
Unveiling the Impact of User-Agent Reduction and Client Hints: A
Measurement Study

Asuman Senol
COSIC, KU Leuven
Leuven, Belgium

asuman.senol@esat.kuleuven.be

Gunes Acar
Radboud University

Nijmegen, The Netherlands
g.acar@cs.ru.nl

ABSTRACT
The user-agent string contains the details of a user’s device, browser
and platform. Prior work on browser fingerprinting showed that
the user-agent string can facilitate covert fingerprinting and track-
ing of users. In order to address these privacy concerns, browsers
including Chrome recently reduced the user-agent string to make it
less identifying. Simultaneously, Chrome introduced several highly
identifying (or high-entropy) user-agent client hints (UA-CH) to
allow access to browser properties that are redacted from the user-
agent string. In this empirical study, we attempt to characterize
the effects of these major changes through a large-scale web mea-
surement on the top 100K websites. Using an instrumented crawler,
we quantify access to high-entropy browser features through UA-
CH HTTP headers and the JavaScript API. We measure access
delegation to third parties and investigate whether the new client
hints are already used by tracking, advertising and browser fin-
gerprinting scripts. Our results show that high-entropy UA-CHs
are accessed by one or more scripts on 59.2% of the successfully
visited sites and 93.8% of these calls were made by tracking and
advertising-related scripts—primarily by those owned by Google.
Overall, we find that scripts from ∼9K distinct registrable (eTLD+1)
third-party domains take advantage of their unfettered access and
retrieve the high-entropy UA-CHs. We find that on 91.6% of the
sites where high-entropy client hints are accessed via the JavaScript
API, the high-entropy hints are exfiltrated by a tracker script to a
remote server. Turning to high-entropy UA-CHs sent in the HTTP
headers—which require opt-in or delegation—we found very limited
use. Only 1.3% of the websites use the Accept-CH header to receive
high-entropy UA-CHs; and an even smaller fraction of websites
(0.4%) delegate high-entropy hints to third-party domains. Overall,
our findings indicate that user-agent reduction efforts were effec-
tive in minimizing the passive collection of identifying browser
features, but third-party tracking and advertising scripts continue
to enjoy their unfettered access.

CCS CONCEPTS
• Security and privacy→Web application security; • General
and reference →Measurement.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0235-8/23/11. . . $15.00
https://doi.org/10.1145/3603216.3624965

KEYWORDS
user-agent string; client hints; web privacy; fingerprinting; online
tracking

ACM Reference Format:
Asuman Senol and Gunes Acar. 2023. Unveiling the Impact of User-Agent
Reduction and Client Hints: A Measurement Study. In Proceedings of the
21st Workshop on Privacy in the Electronic Society (WPES ’23), November 26,
2023, Copenhagen, Denmark. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3603216.3624965

1 INTRODUCTION
The user-agent (UA) HTTP header was introduced in 1992 for “sta-
tistical purposes and the tracing of protocol violations” [1, 85]. The
standard defined the UA header as a string that contains one or
more tokens of software name and versions such as LII-Cello/1.0
libwww/2.5. The modern UA string typically contains far more ex-
tensive information about a user’s browser, device and platform,
and it is used for various purposes including analytics, debugging,
content adaptation, or detecting incompatible, outdated or vulner-
able browsers [82]. In addition to these legitimate use cases, the
UA string may also enable stealthy cross-site tracking through
browser fingerprinting, if combined with other device and browser
information such as screen dimensions, installed fonts, or graphics
capabilities [64]. A flavor of browser fingerprinting called passive
fingerprinting only makes use of features that can be extracted
from the received network packets, without running any client-side
code [7, 81]. The information available to a passive fingerprinter
include the user-agent string, IP address, Accept headers, clock
skew [76] and protocol quirks [103]. Using passive fingerprinting, a
third-party tracker may potentially link a user’s web visits without
running any client-side code, thwarting any detection efforts by
the user or by web privacy measurement studies.

Empirical research on detecting passive fingerprinting on the
web is almost non-existent, likely due to the elusive character of pas-
sive fingerprinting. Marketing materials of advertising companies,
however, hint at the active use of user-agent data for tracking and
ad targeting. For instance, TikTok recommends that websites send
both the IP address and UA string of visitors through their server-
to-server TikTok Events API for better ad targeting [16]. Mobile
analytics andmarketing companyAppsFlyer’s bulletin on Chrome’s
UA reduction mentions that user-agent data is used for “attribu-
tion via probabilistic modeling”1 [19]. AppsFlyer recommends [19]
their partner ad networks to collect and share with them OS (plat-
form) version and device model user-agent client hints—two client

1Probabilistic attribution refers to attributing ad clicks, impressions or app installs
without relying on deterministic identifiers such as AdID (Android), IDFA (iOS), or
cookies.

https://doi.org/10.1145/3603216.3624965
https://doi.org/10.1145/3603216.3624965
https://doi.org/10.1145/3603216.3624965

WPES ’23, November 26, 2023, Copenhagen, Denmark Asuman Senol & Gunes Acar

 Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.1234.56 Safari/537.36

 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.0.0 Safari/537.36New

Old

💻
 D

es
kt

op

 Mozilla/5.0 (Linux; Android 9; SM-A205U) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.1234.56 Mobile Safari/537.36

 Mozilla/5.0 (Linux; Android 10; K) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.0.0 Mobile Safari/537.36📱
 M

ob
ile

New

Old

Figure 1: User-agent reduction in desktop and mobile Chrome browsers.

hints that we found to be accessed most in our measurements
(§4.2). Further, with the announced third-party cookie phase-out
by Chrome [39] and anti-tracking measures turned on by default
in Safari and Firefox, fingerprinting will likely be more crucial for
cross-site tracking of users [73].

Mozilla /5.0 (Linux; U; Android 7.0; es-us; SM-A510M Build/NRD90M)
AppleWebKit /537.36 (KHTML , like Gecko) Version /4.0 Chrome
/61.0.3163.128 Mobile Safari /537.36 XiaoMi/Mint Browser /3.7.2

Listing 1: An example of a user-agent string (source:
https://user-agents.net/s/rx5HpTAQIN).

Beyond its uses as a passive fingerprinting vector, the infor-
mation contained in the user-agent string itself can be used for
ad targeting and suppression. For instance, Google’s documen-
tation for real-time bidding (RTB) mentions that the user-agent
header “has historically been included in bid requests to provide
useful targeting data such as the initiating device’s browser and
platform” [52]. Using the UA string, advertisers may choose to
show luxury product ads to high-end smartphone/laptop owners,
or vice-versa: they could exclude users with outdated and budget
devices from their ad campaigns [83]. The user agent string may
also contain the primary language or locale of the device, which
may reveal a user’s country-of-origin and their immigration back-
ground [28, 44]. Consider the user-agent string given in Listing 1,
which belongs to a budget smartphone brand (Xiaomi) with a (now)
outdated Android version, having es-US locale (Spanish/US). The
UA string may give advertisers enough information to correctly
or incorrectly add this user to an imaginary “Latinx on a limited
budget” marketing segment [12], or exclude them from certain job
ads by their race, as Facebook (now Meta) allowed advertisers to do
in the past [74]. Furthermore, knowing a user’s country-of-origin
may allow targeting ads appealing to (or exploiting) their cultural
sensibilities [2, 17, 69].

In January 2020, Google announced plans to reduce the infor-
mation conveyed in UA strings as part of their Privacy Sand-
box project [41, 51, 99]. The stated objective of the effort was
to minimize the identifying information in the UA string to pre-
vent passive fingerprinting [51]. The plans also included the
reduction of information in the associated navigator proper-
ties: userAgent, appVersion, and platform [50, 99]. The im-
plementation of these changes occurred incrementally, start-
ing with UA reduction for desktop browsers in May 2021, and
ending with the reduction of Android Mobile (and Tablet) UA
string and related JavaScript APIs in May 2023 [50]. Simultane-
ously, Google has introduced UA client hints (UA-CH) in Chrome,

to expose the information reduced from the UA string in a
structured manner. These new client hints can be accessed by
first- or third-party scripts without any restrictions using a new
JavaScript interface called navigator.userAgentData. In particu-
lar, navigator.userAgentData.getHighEntropyValues method
returns high-entropy browser characteristics, including the unre-
duced UA string, device model and platform version. Adding these
new client hints made it possible for web applications to easily
access detailed UA information without parsing the complex UA
string. For instance, Kline et al. report that the internal ruleset
used by comScore to parse UA strings is “several thousand lines
long” [75]. Thanks to the structured UA client hints web applica-
tions that rely on detailed browser information could retain their
functionality. Making it easier to access high-entropy browser fea-
tures may appear contradictory to the spirit of the UA reduction
effort, but the stated objective of the UA reduction effort is to make
covert tracking (via passive fingerprinting) more difficult, and active
fingerprintingmore transparent—not more difficult [88, 99]. Chrome
achieves these dual objectives by reducing the information shared
by default in the UA HTTP header, and requiring explicit JavaScript
calls or HTTP/HTML-based opt-in to access high-entropy browser
features. Making access to high-entropy browser properties au-
ditable and actionable is motivated by Google’s Privacy Budget
proposal, which aimed to prevent active browser fingerprinting by
limiting the entropy available to scripts [18, 40, 99]2.

In this empirical study, we investigate the effects of Google
Chrome’s UA reduction efforts on the exposure of potentially iden-
tifying browser features. The key contributions of our research are
as follows3:

• We present a web measurement study of user-agent client
hints (UA-CHs) on the home pages of the top 100,000 sites.
Using an instrumented crawler, we capture and analyze
JavaScript calls, HTTP headers, and HTML <meta> elements,
which can be used to access, opt-in or delegate high- and
low-entropy user-agent client hints.

• Monitoring the newly introduced JavaScript interface, we
find that one or more third-party scripts access high-entropy
client hints on 52,392 (58.4% of the successfully visited) web-
sites. An overwhelming majority (93.9%) of these scripts are
classified as advertising related. From those sites where we

2We note that the public GitHub repository of Privacy Budget proposal is last updated
in late 2020 [40].
3The code and data from our study are available at https://github.com/ua-reduction.

https://github.com/ua-reduction

Unveiling the Impact of User-Agent Reduction and Client Hints: A Measurement Study WPES ’23, November 26, 2023, Copenhagen, Denmark

Client Hint Header Description Example Value Entropy

Sec-CH-UA Browser name and major version "Chromium";v="113", "Not-A.Brand";
v="24" Low

Sec-CH-UA-Mobile Boolean value indicating a mobile device "?0" Low
Sec-CH-UA-Platform Operating system name "Linux" Low
Sec-CH-UA-Full-Version (Deprecated) Unredacted UA version "113.0.5672.63" High

Sec-CH-UA-Full-Version-List List of unredacted UA versions "Chromium";v="113.0.5672.63",
"Not-A.Brand";v="24.0.0.0" High

Sec-CH-UA-Platform-Version Operating system version "NT 6.0", "5.15.0", or "17G" High
Sec-CH-UA-Arch Platform architecture "ARM", or "x86" High
Sec-CH-UA-Model Device model "Pixel 2 XL" High
Sec-CH-UA-Bitness CPU architecture bitness "32" or "64" High

Sec-CH-UA-WoW64
Whether the UA is
a 32-bit binary running on 64-bit OS ?0 or ?1 High

Table 1: User-agent client hint headers along with their descriptions, sample values, and entropy levels.

observed third-party access, we observe third-parties exfil-
trate high-entropy values to their endpoints on 47,691 (91.0%)
sites.

• Using JavaScript instrumentation, we detect fingerprinting
attempts by third-party scripts and find that only a minority
of the fingerprinting scripts already take advantage of newly
introduced high-entropy client hints.

• We examine the usage of high-entropy CH headers sent in
HTTP requests and find that their use is scarce. This indi-
cates that the UA reduction efforts succeeded in minimizing
the exposure of high-entropy browser features to HTTP
endpoints that may use them for passive fingerprinting.

2 BACKGROUND AND RELATEDWORK
In the more than 30 years since its introduction, the user-agent
string has grown into a long, detailed and somewhat confusing
string that contains many ossified parts. Perhaps only a minority
of tech professionals know what KHTML is, what is special about
AppleWebKit version 537.36 [95], and why Chrome and Safari men-
tion Mozilla/5.0 in their UA string [3, 85]—despite having seen
these strings potentially thousands of times. Parallel to this ossifi-
cation, many new properties of the browser, operating system (OS)
and physical device were added to the UA string, so web servers
can send compatible and localized web content. In addition to legit-
imate use cases such as delivering optimized versions of images or
videos for devices with different form factors [93], the UA string
can also be used to obtain a potentially unique browser fingerprint
by combining it with other information [59, 64, 70, 77, 84].

The UA string influences the uniqueness of a user’s fingerprint
due to the discriminating information it contains. In a seminal
study by Eckersley [65], the UA string ranked as the third-most
distinguishing browser feature after fonts and plugins. Specifically,
by collecting the fingerprints of 470K volunteered participants,
Eckersley found that the UA string contains 10.0 bits of Shannon
entropy—which means only one in 1024 (210) other browsers is
expected to share the same UA string for a given browser. Following
a similar approach, a 2016 study by Laperdrix et al. [77] showed that
UA string is the most identifying feature for mobile browsers and
third for identifying features for desktop browsers. Surprisingly,
one of every four smartphones in their dataset had a unique UA
string—primarily due to the inclusion of details such as the device

model, phone carrier, and firmware version. We note that while we
focus on browsers as the primary software to access the web, mobile
apps, smart devices and software libraries can also be classified as
user agents, and have user-agent strings.

2.1 What changed and how?
In January 2020 Chrome developers announced their “[i]ntent to
deprecate and freeze the UA string” [99]. While the initially an-
nounced timeline was not followed due to COVID, Chrome reduced
or froze part of the UA string in several phases [50]. The milestones
included replacing the minor version number with zeros and using
a fixed Android version. By February 2023, the UA string for An-
droid mobile and tablet devices was fully reduced [50]. Google’s
UA Reduction effort had three main components:

(1) Reducing the granularity of the UA string and freezing
parts of it (Figure 6). The minor version number is re-
placed with zeros in Chrome 101 (June 2022). As an exam-
ple, Chrome/101.3.2.1 would become Chrome/101.0.0.0 [55]
(Figure 1). Further, CPU and platform-related details are sim-
plified for the desktop browsers in Chrome 107 (February
2023), and the Android version number is replaced with the
fixed string “10” (May 2023) [50].

(2) The second component involves the implementation of user-
agent client hint (UA-CH) HTTP headers—a structured al-
ternative to the UA string. UA-CH headers are enabled by
default in Chrome 89, released in March 2021 [88].

(3) The third component introduces a new JavaScript inter-
face called NavigatorUAData, which contains properties
and methods for scripted access to UA-CHs (introduced in
Chrome 90, released in April 2021) [34].

2.2 User-Agent Client Hints
User-agent client hints (UA-CHs) offer a structured alternative to
retrieve the information redacted from the UA string. This client
hints to complement the UA reduction efforts to maintain compati-
bility. A client hint is introduced for all UA string components, a
complete list of which is given in Table 1. UA-CHs are categorized
as low- and high-entropy, based on how identifying they are. For
instance, full-version hint, which contains a detailed build version
is categorized as high entropy; while mobileness hint indicating
whether a device is mobile or not is categorized as low entropy.

WPES ’23, November 26, 2023, Copenhagen, Denmark Asuman Senol & Gunes Acar

The entropy category of a UA-CH determines whether the corre-
sponding header is automatically appended to every request or not:
low-entropy hints are sent in every request, while high-entropy
hints require explicit opt-in or delegation. To the best of our knowl-
edge, the division between the high- and low-entropy client hints
is not based on publicly available research. We observe that rare
values for low-entropy hints such as platform=Linux or Fuchsia,
can be identified if combined with other browser features.

The list of user-agent client hints is not fixed. For instance,
Chrome recently added a client hint representing the form factor of
the user’s device and the corresponding Sec-CH-UA-Form-Factor
header [82]. This information was historically conveyed as a
<deviceCompat> token in the user-agent string (e.g., “Tablet”, “VR”,
etc.) and was added during our study. Other proposed user-agent
client hints include a hint that indicates whether the browser needs
an update [26] and whether the browser is a self-declared bot [43].
Note that UA-CHs are just one type of client hints; others include
Device Client Hints, Network Client Hints and User Preference Media
Features Client Hints [29].

During our investigation, we spotted a few mismatches between
the latest UA-CH proposal 4 and its implementation in Chrome. For
instance, since August 2021, the UA-CH standard requires an empty
string to be returned in the platform version for Linux devices [32].
However, as of July 2023, Chrome still returns the Linux kernel
version (e.g., 5.15.0) in the platform version client hint on Linux [96].

All the information redacted from the user-agent string can
be obtained through high-entropy client hints. These hints can be
accessed via HTTP headers, or by using the JavaScript API. Notably,
the JavaScript API does not require any permission or opt-in from
the website—even for the scripts running in third-party iframes.
On the other hand, to receive high entropy UA-CHs in the HTTP
headers even a first-party needs to opt-in. Detailed explanations of
both methods are provided in the subsequent sections.

Access to User-Agent Client Hints via HTTP By default,
Chrome appends three low-entropy client hints, i.e, platform name,
major browser version, and mobileness in each HTTP request, if
the connection is secure (i.e., HTTPS). On the other hand, high-
entropy client hints require explicit opt-in or delegation to be sent
to first, or third parties, respectively. Top-level origins may request
high-entropy UA-CH headers by sending an Accept-CH response
header as shown in Step 2 in Figure 2. Accept-CH can contain a list
of CH header names such as Sec-CH-UA-Platform-Version. The
browser then sends these additional CH headers in all subsequent
requests to the first-party domains (Step 3 in Figure 2). Additionally,
client hints can be requested at the connection time using HTTP/2
or HTTP/3 Accept_CH frames, or using the TLS Application-Layer
Protocol Settings (ALPS) extension mechanism [21, 22, 45]. Request-
ing the client hints at the connection layer instructs the browser to
append the UA-CHs to the first HTTP request, which saves a round
trip at the application layer.

Servers can also use the Critical-CH response header when
certain high-entropy UA hints are required on the first navigational
request. Clients that receive a response with a Critical-CH header
must check if high-entropy hints are sent in the original request. If

4User-Agent Client Hints proposal is a Draft Community Group Report and it is still
in the pre-standardization stage [47].

Figure 2: The Accept-CH response header mechanism used
by servers to request high-entropy user-agent client hints
from clients. After receiving an Accept-CH header during a
secure top-level navigation request, the browser appends the
requested client hint headers in subsequent requests. The
image is adapted from Google’s documentation [100].

not, the client will resend the original request with the requested
hints (Step 3 in Figure 3).

Figure 3: Requesting high-entropy CHs initially using
Critical-CH header: When the server asks for a Critical-CH,
the client will retry the initial webpage request with it. The
image is adapted from Google’s documentation [100].

Unveiling the Impact of User-Agent Reduction and Client Hints: A Measurement Study WPES ’23, November 26, 2023, Copenhagen, Denmark

Access to User-Agent Client Hints via the JavaScript
API In the past, the UA information was exposed to scripts
through the userAgent, appVersion, and platform properties
of the navigator object. However, as part of UA reduction ef-
forts, the information accessible through those properties was
also reduced. In order to provide an alternative mechanism for
scripts to access high-entropy browser features, Chrome intro-
duced a JavaScript API for user-agent client hints [49]. This API in-
cludes an interface named NavigatorUAData (Appendix A), which
provides low-entropy UA values, and an asynchronous method
called navigator.userAgentData.getHighEntropyValues, of-
fering high-entropy UA values [82]. We have provided an example
of a navigator.userAgentData call and its corresponding out-
put value in Appendix A. The getHighEntropyValues method
allows client-side scripts to selectively retrieve high-entropy UA
client hints such as architecture, bitness, platformVersion,
uaFullVersion and fullVersionList5. This method offers a
more explicit and controlled approach to retrieving browser fea-
tures, allowing for better monitoring and transparency. Like UA-CH
headers, getHighEntropyValues is restricted to HTTPS pages. An
example call and output in Google Chrome are shown in the List-
ing 2.
navigator

.userAgentData.getHighEntropyValues(
["brands", "mobile", "bitness", "platform",
"platformVersion", "architecture", "model",
"uaFullVersion", "fullVersionList", "wow64"])

.then((ua) => { console.log(ua) });
// OUTPUT:
{

"architecture": "x86"
"bitness": "64"
"brands":[

{
"brand":" Not A;Brand",
"version":"24"

},
{

"brand":"Chromium",
"version":"113"

},
{

"brand":"Google Chrome",
"version":"113"

}
],
"fullVersionList":[

{
"brand":" Not A;Brand",
"version":"24.0.0.0"

},
{

"brand":"Chromium",
"version":"113.0.5672.63"

},
{

"brand":"Google Chrome",
"version":"113.0.5672.63"

}
],
"mobile": false ,
"model": "",
"platform": "Linux",
"platformVersion": "5.15.0",
"uaFullVersion": "113.0.5672.63",
"wow64": false

}

Listing 2: Sample output of the getHighEntropyValues in
Google Chrome. returning requested user-agent client hints
including the high-entropy ones.

5Note that the camelCase UA client hint names in JavaScript correspond to UA-CH
headers listed in Table 1; e.g., platformVersion => Sec-CH-UA-Platform-Version.

Remarkably, any first- or third-party script can call the
getHighEntropyValues method to access high-entropy UA-CHs
without permission, opt-in, or delegation from the website. This is
in stark contrast to how sending high-entropy UA-CH HTTP head-
ers requires active opt-in even for the website (or the first-party
domain) itself.

GREASE for User-Agent Brands To prevent reliance on spe-
cific UA strings in specific positions, the Generate Random Exten-
sions and Sustain Extensibility (GREASE) technique [82] is adopted
from TLS [57] to UA client hints. In the UA-CH context, GREASE
involves introducing intentionally incorrect or random entries in
the UA brands list to increase compatibility and prevent sites from
blocking unknown browsers. Specifically, browsers are required
to include multiple values in the brands list, with one being an
arbitrary value. The order of values must change over time to avoid
dependence on specific positions, and a random set of separators
should be used [10]. Unfortunately, the recent bug reports by Vivaldi
—a Chromium-based browser— show that GREASE does not ensure
equal treatment [54, 102]. According to reports, websites already
started parsing client hints with misplaced assumptions, and deny
access to browsers with small market shares due to unexpected
brand CH values [102].

2.3 Delegating hints to third-parties
By default, UA-CHs are not sent for third-party subresource re-
quests, and third parties cannot request high-entropy UA-CHs
themselves. Instead, the first-party server must send a Permissions
Policy header that lists the origins that may receive the UA-CHs
6. Examples of implementing this policy can be found in Figure 4.

Let’s take an example where example.com embeds a re-
source from sample-cdn.com which needs the full version of the
browser. The Sec-CH-UA-Full-Version hint can be requested
by https://example.com, but it must be explicitly delegated to
https://www.sample-cdn.com using the Permissions-Policy re-
sponse header as shown in Step 3 in Figure 4. Then the request
to subresources on sample-cdn.com (script source b○ in Figure 4)
includes the delegated hint which is Sec-CH-UA-Full-Version:
“113.0.5672.63".

Additionally, multiple hints can be defined for multiple origins.
For instance, example.com delegates multiple hints to multiple
origins with this response header as shown in Listing 3.
Accept -CH: Sec -CH-UA-Full -Version
Permissions -Policy: ch -ua-full -version =(self "https ://www.sample -

cdn.com"), ch-ua-model=(self "https ://www.sample -cdn.com" "
https :// analytics.com")

Listing 3: Client hint delegation to multiple domains.

To enable the delegation of CHs to cross-origin iframes, it is
essential to specify the CHs in the iframe’s allow attribute, along
with the Permissions Policy response header. Figure 4, presented
illustrates this process in d○. When an iframe with the source
https://sample-cdn.com includes the allow attribute, it can receive
the Sec-CH-UA-Full-Version CH header. However, as shown in
e○ of Figure 4, the absence of the allow attribute results in the
exclusion of this high-entropy CH.

6The Permissions Policy (previously, Feature Policy) header allows enabling and
disabling browser features such as microphone and camera for all or certain origins.

WPES ’23, November 26, 2023, Copenhagen, Denmark Asuman Senol & Gunes Acar

Figure 4: Delegating client hints to Third-Party Origins
by Permissions-Policy. The image is based on a figure in
Google’s documentation [78].

Sample c○ in Figure 4 illustrates a same-site, cross-origin frame
(subdomain.example.com). Despite having an iframe allow at-
tribute for UA-CHs, the high-entropy hint will not be sent when
loading this iframe, because it is not included in the origin list.

2.4 User-Agent Client Hint opt-in and
delegation via HTML

Publishers who cannot modify their website’s Permissions
Policy HTTP header can use HTML to opt-in to high-entropy
client hints or delegate them to third parties. The HTML <meta>
element can be used to opt-in to high-entropy CHs for first-party re-
quests. In this case, the http-equiv="Accept-CH" attribute, along
with the content attribute can be used. The content attribute holds
the list of hints to be delegated, along with the desired recipient
origins. Similarly, the http-equiv attribute of the <meta> element
enables explicit delegation of high-entropy CHs to third-party do-
mains. To achieve this, the http-equiv="delegate-ch" attribute
is used, along with the content attribute, which designates the
hints to be delegated and the corresponding recipient origins.

2.5 Statuses and positions of other browser
vendors

In this section, we summarize the status and viewpoints of Apple
and Mozilla with respect to UA reduction and UA client hints. Due
to space limitations we only provide a very high-level summary of
each vendor’s position and we do not claim that the following is
an exhaustive description:

Mozilla Independent of Google’s efforts, Mozilla had already
frozen the rendering engine version (rv) in Firefox 110 to avoid
being detected as IE11 [89]. Mozilla also reduced the information
exposed in the UA string over time [8, 20]. With respect to introduc-
ing user-agent client hints, Mozilla initially held a negative stance.
Mozilla initially labeled UA-CHs as harmful in their web standard
positions [90], citing concerns such as additional fingerprinting
risks, but they subsequently updated their position to neutral [33].
While there are bugs to track the implementation of UA-CHs [4, 13],
no work has been done toward that implementation as of July 2023.

In their critique of UA-CHs, Mozilla highlights the bandwidth
overhead of sending multiple low-entropy Sec-CH headers in each
request, along with additional fields requested by sites using the
Accept-CH mechanism [97]. Note that while HTTP/2 and HTTP/3
support header compression, even the compressed fields may con-
sume a non-trivial amount of bandwidth. We leave the bandwidth
overhead measurement of UA-CHs to future work.

Apple As early as 2017 Apple attempted to freeze the UA string
to reduce compatibility issues and defend against browser finger-
printing [5, 6, 62]. Seemingly due to compatibility concerns, they
later unfroze the major OS version [15]. Apple initially held a neg-
ative stance against UA-CHs and filed several issues on the pub-
lic GitHub repository, which are addressed except for one as of
July 2023 [11, 94]. The only remaining issue filed by Apple con-
cerns the getHighEntropyValues method, which returns all re-
quested high-entropy hints, including those that have not been
explicitly opted in via the Accept-CH header [91]. This means, re-
gardless of its origin and security context, a script can access all
high-entropy UA client hints, even if the first-party domain did
not send an Accept-CH header to opt-in to high-entropy client
hints. Citing the W3C specification, Apple engineers suggested that
prior opt-in must be required for accessing high-entropy hints from
scripts [91]. Currently, the first party can opt-out from exposing
high-entropy client hints to scripts from any origin by sending a
restrictive Permissions-Policy header.

Note that Apple requires all browsers running on iOS to use its
own WebKit rendering engine [60]. Thus, Apple’s position towards
client hints also determines the availability of UA-CHs on iOS
versions of Chrome, Firefox and other browsers.

2.6 Related Work
The research community has expressed considerable interest in the
UA string and its implications for web privacy and security. In this
section, we discuss the most pertinent research in this domain.

In his pioneering study, Eckersley [64] demonstrated that it is
feasible for websites to uniquely identify users at scale through
their browser fingerprints. Collecting browser fingerprints of over
470K volunteers, Eckersley showed that over 94% of the users hav-
ing Flash or Java have a unique fingerprint. Following Eckersley’s
lead, several studies introduced novel ways to fingerprint browsers
such as Canvas, Canvas Font and Audio Context API fingerprinting,
as well as WebRTC local IP discovery [67, 84]. In our study, we use
heuristics proposed by Englehardt and Narayanan [67] to detect
these four types of fingerprinting attempts. Vastel et al. [98] de-
vised a technique to link evolving browser fingerprints. Analyzing
98,598 browser fingerprints from 1,905 distinct browser instances

Unveiling the Impact of User-Agent Reduction and Client Hints: A Measurement Study WPES ’23, November 26, 2023, Copenhagen, Denmark

collected over a two-year period, they found that fingerprints regu-
larly change due to software updates, but their algorithm can link
evolving browser fingerprints with reasonable accuracy for months.

A type of fingerprinting called passive fingerprinting involves
extracting unique device fingerprints without running any client-
side JavaScript code. Passive fingerprinting relies on information
readily available to a web server such as IP address and HTTP head-
ers, including User-Agent, Accept-Language, and Accept head-
ers [7, 81]. These fingerprints can then be used to track and identify
devices across different browsing sessions. The main privacy con-
cern with passive fingerprinting is that it enables covert tracking
since it is undetectable to any client-side analysis, including web
measurement studies that use heavily-instrumented browsers [81].
An influential study by Kohno et al. presented a method to remotely
identify a specific physical device using its clock skews [76]. Using
timestamps sent in network packets, their method could identify
devices that were geographically distant, connected via different ac-
cess technologies, or behind firewalls/NATs. Analyzing web server
logs of Hotmail and Bing services, Yen et al. [101] found that 60-
70% of the distinct user-agent strings in their dataset were unique.
Kline et al. analyzed a corpus of over one billion user-agent strings
collected by comScore, a media traffic measurement and analyt-
ics company [75]. They found that less popular (low-volume) UA
strings generate the overwhelming majority of traffic [75].

Variations in how different devices and software implement
specific network protocols can lead to distinguishable patterns at
the network layer. Zalewski implemented p0f, which passively
identifies operating systems and software using differences in their
protocol implementations [103]. p0f uses a variety of network and
application-level features extracted from TCP, IP and HTTP headers
including the layout and ordering of TCP options; syntax and order
of HTTP headers; TCP timestamp increments; and various other
implementation quirks. A remarkable feature of p0f is how little
data it needs for fingerprinting: a single standard SYN packet could
be enough to distinguish many systems. While p0f mainly uses
protocol quirks for fingerprinting, it uses the user-agent string to
detect mismatches between the declared and actually used software
and OS, which may indicate dishonest software or manipulation by
on-path proxies. Following a similar approach, several tools and
libraries were developed for TLS fingerprinting [42, 46, 79]. Using
differences in TLS versions, ciphersuites, supported extensions
and compression options, these projects aimed to identify the TLS
software or libraries for objectives such as detecting unpatched
browsers, or malicious software that impersonates real browsers.
Anderson and McGrew’s research showed that precise OS version
detection is possible by merging TLS features with TCP/IP and
HTTP protocol data [56].

Another line of research and applications used UA strings to
detect malware and compromised hosts. Grill et al. detected infected
hosts by using the discrepancy between a user’s actual UA string,
and the UA string used by potential malware [68]. UA strings can
also be used for detecting malicious and benign bots. The npm
package “isbot”, for instance, claims to distinguish between good
bots such as web crawlers and bad bots that launch DDoS attacks
and spam campaigns [30].

We contribute to the literature by performing a large-scale web
measurement study focusing on the implications of user-agent

reduction and the simultaneous introduction of potentially identify-
ing user-agent client hints. Our study provides empirical data that
can be used to evaluate the effectiveness of these major changes
and their impact on web privacy.

3 METHODOLOGY
In this section, we describe the methods and tools developed to
measure the usage of UA-CH HTTP headers and the JavaScript API.

3.1 Extending Tracker Radar Collector
In order to develop our crawler, we extended Tracker Radar Col-
lector (TRC), a Puppeteer-based web crawler that records certain
JavaScript API accesses, HTTP requests & responses, cookies, and
other data related to web measurements. Since TRC only saves
a pre-defined list of HTTP headers, we extended its allow-list by
adding the ten UA-CH HTTP headers listed in Table 1, and other
HTTP headers used to opt-in and delegate high-entropy CHs (e.g.,
Accept-CH and Critical-CH). In addition, we parsed the meta
and iframe elements’ attributes, as opt-in and delegation can also
be accomplished through these means (§2.4). In order to monitor
access to high-entropy UA values by scripts, we intercept calls
to navigator.userAgentData.getHighEntropyValues and save
the arguments and the call stack. We use the function arguments
to identify the requested high-entropy client hints, and capturing
the JavaScript call stack allows us to identify the caller script’s URL.
Additionally, we instrument fingerprinting-related method calls
and property accesses using a separate collector (§3.2). For both
getHighEntropyValues and fingerprinting detection, we override
the relevant object’s getters to intercept the function calls. While
TRC has functionality for intercepting JavaScript API calls, we
added a separate collector, because the existing collector misses the
initial function calls due to a known TRC issue [23]. Moreover, we
extended TRC’s network instrumentation to save all WebSocket
traffic and HTTP POST payloads to better examine whether any
high-entropy values are being exfiltrated. This effort complemented
the existing network instrumentation of TRC, which already inter-
cepted GET requests.

Only visiting the webpage for a few seconds may not accurately
represent an actual user’s visit. To better simulate a real user, we
scrolled to the bottom of the page and then scrolled up, waiting for
5 seconds before gathering the necessary data. During the initial
phases of the study, Chrome in headless mode did not support client
hints. While we initially planned to run our crawler in headful mode
within a virtual display (e.g. via Xvfb), client hint support was added
to headless Chrome in February 2023 [9].

We override the crawler’s UA string and client hints us-
ing Puppeteer’s page.setUserAgent [36] method. This method al-
lows passing a userAgent string and structured UA metadata
(userAgentMetadata) which we use to specify all possible UA-CHs.
The UA values we use to override were taken from a real Chrome
browser running on Linux, and are given in Appendix B.

3.2 Detecting fingerprinting attempts
To determine whether existing fingerprinting scripts are leveraging
the newly introduced high-entropy client hints, our first step is to

WPES ’23, November 26, 2023, Copenhagen, Denmark Asuman Senol & Gunes Acar

identify these fingerprinting scripts. However, this can be a chal-
lenging task, as discerning the true intent of a script may be difficult.
For instance, a script might use the AudioContext API solely for pro-
cessing and synthesizing audio in web applications, without using
the data for fingerprint creation. Previous research has employed
either machine learning-based techniques [70] or heuristics [67]
to detect such scripts. Due to the scope of our study, we adopted
Englehardt and Narayanan’s heuristics (see Appendix C) to detect
fingerprinting scripts, focusing exclusively on four sub-types: Can-
vas, WebRTC, Canvas Font, or AudioContext fingerprinting [67].
Briefly explaining each fingerprinting method, Canvas fingerprint-
ing involves using the HTML5 Canvas API to draw images with
slight variations for user tracking [84]. WebRTC local IP discovery
exploits the WebRTC API to obtain the local IP of the browser [67].
Canvas Font fingerprinting utilizes the Canvas API to render text in
various fonts and styles, enabling the analysis of rendering differ-
ences to create distinct fingerprints [67]. Similarly, AudioContext
API fingerprinting use signal processing features to extract a finger-
printing of the audio stack of the device [67]. To intercept function
calls, return values and function arguments, we overrode the getter
and setter methods of those Web APIs. The script responsible for
overriding was injected into every page including their subframes
immediately after the page was created, before the page’s scripts
run.

3.3 Interaction with consent dialogs
Since the GDPR came into effect in 2018, numerous websites started
to display consent dialogs when accessed from the European Union
(EU)—or even from the US, to some limited extent [87]. To fully
measure the access to the high-entropy UA-CHs, we opted to ac-
cept all personal processing (or cookies). In order to handle consent
dialogs accurately and automatically, we used code extracted from
Priv-Accept [71, 80], a specialized crawler designed to accept con-
sent dialogs on websites. Since Priv-Accept was only available in
Python, we ported its consent interaction code to JavaScript and
integrated it into our crawler. Essentially, our Priv-Accept (NodeJS)
script searched for specific HTML elements such as a, button, div,
span, form, p, containing keywords such as “Accept”. Upon detect-
ing such an accept element, Priv-Accept automatically clicked it to
accept all personal data processing and cookies.

3.4 Detection of high-entropy value
exfiltrations

Do the scripts that access high-entropy UA values send it to their
servers or share it with other third parties? The high-entropy UA
hints retrieved by the scripts may potentially be used for feature
detection or other client-side optimization, which could alleviate
privacy concerns since the high-entropy values may not leave the
browser. In other cases, scripts that retrieve the high-entropy UA
values via JavaScript calls may send them to several third-party do-
mains, potentially for tracking and advertising purposes. Detecting
these exfiltrations relies on identifying the presence of high-entropy
UA values in the HTTP request payloads (excluding the Sec-CH-*
headers). A potential challenge for accurately detecting such ex-
filtrations is to identify the sent high-entropy hints in encoded,
hashed, or obfuscated payloads. Previous studies in web privacy

measurement have taken various approaches to tackle this chal-
lenge. In order to detect Personally Identifiable Information (PII)
exfiltrations from contact forms, Starov et al. [92] conducted a
comparative analysis of HTTP parameters observed in multiple
crawls. However, their method requires manual analysis and mul-
tiple crawls, where they provide different identifiers. Instead, we
follow Englehardt et al.’s approach [66], which involves searching
for multi-layered encodings and hashes (e.g., Base64, SHA-256) of
search strings in the HTTP request URL, headers and POST data.

Naively searching for all high-entropy UA values in the HTTP
traffic may lead to false positives. Consider the high-entropy hint
Sec-CH-UA-Bitness, whichmay take the values of 32 and 64. These
two-digit values may appear in the HTTP traffic due to unrelated
reasons, for instance as part of random strings. In order to pre-
vent such false positives, we only searched for two high-entropy
client hints: the platform version (5.15.0) and the full UA version
(113.0.5672.63). We begin by generating a precomputed pool con-
taining all possible sets of tokens through iterative encodings and
hashes of the platform version and full version. We then search for
exfiltrations in the referrer header, URL, and POST bodies of the
requests, using potential separator characters (e.g., ’=’) to split the
content. We exhaustively apply all possible decodings and check
if the decoded result matches any entry in the precomputed pool.
This process is repeated until we reach a maximum of three layers
of encodings or decodings. A detailed list of the encoding and hash
algorithms used can be found in Appendix D.

3.5 Identifying tracking-related requests
To identify tracking-related requests, we employed the uBlock Ori-
gin Core npm package [27], which replicates the blocking behavior
of the widely used uBlock Origin tracking protection extension [48].
By using the default filter lists employed by uBlock Origin, includ-
ing EasyList [24] and EasyPrivacy [25], we determined the blocked
status of each request. To achieve this, we provided uBlock Origin
Core with the resource type of the request (e.g., image or script), as
well as the page and request URL. When detecting whether a script
is tracking-related or not, we use the script URL extracted from the
JavaScript call stacks (§3.1).

3.6 The crawl
In June 2023, we crawled the homepages of the top 100K sites in
the April 2023 Chrome User Experience Report list [72], excluding
sites with identical fully qualified domain names. 91% (89,763 sites)
of websites could be visited successfully while the remaining visits
failed due to errors including DNS and timeout errors. Priv-Accept
accepted personal data processing on around 21% of the visited
sites, as revealed by the crawl logs. The crawl was performed using
a cloud-based (DigitalOcean) server located in the United States
(US). The crawl took four days, and it was run on a server equipped
with 8 vCPU cores and 16GB of RAM. We chose a server located in
the US, mainly to minimize the consent dialogs our crawler needs
to deal with. While we use Priv-accept to detect and interact with
consent dialogs (Section 3.3), certain consent dialogs may be missed
by our crawler, leading to a bias in the measurement. We leave it
to future work to perform a comparative study based on multiple
vantage points.

Unveiling the Impact of User-Agent Reduction and Client Hints: A Measurement Study WPES ’23, November 26, 2023, Copenhagen, Denmark

4 MEASUREMENT RESULTS
Recall that user-agent client hints can be gathered using JavaScript
calls and user-agent client hints HTTP headers. Below, we present
separate measurements for each access method to conduct a com-
prehensive analysis.

4.1 getHighEntropyValues calls and
exfiltrations

We observed a call to getHighEntropyValues method by one or
more third-party scripts on a total of 52,392 unique sites, which
amounts to 58.4% of the successfully visited sites. Table 2 gives an
overview of the presence of these JavaScript API calls across the
analyzed websites. We found that almost all calls (98.6%) are due
to third-party and tracking-related scripts. According to Chrome
usage metrics, getHighEntropyValues is invoked during 53.3% of
the page loads [37]. We believe that our measurement (58.4%) is
slightly higher because our study focused on the top 100K sites.
Recall that we determine the caller script using the JavaScript stack
traces observed during a call to getHighEntropyValues. In order
to detect tracking-related scripts we use the labels returned by the
uBlock Origin for the caller script’s URL as explained in §3.5. We an-

All Third
party

Tracking
related

getHighEntropyValues calls 53,148 52,392 51,630
Hi-ent. UA-CH exfiltrations 48,355 47,691 47,285

Table 2: The number of distinct websites where high-entropy
UA-CHs were retrieved by a script and exfiltrated. On over
91% of the websites, scripts exfiltrate high-entropy UA-CHs
that they retrieve via the getHighEntropyValues method.

alyzed the categories of third-party scripts (obtained via inspecting
JavaScript stack traces) that retrieve high-entropy client hints to
understand the purposes of these API calls. For domain categoriza-
tion, we relied on the Tracker Radar dataset [61], which classifies
known (mostly tracker) domains into one or more categories. The
results shown in Table 3 reveal that the most common categories
are associated with tracking, advertising, marketing, and analytics.
Notably, the most prevalent category among them is Ad Motivated
Tracking.

Next, we turn to specific third-party tracker scripts that call
getHighEntropyValues on most websites. We found that five
scripts that retrieve high-entropy hints on most sites come
from Google, and most of them are advertising-related. Specif-
ically, googletagmanager.com, googlesyndication.com, and dou-
bleclick.net emerged as the prominent tracker domains among the
identified third-party domains as shown in Table 4.

We conducted an analysis to determine which client hints are
more frequently retrieved via the getHighEntropyValues method
by third-party scripts. For this analysis, we used the arguments of
getHighEntropyValues captured through our JavaScript instru-
mentation (§3.2). Analyzing function call arguments, we found that
the most frequently requested UA client hints via the JavaScript

Script Category Num. Sites

Ad Motivated Tracking 44,084
Advertising 43,976
Audience Measurement 40,901
Third-Party Analytics Marketing 40,491
Analytics 40,347
Action Pixels 13,224
Embedded Content 4,523
CDN 4,342
Social - Share 2,338
Ad Fraud 1,339

Table 3: Most common categories of third-party scripts call-
ing getHighEntropyValuesmethod. The right-hand column
shows the number of distinct websites where we detected
at least one call to getHighEntropyValues from the respec-
tive category. The categorization is based on DuckDuckGo’s
Tracker Radar dataset [61], where a script is assigned one or
more categories based on its domain.

High Entropy API calls High Entropy API exfiltrations

Tracker domain Num.
Sites Tracker domain Num.

Sites

googletagmanager.com 28,929 google-analytics.com 22,517
googlesyndication.com 6,843 google.com 9,325
doubleclick.net 3,633 doubleclick.net 8,853
googletagservices.com 1,414 googlesyndication.com 2,018
googleadservices.com 673 crwdcntrl.net 985
quantserve.com 437 sharethis.com 531
taboola.com 330 gemius.pl 356
clarity.ms 192 taboola.com 315
statcounter.com 161 id5-sync.com 253
wpadmngr.com 152 tynt.com 202

Table 4: Top tracker domains that call getHighEntropyValues
(left) and exfiltrate (right) high-entropy values.

API are model and platformVersion as shown in Table 5. No-
tably, a third-party mistakenly calls getHighEntropyValues with
an mistyped argument, uaFulVersion, on seven distinct sites. Ad-
ditionally, on 174 sites the method is called with the argument None
by scripts served from the ampproject.org domain. In this case,
Chrome only returns low-entropy hints.

Upon analyzing the HTTP URL, POST data, and referrer fields
(§3.4), we found that the fullVersion or platformVersion, along
with their corresponding encodings, were being exfiltrated to a
third-party domain across 47,691 distinct websites7. Notably, in the
majority of cases (88.8%), these values were transmitted without any
encoding or obfuscation. However, in certain instances, they were
encoded using URL encoding (6.8%) or Base64 encoding (4.1%). The
righthand column of Table 4 shows the most common domains that
high-entropy UA-CHs are exfiltrated to. Google domains including
Google Analytics is followed by Lotame (crwdcntrl.net), which
offers its audience data to advertisers, marketers and publishers
[31]. Our analysis further revealed that on 91.6% of the sites where
7Note that we excluded all UA-CH headers from this analysis.

WPES ’23, November 26, 2023, Copenhagen, Denmark Asuman Senol & Gunes Acar

UA Client Hint Num.
Sites

Num. of Script
Domains

model 52,270 970
platformVersion 52,214 1,052
platform 51,529 746
fullVersionList 51,321 792
architecture 51,229 618
bitness 50,874 554
uaFullVersion (deprecated) 50,743 359
wow64 50,132 80
mobile 7,615 283
brands 5,208 462
None 174 1
uaFulVersion 7 1

Table 5: getHighEntropyValues arguments sorted by the num-
ber of distinct sites they were observed on. The rightmost
column indicates the distinct script domains that used the
particular hint.

the getHighEntropyValues was called by a tracker script, the high-
entropy values were exfiltrated to tracker domains, as shown in
Table 2. Furthermore, despite intercepting WebSocket requests, no
exfiltration was observed through this channel.

Our analysis of whether getHighEntropyValues is more likely
to be called on popular websites yielded a negative result. As Table
10 in Appendix E shows, the Tranco rank of a website does not
seem to correlate with more or less access to high-entropy UA-CHs
via the JavaScript API.

To gain insights into the motivations behind tracker domains
exfiltrating high-entropy values, we conducted a comparative anal-
ysis of high-entropy value exfiltration across various categories
of third-party domains that receive these values. In Appendix F,
Table 11 shows that Advertising and Audience Measurement are
the top two categories significantly associated with the exfiltration
of high-entropy values. Interestingly, these categories align with
the categories of the scripts calling the getHighEntropyValues
method, as shown in Table 3. In fact, the top five categories listed
in both tables are exactly the same.

In addition to analyzing scripts involved in fingerprinting, we
investigated those accessing high entropy values. Among the 2,190
distinct third-party fingerprinting scripts we identified, a surpris-
ingly low 12.5% make calls to the getHighEntropyValues method
(Table 12 in Appendix G).

4.2 The collection of User-Agent Client Hint
HTTP headers

Recall that UA-CHs are categorized as low and high-entropy de-
pending on how identifying they are (Table 1). Low-entropy CHs
are automatically included in every request, while high-entropy
CHs require explicit opt-in for first parties or delegation for third
parties. In the following tables, low and high entropy hints are
presented separately due to this distinction.

Table 6 displays the count of distinct websites where non-empty
client hints (CHs) were detected in requests made to both first-party
and third-party domains. Notably, Sec-CH-UA-Platform-Version

Ent. UA-CH Header All Third
Party

Tracking
Related

hi
gh

Sec-CH-UA-Platform-Version 886 331 134
Sec-CH-UA-Model 886 329 132
Sec-CH-UA-Full-Version-List 696 261 67
Sec-CH-UA-Arch 667 257 63
Sec-CH-UA-Full-Version 581 217 25
Sec-CH-UA-Bitness 491 217 25
Sec-CH-UA-Wow64 401 210 21

lo
w

Sec-CH-UA 89,141 78,476 67,560
Sec-CH-UA-Mobile 89,141 78,476 67,560
Sec-CH-UA-Platform 89,141 78,478 67,560

Table 6: The number of distinct sites where CH headers were
observed on requests made to all parties, third parties, and
tracker domains.

and Sec-CH-Modelwere the most frequently observed CHs, mirror-
ing the most received CH via the getHighEntropyValues method.

Specifically, Sec-CH-UA-Platform-Version was sent on 886
(1%) sites, and among those, it was transmitted to a third-party
domain on 331 sites. Our findings were in line with Chrome usage
metrics, where Sec-CH-UA-Platform-Version was sent on 1.67%
of the sites [38]. Further, we found that on 622 sites, the low en-
tropy UA-CHs were not sent in any request. Additional analysis of
these cases revealed two main reasons. Firstly, certain sites utilized
insecure HTTP connections, leading to the browser not sending
UA-CHs. Secondly, a limited number of sites only triggered the
initial request, with no subsequent requests made.

As illustrated in Table 13, the Advertising category stands out
as the most common category of third-party domains where high-
entropy UA-CH headers were sent to. Similar to the dominant cate-
gories associated with getHighEntropyValues calls, Advertising
and Ad-Motivated tracking categories appear high in this table.

The top two client hints (Sec-CH-UA-Model and
Sec-CH-UA-Platform-Version) were opted-in by first-party do-
mains using the Accept-CH header, consistent with the client hints
retrieved via the JS method. As depicted in Table 7, our analysis
found that Sec-CH-UA-Model and Sec-CH-UA-Platform-Version
were requested in the Accept-CH header on 1,046 and 870 distinct
sites, respectively. During our analysis, we discovered that certain
Accept-CH CH header values include typos. Specifically, some of
these values lacked the ‘Sec-’ prefix, such as ua-platform-version.
For example, Accept-CH headers sent by bing.com contained values
such as UA-Full-Version, UA-Platform, and UA-Arch (all three
incorrect), Sec-CH-UA-Full-Version-List (correct). Similarly, is-
suu.com sent CHs in the Accept-CH header without the Sec prefix,
such as UA-Arch and UA-Full-Version. In those particular cases,
Chrome sent the correctly typed Sec-CH-UA-Full-Version-List
to bing.com, but did not send any high-entropy hints to issuu.com.

Table 8 shows that high-entropy CH headers are delegated
to third-party domains on very few sites (0.4%). Primarily, sites
delegate high-entropy UA-CHs to all domains using the ‘*’
character, granting access to the delegated UA CH headers to
all nested browsing contexts within the document, regardless
of their origin. fandom.com and google.com are the two do-
mains that were most commonly delegated via the Permissions

Unveiling the Impact of User-Agent Reduction and Client Hints: A Measurement Study WPES ’23, November 26, 2023, Copenhagen, Denmark

Ent. UA-CH Header Num. Sites
hi
gh

Sec-CH-UA-Model 1,046
Sec-CH-UA-Platform-Version 870
Sec-CH-UA-Full-Version-List 824
Sec-CH-UA-Arch 799
Sec-CH-UA-Full-Version 538
Sec-CH-UA-Bitness 443
Sec-CH-UA-Wow64 354

lo
w

Sec-CH-UA-Platform 818
Sec-CH-UA 434
Sec-CH-UA-Mobile 403

Table 7: The number of distinct sites where UA-CHs were
opted-in via the Accept-CH header.

Policy header. Only on a few websites high-entropy UA-
CHs delegated to specific origins. For example, on chase.com,
Sec-CH-UA-Full-Version-List is delegated to the subdomains
of Chase by specifying “https://*.chase.com”. Similarly, certain sites
such as idiva.com, indiatime.com, and mensxp.com permit sending
high-entropy CHs to a specific origin (ase.clmbtech.com).

Ent. UA-CH Header Allow All(*) Total

hi
gh

ch-ua-platform-version 312 338
ch-ua-model 310 337
ch-ua-full-version-list 259 266
ch-ua-arch 261 266
ch-ua-bitness 221 225
ch-ua-full-version 225 225
ch-ua-wow64 218 222

lo
w

ch-ua-platform 218 225
ch-ua 4 6
ch-ua-mobile 4 6

Table 8: The number of distinct sites delegating high-entropy
UA-CHs via the Permissions Policy header. Most websites
use ’*’ instead of specific origins to delegate to all possible
origins. These cases are indicated in the ’Allow All’ column.

4.3 User-Agent Client Hint opt-in and
delegation via HTML

Besides Permissions Policy and Accept-CH headers, opt-in
and delegation of high-entropy UA-CHs can also be accom-
plished through the use of HTML <meta> element attributes
and iframes’ allow attributes. However, we observed that the us-
age of these methods for delegation was relatively low. Specif-
ically, http-equiv=’accept-ch’ <meta> tag was employed for
opt-in by first parties on 117 sites; the iframes’ allow attribute
was used for delegation to third parties on 32 sites, and the
http-equiv=’delegate-ch’ <meta> tag was used for delegation
to third parties on just 11 sites, as shown in Table 9. A potential
reason for the limited use of the HTML-based method is that it
introduces a delay in sending the high-entropy client hints since
the browser needs to parse the HTML content to discover the

opt-in. This may cause the browser to not send the requested high-
entropy UA-CHs in the several requests that immediately follow
the response—a phenomenon which we observed in our data, but
not quantified due to limited scope.

Delegation Num. Sites

http-equiv=’accept-ch’ 117
iframe-allow 32
http-equiv=’delegate-ch’ 11

Table 9: The number of distinct sites where delegation is
accomplished through HTML.

4.4 Reduction in high-entropy User-Agent
exposure

Finally, we compare the domains that could access high-entropy
UA-CHs via the getHighEntropyValues method and those that
actually use that privilege. Figure 5 shows that 25,052 (61%) of the
41,229 distinct third-party domains encountered in our crawl serve
active content with resource type reported by Puppeteer as “script”
or “document” — the latter of which can contain inline scripts.
Scripts from these domains can start collecting the high-entropy
UA-CHs overnight, by adding a call to the getHighEntropyValues
method. This could triple the number of distinct domains that access
such high-entropy UA-CHs, which currently amount to 9,095 (22%)
distinct third-party domains. While high-entropy UA-CHs can be
accessed by third parties via HTTP headers, our results suggest
that third-party delegation is rarely observed.(Table 8).

Figure 5: Comparing distinct 3rd-party domains that can run
scripts and thus can access high-entropy UA-CHs and those
that accessed high-entropy UA-CHs via the JavaScript API.

5 DISCUSSION
The UA reduction efforts seem to have achieved their goal of lim-
iting the potentially identifying information readily available in
the UA HTTP header. Thanks to the off-by-default design of high-
entropy UA-CH HTTP headers, we found that less than 1% of third

WPES ’23, November 26, 2023, Copenhagen, Denmark Asuman Senol & Gunes Acar

parties receive high-entropy client hints over HTTP. On the other
hand, the same high-entropy client hints are made accessible to
scripts without any check for their origin or security context. This
unfettered access enabled the collection and exfiltration of high-
entropy UA-CHs by tracker scripts on close to 60% of the websites
we studied. Particularly notable is that Google, primarily through its
ads and analytics-related scripts, stands out as the most prevalent
user of the getHighEntropyValues method and owns the most
common domain (google-analytics.com) to which high-entropy UA-
CHs are exfiltrated to by scripts (Table 4). We also note that while
UA reduction efforts aim to limit covert tracking, Google’s recently
introduced Server-Side Tagging (SST) mechanism has almost the
opposite effect [53]. SST shifts data sharing with third parties from
client to server-side, potentially hiding the third parties that collect
web users’ detailed online activities.

Somehow surprisingly, even if Chrome engineers decide to fur-
ther reduce identifying information available through the UA-CHs,
they may not be allowed to do so—at least in the short term. Re-
sponding to the UK Competition and Markets Authority’s inves-
tigation into the Privacy Sandbox project, Google has committed
to ensuring that all the information previously present in the user-
agent string will remain accessible through the UA CHs until the
third-party cookie deprecation [35]. This was part of the commit-
ments made to limit the potential anti-competition effects of the
Privacy Sandbox project.

Finally, one might also question the relative significance of pri-
vacy risks posed by passive fingerprinting in relation to the wide-
spread use of active and overt tracking—where Google is the most
prevalent tracker entity through its ads, analytics and tag manager
products [86]. Further, it is unclear to us whether overt cross-site
tracking methods such as (active) browser fingerprinting or cookie
syncing are more transparent or auditable from an end-user’s per-
spective. While we recognize the improved transparency in our
research, web measurement studies like ours cannot offer privacy
assurances akin to a private-by-design system.

5.1 Limitations
Similar to other web measurement research, our study has several
limitations regarding representativeness, reproducibility [63] and
coverage. With a single form factor (desktop) and vantage point
in the US, we cannot claim our results are representative of real
users’ experiences around the world. Further, websites may detect
our crawler as an automated bot, and treat it differently [104]. We
rely on TRC’s anti-bot measures [58] which thwarts bot detection
to a certain extent, but we acknowledge that its efficacy may be
limited. With respect to coverage, our crawler only visited home
pages and could not visit pages behind paywalls or login walls.

A specific limitation of our measurement was the inability to
capture opt-ins at the connection time via HTTP/2 and HTTP/3
frames [22, 45] since those features are disabled in Puppeteer due
to incompatibility with the Chrome DevTools Protocol [14]. We
believe this limitation did not affect our prevalence measurements,
but could skew the measurement of mechanisms used to convey
the UA-CH opt-ins. In particular, our results do not capture the
use of HTTP/2 or HTTP/3 frames for opting-in to high-entropy
UA-CHs. In order to verify that we have not missed any HTTP/2 or

HTTP/3 Accept_CH frames, we made sure that we can attribute all
high-entropy UA-CH headers to a corresponding HTTP Accept-CH,
Permissions Policy headers or <meta> tags, except on five web-
sites. The most likely reason why we cannot pin down the opt-in
mechanism on those five websites is <meta> tags that are tem-
porarily injected and removed before we query the DOM, which
is another minor limitation of our approach. Regardless, we note
that these limitations do not affect our core measurement of high-
entropy JavaScript API usage, which does not require any opt-in or
delegation.

Finally, our measurement presents a snapshot of the cur-
rent state of the web, which may change over time. For in-
stance, while we found getHighEntropyValues method to be
called on 59.2% of the websites, the older, now-reduced alter-
native navigator.userAgent property was accessed on 88.3%
of the websites. We expect the number of websites where
getHighEntropyValues is called to increase over time, as also
shown by the upwards trend in the Chrome telemetry data for
this particular JavaScript method [37].

6 CONCLUSION
We presented the first empirical study of the impact of user-agent
string reduction and the introduction of high-entropy user-agent
client hints in the Chrome browser. Through an extensive analysis
of the top 100K websites using an instrumented crawler, we quanti-
fied the collection and exfiltration of high-entropy browser features
via UA-CH HTTP headers and the newly introduced JavaScript
API. Our findings showed that third-party scripts accessed high-
entropy user agent client hints on nearly 60% of the analyzed sites.
These scripts consist primarily of tracking and advertising scripts,
with a notable presence of scripts owned by Google. Over 90% of
the websites where high-entropy client hints were accessed via
the JavaScript API, the obtained hints were exfiltrated to remote
servers by tracker scripts. We find the use of high-entropy UA-CH
headers to be very limited: only 1.3% of the first parties opt-in
to receive high-entropy UA-CH headers, and even fewer websites
(0.4%) delegate high-entropy hints to third-party domains. Overall,
the efforts to reduce UA string identification appeared to be effec-
tive in minimizing the number of third parties that received the
full UA string in HTTP headers, with only 3% of third-party do-
mains receiving high-entropy UA-CH headers. Our study suggests
that users and website operators may prefer JavaScript access for
managing high-entropy browser features due to performance and
operational considerations. In conclusion, while the UA reduction
efforts appear to be effective for curbing passive browser finger-
printing, the introduction of high-entropy user-agent client hints
has limited the overall privacy benefits of this major change. Given
the extensive collection and exfiltration of highly identifying client
hints by tracker scripts, we believe browser vendors should con-
sider imposing stricter controls on scripted access to high-entropy
user-agent client hints.

ACKNOWLEDGMENTS
We thank Martin Thomson, Iness Ben Guirat, Zahra Moti and Luq-
man Zagi for their comments. Asuman Senol received funding from
Cyber-Defence Campus of armasuisse Science and Technology.

Unveiling the Impact of User-Agent Reduction and Client Hints: A Measurement Study WPES ’23, November 26, 2023, Copenhagen, Denmark

REFERENCES
[1] 1994-05-03. Request Headers in the HTTP protocol. https://www.w3.org/

Protocols/HTTP/HTRQ_Headers.html#user-agent [Online; accessed 22. Jul.
2023].

[2] 2008. Emotional Branding - Hispanic Marketing & Public Relations website
and podcast. https://hispanicmpr.com/resources/hmpr-products/emotional-
branding [Online; accessed 28. Jul. 2023].

[3] 2008-09-03. WebAIM: History of the browser user-agent string. https://webaim.
org/blog/user-agent-string-history [Online; accessed 22. Jul. 2023].

[4] 2013-11-05. 935216 - (client-hints) Implement Client-Hints HTTP header. https:
//bugzilla.mozilla.org/show_bug.cgi?id=935216 [Online; accessed 19. Jul. 2023].

[5] 2017. 180365 – Limit user agent versioning to an upper bound. https://bugs.
webkit.org/show_bug.cgi?id=180365 [Online; accessed 30. Jul. 2023].

[6] 2018-02-22. Safari 11.1. https://developer.apple.com/library/archive/
releasenotes/General/WhatsNewInSafari/Articles/Safari_11_1.html#//apple_
ref/doc/uid/TP40014305-CH14-SW7 [Online; accessed 09. Jul. 2023].

[7] 2019. Mitigating Browser Fingerprinting in Web Specifications. https://www.w3.
org/TR/fingerprinting-guidance [Online; accessed 28. Jul. 2023].

[8] 2020-01-14. 1609304 - Reduce Gecko’s User-Agent strings. https://bugzilla.mozilla.
org/show_bug.cgi?id=1609304 [Online; accessed 19. Jul. 2023].

[9] 2021-05-24. Client hints not sent in headless chrome. https://bugs.chromium.
org/p/chromium/issues/detail?id=1212793 [Online; accessed 01. Jul. 2023].

[10] 2021-10-14. Intent to Prototype: User-Agent Client Hints GREASEUpdate. https:
//groups.google.com/a/chromium.org/g/blink-dev/c/ueudFsZzT1M [Online;
accessed 22. Jul. 2023].

[11] 2021-11-02. Contribute to WICG/ua-client-hints. https://github.com/WICG/ua-
client-hints/issues?q=is%3Aissue+author%3Aothermaciej [Online; accessed 01.
Jul. 2023].

[12] 2022. Solutions: Syndicated Audiences: CultureCode® - Claritas LLC. https:
//claritas.com/culture-code [Online; accessed 28. Jul. 2023].

[13] 2022-01-13. Implement Navigator.userAgentData. https://bugzilla.mozilla.org/
show_bug.cgi?id=1750143 [Online; accessed 14. Jul. 2023].

[14] 2023. 1348106 - AcceptCHFrame breaks expected order of CDP events - chromium.
https://crbug.com/1348106 [Online; accessed 1. Aug. 2023].

[15] 2023. 182629 – [macOS, iOS] Expose OS marketing version in UserAgent. https:
//bugs.webkit.org/show_bug.cgi?id=182629#c6 [Online; accessed 28. Jul. 2023].

[16] 2023. About Events API | TikTok For Business . https://ads.tiktok.com/help/
article/events-api [Online; accessed 28. Jul. 2023].

[17] 2023. Advertising Strategies for Targeting U.S. Hispanics. https:
//www.comscore.com/lat/Prensa-y-Eventos/Blog/Advertising-Strategies-for-
Targeting-U.S.-Hispanics [Online; accessed 28. Jul. 2023].

[18] 2023. Analysis of Google’s Privacy Budget Proposal | The Mozilla Blog. https://
blog.mozilla.org/en/mozilla/google-privacy-budget-analysis [Online; accessed
30. Jul. 2023].

[19] 2023. Bulletin: Chrome’s User-Agent Client Hints. https://support.appsflyer.com/
hc/en-us/articles/12305445230737-Bulletin-Chrome-s-User-Agent-Client-
Hints [Online; accessed 28. Jul. 2023].

[20] 2023. Changing the UA String - MozillaWiki. https://wiki.mozilla.org/Changing_
the_UA_String [Online; accessed 17. Jul. 2023].

[21] 2023. Client Hint Reliability. https://datatracker.ietf.org/doc/html/draft-
davidben-http-client-hint-reliability#section-4 [Online; accessed 28. Jul. 2023].

[22] 2023. client-hints-infrastructure/reliability.md at main · WICG/client-hints-
infrastructure. https://github.com/WICG/client-hints-infrastructure/blob/main/
reliability.md#connection-level-settings [Online; accessed 28. Jul. 2023].

[23] 2023. Early browser API accesses and function calls are missed. https://github.
com/duckduckgo/tracker-radar-collector/issues/77 [Online; accessed 29. Jul.
2023].

[24] 2023. EasyList. https://easylist.to/easylist/easylist.txt [Online; accessed 10. Jul.
2023].

[25] 2023. EasyPrivacy. https://easylist.to/easylist/easyprivacy.txt [Online; accessed
10. Jul. 2023].

[26] 2023. Extend Sec-CH-UA to include a boolean field to identify if browser requires
an update · Issue #76 · WICG/ua-client-hints. https://github.com/WICG/ua-
client-hints/issues/76 [Online; accessed 29. Jul. 2023].

[27] 2023. @gorhill/ubo-core. https://www.npmjs.com/package/@gorhill/ubo-core
[Online; accessed 10. Jul. 2023].

[28] 2023. How To Target Facebook Ads To "Immigration to the United States" Audience
| AdTargeting. https://adtargeting.io/facebook-ad-targeting/immigration-to-
the-united-states [Online; accessed 28. Jul. 2023].

[29] 2023. HTTP Client hints - HTTP | MDN. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Client_hints [Online; accessed 31. Jul. 2023].

[30] 2023. isbot. https://github.com/omrilotan/isbot [Online; accessed 30. Jul. 2023].
[31] 2023. Lotame. https://better.fyi/trackers/crwdcntrl.net/ [Online; accessed 31.

Jul. 2023].
[32] 2023. Merge pull request #253 from kyraseevers/issue248 · WICG/ua-

client-hints@56df868. https://github.com/WICG/ua-client-hints/commit/
56df868c6c3564461b4c0a42ea603b80fa94c8d2 [Online; accessed 28. Jul. 2023].

[33] 2023. Mozilla Specification Positions. https://mozilla.github.io/standards-
positions/#ua-client-hints [Online; accessed 23. Jun. 2023].

[34] 2023. NavigatorUAData - Web APIs | MDN. https://developer.mozilla.org/en-
US/docs/Web/API/NavigatorUAData [Online; accessed 22. Jul. 2023].

[35] 2023. Notice of intention to accept modified commitments offered
by Google in relation to its Privacy Sandbox Proposals. https:
//assets.publishing.service.gov.uk/government/uploads/system/uploads/
attachment_data/file/1036204/211126_FINAL_modification_notice.pdf [Online;
accessed 8. Aug. 2023].

[36] 2023. Page.setUserAgent() method. https://pptr.dev/api/puppeteer.page.
setuseragent [Online; accessed 20. Jul. 2023].

[37] 2023. Percentage of page loads over time - GetHighEntropyValues . https://
chromestatus.com/metrics/feature/timeline/popularity/4520 [Online; accessed
25. Jul. 2023].

[38] 2023. Percentage of page loads over time - PlatformVersion. https://chromestatus.
com/metrics/feature/timeline/popularity/3273 [Online; accessed 31. Jul. 2023].

[39] 2023. Prepare for phasing out third-party cookies - Chrome Develop-
ers. https://developer.chrome.com/en/docs/privacy-sandbox/third-party-
cookie-phase-out [Online; accessed 28. Jul. 2023].

[40] 2023. privacy-budget. https://github.com/mikewest/privacy-budget [Online;
accessed 30. Jul. 2023].

[41] 2023. Protecting Your Privacy Online. https://privacysandbox.com/ [Online;
accessed 13. Jul. 2023].

[42] 2023. Qualys SSL Labs - Projects / HTTP Client Fingerprinting Using SSLHandshake
Analysis. https://www.ssllabs.com/projects/client-fingerprinting [Online;
accessed 30. Jul. 2023].

[43] 2023. Sec-CH-Bot for self declared ’good bots’ that want to avoid analytics pollution
· Issue #119 · WICG/ua-client-hints. https://github.com/WICG/ua-client-hints/
issues/119 [Online; accessed 29. Jul. 2023].

[44] 2023. The UKUses Targeted Facebook Ads To DeterMigrants. NowMeta Is Releasing
the Data. https://newlinesmag.com/reportage/the-uk-uses-targeted-facebook-
ads-to-deter-migrants-now-meta-is-releasing-the-data [Online; accessed 28.
Jul. 2023].

[45] 2023. TLS Application-Layer Protocol Settings Extension. https://datatracker.ietf.
org/doc/html/draft-vvv-tls-alps [Online; accessed 28. Jul. 2023].

[46] 2023. tls-fingerprinting/fingerprintls at master · LeeBrotherston/tls-
fingerprinting. https://github.com/LeeBrotherston/tls-fingerprinting/tree/
master/fingerprintls [Online; accessed 30. Jul. 2023].

[47] 2023. Types of documents W3C publishes. https://www.w3.org/standards/types/
#x2-pre-standardization-proposals-notes [Online; accessed 31. Jul. 2023].

[48] 2023. uBlock Origin - An efficient blocker for Chromium and Firefox. Fast and
lean. https://github.com/gorhill/uBlock [Online; accessed 10. Jul. 2023].

[49] 2023. User-Agent Client Hints API. https://developer.mozilla.org/en-US/docs/
Web/API/User-Agent_Client_Hints_API [Online; accessed 28. Jul. 2023].

[50] 2023. User-Agent Reduction. https://www.chromium.org/updates/ua-reduction
[Online; accessed 13. Jul. 2023].

[51] 2023. User-Agent reduction - Chrome Developers. https://developer.chrome.com/
docs/privacy-sandbox/user-agent [Online; accessed 28. Jul. 2023].

[52] 2023. User-Agent targeting. https://developers.google.com/authorized-buyers/
rtb/useragent-targeting [Online; accessed 28. Jul. 2023].

[53] 2023. Why and when to use server-side tagging? https://developers.google.com/
tag-platform/learn/sst-fundamentals/3-why-and-when-sst [Online; accessed 8.
Aug. 2023].

[54] 2023-04-16. Sec-CH-UA Brand being abused by sites, blocking clients. https:
//bugs.chromium.org/p/chromium/issues/detail?id=1433548 [Online; accessed
14. Jul. 2023].

[55] Victor Tan Ali Beyad. 2022-02-24. User-Agent Reduction deprecation trial. https:
//developer.chrome.com/en/blog/user-agent-reduction-deprecation-trial/ [On-
line; accessed 09. Jul. 2023].

[56] Blake Anderson and David McGrew. 2017. OS fingerprinting: New techniques
and a study of information gain and obfuscation. In 2017 IEEE Conference on
Communications and Network Security (CNS). IEEE, 1–9.

[57] D. Benjamin. 2020-01-01. Applying Generate Random Extensions And Sustain
Extensibility (GREASE) to TLS Extensibility. https://datatracker.ietf.org/doc/
html/rfc8701 [Online; accessed 12. Jul. 2023].

[58] Konrad Dzwinel et al. Brad Slayter, Sam Macbeth. 2021. DuckDuckGo Tracker
Radar Collector. https://github.com/duckduckgo/tracker-radar-collector [On-
line; accessed 01. Jan. 2023].

[59] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-) browser fingerprinting
via OS and hardware level features. In Proceedings 2017 Network and Distributed
System Security Symposium. Internet Society.

[60] Contributors to Wikimedia projects. 2023. WebKit - Wikipedia. https://en.
wikipedia.org/w/index.php?title=WebKit&oldid=1164531541 [Online; accessed
1. Aug. 2023].

[61] Konrad Dzwinel et al. David Harbage, Sam Macbeth. 2020. DuckDuckGo Tracker
Radar. https://github.com/duckduckgo/tracker-radar [Online; accessed 01. Jan.
2023].

https://www.w3.org/Protocols/HTTP/HTRQ_Headers.html#user-agent
https://www.w3.org/Protocols/HTTP/HTRQ_Headers.html#user-agent
https://hispanicmpr.com/resources/hmpr-products/emotional-branding
https://hispanicmpr.com/resources/hmpr-products/emotional-branding
https://webaim.org/blog/user-agent-string-history
https://webaim.org/blog/user-agent-string-history
https://bugzilla.mozilla.org/show_bug.cgi?id=935216
https://bugzilla.mozilla.org/show_bug.cgi?id=935216
https://bugs.webkit.org/show_bug.cgi?id=180365
https://bugs.webkit.org/show_bug.cgi?id=180365
https://developer.apple.com/library/archive/releasenotes/General/WhatsNewInSafari/Articles/Safari_11_1.html#//apple_ref/doc/uid/TP40014305-CH14-SW7
https://developer.apple.com/library/archive/releasenotes/General/WhatsNewInSafari/Articles/Safari_11_1.html#//apple_ref/doc/uid/TP40014305-CH14-SW7
https://developer.apple.com/library/archive/releasenotes/General/WhatsNewInSafari/Articles/Safari_11_1.html#//apple_ref/doc/uid/TP40014305-CH14-SW7
https://www.w3.org/TR/fingerprinting-guidance
https://www.w3.org/TR/fingerprinting-guidance
https://bugzilla.mozilla.org/show_bug.cgi?id=1609304
https://bugzilla.mozilla.org/show_bug.cgi?id=1609304
https://bugs.chromium.org/p/chromium/issues/detail?id=1212793
https://bugs.chromium.org/p/chromium/issues/detail?id=1212793
https://groups.google.com/a/chromium.org/g/blink-dev/c/ueudFsZzT1M
https://groups.google.com/a/chromium.org/g/blink-dev/c/ueudFsZzT1M
https://github.com/WICG/ua-client-hints/issues?q=is%3Aissue+author%3Aothermaciej
https://github.com/WICG/ua-client-hints/issues?q=is%3Aissue+author%3Aothermaciej
https://claritas.com/culture-code
https://claritas.com/culture-code
https://bugzilla.mozilla.org/show_bug.cgi?id=1750143
https://bugzilla.mozilla.org/show_bug.cgi?id=1750143
https://crbug.com/1348106
https://bugs.webkit.org/show_bug.cgi?id=182629#c6
https://bugs.webkit.org/show_bug.cgi?id=182629#c6
https://ads.tiktok.com/help/article/events-api
https://ads.tiktok.com/help/article/events-api
https://www.comscore.com/lat/Prensa-y-Eventos/Blog/Advertising-Strategies-for-Targeting-U.S.-Hispanics
https://www.comscore.com/lat/Prensa-y-Eventos/Blog/Advertising-Strategies-for-Targeting-U.S.-Hispanics
https://www.comscore.com/lat/Prensa-y-Eventos/Blog/Advertising-Strategies-for-Targeting-U.S.-Hispanics
https://blog.mozilla.org/en/mozilla/google-privacy-budget-analysis
https://blog.mozilla.org/en/mozilla/google-privacy-budget-analysis
https://support.appsflyer.com/hc/en-us/articles/12305445230737-Bulletin-Chrome-s-User-Agent-Client-Hints
https://support.appsflyer.com/hc/en-us/articles/12305445230737-Bulletin-Chrome-s-User-Agent-Client-Hints
https://support.appsflyer.com/hc/en-us/articles/12305445230737-Bulletin-Chrome-s-User-Agent-Client-Hints
https://wiki.mozilla.org/Changing_the_UA_String
https://wiki.mozilla.org/Changing_the_UA_String
https://datatracker.ietf.org/doc/html/draft-davidben-http-client-hint-reliability#section-4
https://datatracker.ietf.org/doc/html/draft-davidben-http-client-hint-reliability#section-4
https://github.com/WICG/client-hints-infrastructure/blob/main/reliability.md#connection-level-settings
https://github.com/WICG/client-hints-infrastructure/blob/main/reliability.md#connection-level-settings
https://github.com/duckduckgo/tracker-radar-collector/issues/77
https://github.com/duckduckgo/tracker-radar-collector/issues/77
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://github.com/WICG/ua-client-hints/issues/76
https://github.com/WICG/ua-client-hints/issues/76
https://www.npmjs.com/package/@gorhill/ubo-core
https://adtargeting.io/facebook-ad-targeting/immigration-to-the-united-states
https://adtargeting.io/facebook-ad-targeting/immigration-to-the-united-states
https://developer.mozilla.org/en-US/docs/Web/HTTP/Client_hints
https://developer.mozilla.org/en-US/docs/Web/HTTP/Client_hints
https://github.com/omrilotan/isbot
https://better.fyi/trackers/crwdcntrl.net/
https://github.com/WICG/ua-client-hints/commit/56df868c6c3564461b4c0a42ea603b80fa94c8d2
https://github.com/WICG/ua-client-hints/commit/56df868c6c3564461b4c0a42ea603b80fa94c8d2
https://mozilla.github.io/standards-positions/#ua-client-hints
https://mozilla.github.io/standards-positions/#ua-client-hints
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorUAData
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorUAData
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1036204/211126_FINAL_modification_notice.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1036204/211126_FINAL_modification_notice.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1036204/211126_FINAL_modification_notice.pdf
https://pptr.dev/api/puppeteer.page.setuseragent
https://pptr.dev/api/puppeteer.page.setuseragent
https://chromestatus.com/metrics/feature/timeline/popularity/4520
https://chromestatus.com/metrics/feature/timeline/popularity/4520
https://chromestatus.com/metrics/feature/timeline/popularity/3273
https://chromestatus.com/metrics/feature/timeline/popularity/3273
https://developer.chrome.com/en/docs/privacy-sandbox/third-party-cookie-phase-out
https://developer.chrome.com/en/docs/privacy-sandbox/third-party-cookie-phase-out
https://github.com/mikewest/privacy-budget
https://privacysandbox.com/
https://www.ssllabs.com/projects/client-fingerprinting
https://github.com/WICG/ua-client-hints/issues/119
https://github.com/WICG/ua-client-hints/issues/119
https://newlinesmag.com/reportage/the-uk-uses-targeted-facebook-ads-to-deter-migrants-now-meta-is-releasing-the-data
https://newlinesmag.com/reportage/the-uk-uses-targeted-facebook-ads-to-deter-migrants-now-meta-is-releasing-the-data
https://datatracker.ietf.org/doc/html/draft-vvv-tls-alps
https://datatracker.ietf.org/doc/html/draft-vvv-tls-alps
https://github.com/LeeBrotherston/tls-fingerprinting/tree/master/fingerprintls
https://github.com/LeeBrotherston/tls-fingerprinting/tree/master/fingerprintls
https://www.w3.org/standards/types/#x2-pre-standardization-proposals-notes
https://www.w3.org/standards/types/#x2-pre-standardization-proposals-notes
https://github.com/gorhill/uBlock
https://developer.mozilla.org/en-US/docs/Web/API/User-Agent_Client_Hints_API
https://developer.mozilla.org/en-US/docs/Web/API/User-Agent_Client_Hints_API
https://www.chromium.org/updates/ua-reduction
https://developer.chrome.com/docs/privacy-sandbox/user-agent
https://developer.chrome.com/docs/privacy-sandbox/user-agent
https://developers.google.com/authorized-buyers/rtb/useragent-targeting
https://developers.google.com/authorized-buyers/rtb/useragent-targeting
https://developers.google.com/tag-platform/learn/sst-fundamentals/3-why-and-when-sst
https://developers.google.com/tag-platform/learn/sst-fundamentals/3-why-and-when-sst
https://bugs.chromium.org/p/chromium/issues/detail?id=1433548
https://bugs.chromium.org/p/chromium/issues/detail?id=1433548
https://developer.chrome.com/en/blog/user-agent-reduction-deprecation-trial/
https://developer.chrome.com/en/blog/user-agent-reduction-deprecation-trial/
https://datatracker.ietf.org/doc/html/rfc8701
https://datatracker.ietf.org/doc/html/rfc8701
https://github.com/duckduckgo/tracker-radar-collector
https://en.wikipedia.org/w/index.php?title=WebKit&oldid=1164531541
https://en.wikipedia.org/w/index.php?title=WebKit&oldid=1164531541
https://github.com/duckduckgo/tracker-radar

WPES ’23, November 26, 2023, Copenhagen, Denmark Asuman Senol & Gunes Acar

[62] Jon Davis. 2017-12-20. Safari 11.1. https://webkit.org/blog/8042/release-notes-
for-safari-technology-preview-46/ [Online; accessed 09. Jul. 2023].

[63] Nurullah Demir, Matteo Große-Kampmann, Tobias Urban, Christian Wressneg-
ger, Thorsten Holz, and Norbert Pohlmann. 2022. Reproducibility and replica-
bility of web measurement studies. In Proceedings of the ACM Web Conference
2022. 533–544.

[64] Peter Eckersley. 2010. How unique is your web browser?. In Privacy Enhancing
Technologies: 10th International Symposium, PETS 2010, Berlin, Germany, July
21-23, 2010. Proceedings 10. Springer, 1–18.

[65] Peter Eckersley. 2010. How unique is your web browser? Privacy Enhancing
Technologies (2010), 1–18. https://doi.org/10.1007/978-3-642-14527-8_1

[66] Steven Englehardt, Jeffrey Han, and Arvind Narayanan. 2018. I never signed up
for this! Privacy implications of email tracking. Proc. Priv. Enhancing Technol.
2018, 1 (2018), 109–126.

[67] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-
site measurement and analysis. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. 1388–1401.

[68] Martin Grill and Martin Rehák. 2014. Malware detection using HTTP user-agent
discrepancy identification. In 2014 IEEE International Workshop on Information
Forensics and Security (WIFS). IEEE, 221–226.

[69] We Are All Human. 2023. New Study Reveals Hispanics Feel More
Excluded From The American Culture And Disregarded By Big Brands.
https://www.prnewswire.com/news-releases/new-study-reveals-hispanics-
feel-more-excluded-from-the-american-culture-and-disregarded-by-big-
brands-301857672.html

[70] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
fingerprinters: Learning to detect browser fingerprinting behaviors. In 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 1143–1161.

[71] Nikhil Jha, Martino Trevisan, Luca Vassio, and Marco Mellia. 2022. The Internet
with privacy policies: Measuring the Web upon consent. ACM Transactions on
the Web (TWEB) 16, 3 (2022), 1–24.

[72] Barry Pollard Johannes Henkel. 2021-03-09. Adding Rank Magnitude to the CrUX
Report in BigQuery. https://developer.chrome.com/blog/crux-rank-magnitude/
[Online; accessed 13. Jul. 2023].

[73] Seb Joseph. 2021. ’The elephant in the room’: Companies persist
with fingerprinting as a workaround to Apple’s new privacy rules.
https://digiday.com/media/the-elephant-in-the-room-companies-persist-
with-fingerprinting-as-a-workaround-to-apples-new-privacy-rules

[74] Terry Parris Julia Angwin, Jr. 2023. Facebook Lets Advertisers Exclude Users by
Race. https://www.propublica.org/article/facebook-lets-advertisers-exclude-
users-by-race [Online; accessed 28. Jul. 2023].

[75] Jeff Kline, Paul Barford, Aaron Cahn, and Joel Sommers. 2017. On the structure
and characteristics of user agent string. In Proceedings of the 2017 Internet
Measurement Conference. 184–190.

[76] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. 2005. Remote physical
device fingerprinting. IEEE Transactions on Dependable and Secure Computing 2,
2 (2005), 93–108.

[77] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
beast: Diverting modern web browsers to build unique browser fingerprints. In
2016 IEEE Symposium on Security and Privacy (SP). IEEE, 878–894.

[78] Kevin K. Lee. 2022-04-20. Controlling browser features with Permissions Pol-
icy. https://developer.chrome.com/docs/privacy-sandbox/permissions-policy/
[Online; accessed 09. Jul. 2023].

[79] Marek. 2012. SSL fingerprinting for p0f — Idea of the day. https://idea.popcount.
org/2012-06-17-ssl-fingerprinting-for-p0f [Online; accessed 30. Jul. 2023].

[80] nikhiljha95 Martino Trevisan, Antonino Musmeci. 2022-04-13. Priv-Accept.
https://github.com/marty90/priv-accept [Online; accessed 13. Jul. 2023].

[81] Jonathan R Mayer and John C Mitchell. 2012. Third-party web tracking: Policy
and technology. In 2012 IEEE symposium on security and privacy. IEEE, 413–427.

[82] Yoav Weiss Mike Taylor. 2023. User Agent Hints. https://wicg.github.io/ua-
client-hints [Online; accessed 14. Jul. 2023].

[83] Kyle Morehouse. 2022. Increase Ad ROI With Audience Suppres-
sion. https://blog.adobe.com/en/publish/2017/01/24/increase-ad-roi-audience-
suppression [Online; accessed 28. Jul. 2023].

[84] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTML5. Proceedings of W2SP 2012 (2012).

[85] Robert Nyman. 2013-09-12. User-Agent detection, history and checklist – Mozilla
Hacks - the Web developer blog. https://hacks.mozilla.org/2013/09/user-agent-
detection-history-and-checklist [Online; accessed 14. Jul. 2023].

[86] Barry Pollard. 2023. Third Parties | 2021 | The Web Almanac by HTTP Archive.
https://almanac.httparchive.org/en/2021/third-parties

[87] Ali Rasaii, Shivani Singh, Devashish Gosain, and Oliver Gasser. 2023. Exploring
the Cookieverse: A Multi-Perspective Analysis of Web Cookies. In International
Conference on Passive and Active Network Measurement. Springer, 623–651.

[88] Yoav Weiss Rowan Merewood. 2021-09-10. User-Agent Client-Hints. https:
//developer.chrome.com/en/articles/user-agent-client-hints/ [Online; accessed
09. Jul. 2023].

[89] Dennis Schubert. 2022-12-15. Freeze ‘rv:‘ segment in the User Agent string to
‘rv:109.0‘ to avoid erroneous IE11 detection. https://bugzilla.mozilla.org/show_
bug.cgi?id=1805967 [Online; accessed 09. Jul. 2023].

[90] Henri Sivonen. 2021-07-12. Downgrade User Agent Client Hints to ’harmful’ ·
Issue #552 · mozilla/standards-positions. https://github.com/mozilla/standards-
positions/issues/552 [Online; accessed 19. Jul. 2023].

[91] Maciej Stachowiak. 2021-11-02. getHighEntropyValues should not return all
values, only values that have been opted in. https://github.com/WICG/ua-client-
hints/issues/151 [Online; accessed 23. Jun. 2023].

[92] Oleksii Starov, Phillipa Gill, and Nick Nikiforakis. 2016. Are You Sure You Want
to Contact Us? Quantifying the Leakage of PII via Website Contact Forms. Proc.
Priv. Enhancing Technol. 2016, 1 (2016), 20–33.

[93] Yousouf Taghzouti, Antoine Zimmermann, and Maxime Lefrançois. 2022. Con-
tent negotiation on the Web: State of the art. arXiv preprint arXiv:2204.10097
(2022).

[94] Mike Taylor. 2021-05-27. User-Agent Client Hints & UA Reduction. https:
//github.com/w3ctag/design-reviews/issues/640 [Online; accessed 23. Jun. 2023].

[95] Mike Taylor. 2021-05-28. The hidden meaning of 537.36 in the Chromium User-
Agent string. https://miketaylr.com/posts/2021/05/webkit-537-36-meaning.html
[Online; accessed 22. Jul. 2023].

[96] Mike Taylor. 2022-11-04. Return empty string on Linux for platform-version
hint. https://bugs.chromium.org/p/chromium/issues/detail?id=1381304&q=
platformVersion&can=2 [Online; accessed 02. Jul. 2023].

[97] Martin Thomson. 2021-09-29. UA Client Hints is less than harmful. https:
//github.com/mozilla/standards-positions/pull/579 [Online; accessed 02. Jul.
2023].

[98] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
Fp-stalker: Tracking browser fingerprint evolutions. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 728–741.

[99] Yoav Weiss. 2020-01-14. Intent to deprecate and freeze: The user-
agent string. https://groups.google.com/a/chromium.org/g/blink-dev/c/-
2JIRNMWJ7s/m/yHe4tQNLCgAJ [Online; accessed 13. Jul. 2023].

[100] Alexandra White. 2021-11-09. User-Agent reduction. https://developer.chrome.
com/docs/privacy-sandbox/user-agent/ [Online; accessed 8. Aug. 2023].

[101] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin Abadi. 2012.
Host Fingerprinting and Tracking on the Web: Privacy and Security Implica-
tions.. In NDSS, Vol. 62. 66.

[102] YngveNPettersen. 2022-02-16. Brand info is being used to block clients. https:
//github.com/WICG/ua-client-hints/issues/293 [Online; accessed 14. Jul. 2023].

[103] Michal Zalewski. 2019-02-21. p0f unofficial git repo. https://github.com/p0f/p0f
[Online; accessed 01. Jul. 2023].

[104] David Zeber, Sarah Bird, Camila Oliveira, Walter Rudametkin, Ilana Segall,
FredrikWollsén, andMartin Lopatka. 2020. The representativeness of automated
web crawls as a surrogate for human browsing. In Proceedings of The Web
Conference 2020. 167–178.

A NAVIGATOR.USERAGENTDATA
INTERFACE DESCRIPTION (IDL) [82]

navigator.userAgentData
// OUTPUT:
"brands":[

{
"brand":" Not A;Brand",
"version":"24"

},
{

"brand":"Chromium",
"version":"113"

},
{

"brand":"Google Chrome",
"version":"113"

],
"mobile": false ,
"platform": "Linux"

Listing 4: Sample output of navigator.userAgent interface’s
properties

dictionary NavigatorUABrandVersion {
DOMString brand;
DOMString version;

};

https://webkit.org/blog/8042/release-notes-for-safari-technology-preview-46/
https://webkit.org/blog/8042/release-notes-for-safari-technology-preview-46/
https://doi.org/10.1007/978-3-642-14527-8_1
https://www.prnewswire.com/news-releases/new-study-reveals-hispanics-feel-more-excluded-from-the-american-culture-and-disregarded-by-big-brands-301857672.html
https://www.prnewswire.com/news-releases/new-study-reveals-hispanics-feel-more-excluded-from-the-american-culture-and-disregarded-by-big-brands-301857672.html
https://www.prnewswire.com/news-releases/new-study-reveals-hispanics-feel-more-excluded-from-the-american-culture-and-disregarded-by-big-brands-301857672.html
https://developer.chrome.com/blog/crux-rank-magnitude/
https://digiday.com/media/the-elephant-in-the-room-companies-persist-with-fingerprinting-as-a-workaround-to-apples-new-privacy-rules
https://digiday.com/media/the-elephant-in-the-room-companies-persist-with-fingerprinting-as-a-workaround-to-apples-new-privacy-rules
https://www.propublica.org/article/facebook-lets-advertisers-exclude-users-by-race
https://www.propublica.org/article/facebook-lets-advertisers-exclude-users-by-race
https://developer.chrome.com/docs/privacy-sandbox/permissions-policy/
https://idea.popcount.org/2012-06-17-ssl-fingerprinting-for-p0f
https://idea.popcount.org/2012-06-17-ssl-fingerprinting-for-p0f
https://github.com/marty90/priv-accept
https://wicg.github.io/ua-client-hints
https://wicg.github.io/ua-client-hints
https://blog.adobe.com/en/publish/2017/01/24/increase-ad-roi-audience-suppression
https://blog.adobe.com/en/publish/2017/01/24/increase-ad-roi-audience-suppression
https://hacks.mozilla.org/2013/09/user-agent-detection-history-and-checklist
https://hacks.mozilla.org/2013/09/user-agent-detection-history-and-checklist
https://almanac.httparchive.org/en/2021/third-parties
https://developer.chrome.com/en/articles/user-agent-client-hints/
https://developer.chrome.com/en/articles/user-agent-client-hints/
https://bugzilla.mozilla.org/show_bug.cgi?id=1805967
https://bugzilla.mozilla.org/show_bug.cgi?id=1805967
https://github.com/mozilla/standards-positions/issues/552
https://github.com/mozilla/standards-positions/issues/552
https://github.com/WICG/ua-client-hints/issues/151
https://github.com/WICG/ua-client-hints/issues/151
https://github.com/w3ctag/design-reviews/issues/640
https://github.com/w3ctag/design-reviews/issues/640
https://miketaylr.com/posts/2021/05/webkit-537-36-meaning.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1381304&q=platformVersion&can=2
https://bugs.chromium.org/p/chromium/issues/detail?id=1381304&q=platformVersion&can=2
https://github.com/mozilla/standards-positions/pull/579
https://github.com/mozilla/standards-positions/pull/579
https://groups.google.com/a/chromium.org/g/blink-dev/c/-2JIRNMWJ7s/m/yHe4tQNLCgAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/-2JIRNMWJ7s/m/yHe4tQNLCgAJ
https://developer.chrome.com/docs/privacy-sandbox/user-agent/
https://developer.chrome.com/docs/privacy-sandbox/user-agent/
https://github.com/WICG/ua-client-hints/issues/293
https://github.com/WICG/ua-client-hints/issues/293
https://github.com/p0f/p0f

Unveiling the Impact of User-Agent Reduction and Client Hints: A Measurement Study WPES ’23, November 26, 2023, Copenhagen, Denmark

dictionary UADataValues {
DOMString architecture;
DOMString bitness;
sequence <NavigatorUABrandVersion > brands;
DOMString formFactor;
sequence <NavigatorUABrandVersion > fullVersionList;
DOMString model;
boolean mobile;
DOMString platform;
DOMString platformVersion;
DOMString uaFullVersion; // deprecated in favor of

fullVersionList
boolean wow64;

};

dictionary UALowEntropyJSON {
sequence <NavigatorUABrandVersion > brands;
boolean mobile;
DOMString platform;

};

[Exposed =(Window ,Worker)]
interface NavigatorUAData {

readonly attribute FrozenArray <NavigatorUABrandVersion >
brands;

readonly attribute boolean mobile;
readonly attribute DOMString platform;
Promise <UADataValues > getHighEntropyValues(sequence <

DOMString > hints);
UALowEntropyJSON toJSON ();

};

interface mixin NavigatorUA {
[SecureContext] readonly attribute NavigatorUAData

userAgentData;
};

Navigator includes NavigatorUA;
WorkerNavigator includes NavigatorUA;

Listing 5: NavigatorUAData interface

B CRAWLER’S UA OVERRIDE VALUES
Weused the following details to override the crawler’s UA string and
client hints via the page.setUserAgent [36] method of the Chrome
DevTools Protocol.

brands: [
{brand: 'Chromium ', version: '113'},
{brand: 'Not -A.Brand', version: '24'}

],
fullVersionList: [

{brand: 'Chromium ', version: '113.0.5672.63 '},
{brand: 'Not -A.Brand', version: '24.0.0.0 '}

],
fullVersion: "113.0.5672.63",
platform: 'Linux ',
platformVersion: '5.15.0 ',
architecture: 'x86',
model: '',
mobile: false ,
bitness: '64',
wow64: false ,

Listing 6: Overriden UA Values

C FINGERPRINTING DETECTION
HEURISTICS

Below you can find the heuristics used for the detection of finger-
printing attempts in this study. These heuristics were first proposed

by Englehardt and Narayanan [67] and then improved by Iqbal et.
al [70].

Canvas Fingerprinting Identification: A script categorized
as a canvas fingerprinting script based on the following criteria:

(1) The script calls the fillText or strokeText methods to
write text on a canvas element, and style adjustments are
made using the fillStyle or strokeStyle methods of the
rendering context.

(2) The script uses the toDataURL method to extract the canvas
image.

(3) The script does not call the save, restore, or
addEventListener methods on the canvas element.

WebRTC Fingerprinting Identification: A script is categorized
as a WebRTC fingerprinting script according to the following con-
ditions:

(1) The script calls the createDataChannel or createOffer
methods of the WebRTC peer connection.

(2) The script calls the onicecandidate or localDescription
methods of the WebRTC peer connection.

Canvas Font Fingerprinting Identification: A script is recog-
nized as a canvas font fingerprinting script based on these guide-
lines:

(1) The script modifies the font property of a canvas element
to include more than 20 different fonts.

(2) The script calls the measureText method of the rendering
context more than 20 times.

AudioContext Fingerprinting Identification: A script is iden-
tified as an AudioContext fingerprinting script if it satisfies the
following conditions:

(1) The script calls any of the following methods of the audio
context: createOscillator, createDynamicsCompressor,
destination, startRendering, or oncomplete.

D SUPPORTED ENCODINGS & HASHES FOR
LEAK DETECTION

Encodings: Base16, Base32, Base58, Base64, Urlencode, Entity,
LZstring, Hashes: MD5, SHA1, SHA256, SHA512

WPES ’23, November 26, 2023, Copenhagen, Denmark Asuman Senol & Gunes Acar

 Mozilla/5.0 (<platform>; <oscpu>) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/<majorVersion>.<minorVersion>; Safari/537.36

 Mozilla/5.0 (<unifiedPlatform>) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/<majorVersion>.0.0.0 Safari/537.36New

Old

Mozilla/5.0 (Linux; Android <androidVersion>; <deviceModel>) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/<majorVersion>.<minorVersion> <deviceCompat> Safari/537.36

Mozilla/5.0 (Linux; Android 10; K) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/<majorVersion>.0.0.0 <deviceCompat> Safari/537.36New

Old

💻
 D

es
kt

op
📱

 M
ob

ile

Figure 6: User-agent string format change for desktop and mobile Chrome browsers after UA reduction.

E POPULARITY OF SITES WHICH CALL
GETHIGHENTROPYVALUES

Sites Calling
getHighEntropyValues

Rank Interval Website (count) Website (%)

1 to 1K 508 55.8%
1K to 5K 2,029 57.2%
5K to 10K 2,671 59.6%
10K to 50K 21,092 58.9%
50K to 100K 26,092 58.0%
1 to 100K 52,392 58.4%

Table 10: The distribution of CrUX websites that call getH-
ighEntropyValues. Results are sliced by site rank. and based
on successful visits.

F PURPOSES OF THIRD-PARTY SCRIPTS
THAT EXFILTRATE HIGH-ENTROPY
VALUES

Category Num. Sites

Advertising 41,124
Audience Measurement 27,526
Ad Motivated Tracking 27,253
Third-Party Analytics Marketing 26,220
Analytics 25,509
CDN 15,512
Online Payment 15,084
Social - Share 2,471
Embedded Content 2,154
Action Pixels 625

Table 11: The top third-party domain categories along with
the respective counts of websites where we observed at least
one third-party domain exfiltrates high-entropy UA values
to their endpoints. The categorization is based on Tracker
Radar’s domains [61], acknowledging the possibility of a
website belonging to multiple categories simultaneously.

G SCRIPTS CALLING
GETHIGHENTROPYVALUES AND ALSO
FINGERPRINTING

All Third
party

Tracking
related

Fingerprinting 4,689 2,190 784
FPing and
getHighEntropyValues calls 545 274 157

Table 12: We found 2,190 distinct third-party fingerprint-
ing scripts. 12.5% of them also call the getHighEntropyValues
method.

H PURPOSES OF THIRD-PARTY SCRIPTS
THAT RECEIVE HIGH-ENTROPY UA-CH
HEADERS

Category Num. Sites
Advertising 99
Ad Motivated Tracking 96
Embedded Content 90
CDN 86
Online Payment 65
Analytics 65
Audience Measurement 64
Third-Party Analytics Marketing 53
Action Pixels 22
Ad Fraud 22

Table 13: The top third-party domain categories and the corre-
sponding number ofwebsiteswhere at least one high-entropy
UA-CHs was sent to a third party.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 What changed and how?
	2.2 User-Agent Client Hints
	2.3 Delegating hints to third-parties
	2.4 User-Agent Client Hint opt-in and delegation via HTML
	2.5 Statuses and positions of other browser vendors
	2.6 Related Work

	3 Methodology
	3.1 Extending Tracker Radar Collector
	3.2 Detecting fingerprinting attempts
	3.3 Interaction with consent dialogs
	3.4 Detection of high-entropy value exfiltrations
	3.5 Identifying tracking-related requests
	3.6 The crawl

	4 Measurement Results
	4.1 getHighEntropyValues calls and exfiltrations
	4.2 The collection of User-Agent Client Hint HTTP headers
	4.3 User-Agent Client Hint opt-in and delegation via HTML
	4.4 Reduction in high-entropy User-Agent exposure

	5 Discussion
	5.1 Limitations

	6 Conclusion
	References
	A navigator.userAgentData interface description (IDL) uach
	B Crawler's UA Override Values
	C Fingerprinting Detection Heuristics
	D Supported Encodings & Hashes for Leak Detection
	E Popularity of Sites Which Call getHighEntropyValues
	F Purposes of Third-Party Scripts That Exfiltrate High-entropy Values
	G Scripts Calling getHighEntropyValues and also Fingerprinting
	H Purposes of third-party scripts that receive high-entropy UA-CH Headers

