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Voorwoord 

Gezegend met het genetisch materiaal van een sociaal agoge en een 

economist, besloot ik al op jonge leeftijd om tegen de wetten van de 

klassieke genetica in te gaan en voor een carrière als wetenschapper te 

kiezen. Deze ietwat eigenzinnige keuze, gezien mijn genetische mix, heeft 

blijkbaar toch opgebracht en nu ik op het punt sta om een belangrijke 

mijlpaal in deze nog prille wetenschappelijke carrière te behalen, immers 

een doctoraat, is het hoog tijd om een hele resem mensen te bedanken 

voor hun steun en bijdrage in deze verwezenlijking.  

De persoon die zonder twijfel het meest heeft bijgedragen tot dit 

boekje is Kathleen Marchal. Kathleen, enorm bedankt om mij de kans te 

geven om niet alleen aan dit doctoraat te kunnen beginnen, maar ook om 

het tot een succesvol einde te brengen. Al was ik niet altijd overtuigd van 

mijn eigen werk je zag er altijd potentieel in en wist me steeds te 

overtuigen door te gaan op mijn (of ook soms jou) elan. Niet alleen was 

je een goede mentor maar ook naast het werk zorgde je voor de nodige 

ontspanning en je was altijd aangenaam gezelschap om mee op congres 

te gaan. 

Verder wens ik ook mijn co-promotor Prof. Bart De Moor en mijn 

assessoren Prof. Jos Vanderleyden en Prof. Iven Van Mechelen te 

bedanken voor hun opvolging van mijn doctoraatswerk. 

I would also like to thank the members of my Examination 

Committee: Prof. Jos Vanderleyden, Dr. Jan Ramon, Dr. Tom Michoel 

and Dr. Kenneth McDowall. Thanks for your valuable comments and 

suggestions, which significantly improved my PhD thesis. Special thanks 

to Dr. Kenneth McDowall for crossing the Channel in order to attend 

my defense! 
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 Een bioinformaticus wordt vaak geacht een beetje een manusje van 

alles te zijn: zowel de biologie, de wiskunde en statistiek als 

computertechnische kunde dient zijn/haar deel te zijn. Het is echter 

onmogelijk om specialist te zijn op al deze uiteenlopende vlakken. 

Gelukkig heb ik tijdens dit doctoraat het genoegen gehad om met 

verscheidene mensen samen te werken die elk heel kundig zijn in hun 

eigen domein. Initieel heeft Thomas Dhollander mij ingewijd in het 

domein van de (query-gebaseerde) biclustering. Geen gemakkelijke taak 

gezien mijn bijna onbestaande kennis van genexpressiedata, clustering en 

bayesiaanse statistiek. Op het vlak van netwerkinferentie algoritmen heb 

ik dan weer enorm veel opgestoken van Tom Michoel en Anagha Joshi. 

Bedankt Tom om me toen onder jullie vleugels te nemen. Die periode 

dat ik met jullie heb samengewerkt heeft in grote mate mijn interesse en 

invulling van de rest van mijn doctoraat bepaald. Verder ook veel dank 

aan Kim Hermans, Sigrid De Keersmaecker en Jos Vanderleyden om mij 

in te wijden in de biologie achter de Salmonella biofilmen. Kim, nog eens 

bedankt voor het kritisch nalezen van mijn Salmonella schrijfselen. 

De vele collega’s die zowel op ESAT als op CMPG de revue 

passeerden zorgden telkens opnieuw voor een aangename werksfeer. 

Karen, bedankt om me de eerste maanden in ESAT de weg te tonen en 

voor de leuke en vruchtbare samenwerkingen. Valerie, het leven is niet 

mals voor je geweest, maar ik hoop van ganser harte dat ook jij 

binnenkort je doctoraat mag afleggen en dat het leven je daarna mag 

toelachen want niemand verdient dit meer dan jij. Bedankt om naast een 

goede collega ook een goede vriendin te zijn. Thanks Carolina for being 

such a considerate colleague and friend. It’s a pity we never really 

collaborated together, but who knows in future ... Verder, in 

onwillekeurige volgorde bedankt: Lore, Yan, Fu, Ivan, Hui, Pieter, Lyn, 

Inge, Sunny, Peyman, Kristof, Aminael, Abeer, Pieter Tim, Shi, Roland, 

Anneleen, Olivier, Daniela, Ernesto, Thomas, Wout and Leo.  

Geen inspanning zonder ontspanning. Zo was er het jaarlijkse 

skireisje. Bij Kathleen aan een doctoraat beginnen gebeurt immers onder 

lichte dwang: je zal minstens een keer in je doctoraatsloopbaan 

meegegaan zijn op de jaarlijkse skitrip. In het eerste jaar heb ik de druk 
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nog wat kunnen afhouden, maar vanaf het tweede jaar stond ik ook op 

latten tussen medelotgenoten. En ‘t was plezant! Gedurende een ganse 

week stortten we ons in het spoor van vakdeskundige Prof. Y. Van de 

Peer op het empirisch onderzoek van waaghalzerij op de skipiste. En om 

de dag af te sluiten werd er des avonds dan nog eens duchtig op 

weerwolven gejaagd, ten minste door diegenen die hun ogen nog konden 

openhouden. Merci, Cindy, Yves en Kathleen om op jaarlijkse basis dit 

reisje te organiseren. Naast het jaarlijkse skireisje kon ik voor wekelijkse 

ontspanning terecht bij de loopmaatjes van de Hagelandse Running 

Club. Onvoorstelbaar hoe verkwikkend een uurtje ‘waggelen’ kan zijn. 

En verder zorgden ook de reisjes en de veel te schaarse afspraken met de 

vriend(inn)en voor de nodige ontspanning: merci Emmy, Marjolein, 

Annelies, Ineke, Steven, Griet en alle andere ‘trek’-kameraadjes voor de 

lekkere etentjes, babbelgelegenheden, fiets- en wandeltochten, leuke 

reisjes ...  

Het is dankzij mijn ouders dat ik in de eerste plaats de basis heb 

kunnen leggen om aan dit doctoraat te beginnen. Zij hebben me altijd 

gesteund in mijn keuzes en ze hebben me alle kansen gegeven om me 

zelf mijn weg te laten zoeken in dit leven. Sanne, ik wens jou en Hendrik 

enorm veel succes toe daar in het verre, verre Nieuw-Zeeland. En 

vergeet niet af en toe eens terug naar huis te komen zodanig dat we op 

een zondagmiddag nog eens allemaal samen aan tafel kunnen zitten.  

Lieve Pascal, als een ietwat computeronkundige bioinformaticus is 

het een zegen om met een computerwetenschapper onder hetzelfde dak 

te wonen. Maar gelukkig gaat onze relatie veel verder dan enkele 

linuxcommando’s en kan ik niet alleen bij je terecht met mijn gekke 

wetenschappelijke ideëen maar ook voor een luisterend oor, een lach, 

een traan of een bemoedigende knuffel. Bedankt voor alle steun en liefde 

de voorbije jaren. 

 

Riet 
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Abstract 

Within microorganisms the Transcriptional Regulatory Network (TRN) 

plays an important role in maintaining cellular homeostasis under 

changing environmental conditions. Therefore understanding the 

structure and dynamics of this network is fundamental for understanding 

and ultimately predicting organism behavior. With the emergence of the 

microarray technology genome wide data has become available that 

provides snapshots of the activity of the TRN. An important 

computational challenge is to infer or reverse-engineer the structure and 

dynamics of this TRN from available data.  

The computational problem of inferring TRNs from gene 

expression data is however underdetermined: multiple equivalent 

solutions exist that each explain the data equally well. Ensemble methods 

provide an elegant way for dealing with this problem of 

underdetermination by considering multiple equivalent solutions and by 

reinforcing those solutions that are repeatedly retrieved. In this thesis we 

present different ensemble strategies to improve upon and extend the 

scope of existing methods to infer the TRN from gene expression data.   

In a first part we focus on module detection or the detection of sets 

of coexpressed genes from gene expression data. In particular we 

develop an ensemble strategy for existing query-based biclustering 

methods in order to extend their application to input sets that are 

heterogeneous in their expression profiles. As such the method can be 

used to interrogate gene expression compendia for experimentally 

derived gene lists, as is illustrated on an Escherichia coli and Salmonella 

Typhimurium case study.  

In a second part we focus on inference of the TRN itself. Here, we 

first present Stochastic LeMoNe. This method uses a stochastic 
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optimization approach to output multiple equivalent outcomes of the 

network inference problem. By using ensemble averaging we 

demonstrate that both module detection and inference of the 

transcriptional program can be improved. Further we illustrate that by 

making certain assumptions on the inference problem, Stochastic 

LeMoNe is biased towards making correct predictions for only subparts 

of the TRN. Building upon this observation, we categorized existing 

network inference methods according to their conceptual differences and 

illustrated how these differences result in distinct methods highlighting 

different parts of the TRN. 
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Korte inhoud 

In micro-organismen speelt het Transcriptioneel Regulatorisch Netwerk 

(TRN) een belangrijke rol in de aanpassing aan veranderende 

ongevingsomstandigheden. Bijgevolg is het ontrafelen van de structuur 

en de dynamiek van dit netwerk essentieel om het gedrag van een 

organisme te begrijpen en ultiem te voorspellen. Microroosterdata 

verlenen inzicht in de activiteit van het TRN door genexpressie te 

profileren onder verscheidene omgevingsomstandigheden. Een 

belangrijke computationele uitdaging is om de structuur en dynamiek van 

het TRN te infereren van deze data.  

Inferentie van het TRN van genexpressiedata is echter 

ondergedetermineerd: meerdere oplossingen bestaan die elk de data even 

goed verklaren. Ensemble methoden voorzien een elegante manier om 

met dit probleem van onderdeterminatie om te gaan door meerdere 

equivalente oplossingen te beschouwen en zo oplossingen te 

bekrachtigen die herhaaldelijk worden geïnfereerd. In deze thesis 

beschrijven we verschillende ensemble methoden om zowel bestaande 

netwerkinferentie methoden te verbeteren als hun toepassingsdomein uit 

te breiden.  

In het eerste deel focussen we op de detectie van sets van genen die 

coexpressie vertonen. In het bijzonder ontwikkelen we een ensemble 

strategie voor bestaande query-gebaseerde biclusteringsmethoden om 

hun toepassing uit te breiden naar input sets die heterogeen zijn in hun 

expressieprofiel. Zodoende kunnen deze methoden worden toegepast 

om genexpressie compendia te interrogeren voor experimenteel 

bekomen genlijsten. De praktische toepasbaarheid van deze methode 

werd aangetoond op zowel een Escherichia coli als Salmonella Typhimurium 

case study. 
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In het tweede deel van deze thesis staat inferentie van het TRN zelf 

centraal. Hier introduceren we Stochastische LeMoNe. Deze methode 

incorporeert een stochastische optimisatiestrategie om meerdere 

equivalente oplossingen van het netwerkinferentie probleem te bekomen. 

We demonstreren dat door deze stochastische optimisatie te koppelen 

aan een ensemble strategie er zowel op het vlak van moduledetectie als 

inferentie van het transcriptioneel regulatorisch programma een betere 

performantie bekomen wordt. Verder illustreren we ook dat aangezien 

Stochastische LeMoNe welbepaalde veronderstellingen maakt op het 

netwerkinferentie probleem, deze methode een zekere neiging vertoont 

naar het voorspelen van welbepaalde subonderdelen van het TRN. 

Steunend op deze observatie, categoriseren we netwerkinferentie 

methoden volgens hun conceptuele verschillen en illustreren we hoe 

deze verschillen resulteren in voorspellingen die complementair zijn. 



ix 

Abbreviations and 
terminology 

Abbreviations 
 

AIC Akaike Information Criterion 

AP Affinity Propagation 

ChIP-chip Chromatin Immunoprecipitation (ChIP) on a 

microarray (chip) 

CLR Context Likelihood of Relatedness 

COALESCE Combinatorial Algorithm for Expression and 

Sequence-based Cluster Extraction 

DISTILLER Data Integration System To Identify Links in 

Expression Regulation 

DNA deoxyribonucleic acid 

DREAM Dialogue on Reverse Engineering Assessments 

and Methods 

ECM Extracellular Matrix 

eQTL expression Quantitative Trait Loci 

GEO Gene Expression Omnibus 

GO  Gene Ontology 

GPS Gene Promoter Scan 

GR Gene Recommender 

ISA Iterative Signature Algorithm 
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LeMoNe Learning Module Networks 

LPS  Lipopolysaccharide 

MCL Markov Clustering 

MEM Multi-Experiment Matrix 

mRNA messenger RNA 

NCA Network Component Analysis 

NI Network Inference 

NMI Normalized Mutual Information 

PPI Protein-Protein Interaction 

QDB Query-Driven Biclustering 

RNA ribonucleic acid 

SA Signature algorithm 

SEREND Semi-supervised Regulatory Network 

Discoverer 

SIRENE Supervised Inference of Regulatory Networks 

SPELL Serial Pattern of Expression Levels Locator 

sRNA Small RNA 

TF Transcription Factor 

TOM  Topological Overlap Matrix 

TRN Transcriptional Regulatory Network 

Terminology 
 

Classification 

 

In classification, properties or features of known 

targets and non-targets of a regulator are derived 

from high-throughput data and used to 

construct a classifier function, i.e. a mathematical 

function that describes the relationship between 
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the class labels (being a target versus being a 

non-target) and the corresponding properties of 

the high-throughput data. These classifier 

functions can then be used to predict for novel 

genes whether or not they are a target of the 

studied TF based on their data properties.  

Cross-validation 

 

Statistical technique that assesses the 

performance of a predictive modelling method 

by estimating the extent to which a model fitted 

on a certain dataset by the method, can also 

predict the observations made on an 

independent dataset (or the generalizability of a 

model).   

De novo motif 

detection 

Computational strategy to identify transcription 

factor binding sites without any prior 

information on how the binding site should look 

like. It relies on certain subsequences being 

statistically overrepresented in a set of 

coregulated genes.  

Guilt-by-

association 

principle 

Using the assumption that genes with similar 

functions exhibit similar expression patterns, the 

function of an unknown gene can be inferred 

from the function of annotated genes that are 

coexpressed with the unknown gene.  

Module inference Identifying groups of coexpressed genes from 

gene expression data based on clustering or 

biclustering algorithms. Clustering methods 

group genes with similar expression patterns 

across all conditions, while biclustering methods 

combine the selection of coexpressed genes sets 

with a condition selection step in order to infer 

the set of conditions relevant to the bicluster 

genes.  
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Motif Transcription factor binding site or specific 

sequence tag located in a gene’s promoter region 

that is recognized by a TF.  

Operon A genomic segment of consecutive genes that 

are all under control of the same promoter. 

Operons occur typically within prokaryotes 

where they usually group functional related 

genes, as such allowing for a coordinated 

transcription of these genes. 

Precision-recall 

curve 

 

Customarily used method that compares 

precision versus recall to evaluate the 

performance of an algorithm. The precision is 

the proportion of correctly inferred interactions 

according to an external standard on the total 

number of predictions made. The recall is the 

degree to which the total number of existing 

interactions in the real network has been 

covered by the predictions.  

Search space The search space of a problem consists of all 

possible solutions that need to be evaluated to 

find the most optimal one according to preset 

criteria. In most inference problems the number 

of possible solutions is prohibitively large and 

can not be enumerated exhaustively. In those 

cases an optimization strategy is used to 

screen the search space in a clever way that 

allows finding the optimal (or almost optimal 

solution) without having to evaluate all possible 

solutions.  

Top-down network 

inference 

 

Refers here to the reverse engineering or the de 

novo reconstruction of the structure of biological 

networks on a genomewide scale by exploiting 

high-throughput data. Bottom-up regulatory 
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network inference, in contrast, is meant to 

construct a quantitative model from the data 

(both high- as low-throughput) by using a 

known mathematically formalized connectivity 

network as input. Estimating the kinetic 

parameters of this model from the data allows 

modeling the dynamic behavior of the network. 

Underdetermined 

computational 

problem 

A high number of possible solutions (large 

search space) in combination with limited 

availability of experimental data results in 

finding many solutions that all explain the data 

equally, so no unique best solution can be 

found.  
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Chapter 1 

General introduction 

1.1 Context of the thesis 

1.1.1 The system’s biology era 

Organisms adapt quickly and in a precise manner to changing 

environmental conditions. A long-standing question in molecular biology 

has been to unveil the mechanistic underpinnings on the level of single 

genes or even single nucleotides that explain and ultimately predict the 

organism’s behavior (phenotype). In a reductionist approach organism 

behavior was studied on a gene-by-gene basis, e.g. one would render a 

gene inactive (knock-out) and then study the effects of this knock-out on 

the organism’s phenotype. However, pioneering work by Jacob and 

Monod [1] revealed that genes do not work in isolation but are instead 

part of regulatory circuits in which regulatory proteins (transcription 

factors), encoded by regulatory genes, control the expression of structural 

genes by physically binding to the promoter regions of these genes. This 

network of transcription factors (TFs) and their corresponding target genes 

is further referred to as the transcriptional regulatory network (TRN). The 

observation that genes are parts of complex networks consisting of genes 

and proteins, has launched the idea that organism behavior can not be 

explained by separate gene behavior but should rather be studied by 

considering the network of cellular components, their mutual 

interactions and their interaction with the environment. In short, 

organism behavior should be studied at the system’s level. This 
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conviction that system’s level understanding is crucial to understanding 

organism’s behavior is central to the scientific field of systems biology.   

Early attempts at a system’s level understanding of biology, 

however, suffered from inadequate data on which to base the theories. It 

was only due to some major technological breakthroughs in the mid 

nineties that it was possible to study regulatory networks on a cellular 

scale. The first of these breakthroughs allowed generating the organism’s 

gene list by sequencing whole genomes for a relatively low price in a 

matter of months [2]. This progress was followed by the development of 

another novel high-throughput technology: the microarrays [3]. Given a 

list of genes, microarrays allow to measure simultaneously the expression 

of an organism’s complete gene set (the transcriptome) under a plethora of 

experimental conditions. As such a snapshot of the activity of the TRN 

can be obtained. After genome sequencing, DNA microarray analysis has 

become the most widely used source of genome-scale data [3] and 

microarrays have increasingly been carried out in biological and medical 

research to address a wide range of problems [4-6].   

The emergence of high-throughput technologies, such as genome 

sequencing technologies and microarrays, has lead to an explosion of 

complex and noisy data. To understand the underlying biology of these 

data, systems biology is relying on an intimate integration of both 

mathematical and biological methods. The novel field of bioinformatics or 

computational biology is concerned with the development of data mining 

tools that are specifically designed to translate complex biological data 

into novel biological insights and that can be used interchangeably with 

experimental procedures to validate the predictions. This field covers a 

broad range of biological topics, such as gene function prediction, cis-

regulatory motif detection, network prediction, gene evolution etc.   

The subject of this thesis falls within this interdisciplinary field of 

bioinformatics. We particularly focus on computational methods which 

aim to reverse-engineer or infer the TRN from gene expression data 

(microarray data). This inference problem is a tremendous computational 

task which consists both of collecting, preprocessing and storing 

available gene expression data as developing computational tools to 
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translate these data into appropriate wiring diagrams, representing the 

TRN. Whereas we discuss the problem of collecting gene expression 

data briefly in this introductory chapter, within this thesis we mainly 

focus on the computational tools for network inference themselves. In 

particular we present different computational approaches and discuss 

their biological applications.   

1.1.2 Transcriptional regulatory network 

A genome consists out of thousands of genes, each of them serving as 

templates for protein production which perform a variety of 

physiological and structural functions within the cell. As cells need to 

maintain homeostasis within constantly changing environments, tight 

regulation of protein production from the genome under changing 

extracellular and intracellular conditions is key to survival. This 

regulation is manifested at different levels: the transcriptional, 

translational and post-translational level. At the transcriptional level 

transcription factors (TFs) represent the cellular environmental state by 

changing rapidly from inactive to active molecular states in response to 

changing extracellular or intracellular conditions. These activated TFs 

then bind to specific stretches of DNA, corresponding to the promoter 

region of a certain gene, and promote transcription of this gene into 

messenger RNA (mRNA). This mRNA is further translated into proteins 

that can act upon the environment. In Escherichia coli there are about 300 

TFs, which each act upon different environmental states, and which 

regulate the production of about 4500 proteins. Remark that TFs 

themselves are also proteins, encoded by genes and whose transcription 

is often regulated by a different set of TFs.  

The Transcriptional Regulatory Network (TRN) describes all 

regulatory transcription interaction within the cell. This TRN can be 

represented as a graph in which the nodes represent the genes and 

directed edges (i.e. edges with a defined direction) point from one node 

to another, indicating that the first gene codes for a transcription factor 

that regulates expression of the second gene (Figure 1- 1a). As 
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transcription factors can act both as repressors (i.e. suppresses gene 

expression) and activators (i.e. promotes gene expression), the edges are 

signed. This network is not densely connected, but is instead sparse: each 

TF modulates the expression of a limited set of target genes and the 

expression of each gene is under control of one or few TFs. TF-gene 

interactions are condition-dependent: some interactions might be present in 

some experimental conditions but absent in others [7;8]. Therefore 

different graphs might be drawn depending on the environmental 

context. In practice, however, a graphical representation of the TRN 

often represents all possible gene-TF interactions and therefore hides 

any contextual information.  

As a cell consists of thousands of genes each controlled by one or 

multiple out of dozens of TFs the theoretical possible number of wirings 

between genes and TFs is dazzling high. TRNs are however surprisingly 

well-structured. Shen-orr et al. [9], for instance, observed that TRNs are 

built from recurring interaction patterns, called network motifs (Figure 1- 

1b). These network motifs represent patterns amongst genes and 

regulatory proteins in the network that are present more frequently in 

biological networks than in random networks. Hence these motifs are 

assumed to have biological functions: they are postulated to be basic 

information processing elements aimed at for instance speeding up a 

certain transcriptional response [10].   

An additional important structural feature of TRNs is its modularity 

[11-13]: most biological functions are carried out by specific groups of 

genes and proteins that can be separated into functional modules. Modules 

consist of a set of nodes within the TRN that are strongly functionally 

related and whose function is clearly separated from those of genes of 

other modules. Such functional modularity is mainly achieved by joint 

regulation of the genes within a module by a common set of TFs (also 

called the transcriptional program). Consequently modularity exists at the 

transcriptional level [14]: genes within a module are coexpressed and 

hence modules can also be considered as sets of nodes which show 

strong coexpression interaction with each other, but only scarce  
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Figure 1- 1 Representation of the TRN at different scales. a) and b) represent basic 

units of the TRN, with a) referring to a single TF-target gene interaction and b) to 

network motifs. c) represents the complete TRN, or all interactions between target 

genes and their cognate TFs. Figure taken from [15]. 

coexpression interactions with nodes outside the module. Modularity 

allows orchestrating a coordinated response of a set of genes to changing 

environmental conditions. As genes might participate into multiple 

cellular functions, modules are not static cellular entities: depending on 

the environmental conditions genes might participate into different 

modules. This property of modularity of the TRN can be exploited by 

computational biologists to facilitate the task of modeling transcriptional 

regulation from high-throughput data.  

Within this thesis we focus on the TRNs of the model bacteria 

Escherichia coli and Salmonella enterica serovar Typhimurium. Although the 

TRN forms only a fraction of the total regulatory system (i.e. it ignores 

protein-protein interaction and protein-metabolite interactions), it 

represents a major level of regulation in prokaryotes: it allows bacteria to 

alter their gene expression and to adapt to novel environmental 

conditions. As the TRNs of bacteria are considered to be less complex 

than their eukaryotic counterparts, the networks of model-bacteria are 

well-characterized and therefore constitute excellent test cases for 

mathematical tools aimed at inferring the transcriptional regulatory 

network. In particular the Escherichia coli regulatory network is estimated 

to be one of the most complete TRNs of all organisms, and therefore 
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this network is often used as a benchmark for computational tools. In 

addition, different bacteria cause diseases and therefore understanding 

the molecular mechanisms underlying infection and survival of these 

pathogens might contribute towards a better disease management. 

1.1.3 From microarrays to gene expression compendia 

The collection of all mRNA present in a cell at a certain stage is referred 

to as the transcriptome. Revealing this transcriptome allows gaining insight 

into the functions of the individual genes and their interrelationships and 

on a more global scale it constitutes a principle source of information on 

the activity of the TRN. Whereas in the pre-systems biology era it was a 

laborious process to measure the expression or mRNA production of a 

few genes simultaneously, microarrays have facilitated this by 

parallelizing their measurement. Indeed, they measure the whole 

transcriptome quantitatively on one chip.  

Different microarray platforms for measuring gene expression exist, 

such as Affymetrix, Agilent, Codelink or in-house microarrays (see [16] 

for a review). Each different platform requires its own optimized sample 

preparation, labeling, hybridization and scanning protocol, and 

concomitantly also a specific normalization procedure. Normalization of 

the raw, extracted intensities aims to remove consistent and systematic 

sources of variation to ensure comparability of the measurements, both 

within and across arrays. 

Microarray experiments are made publicly available in specialized 

databases such as Gene Expression Omnibus [17], Stanford microarray 

database [18] or ArrayExpress [19]. To ensure exchangeability of these 

data, data submitted to these databases should be compliant to the 

“Minimum Information About a Microarray Experiment (MIAME)” 

standard [20]. The MIAME standard enforces a careful description of 

the conditions under which the microarray experiment was performed, 

such as the genetic background of the used strains, the used media, 

growth conditions, triggering factors, etc. It does, however, not specify 
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Figure 1- 2 Gene expression compendia combine all the publicly available expression 

data for a certain organism. Expression data is generally stored in public repositories 

such as Gene Expression Omnibus [17], Stanford microarray database [18] or 

ArrayExpress [19]. A gene expression compendium can conceptually be seen as a 

matrix with each element corresponding to the expression value of a gene measured on 

a certain array (condition) (upper right). These compendia can be visualized as 

heatmaps (lower right) with shades of red (overexpression) and green (underexpression) 

representing the gene expression values.   

the format in which this meta-information should be presented. As a 

result, extracting data and information from these public microarray 

databases remains tedious and for a large part relies on manual curation: 

information is not only stored in different formats and data models, but 

is also redundant, incomplete and/or inconsistent. To fully exploit the 

large resource of information offered by these public databases, ideally 

all these data should be available as large species-specific gene expression 

compendia: matrices that for each of the organism’s genes (rows) contains 

the microarray expression values for all conditions (columns) in which 

microarrays were performed (Figure 1- 2). The construction of such 
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compendia from gene expression data stored in public repositories can 

be performed in a semi-automated process. Single-platform compendia 

combine all data on a particular organism that were obtained from one 

specific platform. Most single-platform compendia focus on Affymetrix 

data as this is considered one of the more robust and reproducible 

platforms [21;22]. The Many Microbe Microarrays Database (M3D) [23], 

for instance, offers Affy-based compendia for three microbial organisms. 

Cross-platform compendia, on the other hand, include data from 

different platforms and require more specialized normalization 

procedures to combine data from both one and two channel microarrays 

[8;24;25].  

1.1.4 Mining the gene expression information 

Presently large collections of public gene expression data are available in 

gene expression compendia for model prokaryotes such as Escherichia coli 

(about 1500 arrays) and Salmonella Typhimurium (about 800 arrays)[24]. 

The success of the microarray technology therefore does not only 

depend on clever design and polished protocol, but also on the 

successful analysis of very large data sets to translate complex and noisy 

data into biological insights. Pioneering work with this respect was 

accomplished by Eisen et al. [26], who proposed hierarchical clustering as a 

means to identify patterns within the data. The idea of clustering is 

simple: genes (or patients) with similar expression behavior across a 

range of conditions (or genes) are grouped together. As similarity in 

expression indicates functional relatedness or joint regulation by a similar 

set of transcription factors (TF), clustering is a convenient way to 

transfer a dataset containing thousands of genes into a few dozen of 

biologically meaningful entities (the clusters). As clustering is exploratory 

in nature and therefore requires little or no previous knowledge on the 

data, it is often used. Indeed, many different clustering algorithms, such 

as k-means and self-organizing maps, have been developed and applied 

to gene expression data to solve a range of biological problems. 

Clustering is for instance often used to infer the functional roles of genes 

[26], to classify tumor samples [4] or as a first step for the de novo 
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detection of cis-regulatory elements [27]. With the ever-growing number 

of publicly available gene expression data, the data sets get more 

complex and more heterogeneous in their conditions. Consequently, 

clustering of these data becomes problematic as the presence of 

conditions in the data set under which the genes are not coherently 

transcriptionally regulated will reduce the signal-to-noise level of the data 

and complicate identifying sets of coexpressed genes. Therefore 

biclustering methods [28;29] have been developed to combine a search for 

coexpressed genes with a condition selection step to identify the 

conditions under which the genes are coexpressed, i.e. the conditions in 

which the joint transcriptional program of the bicluster genes is active.  

Clustering and biclustering methods both take advantage of the 

modular structure of the TRN: they infer modules of coexpressed genes 

which often correspond to separate functional units (Figure 1- 3). They 

reveal the correlations or dependencies between genes without revealing 

the cause of the relationship. Therefore methods have been developed to 

infer the transcriptional regulatory networks (TRNs) from gene 

expression data [8;30-35]. These methods go one step beyond 

(bi)clustering and infer causality relationships in the network by also 

identifying the transcriptional programs that describe how transcription 

factors (TFs) cause the observed changes in expression of their cognate 

target genes. In particular the TRN can be represented as a graph in 

which nodes represent either the transcription factors (TFs) or the target 

genes or bi(clusters) (Figure 1- 3) (see section 1.1.2). Edges are directed 

as they reflect a causal relationship: they indicate that an observed 

correlation in expression pattern between nodes is caused by a node 

corresponding to a TF regulating a node that corresponds to a target 

gene. A transcriptional program corresponds to a set of TFs sharing the 

same set of target genes, ideally under a similar subset of conditions 

(Figure 1- 3). 

Applying these inference procedures on public data sets of well-

studied model organisms has largely improved our global understanding 

of TRNs. In bacteria, simple regulons that constitute only a few operons, 

show expression modularity. The operon organization seems crucial to  
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Figure 1- 3 Methods for module inference such as clustering and biclustering methods 

assume that the TRN is represented as a coexpression network (a). Hence the aim of 

these methods is to derive cliques of coexpressed genes, or sets of genes that are all 

mutually coexpressed. These modules are indicated by colored ovals in the figure. 

Methods that infer the TRN (b), in contrast, also aim to infer the causal regulators that 

explain gene coexpression.  

preserve this modular level of coexpression under some conditions, 

while under other conditions, the presence of intra-operonic promoters 

breaks up this modularity [25;36;37]. In addition, complex regulation 

involving multiple regulators, generally results in single genes showing 

highly specific expression behavior that is not shared with that of other 
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genes [8]. When focusing on the role of the transcriptional program, 

Zare et al. [38] observed that not only global transcription factors (TFs), 

but also local regulators in E. coli respond to a range of different 

conditions. In addition, many TFs are being active in similar conditions 

and thus trigger similar sets of genes, suggesting either redundancy in 

their functionality or an intricate cooperation between different TFs to 

mediate a common response [38].  

Several notable examples have set the stage for adopting inference 

methods in daily laboratory practice. Kohanski et al. [39] unveiled the 

unprecedented link between protein mistranslation and the reaction to 

reactive oxygen species in response to antibiotics treatment by 

combining network inference with experimental evidence in E. coli. Yoon 

et al. [40] used a similar approach, to unravel the complex network 

regulating host-pathogen interactions in Salmonella Typhimurium, and 

Bonneau et al. [41] also used a combination of network inference and 

experimental data to chart the transcriptional network of the archeon 

Halobacterium salinarum for the first time. Computationally inferred 

interactions thus offer a useful resource to put experimental findings in a 

more global context by finding novel interactions that remained 

unveiled, by unfolding links between the pathway under investigation 

and other cellular processes or by identifying the conditions under which 

a favourite regulator is being active.  

1.1.5 Ensemble methods for network inference 

Under the assumption that each gene is regulated by only one regulator, 

inferring the interaction network in E. coli would imply testing the 

individual links between approximately 4500 genes and each of the 300 

known and predicted regulators [42], resulting in 4500*300 tests. When 

also taking into account the existence of combinatorial regulation (i.e. 

cases in which binding of multiple TFs is necessary to control gene 

transcription) and feedback loops, the theoretical number of 

combinations can no longer be exhaustively enumerated. This means 

that the number of possible solutions is prohibitively large and clever 
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algorithms strategies are needed to screen them in a time-efficient way. 

Also, module inference or finding the best combination of genes and 

conditions that define a coexpressed gene set according to preset criteria 

is combinatorially prohibitive. This large number of possible solutions 

(or the large search space), together with the restricted number of 

independent data points and the relatively low information content of 

the available data [43;44] turns TRN and module inference into an 

underdetermined problem with different solutions being possible that all 

explain the data equally well.   

Because of the large search space, finding the most optimal solution 

to a module or network inference problem is non-trivial and 

optimization algorithms often result in suboptimal solutions that all 

approximate the true global optimal solution but differ slightly from each 

other [45]. Therefore within both the community of machine learning as 

clustering it has been suggested that it is more suitable to consider an 

ensemble of solutions than simply searching for a single optimal 

solution. The idea behind such ensemble-based strategies (also called consensus 

approaches) is that each prediction only corresponds to an approximation 

of the real underlying solution and that therefore predictions that are 

repeatedly inferred by different methods from the same data can be 

better statistically motivated. Ensemble methods have been applied in a 

diversity of biological contexts: such as motif detection [46-49], protein 

fold prediction [50;51], classification of tumor samples [52], clustering of 

gene expression data [53-57], RNA secondary structure prediction [58], 

clustering of PPI-data [59;60], gene function prediction [61;62], network 

inference [32;63] etc. In many of these cases the ensemble methods have 

been shown to perform at least as accurate or to outperform single 

solutions of the optimization problem (e.g. [46;51;56;59;64]).  

Ensemble-based methods usually run over two different steps: (1) 

ensemble creation and (2) aggregation of the outputs in the ensemble 

(Figure 1- 4). For the first step it is important that the ensemble of 

solutions generated from the data set are accurate and in addition as 

diverse as possible. The reasoning behind this diversity-assumption is 

that each prediction should make errors on different instances, which 
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can then be filtered out in the aggregation step. Different strategies have 

been developed to obtain such a diverse ensemble of solutions. A first 

approach uses the same algorithm on the same data set to generate an 

ensemble. Hereby, often subsampling or bootstrapping of the dataset is 

used in order to diversify the predictions made from this dataset (e.g. 

[52;54;56]). Alternatively, algorithms can be used that depending on the 

initialization and parameter settings converge to different local optima in 

order to obtain diversity in the outcomes (e.g. [32;48;53]). Yet another 

approach is to combine the outcomes of different algorithms applied to 

the same dataset, in stead of using the outcomes obtained by the same 

algorithm (e.g. [46;47;50;51;61;64]). Finally, it is also possible to create an 

ensemble by considering the outcomes for algorithm run on different 

data sets (also called data integration or data fusion) (e.g. [62]).  

Once the ensemble of solutions is generated usually a consensus 

solution is extracted from this ensemble (step 2). Depending on the 

application here also different approaches exist. For instance, in case of 

clustering, often a new similarity matrix (the consensus matrix) is 

constructed representing the similarity of the clustered entities across the 

ensemble of clusterings generated in step 1. This new similarity matrix 

can be clustered to obtain consensus clusters [53-55;59]. Alternatively, when 

the output consists of lists which rank the predictions according to a 

score (as is often the case in a machine learning context) majority voting 

can be used, to produce a consensus list in which predictions that are 

repeatedly ranked highly across the ensemble get a high rank in the 

consensus list (e.g. [32;52;56]). However, also other approaches have 

been presented that for instance cast this aggregation step into a 

classification problem [51;64]. In this thesis we will further explore the 

usage of ensemble methods in the context of network inference and 

module inference.  
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Figure 1- 4 Schematic overview of the ensemble approach. This approach consists out 

of two key steps: (1) generation of an ensemble of predictions through a ‘generative 

mechanism’ and (2) aggregation of the predictions by a ‘consensus function’. There are 

possible ways to obtain as well an ensemble of solutions as a consensus solution from 

the ensemble. The outcome of the ensemble approach is the consensus solution.  

1.2 Aim and deliverables of the thesis 
Central to this thesis is the existence of genomewide expression 

compendia that implicitly assess transcriptional regulation on a 

genomewide scale in a plethora of conditions. Whereas bioinformaticians 

have continued to propose new algorithms to improve module detection 

(or (bi)clustering) and network inference from these compendia, here we 

aim to improve upon existing algorithms by drawing from concepts of 

ensemble learning. In particular, we discuss two distinct cases where 

ensemble strategies were introduced to solve distinct problems: one 

example in module detection and one in network inference. 

First, we focus on query-based biclustering tools to explore gene 

expression compendia for genes coexpressed to genes of interest to a 

certain researcher. Whereas such tools have proven to be useful when 

exploring such compendia for single genes or sets of genes (the query) 

that are mutually tightly coexpressed, they fail when applied to query-sets 

that are heterogeneous in their expression profiles. This severely limits 

the applicability of these methods, as it could for instance be interesting 

for a user to view its own experimental data – which is often 

heterogeneous in its expression profiles - within these expression 
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compendia. To circumvent this problem and to render query-based 

biclustering methods applicable to such more complicated query-sets, we 

introduce in Chapter 3 a generic ensemble framework for query-based 

biclustering. In particular we present a split-and-merge strategy in which 

each gene from the query-set is treated separately as input of a query-

based biclustering algorithm. The outputs are then statistically merged in 

an ensemble biclustering framework to remove redundancy amongst the 

outputs and to allow for easy interpretation of the genes within the 

resulting biclusters.  

Secondly, in Chapter 5, we introduce a network inference method, 

LeMoNe, which incorporates a stochastic framework in combination 

with ensemble averaging to improve upon regulatory network inference. 

By combining multiple equivalent outcomes of the network inference 

problem into an ensemble averaged network, reliability scores can be 

assigned to the inferred interactions. We illustrate that these scores do 

indeed prioritize known biological TF-gene interactions by these 

methods.  

Finally, different groups have continued to produce new network 

inference methods at a staggering rate, each time claiming that theirs is 

better than previously published counterparts. In Chapter 5 and 6, in 

stead of giving a global assessment of their performance, we illustrate 

that most of the developed methods are actually complementary in the 

interactions they infer. Specifically, we demonstate that the low overlap 

in predicted interactions for different methods does not necessarily imply 

that predictions made by individual methods are wrong. Instead we point 

out, using real data examples, that depending on the choices that were 

made in the implementation, different tools are better suited for different 

types of reseach questions. In addition, the results motivate the 

construction of an ensemble of complementary methods to not only 

improve accuracy but also to extend the scope of what can be found.  

1.3 Chapter-by-chapter overview 
An overview of the organization of the thesis can be found in Figure 1- 

5. With the exception of this introductory chapter, Chapter 2 and the 
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discussion, the content of all other chapters was derived from work that 

is already published, submitted or in preparation. Consequently, the 

contents of these chapters might be partially overlapping. This thesis 

consists mainly of two parts: in the first part (Chapters 2, 3 and 4) we 

focus on module inference, whereas in the second part (Chapters 5 and 

6) we discuss methods for inference of the TRN.   

An important application of gene expression compendia is to 

explore the information contained within these compendia in the context 

of a set of user-defined genes. To this end, different query-based data 

mining tools have been developed in the shape of gene prioritization 

methods and query-based biclustering algorithms. In Chapter 2 we give 

an overview of such tools and we discuss their issues with respect to (1) 

handling input sets of genes that are heterogeneous in their expression 

and (2) defining a threshold on coexpression. 

In Chapter 3 we formulate an answer to these problems by 

developing an ensemble clustering strategy for query-based biclustering. 

This ensemble strategy incorporates a two-step procedure to 

simultaneously deal with the problem of defining a threshold on 

coexpression and deriving biclusters for a query-set that is heterogeneous 

in its expression profiles. The usefulness of such an approach is 

illustrated for an Escherichia coli ChIP-chip dataset, where a query-list of 

90 ChIP-chip targets results in the identification of 17 biclusters each 

containing one or more of the ChIP-chip targets. This allows separating 

likely functional and true positive ChIP-chip targets from the remainder 

of the query-genes. In addition, this analysis reveals experimental 

consistencies and genes that were likely missed by the ChIP-chip assay. 

The work in this chapter has been accepted for publication [65]: 

 

De Smet, R., Marchal, K. (2010). An ensemble method for querying 

gene expression compendia with experimental lists. Accepted for 

publication in proceedings of the IEEE International Conference on 

Bioinformatics and Biomedicine (BIBM2010). 
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In Chapter 4, using the same computational strategy as formulated 

in Chapter 3, we derive a functional map for Salmonella Typhimurium 

biofilm formation. In particular, we derive a condition-dependent 

coexpression network centered on a list of genes that were 

experimentally identified to be specifically involved in Salmonella biofilm 

formation. Building such a network for both multicellular (i.e. conditions 

that assess biofilm formation) as planktonic conditions reveals that at the 

transcriptional level these specific biofilm-genes are often involved in 

cellular processes, both required in multicellular as planktonic conditions. 

These results question the specificity of the transcriptional response in 

the biofilm formation process to a multicellular lifestyle. The work 

presented in this chapter is still on-going: 

 

De Smet, R.*, Hermans, K.*, McClelland, M., Vanderleyden, J., De 

Keersmaecker, S., Marchal, K. (2010). Towards a functional map for 

Salmonella Typhimurium biofilm formation. In preparation.   

 

In Chapter 5 we introduce a network inference algorithm: 

stochastic LeMoNe (‘Learning Module Networks’). We first illustrate 

how using a stochastic optimization scheme in combination with 

ensemble averaging can improve upon regulatory network inference, by 

prioritizing true interactions. Next we discuss how the assumptions that 

LeMoNe makes on the network inference problem results in particular 

parts of the E. coli regulatory network being highlighted by the method, 

whereas other parts can not be inferred. Finally, we compare the 

outcome of LeMoNe with that of CLR. Although both methods infer 

the regulatory network from gene expression data, they differ 

substantially both algorithmically and conceptually in how they approach 

the network inference problem. We illustrate that the conceptual 

differences between both methods results in the methods highlighting 

different parts of the E. coli regulatory network, suggesting that they are 

complementary in the interactions they infer. This work was done in 
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collaboration with the Plant Systems Biology department of Ghent 

University and was published in the following three papers [32;66;67]:   

 

Michoel, T., De Smet, R., Joshi, A., Van de Peer, Y., Marchal, K. 

(2009). Comparative analysis of module-based versus direct methods for 

reverse-engineering transcriptional regulatory networks. BMC Systems 

Biology, 3, art.nr. 49, 49. 

 

Michoel, T., De Smet, R., Joshi, A., Marchal, K., Van de Peer, Y. 

(2009). Reverse-engineering transcriptional modules from gene 

expression data. Annals of the New York Academy of Sciences, 1158, 36-43. 

 

Joshi, A., De Smet, R., Marchal, K., Van de Peer, Y., Michoel, T. 

(2009). Module networks revisited: computational assessment and 

prioritization of model predictions. Bioinformatics, 25(4), 490-496. 

 

In Chapter 6 we extend upon this observation made in Chapter 5 

on the complementarity of network inference approaches. In this 

Chapter we argue that different state-of-the-art tools for network 

inference deal differently with the problem of underdetermination, by 

using assumptions and simplifications that reduce the number of 

possible solutions in order to make the problem solvable. The strategy 

adopted to deal with the inference problem determines the aspects of the 

transcriptional network that is highlighted and the type of research 

question that can be answered. The outcome of network inference 

therefore varies greatly between tools. In this chapter we give a 

comprehensive overview of existing network inference tools and 

illustrate how the different assumptions they make results in highlighting 

different parts of the transcriptional regulatory network. The work 

presented in this Chapter was published in the following paper [68]: 
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De Smet, R., Marchal, K. (2010). Advantages and limitations of 

current network inference methods. Nature Reviews Microbiology, 8, 717-

729. 

 

 

Figure 1- 5 Overview structure PhD-thesis. The thesis contains an introductory chapter 

(Chapter 1) and a concluding Chapter (Chapter 7). The main body of the thesis consists 

of two separate parts, one that discusses module inference methods (Chapters 2, 3 and 

4) and one that discusses network inference methods (Chapters 5 and 6).  Chapter 2 

gives a survey on query-based network inference methods, whereas Chapter 3, 4, 5 and 

6 introduce ensemble strategies for module and network inference. 
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Finally, Chapter 7 summarizes the results of this thesis and give a 

perspective on the future of network inference tools and ensemble 

methods in light of novel biological insights and current data generation 

technologies.  
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Chapter 2 

Query-based exploration of  gene expression 
compendia 

2.1 Introduction 
In Chapter 1 we introduced gene expression compendia as data 

structures that combine all available gene expression data for a certain 

organism. Considering the wide availability of publicly available gene 

expression data for model bacteria such as Escherichia coli and Salmonella 

Typhimurium, these compendia have high potential to study gene 

expression in a plethora of experimental conditions and offer to 

researchers the opportunity to view their own experiments in light of 

these data. The analysis of such compendia is however not trivial and 

requires the development of the appropriate data mining tools.  

In this chapter we focus on query-based datamining methods. These 

tools treat the compendium as a database and query the compendium for 

genes coexpressed with a certain set of genes of interest to a researcher, 

hereto further referred as the query. This query can consist of one or 

multiple genes, and the query-profile is represented by the average 

expression profile of the query-genes in case of multiple genes or the 

profile of the gene itself in case a single gene is taken as input. Given a 

query-profile as input these methods produce as output a list of genes 

that shows within the expression compendium coexpression with the 

query. As gene expression compendia are often heterogeneous in the 

experimental conditions they contain it is crucial to not only select the 

genes coexpressed with a query, but to also select the conditions under 

which these genes are actively regulated. Indeed, the presence of 
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conditions in the data set under which the transcriptional program is not 

active will reduce the signal-to-noise level of the data and complicates 

identifying sets of coexpressed genes. 

Condition-dependent coexpression amongst genes generally implies 

functionally relatedness as genes that are coexpressed are subject to 

similar regulation mechanisms. Consequently, one can take advantage of 

the functional annotations of other genes than the query to predict a 

function for the query-genes or alternatively use the functional 

annotation of the query-genes to attribute functions to the genes that are 

coexpressed with the query. This strategy is also known as the ‘guilt-by-

association-principle’. This principle allows exploiting query-based tools 

to answer questions of the nature: ‘Which other genes are involved in 

similar functions as my query?’ ‘What biological functions is my query 

involved in?’ ‘Under which specific conditions is biological process X 

activated?’ 

Here we distinguish between two different kinds of query-based 

approaches: the prioritization methods and the query-based biclustering 

methods. Prioritization methods rank all genes within the data set 

according to their similarity with the query, whereas query-based 

biclustering relies on module detection and outputs well-demarcated sets 

of genes that show condition-dependent coexpression with the query-

genes. In this chapter we discuss both approaches and give examples of 

how they can be applied. We also discuss their shortcomings as these will 

be addressed in a next chapter. As in subsequent chapters we choose 

query-based biclustering approaches over prioritization methods we also 

argument this choice within this chapter.  

2.2 Gene prioritization methods 
Gene prioritization methods are rank-based and sort all the genes in the 

genome based on condition-dependent similarity in expression with a 

given set of query-genes. The different prioritization methods differ in 

the criteria they use to select the relevant conditions and the way they 

score genes for their similarity with the query. 
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Most prioritization methods [69;70] follow an iterative scheme: they 

first calculate condition scores which reflect the significance of the 

conditions to the query: i.e. those conditions are chosen for which the 

query-genes are differentially expressed. In a second step genes are 

ranked according to their gene scores which reflect their similarity in 

expression to the query for the selected conditions.  

Gene Recommender (GR) [69], for instance, scores conditions 

based on a z-score which measures both differential expression of the 

query-genes as the tightness of coexpression of the query-genes with 

respect to the remainder of the genes in the dataset. Conditions are 

selected by putting a threshold on these z-scores and genes within the 

dataset are then ranked based on their correlation with the query for the 

selected conditions. This procedure can be repeated for different 

thresholds on the condition z-scores and Owen et al. [69] propose to 

select as the most appropriate threshold the one that ranks the query-

genes to the top. Hence the threshold for the condition scores is 

determined a posteriori, which makes the method rather computationally 

intensive as calculation of the gene scores needs to be repeated for a 

range of different possible threshold values. Owen et al. [69] compiled a 

Caenorhabditis elegans expression compendium containing 553 arrays, 

profiling gene expression in diverse set of experimental conditions. 

Using Gene Recommender they queried this compendium for genes 

coexpressed with five C. elegans genes involved in the retinoblastoma 

complex (Rb). As such two new genes could be discovered that were 

experimentally shown to have related functions. 

The Serial Pattern of Expression Levels Locator (SPELL) [70] in 

contrast circumvents the need to select a condition subset relevant to the 

query by not putting a hard threshold on the condition scores but by 

using the condition scores themselves as weights to rank the genes 

according to their condition-dependent coexpression with the query. 

Specifically, SPELL groups similar conditions into ‘experiments’ and 

assesses the relevance of each experiment as the average Pearson 

correlation of the query-genes for this experiment. Hence, experiments  
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Figure 2- 1 Example output for Serial Pattern of Expression Levels Locator (SPELL) 

[70]. Three functionally related yeast genes (GAL4, GAL80 and GAL3) were taken as 

input. A weight (here represented as percentages with respect to the sum of all weights) 

is assigned to each experiment (called ‘Dataset’ in the figure) based on expression 

coherence of the query-genes for the conditions within this experiment. Next, all genes 

within the gene expression data set are ranked according to their weighted correlation 

with the query-genes. Here top-scoring genes include genes that, just as the query-

genes, are involved in galactose metabolism. 

in which the genes within the query have a more coherent expression 

profile get a higher weight (condition score). These condition scores are 

further used to rank the remainder of the genes based on their average 

weighted Pearson correlation with the query, with weights being equal to 

the condition scores. Consequently, genes that are coexpressed with the 

query in experiments for which the query-genes themselves are tightly 

coexpressed are prioritized by this method. An example of a SPELL-

output is given in Figure 2- 1. The authors applied SPELL to a S. 

cerevisiae gene expression data set spanning 2394 conditions. Taking 
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advantage of the extensive knowledge on the yeast gene functions, this 

approach could be used to attribute novel functions to different S. 

cerevisiae genes. The gene Arp8, for instance, was predicted and 

subsequently experimentally verified to be involved in cellular 

morphology. In addition the previously uncharacterized gene YDL089W 

was predicted to be involved in sporulation, which is in line with 

literature-based evidence.  

Remark that both Gene Recommender and SPELL require multiple 

query-genes as input, as their calculation of the condition scores depends 

on the coherence in expression (Gene Recommender and SPELL) and 

differential expression (Gene Recommender) of the query-set. For Gene 

Recommender, for instance, the authors advice taking an input set of at 

least five genes as these seem to outperform random gene sets, whereas 

this is not the case for query-sets of smaller sizes [69]. This number 

depends however on the compendium used. In addition, as both 

methods rely on expression coherence of the query-genes to calculate the 

condition scores and also in the subsequent gene ranking, the genes 

within the query should be tightly coexpressed and consequently such an 

approach presumes prior knowledge on the functionality of the query-

genes. Owen et al. [69], for instance, remarked that cases exist where a 

single query-set can be further divided into subgroups with distinct 

expression profiles. Running GR on the whole set will therefore result in 

a loss of specificity of the query-results and thus it is recommended to 

run the method on the subgroups. However, such prior knowledge on 

potential subgroups is often not available and therefore restricts the 

usability of these approaches to well-characterized systems. 

To alleviate this problem of prior knowledge on the query list, Adler 

et al. [71] proposed a new approach in which it is possible to work with a 

single query-gene. To allow for this they depart from the classical scheme 

that first selects the relevant conditions before ranking the genes. Instead 

they construct ranked gene-lists for each experiment in the compendium, 

with genes being ranked according to the pairwise Pearson correlation of 

the genes with the query. For each gene the individual experiment-

related ranks are aggregated into one score which assesses its similarity to 
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the query-gene across all datasets. In case the query-set consists of 

multiple genes the average profile of these genes is used to get ranked 

gene lists. For each ranked gene the relevant experiments can be 

obtained as those for which the gene showed the lowest rank (highest 

Pearson correlation) w.r.t. the query. This framework is called the Multi-

Experiment Matrix (MEM) [71]. Taking such an approach has several 

consequences. First, since gene selection precedes condition (or in this 

experiment) selection, the different genes that are selected as having an 

expression profile that is highly similar to that of the query do not 

necessarily have to show this similarity for the same experiments. 

Therefore, it is possible that these genes divide into different subgroups 

if the query-gene is involved in different functions. Consequently, a 

clustering method in post-processing might be required to obtain better 

insight into the query’s function. Secondly, since no explicit experiment 

selection precedes gene ranking, spurious correlations might be detected 

for experiments in which the query-genes are not significantly 

differentially expressed. Therefore, Adler et al. [71] incorporated a pre-

processing step which filters out all datasets for which the expression of 

the query is not substantially up- or down-regulated. This requires setting 

a threshold on the variance in expression of the query for each 

experiment in order to a priori eliminate datasets for which the query has 

a flat expression profile. This approach is rather ad hoc as the choice for 

the threshold depends on the user while this filtering step is rather 

crucial in obtaining reliable results.  

Using the mouse NANOG gene as a query, the method was shown 

to be able to retrieve other genes that are just as NANOG known to be 

involved in embryonic stem cells. Likewise, using the Mini Chromosome 

Maintenance (MCM) protein complex as an illustrative example it was 

shown that additional members of the complex could be recruited if a 

subunit was taken as query. MEM is made publicly available as a 

webservice which allows querying multiple datasets for multiple 

organisms [71].  
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2.3 Query-based biclustering 
An alternative to the prioritization methods mentioned above are the 

query-based biclustering methods. In contrast to outputting a ranked list 

of genes relevant to the query, these methods implement hard 

thresholding in their algorithmic framework to output a well-demarcated 

set of genes together with the corresponding conditions. We refer to 

these sets of genes together with their associated conditions as modules or 

biclusters. As these methods perform a ‘query-based’ search, the biclusters 

are algorithmically enforced to contain a set of query-genes together with 

genes that are coexpressed with the query. Existing query-based 

biclustering methods are the Signature Algorithm (SA) [12], ProBic [72] 

and Query-Driven Biclustering (QDB) [73]. Figure 2- 2 displays an 

example of a query-based biclustering output.  

By thresholding the ranked gene lists obtained by prioritization 

methods such as SPELL and GR also well-confined sets of genes and 

their corresponding conditions can be obtained for a certain set of 

query-genes. The true distinguishing feature of query-based biclustering 

is, however, that here thresholding of the gene and condition scores is 

coupled whereas for prioritization methods this is not necessarily the 

case. For instance, as in both Gene Recommender and SPELL, the 

condition selection step precedes gene ranking, the condition content 

stays the same irrespective of the chosen cut-off on the gene scores. This 

is contra-intuitive as one would expect the condition content to change, 

with a changing threshold on gene coexpression. Indeed, a small set of 

genes is often tightly coexpressed across a larger set of conditions (e.g. 

operons), whereas with an increasing number of genes the conditions for 

which gene coexpression can be detected generally diminishes (e.g. 

regulons). Therefore query-based biclustering methods incorporate 

thresholding on coexpression in both the gene and condition direction 

within their algorithmic framework, in stead of defining thresholds in 

post-processing. As such gene selection is always coupled to condition 

selection and more biologically motivated modules can be obtained.  
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Figure 2- 2 Illustration of query-based biclustering. The figure shows the heatmap of a 

bicluster obtained by query-based biclustering. The query-gene profile is indicated by 

the white rectangle. A by ChIP-chip newly identified target ‘STM1239’ of the Salmonella 

Typhimurium regulator InvF [74] was taken as input of QDB [73]. The resulting 

bicluster seemed to contain all other known InvF targets (indicated by the black squares 

on the left), suggesting that STM1239 is indeed a functional target of this regulator. In 

addition, the bicluster is clearly enriched for invasion-related genes in S. Typhimurium 

(indicated by the grey squares on the left). This further substantiates the observation 

that STM1239 is a novel invF-target as invF is a known regulator of the S. 

Typhimurium invasion pathway.   

By implementing hard thresholding within their algorithmic 

framework query-based biclustering methods have several advantages 

over prioritization methods: 

• Query-based biclustering methods, in particular those that 
incorporate probabilistic frameworks (QDB and ProBic), 

report empty biclusters if none of the genes within the 

compendium could be found to be sufficiently coexpressed 

with the query-genes. Prioritization methods, in contrast, 

always output a ranked list of genes, even if there is no 

significant coexpression of the query-genes with any of the 

compendium genes. 
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• Each of the query-based biclustering methods described 
here accepts a single gene as query input. This in contrast to 

prioritization-based methods (with the exception of MEM), 

which require multiple query-genes as input and in general 

perform better if the query-set grows in size [69].  

• Implementing hard thresholding in the algorithmic 
framework has as advantage that query-sets can be refined. 

Query-genes that drop out off the module are expected to 

differ in expression and also in function from the remainder 

of the query-genes.  

In what follows we discuss several query-based biclustering 

methods. We focus in particular on two important features of query-

based biclustering approaches: first how they retrieve biclusters centered 

on the query-genes. Secondly, we discuss how thresholding is defined in 

the gene and condition direction in order to obtain well-demarcated 

biclusters containing a certain subset of the compendium genes and their 

associated conditions. As QDB was used extensively in this thesis this 

method will be described into more detail than the other ones.  

2.3.1 Performing a query-centered search 

In Chapter 1 we mentioned that biclustering of gene expression 

compendia is underdetermined: there are many possible configurations 

of genes and conditions in biclusters that all explain the expression data 

equally well. Query-based biclustering constitutes a way to render the 

biclustering problem better-defined by taking advantage of prior 

knowledge on the ‘location’ of the bicluster in the shape of a set of user-

defined query-genes. Indeed, seeding a biclustering algorithm with a set 

of query-genes biases biclustering towards the region of the search space 

one is interested in, thereby reducing the chances of the algorithm 

getting stuck in biological irrelevant local optima. Query-based 

biclustering algorithms differ in the way they exploit the expression 

profile of the query-genes to output biclusters containing the query. Here 
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we discuss different methodological strategies used to obtain biclusters 

containing a given set of query-genes. 

All three query-based biclustering methods mentioned above 

(Signature algorithm, QDB and ProBic) initialize the algorithm with the 

query and then, similarly as for SPELL and GR, a two-step procedure is 

followed in which first the conditions are selected that are relevant to the 

query-gene before genes are recruited that show similar condition-

dependent expression profiles to the query-gene. In the probabilistic 

methods QDB and ProBic this scheme is repeated iteratively, such that 

the gene and condition content is continuously refined until convergence 

is reached. Therefore it is important for these methods to include a 

mechanism that prevents the bicluster to drift away from the query in 

consecutive iterations. Both in QDB and ProBic strong informative 

priors are used to enforce the bicluster to remain centered on the mean 

expression profile of the query. While this imposes a bicluster to contain 

the query, this restricts the flexibility in the biclusters that can be found. 

Indeed, bicluster solutions that still contain the query but that are not 

centered on the expression profile of this query-set, will not be retrieved 

by these methods.  

SA, in contrast, does not rely on a Bayesian framework and assesses 

whether the weighted uncentered covariance of the genes with the query-

profile exceeds a certain threshold in order to assign genes to the 

bicluster. Hence, this method can find bicluster solutions that are not 

constrained to be centered on the query-profile.  As the SA does not rely 

on a probabilistic framework it is not possible to use priors to stop the 

bicluster from drifting away from the query, therefore gene and 

condition selection is only performed once and no further refinement of 

gene and condition content in iterative steps is performed. Later the SA 

was extended to the Iterative Signature Algorithm (ISA) which just as the 

SA is initialized by a set of genes (the query) but then iteratively performs 

multiple SA-steps in order to further refine genes and conditions until 

convergence in both gene and condition direction is reached [75]. 

However, as ISA does not implement a strategy to stop the bicluster 

from drifting away from the initial gene set, there is no guarantee that the 
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resulting bicluster will still contain the query. Therefore ISA is generally 

used as a global biclustering method, aimed at identifying the more 

dominant patterns in the data set that do not necessarily contain the 

genes that were used to seed the method. The SA is then the query-based 

variant of the ISA algorithm.  

2.3.2 Incorporating the threshold 

Query-based biclustering approaches distinguish themselves from the 

prioritization methods in that they do not output all genes ranked 

according to a score, but implement hard thresholding to output well-

demarcated sets of genes and conditions. For SA two different 

thresholds need to be defined, one to select the genes relevant to the 

query (gene score threshold) and one to select the corresponding conditions 

(condition score threshold). Alternatively, the probabilistic methods QDB and 

ProBic rely only on one parameter that needs to be set in order to define 

the bicluster boundaries: an informative prior, called the priorvariance (see 

2.3.3.1 for a more detailed explanation on this parameter).  

Both the priorvariance as the gene score threshold determine the 

bicluster size, i.e. these parameters control the expression coherence 

within the bicluster and concomitantly the number of genes and 

conditions. The more stringent these parameters are set, the more tightly 

genes within the bicluster are coexpressed and the smaller the number of 

genes belonging to the bicluster. We further refer to these parameters as 

the resolution parameter of the algorithm as it controls the biological detail 

of the bicluster (small, very homogeneous biclusters vs. larger, less 

homogeneous biclusters). 

In ProBic the value for the resolution parameter is fixed a priori. 

However, choosing one fixed threshold for all queries, as is the case for 

ProBic, ignores the possibility that for not all biological processes the 

same stringency in coexpression is equally important. Indeed, depending 

on the query and the interest of a certain researcher a different stringency 

in coexpression might be desirable as is illustrated in Figure 2- 3. 

Therefore, SA and QDB reason that it is not a priori known how tightly 
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other genes should be coexpressed with the query to be deemed 

biologically relevant and these methods incorporate a resolution sweep 

approach (illustrated in  Figure 2- 4). In this approach a linear range of 

possible values for the resolution parameter are scanned and hence a 

whole range of biclustering solutions is obtained. As will be discussed 

below different ways exist to select appropriate values of the resolution 

parameter amongst the spectrum of solutions that results from the 

resolution sweep approach. 

 

 

 

 

 

 

Figure 2- 3 This figure illustrates that the stringency of coexpression depends on the 

biological process studied. A gene known to be regulated by PurR (purH) and FNR 

(fdnG) were both taken as input of respectively QDB and the signature algorithm. We 

retrieved biclusters for different stringencies of coexpression (x-axis), for QDB this is 

controlled by the priorvariance whereas for the SA the gene score threshold controls 

coexpression tightness. To assess the biological relevance of the obtained biclusters for 

the different values of the respective resolution parameters we calculated their ability to 

reflect known regulon information present in RegulonDB [65]. Specifically, the F-

measure (y-axis) balances the precision and recall with which both methods infer 

known targets of the regulators PurR and FNR. Maximal values for the F-measure are 

indicated by red (PurR) and black (FNR) circles. As can be seen from the figure, for 

both methods maximal F-measures correspond to different values of the resolution 

parameter. This suggests that depending on the biological process studied different 

stringencies of coexpression are required to obtain the most biologically relevant 

outcomes.  
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Figure 2- 3 Caption on previous page. 
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Figure 2- 4 Caption on next page.  
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Figure 2- 4 Illustration of the resolution sweep approach for QDB. A. Represents the 

evolution of the bicluster gene (blue) and condition (green) content for an increasing 

value of the resolution parameter in QDB (x-axis). With increasing values of this 

parameter the biclusters grow in the number of genes whereas the number of 

conditions they contain decreases. B. The heatmap (top) and expression profiles 

(bottom) are plotted for two different values of the resolution parameter. Query-genes 

are indicated in white rectangles in the heatmap plot, whereas in the profile plot the red 

profile corresponds to the expression profile of the query-genes (x-axis are conditions, 

y-axis the expression values). The grey profiles in the profile plot correspond to the 

remainder of the bicluster genes. The left panel illustrates the bicluster for a smaller 

value of the resolution parameter, resulting in a bicluster with only 4 genes that are all 

very tightly coexpressed with the query-gene (profile plot). For a higher value of the 

resolution parameter (right panel) a bicluster is obtained with more genes and fewer 

conditions. In addition, here coexpression of the bicluster genes is less tight, as 

indicated by the profile plot.  

2.3.3 Intermezzo: a Bayesian framework for query-based 
biclustering 

At the core of the query-driven biclustering algorithm (QDB) is a 

probabilistic biclustering framework developed by Sheng et al. [76]. The 

advantage of using a probabilistic framework is that it allows for the 

introduction of a query as a prior distribution.  

2.3.3.1 Biclustering framework 

Let 1 2( ... )mcc cE e e e=  be a gene expression data set, with jc
e  a vector 

that describes the expression values of the data set’s genes under 

condition j. Then the expression data can be described by two Gaussian 

models, one for the bicluster data and one for the background data. We 

can not exclude the possibility that the background data also contains 

modules, however here we concentrate on extracting one module at a 

time: the one that contains the query-genes. As for the bicluster model 

we define Gaussian distributions for each condition (column) within the 

data set: ( )( )2
~ , , 1...jc bcl bcl

j je N j mµ σ =  (Figure 2- 5 – left panel). A similar 
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condition dependent Gaussian distribution is defined for the background 

model.  

Given the bicluster and background model, for each gene and 

condition within the data set a loglikelihood-ratio can be calculated that a 

gene/condition belongs to the bicluster as opposed to the background. 

The loglikelihood-ratios represent respectively the gene and condition 

scores. Besides the Gaussian models, the framework also incorporates 

hidden labels for genes and conditions (Figure 2- 5 – right panel). These 

labels indicate whether a certain gene/condition belongs to the bicluster. 

Because we work in a Bayesian manner we assume that these labels are 

the outcome of Bernoulli distributed random variables, one for each row 

(gene) and column (conditions). Labels are determined both by the 

loglikelihood ratio as parameters which express prior knowledge on the 

bicluster size. We refer to Figure 2- 5 for a schematic representation of 

the framework. The algorithm proceeds by iteratively determining the 

parameters of the Gaussian models ( ( )bcl bgd
j jµ µ  and ( )bcl bgd

j jσ σ ) from the 

data, while keeping the labels for genes  and conditions fixed and 
deriving the labels for genes ( g ) and conditions ( c ) while keeping the 

model parameters fixed. This procedure is repeated until convergence to 

a local optimum is reached. For this task Conditional Maximization is 

used [77].  

2.3.3.2 Query 

Within Bayesian statistics prior probabilities are often used to represent 

ones believe in a certain event. In this framework the query is treated as 

prior knowledge with respect to the location of the bicluster. Therefore, 

we discuss in this section the prior distributions within QDB that allow 

performing a query-based search. Setting the parameters of these prior 

distributions in an intuitive way allows directing the search for biclusters 

that contain genes whose expression profile resembles that of the query.  

By choosing for an informative prior on the mean of the bicluster 

model bcl
jµ  (equation 2.1) it is guaranteed that the bicluster remains 

around the query-genes. Indeed, this parameter is determined by the 

weighted average of the mean expression of the bicluster genes bcl
jµ  and 
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the prior mean bcl

j
ϕ  (Figure 2- 5). The trade-off between both terms is 

determined by the number of pseudocounts bclκ  and the number of 

genes in the bicluster 
1

g . By setting the number of pseudocounts to 

infinity we make this prior very informative and the mean of the 

bicluster model will be mainly determined by the prior mean. To restrict 

the location of the bicluster around the query the prior mean bcl

j
ϕ is set 

equal to the average expression profile of the query-genes.  
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As the prior on the mean determines the location of the bicluster 

but not its size a second informative prior is introduced on the variance of 

the bicluster model bcl
jσ  (equation 2.2). Similar to the prior on the mean 

this parameter is determined by the weighted average of the variance in 

expression of the biclustergenes ( bclv ) and the priorvariance ( )2bcl
js , with 

proportionate weight of both being determined by the number of 

pseudocounts bclv  and the number of genes in the bicluster (
1

g ). Here 

also the prior is made informative by setting a high value for the 

pseudocounts and hence the variance of the bicluster model is primarily 

determined by the priorvariance ( )2bcl
js . Because we do not know in 

advance the exact value of bcl
js  for which biologically relevant biclusters 

can be found, a resolution sweep approach is used in this framework. As 

such the value of the priorvariance bcl
js  increases linearly in the course of 

the algorithm. For low values of this parameter small homogeneous 

biclusters are obtained whereas for increasing values large, 

heterogeneous biclusters are retrieved. Hence, the priorvariance mainly 

determines the size and the compactness of the biclusters. 
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Besides the prior for the mean and the variance of the bicluster, 

priors for the other model parameters (mean background model, 

variance background model, gene labels and condition labels) are 

defined. These are however of less importance to the introduction of the 

query and therefore we refer to Dhollander et al. [73] for further 

discussion of these parameters. 

 

Figure 2- 5 Schematic representation of the probabilistic framework for query-driven 

biclustering [73]. In the left panel the columnwise normal distributions of the bicluster 

and the background model are represented. The mean and the variance of these 

distributions are indicated by circles, whereas the hyperparameters of the corresponding 

priordistributions are indicated by rectangles. In an iterative procedure the parameters 

of these statistical models are determined in case the location of the bicluster 

(determined by gene and condition labels) is presumed fixed. The right panel of the 

figure represents how the binary gene labels are determined if the model parematers 

and the condition labels are assumed fixed. Figure is taken from [73].  
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2.3.4 Bottlenecks of query-based biclustering 

approaches 

2.3.4.1 Selecting the appropriate threshold 

As was discussed in the previous section both SA and QDB incorporate 

a resolution sweep approach and consequently output for the same set of 

query-genes a large range of biclustering solutions corresponding to 

different thresholds on coexpression. Therefore running these 

algorithms for a specific query-set requires selecting the most 

appropriate biclustering solutions a posteriori. Different selection criteria 

for such task have been previously defined. Here we distinguish between 

internal and external selection criteria [78]. Internal criteria refer to 

selection methods that assess the output of query-based biclustering 

using criteria inherent to the method used, i.e. they use no external data 

to assess the bicluster quality. External criteria measure the performance 

by assessing the outcome relative to external information which refers to 

the true class labels of the genes (e.g. GO annotation).  

Internal criteria 

• As QDB incorporates a Bayesian framework the 
loglikelihood-score for each solution, corresponding to a 

certain value of the resolution parameter, can be calculated 

and can consequently be used to identify the statistically 

most relevant solutions. To accommodate for model 

complexity (i.e. the likelihood score depends on the number 

of conditions in the bicluster) a Bayesian model selection 

criterion based on the Akaike Information Criterion (AIC) 

[79] was proposed by Dhollander et al. [73]. AIC-score = 2 l 

– 2k with l the loglikelihood and k the number of model 

parameters. Statistically relevant biclusters are selected as 

those that represent local optima of the AIC-score.  

• An alternative way of selecting the solutions for as well 
QDB as ISA is to select those resolutions for which the 
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gene content changes significantly. It is indeed possible that 

certain values of the resolution parameter introduce larger 

changes in the gene content of the biclusters than others 

(see Figure 2- 6 for an example). Such transitions might 

correspond to biologically interesting patterns, e.g. the 

transition of a bicluster containing tightly coexpressed 

operon-members towards a bicluster containing less-tightly 

coexpressed regulon members. To identify those values of 

the resolution parameter for which the bicluster content 

changes drastically, the distance (e.g. cosine distance) in the 

gene score vectors obtained for biclustering outcomes 

corresponding to subsequent values of the resolution 

parameter can be calculated. Large jumps in this distance 

measure correspond to large changes in gene content and 

indicate potentially interesting bicluster solutions.   

• Alternatively, to get a sense of the reliability of the identified 
biclusters, Ihmels et al. [12] introduced the recurrence property: a 

bicluster is deemed more stable if it can be retrieved from 

multiple input sets. However, such a property goes against 

the intuition of a query-based approach as the assessment 

measure requires multiple query-sets to be assessed such that 

the reliability of the module can be obtained.  

• Segal et al. [80] introduced expression coherence as a measure 
that assesses the tightness in expression of a bicluster. 

Expression coherence is measured as the fraction of gene 

pairs within a bicluster for which the Euclidean distance 

between their expression profiles is less than a certain 

threshold (usually 5th percentile of the expression distances 

for all genes in the genome). To estimate the significance of 

the expression coherence score, the score for the bicluster is 

compared to that of randomly generated genesets of the 

same size and with the same number of conditions. To our 

knowledge this score has not been applied yet to assess the 

significance of the bicluster solutions but could potentially 
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be applied to this end. However, as it relies on permutation 

testing to assess the significance of the expression coherence 

score it is rather computationally intensive.  

• Alternative measures have been defined to assess the 
expression quality of the biclusters that do not rely on 

permutation testing. Cheng & Church [[81] introduced the 

mean squared residue to assess bicluster expression coherence -

and this measure was later used to assess bicluster quality 

[82]. The mean squared residue calculates for each condition 

the variance of the expression values contained within the 

bicluster. As for a certain condition the genes within the 

bicluster should be all coherently up- or down-regulated this 

variance should be as small as possible. Hence, biclusters 

that are coherent in their expression profiles have a minimal 

mean squared residue value. This measure, however, only 

assesses coherence and gives no information on the 

differential expression of the genes within the bicluster. 

Consequently, it is possible to assign high mean squared 

residue values to biclusters that only constitute noise (i.e. 

genes that have expression patterns close to zero for all 

conditions). Therefore Zhao et al. [72] not only assessed 

expression coherence of the bicluster genes within all 

conditions, but also the variance of the gene expression 

profiles across conditions (STD-across). Biclusters that are 

both coherent in their expression and that contain genes 

that are differentially expressed have a high ratio of their 

STD-across to their mean-squared residue. On a similar note 

Reiss et al. [73] introduce the Root Mean Square Deviation 

(RMSD) which accounts both for data set coverage and 

coexpression coherence.  

External criteria 

• An alternative way to choose the appropriate bicluster 
solutions amongst the spectrum of solutions outputted 

by the different algorithms is to rely on functional 
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annotations or annotations of the regulatory 

interactions. Indeed, a biological relevant bicluster 

corresponds to one that contains functionally coherent 

genes. Therefore functional enrichment analysis for 

bicluster approaches and gene set enrichment analysis 

[83] for prioritization-based approaches constitute a 

good alternative to select biological relevant biclusters in 

the presence of reliable gene annotations. However, 

such an approach biases towards what is known and is 

only applicable to well-characterized biological systems 

and/or organisms.  

 

 

 

 

Figure 2- 6 Comparison of different threshold selection methods to detect relevant 

values for the resolution parameter. Two different query-genes, fdnG and purH were 

taken as input of QDB. For both query-genes a large range of biclustering solutions 

was obtained corresponding to different values of the resolution parameter (X-axis). 

For the outputs for both queries three different selection methods were used to select 

the most relevant biclustering outputs: (1) the Akaike information criterion (“AIC”) 

(internal), (2) the cosine distance (“cosine”) function to assess similarity between 

genescore vectors (internal) and (3) the enrichment for known targets of the TFs 

regulating the respective query-genes (FNR and PurR) as assessed by hypergeometric 

test (“regulonDB”) (external). The figure shows that the three different selection 

criteria do not agree on the most relevant solutions. The solutions indicated by AIC and 

the cosine distance clearly differ from those deemed biologically most relevant by the 

hypergeometric test. In addition each of them indicates different possible solutions, 

making it difficult to decide upon one of them. 
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Figure 2- 6 Caption on previous page.  
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Hence, depending on the method used and the prior information 

available on the biological system studied different selection criteria 

might be more appropriate. The internal criteria described here each 

define objective selection criteria that can be used to pinpoint a few 

relevant biclusters amongst the whole range of bicluster solutions that is 

outputted for a query-set in case of a resolution sweep approach. There 

is however no guarantee that these solutions also correspond to the ones 

that are most biologically relevant. In addition different selection criteria 

seem not to agree on the most relevant solutions (Figure 2- 6). In case 

biological information on the system is well abundant (external selection 

criteria) this might point the user to the most informative solution, 

however for non-model systems such information is often not present 

and in addition this biases the solution strongly to what is known and 

therefore hides new biology. Remark that this problem of defining a 

threshold on coexpression is not confined to query-based biclustering 

and also prioritization methods suffer from this problem.  

2.3.4.2 Heterogeneous query lists 

The second bottleneck corresponds to the restrictions each of the 

methods puts on the list of query-genes. Indeed, each of the query-based 

biclustering methods described here performs very poorly if a list of 

genes is taken as input which does not contain all genes with a similar 

expression profile.  

This failure is inherent to the way these methods treat the query-set: 

they all depart from the average expression profile of the query-genes. If 

a certain fraction of the genes within this set shows an expression profile 

that deviates from that of the remainder of the genes (i.e. outlier genes) 

then the query-profile will be deteriorated resulting in a loss of 

specificity. Hence, algorithms that use the average profile of the query-

set presuppose knowledge on the expression similarity of the query-

genes. The robustness of query-based biclustering methods to such 

outliers in the query-set can be tuned to a certain extent by for instance 

making the prior on the mean of the bicluster model less informative in 

the probabilistic frameworks (QDB and ProBic) [72]. SA, on the other 
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hand, is inherently more robust to such outliers as it does not enforce 

the bicluster to be centered on the average expression profile of the 

query-genes. However, even in these cases, once the number of outlier 

genes in the query exceeds a certain threshold no longer relevant 

biclustering outputs can be retrieved. Ihmels et al. [12] for instance 

illustrated that the SA is able to kick out a certain set of randomly added 

genes from a set of related query-genes as long as the ratio random genes 

to related query-genes does not exceed a certain threshold. In addition, 

when the query-set consists of gene sets that participate into different 

functional groupings, these different groupings can not be retrieved as 

the algorithm only outputs a single bicluster solution for a certain query 

and coexpression threshold.  

Hence, the fact that query-based biclustering methods use the 

average expression profile of the query-set limits their biological utility. 

To remediate this problem query-based biclustering methods are able to 

take as input single query-genes. Therefore if a query-set is 

heterogeneous in its expression profile, this problem can be alleviated by 

taking each gene of this set independently as input of the query-based 

biclustering method. This, however, often leaves the researcher with the 

interpretation of a large set of query-based search solutions, a problem 

that will be addressed in the next chapter.  

2.4 Applications of query-based search strategies 
As was discussed above the different prioritization and query-based 

biclustering methods implement different strategies to query gene 

expression compendia. Evidently, this has consequences for their 

practical use. Here, we give some guidance as to what specific problems 

can be solved using a certain tool. We cover the major possible 

applications of query-based biclustering methods as were retrieved from 

literature. It is, however, possible that other applications than the ones 

presented here can be thought of and therefore this list is not meant to 

be exhaustive.  

If a researcher is interested in a gene with as of yet unknown 

function and wishes to get additional insight into this gene’s function, 
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then query-based biclustering methods and MEM can be used to 

interrogate gene expression compendia for other genes coexpressed with 

this query-gene. Indeed, these methods do not require prior knowledge 

on the functionality of the query-genes as they work on query sets 

consisting of single genes. SPELL and GR in contrast require a set of 

functionally related genes as query and therefore are less appropriate 

when one wants to get insight into a gene’s function.  

If one wants to recruit additional genes with a similar function as 

the query-genes, all methods described here can be used as they are all 

meant to expand upon the query-set. They can do this by either 

outputting a well-demarcated set of genes coexpressed with the query as 

is the case with query-based biclustering methods, or by ranking genes 

according to their similarity in expression with the query, as is the case 

for the prioritization methods. 

Another possible application of query-based search methods is to 

refine the set of query-genes. Assume one departs from a set of genes 

with mostly functionally related genes, but with a few outliers. A possible 

application of query-based search methods would be to refine this query-

set to remove these outlier genes. For this purpose primarily query-based 

biclustering approaches are opportune as they output well-demarcated 

sets of genes that not necessarily need to contain all query-genes. GR, in 

contrast, is not well-suited for this purpose as it chooses the threshold 

for the condition scores as the one that ranks the query-genes to the top. 

Ihmels et al. [12], for instance, used the Signature Algorithm (SA) to 

refine the gene set involved in the TCA cycle in S. cerevisiae with the 

homologs of 37 E. coli TCA cycle genes as query.  

Remark, however, that due to the fact that all query-based search 

methods discussed here depart from the average query-profile in case 

multiple query-genes are given as input, their ability to refine the query-

sets is rather limited. Indeed, Ihmels et al. [12] illustrated that upon 

adding random genes to a specific query-set the same bicluster solution 

is retrieved until certain critical threshold is exceeded.  
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2.5 Conclusion 
In this chapter we introduced methods developed to interrogate gene 

expression compendia for genes coexpressed with a certain user-defined 

set of genes: the query. We distinguished between prioritization methods, 

which rank genes according to their condition-dependent coexpression 

with the query, and query-based biclustering methods, which output 

well-demarcated set of genes, coexpressed with the query, and their 

corresponding conditions.  

The major distinction between prioritization-based methods and 

query-based biclustering methods is the fact that the latter couples gene 

threshold selection and condition threshold selection. This allows query-

based biclustering methods to be used to explore different biclusters 

obtained for different thresholds on gene coexpression in a resolution 

sweep approach. As depending on the interest of the researcher or the 

biological case studied this threshold on coexpression might vary, such a 

resolution sweep approach allows to maximally explore the relevant 

information contained within a compendium for a certain query-gene by 

not restricting the outcome of the method to one out of many possible 

solutions. However, while providing extra flexibility in the biclustering-

solutions that can be obtained for a query-gene, this results in difficult 

post-processing of the outcome. In particular, we presented different 

possibilities to select the most relevant biclustering solutions for a single 

query out of a whole range of solutions outputted for different values of 

the resolution parameter. However, these selection criteria do generally 

not agree on what the most ‘interesting’ biclustering outcomes are and 

what is most ‘interesting’ seems to generally depend on what aspect of 

the bicluster a researcher is most interested in (e.g. tightness in 

coexpression, enrichment for certain functional categories, etc.).  

In addition, we also highlighted the problem query-based strategies 

in general struggle with if the query-set is heterogeneous in its expression 

profile. While query-based biclustering methods, in particular, seem to be 

able to cope with some outliers in the query-set [12;72], they fail to 

output a relevant bicluster if the proportion of outliers exceeds a certain 

threshold [12]. In addition, when the genes within the query-set partition 
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into different functional groupings, these can not be readily detected as 

the query-based biclustering methods only output one bicluster for a 

certain query-set and threshold on coexpression.  

In the following chapter we introduce an ensemble strategy for 

query-based biclustering that is able to simultaneously deal with query-

sets heterogeneous in their expression profiles and the multitude of 

solutions generated by a resolution sweep approach.  
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Chapter 3 

An ensemble method for querying gene 
expression compendia with experimental 

lists 

3.1 Introduction 
With the large body of publicly available gene expression data, 

compendia are being compiled that assess gene expression in a plethora 

of conditions and perturbations. Comparing own experimental data with 

these large scale gene expression compendia allows viewing own findings 

in a more global cellular context and pinpointing inconsistencies between 

public data and own experiments. In the previous chapter we introduced 

query-based search approaches such as prioritization-based methods [69-

71] and query-based biclustering techniques [12;72;73] to query a gene 

expression compendium for genes that are coexpressed with a given 

gene or gene list. These approaches generally combine gene with 

condition selection to identify genes that are coexpressed with the query 

in a subset of the compendium conditions.  

These query-based methods usually work well when the query list 

contains one gene only or a set of genes that are mutually tightly 

coexpressed as they query the expression compendium with the average 

expression profile of the query-set. However, when query-lists are 

compiled from the output of experimental assays this list will often 

contain genes with diverse expression profiles. For instance a query-list 

derived from a ChIP-chip experiment might partition into different 

coexpressed groups due to the existence of combinatorial regulation. 

Hence, when faced with a query-set that is heterogeneous in its 

expression, these methods will fail to output meaningful gene sets. A 

solution to this problem is to run these query-based methods on each 
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gene from the query-list separately. This avoids the query-profile to be 

deteriorated by genes within the list that exhibit a different expression 

behavior, but will inevitably result in at least partially redundant bicluster 

solutions as mutually coexpressed genes within the query will output 

similar biclusters.  

A second issue when using query-based biclustering concerns 

defining a threshold on the minimal level by which the additionally 

recruited genes should be coexpressed with the query. Indeed, it is often 

not a priori known how tightly a set of genes should be coexpressed to be 

biologically meaningful. In addition, this level of coexpression might 

depend on the biological process the query genes are involved in (some 

processes are more tightly coexpressed than others). To allow for a 

maximal flexibility, some query-based biclustering methods offer the 

possibility to use a resolution sweep in which a whole range of possible 

threshold values is scanned. The most relevant solutions can then be 

selected a posteriori, either based on the intuition of the user or by using 

other ad hoc defined selection criteria (such as functional 

overrepresentation). 

The combined effect of having to run the query-based biclustering 

on each of the genes from the query list separately with the fact that for 

each of these single runs also an optional  parameter sweep can be 

performed will result in highly redundant clustering results that all have 

to be  filtered manually by the user.  

In this chapter we present an ensemble clustering strategy to merge 

multiple query-based biclustering results into a few non-redundant 

consensus biclusters. The chapter is organized as follows: first we give a 

brief overview of the developed ensemble approach before providing 

methodological details. Next, we evaluate possible ways of constructing 

consensus biclusters on real data. Finally, we illustrate the usefulness of 

the developed approach on a biological case study.  

3.2 Overview developed ensemble approach 
Using query-based biclustering to interrogate gene expression compendia 

for gene lists heterogeneous in their expression profiles requires the 
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method to be applied to each gene from the list separately (Figure 3- 1, 

panel 1), often resulting in at least partially redundant solutions (Figure 

3- 2). To summarize the results of these gene-specific solutions, we 

developed an ensemble approach.  

As here we have to merge the outcome of a biclustering instead of a 

clustering algorithm, we separated the task of merging the gene sets 

obtained for the query-genes from that of merging the condition sets. 

Hence, we first construct a new similarity matrix from the ensemble of 

biclustering results (Figure 3- 1, panel 2) and restrict the construction of 

this matrix to the gene direction. This similarity matrix (the consensus 

matrix) represents the evidence for co-clustering of a certain gene pair 

assessed over multiple biclusterings of the data [54]. Graph clustering 

[84] is then applied to this matrix to partition the genes into consensus 

clusters (Figure 3- 1, panel 3). Finally, for each of the obtained gene 

consensus clusters the corresponding conditions are retrieved from the 

original biclustering-outputs (Figure 3- 1, panel 4).  

Central to the ensemble approach is the construction of the 

consensus matrix. Depending on whether the query-based biclustering 

method used incorporates a resolution sweep approach or not, 

construction of this consensus matrix might run over one (without 

resolution sweep) or two phases (with resolution sweep). 

Query-based biclustering algorithms that incorporate a resolution 

sweep approach [12;73] evaluate in one run of the algorithm, for a single 

query-gene, different biclustering outcomes corresponding to a varying 

threshold on coexpression. Therefore in a first phase, for each query-

gene a gene-specific consensus matrix is constructed which summarizes 

the co-clustering of the genes across these different biclustering 

outcomes. We reason that genes that co-occur in both fine-grained and 

coarser-grained biclusters, corresponding to a decreasing tightness of 

coexpression, are more likely to be truly functionally related than genes 

that only co-occur in coarser-grained biclusters. Therefore, genes that 

frequently co-occur over the results obtained with the varying resolution  
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Figure 3- 1 Caption on next page.  
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Figure 3- 1 Overview of the ensemble biclustering approach. 1) Targets from a ChIP-

chip analysis were each taken as input of the query-driven biclustering algorithm (QDB) 

[73]. Per single ChIP-chip target QDB results in a gene score and condition score 

matrix (G and C refer respectively to the gene and condition dimension of the 

matrices), containing for each value of the resolution parameter (indicated with Res) the 

loglikelihood score that a gene or condition belongs to the bicluster. Shades of grey are 

representative for the magnitude of the gene scores and condition scores. 2) 

Constructing the consensus matrix proceeds in two steps in which first a gene-specific 

consensus matrix is constructed for each query from its gene score matrix. This gene-

specific consensus matrix summarizes for each query-gene the QDB-solution obtained 

at different values of the resolution parameter. In a second step the gene-specific 

consensus matrices for all genes in the ChIP-chip list are merged into a single 

consensus matrix, representing the frequency of co-occurrence (again indicated by 

shades of grey) of two genes across the different QDB-solutions in which at least one 

of the genes occurs. 3) Next, by applying graph clustering the consensus matrix is 

partitioned into consensus clusters. 4) Eventually, consensus biclusters can be obtained 

by retrieving for each consensus cluster the corresponding conditions from the original 

QDB-solutions. 

parameter will obtain higher consensus scores  (i.e. have a higher weight 

of belonging to the same consensus bicluster) than those that only 

sporadically co-occur. This first step is only needed when using a query-

based biclustering algorithm that uses a resolution sweep.  

In a second phase, these gene-specific consensus matrices are 

merged into a single consensus matrix, which summarizes the outcomes 

of the query-based biclustering runs across all query-genes in the list. 

Here, we remove the redundancy in the gene sets obtained by the 

different biclustering runs by assuming that genes that repeatedly co-

occur in different biclustering outcomes of distinct query-genes form a 

single grouping. However, as not all query-genes give rise to similar gene 

sets, we aim not only at reducing the redundancy amongst the gene sets, 

but also to preserve to a maximal extent biclustering results that were  
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Figure 3- 2 Illustration of redundancy amongst the query-driven biclustering outcomes 

derived for a query-list from a ChIP-chip experiment [85]. This query-gene by query-

gene matrix reflects the redundancy amongst the query-driven biclustering results. Each 

matrix element represents the maximal overlap in terms of the genes belonging to each 

query-driven biclustering solution, as assessed by geometric coefficient (3.3.2.3). A 

value of 1 means that for a certain value of the resolution parameter the two query-

driven biclustering solutions have exactly the same gene content whereas a value of 0 

indicates that for none of the values of the resolution parameter the two query-driven 

biclustering results have a gene in common. The matrix was clustered and clusters 

represent groups of query-genes with highly similar QDB-outcomes. This figure 

indicates that there are indeed query-genes with highly similar query-driven biclustering 

results and therefore redundancy in the output exists. 

not repeatedly retrieved for different query-genes (i.e. the non-redundant 

gene sets). As such we stress genes that co-cluster consistently across 

different runs while also retaining gene sets specific to a certain query-

gene in order to retain as much information as possible contained in the 

original biclustering outcomes.  
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3.3 Methods 

3.3.1 Query-driven biclustering 

The strategy proposed in this paper can be used in conjunction with any 

query-based strategy. For illustrative purposes we use here the query-

driven biclustering algorithm (QDB) [73]. As QDB incorporates a 

resolution sweep approach, one run of the algorithm on a single query-

gene outputs multiple biclustering solutions, each corresponding to a 

different value of the resolution parameter. We further refer to the 

output of one such run of the algorithm as the ‘QDB-solution’. 

Briefly, QDB [73] incorporates a Bayesian framework and gives as 

output the loglikelihood ratio of each gene and condition belonging to 

the bicluster versus a background model, respectively called the gene 

score and condition score. A prior on the mean of the bicluster 

distribution enforces the bicluster to be centered on the expression 

profile of the query-gene. A second prior, on the bicluster variance, 

determines the degree of coexpression within a bicluster. The algorithm 

uses a sweep on the prior of the bicluster variance (i.e. resolution sweep) 

to evaluate in a single run of the algorithm all possible solutions that 

correspond to different degrees of coexpression (i.e. the resolution). As 

such the algorithm grows a bicluster around a query, first outputting 

bicluster solutions with only a limited number of genes and then growing 

the bicluster, for increasing values of the resolution parameter, in the 

number of genes. With an increasing number of genes, the bicluster gets 

coarser-grained as coexpression amongst the genes becomes less 

pronounced. A single run of the algorithm outputs the results for a 

specific query-gene and multiple values of the resolution parameter and 

consists of two matrices: the gene score matrix and condition score 

matrix. These matrices contain for each resolution the gene and 

condition scores (hence for each resolution a gene score vector and 

condition score vector is given). 
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3.3.2 An ensemble approach for query-based 
biclustering 

An overview of the computational framework is given in Figure 3- 1. 

3.3.2.1 Consensus matrix construction   

First, all results for a single QDB-run on a single query-gene from the 

list, obtained for nres different values of the resolution parameter, are 

merged into a gene-specific consensus matrix according to the same principle 

as Monti et al. [54]. Matrix entries Cij reflect the average gene pair-to-

bicluster membership across a sweep over the resolution parameter (i.e. 

the coexpression threshold):  
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Here, Gsi,t represents the genescore for gene i for the t-th value of in total 

nres possible values for the resolution parameter. 

In a second step these gene-specific consensus matrices are merged 

in a final consensus matrix, which summarizes the outcomes of the QDB-

runs across all nqdb query-genes in the list. For this purpose, we introduce 

a distributed consensus matrix construction approach. Here, the frequency of 

co-occurrence for a gene-pair (gene consensus score) is calculated as its 

sum over all gene-specific consensus matrices, normalized by the 

number of times a certain gene pair co-occurred in the gene-specific 

consensus matrices:  
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with ( , )r r
i jO C C  representing the co-occurrence function which is 1 if 

both genes belong to the same specific consensus matrix and otherwise 

0. The reason for this altered normalization as compared to the gene-

specific consensus matrix is that simply averaging the gene-specific 
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matrices across all QDB-solutions would erroneously downweigh those 

genepairs specific to a certain QDB-run (i.e. those that correspond to a 

query-gene not coexpressed to any of the other genes in the list) and 

reward genepairs retrieved by multiple QDB-runs (i.e. those that 

correspond to query-genes that are mutually coexpressed).  

We also tested whether the following transformations of the 

consensus matrix could further improve the quality of the obtained 

ensemble solution: 

• The Topological Overlap Matrix (TOM) [86] which does not 
only account for pairwise gene-gene co-occurrence, but also 

accounts for similarity in the other genes with which both 

genes co-occur in the QDB-solutions.  

• Pruning the consensus matrix by setting statistical insignificant 
consensus scores (i.e. low consensus scores) to zero. Statistical 

relevance of consensus scores is assessed by the disparity filter 

[87]. This method compares for each gene i the distribution of 

its consensus scores with all other genes (i.e. the values global
iC ⋅ ) 

to a null model and sets the least significant scores to zero. We 

choose our significance threshold such that 90% of the total 

consensus score (i.e. the sum of all consensus scores) was 

retained to avoid eliminating too many elements with large 

consensus scores from the matrix.  

3.3.2.2 Extracting consensus clusters from the consensus matrix 

We aim at obtaining non-redundant gene consensus clusters from the 

consensus matrix, each corresponding to distinct QDB-solutions. This 

problem can be approached as the clustering of a weighted graph, with 

weighted edges representing the gene consensus scores and nodes 

representing the genes. Here we compared several graph clustering 

methods that can be applied to weighted graphs. These methods include 

the Newman spectral modularity algorithm [88], affinity propagation 

(AP) [89], Markov clustering (MCL) [90], hierarchical clustering and a 

recently published fuzzy spectral graph clustering method [55]. 
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The Newman spectral modularity algorithm and the fuzzy spectral 

method select automatically the number of clusters. To select the 

optimal number of clusters for the remainder of the methods, we use for 

AP the default parameters, for MCL the efficiency measure [90] and for 

hierarchical clustering the median split silhouette coefficient [91].  

Graph clustering of the consensus matrix might result in gene 

consensus clusters that do not contain any of the genes included in the 

query-list. As these clusters do not contribute to the interpretation of the 

query-list in terms of the expression compendium these clusters are 

discarded.  

3.3.2.3 Obtaining consensus biclusters  

To map the conditions to the gene consensus clusters, we trace back the 

obtained gene consensus clusters to the original QDB-solutions from 

which they were derived. To find the corresponding QDB-solutions we 

use the geometric coefficient [92] to quantify the overlap in the genes for 

the original QDB-solutions and the consensus clusters: 
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with Gcons representing the genes in the consensus cluster and Gqdb the 

genes in the original QDB-solution. Since, each QDB-solution 

corresponds to different gene sets retrieved for different values of the 

resolution parameter, the overlap is calculated for each resolution 

separately. The condition score vector (i.e. QDB loglikelihood scores) 

that corresponds to the resolution for which this overlap is maximized is 

then retained. Next, the condition consensus scores for a particular gene 

consensus cluster are calculated as the weighted mean of all condition 

score vectors retained for this consensus cluster. The weight is chosen 

equal to the geometric coefficient, hence giving higher weight to 

condition score vectors belonging to bicluster outcomes better reflected 

by the gene consensus clusters. Finally conditions with a consensus score 

exceeding 0.75 (conditions occur in at least 75% of the condition score 

vectors) are retained. 
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3.3.3 Applying the ensemble approach 

As a proof of concept we applied the proposed ensemble biclustering 

approach to presumed FNR-targets obtained by ChIP-chip analysis [85]. 

In this experiment binding of FNR under anaerobic conditions was 

evaluated. The authors identified 63 genomic regions at which FNR 

binds. These 63 genomic regions were mapped to 90 genes as the 

authors assigned a bound region located in the promoter region of two 

divergently regulated genes to both genes [85].  

Each of the 90 potential FNR-targets was used separately as query 

in the query-driven biclustering algorithm [73]. As gene expression data 

set an E. coli gene expression compendium spanning 870 conditions was 

used [8]. For each of these query-genes 200 biclustering outcomes were 

obtained corresponding to 200 different values of the resolution 

parameter. For 44 out of the 90 query-genes QDB-solutions could be 

retrieved which contained all together 61 out of the 90 FNR ChIP-chip 

targets. For the remaining 29 genes no significant QDB-solutions were 

obtained, either because no additional genes were found to be 

coexpressed with the query-gene (26 cases) or because the number of 

conditions under which the genes were found to be coexpressed was not 

sufficient  (here at least 10 conditions were required to be included in the 

bicluster).  

For each of these 44 query-genes a gene-specific consensus matrix 

was constructed to aggregate its 200 biclustering outcomes. QDB-

solutions for each of these 44 query-genes were at least partially 

overlapping (Figure 3- 2), therefore these 44 gene-specific consensus 

matrices are merged into one consensus matrix. Consensus biclusters are 

finally obtained by applying graph clustering to the (transformed) 

consensus matrix and by retrieving the matching condition set from the 

44 QDB-solutions.  

To analyze the gene content of these consensus biclusters gene 

functional GO-categories were taken from EcoCyc [93]. To verify the 

presence of known FNR-targets within the consensus biclusters the 

known E. coli regulatory network was taken from RegulonDB [94]. 
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Heatmap visualizations of the consensus biclusters were made by using 

ViTraM [95]. 

3.3.4 Performance evaluation 

The following quality measures for the obtained consensus biclusters 

were devised, each of which measures a different aspect of these 

consensus biclusters. 

Degree to which they recapitulate the information contained within the original 

QDB-solutions: The overlap measure calculates for each consensus bicluster 

its maximal overlap in number of genes with the original QDB-solution 

by the geometric coefficient (see formula (3.3)). To obtain one score for 

the whole set of consensus biclusters obtained from a single consensus 

matrix we averaged this measure for the different consensus biclusters. 

This overlap measure is however asymmetric: different consensus 

biclusters might show maximal overlap with the same QDB-solution and 

hence the overlap might be high while the consensus solution is biased 

towards certain QDB-solutions only. Therefore we also calculate the 

query-gene coverage (coverage measure), which assesses whether the 

obtained consensus biclusters cover the information content of the 

QDB-solutions in its entirety. The query-gene coverage is calculated as 

the number of query-genes in the original QDB-solutions that belong to 

a non-trivial consensus bicluster (i.e. a consensus bicluster with more 

than 1 gene).  

Degree to which they remove redundancy: The redundancy measure evaluates 

the extent to which the consensus biclusters are able to reduce the 

redundancy present in the original QDB-solutions. We assume that 

query-genes with largely overlapping (or highly redundant) QDB-

solutions should belong to the same consensus bicluster. Consequently, 

we use Normalized Mutual Information (NMI) [96] to assess how well a 

clustering of the query-genes based on overlap in their QDB-solutions 

corresponds to the partitioning of the query-genes according to the 

consensus biclusters (see A.3).  
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Biological relevance:  The functional coherence measure assesses the 

biological relevance of the set of consensus biclusters produced from the 

consensus matrix. For each consensus bicluster a p-value for functional 

enrichment is calculated using the hypergeometric test (p < 0.01, 

Bonferroni-corrected for multiple testing). As from each consensus 

matrix multiple consensus biclusters are obtained, we use the clustering 

score function [59] to aggregate all p-values obtained for all consensus 

biclusters derived from the same consensus matrix into a single score. 

Let ns be the number of significantly enriched clusters and ni the number 

of insignificant clusters for a p-value cut-off c, then the functional 

coherence of a consensus solution is defined as follows:   
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Statitical quality: We also assessed the objective quality of the 

consensus biclusters by assessing whether consensus clusters derived 

from the consensus matrix have more intra-cluster edges than between-

cluster edges as evaluated by the modularity function. Modularity Q [97] 

compares, given a clustering and corresponding consensus matrix Cij, the 

fraction of the edges that falls within a given cluster minus the expected 

fraction if edges were distributed at random. The higher the modularity 

the better the cluster separation, with a maximum value of 1 for strong 

modular structures. Let ki be the weighted degree of node i, m the total 

weighted number of edges and the δ  function yields 1 if vertices i and j 
belong to the same cluster (otherwise the function is 0), then the 

modularity is given by: 
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Each of these metrics has a maximum value of 1, which makes their 

interpretation and comparison rather straightforward. 
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3.4 Results 

3.4.1 Analysis of different ensemble constructs 

To develop an ensemble approach that was able to maximally remove 

redundancy by merging the outcome of redundant biclusters into a single 

consensus bicluster, while also retaining as much as possible the 

information contained within the original query-based biclustering results 

(the results obtained before applying the ensemble approach), we tested 

(1) different transformations of the final consensus matrix (see 3.3.2.1) 

and (2) different graph clustering methods (see 3.3.2.2) to extract the 

consensus biclusters from the consensus matrix. The final consensus 

matrix, before applying any of the matrix transformation methods, was 

obtained as described in 3.3.3.  

To evaluate each of these strategies we used the following metrics 

that assess the quality of the final consensus biclusters: the degree to 

which the consensus biclusters are capable of recapitulating the original 

bicluster (“the overlap and coverage measure”), the degree to which they 

remove redundancy (“redundancy measure”), their biological relevance 

(“the functional coherence”) and their statistical relevance 

(“modularity”). 

We separately evaluated the result of both the matrix transformation 

and the graph clustering step as to not confound their effects on 

consensus bicluster construction. First, we compared the results 

obtained by applying different transformations of the consensus matrix 

in combination with the same graph clustering method. Specifically, we 

used a non-transformed consensus matrix, pruned consensus matrix and 

a Topological Overlap Matrix (TOM) (see 3.3.2.1). Pruning of the 

consensus matrix (see 3.3.2.1) might improve the outcome of the 

ensemble biclustering approach by excluding noise from the consensus 

matrix, as this filtering sets low consensus scores to zero. TOM on the 

other hand aims at increasing the robustness of the consensus scores by 

modifying them such that they do not only account for pairwise co-

occurrence of the genes within a biclustering solution, but by also 
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accounting for their joint co-occurrence with other genes. Although the 

absolute values of the quality measures depended on the used graph 

clustering method we consistently observed that using the pruned 

consensus matrix outperformed the two other consensus matrices for all 

evaluation metrics (Figure A- 1). As the effect of matrix transformation 

and graph clustering do not seem to be confounded we show in Figure 

3- 3A one representative obtained for a single graph clustering method 

(i.e. fuzzy clustering, the clustering for which the best quality measures 

were obtained). Although the effect was marginal, graph clustering with a 

pruned consensus matrix resulted in a slightly higher modularity value, 

biological relevance and overlap metric than using a non-transformed 

consensus matrix. A higher overlap value indicates that the consensus 

biclusters obtained with the pruned matrix are more truthful to the 

original QDB-solutions than those obtained with the non-transformed 

matrix. A higher modularity suggests that by applying the disparity filter 

before graph clustering more densely connected clusters can be obtained 

from the consensus matrix. These results suggest that it indeed makes 

sense to first prune the consensus matrix by filtering out irrelevant 

consensus scores before performing graph clustering. Applying TOM, 

on the other hand, seems to disturb the match between the consensus 

solution and the original QDB-solutions as indicated by the lower 

overlap and redundancy measures. 

Figure 3- 3B illustrates the effect of using different graph clustering 

methods on the obtained quality metrics. As a representative example we 

show the results obtained by applying the different graph clustering 

methods on the pruned consensus matrix. Results obtained by using the 

alternative consensus matrices as input are represented in Figure A- 1. 

We observe that fuzzy clustering has the best trade-off between 

removing redundancy while still agreeing largely with the original QDB-

solutions (with an average overlap of 70% with the original QDB 

solutions and a redundancy score of 0.84). AP performs similarly for 

these metrics but fuzzy clustering has a higher coverage for query-genes 

and outperforms AP with respect to the cluster density as assessed by 

the modularity measure. Figure 3- 4 indeed shows that the clustered 

consensus matrix obtained with fuzzy clustering shows  
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Figure 3- 3 Comparison of different ways to construct the consensus biclusters. A. 

Compares the influence of using different consensus matrix transformations on the 

quality of the final consensus biclusters assessed by respectively their overlap with the 

original QDB-solutions (‘overlap’), the extent to which redundancy amongst the QDB-

solutions is removed (‘redundancy’), their coverage for query-genes (‘coverage’), their 

functional coherence (‘func enrich’) and the modularity of the obtained clustered 

consensus matrix  (‘modularity’) (x-axis). For illustrative purposes we show the 

assessment of the final consensus biclusters for different matrix transformations, each 

time used in combination with fuzzy clustering. B. Comparison of the effect of using 

different graph clustering methods to extract from the consensus matrix the final 

consensus biclusters. Same assessment criteria as in panel A were used. Missing bars 

reflect a value of zero for the corresponding evaluation metric. For illustrative purposes 

only results obtained on the pruned consensus matrix are shown. 
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a more consistent block-diagonal structure than that obtained with other 

cluster algorithms. 

The results in Figure 3- 3 and Figure A- 1 further show that 

irrespective of the graph clustering or consensus matrix transformation 

method used, the obtained consensus biclusters are in good agreement 

with the original QDB-solutions, illustrated by high values for the 

overlap and coverage measure. In addition all tested strategies are 

capable of grouping highly redundant solutions into the same consensus 

bicluster as is illustrated by the redundancy evaluation metric. As the 

combination of the pruning transformation step with the fuzzy clustering 

outperformed the other methods for the used quality criteria we used 

this combination in the subsequent application. 

 

 

Figure 3- 4 Comparison of different graph clustering methods. The consensus matrix 

was sorted according to the cluster memberships obtained with the different graph 

clustering. A crisp clustering results in a block diagonal ordering of the values with high 

consensus scores.   
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3.4.2 A ChIP-chip case study 

Chromatine immunoprecipation in combination with microarray 

technology (ChIP-chip) is increasingly being used to measure protein-

DNA interactions in vivo. Being a high-throughput technology, ChIP-

chip data inevitably gives rise to false positives. In addition, the 

technology fails to distinguish non-functional from functional binding 

[98]. Hence ChIP-chip experiments need to be backed up by expression 

data that provide information on whether the identified target genes are 

indeed being regulated by the bound transcrtion factor (TF).  

We applied the proposed workflow to presumed FNR-targets 

obtained by ChIP-chip analysis (see 3.3.3) [85]. In this experiment 

binding of FNR under anaerobic conditions was evaluated, yielding a list 

of 90 query-genes containing 26 known FNR-targets [94]. For 44 out of 

the 90 query-genes, biclusters could be retrieved that were efficiently 

merged into 17 consensus biclusters (Table A- 1). These 17 biclusters 

cover 61 of the 90 ChIP-chip targets, amongst which 24 known FNR-

targets (Table 3 - 1).  

In what follows we use the results of these consensus biclusters to 

interpret the results of the FNR ChIP-chip experiment, i.e. to distinguish 

within the list of possible ChIP-chip targets the functional from the non-

functional or false positive ones and to pinpoint likely false negative 

targets that were not recovered by the ChIP-chip experiment.  

Table 3 - 1 Overview of ChIP-chip targets. The table (next page) contains the name and 

locustag of the 90 ChIP-chip targets. Black shaded boxes indicate whether a ChIP-chip 

target belongs to any of the consensus biclusters (‘In consensus’), whether it is a known 

FNR target according to RegulonDB (‘FNR target’), whether it belongs to any of the 

consensus biclusters enriched for ChIP-chip targets (‘In enrich’) (p < 0.01, Bonferroni-

corrected) or whether it belongs to any of the consensus biclusters with a high coverage 

for known FNR-targets (‘In coverage’) (at least one third of the genes is a known 

target). 
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Figure 3- 5 represents the 4 most interesting consensus biclusters 

obtained by interrogating the E. coli expression compendium with the 

initial FNR ChIP-chip target list. Consensus biclusters 5 and 12 contain a 

high enrichment for ChIP-chip targets (Table A- 1), suggesting that the 

ChIP-chip targets within these consensus biclusters constitute functional 

targets. Indeed, we expect that ChIP-chip targets of the same TF are co-

regulated and thus should be coexpressed. The hypothesis that the 

targets within these consensus biclusters are functional targets is further 

supported by the observations that these consensus biclusters are mainly 

composed of conditions that measure the effect of oxygen (Figure 3- 5A) 

and show a high coverage for known FNR-targets (Figure 3- 5B). In 

total these consensus biclusters covered 24 FNR ChIP-chip targets of 

which 7 novel ones, not documented in [94]. In addition they contained  

Figure 3- 5 Consensus biclusters obtained by interrogating an E. coli expression 

compendium with the target list of a FNR ChIP-chip experiment. A. Heatmap 

representation of the consensus biclusters 5, 10, 12 and 16. Rows represent the genes, 

whereas columns represent the conditions. Different consensus biclusters are indicated 

by colored rectangles. At the top of the picture conditional categories present within 

the gene expression data set are shown [8]. A colored square on top of the heatmap 

indicates that a condition belongs to a particular conditional category. B. Overview of 

the content of the 4 consensus biclusters in terms of the number of ChIP-chip based 

(‘ChIP-chip’) and previously described FNR-targets (‘FNR’). Ratios in the table 

represent the number of transcription units in the consensus bicluster belonging to a 

certain category (i.e. (1) identified by ChIP-chip ( ‘ChIP-chip’) and (2) known FNR-

target (‘FNR’)) against the total number of ChIP-chip targets in the consensus bicluster 

(left – “ChIP-chip”), the total number of FNR-targets in the consensus bicluster (left –

“FNR”) and the total number of transcription units in the consensus bicluster (right – 

“Total”). ‘Novel’ refers to ChIP-chip targets not documented to be regulated by FNR 

according to RegulonDB [94]. Consensus biclusters indicated with an asterisk are 

significantly enriched in ChIP-chip targets. The number of known FNR-targets that 

correspond to a certain regulatory mode of FNR (repressor, activator, dual regulator or 

combinatorial regulation with NsrR) are also indicated. For each consensus bicluster, 

the predominant regulatory mode is indicated in red. 
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Figure 3- 5 Caption on previous page. 
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14 previously described FNR-targets that were missed by the ChIP-chip 

analysis (false negatives). 

The 2 other biclusters in Figure 3- 5, consensus bicluster 10 and 16, 

are not enriched in the ChIP-chip targets, but show a high coverage of 

previously described FNR-targets (Table 3 - 1). In addition they are just 

like biclusters 5 and 12 enriched in oxygen related conditions (Figure 3- 

5). Interestingly, the expression pattern of the genes within bicluster 16 is 

anti-correlated to that of the genes in the ChIP-chip enriched consensus 

biclusters (Figure 3- 5A). This anti-correlated behavior reflects the 

different mode of action of the dual regulator FNR, which acts as an 

activator on the targets of the ChIP-chip enriched consensus biclusters 5 

and 12 and as a repressor on consensus bicluster 16 (Figure 3- 5B).  

The distinct expression behavior of the genes in consensus bicluster 

10 can be explained by joint regulation of the genes within this 

consensus bicluster by NsrR and FNR (Figure 3- 5B), which also 

explains the presence of nitrosating conditions within this consensus 

bicluster (Figure 3- 5A). Similarly to consensus bicluster 16 the genes 

within this consensus bicluster not retrieved by the ChIP-chip 

experiment are also known to be repressed by FNR. Seemingly the 

conditions used in the set up of Grainger et al. [85] were biased towards 

selecting positively regulated targets (bicluster 5 and 12), but missed 

most of the repressed targets (bicluster 10 and 16). Together these 

consensus biclusters 10 and 16 contained 3 ChIP-chip targets of which 1 

novel one (i.e. not documented as an FNR-target in RegulonDB [94]) 

and 7 additional previously described FNR-targets not retrieved by the 

ChIP-chip experiment (Figure 3- 5B).   

The remaining 33 ChIP-chip targets belong to biclusters not 

enriched with genes from the ChIP-chip experiment, nor having a high 

proportion of known FNR-targets. For these targets the results are less 

conclusive. Six of these ChIP-chip targets are known FNR-targets 

according to RegulonDB (Table 3 - 1). Considering that many targets of 

FNR perform global cellular functions, it is indeed possible that due to 

pleiotropic functions of these genes some FNR-targets end up in 

biclusters not having a high coverage for known FNR-targets. However, 
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we can expect a large proportion of these 33 genes to correspond to false 

positives or non-functional targets. Not only because of the ChIP-chip 

procedure itself, but also because of the way the ChIP bound regions 

were mapped to the genes: the presence of a ChIP bound region located 

in the intergenic region between two divergently transcribed genes does 

not automatically imply that both genes are transcriptionally regulated by 

the bound TF [85].  

3.5 Discussion 
In this chapter we developed an ensemble method to be used in 

combination with query-based biclustering methods for the interrogation 

of expression compendia with a list of experimentally derived genes.  

The method exploits the possibility some query-based biclustering 

methods offer to explore a whole range of thresholds that influence the 

bicluster size. Instead of having to choose the ‘best bicluster with the 

most optimal coexpression level’ based on some user-defined ad hoc 

criteria, our ensemble merges the results of the multiple runs in a single 

consensus cluster, whereby genes that were repeatedly retrieved at 

multiple biological resolutions will receive a higher weight to belong to 

the same consensus cluster. The ensemble method thus offers a 

statistically inspired way to merge the outcomes for different thresholds 

on coexpression. 

The ensemble method is also devised to cope with the ‘split and 

merge strategy’ that is needed when using a query-list containing genes 

with different expression behavior as input. The ensemble procedure 

was used to merge the partially redundant biclustering-outcomes that 

were obtained by running query-based biclustering on each of the genes 

of the query list separately. The main goal of the consensus solution here 

is to remove redundant biclusters that were obtained by using query-

genes that show a similar coexpression behavior. However, as in this 

case also the biclusters that share no overlap with any of the other 

biclusters are valuable (these were derived from genes in the query list 

that do not show any similarity in coexpression behavior with the rest of 

the list) the consensus solution not only needs to reduce redundancy, but 
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at the same time should reflect to a maximal extent the distinct solutions 

that were present in the query-based biclustering outcomes of the 

individual query-genes. This application of an ensemble based strategy is 

inherently different from its traditional use where it is mainly meant to 

increase accuracy of clustering results by searching for genes that were 

found coexpressed in multiple runs [54;96]. 

The ensemble approach was validated using different evaluation 

metrics that assess both the agreement with the original biclustering-

solutions as the quality of the consensus clusters independent of these 

query-based biclustering outcomes. We tested the influence of using 

different transformations of the consensus matrix in combination with 

different graph clustering methods on the quality of the consensus 

biclusters. While all tested combinations of matrix transformations and 

graph clustering methods resulted in consensus biclusters that 

recapitulate the original query-based biclustering solutions and reduce 

redundancy, using fuzzy clustering to extract consensus clusters from a 

pruned consensus matrix gave the overall best results.  

To illustrate how query-based biclustering in combination with our 

ensemble approach can be used to interrogate a gene expression 

compendium with own experimental data, we applied it to an FNR 

ChIP-chip case study. By combining the ChIP-chip list with the public 

data we could obtain a view on its quality: not only could the analysis 

point out potential false positive ChIP-chip targets, but it also showed 

that most of the targets repressed by FNR were missing from the ChIP-

chip list.   
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Chapter 4 

Towards a functional map for Salmonella 
Typhimurium biofilm formation 

4.1 Introduction 
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an 

important pathogen causing host-specific diseases ranging from self-

limiting food-borne gastroenteritis to life-threatening systemic infections. 

Salmonella infections still constitute a serious public health burden and 

represent a significant cost to society in many countries. Salmonella is able 

to form microcolonies and mature biofilms on both biotic [99-102] and 

abiotic [103] surfaces. Biofilms, which are the predominant mode of 

bacterial cell growth in natural habitats [104], are structured communities 

of bacterial cells enclosed in a self-produced matrix, adhering to inert or 

living surfaces [105]. Cells within these biofilms are physiologically 

distinct from planktonic cells: single cells from the same organism that 

swim/float freely in liquid medium [104]. This biofilm-forming ability 

increases the pathogen’s resistance to antibacterial treatments [106;107] 

and enhances its spread and persistence in non-host environments [108]. 

Because Salmonella infections generally occur after the ingestion of 

contaminated food or water, environmental Salmonella biofilms (in for 

example stables, slaughterhouses and on kitchen surfaces) are, next to 

the traditional routes of infection (contaminated meat, eggs and poultry), 

indeed a source of reappearing occurrence by this pathogen [109]. 

Further on, Salmonella biofilm formation is a strategy to induce chronic 

infections [110;111] and even a possible way to colonize host organisms 

[102;112]. 
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 As compared to their planktonic counterparts and despite the 

vast amount of biofilm related research during the last decades, bacterial 

biofilms have remained poorly understood. Inherent complexities 

associated with biofilm studies originating from spatial and temporal 

biofilm heterogeneity [113] and uncharacterized growth parameters [114] 

are contributing to this lack of knowledge. In the recent years, within 

model organisms there has been a change of focus from a simple hunt 

for genes involved in biofilm formation towards a more global analysis 

of biofilm-related genes through DNA microarray analysis (e.g. [115-

120]). However, the first transcriptional profiling study of Salmonella 

biofilms was only recently performed [105]. These and related studies 

generally result in a list of genes experimentally determined to be 

involved in the biofilm formation process, but provide however little 

information on the specific functional roles of these genes within 

biofilms. In addition, recently there has been some debate on the 

existence of gene sets that are specifically involved within biofilms: when 

using microbial genetics to identify the causal genes for biofilm 

formation it is often not clear whether altered behavior of these genes 

within biofilms reflects a biofilm-specific pathway or whether this 

behavior is a consequence of changes in cell metabolism and altered 

growth dynamics resulting within this new, multicellular, environment 

[121;122].  

Within this chapter we aim to investigate whether biofilm formation 

constitutes a specific, i.e. involving genes with functions that are limited 

to biofilm formation, rather than a global adaptive response to changing 

environmental conditions.  To this end we first compile a core list of 

genes experimentally determined to be involved in S. Typhimurium 

biofilm formation. This list consists of genetic hits identified in a 

screening of a recently constructed targeted Salmonella deletion mutant 

library [123] to identify mutants impaired in biofilm formation. We 

combined this data together with data generated using a single cell 

approach to study Salmonella biofilm formation [124]. As such we obtain 

an extended list of genes involved in Salmonella biofilm formation. 
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Secondly, we leverage publicly available gene expression data for 

both planktonic and multicellular conditions to deduce whether the 

genes within this core list all belong to the same biofilm-specific pathway 

(i.e. are all coexpressed under conditions that assess multicellular 

behavior).  

The work within this chapter was done in collaboration with the 

Salmonella and Probiotics group of CMPG (KULeuven; Ir. K. Hermans, 

Dr. Ir. S. De Keersmaecker and Prof. Dr. Ir. J. Vanderleyden), where 

Salmonella biofilm experimental assays were performed. Therefore, details 

of the experimental protocols are out of scope of this PhD thesis and we 

focus within this chapter mostly on the bioinformatics analysis and the 

biological interpretation of the results.  

4.2 Results 

4.2.1 Overview of the approach 

In this work we aim to examine the specificity of the transcriptional 

response in biofilm formation as compared to planktonic conditions. An 

overview of the approach is given in Figure 4- 1.  

We start by compiling a core list of 70 genes experimentally 

identified to be involved in Salmonella biofilm formation. Specifically, we 

derive the gene list from two complementary approaches in order to not 

bias the list towards a certain experimental approach (see 4.2.2).  

In a second step we interrogate two different Salmonella 

Typhimurium gene expression compendia for genes that are coexpressed 

with the genes within this core list. The first compendium assesses gene 

expression in multicellular conditions (‘multicellular compendium’) (195 

conditions), whereas the second one contains conditions that measure 

transcriptional responses under planktonic behavior (‘planktonic 

compendium’) (522 conditions). We used the ensemble approach that 

was described in Chapter 3, which combines query-based biclustering 

with an ensemble post-processing strategy, to identify biclusters of genes 

that are centered on the expression profile of the genes within this core 
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list for both gene expression compendia. As such we obtained a set of 

‘multicellular biclusters’ by interrogating the multicellular compendium 

for the core list and a set of ‘planktonic biclusters’ obtained by 

interrogating the planktonic compendium for the core list. As condition-

dependent coexpression is usually indicative of functional relatedness 

this approach allows attributing functional categories to the genes within 

the core list by leveraging functional annotations of the genes with which 

they are coexpressed (guilt-by-association principle). To this end we 

calculated enrichment of each of these biclusters for GO-categories. In 

addition, joint coexpression of the genes within the core list reveals 

mutual functional relationships amongst these genes.  

Lastly, to investigate the specificity of the transcriptional response 

of the core list to multicellular conditions we compared the gene content 

of the mutlicellular biclusters with that of the planktonic biclusters. 

 

 

 

Figure 4- 1 Overview of the approach. First, as input data (left panel) we create a core 

list of experimentally derived genes assayed for their relevance to biofilm formation. 

Further we also create two separate gene expression compendia, one containing 

conditions that assess multicellular behavior and one with conditions that assess 

planktonic behavior. Using query-based biclustering in combination with the ensemble 

approach of Chapter 3, for each compendium a set of biclusters is obtained, centered 

on the genes from the core list (middle panel). In a last step the biclusters obtained for 

both compendia are compared (1.) and functional enrichment of each of the biclusters 

is calculated (2.) (last panel).  
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Figure 4- 1 Caption on previous page. 
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4.2.2 Composing a core list of Salmonella Typhimurium 
specific biofilm genes 

A core list of biofilm genes was derived from two complimentary 

experimental approaches. As such we can compile a set of genes involed 

in Salmonella biofilm formation, not confined to a single experimental 

method or single cellular process within biofilm formation, yet tuned 

towards focusing on genes involved in biofilm formation as compared to 

planktonic conditions.  

In the first approach a DFI single-cell enrichment method was used 

to study Salmonella biofilm formation [124]. In this method, within single 

S. Typhimurium clones transcriptional activity of genomic DNA is 

measured by fusing the segments with a promoterless gfp-gene (i.e. the 

reporter gene). In case of transcriptional activity of the fused segment 

fluorescent signals can be detected because of GFP (Green Fluorescent 

Protein) production. These fluorescence signals can be monitored by a 

fluorescence-activated cell sorter (FACS). In this experiment single 

clones were specifically filtered based on differential fluorescence during 

biofilm growth as compared to planktonic growth. Subsequent sequence 

determination of the genomic segments led to the identification of the 

DNA sequences that caused the increased expression of the 

promoterless gfp-gene. As such 27 genetic loci were identified showing 

biofilm specific increased expression. Of these, 17 could be narrowed 

down to promoter regions of already annotated genes of which 5 

encoded proteins without known functions. The remainder 10 genetic 

loci coincided with putative unknown regulatory elements of known 

genes or in intergenic regions. The advantage of this experimental 

approach is that it monitors gene expression at the level of single cells in 

stead of at the population level (as is the case in microarrays). As such 

genes can be identified that play a crucial role in biofilm-related 

processes in only a subpopulation of cells. In addition, genes are 

specifically filtered for upregulation in biofilms as compared to 

planktonic conditions in consecutive selection rounds, each time filtering 

the most fluorescent cells in biofilm conditions and the least fluorescent 

cells in planktonic conditions. Therefore, it is expected that the identified 
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genes play a role in biofilm-related processes. Lastly, this assay is not 

biased towards identifying particular gene sets since the gfp-reporter 

strains are constructed in a random fashion. This is in contrast to for 

instance mutant libraries (see below), where only genes non-essential for 

growth can be monitored. In this chapter, we used the list of the 17 

annotated promoter regions as a first input to identify clusters of 

coexpressed genes.  

 A second input gene set was derived from the screening of a 

mutant library [123] for altered biofilm behavior (Kim Hermans (CMPG 

- KULeuven), personal communications). In particular, this mutant 

library contained around 1000 targeted S. Typhimurium deletion mutants 

primarily hit in genes without ortholog in Escherichia coli [125], including 

almost all 200 genes associated with Salmonella virulence such as the type 

III secretion systems and their effectors. Further on, this mutant library 

also contained mutants in nearly all genes involved in fimbrial and 

surface antigen regulons as well as a small subset of genes shared 

between Salmonella and E. coli including sRNAs (confirmed and 

candidates) and genes involved in motility, regulation and pathogenesis. 

The construction of such a mutant library with mainly Salmonella specific 

genes was motivated by recent evidence that suggests a link between 

horizontally acquired genes and biofilm formation (e.g. [126-128]). 

Moreover, subtle differences between closely related bacteria considering 

extracellular matrix production [129] further emphasizes the importance 

of different gene sets and/or expression patterns between related 

bacteria considering biofilm formation. Screening of this mutant library 

resulted in 55 genes for which the corresponding mutants showed 

significant induction or reduction of the biofilm phenotype. 

Experiments within yeast have already shown that transcriptional 

and genetic screening approaches complement each other when 

investigating the specific pathways involved in certain phenotypes of 

interest [130-132]. Here also, we find that both lists only have 2 genes in 

common and that therefore they are complementary in the gene sets they 

find.  
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Together these lists contain 70 genes (Table A- 2) that can be 

subdivided in different groups according to their importance in biofilm 

formation. Firstly, genes that clearly have been attributed to Salmonella 

biofilm formation before, such as csgD and csgB [133-135]. Secondly, 

genes that have been been documented for mechanisms known to be 

important in biofilm formation, such as polyamine (potF) [136] and iron 

metabolism associated genes (sitA, iroN, fhuA and fes) [137], but were for 

the first time reported to be important for the specific case of S. 

Typhimurium biofilm formation, either in the DFI screening or in the 

mutant library screening. A third category concerns specific Salmonella 

genes with unannotated functions.  

4.2.3 Core list does not correspond to a single pathway  

First, we wanted to verify whether the 70 genes within the core list all 

belong to a single biofilm specific pathway. To this end, we used the 

method introduced in Chapter 3 to investigate whether the genes within 

the core list are all mutually coexpressed (i.e. belong to the same 

bicluster) under multicellular conditions. This method outputs one or 

multiple biclusters (sets of genes together with the conditions in which 

these genes are differentially expressed) in the gene expression data set 

that each contain at least one of the genes from the core gene list: i.e. the 

bicluster solutions are centered on the expression profiles of the genes in 

this core list. Using this approach we queried the multicellular 

compendium (see 4.2.1) for our core gene list consisting of 70 genes. As 

such, 9 multicellular biclusters (Figure 4- 2), containing in total 38 out of 

the 70 query-genes (Table A- 2), were obtained.  

Figure 4- 2 Multicellular biclusters. A. Consensus matrix (see Chapter 3) for the Query-

Driven Biclustering results obtained for the genes in the core list. Separate biclusters are 

color coded in the bar on the left. B. Heatmap of the 9 multicellular biclusters. 

Biclusters are indicated in colored rectangles (the same color code as in A is followed). 

Genes are represented in the rows and conditions in the column. For representational 

reasons only biclusters which were significantly functionally enriched for a certain GO-

category are displayed.  
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Figure 4- 2 Caption on previous page. 
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The fact that these 38 genes from the core list separate into different 

biclusters according to their expression in multicellular conditions, 

suggests that they belong to different pathways. It is however, possible 

that false positives of the experimentally assays described in 4.2.2 give 

also rise to multiple biclusters. Indeed, false positives of the experimental 

assay that are not directly linked to the biofilm process will likely 

constitute a different functional role within the cell and therefore will be 

coexpressed with other genes than the true positives of the experimental 

assays. We observe however, that each of the biclusters contain at least 2 

genes from the experimental assay (Table 4- 1). This suggests that the 

genes from the core list are at least to some extent mutually coexpressed 

under multicellular conditions. This makes it very unlikely that these 

genes are false positives of the assay as it would imply that the false 

positives are biased towards a particular functional pathway. Therefore, 

our results suggest that the genes assayed to be involved in biofilms 

separate into different functional groupings according to their condition-

dependent expression patterns within a compendium that assesses 

Salmonella multicellular behavior.  

Table 4- 1 Content of the multicellular biclusters in the number of genes. 

Bicluster Number of genes 

(total) 

Number of genes (core list) 

1 319 6 

2 273 8 

3 155 2 

4 192 2 

5 56 2 

6 124 6 

7 30 7 

8 5 2 

9 70 3 
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4.2.4 Functionality query-genes is not limited to 
multicelullar behavior 

As genes that are coexpressed are assumed to be functionally related we 

took advantage of known Gene Ontology (GO) annotations to 

functionally annotate the biclusters these 38 genes belonged to. Bicluster 

function was determined by retaining for each biclusters those GO 

functional classes that are statistically overrepresented within the 

biclusters (p-value < 0.01) (see 4.4.4 for details). This analysis reveals that 

the genes within the obtained biclusters are mainly involved in general 

cellular processes such as oxidation-reduction (P= 6.82E-08), translation 

(P = 1.00E-10), chemotaxis (P = 1.00E-10), transport (P= 8.61E-05) and 

pathogenesis (P = 1.00E-10) (Figure 4- 3A). Interestingly, bicluster 7 is 

significantly enriched for genes involved in lipopolysaccharide (LPS) (P 

= 1.12E-09) synthesis, which has previously been associated with biofilm 

formation [129;138].  

Taken together, this suggests that biofilm formation triggers a large 

variety of cellular responses that are not all specific to biofilm formation. 

To further assess the specificity of the triggered pathways to biofilm 

formation, we compared the set of biclusters to one that was obtained 

on the planktonic compendium (assesses gene expression in free-living 

conditions).  

Starting from the same core list of 70 biofilm specific genes, we 

could retrieve 10 biclusters (Figure 4- 4) containing in total 44 out of the 

70 query-genes (Table A- 2). With the exception of bicluster 9 and 6, 

each of these 10 biclusters contained at least 2 genes from the core list. 

The fact that for the majority of these 70 genes within the core list 

biclusters could be obtained for planktonic conditions, suggests that the 

function of these genes is indeed not limited to biofilm formation. In 

addition, functional enrichment analysis of these biclusters revealed that 

these biclusters are enriched for similar GO terms as was the case for the 

multicellular biclusters: i.e. translation (P = 1.00E-10), chemotaxis (P = 

1.00E-10), pathogenesis (P = 1.00E-10), oxidation-reduction (P = 

4.58E-10) and transport (P = 2.46E-04) (Figure 4- 3B).  
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Figure 4- 3 Functional enrichment analysis of multicellular (A) and planktonic biclusters 

(B). 
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To further assess the similarity in the transcriptional response for 

genes in the core list for multicellular and planktonic conditions we 

evaluated overlap of the biclusters obtained for both data sets in terms of 

their gene members. Figure 4- 4 illustrates that except for bicluster 7 and 

8 all biclusters derived for the multicellular compendium show 

significant overlap in their genes (as assessed by hypergeometric test) 

with at least one of the biclusters derived for the planktonic 

compendium. In addition, they are also enriched in similar GO-

categories. This suggests that the transcriptional response for each of the 

genes within the core list is not specific to multicellular behavior and 

supports the hypothesis that the majority of the genes within the core list 

are involved in general cellular functions in stead of pathways specific to 

biofilm formation. Interestingly, bicluster 7 for multicellular conditions 

could not be associated with any bicluster corresponding to planktonic 

behavior. As mentioned above this bicluster was enriched for genes 

involved in LPS synthesis and coordinated expression of these genes 

seems to be limited to conditions that assess multicellular behavior. This 

suggests an important role for these genes within Salmonella biofilm 

formation.  

Table 4- 2 Comparison of the multicellular and planktonic biclusters in terms of the 

genes they contain. Overlap significance levels (middle column) were calculated by 

hypergeometric test (see 4.4.4). Insignificant functional enrichments (p > 0.01) are left 

blank. 

Multicellular 
bicluster 

Planktonic 
bicluster 

Overlap p-value 
Function 
multicellular 

Function 
planktonic 

1 1 6.34E-04   

2 4 6.40E-04 
Oxidation 
reduction 

Oxidation 
reduction 

3 5 0 Translation Translation 
4 9 0 Pathogenesis Pathogenesis 
5 8 0 Chemotaxis Chemotaxis 

6 7 4.53E-14 Transport 
Siderophore 
transport 

7  > 0.01 LPS biosynthesis  
8  > 0.01   

9 4 5.92E-13 
Oxidation 
reduction 

Oxidation 
reduction 
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Figure 4- 4 Caption on next page. 
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Figure 4- 4 Planktonic biclusters. A. Consensus matrix (see Chapter 3) for the Query-

Driven Biclustering results obtained for the genes in the core list. Separate biclusters are 

color coded in the bar on the left. B. Heatmap of the 10 planktonic biclusters. 

Biclusters are indicated in colored rectangles (the same color code as in A is followed). 

Genes are represented in the rows and conditions in the column. For representational 

reasons only biclusters which were significantly functionally enriched for a certain GO-

category are displayed.  

For multicellular bicluster 8 also no planktonic counterpart could be 

identified. However, as this bicluster only contains 5 genes coexpressed 

in only a limited subset of conditions we consider this bicluster as trivial.  

4.3 Discussion 

4.3.1 Functionality majority genes core list is not limited 
to biofilms 

The production of biofilms by bacteria remains a subject of major 

research interest as the underlying regulatory mechanisms are still 

unclear. In particular there is still much debate on the specific genes and 

pathways that are involved in biofilm formation as even global analyses 

of biofilm gene expression through microarray analysis do not agree on 

the lists of genes differentially expressed [139].  

Here we wanted to investigate whether biofilm formation 

constitutes a specific cellular response, involving a set of genes belonging 

to a biofilm specific pathway. In particular we first compiled a core list of 

70 S. Typhimurium genes that were experimentally determined to be 

involved in biofilm processes. In addition, in stead of focusing on single 

gene expression studies, we took advantage of the large body of publicly 

available gene expression data to compile two different gene expression 

compendia: the first one contains conditions that assess multicellular 

behavior, whereas the second one contains conditions that assess 

planktonic behavior. We interrogated these gene expression compendia 

for biclusters centered on the expression profile of the genes from the 

core list to obtain biological meaningful groups containing these genes. 
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We find that the genes within the core list partition into different 

biclusters and therefore do not seem to function into a single biofilm 

specific pathway. This is further corroborated by the observation that the 

multicellular biclusters largely overlap in their genes with planktonic 

biclusters. These observations suggest that the genes within the core list 

participate in transcriptional responses that are not limited to biofilm 

formation. We hereby want to stress that the genes within the core list 

do indeed seem to have a key role within biofilm processes as they were 

either shown to be specifically upregulated in biofilm conditions as 

compared to planktonic conditions (DFI-experiment) or their respective 

mutants seem to show impaired biofilm formation (mutant). However, 

our analysis reveals that their functionality is not limited to biofilm 

processes only, nor that they constitute a single biofilm-specific pathway.   

4.3.2 The role of the ECM in the observed response 

Interestingly, for one of the multicellular biclusters no planktonic 

counterpart could be retrieved. This cluster was enriched for genes 

functioning in LPS biosynthesis which is known to be an important 

constituent of the Extracellular Matrix in which Salmonella Typhimurium 

cells reside in biofilms [138]. Furthermore, LPS is not only an important 

constituent of the matrix, its proper expression is also important for 

maintenance of the balance between different extracellular matrix factors 

(such as cellulose and curli fimbriae) since LPS mutants showed a totally 

altered extracellular matrix constitution [140]. This Extracellular Matrix is 

essential for biofilm formation [129] and apparently coordinated 

transcription of genes involved in this matrix formation only takes place 

under multicellular conditions.  

These observations that the transcriptional response of this core list 

of 70 genes is rather ubiquitous with the exception for genes involved in 

construction of the Extracellular Matrix is consistent with recent work of 

White et al. [122] that studied metabolomic changes in an S. 

Typhimurium csgD-mutant incapable of constructing an Extracellular 

Matrix. By comparing the metabolome of wild type cells with this 
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mutant, it was revealed that these mutants mainly experienced a shift in 

central metabolism and at the level of the osmotic stress response. In 

line with our analysis here also differences in gene expression for 

planktonic and biofilm-forming cells were attributed to quantitative 

differences in expression for similar gene sets in the planktonic and 

biofilm cells, rather than to specific gene sets. Based on these findings 

the authors hypothesized that the major changes in metabolism and 

stress response were mainly a consequence of the microenvironment 

created by the ECM. Our findings confirm such a hypothesis, first we 

identify that genes involved in biofilm formation according to 

experimental set-up are part of general cellular pathways that are 

differentially expressed in both multicellular and planktomic conditions. 

Secondly, genes involved in synthesis and, maybe more importantly, 

homeostasis of the ECM are only coexpressed in multicellular 

conditions. This suggests that studies aimed at unravelling biofilm 

regulatory mechanisms are often confounded by the unique 

environmental niches that cells within ECMs reside in [113], which 

complicates identifying the deterministic biofilm-specific regulatory 

pathways that lead to biofilm formation [121].  

4.3.3 Do biofilm-specific pathways exist? 

We do however not completely rule out the possibility that specific 

biofilm-related pathways exists. First, within our analysis we only focus 

on the transcriptional level: i.e. we searched for biofilm-specific pathways 

based on a coexpression analysis of a set of genes experimentally 

determined to function within biofilms. Hereby, likely regulatory 

mechanisms on the post-transcriptional or metabolic level are ignored. 

Second, our analysis did not reveal biclusters for all of the genes within 

the core list. For instance, for csgD, a gene that has been previously 

associated with S. Typhimurium biofilm formation, no bicluster could be 

obtained. This could be explained by the fact that this gene shows 

stochastic expression behavior (i.e. is only expressed in a subpopulation 

of cells at a certain time point) [113] and that therefore the expression 

level of this gene on the population level as measured in microarrays 
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does not exceed a certain threshold level. In addition, previous work has 

shown the importance of phosphorylation for mediating biological 

activity of this gene [141]. For the remainder of the genes within the core 

list similar explanations might exist as to why we do not retrieve 

biclusters for these genes. Furthermore, is the gene expression 

compendium used not exhaustive in the possible biofilm-related and 

planktonic conditions that cells within their natural environment might 

encounter. Therefore, it is possible that for gene sets that function under 

very specific conditions no corresponding biclusters could be retrieved. 

Although, we can not exclude the possibility that some of the genes 

in the core list are involved in biofilm-specific pathways we were able to 

narrow down the likely candidates for genes that specifically function 

within biofilms. In addition, our results revealed that although the 

experimental assays were tuned towards selecting genes that are relatively 

specific to biofilm formation, either by selecting genes whose expression 

is particularly induced in biofilm conditions as compared to planktonic 

conditions (DFI experiment) or by focusing on genes specific to 

Salmonella Typhimurium (mutant library), the function of most of these 

genes seems not to be limited to biofilm formation. Recent research has 

shown that this observation is not limited to our work [121;122;126] and 

therefore care needs to be taken in interpreting the outcome of such 

assays with respect to the specificity of the derived gene sets to biofilm 

formation.  

4.4 Materials and methods 

4.4.1 Composing a biofilm specific gene list 

A core list of biofilm specific genes was derived from two 

complementary assays:  a list of 17 genes was derived from a recent DFI-

experiment for biofilm formation [124], whereas a second list of 55 

genes was derived from screening a S. Typhimurium mutant library  

[123] for biofilm formation (Kim Hermans (CMPG – KULeuven, 

personal communications) for more details). As such a core list of 70 

genes (there is some limited overlap between the two lists) was obtained.  
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4.4.2 Constructing gene expression compendia 

Cross-platform S. Typhimurium compendia were compiled from data 

stored in public repositories [16-18]. Here we took advantage of 

experiment descriptions to built separate compendia that assess 

multicellular and planktonic behavior. Specifically experiments annotated 

with ‘swarming’ were considered as assessing multicellular behavior (no 

other experiments assessing multicelullar behavior could be found), 

whereas the remainder of the experiments assessed planktonic behavior. 

As such a multicellular compendium was obtained that contains the 

expression values for 4525 genes profiled under 195 conditions and a 

planktonic compendium compendium that profiled gene expression 

under 522 conditions. The data was normalized appropriately in order to 

allow for cross-experiment and cross-platform comparison 

(normalization procedures were similar as in [8]).  

4.4.3 Query-based biclustering 

Biclusters were obtained by running a query-based biclustering algorithm 

(QDB) [73] on this compendium, using the genes within the core list 

(4.4.1) as input (i.e. as query). QDB was applied to each of these genes 

separately, using a resolution sweep approach to evaluate in a single run 

of the algorithm all possible solutions that correspond to different 

degrees of coexpression with the query-gene. We used the ensemble 

approach introduced in Chapter 3 [65] to remove redundancy amongst 

the outcomes obtained by QDB. Heatmaps with biclusters were plotted 

using ViTRaM [95].  

4.4.4 Enrichment analysis 

GO functional categories for S. Tyhimurium were obtained from the 
Uniprot GOA proteome sets through EBI 
(http://www.ebi.ac.uk/GOA/proteomes.html). Functional enrichment 
p-values were calculated by hypergeometric test. P-values for the 
overlap in the number of genes for planktonic and multicellular 
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biclusters were calculated by hypergeometric test [142]. Let N be the 

total number of genes in the gene expression data set, M the number of 

genes annotated with a certain GO functional category, K the number of 

genes in a certain bicluster. Given that x out of the K genes in the 

bicluster are annotated with a certain GO functional category the p-value 

of this occurring by chance can be calculated using the hypergeometric 

distribution: 
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Chapter 5 

An ensemble strategy for module networks 
learning 

5.1 Introduction 
In the previous chapters we discussed and applied methods for module 

detection: algorithms that search for sets of genes that are coexpressed. 

As transcriptional regulation underlies gene coexpression it is interesting 

to also identify the regulatory proteins that regulate the expression of 

these genes: i.e. to describe gene coexpression causally. We refer to these 

methods that do not only infer coexpressed gene sets but also predict 

causal regulators as methods that infer the transcriptional regulatory 

network (TRN).  

In this chapter we introduce such a network inference method, 

LeMoNe (LEarning MOdule NEtworks). This method is inspired by the 

pioneering module networks method of [30]. A module network is a 

probabilistic graphical model [143] which consists of modules of 

coexpressed genes and their transcriptional programs. The 

transcriptional program consists of a set of regulators that is assigned to 

the module and that best predicts the condition-dependent mean 

expression of the genes in a module. As the module networks method 

only requires gene expression data as input, which is well abundant for 

many organisms and easy to obtain, and requires little prior knowledge 

on the underlying network, this method has already been widely used 

[30;144-148]. Segal et al. [30] used a deterministic optimization algorithm 

that searches simultaneously for a partition of genes into modules and a 

regulation program for each module. This results in an output that 
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consists of a list of regulator-module assignments which are all equally 

likely. LeMoNe [32] extends this module networks framework by using a 

stochastic optimization scheme in combination with ensemble strategies 

to obtain a more refined module networks.  

In this chapter we used LeMoNe to characterize the E. coli 

transcriptional regulatory network. As a model organism, the TRN of E. 

coli has been under extensive study. Databases such as RegulonDB [94] 

and EcoCyc [93] give a comprehensive overview of our current 

knowledge on the E. coli TRN. It is, however, far from complete as for 

only about one third of the genes in E. coli some interaction information 

is present in RegulonDB and it is estimated that only half of the 

transcription factors (TF) have been characterized [42]. Extension of this 

network by computational methods therefore remains a problem of 

outstanding interest. Methods which infer transcriptional regulatory 

networks from gene expression data alone are particularly interesting, 

since their predictions are not restricted to characterized regulators, as is 

often the case with data-integration methods [8;31;35]. In addition, due 

to the abundant information on the E. coli regulatory network this 

network is considered as a reference network for reverse-engineering 

algorithms [34] and therefore can assist us in obtaining insight in the true 

power of the method in reflecting known biology.  

The work presented in this chapter was performed in collaboration 

with the Plant Systems Biology (PSB) department of the VIB (Univeristy 

Ghent; Dr. T. Michoel, Dr. A. Joshi and Prof. Y. Van de Peer). As the 

algorithmic framework was mainly developed at PSB, a detailed 

algorithmic explanation is out of scope of this thesis and we restrict the 

methodological explanation to a concise algorithmic overview. Instead, 

within this chapter we focus on the validation of the ensemble approach 

and the comparison to related network inference methods. First, we 

illustrate the advantages that come with using an ensemble learning 

strategy for network inference. Secondly, we characterize the type of 

interactions that can be inferred using LeMoNe and compare it to the 

transcriptional regulatory network that was obtained using another 

popular network inference method, CLR [34]. We demonstrate that 
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LeMoNe is highly qualified to recapitulate existing knowledge in E. coli 

and that it is able to make novel high-confidence predictions in the form 

of experimentally verifiable hypotheses.  

5.2 LeMone (‘Learning module networks’) 
In contrast to the module networks method of Segal et al. [30] which 

searches for the modules and their transcriptional programs 

simultaneously, LeMoNe considers both as separate tasks. This 

algorithm improves the original module network learning algorithm of 

[30] at both the level of learning modules as well as assigning regulators 

(a detailed comparison with the results of [30] is given in [32]). 

In Figure 5- 1 an overview of the algorithm is given. The first step 

of the algorithm consists of generating an ensemble of non-overlapping 

gene clusters (or modules) with condition partitions (two-way clustering). 

Algorithmic details for this step are presented in [55]. The generated 

modules consist of genes that are coexpressed across all conditions in a 

gene expression data set. When searching for modules, often many local 

optima exist with partially overlapping modules differing from each 

other in a few genes. Therefore LeMoNe exploits this fuzzy property of 

a module to increase the reliability of the predicted interactions: instead 

of reporting only one cluster solution (local optimum), a stochastic 

approach is used to generate many equiprobable, but partially redundant 

cluster solutions from which an ensemble averaged solution is generated. 

This solution consists of so-called ‘tight clusters’, subsets of genes which 

cluster together in almost all local optima. To generate the tight clusters a 

Gibbs sampling method for two-way clustering was developed [55]. This 

method iterates between the gene and condition direction to identify 

clusters of genes that show condition-specific coexpression patterns. 

Briefly, genes of the same cluster belong to the same mixture of 

Gaussian distributions (Figure 5- 1 B), with each mixture component 

corresponding to a condition partition. The mean and variance of each 

Gaussian component are defined as the average and the variance of the 

gene expression of the cluster genes for that condition partition. Hence, 

each condition partition qualitatively describes gene expression for the 

conditions within that partitition (upregulated, basal expression level 
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down-regulated). The algorithm starts by randomly partitioning genes 

into clusters and within each gene cluster partitioning the conditions in 

condition clusters. Using Gibbs sampling gene cluster assignments and 

the partitioning of conditions within a gene cluster is iteratively updated 

until a stationary state is reached [55]. The number of clusters is decided 

upon automatically. As one such run of the algorithm results in a local 

optimum, multiple runs are performed to cover the whole space of 

solutions and in a subsequent step this ensemble of solutions is averaged 

into tight clusters.  

 

 

Figure 5- 1 LeMoNe working mechanism. A. LeMoNe takes as input a gene expression 

compendium and a set of candidate regulators. First, modules are constructed using a 

model-based two-way clustering approach. Gibbs sampling is used to derive multiple 

equiprobable but different clustering solutions from the gene expression data set. These 

are combined into tight clusters of genes which co-cluster repeatedly across the 

different gibbs sampling runs (the centroid solution). Next, for each tight cluster a 

transcriptional program is predicted based on the clusters’ condition partitions (see B.). 

Also here for each module an ensemble of possible transcriptional programs is 

generated in a probabilistic fashion. Hence regulator assignment scores can be 

calculated reflecting the frequency with which a certain regulator was assigned to a 

certain module. Regulator-to-module assignments can be ranked according to this 

score. B. Illustrates how transcriptional programs are predicted for each module. Two-

way clustering is used to generate modules of coexpressed genes. Such a method does 

not only cluster the genes but also the conditions within a module: i.e. each module is 

represented by a mixture of Gaussians with each mixture component representing a 

condition partition. Consequently, a single cluster in the gene direction is associated 

with multiple clusterings in the condition direction. Transcriptional programs are 

predicted based on how well the regulator’s expression profile explains the modules 

Gaussian mixture profile.  
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Figure 5- 1 Caption on previous page. 
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In the second step the condition partitions within the tight clusters 

are exploited to assign transcriptional programs to each cluster. Here, the 

algorithmic details are described in [32]. The method takes as input a list 

of known and predicted regulators and constructs a transcriptional 

program based on how well the expression pattern of the regulators 

explains the condition partitions in the tight clusters, as defined by the 

mixture of Gaussian distributions corresponding to each module. Similar 

as in [30] the transcriptional program has a tree structure with top-

regulators explaining all condition partitions within a module and 

regulators at the lower tiers only explaining a subset of the condition 

partitions. As such the method can predict combinatorial regulation: if 

two regulators are assigned to the same condition partitions they are 

predicted to regulate the module genes combinatorially for those 

conditions. As for each tight cluster multiple equiprobable condition 

partitions can be generated (each corresponding to a local optimum), for 

each module an ensemble of transcriptional programs can be 

constructed that each correspond to a different partitioning of the 

conditions for the same module. This ensemble of transcriptional 

programs is merged into a statistical score, the ‘regulator assignment 

score’. This score accounts for how often a regulator is assigned to a 

module, with what strength and at which level in the regulation tree. This 

score can be used to prioritize regulator-to-module predictions.  

5.3 Application to public E. coli gene expression 
compendium 

We applied LeMoNe to a compendium of E. coli Affymetrix gene 

expression profiles [34]. Transcriptional programs were learned from a 

list of 316 known or putative transcription factors in E. coli [42;93]. 

We first illustrate the advantages that come with using an ensemble 

method. Next we interpret the resulting module network in terms of the 

hierarchical topological structure of the E. coli TRN inferred from the 

static interactions present in RegulonDB [149-151]. At the top, global 

regulators sense and react to major environmental signals, which are 

further fine-tuned by local, more specific regulators in the lower tiers, 

and processed by modules of functionally related genes at the bottom of 
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the hierarchy[150]. We show that methods for inferring TRNs from gene 

expression data are mainly useful to characterize the lower layers of the 

hierarchical network, with a preference for autoregulators and neighbor 

regulators (colocalized on the chromosome with their targets). These 

neighbor regulators are often acquired through horizontal gene transfer 

[152].  

5.3.1 Illustrating the power of the ensemble strategy 

Here we highlight how using an ensemble approach can improve upon 

regulatory network inference. First, we focus on the module detection 

part, as module quality is determinative to learning module networks 

since the learning of the transcriptional program depends on it. We 

observe that potential false positive targets can be filtered out by using 

an ensemble approach. Indeed, an example is given by the GadE-regulon 

(involved in pH homeostasis) (Figure 5- 2). Most of the target genes of 

this regulator consistently cluster together over the different gibbs 

sampling runs. The many local optima, generated by the Gibbs sampling 

approach resulted in 62 additional genes, which were clustered at least 

once with one of the GadE-regulon genes. With the exception of yhiV, 

gadW and gadX, none of the remaining 62 genes are known GadE-targets 

and therefore this list consists primarily of false positives. Co-clustering 

of these 62 genes with the 10 module genes was not sufficiently 

significant to be retained in the final module. Similar observations were 

made for other regulons, such as the AraC- and GalS-regulons. This 

illustrates how the ensemble approach guarantees an effective filtering of 

false positives while retaining the true positives. 

With respect to the inference of transcriptional programs for each 

module, regulator-to-module edges can be ranked according to their 

score which reflects the statistical significance of the assignment of a 

regulator to a module. To assess whether this ranking is biologically  
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Figure 5- 2 This figure illustrates how the ensemble solution contributes to a more 

accurate construction of the modules. The image on the right illustrates co-clustering of 

GadE-targets with other genes over 12 Gibbs sampling runs. The purple bar on the left 

indicates that most GadE-targets consistently co-cluster across these 12 runs, whereas 

they only co-cluster sporadically with 62 other genes, which are mainly false positives. 

The final module (green bar), mainly consist of true GadE-targets (purple bar) and the 

false positive targets are effectively filtered out.   

meaningful, true regulators are derived for each module using 

information from RegulonDB. For each module the ‘true’ regulator is 

considered the regulator for which the module shows the highest 

enrichment in targets. This criterion has the advantage of being well-

defined, albeit very stringent (it allows only one true prediction per 

module). Figure 5- 3 shows the number of true predictions for a given 

number of predictions ranked by their score. It shows that the regulator 

score indeed prioritizes the most reliable regulator-to-module 

assignments. A reliable ranking of the predictions can assist in 

characterizing novel regulators and is thus an important advantage 

compared to the method of [30] which fails to rank its predictions.  
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5.3.2 Topological characterization of module network 
edges 

We further analyze the E. coli regulatory network constructed by 

LeMoNe. To this end we keep all predictions with scores above a cut-off 

equal to a regulator assignment score of 20% of its maximum value (red 

lines in Figure 5- 3). This results in a bipartite regulator-to-module 

network with 57 regulators, 69 modules and 82 edges. The 69 modules 

together contain 956 genes. The network is shown in Table 5- 1.  

From the 82 edges in the network 30 involve an uncharacterized 

regulator. For 20 edges the inferred regulator is the most enriched in 

known targets (Table 5- 1, column ‘Target Enrichment’).  

 

 

Figure 5- 3 Regulator prioritization showing the number of true predictions for a given 

number of predictions ranked by their score. A ‘true’ prediction is a regulator for which 

the module shows the highest enrichment in targets. The red lines indicate the position 

of the score threshold (20% of the maximum value). We also compared to a baseline of 

random predictions, obtained by repeatedly assigning regulators at random to the 

obtained modules.  
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For  another 9 edges the predicted regulator has known targets in 

the cluster (Table 5- 1, column ‘Target Enrichment’’). For the remainder 

of the predictions 8 regulators were shown to have targets which are 

involved in the same functions as the module-genes, hence explaining 

their assignment to the module (Table 5- 1, ‘Pathway’). Several newly 

predicted interactions could be validated by literature. 

This network only represents a fraction of the network information 

present in RegulonDB and therefore we further investigate which parts 

of the TRN can be accurately captured by LeMoNe.  

 

 

Table 5- 1 Biological validation of the LeMoNe network for E. coli. Target enrichment: 

(*) module is enriched in known targets of the predicted regulator, (**) module is most 

enriched for predicted regulator. Autoregulator: (*) regulator is an autoregulator. 

Pathway: (*) module is enriched in the same function(s) as the regulator. Local: (*) 

regulator is in the same operon as the module genes, (**) Transcription unit of 

regulator is adjacent to transcription units of the module genes. Function: enriched 

functions of the module. Regulators in italic face are putative regulators without known 

targets; module IDs in italic face consist only of uncharacterized genes. 

Regulator Module ID Score 
Target 
Enrich. 

Autoreg. Pathway Local 

gatR_2 73 1912.98 **  * ** 
gadE 48 1844.50 ** * * ** 
gutM 38 1807.24 ** * * * 
ymfN 58 1749.11    * 
ymfN 33 1711.17    * 
fliA 12 1510.48 ** * * ** 
rcsB 62 1261.72   * * 
fecI 57 1200.77  * *  
gatR_2 42 1176.55 **  * ** 
yahA 82 1171.92     
rcsA 87 1151.97 ** * *  
lexA 20 996.62 ** * * * 
lldR 65 976.84 ** * * * 
fliA 45 956.70 ** * *  
fliA 18 903.46 * * *  
nac 85 827.17  * *  
yiaG 15 816.55     
ydaK 23 815.75    ** 
ydaK 154 805.22     
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fnr 23 798.27 * * * ** 
lrp 5 777.80  * *  
araC 46 760.44 ** * * ** 
appY 50 748.75     
yfiE 67 736.50     
osmE 15 734.87     
lexA 78 726.67 ** * *  
purR 144 708.63  * *  
uidR 81 708.36  *   
araC 21 678.10 * * *  
yfeG 29 663.94     
b1450 53 662.16     
flhC 18 650.64 **  *  
ogrK 83 645.35     
fliA 17 637.28  *   
rpoS 14 637.13 **  * * 
pdhR 55 633.52  * *  
tdcA 31 619.06 * * * * 
yebK 106 617.44     
araC 56 608.17 ** * *  
csgD 26 599.30  *   
hycA 66 596.27     
tdcR 11 593.75     
fliA 24 593.05 * * *  
chbR 24 590.31  *   
hycA 29 563.45    * 
galS 76 561.25 ** * * ** 
nlp 77 559.41     
yfeC 119 549.33     
b1506 36 548.33     
lrp 10 528.90 * * *  
cspB 37 527.86     
cusR 68 515.56 ** * * ** 
b1284 51 514.78     
nanR 9 508.87     
yohL 90 496.21     
lrp 126 493.60  * *  
yjjQ 179 491.02     
yehV 63 483.29     
ogrK 27 481.75     
slyA 3 474.43     
ydcN 16 467.66     
cpxR 9 465.39 * * *  
yehV 34 451.77     
fruR 63 449.25     
araC 64 441.57 * * *  
fis 19 436.12 ** * * * 
fadR 16 435.98 *    
purR 10 431.78 ** * *  
cadC 37 429.32  *   
fecI 54 429.28  *   
rstA 102 428.94     
tdcR 61 428.84     
flhC 24 426.88 **  * * 
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5.3.2.1 Local vs. global regulators 

Different studies [149-151] find a hierarchical structure for the TRN of 

E. coli. Global regulators on top of the hierarchy regulate large numbers 

of genes all involved in a reaction to a major environmental signal (such 

as glucose starvation, absence/presence of oxygen, etc.) [153]. The 

targets of global regulators often perform quite distinct tasks within the 

global response, explained by the fact that global regulators cooperate 

with more specific local regulators, downstream in the hierarchy [153]. In 

the module network in Table 5- 1, most of the modules with known 

targets involve local regulators. This suggests that differences in 

expression between transcriptional modules are explained by the more 

specific, ‘local’ regulators. We take CRP as an example to further 

illustrate this. Figure 5- 4 contains a list of modules of which 50% of the 

genes are known to be regulated by CRP. Differences in expression 

between the modules can be explained by the presence of specific 

regulators, often in a feed-forward loop together with CRP. CRP does 

not show expression correlation with any of the modules, but some of 

the local regulators do (red edges in Figure 5- 4; six out of seven of the 

red edges in Figure 5- 4 are inferred in the module network). CRP acts as 

 

Figure 5- 4 Illustrates assignment of local instead of global regulators by LeMoNe in 

case of CRP. A. Displays a subset of modules (square nodes, inferred from expression 

data) and known regulators (circular nodes, from RegulonDB). A red edge refers to 

regulators showing expression correlation with the module (6 out of 7 of the red edges 

were inferred by LeMoNe). B. Profile plots for two modules (average module 

expression is indicated in black), the local regulators regulating the module genes 

(green) and the global regulator CRP (blue). This figure illustrates that for both cases 

expression of the local regulators is correlated with expression of the module genes, 

whereas expression of CRP is not.   
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Figure 5- 4 Caption on previous page. 
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a global regulator, activated by glucose starvation, but depending on the 

presence of certain alternative carbon sources, CRP will need assistance 

of more specific regulators to further activate genes that are required for 

transport and metabolism of those alternative carbon sources (e.g. GalS 

mediates the response to galactose, LacI the response to lactose, etc.) 

[154]. Other global regulators, such as ArcA, form similar star-like 

structures, which may be overlapping, i.e., some modules are regulated by 

multiple global regulators. And here also only the local regulators were 

correctly assigned to modules by LeMoNe. An exception is given by Fis 

which is correctly assigned to some of its targets. This can be explained 

by the fact that it is the only global regulator which regulates most of its 

genes in an independent matter [153]. 

5.3.2.2 Autoregulation 

Feedback in the E. coli TRN is mainly manifested at the level of 

autoregulation [149;150;155]. In RegulonDB, 57% of all known 

regulators are autoregulators. In the module network, 70% (23/33) of 

the known regulators are autoregulators. If we limit to regulators with 

edges supported by RegulonDB, this increases to 80% (Table 5- 1). 

Autoregulators are not overrepresented in the bottom layers of the TRN 

(for instance 54% of the regulators which do not regulate other 

regulators, besides possibly themselves, are autoregulators) and we 

conclude that autoregulators tend to be more coexpressed with their 

targets.  

5.3.2.3 Incoherent interaction and expression correlation sign 

In LeMoNe, we get as additional information whether a predicted 

regulator is positively or negatively correlated with its target module. 

However, although theoretically possible, we could not detect 

biologically relevant patterns (supported by RegulonDB) of 

anticorrelation, in line with previous studies [156]. Even though the 

assumption of anticorrelation seems intuitively plausible in case of 

repressors, it is a too simplistic representation of reality. Indeed LeMoNe 

finds many targets of mainly autorepressors (e.g. LexA, PurR, LldR, GatR 

and GalS), but they all were positively instead of negatively correlated 
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with their targets. This can be explained by the fact that the activity of 

such autorepressors is dependent upon the presence of corepressing 

signals. In the absence of the corepressing signal the repressor is active, 

limiting its own production as well as that of its target genes. In presence 

of the corepressing signal the repressors are inactive, which enables the 

production of both inactive repressor gene and its targets [157-159]. For 

example in case of GalS, correlation with its targets follows from the 

action of the inducer galactose/D-fucose in the absence of glucose [157]. 

Upon DNA-damage, LexA’s DNA binding capacity is disrupted causing 

joint expression of LexA and its targets [159]. In the absence of the 

corepressors hypoxanthine and guanine PurR shows no repression 

activity and all PurR targets, including itself, will be expressed [158]. 

These examples show that repressors rarely act purely at the 

transcriptional level and that therefore the activator or repressor action 

of uncharacterized regulators can not be inferred from expression data 

alone.  

5.3.2.4 Neighbor regulators 

Another class of high-scoring regulator predictions are regulators 

colocalized with their targets on the chromosome (see Table 5- 1, 

column ‘Local’). Such regulators were termed neighbor regulators in 

[160]. They often regulate just a few operons, which are known to be 

tightly coexpressed [160]. They are suggested to be involved in niche 

specific functions [152] and are hence the prototype of specific, local 

regulators. Examples of such neighbor regulators identified by our 

analysis are AraC, GatR, GalS and CusR (see Table 5- 1). In [152] it was 

suggested that neighbor regulators are often acquired together with their 

target genes through horizontal gene transfer (HGT), whereas global 

regulators mostly evolve through vertical inheritance. This, combined 

with the observation that our analysis mainly characterizes the bottom 

layers of the hierarchical TRN, is in line with the suggestion of [149] that 

the bottom layers of the TRN mainly evolve through addition of nodes 

by HGT. Many uncharacterized neighbor regulators in E. coli were also 

transferred through horizontal gene transfer [152]. High-confidence 

predictions can therefore be made for uncharacterized regulators which 
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have a high score in the module network and also lie adjacent to the 

genes in the module they are predicted to regulate (e.g. YmfN to module 

33 and 58 and YdaK to module 23). 

5.4 Comparison with CLR 
In general, the scientific community has mainly focused on the overall 

performance of newly developed methods in reconstructing the known 

network of certain model organisms as compared to a reference network, 

measuring algorithmic performance with standard measures such as 

recall and precision. Less attention has been paid to what extent 

conceptually different approaches differ in the networks they infer. 

Nonetheless, in order to get a better understanding of the systems 

studied it is also important to understand which specific problems can be 

tackled using a certain method, irrespective of the overall performance of 

the different methods. 

Broadly speaking we can distinguish between two classes of 

methods for reverse-engineering transcriptional regulatory networks 

from gene expression data which differ vastly in how they approach the 

network inference problem. Direct methods infer individual regulator-

target interactions using a pairwise correlation measure between the 

expression profiles of a transcription factor and its putative targets 

[34;161]. Module-based methods assume a modular structure of the 

transcriptional regulatory network [12;30;162], with genes subject to the 

same regulatory input being organized in coexpression modules. 

While different direct methods have been compared to each other in 

the past [34;163;164], no systematic comparison between direct and 

module-based methods has been undertaken so far. In this study we 

perform such a comparison using a representative method from each 

class. The CLR (Context Likelihood of Relatedness) algorithm [34] 

considers all possible pairwise regulator-target interactions and scores 

these interactions based on the mutual information of their expression 

profiles as compared to an interaction specific background distribution. 

It has been shown to outperform other direct methods [34]. The 

LeMoNe (Learning Module Networks) algorithm uses probabilistic, 
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ensemble-based optimization techniques [32;55] to infer high-quality 

module networks [30], where genes are first partitioned into 

coexpression modules and regulators are assigned to modules based on 

how well they explain the condition-dependent expression behavior of 

the module. It has been shown to outperform the original module 

network algorithm [32]. 

Here we compared both methods using a public expression 

compendium for Escherichia coli [34], an organism for which relatively 

large databases of known transcriptional regulatory interactions exist 

[165]. We first use recall versus precision curves to give a comparison of 

the global performance of both methods. We then show that due to the 

different assumptions underlying both methodologies, they infer 

topologically distinct networks with limited overlap, even at equal 

performance thresholds. Biological validation of the inferred networks 

cautions against over-interpreting recall and precision values computed 

using incomplete reference networks. 

5.4.1.1 Global comparison using recall and precision 

The output of LeMoNe and CLR consists of a list of respectively ranked 

regulator-module and ranked regulator-target interactions, scored 

according to their statistical significance. As a first, global, comparison, 

we can therefore compute recall and precision with respect to the given 

reference networks at different score cut-offs. For CLR we can directly 

compare the inferred network with the true network; for LeMoNe we 

draw an edge between each regulator assigned to a module and all genes 

in the module, thereby ignoring at this stage the extra information 

present in the module structure. We computed recall and precision as in 

[34]: if an edge is predicted between two genes present but unconnected 

in the reference network it is counted as a false positive.  

Figure 5- 5 shows the recall versus precision curves for both 

algorithms. Both algorithms succesfully prioritize true positive 

interactions in E. coli: all curves go from a high precision, low recall 

region to a low precision, high recall region. For CLR the curves show a 

smooth course while for LeMoNe they are more staircase-like. CLR 
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scores individual interactions and as a result, in the recall-precision curve 

interactions will be added one by one, but interactions corresponding to 

a certain regulator will be dispersed continuously throughout the recall-

precision curve. LeMoNe on the other hand assigns a regulator to a 

module as a whole and all targets belonging to the same module are 

added at the same time in the recall-precision curve. For a stringent 

threshold and subsequently a low number of interactions inferred, the 

CLR network will cover few interactions for many regulators while the 

LeMoNe network will retrieve many interactions for few regulators. 

 

 

Figure 5- 5 Global comparison of LeMoNe and CLR using recall versus precision 

curves. Recall versus precision curves for LeMoNe (red) and CLR (blue).  
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A simple ‘area under the curve’ (AUC) measurement would suggest 

that CLR performs slightly better in E. coli (the AUC is 0.043 for CLR 

and 0.035 for LeMoNe). LeMoNe was however shown to outperform 

CLR in the more complex eukaryote S. cerevisiae [66]. This suggests that 

performance of the algorithm depends on the dataset used and the 

complexity of the system. In addition, as we will show below, both 

algorithms infer complementary information in both organisms. 

5.4.1.2 Topological distinctions between inferred networks 

As explained in the previous section, due to how interactions are scored, 

direct and module-based methods will infer different kinds of networks 

at stringent precision thresholds. We compared the LeMoNe and CLR 

networks at a 30% precision threshold where both networks have nearly 

equal recall and precision (see Figure 5- 5). The LeMoNe network 

consists of 53 regulators assigned to 62 modules for a total of 1079 

predicted interactions; 594 of these interactions are between genes in 

RegulonDB, with a precision of 29%. The corresponding CLR network 

contains 1422 predicted interactions for 242 regulators; 597 of these 

interactions are between genes in RegulonDB, with a precision of 30%. 

51 out of 53 LeMoNe regulators are also present in the CLR network, 

but only 277 interactions are predicted in both networks.  

The networks inferred by LeMoNe and CLR are topologically very 

distinct. This distinction can be quantified by their in- and out-degree 

distributions (Figure 5- 6). The in-degree is the number of regulators 

assigned to a certain target gene and the in-degree distribution counts for 

each value k the number of targets with in-degree k. Likewise, the out-

degree is the number of targets assigned to a certain regulator and the 

out-degree distribution counts for each value k the number of regulators 

with out-degree k. CLR infers for each regulator only the most 

significant targets. As a result, the out-degree distribution is skewed to 

the left, with the majority of regulators having only few targets. The in-

degree distribution on the other hand has a long tail of genes assigned to 

many different regulators. LeMoNe infers for each module the most 

significant regulators, resulting in opposite characteristics of the degree  
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Figure 5- 6 In- and out-degree distributions of LeMoNe and CLR networks. (a) E. coli 

in-degree distribution for LeMoNe (red) and CLR (blue) at 30% precision threshold. 

(b) E. coli out-degree distribution for LeMoNe (red) and CLR (blue) at 30% precision 

threshold. 
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distributions. The in-degree distribution has no tail since for most 

modules at most 2 significant regulators are identified. The out-degree 

distribution on the other hand has a long tail since each regulator 

assignment involves a whole module of genes. For these reasons, we say 

that CLR is ‘regulator-centric’ and LeMoNe is ‘target-centric’. 

5.4.1.3 Regulator specific comparison 

We make a further comparison of the two methods, focusing on how 

they differ in the type of regulators they assign. We compared again the 

30% precision networks for E. coli. For both methods, a large fraction 

of the regulators for which known targets are inferred are autoregulators. 

LeMoNe and CLR have respectively 19 and 32 regulators with at least 

one true positive; 15/19 (79%) and 27/32 (84%) are known 

autoregulators, while the fraction of autoregulators in the total reference 

network is 95/150 (63 %). The abundance of autoregulators is not 

surprising since autoregulation is a simple mechanism by which the 

expression profile of a regulator and its targets can be correlated. 

Similarly to LeMoNe, CLR fails to predict correct interactions for 

repressors, unless it is an autorepressor. Regulators for which the 

module-based and direct methods differ in performance are in line with 

the topological distinctions. CLR is better at inferring interactions for 

regulators that are known to regulate just one or a few operons (e.g. BetI, 

CsgD, DnaA, MarA, Yhhg, see Figure 5- 7). These operons are found 

with a relatively high rank in the CLR network since their regulators 

often belong themselves to the operons and are thus by definition tightly 

coexpressed with their targets. The clustering method employed by 

LeMoNe appears to be too coarse-grained to identify these operons 

individually, since they are mostly part of larger clusters. LeMoNe on the 

other hand is superior at inferring interactions for regulators that are 

known to regulate larger regulons, such as Fis, LexA, PurR, and RpoS, 

for which the level of coexpression is not as high as the one observed 

within a single operon (see Figure 5- 7).  
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Figure 5- 7 Regulator specific comparison of LeMoNe and CLR on E. coli. For each 

regulator in E. coli with known interactions inferred: (a) the number of interactions in 

the reference network (green) and the number of true positives in LeMoNe (red) and 

CLR (blue); (b) the number of interactions inferred (green) and the number of true 

positives (red) in LeMoNe, and the number of interactions inferred (yellow) and the 

number of true positives (blue) in CLR. LeMoNe and CLR networks are both at 30% 

precision threshold. Regulators are sorted by the difference TPLeMoNe – TPCLR. The total 

number of true positives is 171 for LeMoNe and 180 for CLR. For clarity, the x-axis in 

(a) is truncated, the true number of targets for Fis and Fnr is respectively 111 and 173. 

The number of interactions inferred only counts targets that belong to the reference 

network. 

5.4.1.4 Biological validation of inferred networks 

Due to the lack of a negative gold standard, we have denoted in the 

previous analysis an edge as being false positive if both regulator and 

target are present but not connected in the reference network (the 
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positive gold standard). Since the coverage of these reference networks is 

still very incomplete, it is likely that the number of false positives is 

overestimated. Moreover, about half of the predicted regulators in E. coli 

are not present in the reference network and their predicted interactions 

are thus never evaluated. 

Here we have performed an in-depth biological validation of the 

30% precision module network inferred by LeMoNe. To biologically 

validate the obtained regulator-module assignments, we calculated for all 

modules functional enrichment scores [93] and enrichment in targets of 

previously annotated regulators [165].  

Table 5- 1 shows that in nearly all cases the module is enriched in 

known targets of the predicted regulator (column ‘Target Enrichment’) 

or at least involved in the same biological function (column ‘Pathway’). 

In several cases the predicted regulator is the one which has the best 

target enrichment p-value (column ‘Target Enrichment’). 

Nearly half of the regulators are putative regulators without any 

currently known targets, and these assignments cannot be validated. 

However, many of the correctly predicted regulators involve neighbor 

regulators [160] (Table 5- 1, column ‘Local’), i.e. regulators colocalized 

with their targets on the genome. In 5.3.2.4 it has been suggested that 

many of the putative regulators in E. coli constitute such neighbor 

regulators [152]. Hence this feature of gene neighborhood can be used to 

attach additional significance to the high-scoring predictions for 

uncharacterized regulators. One of the advantages of a module-based 

approach is the fact that if a certain module contains several known 

targets of the assigned regulators, the rest of the unknown targets in this 

module can be considered high confidence predictions for that regulator. 

Biological validation of inferred networks is tedious and does not 

provide an easy alternative to the automatic estimation of true and false 

positives using an established reference network. The results of this 

section do show however that many ‘false positives’ with respect to an 

incomplete network are likely true positives when additional information 
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is taken into account and that recall versus precision plots such as in 

Figure 5- 5 have to be interpreted with caution. 

5.5 Conclusion 
We have constructed an ensemble-based module network for E. coli 

from expression data using a Gibbs sampler clustering algorithm and a 

method for inferring probabilistic transcriptional programs. The module 

network connects modules of co-regulated genes to condition-specific 

regulators which explain the expression profile of the module. Unlike a 

single optimum, ensemble averaging allows the assessment and 

prioritization of the statistically most reliable modules and their 

condition-specific regulators. As regulators are ranked according to a 

significance score, the method is especially useful to make initial high-

quality predictions for uncharacterized regulators and unknown genes. 

The quality of these predictions is supported by assignments of known 

regulators to modules enriched in their targets, and several new 

predictions for known regulators could be validated by literature.  

An analysis of the module network in the context of the hierarchical 

topology of the known E. coli transcriptional regulatory network shows 

that local regulators near the bottom of the hierarchy explain expression 

differences between different modules and are more often coexpressed 

with their targets than global regulators near the top of the hierarchy. 

The bottom layers of the hierarchical network have evolved mainly 

through addition of new regulators together with their target genes by 

horizontal gene transfer and consequently we find many high-scoring 

regulator assignments colocalized with their targets on the chromosome. 

These results illustrate that LeMoNe only characterizes a fraction of the 

E. coli regulatory network (i.e. the bottom layer) and therefore 

complementary methods are necessary to get a comprehensive view on 

this TRN.  

Consequently, we compared our module-based approach (LeMoNe) 

with another approach for reverse-engineering transcriptional regulatory 

networks: the direct CLR method. We have found that CLR is ‘regulator-

centric’, making few but highly significant predictions for a large number 
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of regulators. LeMoNe on the other hand is ‘target-centric’, identifying 

few but highly significant regulators for a large number of genes grouped 

in coexpression modules.  

Through a regulator specific comparison and analysis of specific 

biological subsystems, we have shown that at stringent significance 

cutoffs, the conceptual differences in statistically scoring potential 

regulatory interactions lead to topologically distinct inferred networks 

containing different kinds of regulators and biological information. Our 

results show that the choice of algorithm should be made primarily 

based on whether the biological question under study falls within the 

target-centric or regulator-centric viewpoint, and not on global metrics 

which cannot be transferred between organisms. Ideally, several network 

inference strategies should be combined for the best overall 

performance. It is an important challenge for future research to develop 

sound statistical methods for optimally combining the output of 

multiple, existing reverse-engineering algorithms.  

5.6 Methods 
The E. coli microarray data compendium [34] contains expression 

profiles for 4345 genes under 189 different stress conditions and genetic 

perturbations. We selected a subset of 1882 differentially expressed 

genes (standard deviation larger than 0.5) and used a list of 316 known 

or putative transcription factors [42;165] to reconstruct regulatory 

networks. LeMoNe [32] (software available at 

http://bioinformatics.psb.ugent.be/software/details/LeMoNe) 

identified 108 ensemble-averaged modules from 12 independent Gibbs 

sampler runs, containing 1761 genes in total. It inferred a ranked list of 

regulator-module edges from an ensemble of 10 transcriptional programs 

per module with 100 regulator samples per transcriptional program node 

(see [32] for more details on the meaning of these parameters). We 

applied CLR [34] (software available at 

http://gardnerlab.bu.edu/clr.html) on the data for the 2084 selected 

genes (the union of the 1882 differentially expressed genes and 316 

candidate regulators) and kept all mutual information z-scores between 

the 316 transcription factors and 1882 target genes. As a reference 
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network we used RegulonDB version 5.7 [165], a database of 4840 

known transcriptional interactions in E. coli between 167 transcription 

factors and 1693 genes. Recall values are computed with respect to 

RegulonDB restricted to the subset of 2084 genes. This subnetwork 

contains 3110 edges between 150 transcription factors and 1053 genes.  

We used EcoCyc [93] to compute functional enrichment of 

modules. Target and functional enrichment in Table 5- 1 were computed 

using a cumulative hypergeometric distribution, Bonferroni corrected for 

multiple testing, with confidence level 95%.  
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Chapter 6 

Exploring complementary aspects of  
network inference approaches 

6.1 Introduction  
In bacteria regulation at the transcriptional level is pivotal to guarantee 

metabolic flexibility and cellular integrity [1;166]. Deciphering the 

coexpression or the transcriptional regulatory network (see Chapter 1) is 

thus crucial to understanding bacterial cellular behavior. The number of 

computational methods that are being developed to reconstruct TRNs 

from genome-wide expression data is rapidly increasing. Indeed, the 

examples presented in this thesis only constitute a small portion of the 

module and network inference methods that have been introduced in the 

past decade.  

In Chapter 1 we introduced network inference and module 

inference as a problem that is computationally underdetermined: due to 

the large number of possible solutions (or the large search space), 

together with the restricted number of independent data points and the 

relatively low information content of the available data [43;44;167;168] 

different solutions are possible that all explain the data equally well. 

Therefore, different methods incorporate different strategies to deal with 

this problem of underdetermination, often resulting in different 

outcomes of the inference problem.  

In this chapter we provide a scheme that allows classifying state-of-

the-art transcriptional inference methods based on the strategies used to 

solve the inference problem. In contrast to previous categorizations, our 
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classification uses a combination of criteria that directly relate to the 

biological interpretation of the outcome rather than being merely dataset 

related [169] or computationally focused [170;171]. We use 

representative tools of each class to show how using different strategies 

results in inferring different types of interactions, hereby extending the 

observations made in the previous chapter. In addition, we draw 

attention to first tentative attempts that have been made to leverage the 

predictions made by different network inference tools in an ensemble-

based strategy.  

6.2 Strategies to deal with underdetermination  
The problem of underdetermination relates to the size of the search 

space: the larger the search space, the larger the complexity of the 

inference problem and the more difficult it will get to find the unique 

solution that approximates the biological truth. To tackle this problem of 

underdetermination, module and network inference methods adopt 

different strategies which reduce the search space and/or extend the 

amount of independent information (Figure 6- 1). 

‘Conceptualization by simplifying biological reality’ is a commonly 

used strategy that renders network inference more tractable. 

Transcriptional regulatory networks have been shown to be modular in 

structure [150]. Module-based approaches exploit this observation and 

simplify the complex structure of the TRN by modeling the network as 

sets of overlapping modules of functionally related genes. Genes 

belonging to the same module all act in concert under certain 

environmental cues [11-13], explaining their coordinated expression 

behavior. Modules are identified by module detection methods that rely 

on clustering or biclustering [28;29]. Module-based network inference 

procedures, primarily designed to infer transcriptional programs, also 

make use of this concept of modularity: in contrast to assigning an 

individual program to each single gene as with direct network inference 

methods, they assign a transcriptional program to pre-grouped gene sets 

or modules. This drastically lowers the number of interactions that must 

be evaluated during the inference process. Another simplification relates 

to the definition of combinatorial regulation where multiple regulators 
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act together to mediate specific condition-dependent responses. 

Inferring a transcriptional program that allows for combinatorial 

regulation implies that all possible combinations of regulators and their 

possible binding modes (i.e. cooperative, synergistic, etc.) must be 

evaluated in order to explain the observed expression behavior. As this is 

computationally intractable for large datasets, all large-scale network 

inference methods make an approximation of combinatorial regulation.  

A second strategy relates to extending expression data with other 

available information (integrative versus expression-based methods). 

Integrative methods that combine the expression with complementary 

data describing the TRN from a different angle, such as for instance 

chromatine immunoprecipitation on chip (ChIP-chip) or motif data, 

often obtain more reliable interactions and a more complete picture of 

the network.  Moreover, by prioritizing during the search predictions for 

which the different independent data sources agree allows traversing the 

search space more efficiently. 

As a third strategy, query-based methods reduce the search space by 

intentionally restricting the number of interactions that needs to be 

evaluated: instead of searching for a global pattern as is done by global 

inference methods, query-based methods concentrate their search on a 

predefined set of core genes or on a subnetwork one is interested in and 

expand upon this core gene set or subnetwork given the present data.  

Treating the inference as a classification problem as is done with (semi-

)supervised methods (fourth strategy) can be considered as a specific way 

of exploiting known information in a query-based way. 

As each strategy implies different assumptions and poses different 

constraints, adopting a specific strategy or combination of strategies 

determines the type of interactions that can be found. This will be 

further illustrated with results obtained from state-of–the-art inference 

tools that have successfully been applied to microbial datasets.   
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Figure 6- 1 Caption on next page.  
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Figure 6- 1 Categorization of different state-of-the-art methods for module and 

network inference. Module inference methods search for sets of coexpressed genes. 

Network inference methods on the other hand search for a transcriptional program 

that explains an observed expression behavior. According to the strategies methods use 

to cope with the problem of underdetermination, they can be categorized as follows: 1) 

integrative versus non-integrative methods (blue): methods that complement expression 

data with additional data sources versus methods that use expression data only, 2) 

module-based versus direct inference, (yellow): methods that conceptualize the network 

by treating sets of coexpressed genes as single entities (modules) versus methods that 

consider all genes on an individual basis, 3) query-based versus global (purple): methods 

that start from a predefined set of core genes or core pathways and expand upon those 

versus methods that search for global patterns in the data, 4) supervised versus 

unsupervised (green): methods that treat the inference problem as a classification 

problem versus methods that do not. Most of the methods can be either used in a 

query-based or global mode. The methods indicated in purple, are specifically designed 

to be query-based. 

6.2.1 Module-based versus direct network inference 

Usually module-based network inference methods use module inference 

based on biclustering as a first step, prior to the assignment of the 

transcriptional program. Exploiting the concept of modularity offers 

advantages from both the biological and the statistical point of view. 

Most module-based approaches do not only predict regulatory 

interactions, but also identify the experimental conditions under which 

the predicted interactions take place. This information can be helpful in 

designing the appropriate conditions under which experimental 

validation of the predicted interactions should optimally be performed 

[8;162] Assuming modularity also contributes to the statistical robustness 

of the inferred interactions: all coexpressed genes within a module 

confirm each other in providing evidence for a certain transcriptional 

program, while for direct methods this evidence for a particular 

regulator-target interaction is only based on a single gene observation.  
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How adopting the concept of modularity determines the 

interactions that can be inferred is illustrated by a comparison between 

the results of the direct method CLR and the module-based network 

inference method ‘Stochastic LeMoNe’ (Table 6- 1) (Figure 6- 2). By 

exploiting modularity, LeMoNe and related methods [30] are able to 

assign programs with an expression profile that is less similar to that of 

its target genes than is the case with CLR or similar methods [161;172].  

Indeed, LeMoNe performs better than CLR in inferring transcriptional 

programs for genes grouped in coarse-grained modules that correspond 

to larger pathways (e.g. Fis, RpoS and PurR) and for which the genes 

show an overall low degree of coexpression with each other or with their  

 

 

Figure 6- 2 Complementarity in the type of interactions inferred by direct and module-

based inference methods. CLR and Stochastic LeMoNe, as representatives of 

respectively direct and module-based inference methods were applied to the same E. 

coli compendium [34]. The precision of the inferred interactions was calculated as 

described in Faith et al. [34] using experimentally documented interactions in 

RegulonDB [94] as a standard. Panel (a) compares the precision with which true 

interactions were inferred per regulator between both methods by calculating per 

regulator the difference in precision obtained with CLR and LeMoNe. Regulators were 

ranked according to this difference in precision. High negative value indicate a higher 

precision of LeMoNe than of CLR, high positive values indicate the opposite. Panel (b) 

shows the values of the regulator-specific precision for Stochastic LeMoNe (green) and 

CLR (blue). Panel (c) illustrates the size distribution of the known regulon membership 

according to RegulonDB for the regulators where respectively LeMoNe (upper part) 

and CLR (lower part) show a higher precision. Panel (a) and (b) illustrate the 

complementarity between both methods in retrieving interactions for different 

regulators. Panel (c) shows how Stochastic LeMoNe predicts on average correct targets 

for more global regulators (a larger regulon size), whereas CLR typically predicts targets 

for regulators with a smaller number of known targets. Note that predictions for 

regulators not documented in RegulonDB were not included in this plot. 



Chapter 6 – Complementary aspects network inference methods 

 125 
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transcriptional program [66]. Conversely, CLR showed a higher precision 

than LeMoNe in identifying targets for regulators that are dedicated to 

one or at most a few operons as in prokaryotes such operonic regulators 

are tightly coexpressed with their targets (e.g. GutR, IscR, BetI, AraC). A 

direct method such as CLR also covers interactions for a larger range of 

regulators than a module-based method such as LeMoNe as a module–

based inference method looses interactions with target genes that are not 

coexpressed with a sufficient number of other target genes [66]. 

6.2.2 Modeling combinatorial regulation 

Inferring combinatorial regulation in its full complexity is also 

computationally intensive. Most direct methods, supervised (SEREND 

[31], SIRENE [33]) (see further) (Table 6- 1) as well as unsupervised 

(CLR [34]), simplify the problem by assigning regulators one by one to 

their target genes and composing the combinatorial transcriptional 

programs in a post-processing step as sets of regulators that belong to 

the same target genes. Although significantly reducing the complexity of 

the network inference problem, such a stepwise approach renders it 

impossible to distinguish between truly complex combinatorial 

regulation, where the signal of multiple TFs is integrated to trigger the 

observed gene expression pattern, or condition-dependent regulation, 

where different TFs act independently from each other to mediate 

expression under different subsets of conditions. For instance, applying 

CLR to E. coli resulted in the correct assignment of the regulators GadW, 

GadX and GadE to several genes involved in the acid response [34]. The 

true more complex relation between these regulators with GadE, which 

acts as the main regulator of the acid response and is under control of 

both GadW and GadX [173], could not be unveiled.  

Module-based inference methods such as Stochastic LeMoNe [32] 

and DISTILLER [8] (Table 6- 1) automatically take into account the 

condition-dependency of the inferred transcriptional programs: 

regulators that are assigned to the same genes, but under different 

subsets of conditions are assumed to act independently from each other, 
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while regulators that were predicted to regulate the same target genes in 

similar conditions presumably act combinatorially. Using DISTILLER, 

Lemmens et al. [8] detected for instance that the E. coli global regulator 

CRP interacts, depending on the conditions, with different specific 

regulators. Neither DISTILLER nor Stochastic LeMoNe can infer the 

mode of the combinatorial interactions between the assigned regulators, 

i.e. whether the assigned TFs act together in an additive or synergistic 

way (AND), whether in a combinatorial interaction the presence of one 

of the regulators is sufficient to trigger expression of the target gene 

(OR) or whether their binding is mutually exclusive (XOR). By 

combining the expression profiles of the regulators according to these 

different possible interactions (AND, OR or XOR) before assessing how 

well they explain the target’s expression behavior, Inferelator [162] can 

infer those more complex modes of transcriptional interactions. 

Recently, also CLR was extended to account for synergistic relations 

(synergy augmented CLR), i.e. the latter occurs when the expression 

value of a third gene can be better explained by two genes together than 

by each of them separately [174;175]. Using this approach, the authors 

could uncover novel links in the original E. coli CLR network such as, for 

instance, that the expression of fecA depends on both fecI and aceK, with 

aceK presumably acting as an indirect inhibitor of ferric citrate transport 

mediated by FecA [175].   

6.2.3 Integrative versus expression-based approaches 

Non-integrative expression–based network inference methods extract 

information on regulator-target interactions from the expression data 

itself. Except for the supervised expression-based methods, such as 

SIRENE [33] that exploit the observed coexpression behavior of known 

targets of a particular TF (see further),  most  non-integrative methods 

assume that the regulator’s expression profile is a proxy for its activity 

(Stochastic LeMoNe [32], CLR [34], Inferelator [162], and correlation-

based methods [176;177]). The latter assumption disregards the 

important role of regulation mechanisms at levels other than the 

transcriptional one [178] and restricts the interactions that can be 
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inferred to those of regulators that are either coexpressed or 

anticorrelated with their targets [156] (Figure 6- 3). As a result 

expression-based inference methods, such as CLR and Stochastic 

LeMoNe or related ones [30;161;172], are biased towards inferring 

interactions of auto- or operonic regulators that were shown to be tightly 

coexpressed with their targets [66]. Moreover, most expression-based 

inference methods are not able to distinguish between regulators that 

actually regulate the gene (direct causal effect) or regulators that are 

simply coexpressed with it (mere correlation). This problem can partially 

be alleviated by inferring networks from dynamic instead of from static 

data as time series inherently contain information on causal effects, if 

one assumes that the expression of the TF needs to be altered before it 

can affect its targets (in a direct way or via a regulatory cascade). 

Inferring networks from dynamic data requires special techniques that 

capture the dynamics (e.g. the lag in expression profiles between genes). 

Schmitt et al. [177], for instance, used time-lagged correlation analysis 

(Table 6- 1) to infer the regulatory network that mediates the response to 

alternating light conditions in the cyanobacterium Synechosystis, while 

Shaw et al. [176] inferred the B. subtilis regulatory network using the same 

technique. In practice, inference of networks from dynamic data is 

restricted by the insufficient time resolution of the available samples, 

which complicates distinguishing true from noisy signals and results in 

missing fast responses.  

By complementing gene expression with additional transcriptional 

information (such as motif data, DNA-protein interaction data), 

integrative network inference methods [8;31;35;179-181] can extend the 

scope of their predictions beyond interactions that can be inferred from 

coexpression behavior and result in general also in more reliable 

predictions (Figure 6- 3). Sabatti et al. [182] propose a direct integrative 

approach based on hidden component analysis (Table 6- 1) that overlays 

a network topology derived from known and motif-based interactions 

with expression data. It was used to infer the transcriptionally active 

edges in the E. coli network. By exploiting known information on 

regulatory motifs and transcriptional interactions derived from EcoCyc 

[93] in a supervised way, the direct integrative method SEREND could 
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infer novel interactions for previously characterized regulators of E. coli 

(see further).  

Module-based network inference methods such as DISTILLER [8], 

cMonkey [183] and COALESCE [184] (Table 6- 1) rely on an integrative 

module detection step to derive their transcriptional program. Integrative 

module inference searches for genes that are not only coexpressed with 

each other, but also share a common regulatory binding site (identified 

by motif detection or ChIP-analysis). Exploiting complementary data 

sources to confirm expression-based module assignments reduces the 

assignments of false members to true modules or the detection of 

spurious modules. As the observed coexpression in a module now also 

truly implies coregulation, the module inherently contains information to 

infer the transcriptional program: for instance, to each module the 

regulator is assigned that is known to recognize the motif or binding site 

found to be associated with the module. Applying DISTILLER to a 

cross-platform E. coli expression compendium and motif data for 67 

known regulators resulted in the prediction of 278 novel interactions for 

29 different regulators [8]. Of the 11 novel interactions for the regulator 

FNR that were experimentally verified by ChIP-qPCR, none were 

retrieved by the non-integrative methods CLR [34] and Stochastic 

LeMoNe [66]. When using these integrative approaches in combination 

with de novo detected motif sites, the assignment of a cognate regulator 

will be based on additional computationally derived criteria (e.g. average 

proximity of the regulator to its targets) [25] or on a concomitant 

expression-based inference of the transcriptional program [162]. In the 

future, integration with data resulting from protocols that globally survey 

an organism’s proteome for sequence-specific interactions with putative 

DNA regulatory elements will further facilitate mapping of cognate 

regulators to novel motifs [185;186].   
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Figure 6- 3 Illustration of the different characteristics of interactions inferred by either 

expression-based or integrative network inference methods.  Left panel: illustrates how 

expression-based methods that estimate the activity levels of the regulators from their 

expression profiles are biased towards predicting interactions for regulators that are 

tightly (anti-)correlated with their targets, while for methods that infer their 

transcriptional program from complementary data sources, this is not the case. The 

expression-based methods CLR (Aa) and the integrative network inference method 

DISTILLER (Ab) were applied to the same E. coli expression compendium (results 

were taken from Lemmens et al. [8]). The histograms displays the number of predicted 

pairwise TF-target interactions as a function of their mutual coexpression. In black is 

shown, by means of a reference, the same distribution, but for all regulators 

documented in RegulonDB [94]. The peak at correlation coefficient 1 corresponds to 

the situation where the two considered profiles of respectively the regulator and the 

target gene are exactly the same, which is the case for auto-regulators. Right panel: 

illustrates how the integrative methods result in more reliable predictions than those 

obtained with an inference method that only uses expression information. The 

performance of an expression-based (SIRENE, purple) and an integrative network 

inference method (SEREND, green) were compared using ChIP-chip data as external 

standard. The upper figure (Ba) displays the precision-recall curve for SEREND and 

SIRENE for the regulator CRP. The area under the precision-recall curve, indicated by 

the shaded area, is used as an estimate of the overall performance. Figure Bb compares 

the area under the precision-recall curve for both SIRENE and SEREND of five 

different regulators for which ChIP-chip data [85;187;188] is available. This figure 

shows that the integrative SEREND method outperforms SIRENE in retrieving ChIP-

chip targets for each of the regulators considered.  

So, inference methods that only use expression data are useful for 

organisms with little additional information available. Integrative 

methods on the other hand provide a more complete view on the 

network and are more likely to predict true positive interactions. The 

additive value of integrative methods, however, depends both on the 

quality of the additional data [189] and of the used algorithm.  
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6.2.4 Global versus query-based inference 

Global module inference methods [75;76;81;190-195] search for the 

modules that explain most of the data. This generally corresponds to 

identifying large pathways, consisting of many genes, and usually 

responsible for general responses upon major metabolic or condition 

shifts such as, for instance, flagellar synthesis, amino acids biosynthesis 

or DNA damage. As such, global approaches provide a general view on 

the active TRN and its resulting physiological state. Query-based module 

detection methods on the other hand [12;72;73] search for genes that are 

coexpressed in a condition-dependent way with a predefined set of genes 

(also called query-genes). These algorithms are deliberately biased 

towards finding a specific local solution in the search space that is of 

particular interest to the user. This solution is not so trivial to find in a 

global way as either the expression signal of the query-genes is too low to 

be significant or the local solution is obscured by a more global one. As 

an example of the latter effect searching an E. coli compendium for a 

PurR-related module using a known PurR-target as query results in a 

module that is indeed significantly enriched for previously known PurR-

targets (p-value < 1x10-15) while with a global approach the module that 

contains most PurR-related genes is under default conditions much 

larger and enriched for more general functions related to amino acid 

biosynthesis and translation. Query-based approaches are thus typically 

used to expand or curate a particular pathway or process by either 

searching for additional genes that are coexpressed with genes known to 

be already involved in the pathway or by filtering out genes that are not 

coexpressed with the majority of the so called pathway genes. Ihmels et 

al. [12], for instance, used the query-based Signature Algorithm (SA) to 

refine the gene set involved in the TCA cycle in S. cerevisiae with the 

homologs of 37 E. coli TCA cycle genes as query.  

Regarding network inference methods, most of the already 

described global methods can be applied in a query-based setting 

through restricting their input sets. In some cases this can be 

advantageous, for instance methods such as CLR, Stochastic LeMoNe 

and Inferelator perform better if the transcriptional program can be 
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inferred from a prespecified list of regulators than from a full gene list 

because a priori erroneous interactions with non-regulators will be 

eliminated. Algorithms specifically designed for query-based network 

searches focus on one or few core pathways [196;197;197;198]. By 

constraining their search space to only those solutions that contain the 

query, these methods can afford making more detailed network models 

than would be possible in a global setting. Gat-Viks et al. [198] (Table 6- 

1) formalized qualitative existing knowledge on the yeast osmotic 

response as a probabilistic model. Interrogating this model with 

expression data allows both refining the model by correcting erroneous 

interactions and extending the original network with novel targets 

affected by components of the original network. Alternatively, kinetic 

approaches for modeling the dynamics between TF and target gene from 

time series expression data, that are still intractable on a genomewide 

scale, have been successfully applied in a query-based mode to validate 

the outcome of a ChIP-chip experiment. So far they have only been 

applied in higher eukaryotes [199]. The GPS algorithm [196] (Table 6- 1) 

is another query-based network inference method that takes advantage 

of detailed promoter descriptions in combination with mutant 

expression data to extend the regulon of a predefined regulator. More 

specifically, GPS could identify four additional PhoP targets in S. 

Typhimurium that previously were thought to be only indirectly PhoP-

dependent. In addition, the identified PhoP targets in E. coli fell apart in 

separate modules of coexpressed genes, one of which primarily 

contained genes involved in acid resistance. This allowed establishing a 

novel link between PhoP regulation and bacterial acid resistance 

[196;200]. 

6.2.5 Supervised versus unsupervised inference of the 
transcriptional program 

Supervised methods treat the inference as a classification problem. They 

start from a set of known TF-target interactions. Based on this 

predefined training set, characteristic features are derived, such as TF 

binding sites (SEREND [31] and de Hoon et al. [201]) or the degree of 
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coexpression between TF targets (SIRENE [33], SEREND [31] and de 

Hoon et al. [201]). These characteristics are subsequently used to evaluate 

a novel candidate gene as a potential target of a TF.  Genes that share 

many characteristics with the known targets of the TF are classified as 

true targets, the others as non-targets. Such a classification strategy 

depends on the quality of the used training set of true positive and 

negative interactions. While it is for model organisms such as E. coli and 

B. subtilis quite straightforward to extract examples of positive 

interactions from curated databases, such as RegulonDB [94] (E. coli), 

EcoCyc [93] (E. coli) and DBTBS [202] (B. subtilis), the definition of true 

negative interactions is much less trivial. Genes not known to interact 

with a specific regulator, i.e. ‘unknowns’, are then often treated as the 

negatives. As our knowledge of TRNs is still limited, there is a good 

chance that such a set of ‘unknowns’ contains as of yet uncharacterized 

true positive interactions for a given TF, in which case the classification 

results will be deteriorated.  

By extrapolating previously known information, interactions 

predicted with supervised methods are generally highly reliable, but are 

restricted to regulators with a sufficiently high number of  previously 

known targets, such as global regulators and sigma factors from well 

characterized model organisms (E. coli [31;33] and B. subtilis [201]) 

(Figure 6- 4). SEREND was shown to be very useful in extending the 

repertoire of interactions for the E. coli global regulators IHF, H-NS, 

CRP, FNR and Fis [31].  

 To infer interactions in less-studied systems with little previously 

characterized information, unsupervised approaches are more suitable 

(e.g. Stochastic LeMoNe, CLR, DISTILLER, Inferelator) as they do not 

necessarily depend on previously known information and can also infer 

interactions for regulators with little or no prior information available 

(Figure 6- 4). Mainly the unsupervised methods that can infer their 

transcriptional program from only expression data such as CLR and 

Inferelator have been shown useful to provide a first global view on the 

TRNs of for instance Salmonella Typhimurium [203;204], Shewanella 

oneidensis [205], Halobacterium salinarum [206] and Cyanobacteria [207].   
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6.3 Choosing benchmark datasets 
Benchmarking is important to understand the reliability of the 

reconstructed network. It is based on the calculation of the precision and 

recall according to a predefined external standard. By collecting all 

curated interactions of a particular organism and treating them as true 

positives, and treating all predicted interactions between a gene and a TF 

other than the ones it was documented to interact with as false positives, 

a standard is generated. Using such a standard tends to overestimate the 

false positive prediction rate as most genes probably interact with many 

more TFs than is currently documented. Moreover, all novel interactions 

with TFs for which no interactions are documented yet are ignored in 

the assessment. As a result, using an external standard rewards methods 

that merely reproduce current knowledge, but penalizes the ones that 

perform well in finding new biology. To compensate for this, most 

current studies combine validation based on an external standard with 

medium-throughput experiments to also validate novel biology [8;34;38].  

Medium-throughput experiments avoid the infeasible task of testing 

all novel predictions by sampling a set of predicted interactions that is 

representative for the whole analysis. In practice this set usually consists 

of both high and lower confidence interactions for a subset or one of the 

assessed TFs. Mainly global regulators in E. coli were chosen, such as 

FNR [8] and Lrp [34;38] as for these regulators the good balance 

between yet to be discovered and already known interactions favors the 

benchmarking. Lemmens et al. [8], Zare et al. [38] and Faith et al. [34] for 

instance could show by combining performance analysis using 

RegulonDB with a ChIP-based medium-throughput experiment that 

their respective methods had a good sensitivity in detecting known 

interactions, but also that high-scoring novel predictions usually 

corresponded to true interactions.   

For network inference methods that use predictive models, cross-

validation can be used to validate the reliability of the inferred model: the 

ability of the model to predict the expression behavior of genes in 

experiments that were not used to build the model is assessed [32;162].   
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Figure 6- 4 Complementarity in the type of interactions inferred by supervised versus 

unsupervised network inference methods. SIRENE (indicated by red bars) and CLR 

(indicated by blue bars), as representatives of respectively supervised and unsupervised 

network inference methods, were applied to the same E. coli compendium [34]. For 

both methods the top 1422 interactions were considered. (a) Panel a displays for each 

method, the number of transcription factors for which interactions could be inferred. 

(b) Panel b displays the average number of targets per transcription factor inferred by 

either method. (c) Panel c displays on the y-axis all regulators reported in RegulonDB 

[94], ranked according to their number of documented targets. The left hand side grey 

distribution displays the number of targets documented in RegulonDB per TF. The 

regulators for which most targets have been described so far correspond to global 

regulators and sigma factors (indicated by a shaded box). For either method, the 

number of inferred interactions per regulator (blue – CLR, red – SIRENE) is indicated 

at the right hand side of the plots. Panel a and c illustrate that supervised methods are 

biased towards predicting targets for regulators with a sufficiently high number of 

previously known targets (in E. coli corresponding to global regulators and sigma 

factors). Panel b shows that by exploiting known information, supervised methods are 

more comprehensive in predicting targets for a specific regulator than unsupervised 

methods.  

In several studies ChIP-chip derived interactions have also been used 

as an alternative standard to benchmark algorithms, but as any high-

throughput data source, they contain many false positive (or non-

functional) and negative interactions. This explains the low performances 

often observed in benchmark studies with ChIP-chip data (Figure 6- 5). 

Obtaining insight into the behavior of the algorithm requires a more 

objective validation strategy which uses perfect standards, made in silico 

by simulating data that mimick real data [208;209]. Simulated data are 

very useful in unveiling the qualitative properties of the algorithm under 

all kinds of test conditions that can never be obtained with real 

experimental data (e.g. noise robustness, sensitivity of the parameter 

settings, optimality of the proposed solution)[210]. Their drawback is 

that they can never grasp the full biological complexity of real data (such 

as the exact properties of the experimental noise or the multilayered 

aspect of gene regulation [211]). To further bridge the gap between in 



Chapter 6 – Complementary aspects network inference methods 

 138 

silico and real data, the use of synthetic gene networks has been proposed 

[212]. This is an engineered circuit with a well–defined network topology 

and interaction structure. The dynamic behavior of such circuit is fully 

characterized using real measurements and the resulting model is used to 

simulate data based on which inference methods can be tested.  

 

 

Figure 6- 5 Caption on next page. 
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Figure 6- 5 Illustration of the low overlap in predictions made by different network 

inference methods relying on different strategies. a) Mutual comparison between the 

results of the module-based approach Stochastic LeMoNe and the direct method CLR 

(both methods are non-integrative and unsupervised), (b) mutual comparison between 

the results of the unsupervised method CLR and the supervised method SIRENE 

(both methods are non-integrative and direct) and (c) mutual comparison between the 

results of the non-integrative method SIRENE and the integrative method SEREND 

which combines expression with motif data (both methods are supervised and direct). 

All methods were run on the same E. coli gene expression compendium [34]. In (a) the 

inferred interactions were compared to the known network in RegulonDB [94]. Since 

the supervised methods used in (b) and (c) use the information in RegulonDB to make 

their predictions, we used available ChIP-chip data for several E. coli regulators as an 

external validation standard [85;187;188]. For each pair of methods that is being 

compared, the proportion of the number of shared predictions on the total number of 

predictions ranges from 5.7 % to at most 24 %. The relative overlap with RegulonDB 

as external standard (number of interactions in common with the external 

standard/total number of predicted interactions) ranges from 15-18% and with ChIP 

data from 2-3% (with a very low performance of CLR on ChIP data (<1%)). 

Benchmark studies are extremely useful to guide both users and 

developers. However, relying on a benchmark study to find out which 

algorithm is ‘the best’ is tricky as the choice of an appropriate inference 

tool depends on the posed research question. Fair benchmark studies 

should not only describe in what respect an algorithm is the best, but 

also where it fails. The quality of a benchmark study also largely depends 

on the extent to which parameter tuning is performed to guarantee that 

each of the applied tools optimally performs in the used setting. In this 

regard, the DREAM (Dialogue on Reverse Engineering Assessments and 

Methods) initiative [211;213] offers a platform for the unbiased 

assessment of network inference methods. They organize a yearly 

competition in which developers can participate with their own method 

to infer networks from blinded datasets.  
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6.4 Exploiting complementarity: the ensemble 
solution 

The overlap in inferred results between methods can be very low as is 

illustrated in Figure 6- 5. This, together with the observation that the 

results of each of the tested methods shows a similar degree of overlap 

with an external validation standard (RegulonDB [94] or ChIP-data), 

indicates that it is not the failure of one of the methods in inferring 

biologically relevant interactions, but rather the complementarity 

between the methods that explains the observed discrepancy in predicted 

interactions. 

As probably no single best method exists and different methods 

highlight different interaction types, aggregating the outcome of 

complementary methods offers a way to improve upon the breadth and 

the accuracy of predictions. This idea of combining the outcome of 

different methods has already been suggested in different contexts [61] 

and recently a ‘reverse-engineering-by-consensus’ approach has been 

advocated [213;214] spurred by the outcomes of the DREAM2 and 

DREAM3 conferences. There was shown that an ensemble of the 

predictions made by the best performing methods of the DREAM 

contest approximated much better the true interaction network than the 

predictions made by each method separately. For the construction of an 

ensemble solution that reflects an overall statistical confidence in each of 

the predicted interactions, inference methods are required that provide 

an explicit ranking of the predicted interactions according to the scoring 

scheme they use (such as e.g. Stochastic LeMoNe, CLR, DISTILLER, 

SEREND and SIRENE). These individual rankings can then be 

combined into a ranked ensemble solution that assigns a higher 

confidence to interactions that are repeatedly retrieved by the different 

methods. 

As has been illustrated in the previous chapter, besides for 

combining the outcome of different methods, an ensemble solution can 

also be used to integrate different results of a single method. Because of 

the large search space, finding the most optimal solution to a network 

inference problem is non-trivial and optimization algorithms often result 

in suboptimal solutions that all approximate the true global optimal 
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solution but differ slightly from each other. For methods that can 

capture different possible solutions, a consensus solution from 

interactions that are repeatedly inferred from the data [32;63] allows 

increasing the accuracy of the predicted interactions by better 

approximating the global solution. 

At this stage only tentative steps have been undertaken to improve 

upon TRN reconstruction through ensemble methods. Much more work 

will be needed to assess whether and, if so, which ensemble solutions 

will succeed in simultaneously increasing precision and recall of the 

predicted interactions. 

6.5 Conclusions 
State-of-the-art inference tools rely on a unique combination of 

strategies to solve the inference problem. Because each strategy implies 

different assumptions, they all have different strengths and limitations 

and highlight complementary aspects of the network. Categorizing the 

tools according to their strategies, allows users to gain insights in the 

settings under which they can most optimally be applied. Which tool is 

more appropriate for a certain researcher depends on the available data 

and the research purpose.  

The nature of the expression data generally determines whether a 

direct versus a module-based inference will be more appropriate. 

Whenever the set of available expression data gets larger and/or 

heterogeneous in the assessed conditions, module-based inference 

methods are to be preferred over direct inference methods. For less-

studied microorganisms with only expression data available, expression-

based network inference methods are ideal to make a first draft 

reconstruction. Integrating with expression data, additional high-

throughput data on TF-target interactions will generally allow for a more 

accurate (less false positive interactions) and more complete picture of 

the TRN (such as the prediction of combinatorial control), but might 

become restrictive in inferring interactions only for those TFs for which 

the additional information is available. This is a disadvantage if one 

wants to derive global network properties. When interested in expanding 
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knowledge on a particular part of the regulatory network rather than 

gaining a complete network view, query-based methods are to be chosen 

over global ones. When a reconstructed network is to be used as a 

starting point for further biological hypothesis generation, methods that 

provide an explicit ranking of the inferred interactions are advantageous 

to prioritize candidates for further experimental work. Moreover, in such 

case researchers benefit from using an integrative or supervised approach 

that exploits properties of existing interactions to infer highly reliable 

novel ones. However, the more the method biases towards previous 

knowledge, the more it will be blind towards novelty. To take full 

advantage of the complementarity between the different methods a 

‘reverse-engineering-by-consensus’ approach that combines the 

knowledge gained from multiple inference approaches or from multiple 

outcomes from a single computational approach seems the ideal option 

[213;215].  

Table 6- 1 Overview of representative algorithms, successfully applied to microbial 

datasets. 

Name methods Short description of the methods 

CLR [34] 

(Context Likelihood of 

Relatedness)  

 

CLR is an unsupervised, direct, expression-based 

network inference method that reconstructs an 

interaction between a TF and a target gene based on 

their consistency in expression behavior, as assessed by 

mutual information. The statistical significance of each 

inferred interaction is also evaluated.  

 

SIRENE [33] 

(Supervised Inference of 

Regulatory Networks) 

 

SIRENE is a supervised, expression-based, direct 

network inference method. The method splits the 

problem of network inference into multiple binary 

classification subproblems, one for each TF.  For each 

particular TF an SVM-based classifier is trained based 

on the mutual similarities in expression profiles of 

respectively known target and non-target genes: genes 



Chapter 6 – Complementary aspects network inference methods 

 143 

known to be regulated by a particular TF are supposed 

to share the same coexpression behavior, while non-

targets do not. This TF-specific classifier is then used 

to predict whether genes, other than the ones used for 

training are regulated by the respective TF, resulting in 

a ranked list of potential target genes.  

Stochastic LeMoNe 

[32] 

 

Stochastic LeMoNe is an unsupervised, module-based 

method that infers the TRN from expression data. It 

first uses a fuzzy two-way clustering approach to 

assign genes and conditions to modules and 

subsequently assigns a transcriptional program to these 

pregrouped gene sets. Each module contains the genes 

of which the expression profile best fits the same 

multivariate normal distribution that partitions the 

expression values of the conditions in the cluster in 

sets of under– or overexpression. The transcriptional 

program assigned to each module consists of the set of 

regulators for which the expression profiles best 

explain all or part of the condition partitions in the 

module.  

 

Inferelator [162] 

(+cMonkey [183])  

 

Inferelator is an inference method that can assign a 

transcriptional program to either individual genes or 

predefined modules of coexpressed genes. In the 

original paper these modules are obtained by the 

integrative module inference method cMonkey based 

on a multiparametric logistic regression that searches 

for tightly coexpressed modules, enriched for genes 

that make up highly connected subgraphs in metabolic 

and functional association networks and/or that 

contain statistically overrepresented de novo detected 

motifs.  Inferelator itself uses standard regression with 

model shrinkage to build a parsimonious, predictive 
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model for the modules’ or gene’s expression behavior 

using changes in environmental influences and TF 

expression levels as predictors. The design matrix can 

capture binary interactions (AND, OR or XOR) 

between TFs.  

 

SEREND [31] 

(Semi-supervised 

Regulatory Network 

Discoverer) 

De Hoon et al. [201]  

SEREND and De Hoon are (semi)-supervised, 

integrative network inference methods. Per regulator a 

training set of known targets (positive examples) and 

non-targets (negative examples) is used to determine 

the parameters of two separate logistic regression 

functions that map respectively the expression values 

and motif scores for the genes in the training set to 

their corresponding predictor variables which 

determine the genes’ class memberships (being 

activated, repressed or not regulated by the TF). The 

basic assumption again is that targets of the same TF 

should share the same motif and the same expression 

profile. Motif and expression data are treated 

separately to guarantee proper balancing of the 

unequal number of features in either data set. A 

metaclassifier, also based on logistic regression, is used 

to combine the outcome of both the separate 

expression- and motif-based classifiers. Subsequently 

the complete classifier is used to predict the probability 

that genes, other than those in the trainingset belong 

to the same regulon.  

 

DISTILLER [8] 

(Data Integration System 

To Identify Links in 

Expression Regulation) 

DISTILLER is an integrative module-based network 

inference method. It combines expression data with 

interaction data (motif or ChIP-chip data) to search 

for coregulated modules. It uses an unsupervised 

strategy based on itemset mining to exhaustively 
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 enumerate all gene sets that are coexpressed under a 

subset of conditions and that share the same motifs. 

To identify from this exhaustive list the most 

significant set of non-redundant modules a 

probabilistic filtering step is used.  

Hidden component 

analysis [38;182] 

 

The method of Sabatti et al. [182] is a hidden 

component model, related to the original Network 

Component Analysis (NCA) [216;217] strategy that 

uses a linear model to decompose the measured 

expression data [E] in a product of a sparse 

connectivity matrix [A], containing the interactions 

between all TFs and their targets and [P], representing 

the hidden condition-dependent activity levels of the 

TFs [216]. Methods differ in the way they put 

constraints to achieve identifiability of [A] and [P]. 

Liao et al. [216]constrain [A] using the known network, 

while Sabbati et al. [182] use motif information as prior 

in a Bayesian framework to guide the reconstruction of 

the unobserved TF activity levels and their 

interactions. As these methods exploit known 

information to constrain their search space, they can 

be considered direct, integrative, unsupervised network 

inference methods.  

 

COALESCE [184] 

(Combinatorial 

Algorithm for Expression 

and Sequence-based 

Cluster Extraction) 

 

An integrative, non-supervised module inference 

procedure that uses a Bayesian framework to integrate 

sequence and expression data. De novo motif detection 

occurs concurrently with the gene and condition to 

bicluster assignment. Motifs, represented by 

probabilistic suffix trees, are assigned to a developing 

bicluster if their occurrence in the module is 

sufficiently enriched compared to their presence in the 

genomic background. Additional information on 

sequence conservation or nucleosome placement can 
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be used as prior information to guide the motif and 

module inference. 

 

Time-lagged 

correlation analysis 

[176;177] 

Methods that explicitly use time series gene expression 

data to infer causal relationships. They generally 

consist of two different steps [176;177]. In the first 

step, genes with similar expression profiles across 

multiple time points (Pearson correlation) are grouped 

in a module or cluster. In a second step, causal 

effectors such as regulators, the modules that contain 

the regulators [176] or environmental inputs [177] are 

related to modules using time-lagged correlation, a 

measure that is related to the Pearson correlation 

coefficient, but that takes into account shifts in time 

between the expression of the causal effector and the 

target module.  

 

Gat-Viks et al. [198]  

 

The method proposed by Gat-Viks et al. [198] is a 

query-based, expression-based inference method. 

Qualitative knowledge on a certain pathway of interest 

is formalized as a Bayesian network, where the nodes 

represent different molecular entities (genes, proteins, 

metabolites) and the edges the interactions between 

them with their corresponding connection logics. Such 

a probabilistic formulation of the network allows 

including uncertainty on the given model. In a first 

model refinement step, possible model improvements 

(changes in topology and interaction logics) are 

evaluated. Refinements that result in a model that 

better predicts the observed expression values are 

withheld. In a second expansion step, transcription 

factor activities are predicted from the network model 

and a likelihood sore is used to assign additional target 
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genes for which the expression can be predicted by the 

transcription factor activity profile. Hence the method 

identifies sets of genes regulated by the same set of 

regulators and according to a common logic (activated, 

repressed, feedback).  

 

GPS [196] (Gene 

Promoter Scan) 

 

Is a query-based, integrative network inference 

method. The method starts from a set of genes 

regulated by a common TF. Each gene is represented 

by a list of features consisting of the gene’s expression 

profile and a detailed description of its promoter 

elements. Separating the set of query-genes into 

distinct clusters according to these features results in 

the input genes being grouped according to their 

specific regulation pattern. A fuzzy k-nearest neighbor 

classifier is used to extend the obtained clusters with 

new targets based on the similarity between the feature 

profile of the novel gene and that of a cluster.  
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Chapter 7 

Conclusions and perspectives 

7.1 Introduction 
Recent experimental developments within the molecular biology field 

have enabled the unprecedented measurement of several cellular 

phenomena including gene expression, TF-gene binding and protein-

protein interactions. Despite the fact that new data sources are becoming 

increasingly available, the usage of microarrays remains well-established 

and the number of publicly available data for model organisms runs in 

the hundreds of arrays. Therefore methods for module and regulatory 

network inference that attempt to elucidate the underlying wiring of the 

transcriptional regulatory network from gene expression data remain of 

outstanding interest. However, whereas this inundation of data provided 

much hope of obtaining a system’s level understanding of the cell, this 

optimism was also tempered by the computational challenges the analysis 

of high-dimensional data sets, such as gene expression data, poses. 

Searching through high-dimensional spaces is computationally 

intractable, e.g. it is impossible to enumerate all possible cluster or 

bicluster configurations or to evaluate all possible transcriptional 

program-target combinations. Therefore, module inference and 

regulatory network inference must be approximated and as a 

consequence multiple solutions exist that each explain the data equally 

well. Ensemble-based strategies exploit this feature of high-dimensional 

inference problems by reinforcing solutions repeatedly retrieved from 

the same data set. Although, ensemble-based strategies have already been 

applied to a range of biological contexts, with a major focus on motif 

detection [46-49] and protein fold prediction [50;51], there only exist few 

cases of where they have been applied to module and network inference 

problems [63;213]. Therefore, in this thesis we explored such ensemble-
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based strategies to improve both upon existing module and regulatory 

network inference methods.  

Key innovations introduced in this thesis include: 

• Development of a generic ensemble strategy for query-
based biclustering to interrogate gene expression 

compendia for heterogeneous gene lists, such as 

experimental lists. Its biological usefulness was shown 

on an E. coli and S. Typhimurium case study. 

•  Introduction of Stochastic LeMoNe, an ensemble 
method for TRN inference.  

• Illustration of how conceptually different methods for 
inference of the TRN infer complementary parts of a 

ground truth TRN.  

In this chapter we first summarize the different ensemble-based 

strategies that were introduced in this thesis and refer to alternative 

approaches that have been developed to tackle similar problems. 

Secondly, we give a critical note on expression-centered studies. Lastly, 

we give perspectives on the future of network inference in light of novel 

biological insights and data sources.    

7.2 Discussion and conclusions 

7.2.1 An ensemble-based strategy to extend the scope of 
module detection 

First, in Chapter 3 we introduced a ‘wrapper’ for query-based 

biclustering to extend upon its practical use. In particular we developed 

an ensemble approach that rendered query-based biclustering applicable 

to query-sets that are heterogeneous in their expression. As a 

consequence, the scope of these methods is no longer limited to query-

sets that consist of sets of genes that are functionally related, but they 

can also be used on query-sets that participate in different functional 

groupings or that contain functional outliers. Using this extension, query-
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based biclustering methods can be applied to interrogate gene expression 

compendia with experimentally-derived query-lists. As such researchers 

can view the outcome of their own experiments in light of all publicly 

available expression data.  

In Chapter 3 and 4 we illustrated how this extension can be 

practically applied. In Chapter 3, using this ensemble strategy, we 

identified experimental inconsistencies in a ChIP-chip experiment by 

verifying its output with a gene expression compendium. In addition, we 

could confirm several novel targets for the regulator tested in the ChIP-

chip experiment. In Chapter 4 we applied the ensemble query-based 

biclustering framework to investigate the role of a specific set of 

experimentally derived genes in Salmonella Typhimurium biofilm 

formation.  

As ensemble-based strategies have up until now mainly been applied 

to transcend the accuracy of the predictions made by one or multiple 

methods, in Chapter 3 we applied it in a rather novel way: to remove 

redundancy amongst the outcomes. In particular, to render query-based 

biclustering methods applicable to query-lists that are heterogeneous in 

their expression we introduced a ‘split-and-merge’ strategy. In the ‘split-

step’ the problem of deriving the biclusters that contain the genes in the 

query-list is split into different subproblems in which a query-based 

biclustering solution is obtained for each gene in the query-list, hence 

circumventing the problem that different genes from the query-list might 

belong to separate biclusters. This results in an ensemble of often at least 

partially overlapping biclusters, each containing at least one of the query-

genes. In the ‘merge-step’ a unique solution is derived from the bicluster 

ensemble by removing redundancy amongst the output. This ‘merge-

step’ is analogous to the consensus strategy often applied to cluster 

ensembles (e.g. [53;54]) in that it relies on the construction of a new 

similarity matrix (the consensus matrix) which summarizes co-clustering 

across the ensemble of clustering solutions. However, as here we do not 

aim to stress gene pairs that repeatedly belong to the same bicluster, but 

aim to stress the distinct biclusters they belong to, we introduced in 
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Chapter 3 an alternative normalization function for this matrix to achieve 

this goal.  

Whereas different approaches have already been developed to query 

protein-protein interaction (PPI) networks with experimental results 

[218-222] (see 7.3.3), to our knowledge this is the first attempt to 

develop a method which interrogates genome-wide expression 

compendia for experimentally derived gene lists. Whereas methods 

developed to interrogate PPI networks are readily applicable to 

coexpression networks (i.e. networks which link genes for which 

coexpression exceeds a certain threshold), they ignore the contextual 

information present in gene expression compendia (i.e. genes are often 

only coexpressed under a subset of conditions). Our approach in 

contrast relies on a biclustering step and therefore inherently accounts 

for the condition-dependency of gene expression.  

7.2.2 An ensemble-based strategy to improve upon 
network inference 

In Chapter 5 we introduced Stochastic LeMoNe (Learning Module 

Networks). Whereas similar in spirit to the module networks method 

[30], LeMoNe pursues a stochastic instead of a deterministic approach to 

construct modules and to learn transcriptional programs for these 

modules. As is illustrated in Chapter 5 and further elaborated in Joshi et 

al. [32], introducing such a stochastic optimization step in combination 

with ensemble averaging can improve both upon module detection and 

inference of the transcriptional program. 

Module inference is often used as a first step in regulatory network 

inference (Chapter 6) and therefore the quality of the produced modules 

is crucial in order to obtain reliable TF-target gene predictions. In 

particular, modules should not only consist of genes that are 

coexpressed, but these genes should also be regulated by a common set 

of TFs: the genes within a module should be co-regulated. In Chapter 5, 

we illustrated that through the ensemble clustering strategy incorporated 

in LeMoNe spurious gene-to-module assignments can be filtered out (i.e. 
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genes that are only sporadically assigned to a module). As such modules 

could be obtained that consist of genes attributed to one specific regulon 

in stead of genes belonging to multiple regulons. Similarly, in other 

applications such as the clustering of tumor samples [56;57] and 

clustering of genes in expression data [53], the power of ensemble 

methods to derive a more robust and more accurate partitioning from 

the data has been demonstrated [53;56]. Alternative approaches to 

improve the quality of modules of coexpressed genes with respect to 

network inference have been presented by [8;25;183;184;223]. All these 

approaches complement gene expression data with alternative data 

sources, such as sequence data and ChIP-chip data to refine module 

construction. As such modules of genes can be constructed that are not 

only coexpressed but that also share motifs (sequence data) or TF-

binding sites (ChIP-chip data) for the same set of regulators. Especially 

methods which combine the detection of coexpressed modules with de 

novo motif detection are of interest [25;183;184], as they require little 

prior knowledge on the presence of TF-binding sites and therefore can 

be ready applied to organisms for which such data is only scarcely 

available.  

In a second step LeMoNe assigns transcriptional programs to the 

obtained modules. Also here LeMoNe incorporates a stochastic instead 

of a deterministic approach, resulting in multiple equally likely 

transcriptional programs being proposed for the same module. Here, to 

derive a consensus solution for TF-module predictions a different 

consensus strategy is used than for module detection. In particular 

majority voting (i.e. the regulator that is assigned to the module most 

often is most statistically significant) is used to attribute a significance 

score to each regulator-to-module assignment. In Chapter 5 we 

illustrated that biologically correct interactions are prioritized according 

to this score, as compared to a ground truth reference network. As 

predictions from network inference methods are often backed-up by 

experimental validation, a method that produces a reliable ranking of the 

predictions is desirable since it guides the researcher to the most 

probable predictions amongst the abundance of predictions the different 

methods produce. In addition, such a ranking assists in comparing the 
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performance of different network inference methods as this is usually 

assessed through precision-recall curves, which compare method 

performance for different significance score thresholds. While the use of 

majority voting in combination with an ensemble of predictions resulting 

from a stochastic optimization provides an objective and statistically 

motivated way to prioritize predictions also other approaches have been 

introduced that result in the predictions of a network inference method 

being ranked. In contrast to probabilistic methods, the outcome of 

deterministic methods such as itemset mining approaches [224] or the 

relevance networks procedures [172], which serve as a basis for 

respectively DISTILLER and CLR, do not assign a significance score to 

the predictions. Therefore, in CLR the relevance networks procedure is 

extended with an adaptive background correction step to filter out 

spurious interactions, causing the interactions to be ranked according to 

a significance score. In DISTILLER, the significance of the resulting 

modules of the itemset mining search strategy is scored by estimating the 

probability that the same modules and transcriptional programs would 

be selected by chance. In diverse studies both the probabilistic [66] as 

well as the deterministic approaches [8;34] discussed here were shown to 

successfully prioritize known interactions, supporting the practical 

usefulness of the different scoring-approaches. As of yet different 

scoring schemes have not been assessed independently from the 

algorithm itself and therefore the question which scoring scheme gives 

the best output remains open.  

7.2.3 Towards a mixed ensemble for network inference  

In Chapter 5 and 6 we illustrated that different network inference 

methods highlight different parts of the ground-truth TRN and are 

complementary in the interactions they infer. This can be explained by 

the fact that different network inference methods pose different 

biological constraints on the predictions that can be inferred. Hence 

constructing a mixed ensemble of predictions obtained by different NI 

methods provides an opportunity to not only improve upon the 

accuracy, but also to extend the scope of what can be found.  



Chapter 7 – Conclusions and perspectives 

 155 

Marbach et al. [213] were the first to propose such a mixed ensemble 

strategy for network inference: they combined the ranked output of 

different network inference methods through majority voting. They 

showed on synthetic data that in this manner a larger area under the 

precision recall curve could be obtained than for each of the individual 

methods. However, such a strategy is expected to mainly improve upon 

the precision of network inference by highlighting the interactions on 

which different methods agree and hence fails to account for the 

complementary aspect of the different approaches. We believe that 

mixed network inference ensembles might benefit from alternative 

consensus construction schemes that not only prioritize predictions 

retrieved by multiple methods (as is the case for majority voting) but that 

also prioritize high-scoring predictions unique to the different methods. 

However, to our knowledge so far no other consensus construction 

schemes have been proposed in this context. A possible alternative to 

the method of Marbach et al. [213] is to weigh each prediction in the 

consensus construction according to the confidence level for that 

prediction. Within the domain of gene function prediction Hibbs et al. 

[61] for instance took advantage of prior knowledge to appropriately 

weigh the ensemble of predictions made by different algorithms. 

However, more objective, statistically motivated scoring schemes are 

more desirable as to not bias the output towards what is known (e.g, 

[225]). Reliability scores as provided by most methods seem to correlate 

well with known biology (see for instance Chapter 5), therefore ideally a 

consensus scheme should exploit these scores to obtain a consensus 

solution that balances accuracy and sensitivity.  

Besides a relevant consensus aggregation scheme, a procedure is 

needed to decide upon which network inference methods should be 

included when exploiting mixed NI ensembles. Indeed, as suggested in 

Chapter 1, the individual interactions need to be both accurate as diverse. 

In particular, here we seek for methods that are diverse in the inferred 

interactions and that also derive these complementary interactions 

accurately. As was shown in Chapter 6, this seems to be the case for 

several well-established network inference methods as they all show 

similar overlap with the ground truth network, but infer complementary 
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parts from this network (Figure 6- 5). Each of these methods was 

conceptually very different from the other ones. Conversely, methods 

that are mainly based on similar theoretical frameworks, such as CLR 

and ARACNE [34;161], often do not contribute to an increased diversity 

in the predictions made (Figure 7- 1). 

 

Figure 7- 1 Comparison of high-scoring interactions inferred by two similar network 

inference methods. CLR is built on the same principles as ARACNE but incorporates a 

different scoring approach. This figure shows that CLR mainly improves upon 

ARACNE by inferring more interactions from the ground truth network (RegulonDB). 

In contrast, ARACNE fails to identify predictions from RegulonDB not identified by 

CLR. 

It needs to be further explored whether such an increased sensitivity 

and accuracy can also not be obtained by bootstrapping single methods. 

It seems intuitively plausible that a mixed ensemble leads to a larger 

diversity in predictions and hence can surpass single methods both in 

accuracy and sensitivity [46]. Recently, however, several approaches have 
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been developed that intentionally constrain solutions obtained using a 

single method as to maximize the diversity amongst the outcomes 

[49;226].  

Alternatively, first attempts have been made to combine the 

strengths of different network inference methods into one algorithmic 

framework. In [227], the authors combined the scalability of the CLR 

method with the power of Inferelator to infer causal relationships 

between TFs and potential target genes from time series data in a new 

computational pipeline. This mixed method was shown to outperform 

both CLR as Inferelator on synthetic data in the DREAM3 contest.  

Finally, we note that this observation of complementarity between 

different computational tools aimed towards solving the same biological 

problem is not unique to network inference. Similar observations and 

different attempts towards mixed ensembles have already been made 

with respect to gene function prediction [61], motif detection [46;47], 

PPI-network based prediction of disease genes [64], protein fold 

prediction [50;51], etc. Hence the existence of mixed ensembles seems to 

become a recurring theme within the field of systems biology.  

7.2.4 The limitations of expression-centered studies 

The methods presented in this thesis are all expression-centered: they 

infer modules and regulatory networks from gene expression data as a 

sole data source. As gene expression data only highlights one aspect of 

the TRNs, i.e. the joint coexpression of target genes due to common 

regulation, such an approach comes with certain drawbacks. First, as was 

discussed in Chapter 2, when constructing modules of coexpressed genes 

an important problem concerns defining a threshold on gene 

coexpression. This threshold generally depends on the biological process 

one is interested in: e.g. operon-level, regulon-level or a level triggering 

multiple regulons responding to complex environmental changes (e.g. 

oxygen concentrations). However, which threshold on coexpression 

should be chosen for studying a certain biological process at a particular 

level of biological detail is not known in advance. This problem is in 
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particular pressing for module-based regulatory network inference, as 

here obtained modules need to correspond to regulons. However, as 

information on joint regulation of the genes through the same set of TFs 

is not directly present in gene expression data, module construction on 

expression data alone can not guarantee that genes within the module are 

all co-regulated at the transcriptional level. Therefore, different methods 

extend the expression data with alternative data, such as sequence or 

motif information, to identify sets of genes that are not only coexpressed 

but also contain motifs for the same TFs [8;25;183;184;223].  

Second, with respect to expression-based predictions of TF-target 

interactions we also discussed the problem of correlation vs. causation in 

Chapter 6: expression-based network inference methods generally 

predict TF-target gene interactions based on an (anti-)correlated 

expression pattern, however fails to explain gene expression causally. 

Indeed, this assumption of correlation between TF-target genes 

supposes that the TFs themselves are also transcriptionally regulated. TF 

activity is however mainly regulated at the post-transcriptional level [42]. 

Consequently, we observed that methods such as LeMoNe and CLR 

mainly predict correct interactions for auto-regulators (Chapter 5 and 6). 

This problem can be alleviated by relying on an integrative module 

detection step and assigning TFs to the modules that contain their 

associated motifs (e.g. [8]). However, as the number of TFs with well-

characterized motifs is rather limited, especially for non-model 

organisms, these methods are restricted in scope. Alternatively, 

integrative module detection methods can be used that combine 

coexpression analysis with de novo motif detection [25;183;184], however 

as there is currently no biological motivated approach available to assign 

regulators to novel motifs, also expression-based methods need to be 

used here to predict TFs associated with the motifs [162].   

These examples illustrate that integrating complementary data with 

existing gene expression data might reveal a more accurate and complete 

picture on the functioning of the TRN and this increased performance 

of integrative methods has also already been demonstrated in practice 

[68;189]. With the increasing amount of complementary data being 



Chapter 7 – Conclusions and perspectives 

 159 

produced data integration methods will be further challenged and issues 

with these methods, such as accounting for different systematic biases 

inherent to different experimental procedures and missing measurements 

[62;225] will need to be tackled. However, as gene expression data is 

currently still the most abundant source of information, application of 

data-integration methods mainly remains restricted to well-characterized 

systems. Indeed, the wealth of publicly available gene expression data 

keeps inspiring different groups to develop computational methods to 

explore these data for interesting biological characteristics (e.g. [228-231]). 

Especially, the dynamic aspect of expression data, i.e. gene expression is 

described under a multitude of different conditions, seems to appeal to 

researchers as other datasources such as PPI and ChIP-chip data are 

often restricted to describing biological phenomena in single conditions.   

Lastly, in this work we focused on inferring the TRN of prokaryotes 

from gene expression data. The methods introduced here could also be 

potentially extended for application to higher eukaryotes. The higher 

complexity of these organisms (e.g. larger number of genes and more 

complex regulatory mechanisms) requires however that these methods 

are applicable to data sets of even higher dimensionality. In addition, due 

to increased complexity of gene regulation mechanisms in eukaryotic 

systems, network inference for these organisms will even more benefit 

from integrative approaches that study transcriptional regulation from 

different biological angles. On the other hand, recent reports suggest that 

within prokaryotes growth rate differences might exert global effects on 

gene expression [232;233]. Therefore, the possibility exists that using 

gene expression data to study prokaryotic transcription regulation, results 

might be confounded due to growth rate differences in the different 

gene expression experiments. As current approaches that have studied 

the effect of growth rate on prokaryotic gene expression have mainly 

been limited to theoretical and small-scale models [232;233] the more 

global effect of growth rate on gene expression needs to be further 

studied. As eukaryotic cells, however, generally grow more slowly than 

prokaryotic cells, here the growth rate is expected to have a less 

significant effect on gene expression.  
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7.3 Perspectives 
The past decade has resulted in an unprecedented accumulation of 

biological data, not only on the genomic and transcriptomic level, but 

also on the proteomic and metabolomic level. In addition, novel high-

throughput technologies have revealed a far more complex organization 

of the cell than was originally anticipated. These novel data types 

together with novel biological insights will further leverage the 

importance of network inference.  

7.3.1 The future of network inference: accounting for 
regulatory complexity 

The advent of novel technologies, such as tiling arrays and more recently 

the deep sequencing techniques [234;235], have revealed an 

unprecedented complexity of prokaryotic transcriptomes. Besides 

transcription factors, other regulatory elements such as non-coding 

RNAs (ncRNAs) [236] and riboswitches [237] seem to influence gene 

transcription levels. In addition, these data revealed that these novel 

regulatory elements are not cellular peculiarities, but are in stead 

omnipresent and involved in different cellular functions [238]. 

Riboswitches, for instance, are thought to regulate up to 2% of all B. 

subtilis genes [238]. sRNAs on the other hand have been shown to 

regulate important biological processes, such as virulence, stress 

response and quorum sensing [239-241]. In addition to these novel 

regulatory elements, alternative operon structures with multiple intra-

operonic transcription sites seem to be abound within prokaryotes 

[36;37], allowing for increased flexibility in gene transcription within 

changing environmental conditions.   

Although most inference methods can readily be applied to these 

novel types of expression data as they are insensitive to the type of 

technology used to generate the data, they will have to be adapted to 

account for the more detailed level of information that results from these 

novel technologies. As for instance the condition-dependent abundance 

of these sRNAs and riboswitches can be measured with tiling arrays or 



Chapter 7 – Conclusions and perspectives 

 161 

deep sequencing technologies, methods such as LeMoNe can be used to 

connect these regulators to potential target genes. Recently, LeMoNe has 

been applied to human expression data in order to predict miRNA-target 

gene interactions involved in cancer [242;243]. A similar strategy could 

be applied to connect sRNAs and riboswitches to their cognate target 

genes for bacteria.  

Recent developments within the research for eukaryotic 

transcription regulation have revealed a crucial role for DNA-structure 

on gene expression. In particular, nucleosome occupancy, histone 

variants and chromatin modification seem to exert major influences on 

gene transcription [244;245]. Similar information in prokaryotes is much 

scarcer and it is currently not known to what extent chromatine structure 

might influence gene expression. Several reports suggest, however, that 

different nucleoid-associated proteins exist within bacteria [246-250] that 

have long range effects on gene expression, extending their control to 

genes for which their promoter region is not directly bound by these 

proteins. Therefore, as condition dependent information gets available 

on the effects of these nucleoid proteins on gene transcription these 

must be integrated into novel predictive models that attempt to explain 

gene expression as a factor of different possible regulatory elements, 

including both regulators that exert direct effects (such as sRNAs and 

TFs) as nucleoid proteins that exert indirect effects on gene expression. 

7.3.2 The future of network inference: accounting for 
additional layers of gene regulation 

Currently, transcriptional regulation of gene expression, and by extension 

regulation of protein production, attracts major attention, primarily 

because of the existence of mature experimental methods for 

transcriptomics such as microarrays, tiling arrays and ChIP-technologies. 

However, it is well-established that gene regulation is manifested at 

different levels that include besides the transcriptional level also control 

mechanisms at the metabolic and the protein level. Mycobacterium 

pneumoniae for instance lacks the majority of TFs and sigma factors to 
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regulate metabolic gene transcription. Yet this bacterium shows a 

remarkable expression plasticity in response to changing environmental 

conditions, which can not be explained entirely by actions of its TRN 

[251]. Therefore, only focusing on the transcriptional level ignores the 

shear complexity of gene regulation and additional layers of regulation 

such as the metabolic and the phophorylation network need to be 

accounted for in order to obtain a comprehensive understanding on the 

mechanisms that underlie gene regulation. Tentative steps into this 

direction have already been undertaken by incorporating gene expression 

information in metabolic flux modelling [252;253]. However, as was 

illustrated in a small-scale computational model introduced by Kotte et al. 

[254] the true extent of this interplay between metabolism and the TRN 

still remains poorly understood. Paired datasets not only measuring gene 

transcription but also containing metabolite concentration provide 

however a step into the right direction into understanding the complex 

interplay between the different network layers [255]. Whereas in 

prokaryotes computational efforts for accounting for multiple layers of 

gene regulation have mainly focused on metabolism, other approaches 

have been developed in eukaryotes that for instance focus on post-

translational modifications of TF activity (e.g. [256;257]). The application 

of similar methods to prokaryotes is however hampered by a lack of 

available protein-protein interaction and protein-phosphorylation data.  

7.3.3 The future of network inference: towards a query-
based exploration of available data 

Since biological systems are very complex we often have to compromise 

between the system’s size that we consider and the level of detail at 

which we model. In Chapter 6 we therefore distinguished between 

query-based and global network inference methods. Global network 

inference methods attempt to model the regulatory network in its 

entirety from the available data whereas query-based network inference 

mostly focuses on a specific part of the network and tries to model that 

part in more detail than is computationally possible in a global setting. As 

current molecular biology research often starts from a particular 
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biological intuition or is often inspired by a certain experimental 

approach, we believe that query-based network inference will gain 

importance (e.g. [196;198]).  

In Chapter 3 and Chapter 4 we illustrated how query-based 

biclustering tools can add to the information derived from experimental 

data sources by a query-based interrogation of gene expression 

compendia for experimentally derived genelists. However, as not only 

gene expression data is accumulating but also physical interaction data 

such as PPI data and ChIP-chip data are piling up, querying these 

physical networks for experimental output is rapidly gaining interest. 

Indeed different approaches have already been developed to query PPI 

data sets for experimental outputs, such as RNAi hits [220;221] or 

differentially expressed genes [219;222]. These approaches have as a goal 

to either filter false positives from the experimental output [220;221] or 

to expand upon the mechanistic insights of biological systems [219;222]. 

Current methods, however, generally do not account for the 

incompleteness of the PPI networks (or other interaction networks) and 

the often low accuracy of the edges in such networks. Therefore, future 

efforts within this direction should include strategies to account for 

missing links, by for instance including functional relationships (e.g 

[219;221]) or relying on statitistical properties of the networks [258] and 

account for weighted edges representing the accuracy of a certain 

interaction (e.g. [259]).   

7.3.4 The future of network inference: constructing the 
genotype-phenotype map 

Although to date most inference studies have focused on understanding 

the condition-dependent behavior of a transcriptional network in one 

specific model strain, the success of deep-sequencing technologies has 

opened up a whole new application field of ‘individualized expression-

centered’ network inference. Expression-centered inference uses the 

premise that most of the mutations or changes occurring in the 

regulatory network at a level other than the transcriptional one will 
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eventually lead to an altered expression profile. This assumption allows 

considering the expression profiles of individual strains as specific 

phenotypes or traits [260-265]. Additional sequence-derived genomic 

information can then be used to explain individually observed variations 

in expression behavior (similar to the identification of eQTLs in higher 

eukaryotes). Inference methods that generate an explicit explanatory 

model for the observed expression profiles (e.g. Inferelator, Stochastic 

LeMoNe) can easily be extended to this purpose [144;266-268]. Linking 

adaptive changes of microbial genomes [269-271] to altered expression 

behavior will unveil fundamental insights in microbial evolution and will 

identify multifactorial changes underlying industrially relevant properties 

of naturally occurring bacterial or yeast strains [272]. Most of the links 

inferred by such an expression-centered approach will only provide an 

indirect link between the observed genomic or epigenetic alteration and 

the observed strain specific expression-profiles [273]. Future inference 

tools should focus on completing this hidden path between a genomic 

and an expression alteration by exploiting information on all levels of 

regulation e.g. the (post-) transcriptional, the signaling and metabolic level 

[225;267;274-279].  

Individualized expression-centered inference studies will not only 

complete, but revolutionize our understanding of bacterial regulation.  

7.3.5 The role of ensemble methods in the future of NI 

Paradoxically, with the increasing amount of biological data that has 

been generated in the past decade, confusion on the shear complexity 

and the inner workings of biological systems only seems to have 

increased. Therefore, it has become clear that there exists no single data 

source or no single method that can capture the full complexity of a 

biological system. Consequently, we believe that obtaining a systems 

level understanding of biological systems will increasingly rely on 

methods that are able to integrate biological hypothesis generated for 

different data sources and inferred by different computational methods 

that each make a different assumption on the data. Ensemble methods 
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have been specifically designed for this task: to intelligently integrate the 

information obtained by multiple experts. Challenges here lie in 

determining the optimal combination of predictions and in finding the 

consensus scheme that gives the most favorable results (see 7.2.3). Much 

can be learned with this respect from the machine learning community 

where ensemble methods have already been ingrained for more than a 

decade now [280].  

Nevertheless, the future of network inference can not entirely rely 

on aggregating predictions of existing tools, but novel computational 

approaches need to continue being developed to tackle the problems 

network inference tools suffer from collectively. A recent survey of 

Marbach et al. [213] on network inference tools revealed, for instance, 

that current tools are affected by systematic prediction errors. In 

particular, the majority of existing tools fails to accurately infer gene 

combinatorial regulation. Whereas ensemble methods can improve the 

accuracy and the scope of what can be found by single methods, their 

innovative aspect is limited: they can not output predictions beyond 

those captured by the single methods. 
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Appendix A 

Supplementary materials 

A.1  Comparison of different ensemble schemes 
for query-based biclustering 

 

Figure A- 1 Comparison of all possible combinations of consensus matrix 

transformations and graph clustering to obtain consensus biclusters. A. Compares the 

influence of using different consensus matrix transformation methods on the quality of 

the final bicluster solutions assessed by respectively their overlap with the original 

QDB-solutions (‘overlap’), their preservation of redundant relationships amongst the 

query-genes (‘redundancy’), their coverage for query-genes (‘coverage’), their functional 

coherences as calculated by the clustering score function (‘func enrich’) and the 

modularity of the clustering (‘modularity’) (x-axis).  Each row in the figure represents 

the comparison of the matrix transformations for one particular graph clustering 

method. B. Comparison of the effect of using different graph clustering methods to 

extract from the consensus matrix the final biclustering solutions. Same assessment 

criteria as in panel A were used. Here each row represents the comparison of different 

graph clustering method for the same matrix transformation. Figure is represented on 

the next page.  
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Figure A- 1 Caption on previous page. 
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A.2  Content consensus biclusters 

 

 

 

Table A- 1 Overview bicluster content in number of ChIP-chip targets and FNR 

targets. This table summarizes the obtained consensus biclusters in terms of the 

number of transcription units in a consensus bicluster (second column), the enrichment 

of the list of ChIP-chip targets for these consensus biclusters (fifth column) and the 

coverage for previously known FNR targets (last column). We distinguished between 

ChIP-chip targets that are known FNR targets according to RegulonDB (column 4) and 

those that are not known to be regulated by FNR according to RegulonDB (column 5). 

To calculate the enrichment of the ChIP-chip list for the consensus biclusters we took 

the sum of both. Enrichment values were obtained by hypergeometric test (p<0.05, 

Bonferroni-corrected). Significant p-values are indicated in bold. To obtain for each 

consensus bicluster the coverage in FNR targets, the percentage of known FNR targets 

within the bicluster with respect to the total number of transcription units was 

calculated. For consensus biclusters with a coverage exceeding 33% the values are 

indicated in bold. 
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 ChIP-chip FNR 

Bicluster Number TU Number TU Enrichment Number TU % targets 

  RegDB Novel    

1 220 4 4 0.074 11 5 

2 151 1 7 0.011 3 2 

3 157 3 3 0.096 5 3 

4 115 1 5 0.028 8 7 

5 71 15 6 <1e-15 29 41 

6 79 0 4 0.074 3 4 

7 56 0 3 0.103 0 0 

8 17 1 0 0.293 1 6 

9 7 0 1 0.133 1 14 

10 6 1 0 0.115 5 83 

11 36 0 2 0.164 2 6 

12 3 2 1 7.9e-6 2 67 

13 1 1 0 0.02 1 100 

14 1 1 0 0.02 1 100 

15 2 0 1 0.4 0 0 

16 12 1 1 0.023 4 33 

17 7 0 1 0.133 0 0 

Total 866 24 37  66  
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A.3  Calculation of NMI as a redundancy measure 
 

The main goal of the ensemble framework is to remove the redundancy 

among the QDB-solutions by assigning genes of highly redundant QDB-

biclusters to the same consensus bicluster. As the query-genes form the 

prototype of each QDB-solution (i.e. the average bicluster expression 

profile is usually determined by the query-gene) we expect query-genes 

with highly redundant QDB-solutions to end up in the same consensus 

bicluster. Consequently we can assess how well a consensus bicluster 

represents the redundancy amongst the QDB-solutions by calculating 

the similarity in the groupings of the query-genes imposed by their 

redundancy in their QDB-solutions and the grouping of the query-genes 

imposed by the clustering of the consensus matrix. To obtain such a 

grouping of the query-genes according to their redundancy in the QDB-

solutions we compute a query-gene by query-gene redundancy matrix 

(Figure 3- 2). Each element of this matrix contains the pairwise maximal 

overlap of the QDB-solutions of two query-genes as assessed by 

geometric coefficient. Next, groupings of query-genes with highly similar 

or redundant QDB-solutions are obtained from this matrix by clustering 

this matrix. Here, hierarchical clustering was used in combination with 

the modularity function to define a cut-off on the clustering tree. We 

used Normalized Mutual Information (NMI) [96] to assess the similarity 

in the groupings obtained from the query-gene by query-gene 

redundancy matrix and the grouping of the query-genes obtained from 

the consensus clustering. Normalized Mutual Information assesses the 

independency of both partitions. First, a confusion matrix is constructed 

in which rows represent the partitioning of the query-genes obtained 

from the query-gene by query-genes redundancy matrix and columns the 

partitioning of the query-genes according to the consensus clustering. 

Each matrix element Nij  represents the number of query-genes in 

common to cluster i from the redundancy matrix and cluster j from the 

consensus clustering. The number of communities derived from the 

redundancy matrix is referred to as cRED and for the consensus matrix as 
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cCONS. A measure of similarity between both partitions can then be 

obtained by Normalized Mutual Information: 
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A.4  Overview of S. Typhimurium biofilm specific 
gene set 

Table A- 2 Overview of the list of 70 genes experimentally determined to be specifically 

involved in biofilm formation. The second and the third column denote if biclusters 

could be retrieved for these genes for the multicellular and planktonic compendium 

(indicated with ‘x’). 

Gene locustag Gene name In multicellular In planktonic 

STM0191 fhuA x x 

STM0473 hha x x 

STM0557 STM0557 x x 

STM0586 fes x x 

STM0653 ybeL x x 

STM0731 STM0731 x x 

STM0978 aroA x x 

STM1091 sopB x x 

STM1140 csgF x x 

STM1255 STM1255 x x 

STM1402 sseE x x 

STM1583 STM1583 x x 

STM1594 srfB x x 

STM1765 narK x x 

STM1960 fliD x x 

STM2065 phsA x x 

STM2082 rfbP x x 

STM2086 rfbU x x 

STM2095 rfbA x x 
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STM2096 rfbD x x 

STM2777 iroN x x 

STM2782 mig-14 x x 

STM2805 nrdH x x 

STM2861 sitA x x 

STM2924 rpoS x x 

STM3474 nirB x x 

STM4060 cpxP x x 

STM4423 STM4423 x x 

STM0693 fur x  

STM1851 STM1851 x  

STM2083 rfbK x  

STM2084 rfbM x  

STM2085 rfbN x  

STM2303 STM2303 x  

STM2840 STM2840 x  

STM3071 STM3071 x  

STM3502 ompR x  

STM3713 rfaL x  

STM3717 rfaJ x  

STM3718 rfaI x  

STM3721 rfaP x  

PSLT019 pefB  x 

STM0305 STM0305  x 

STM0551 STM0551  x 
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STM0854 STM0854  x 

STM0877 potF  x 

STM1139 csgG  x 

STM1142 csgD  x 

STM1143 csgB  x 

STM1144 csgA  x 

STM1404 sseF  x 

STM2089 rfbJ  x 

STM2093 rfbI  x 

STM2094 rfbC  x 

STM2761 STM2761  x 

STM3133 STM3133  x 

STM3756 rmbA  x 

STM3783 STM3783  x 

STM0275 hisH   

STM0319 crl   

STM1358 aroD   

STM1432 ydhO   

STM2184 yeaH   

STM2908 STM2908   

STM2950 STM2950   

STM3342 STM2950   

STM3388 STM3388   

STM3714 rfaK   

STM3722 rfaG   
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STM3981 STM3981   
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