genes are
expressed in the eye or in some subpart of teh eye (e.g., lens, retina, cornea, iris,
optic nerve). One possibility is the large EyeSage library, from NEIBank and built
by Rickman et al. [202, 259], that contains tag counts for 51476 distinct tags and
for 47 tissues (8 eye related tissues and 39 other tissues). These tags correspond to
12097 genes covering 53% of the protein coding genome. In addition, NEIBank
also proposes tissue specific SAGE/EST libraries among which three measure the
expression on eye tissue for more than 10000 genes.

This expression data can be used in two different ways. First option, a filter to pre-
or post-process the data can be built in order to strictly select the genes expressed
in the human eye, ruling out the false positive genes selected by Endeavour but
that are apparently not active in the eye. This approach is similar to the ab
initio methods described in chapter 1. The main advantage of this method is the
reduction of the number of candidate from over 22000 to around 12000. However,
this is also the main disadvantage as the SAGE libraries are incomplete and a strict
filtering approach might also exclude true positive genes. Second option, the data
can be integrated within Endeavour as an extra data source similarly to what has
been done for CHD. This method has the advantage of being more flexible since
the SAGE data influences the results as the other data sources do but is unable
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Figure 8.2: Expression profiles of eye disease genes.The expression profile are
derived from the SAGE data of NEIBank. The two gene sets related to eye
disorders are ‘Cilia and usher’ together (left) and ‘Rho cycle’ (right). On the x-axis,
the 8 first tissues are eye tissues and are followed by 29 general tissues (from the
whole body). It can be observed that for the ‘Cilia and usher’ set, no pattern
can easily be distinguished meaning that these genes are not exclusively expressed
in the eye. At contrary, a clear pattern can be distinguished for the ‘Rho cycle’
for which most of the genes are only poorly expressed in the non eye tissues. Of
interest, in both cases, it can be observed that some known genes are shown not to
be expressed in the SAGE data illustrating its incompleteness.

to make a decision by itself. It is less conservative, one gene without known eye
expression can still be considered as a good candidate with strong evidence from
the other data sources. For this second option, two data representation schemes
are possible depending on what are exactly the target genes. If the target genes
are the genes that are specifically expressed in the eye (and maybe marginally
expressed elsewhere), then it is better to use the ratio of the expression in the eye
over the expression in the rest of the body. This ratio is very high for tissue specific
genes and can be used to rule out the genes that are ubiquitously expressed and
that are therefore unlikely to be the cause of non syndromic eye related disorders.
Second possibility, the target genes are expressed in the eyes but are not necessarily
eye specific, in which case the calculation of the ratio does not make sense. It is
then preferable to compute profile similarity to known disease genes on the whole
expression profiles that include both eye tissues and other tissues.

In addition, and similarly to the CHD applications, specific training sets have been
built and benchmarked. For eye disorders, the seven gene sets cover various eye
diseases (usher syndromes, eye cataracts) and key developmental pathways (ciliary
muscle development, rho cycle) and are summarized in table 8.2. The benchmark
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shows that they are all extremely homogeneous (AUC > 90%) meaning that reliable
predictions can be derived from their use in prioritization.

The SAGE data sources and the representation schemes are then examined. The
implementation of a pre- or post-processing filter does not represent the best
solution since it is excluding more than 20% of the know disease genes (see example
in figure 8.2). This is likely due to the incompleteness of the SAGE data and
confirms that a filter is too conservative. A benchmark analysis reveals that except
for one training set (rho cycle), the SAGE data can not be used to discriminate
the known eye disease genes from the genome, an example is given in figure 8.2.
Still, the estimated performance indicates that the SAGE data can be used in
conjunction with the existing data sources to strengthen the results. The results
tend to indicate that none of the two representations performs better than the
other, reflecting the fact that tissue specificity can not always be assumed: e.g.,
usher syndromes main phenotypes are blindness and deafness, which means that
expression in the ear system is also expected.

Based on these results, a full genome prioritization was realized for three of the
training sets (‘cilia and usher’, ‘mac’, and ‘rho cycle’) using the best performing
data sources (including the SAGE data source). These three prioritizations will
then be used to determine the candidate genes to be spotted on the sequencing
array. Eventually, this array will then be used to screen patients with eye related
disorders in order to identify novel disease genes.

8.3.3 CHD wiki

These applications have shown that the scientific community could benefit from
prioritization tools. However, and as defined in the introductory chapter, bringing
these tools to the researchers themselves is still a challenging task. Chapter 4 of this
thesis describes the development of a web based client as an alternative to the Java
client. This intuitive and user-friendly web based interface represents a first possible
answer to that challenge. The present section describes an alternative strategy
in which a gene prioritization module is integrated into a wiki based knowledge
database to ease the prediction of novel disease gene based on the existing knowledge.
This work was achieved in close collaboration with Roland Barriot, Jeroen Breckpot,
Bernard Thienpont, and Sylvain Brohée, and was published in Genome Medicine
[28].

In the recent years, many computational strategies have been developed,
benchmarked and experimentally validated. However, only few convincing
applications with a clear impact on biology have been demonstrated [12], and
how to efficiently integrate them into the daily practice of molecular biologists,
geneticists, and clinicians remains an open question. There is clearly a gap between
such advanced (and somewhat complex) analysis strategies and actual wet lab
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work. A similar gap can be observed between those strategies and clinical genetics
where increasingly complex molecular data needs to be interpreted towards the
diagnosis of constitutional disorders. Beside the complexity, a lack of fine-tuning to
the needs of a specific biological research area can handicap a strategy. To bridge
this gap and bring integrative analysis strategies into practice, several avenues
can be investigated, including workflow managements systems such as Taverna
[107], or web based toolboxes such as Galaxy [35, 228]. We introduce another
possibility by building on the recent advances in Wiki-based technologies to develop
a collaborative knowledge base that integrates a gene prioritization and network
browsing portal. We apply this strategy to congenital heart defects and build
CHDWiki that aims at mapping genes and genomic regions, and at untangling
their relations with corresponding human phenotypes.

The tight integration of our gene prioritization strategy with a CHD knowledge base
and its user friendly interface alleviate the problems mentioned above. Practically,
the CHDWiki interface is again a simplification of the web client interface that
consists of 4 steps: species selection, training gene definition, data source selection,
and finally candidate gene definition. CHDWiki is a knowledge base for human
congenital heart defects and therefore the species selection step is not necessary.
Furthermore, seven CHD related gene sets that represent different aspects of the
heart development were built by an expert in the field (Bernard Thienpont, see
Table 8.1). This means that, for training, the user only has to select which of
these gene sets is suitable, instead of manually inputing the individual genes.
These seven gene sets have furthermore been cross-validated in order to assess
their homogeneity and to estimate which data sources should be used to perform
meaningful prioritizations. This means that, for CHDWiki, the optimal data
sources are selected and the user does not need to focus on that. Last step, the user
still needs to define the candidate genes to prioritize. Altogether this means that
the CHD wiki interface is reduced to two steps: training set selection and candidate
gene definition, with the training set selection being much easier than the training
gene selection. Last detail, the results of the full genome prioritizations for these
seven training sets is calculated beforehand and only the scores for the candidate
genes are retrieved on the fly, making the whole prioritization process a lot faster.

Recently, Endeavour was also included in CNV-WebStore, an online platform to
streamline the processing and downstream interpretation of microarray data in a
clinical context [241]. This platform includes computational tools to preprocess,
analyze, visualize and interpret the data. For gene prioritization purposes,
Endeavour can be used to prioritize the genes that are found in a CNV associated to
a phenotype for instance. This shows that Endeavour, and in the future MerKator,
can be integrated efficiently into more complex workflows that integrate different
computational tools, and that aim at solving genetics problems.
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Data set Sensitivity
at 1% at 10% at 30%

Control ∼ 1% 10% 30%
OMIM 46% 83% 95%
MetaCore diseases 33% 75% 92%
GAD 33% 77% 93%
MetaCore pathways 64% 94% 98%
Ingenuity 69% 94% 98%
Gene Ontology 56% 89% 97%
Literature 9% 53% 91%
Literaturea 29% 71% 100%
Drosophila validation 17% 83% 100%

Table 8.3: The sensitivity (TPR) is indicated for different benchmark datasets and
for different threshold values (FPR). The results are presented for three disease
benchmark datasets (OMIM, MetaCore, GAD - chapter 7), for three pathway
benchmark datasets (MetaCore, Ingenuity, Gene Ontology - chapter 7), for one
predictive analysis (Literature - chapter 4), and for the drosophila validation
described in the present chapter. a Literature analysis with the GWAS study
excluded. Results indicate that a threshold of 30% is in most cases enough to
retain more than 90% of the positive genes.

8.3.4 Optimal threshold

When a prioritization approach is applied to a real biological question, it is necessary
to identify the optimal threshold that will be used to determine the genes to be
assayed from the complete ranking of the candidate set. The optimal threshold
depends on the cost associated to a false positive and to a false negative. In
our setup, the number of positive genes is usually very small (one or a few), and
therefore the cost of a false negative is usually very high (e.g., not finding the
unique positive gene is costless). At the contrary, the cost of a false positive is
usually reasonable (cost of the associated assay) and is furthermore inherent to the
unbalance between the positive genes and the negative genes.

The pilot study from the paper described in that chapter indicate that a hard
threshold of 30% can be used as a conservative estimate to retain 100% of the
positive genes, while still reducing the cost by a factor 3.3. The application of that
threshold to the entire chromosomes 2 and 3 revealed that 30% is a conservative
estimate since all 12 genes were ranked in the top 15% (and 10 of the 12 were
ranked in the top 10%). These results are in agreement with the results of the
cross-validation and the predictive studies as shown in table 8.3. Altogether, these
results indicate that, although it is difficult to determine a universal threshold,
there is evidence that 30% can reasonably be used in practice.
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Conclusion

This thesis focuses on the gene prioritization problem, that can be defined as the
identification of the most promising candidate genes, among a potentially large list
of genes, with respect to a biological process of interest (e.g., a genetic disease).
This thesis introduces two gene prioritization methods, and presents the associated
benchmark and validation studies.

We have first developed and implemented a gene prioritization method based on
the Order Statistics (OS). It relies on the ‘guilt-by-association’ concept that is the
more promising candidate genes are in fact the ones that are similar to the already
identified disease genes. The gene similarity is estimated using multiple genomic
data sources, and a consensus is found by adopting a data fusion strategy. The
underlying algorithm consists of three steps. In the first step, the genes already
known to be involved in the process of interest are used to create a set of models of
that process. One model is built per genomic data source used. In the second step,
the candidate genes are scored and ranked accordingly per model. The best scores
are assigned to the genes that are similar to the model (and therefore indirectly
similar to the known genes). In the third step, the rankings from multiple models
are fused using the Order Statistics (OS) to obtain a single final ranking. The
Order Statistics allow for an efficient handling of the missing data point, which is
crucial in our setup. For a single gene, only the positions obtained for data sources
for which the gene has data are fused, therefore avoiding a bias towards the well
studied genes (that don’t have missing data as compared to poorly characterized
genes that have missing data). The algorithm is ranking higher, in the final ranking,
the candidate genes that are likely to also be involved in the biological process
under study.

Our second approach relies on kernel based methods. It uses the same inputs as the
OS based method (known disease genes and candidate genes) and also produces
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a final ranking of the candidate genes. The core is however different since it is a
1-SVM algorithm that uses kernel matrices that are built from the original data
matrices. The use of a kernel based method makes the whole framework more
elegant (i.e., easier to extend and to update) and makes the implementation of
other kernel based methods straightforward. In addition, it is possible to assign
different weights to each data source to reflect its ability to accurately classify
the genes. These two prioritization methods were then extended first to support
multiple species (e.g., rat, mouse, fly, worm, zebrafish), and second to support
cross-species prioritization. In that setup, the methods can prioritize candidate
genes from one species using data from many species. This allows the use of model
organism specific data to enhance human disease gene discovery.

These methods have been benchmarked through the use of a leave-one-out cross-
validation procedure. The leave-one-out procedure mimics the discovery of a single
novel disease gene at the time and is therefore conceptually close to the real
application setup. The results show that the two methods are effective since we
obtain high AUC values (usually greater than 90%). These results stand for different
variations of the benchmark procedure, as well as for distinct benchmark datasets
that cover both genetic diseases and bio-molecular pathways. The performances
for the two prioritization approaches are very similar, although the kernel based
algorithm seems to outperform the Order Statistics based algorithm in general.
However, it is known the AUC of the cross-validation procedure is likely an over-
estimation of the performance for real biological applications; there is therefore the
need for different validations.

The OS method was used in simulated predictive studies in order to assess its ability
to found back the recently reported disease-gene associations from the literature
using genomic data prior to the discovery. The results indicate that the performance
for predictive studies is indeed lower than for a cross-validation setup. However,
our method can still efficiently rank the novel disease gene (within the top 30%
more than 90% of the cases). The OS method was furthermore successfully applied
to real biological problems, which proved its usefulness. Through collaboration,
it was used to identify a novel DiGeorge syndrome candidate gene YPEL1, to
identify 12 novel atonal interactors, and to identify a novel CHD gene TAB2. It
was furthermore used in 20 external studies to investigate different genetic disorders
and has led to important discoveries. Our methods were implemented into publicly
available softwares, termed Endeavour (for the Order Statistics based method),
and MerKator (for the kernel based method). These tools have been used by other
teams worldwide and led to various biological discoveries in human genetics as
described above.

There are still several avenues that can be explored in order to enhance the quality
of our gene prioritization approaches. At the conceptual level, efforts should be
made toward an automatic building of the training set, and through the use of
alternative training information. At the algorithmic level, different kernel / network
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based approaches can be investigated. At the data level, a method that would
prioritize not only genes but also other bio entities such as non coding RNAs, micro
RNAs, peptides, chemicals, would represent a very interesting tool for researchers
and scientists involved in drug development.

As shown by some the external validations, the integration within sequencing based
workflows is also a very interesting and efficient opportunity. Another possibility is
the development of a platform for gene prioritization, clustering and classification.
In addition, and following our recent experience, the licensing of these tools can be
considered. These issues are further discussed in the sections below.

9.1 Conceptual improvements

9.1.1 Training set

The methods we have developed can be classified as novelty detection methods,
they differ from classification methods in the absence of a negative training set.
A positive training set is however required, its building is a critical step since the
quality of the prioritization directly correlates with its quality. In our case, the
positive training set simply consists of genes known to be involved in the biological
process of interest. There are however several shortcomings. First, assembling a
set of genes is a tedious process for a non expert. Several databases that collect
disease-gene associations exist but publicly available solutions such as OMIM
and GAD are rather incomplete and the building of a training set can not be
based only on the consultation of these resources. In addition, literature search
engines such as PubMed and GoPubMed have to be used manually to define a
more complete training set. In addition, and when available, commercial solutions
such as Ingenuity Pathway Analysis (IPA), or Human Gene Mutation Database
(HGMD) have to be manually accessed and browsed to enrich these sets.

The development of strategies to help or automatize the construction of the training
set is likely to make the overall approach more user-friendly, and therefore more
accessible to biologists. It is often easier for the user to define the biological
process he is interested in via a list of keywords or even simply its name. A first
and easy solution was implemented within Endeavour and consists in retrieving
automatically the disease genes from OMIM, but because of its incompleteness and
its free-text structure, OMIM can not guarantee the retrieval of all known disease
genes. A second option is to use keywords directly to train the algorithm, this
technique is mostly used by candidate gene prioritization tools that rely only on
text-mining data such as Bitola, PGMapper and GeneProspector. In this setup,
the keywords are linked to publications, as opposed to a gene centric approach in
which publications are linked to genes. This is off course less suited for other type
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of data such as annotation and interaction data for which gene centric approaches
have a clear advantage.

These two options can be combined to maximize the quality of the gene set
retrieved. Starting from a single keyword, for instance a genomic disease common
name, a more complete list of keyword can be obtained through text-mining or
through the use of a pre-computed dictionary. A second round of text mining
with the enriched list of keywords allows the retrieval of the whole literature that
describes the biological process of interest, possibly several hundreds of publications.
Interestingly, these documents will also contain the genes that are key for this
biological process. In addition, knowledge bases and databases can also be queried
to polish the results of the text-mining method. This workflow would automate the
creation of the training set, starting from a single keyword and make the process a
lot easier for the end user.

9.1.2 Biological entity prioritization

Our prioritization platform is gene centric, meaning that only genes can be
prioritized. The system is however using mRNA and protein data that is mapped
back to genes, but the data structure is still centered around genes. Moreover,
only the protein coding genes can efficiently be prioritized due to a lack of data
for the non protein coding genes. However, the cellular mechanisms can not be
restricted to the triplet gene-mRNA-protein. The other key players are all the
non coding genes and mRNA (e.g., miRNAs), the peptides that are very small
amino-acid chains, and various chemical compounds that are also present in the
human cells (e.g., drugs). These key players have been ignored so far, but it might
be worthwhile including them in the future. The discovery of the importance of
miRNAs [182, 201] and of their regulatory function [32, 109, 122, 129] is still recent,
but already a lot of data has been collected about them such as where the miRNA
genes are located, when they are expressed and which mRNAs they target, and
for which purposes. Furthermore, computational tools have been developed to
enrich this knowledge with predictions: detect miRNA genes using a cross-species
approach or predicting which mRNAs are targeted using sequence similarities.
Globally, this represents enough data for our gene prioritization to work accurately
on miRNAs. Other bio-entities such as chemical compounds are also of primary
interest for example for pharmaceutical and biotech companies that are working
in chemistry, chemoinformatics and drug development. These companies have
developed or co-developed large databases of chemical compounds and gather data
about their function, their effect within cells, and the other cellular players they
are interacting with. Once again, this represents a subsequent amount of data that
can be used to prioritize chemical compounds. The rationale behind this update
is that it is often the case that a researcher is investigating a biological process
without knowing exactly beforehand which cellular player he/she is looking for.
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9.1.3 Feature selection

Our current framework makes use of kernel based methods to perform gene
prioritization. The kernels are calculated beforehand for all the data sources
and loaded into memory at run time. This approach reveals to be useful for human
and the other species used in that thesis, but can be a limiting factor for species
with a very large number of genes (e.g., around 33000 for rice). Loading such large
kernels at run time is however very costly when only part of it is needed to solve
the prioritization problem. Another option is to calculate the similarities (e.g.,
using the dot product between the vectors) on the fly to save memory. A clear
advantage of this method is that it is possible to include feature selection into the
workflow.

In most classification problems, many types of features are first extracted and
then fused. Although very effective for classification, kernel based fusion methods
do not reduce data dimensionality. There exists techniques to include feature
selection within a kernel based framework [124, 225, 13, 147, 173] and they can be
investigated in the context of gene prioritization. This feature selection step can
be used to tune the kernel towards the problem under investigation, which would
not be possible if the kernel has to be computed beforehand.

9.1.4 Kernel fusion scheme

The present dissertation describes the use of Quadratically Constrained Quadratic
Program (QCQP) to optimize the weights attributed to each kernel for the fusion.
This program leads to very sparse solutions that are almost binary solutions, i.e.,
one or a few kernels are contributing a lot (high coefficients), while the majority of
the kernels are contributing very modestly (low coefficients). We have seen that
the main advantage of this approach is its robustness to noise. However, a sparse
solution might be suboptimal for real biological problems, for which the user wants
each data source to contribute to the problem. A first alternative strategy has been
developed, it consists in adding a lower boundary on the weights as an additional
constraint. This solution makes the whole approach more sensitive to noise without
really reducing the sparsity of the solution. Another alternative strategy, termed
L2-norm MKL, has been developed and is leading to non sparse solutions but the
main drawback is then that it is more sensitive to noise.

A future research topic can include the definition of alternative methods to this
problem. One possibility is to split the process in two steps, the first step would
then be a binary decision about whether the data source should be kept for the
second step (informative data source) or whether it should be discarded (noisy or
uninformative data source). The second step would consist in a regular optimization
between informative data sources, maybe using L2-norm MKL or other methods.
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A second option is the use of different methods for this optimization problem, if
the problem can be formulated correctly. The main goal is then to define a method
that can discard the uninformative data sources while distributing the weights to
avoid the “winner takes all” effect.

9.1.5 Improved statistics

A prioritization run results in a ranking of the candidate genes with the most
promising genes at the top. This ranking is provided with a p-value for every
candidate gene, this p-value estimates how likely it is to obtain these results
by chance alone. However, a problem is that they are candidate set dependent,
meaning that p-values tend to be smaller (i.e., more significant) when the size of
the candidate gene set increases. This is because the rank ratios are taken into
account for the calculation. While this is accounting for the fact that ranking
first out of 10 genes is not as good as ranking first out of 1000 genes, this also
means that virtually any genome wide prioritization results in highly significant
candidate genes whether or not the training was performed with meaningful or
randomly selected genes. It is thus difficult to distinguish spurious results from real
biologically sounding results. Several prioritization approaches that take this into
account have been developed and can be used to redefine our statistics calculation.
An example is the bayesian virtual pull-down method developed by Lage et al. that
is able to discriminate the cases for which no significant results can be obtained at
all despite the fact that one candidate gene is still ranked first [128]. One possibility
is the extension of our current order statistics approach to account for the number
of candidate genes. Currently the single parameter is the number of ranks ratios
combined, and based on its value, a gamma or a beta distribution with different
parameters are used to derive the final p-values. Another possibility is to use
randomization using the same candidate set to correct the p-values for its size,
this will however require more computing power since each randomization means
another prioritization.

9.2 Technical improvements

9.2.1 Simpler inputs

The inputs of our methods are a set of training genes, a set of candidate genes (the
while genome can be used if no region can be defined), and the data sources to use
in the prioritization process. The selection of the data sources not only requires
knowledge about the content of these data sources but also knowledge about which
ones should be used in order to obtain meaningful results. This is something that
is difficult to estimate beforehand, however one can determine the optimal set of
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data sources through leave-one-out cross-validation. Those would be the ones for
which a good performance, i.e., AUC, is observed. The proposed strategy is that,
first, a cross-validation on the training set is run, second, the optimal set of data
sources is defined and, third, the regular prioritization takes place. In addition,
this cross-validation would also allow the detection of outliers within the training
set, these would be genes that do not seem to belong to the same biological process
and therefore are only adding noise to the predictions. Of interest, the removal
of these outliers and the automatic selection of the data sources to use is likely
to have a positive impact on the global performance. To conclude, in the future,
the user would be able to input only the two gene sets without having to consider
which genomic data source should be used. An additional parameter would still be
the use of the cross-species version in which data from model organism is used in
conjunction with human data.

9.2.2 Detailed results

The end user of computational tools such as Endeavour are bioinformaticians,
biologists and geneticist, and we aim at integrating our method within their
workflows. This means that not only it should be easy to use and to integrate
but also that it requires simple inputs and provide detailed output. The detailed
outputs is the description of which genes are considered as promising and, more
importantly, why. It is indeed crucial for the user to understand and interpret
the results returned to him/her. With the current version of Endeavour, only
limited information is returned to the user: the global ranking of the candidate
genes, plus an additional ranking per data source used in the prioritization. These
additional rankings are already providing information about which data sources
are contributing to the overall ranking but this is not sufficient. What users would
like to see is information for each data source about why a gene is ranked that way:
what is the underlying genomic data, and what is linking that candidate to the
known genes used for training.

In the future, the Endeavour web based interface should be enhanced with new
modules that display such information to the user. One characteristic of our
kernel based algorithm is the uneasy interpretability of the results. Indeed, turning
genomic data into kernel matrices means that only the distance between the genes
are kept (and therefore their similarities), while the underlying genomic data is
lost. Furthermore, the use of the SVM algorithm means that it is not possible to
establish direct relationship between the candidate genes and the training genes.
So it means that alternative strategies will have to be developed. One possibility is
to use a network representation of both the training genes and the candidate genes,
so that relations can easily be identified. This network can then be enriched with
additional information stating which genomic data underlie these relations. This is
similar to what is done in String that combines multiple data sources together in



150 CONCLUSION

a network representation. The main difference is that, in our case, only human
data should be included in the network and no prediction should be made (String
includes prediction based on model organisms), furthermore, String mostly relies
on Text mining data, we would like to take more data sources into consideration.
This strategy has the advantage that the kernel and the network representations
are very close and that there exist methods to go from one to the other.

9.2.3 Extension

Several possibilities exist to extend our method. A first option is to add more
genomic data sources such as chemical data and phenotypic data. The inclusion
of more data sources, that are possibly not covered by current data sources can
strengthen the approach. For instance, the inclusion of miRNA specific data
would allow predictions based on miRNA based regulatory mechanisms that are
distinct from the mechanisms described by our TFBS database. It would also
worth to complete even further the description of the regulatory mechanisms by
including epigenetic data such as DNA methylation and chromatin remodeling. In
addition, the inclusion of more phenotypic data would probably be beneficial for the
prioritization of disease candidate genes, the use of chemical data is also very likely
to enhance the performance for disease studies since most of this data comes from
drug development research. Some data sources are very small and therefore can
not directly be used as such but need to be merged with other sources before. For
example, there exist many protein-protein interaction databases that are disease
specific (e.g., AlzGene [33]), or that focus on a subset of the PPIs (e.g., MIPS
focuses on physical interactions from the scientific literature). These datasets are
sometimes capturing a unique biological signal that is not covered by other more
generalist databases. The integration of small datasets into a larger global dataset
can be realized using known integration algorithms [246, 134] or by developing
novel integration schemes. As long as the data can be summarized into an existing
format (e.g., vector based, annotation based, network based), and transformed into
kernels, the integration should be easy to realize and should enrich the database
underlying Endeavour.

Another option is to include more organisms for which enough genomic data can
be gathered. Our goal is to combine together species that are closely related so
that prediction in one species can be made by using data from the other species.
Unicellular eukaryotic organisms, such as yeast, have been studied a lot because
the yeast cells are easy to grow and because the yeast genome was early sequenced
[52]. There is therefore a lot of data available including whole genome knockout
experiments that are almost unique for eukaryotes. However, yeast and human
are too far away in the phylogenetic tree, thus including yeast data is unlikely to
help a lot. Most of the model organisms have already been integrated, however,
primates and mammalian species also represent possible extensions (e.g., chimp).
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This solution is very attractive: the cost is relatively reasonable if we assume that
the same algorithms can be used. Then, data sources need to be collected only
once for the novel species, and the same update system can be reused to update
the data regularly. The gain can however be very significant, adding more species
allows researchers who are working with these species to prioritize candidate genes
but also allows human geneticists to get more accurate results though cross-species
transfer.

9.2.4 Several objectives, a single platform

In the recent years, our bioinformatics group has gained expertise in gene
prioritization, in gene clustering and in gene classification. However, most of
this work was performed by different people on different data and with different
aims, although the underlying methods are very similar (most of the time, kernel
based methods are used). In addition, most of methods implemented in this work
have not been turned into publicly available tools. One objective is to build a
common platform for gene prioritization, clustering and classification. The core of
this platform would be based on kernel methods that have proved to be useful for
this tasks [34, 270, 269, 58]. By gathering together different algorithms that can
perform different computational tasks on the same data, we can greatly enhance
the number of potential users and build a reference platform in computational
biology.

9.3 More applications

The application to real biological problems described in this thesis not only proved
that our approach conceptually sounds but also that its integration within wet-lab
workflows is doable and beneficial. One of the future objectives is to find novel
biological applications. To this end, we can rely on already existing scientific
collaborations with the following groups from K.U.Leuven:

1. Laboratory of Computational Biology, headed by Prof. Aerts

2. Laboratory for Cytogenetics and Genome Research, headed by Prof.
Vermeesch

3. Laboratory of Neurogenetics, headed by Prof. Hassan

4. Laboratory for Genetics of Human Development, headed by Prof. Devriendt

But of course, by making our method publicly available, and easily integrable,
we hope that other research teams will also use the tool and report discoveries.
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To ease that process, we have already described how Endeavour can be used in
conjunction with array CGH data [4, 232], or with a forward genetic screen [7].
This can further be extended with its inclusion into a sequencing based workflow.

9.3.1 A sequencing based workflow

The recent development of the new generation sequencing technology opens the
door for a new sequencing era. This faster technology available for a reduced cost
will soon allow the sequencing of hundreds of genomes in no time. A corollary is
that a massive amount of data will be generated, and that computational tools are
needed in order to analyze, and organize this data.

Beside the softwares needed to preprocess and analyze the raw data, prioritization
tools might still be needed to identify the most interesting SNPs hidden among
the data. One possibility to identify disease causing genes using new generation
sequencing technology is to sequence the genome of patients and to analyze the
SNPs that are observed. Preliminary studies have shown that thousands or even
millions of SNPs are identified as potentially linked to the disease under study
[146]. There is thus a need to prioritize them in order to find the most promising
SNPs that are likely to be associated to the disease. SNPs prioritization very much
resemble gene prioritization except that additional SNP specific information can be
used such as the change in protein structure that the SNPs are causing, or whether
or not it is within a known functional domain. Several SNP prioritization strategies
have been developed in parallel of the gene prioritization methods, but so far only
a limited number of these can prioritize both genes and SNPs (e.g., SNPs3D [273])
but are still performing the two in an independent manner. The proposed strategy
is to tunnel both methods to prioritize genes first and SNPs in a second place.

9.4 Long term objectives

This section describes a long term objective, the creation of a computational
platform dedicated to gene prioritization, clustering and classification based on our
existing prioritization tool Endeavour. By implementing the changes described in
this chapter, we aim at developing a product that we can license to pharmaceutical
and biotech companies and to genetics laboratories. Our two first licensing
opportunities have taught us that there is an interest in our product although
we are not yet responding exactly to the current market’s needs. The responses
furthermore indicate that the emerging market is not yet sufficiently mature to
support a full scale commercial activity. However, we expect the demand to increase
in the next five years so that our product will be commercially viable in the mid-
term. In addition to the licensing, we also want to contract the corresponding
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services such as software installation, user formation and counseling. The following
subsections describe our past licensing opportunities, and based on that, our
projected business plan and the IP situation. This could serve as a preliminary
draft to define a more complete business plan.

9.4.1 Licensing opportunities

Our group has experience in the exploitation of research since we already went twice
through the exercise of licensing our software Endeavour. The first licensee was a
major pharmaceutical company, Novartis (LRD license number 2008/1397, starts
on 20/10/2008, 3 months evaluation, 10k€). The agreement with Novartis stated
that they would use and evaluate the software within a period of three months that
could eventually be followed by a full license (one year renewable). The trial period
took place between October 2008 and February 2009 and unfortunately did not
lead to a full license agreement. They mention that the approach is scientifically
sounding and that the results of the validation were very interesting but also raised
a number of concerns that made us think that our product was not yet completely
ready. This showed that there is still a mismatch between what we can deliver and
what the market is willing to pay for.

CropDesign from BASF plant has also signed a license more recently (LRD license
number 2010/135, starts on 15/01/2010, 3 months evaluation, 10k€ support and
3k€ license fee). Similarly to the first case, the license includes a trial period of
three months needed to evaluate the software. A difference with our first experience
is that the license includes a contract that covers the services that we offer in
parallel. These services are the on site installation of the software, the formation
of the end users, and the consulting for the elaboration of the validation process.

9.4.2 Business plan

At this early stage, several business models are under study. The first one is
the creation of a bioinformatics spin-off that will license the product, and the
associated services. A more ambitious idea is the inclusion of our product into a
more high level workflow and therefore the creation of a biotech spin-off. In any
case, the creation of a spin-off should only be investigated when a precise market
has been defined and when the product is no longer in development. This is why a
second option have been defined and, in fact, represents what has been done so far:
licensing through the university, via the LRD department. With this option, the
services can also be contracted so that there are no differences with the first option
from the licensing/contracting point of view. This second option has the advantage
of reducing the risk linked to the spin-off creation. The last option also shares this
advantage, it is a collaboration with an industrial partner through an O&O project
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to co-develop and co-license the product together. This option is similar to the
second one, except that the partner is part of the industry and potentially already
owns a product and knows its associated market. All these options are considered
now that the project is still in a early phase but future will tell us which one is
more appropriate.

9.4.3 Intellectual property

Our main objective is the development of a computational platform, that is a
software suite. Patenting softwares is not highly effective for several reasons:

1. The copyright that applies for the code underlying the software already
represents an efficient protection.

2. These patents can often be circumvented through slight modifications of the
embodiment.

3. Most of the companies that develop softwares have adopted the speed to
market paradigm, in order to cut lead time and to stay innovative. In this
model, patenting the software is not always a suitable strategy.

As for the IP, there exist commercially available computational tools that represent
potential competitors. A first category contains the microarray analysis tools
(e.g., GeneSpring, ArrayAssist®, ArrayStar, Mapix, Qlucore Omics Explorer, Axon
GenePix, Spotfire® and Pathway Architect™). These tools are similar to our
platform because they allow users to analyze large list of genes. There are however
several differences:

1. They are not making use of various genomic data and usually rely on
expression data alone (or in combination with phenotypic data). Our approach
is to combine many data sources, we also include, for instance, literature
data, functional annotations, sequences and regulatory information.

2. We want to use advanced machine learning that have been developed recently
in academia and that have not yet been implemented in microarray analysis
softwares.

3. Microarray analysis is often reduced to clustering/classification of the
genes/conditions. In addition, we propose prioritization the candidate genes
with respect to one biological process of interest.

A second category contains the biological knowledge bases such as Ingenuity
Pathways Analysis and GeneGo. These databases are very useful since they contain
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high quality genomic data which is in most of the cases manually curated by
experts in the field. Their main drawback is that they represent passive knowledge
bases. We believe that our approach will add significant value to this field since
the knowledge base is in our case a basis to infer new associations and to make
predictions.

To conclude, this thesis describes the development and the validation of a gene
prioritization method, but many different avenues still have to be explored in order
to enhance its ability and applicability, to prove its usefulness, and eventually to
commercialize it.
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Algorithm behind Endeavour

This appendix presents in details the Endeavour algorithm. It complements figure
1.4. The algorithm comprises three steps: training, scoring, and fusion.

A.1 Training

For the training step, the aim is to modelize the process of interest, more precisely
through the genes that are known to play a role in this process. Several data type
are defined and each one has its own modeling method.

A.1.1 Annotation data

For annotation data, the model is the set of features (i.e., annotation terms) that
are over-represented in the training set when compared to the genome. The over-
representation is calculated using the binomial distribution as an approximation of
the quadratic distribution. More precisely, the model contains the over-represented
terms together with p-values that correspond to the probability to observe such
over-representation by chance alone. The p-values are corrected for multiple testing
with the Bonferroni correction.

A.1.2 Vector based data

For vector based data, the vectors of the training genes are retrieved and an
average vector is calculated. This vector represents the model. An exception is
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made for expression data, for which calculating an average vector is not leading to
a good model because in most of the cases, the training genes are not perfectly
co-expressed. Therefore, for expression data, the model is simply the collection of
the expression profiles of the training genes.

A.1.3 Interaction data

For interaction data, the training genes and their interacting partners are collected
from the global PPI network. This subnetwork represents then the model.

A.1.4 Sequence data

For sequence data, the sequence similarities between all genes pairwise is calculated
beforehand. The model consists in extracting from this huge matrix the submatrix
that contains the hits between the training genes and any other gene.

A.1.5 Precomputed data

There is no need to train for precomputed data.

A.1.6 Special cases

For literature data, the text mining procedure is performed beforehand to connect
each gene with a number of keywords. Although, it is a bit similar to the annotation
data sources, there are differences. The main one is that the gene-term associations
are not binary but are provided with a score (TFIDF) that represents the quality
of the over-representation of the keyword in the publications linked to the genes
when compared to background publications. So, the vector based modeling method
is used, that is an average vector is created.

A.2 Scoring

The scoring step consists in assigning, to each candidate gene, a score that reflects
its similarity to the model built in the first step. The candidate genes are scored
independently of each other and then ranked according to their scores so that the
most promising genes are always on top.
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A.2.1 Annotation data

For annotation data, the p-values of the candidate gene annotation terms that
are also present in the model are combined using Fisher’s omnibus. Using χ2, a
global p-value is derived from the Fisher’s omnibus score. This p-value is used as a
score for the candidate gene. A small p-value means that the candidate gene is
associated with many of the terms that are in the model, and therefore that the
candidate gene is a promising gene.

A.2.2 Vector based data

For vector based data, a very simple approach is used: the cosine of the angle or
the Pearson correlation between the candidate gene profile and the model profile
is calculated and used as a score for the candidate. A small cosine or a high
correlation means that the candidate gene profile is highly similar to the model
and therefore that the candidate gene is a promising gene. An exception is made
for expression data, for which the model contains as many profiles as they are
training genes. In this case, the candidate gene profile is compared to each training
profile (using again the cosine of the angle or the Pearson correlation), then only
the best 50% scores as kept (e.g., for six training profiles, only the best three
cosines are kept for each candidate gene). These scores are then combined simply
by averaging them to obtain the final score. A small final score means that the
candidate gene profile is similar to half of the training profiles, meaning that it is
indeed an interesting candidate gene.

A.2.3 Interaction data

For interaction data, the candidate gene and its interacting partners in the global
PPI network are retrieved. This subnetwork is then compare with the model
subnetwork. In particular, the overlap between the two is considered and the score
is the size of this overlapping region divided by the size of the candidate gene
subnetwork (to correct for genes that have many interacting partners). A high
score means that most of the candidate gene subnetwork elements are also found in
the model subnetwork and therefore that the candidate gene is a promising gene.

A.2.4 Sequence data

For sequence based data, the sequence alignment scores (from Blast) between the
training genes and the candidate genes are retrieved. For each candidate, only the
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best similarity is kept as the final score. So the most interesting candidate genes
are the ones that have high sequence similarity with one of the training gene.

A.2.5 Precomputed data

For precomputed data, the score has already been computed and can directly be
retrieved to rank the candidate genes. Notice that the training genes have no
influence on these scores (as opposed to sequence data for instance).

A.3 Data fusion

The data fusion process is performed using the Order Statistics (OS). For each
candidate gene, the ranks obtained are transformed into rank ratios by dividing
the rank with the number of genes ranked for this data source. Due to the
missing values, the number of genes ranked varies among the data sources, and by
calculating the rank ratios, we take this into account. The rank ratios are then
sorted from the smallest to the largest and then combined into a single value using
the OS. An alternative formula is used to fasten the calculation, defined in Aerts et
al. [4]. St this stage, each candidate gene is associated with a score but these scores
can not be compared directly they are not all derived from the same number of rank
ratios (again due to the missing values). The next step is to derive p-values from
these scores by using Beta and Gamma distributions whose parameters depend
on the number of rank ratios. The parameters have been estimated beforehand
by looking at the distributions of the scores of thousands of prioritizations. For
a single candidate gene, a final p-value can be derived from the rank ratios by
estimating the probability to obtain these rank ratios by chance alone (using the
Beta/Gamma distribution). The final ranking is made according to these p-values.



Appendix B

Lists of candidate genes

Candidate genes
Rab18 Rab5a Rab22a Kras Bet1
Arf5 Stx7 Pacsin2 Rhog Sec24c
Rab4b Vamp8 Stx12 Akt2 Dnm2
Vamp3 Rab14 Golga3 Rab3d Vti1b
Cdc42 Rab6 Npepl1 Dbnl Snapap
Arf4 Sybl1 Scfd1 Rab10
Rab3a Snap29 Stx6 Rab6b
Rab1 Vps45 Rab5c Eea1
Rab2 Rab8a Dock1 Ykt6

Table B.1: The 41 candidate genes obtained through gene prioritization by Adachi
et al. who studied the adipocyte mediated energy metabolism [1].

Candidate genes
ABCC9 GRIA4 KCNJ3 KCNK6 NSF
ATP1A2 GRIK2 KCNJ5 KCNN2 PRKCABP
ATP1A4 GRIK4 KCNJ6 KCNN4 PRKCG
ATP1B2 GRIN1 KCNJ8 KCNV2 PSD95
GIRK3 GSR KCNK16 KCTD13 RIPK1
GLUR6 KCNJ10 KCNK17 KCTD17 SLC24A3
GRIA2 KCNJ16 KCNK5 KCTD3

Table B.2: The 34 candidate genes obtained through gene prioritization by Poot et
al. who identify recurrent Copy Number Changes (CNCs) in mentally retarded
children [191].
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Candidate genes
NPY1R CTSO ESR1 SCARB1 PPGB
NPY2R GLRB ENPP1 TCF1 HNF4A
NPY5R TLR2 FLI1 NCOR2 PTGIS
CPE GRM1 KCNJ5 GNAS
FGB OPRM1 ROBO4 LAMA5
FGG LATS1 AACS PCK1

Table B.3: The 27 candidate genes obtained through gene prioritization by Elbers
et al. who study type 2 diabetes and obesity [73].

Candidate genes
COL1A1 KRT10 SEMA6A NDRG3 HCRT
LBP FKBP10 EPB41L1 GHRH KRT14
CCR7 ATP6V0A1 NNAT SCAND1 KRT35
HSD17B4 IGFBP4 CTNNBL1 KRT16 NAGLU
KRT13 KRT17 TGIF2 ACLY ARNTL2
KRT15 FMR1 RBL1 KCNH4 MED21
KRT19 USP9X SLA2 CNTNAP1

Table B.4: The 34 candidate genes obtained through gene prioritization by Liu et
al. who propose new candidate for areal BMD (aBMD) and areal bone size (ABS)
that are both risk factors for osteoporosis [139].
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Stümpflen, and H Werner Mewes. SIMAP: the similarity matrix of proteins.
Nucleic Acids Research, 34(Database issue):D252–256, January 2006. PMID:
16381858.

[199] Thomas Rattei, Patrick Tischler, Roland Arnold, Franz Hamberger, Jörg
Krebs, Jan Krumsiek, Benedikt Wachinger, Volker Stümpflen, and Werner
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