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Abstract—Objective: The electroencephalogram (EEG) is an
essential neuro-monitoring tool for both clinical and research
purposes, but is susceptible to a wide variety of undesired
artifacts. Removal of these artifacts is often done using blind
source separation techniques, relying on a purely data-driven
transformation, which may sometimes fail to sufficiently isolate
artifacts in only one or a few components. Furthermore, some
algorithms perform well for specific artifacts, but not for others.
In this paper, we aim to develop a generic EEG artifact removal
algorithm, which allows the user to annotate a few artifact
segments in the EEG recordings to inform the algorithm.

Approach: We propose an algorithm based on the multi-
channel Wiener filter (MWF), in which the artifact covariance
matrix is replaced by a low-rank approximation based on the
generalized eigenvalue decomposition. The algorithm is validated
using both hybrid and real EEG data, and is compared to other
algorithms frequently used for artifact removal.

Main results: The MWF-based algorithm successfully removes
a wide variety of artifacts with better performance than current
state-of-the-art methods.

Significance: Current EEG artifact removal techniques often
have limited applicability due to their specificity to one kind of
artifact, their complexity, or simply because they are too “blind”.
This paper demonstrates a fast, robust and generic algorithm for
removal of EEG artifacts of various types, i.e. those that were
annotated as unwanted by the user.

I. INTRODUCTION

The electroencephalogram (EEG) measures electric poten-
tials generated by the brain using electrodes on the scalp.
Due to its relatively low cost, high temporal resolution, and
portability compared to other neuro-monitoring techniques, it
is an important tool in both clinical and research settings.

Despite its wide range of applications, there are some
drawbacks to the use of EEG as a research tool. Firstly,
the neural responses of interest typically have a low signal-
to-noise ratio (SNR), as the electrodes pick up the neural
activity from many different brain regions, which interfere
with the target response. Secondly, the measurement is very
susceptible to artifacts, which are generally classified based
on whether they are of biological (i.e. patient-related) or of
technical (i.e. environment- or equipment-related) origin [1].
The most common biological artifacts are caused by eye
blinking, moving the eyes, cardiac activity, head movements,
or muscle contractions associated with speaking, clenching
the jaws or swallowing. Technical artifacts originate from

the environment or the equipment, such as interference from
power lines and electrical devices, or impedance changes in
the recording electrodes.

Technical artifacts can be prevented or largely suppressed
by measures related to subject preparation and experimen-
tal equipment. For example, the skin-electrode impedance
can be reduced by cleaning of the skin before electrode
placement, and by application of conductive paste or gel
on the skin-electrode contact. This is important, as a high
impedance makes the electrode wires more susceptible to
environmental noise [1]. This susceptibility to interference can
also be reduced by using recording amplifiers with a high
input impedance [2] or electrodes with small pre-amplifiers
in them (i.e. “active electrodes”) [3]. There are various other
circuit techniques to reduce the effect of interference on the
measurement, such as shielding, guarding, or using a driven
right leg circuit [3], [4]. Finally, interference such as power
line noise can also be reduced after the measurement by digital
filtering of the recording.

Biological artifacts are more difficult to prevent, if possible
at all with the desired experiment paradigm. In studies where
short trials are measured intermittently, the subject can be
asked not to blink and sit still, however this may distract the
subject or become uncomfortable. In most studies, the EEG is
measured continuously for several minutes or hours, making
artifacts such as eye blinks unavoidable. Measuring while the
subject’s eyes are closed is a possible solution, however this
may undesirably change EEG dynamics [5], and is obviously
not possible if the experiment involves visual tasks. If the EEG
measurement consists of several repeated trials, for example
corresponding to multiple repetitions of the same stimulus,
these trials can be averaged over time to enhance the neural
response. While such processing partly suppresses noise and
artifacts, it is still recommended to remove the trials with
strong artifacts from the analysis. This results in a loss of data
and may require longer measurement times to compensate. In
single-trial EEG measurements where averaging over trials is
not possible, artifacts are even more problematic as there is
no redundancy of the EEG segments they corrupt.

Biological EEG artifacts can have different spatial, temporal
and spectral characteristics. Many of the artifact removal
methods developed and used over the years depend on assump-
tions that hold better for some artifact types than for others



2

(for a review, see [6], [7]). While there is no single golden
standard in the EEG artifact removal literature, Independent
Component Analysis (ICA) is very popular to remove eye
blink and eye movement artifacts [6], [8]. On the other hand,
Canonical Correlation Analysis (CCA) has become popular
for its capability to remove muscle artifacts [9], [10]. A joint
approach that targets both ocular and muscle artifacts has
recently been proposed in [11]. These Blind Source Separation
(BSS) methods are intrinsically semi-automatic, as the artifact
components need to be selected for removal after source
separation. However, numerous techniques for automating the
artifact component selection based on features, statistics or
similarities to a reference signal exist [12]–[14].

In this paper, we propose and validate a generic EEG
artifact removal tool based on Multi-channel Wiener Filtering
(MWF)1. The MWF is a linear statistical filtering technique
for estimating a signal from noisy measurements, and has
been widely used for problems related to audio, speech, and
recently also in biomedical data processing [15]–[19]. While
this method has attracted some attention for EEG signal
processing due to its low complexity and extendibility towards
a distributed method [19], its use for EEG artifact removal
has not been explored or validated in literature. Our MWF-
based algorithm can simultaneously remove various types of
artifacts from the EEG. The method is semi-automatic and
semi-supervised, as it requires the user to mark a few examples
of artifact segments in the time domain EEG data or in any
other transform domain where the artifacts are more visible.
The algorithm will use these examples to train an MWF that is
then applied to the full EEG recording to automatically clean
the EEG signals by filtering out the artifacts in each channel,
i.e., also in those parts that were not manually annotated.

The possibility to annotate artifact segments gives the user
a-priori control over which artifact types the algorithm should
target, allowing the MWF to “learn” which signal components
should be treated as artifacts. This is different for blind (BSS-
based) algorithms, where, after a data-driven transformation,
the user selects post-hoc a subset of output components
that are believed to correspond to artifacts, which are then
directly subtracted from the data. These output components
are blindly generated by the algorithm, and their artifact
separation capabilities strongly depend on how well the data
matches the underlying source separation conditions on which
the algorithm is based. Furthermore, as the number of EEG
channels is generally smaller than the number of neural
sources, the relevant EEG data is often distributed over these
output components in a seemingly arbitrary fashion, such that
artifact-dominated components may sometimes still contain a
rather large EEG residue, which is then also subtracted from
the data. In addition, the artifact(s) can be split over multiple
output components (depending on the artifact type and the
applied algorithm), in which case their deletion removes an
even more significant portion of the clean EEG signal. The
MWF-based algorithm on the other hand uses all its degrees
of freedom to optimally remove the pre-defined artifact types

1We provide an open-source implementation of the algorithm, with a
graphical user interface supported by EEGLAB [8]. The implementation is
available for download at www.github.com/exporl/mwf-artifact-removal.

while at the same time minimizing the removal of actual EEG
components.

It is noted that the MWF-based method can be extended
towards a fully automatic and unsupervised one using a proper
artifact detection algorithm to identify artifact-dominated seg-
ments in the data, similar to how semi-automatic BSS methods
can be automated. However, the development of such an
algorithm falls outside the scope of this paper.

This paper is structured as follows. In Section II, the MWF-
based artifact removal algorithm is described in detail. In
Section III, the methodology for validating the algorithm is
described. In Section IV, the results are provided, including
a benchmark with traditional ICA and CCA-based methods.
In Section V, a discussion of the achieved results is given.
Finally, in Section VI, the conclusions are drawn.

II. MULTI-CHANNEL WIENER FILTER-BASED ARTIFACT
REMOVAL

A. Data Model
The M -channel EEG signal y[t] ∈ RM at sample time t is

modelled as
y[t] = n[t] + d[t], (1)

where n[t] ∈ RM represents the true neural signals, and
d[t] ∈ RM represents artifacts of other origin superimposed
on the neural signals. Note that d[t] may simultaneously
contain different types of artifacts, e.g., it can include eye
blink artifacts in combination with eye movement and muscle
artifacts. The signals y[t], n[t] and d[t] are treated as M -
dimensional stochastic vectors, which are observed at specific
sample times t ∈ N. For the sake of conciseness, the sample
index t will be omitted, unless the explicit indication of the
sample time is necessary.

The signals y, n and d are assumed to be zero-mean.
This assumption is often satisfied for EEG signals, as mean
subtraction is a common first preprocessing step. The signal
covariance matrices Ryy, Rnn, Rdd are defined as resp.
E{yyT }, E{nnT } and E{ddT }, where E{·} is the expected
value operator. If n and d are assumed to be uncorrelated, then

Ryy = Rnn + Rdd. (2)

For the sake of an easy exposition, we first present the MWF
as a purely spatial filter, i.e., an instantaneous linear combiner,
and later generalize it to a convolutive filter-and-sum operator
using finite impulse responses (see Subsection II-C).

B. Multi-channel Wiener filter (MWF)
The MWF produces an estimate d̂ of the multi-channel

artifact signal d by linearly combining the channels of y,
i.e. d̂ = WTy. This linear combination is optimized in a
minimum mean squared error (MMSE) sense, i.e., it optimizes
the objective

min
W

E{
∥∥d−WTy

∥∥2}. (3)

The ith column of W is the linear combiner used to estimate
the ith channel of d. The solution to this minimization problem
is [15], [20]

W = R−1
yy Ryd, (4)
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where Ryd = E{ydT }. Using (1) and the assumed uncorre-
latedness between d and n, Ryd can be shown to equal Rdd,
i.e.,

Ryd = R(n+d)d = Rnd + Rdd = Rdd, (5)

so that the filter solution from (4) can be written as

W = R−1
yy Rdd. (6)

In practice, the covariance matrices can be estimated from
an M × T observation matrix Y in which the tth column
contains the observation y[t] at time t. Using an artifact
detection method (see Section III-C), the T observations of
Y can be segmented into two mutually exclusive sets: Ya

containing the Ta samples with artifacts, and Yc containing
the Tc clean samples without artifacts. This segmentation
allows Ryy to be estimated as

R̂yy =
1

Ta
YaY

T
a , (7)

where the hat denotes that it is an estimation. Similarly, Rnn

can be estimated from the M × Tc observation matrix Yc

containing only samples without artifacts, as

R̂nn =
1

Tc
YcY

T
c . (8)

Based on (2), an estimate for Rdd can then be computed as

R̂dd = R̂yy − R̂nn, (9)

such that the optimal filter solution W from (6) can be
estimated using only covariance matrix estimates from the data
as

Ŵ = R̂−1
yy R̂dd. (10)

Finally, using the additive model of (1), the neural responses
can be obtained by subtracting the estimated artifact as

n̂ = y − ŴTy. (11)

Note that it is also possible to estimate the clean EEG
signal n directly by replacing d by n in the MMSE problem
in (3). This results in the filter W = R−1

yy Rnn, which will
yield the same clean signal estimate n̂ as in (11). However,
we purposely estimate the artifact to exploit the typical low-
rank structure of the artifact covariance matrix Rdd (see
Section II-D).

C. Including temporal/spectral information

Thus far, the MWF was defined as a purely spatial filter,
i.e., it only makes a linear combination of the different
channels to estimate the artifact. This exploits the different
spatial distributions of the underlying sources (similar to ICA).
However, in general the spectral properties of the artifacts
also differ from the clean EEG spectrum, and their spectrum
may also differ across channels. For example, artifacts that
vary slowly (relative to background EEG) such as eye blinks
or eye movement still have large autocorrelation coefficients
after tens of milliseconds [21]. On the other hand, random,
high-frequency artifacts such as muscle activity result in very
low autocorrelations at short time lags [9]. To also exploit the

different spectral properties of the sources, the MWF can be
extended by allowing it to design and perform a finite impulse
response (FIR) filtering in each channel, which acts as a per-
channel spectral filter. To this end, we include time-lagged
versions of each channel, using both positive and negative
time shifts up to lag τ , in the vector y[t] in (1), such that
it becomes

y[t] =
[
y1[t+ τ ], . . . , y1[t], . . . , y1[t− τ ],

y2[t+ τ ], . . . , y2[t], . . . , y2[t− τ ], . . .

yM [t+ τ ], . . . , yM [t], . . . , yM [t− τ ]
]T
.

(12)

This can be easily realized by stacking time-shifted versions
of the observation matrix Y along with the original one, i.e.

Ỹ =
[
YT

−τ , . . . ,Y
T
0 , . . . ,Y

T
τ

]T
, (13)

where Yτ represents Y shifted over τ time lags (with proper
zero-padding to match the original dimensions of Y). An
artifact detection method can be used to segment Ỹ into
segments with and without artifacts as in Subsection II-B. The
MWF can then be computed using (10) and applied to the EEG
data in Ỹ (which includes the time-lagged versions).

The temporal information complements the spatial infor-
mation captured in the covariance matrices, which also char-
acterizes the artifact sources in some sense. For example, eye
blink artifacts show higher amplitudes in frontal channels, and
muscle artifacts appear in all channels but most prominently
on the sides of the head. The artifact estimation performance
of the MWF increases by including temporal correlations in
addition to the spatial correlations, effectively making it a
spatio-temporal filter.

D. GEVD-based MWF

As the number of underlying artifact sources (say Q) is
usually much smaller than the number of channels M , the
covariance matrix Rdd typically has low rank. For the sake
of an easy exposition, but without loss of generality, we
focus on the case where no time lags are included in the
MWF2, in which case Rdd will have exactly rank Q. However,
since in practice the covariance matrices are estimated from
noisy observations, the rank of the estimated matrix R̂dd is
generally equal to M instead of Q. Additionally, because of
the subtraction R̂yy − R̂nn, the positive semi-definiteness of
R̂dd is not guaranteed [22].

Performing the subtraction based on a Generalized Eigen-
value Decomposition (GEVD) allows to force R̂dd to be
positive semi-definite and of low rank, which has been shown
to improve the estimation performance of the MWF [17]. Since
Ryy and Rnn are both symmetric and positive definite, an
invertible matrix V can be found such that

VTRyyV = diag(σy1, . . . , σyM ) = Σy

VTRnnV = diag(σn1, . . . , σnM ) = Σn ,
(14)

2The reasoning can be generalized to the case where time lags are included,
in which case Rdd still has low-rank properties. Its rank will then depend on
the autocorrelation function of each source, as well as the spectral filtering
introduced by volume conduction.
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while also satisfying

RyyV = RnnVΛ, (15)

where Λ = diag(λ1, . . . , λM ) and λi = σyi/σni for i =
1, . . . ,M [23]. Equation (15) is known as the GEVD, in which
the columns of V correspond to the Generalized Eigenvectors
(GEVC), and the diagonal elements of Λ correspond to the
Generalized Eigenvalues (GEVL) of the ordered matrix pair
(Ryy,Rnn). Computing the GEVD is equivalent to finding
the joint diagonalization of Ryy and Rnn. We assume, without
loss of generality, that the GEVLs in Λ are sorted in descend-
ing order, i.e. λ1 > . . . > λM .

The diagonalization in (14) allows us to write Rdd as

Rdd = Ryy −Rnn

= V−TΣyV
−1 −V−TΣnV−1

= V−T (Σy −Σn)V−1

= V−TΣdV
−1 , (16)

where Σd = diag(σd1, . . . , σdM ) and σdi = σyi − σni. Since
Rdd has rank Q, only the first Q diagonal elements of Σ̂d will
be non-zero. However, as R̂dd generally doesn’t have rank Q,
the GEVD can be used to compute a rank-Q approximation
of Rdd. To this end, we compute the GEVD of (R̂yy, R̂nn),
and compute (16) where the last M −Q diagonal elements of
Σd are replaced by zeros [17].

In practice, Q is generally unknown, in which case there are
several approaches to set the rank of R̂dd. One can make an
a-priori estimate based on prior knowledge of the artifact type.
For example, if only eye blink artifacts are annotated, Q can be
chosen equal to 1 (multiplied by the number of time lags used
in the MWF), as they are well approximated by a single source
point. Another approach is to observe the diagonal entries of
Σ̂d and to define a threshold under which the diagonal entries
should be set to zero. The most conservative approach is to
only set the negative entries in Σ̂d to zero, in order to avoid
using a covariance matrix estimate that is not positive semi-
definite.

It is noted that there exist other approaches to make rank-
Q approximations of R̂dd which are not based on a GEVD,
e.g. by computing a truncated singular value or eigenvalue
decomposition on R̂dd = R̂yy − R̂nn [17]. However, the
GEVD-based approach typically yields a better performance,
as it explicitly takes the underlying theoretical relationships
between Ryy , Rnn and Rdd into account. Furthermore, it
can be shown that a GEVD-based low-rank approximation of
Rdd constrains the MWF to the subspace that captures the Q
highest SNR-modes in the data [17], [22]. This is a desirable
property, which is also exploited in several other GEVD-based
algorithms, such as denoising source separation3 [24]–[26],
the xDAWN algorithm4 [27], common spatial pattern analysis
[29], etc.

3The original DSS algorithm in [24] was not formulated based on a GEVD,
although its link with the GEVD was established in [25].

4The original xDAWN algorithm in [27] was based on a QR decomposition
and a singular value decomposition, although it was later shown to be an
instance of a GEVD filter in [28].

III. EXPERIMENT

A. EEG data acquisition

An EEG dataset with multiple recordings per subject was
obtained, in which each recording contains a different artifact
type, e.g. eye blink artifacts, muscle artifacts, movement
artifacts, etc. These artifacts were induced purposefully by the
subject by e.g. blinking the eyes, clenching the jaws or tilting
the head after a visual cue, which occurred after random time
intervals with a mean of 5 seconds. The artifact recordings,
in addition to the induced artifacts, contain spontaneous eye
blink artifacts, since these are impractical to prevent.

A BioSemi ActiveTwo amplifier with 64 electrodes in
the international 10-20 electrode placement configuration was
used for all recordings, with electrode Cz on top of the head
serving as EEG reference. Data was recorded at 8192 Hz, and
resampled to 200 Hz for offline processing. A high-pass filter
with cut-off frequency at 1 Hz was applied to remove the DC
component and electrode drift from the signals.

B. Generation of hybrid EEG data

EEG artifact removal performance is generally difficult to
evaluate because the real artifact signal and clean EEG are
unknown. Therefore, to complement the data set described
in Section III-A, an additional data set is designed in which
(known) eye blink artifacts are superimposed onto real EEG
data with various Signal-to-Noise Ratios (SNRs). Because the
ground truth signals are known, the artifact estimate can be
directly compared to the actual artifact that was added.

To this end, a single-channel artifact signal d is generated
by repeating an eye blink artifact template at random time
intervals with an average of 5 seconds between consecutive
eye blinks. The constructed single-channel signal d is then
multiplied with a pre-defined mixing vector a with realistic
mixing weights to create the ground truth multi-channel arti-
fact signal d, which is added to n according to (1), where n
consists of artifact-free EEG data from the same 10 subjects
as in Section III-A. Note that the covariance matrix Rdd of
the artifacts added to the hybrid EEG data has a rank equal to
exactly 1 if no time lags are used.

The generation of hybrid EEG data allows to investigate
the effect of the artifact amplitude relative to the background
EEG on algorithm performance. A factor γ is used to scale
the artifacts d to generate EEG data with different artifact
SNR values. We define the artifact SNR as the ratio of artifact
power and the clean EEG power [21], i.e.

SNR = 10 log10

E{(γd1)2}
E{(n1)2}

, (17)

where channel 1 (Fp1) is chosen as the reference. This is
an arbitrary choice in order to define an SNR measure, but
preferably a channel with large artifact amplitude is chosen.
Because the clean EEG power is recording- and subject-
dependent, the artifact signal d is scaled such that the SNR is
0 dB for γ = 1. This normalizes the SNRs of the hybrid data
so that comparisons across subjects can be made. An SNR
increase or decrease by 6 dB indicates a doubling or halving
of the artifact amplitudes.
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Fig. 1. Example of eye blink artifact marking in the GUI. The user can
change display options for easier assessment of the EEG data. After marking,
clicking the “Save Marks” button will run the MWF for artifact removal.

C. Marking of EEG artifacts

We implemented the MWF in a user-friendly graphical user
interface (GUI), in which the EEG channels are visualized
using EEGLAB [8], allowing the user to assess spatial and
temporal characteristics of features in the EEG. An example
of use of the GUI to mark eye blink artifacts is shown in
Fig. 1. Once the users has marked some examples of segments
containing undesired artifacts, a button click exports the time
indices of the markings to MATLAB for further processing
by the MWF algorithm. The markings are also saved to disk
along with the recordings so they can be reused for future
experiments without the user having to re-assess the data.

While marking the artifacts in the EEG, it is important to
avoid starting or ending an artifact segment in the middle of an
artifact. Failing to capture the entire artifact leads to presence
of (parts of) artifacts in the clean EEG segments, which
causes errors in the estimation of R̂nn in (8). Conversely,
overestimating the length of the artifacts does not adversely
affect MWF performance, because clean EEG still adheres
to the model in (1), with the artifact term d (temporarily)
being equal to zero. Additionally, the low power of clean EEG
relative to artifacts has a negligible effect on the estimation of
R̂yy in (7). Because of these reasons, we chose to encompass
the artifact with broad margins while marking the EEG (see
Fig. 1).

D. Performance measures

The quality of the artifact removal is assessed using two
complementary performance measures. The first measures
the distortion of the clean EEG, and the second measures
the degree of removal of the artifact. The first measure is
computed over artifact-free segments. Ideally, applying the
filter to these segments does not change them, since the artifact
to be estimated and subtracted is zero. In fact, the estimated
artifact signal in the artifact-free segments of channel i, given
by d̂i, should be as close to zero as possible. To assess this,
we use the Signal-to-Error Ratio (SER) [19], [21] in a single

channel i, computed as

SERi = 10 log10

E{(yi)2}
E{(d̂i)2}

∣∣∣∣∣
clean segments

. (18)

To obtain a single measure, the SERs of individual channels
are combined by weighted averaging over channels as

SER =

M∑
i=1

pi · SERi, (19)

where the normalized weights pi are proportional to the artifact
power in every channel, which can be estimated by subtracting
the power in the clean segments from the power in the artifact
segments:

pi =
E{(yi)2}

∣∣
artifact segments − E{(yi)2}

∣∣
clean segments

M∑
i=1

(
E{(yi)2}|artifact segments − E{(yi)2}|clean segments

) .
(20)

This weighting ensures that the channels with the largest arti-
facts have the greatest contribution to the overall performance
measure. Note that, while the SER is computed only over
artifact-free segments, it is also a measure for the distortion
of the clean EEG in the artifact segments, but it cannot be
measured there.

A second performance measure is computed over the artifact
segments. The artifact estimate d̂i should closely resemble the
real,underlying artifact signal, i.e. the residue di − d̂i should
be as small as possible. This leads to the Artifact-to-Residue
Ratio (ARR) [21] in a single channel i, computed as

ARRi = 10 log10

E{(di)2}
E{(di − d̂i)2}

∣∣∣∣∣
artifact segments

. (21)

Only for the hybrid EEG data, di is known. For real data,
the ARR is computed by substituting di by yi in (21). This
approximation is valid in artifact segments for high amplitude
artifacts (such as eye blinks, muscle activity,. . . ). A weighted
average across channels to obtain the ARR as a single measure
is employed in a similar fashion as in (19). The weights pi
are identical as those defined in (20).

SER and ARR are both expressed in dB. Good performance
of the artifact removal algorithm is indicated by both high SER
and high ARR. The two performance measures reflect two
complementary aspects of artifact removal and should always
be evaluated simultaneously. Indeed, note that the SER can
easily be made infinitely high by using the trivial all-zero filter
for W in (11), but then the ARR will reduce to 0 dB.

E. Effect of temporal information

As discussed in Section II-C, including several lagged
versions of the EEG data in the filter can increase estimation
performance. For an EEG sample rate of 200 Hz, channels can
be shifted with a resolution of 5 ms. To investigate the effect
of the temporal information, the number of lags included in
the observation matrix in (13) is gradually increased. Note
that an increase of τ by 1 increases the number of entries in
y by 2M due to both positive and negative time lags being
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included. This increase in channels for increasing τ affects the
computational cost of the algorithm.

F. Effect of the rank approximation of the GEVD-MWF

As discussed in Section II-D, a GEVD-based low-rank
positive semi-definite estimate of Rdd may improve the per-
formance of the MWF. However, choosing an appropriate rank
Q is not trivial. First, the conservative strategy, where only the
negative entries of Σ̂d are set to zero, is applied and compared
to the (full-rank) MWF performance.

For low-dimensional artifacts (e.g. eye blinks), we hypothe-
size better artifact estimation when the rank of R̂dd is reduced
further, so that it matches the low-dimensional structure of
the artifact. We will investigate this effect by lowering the
amount of retained eigenvalues for eye blink artifacts. The
performance is also compared with the same strategy applied
to muscle artifacts, which typically have a higher dimension
due to multiple myogenic sources.

G. Types of artifacts

The MWF is a generic method and can also be applied to
remove other artifacts than eye blink or muscle artifacts. EEG
recordings are often affected by glitches or spikes originating
from a sudden change in skin-electrode contact impedance.
This phenomenon is usually caused by the subject moving the
head, causing electrodes to shift around. We will refer to this
as a “movement” artifact, which manifests as a very high-
amplitude peak that typically affects only a single channel
or a few neighboring channels. The morphology of these
artifacts can differ greatly (unlike e.g. eye blinks, which are
repetitive for a subject). The MWF will be applied to remove
movement artifacts by marking a single movement artifact in
the EEG recording, demonstrating the capability to remove
artifacts with focused spatial and sparse temporal structure
(i.e. appearing only once in a few channels in the recording).

H. Comparison with other artifact removal algorithms

The MWF is compared to several other methods that are
popular for EEG artifact removal. The MWF was applied
to the EEG recordings with eye blink artifacts, and to the
EEG recordings containing both eye blink and muscle artifacts.
The same recordings are processed by three component-based
methods: infomax ICA [8], [30], which is implemented in
EEGLAB, the FastICA algortihm [31] from the FastICA
MATLAB toolbox, and CCA [9], [21]. Artifact removal is
performed semi-automatically by selecting artifact components
to reject after visualization. After rejection, the signals are
projected back to the EEG sensor space, resulting in the clean
EEG signals. The same (manual) EEG segmentation as used
for the MWF is used to compute SER and ARR performance
parameters for each method.

IV. RESULTS

A. Choice of time lags

The effect of increasing the amount of delayed signal
versions included in the artifact estimation is depicted in
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(a) The SER increases as more time delays are used in the MWF. The increase
is the largest for the first few delays.
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(b) The ARR is invariant to the number of delays used in the MWF.

Fig. 2. SER and ARR for combined eye blink and muscle artifact removal.
Both performance measures are plotted as a function of the number of time
delays used in the MWF. Dashed lines show trends for individual subjects.

Fig. 2. For τ = 0, no delayed versions are included. For τ > 0,
all delayed versions with delays −τ, . . . , 0, . . . , τ are included.
In this experiment, the MWF is computed by setting only the
negative eigenvalues to zero in Σ̂d in (16). The filter is trained
on and applied to EEG data of 10 subjects containing both
muscle and eye blink artifacts. Both performance measures
SER and ARR are depicted on a group level by boxplots in
Fig. 2(a) and 2(b), respectively. The dashed lines show the
performance measure trends for individual subjects.

B. Choice of rank

The effect of replacing the estimated artifact covariance
matrix Rdd with a GEVD-based lower rank approximation is
depicted in Fig. 3(a) for the dataset of 10 subjects containing
both muscle and eye blink artifacts. The performance measures
SER and ARR are shown as a function of the percentage of
retained eigenvalues, i.e. the percentage of diagonal entries in
Σ̂d not replaced by zero. If 100% of eigenvalues are retained,
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(a) Combined muscle and eye blink artifact removal.
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(b) Eye blink artifact removal.

Fig. 3. Performance measures as a function of the rank of the artifact
covariance matrix approximation. The 100% point corresponds to the regular
MWF where no eigenvalues are rejected. For both figures, 5 time delays
(τ = 5) were included in the computation of the MWF. The optimal percent
of eigenvalues to keep corresponds well with the percentage that would be
obtained by only keeping positive eigenvalues (indicated by the black vertical
lines).

the GEVD-based MWF reduces to the regular MWF. The solid
lines depict the mean across subjects, the shaded area width
indicates the standard deviation.

As discussed in Section III-F, a conservative approach for
deciding which eigenvalues to keep, is to put only the negative
ones to zero. The vertical black lines in Fig. 3(a) show
what percentage of retained eigenvalues that approach results
in. The solid black line depicts the mean percentage across
subjects, and the dotted lines depict the standard deviation.
Fig. 3(b) shows results of the same analysis performed on the
dataset containing only eye blink artifacts.

Fig. 4 shows a comparison of the distribution of GEVLs
for the data containing only eye blink artifacts, and the data
containing eye blink and muscle artifacts, for one subject.
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Fig. 4. Comparison of GEVL distributions for two different artifact types
from a representative subject. Only the first 150 GEVLs are shown (out of
693 GEVLs, 63 channels with τ = 5). The GEVLs are ordered by descending
magnitude. Eye blink artifacts exhibit a narrower distribution than muscle
artifacts, which results in filters of lower rank if only eye blink artifacts are
targeted.
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Fig. 5. Effect of artifact SNR on MWF performance for hybrid EEG data
with eye blink artifacts. The solid and dashed vertical black lines depict resp.
the mean and standard deviation of the estimated artifact SNR in real EEG
data. Whereas the SER is invariant to artifact SNR, the ARR increases with
increasing SNR. Because the difference between ARRhybrid and ARRreal is
constant above 3 dB, ARRreal can be used as an approximation of ARRhybrid
if the ground truth artifact is unknown.

C. Hybrid EEG data with eye blink artifacts

Fig. 5 shows the result of applying the MWF for eye blink
artifact removal from the hybrid EEG data as a function of
artifact SNR as defined in Section III-B. The data is processed
with the MWF using 5 time delays (τ = 5) and only positive
eigenvalues were retained in the low-rank approximation. The
solid lines depict the mean across subjects, the shaded area
width equals the standard deviation. The ARR is shown
computed in two ways, as for the hybrid EEG data the ground
truth artifact d is known. ARRhybrid is computed using (21),
while ARRreal is computed using (21) but replacing d by y.
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(a) Combined muscle and eye blink artifact removal by marking both muscle
and eye blink artifacts.
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(b) Muscle artifacts removal by marking only muscle artifacts and not marking
eye blink artifacts.

Fig. 6. Original and MWF-filtered data are shown for 5 channels on the
frontal right side of the head. A strong muscle artifact is present from 0.5 to
2 s, followed by two consecutive eye blinks. Only the artifacts marked by the
user are removed.

The difference ARRdiff = ARRhybrid − ARRreal is shown as
well.

The artifact SNR for the real eye blink data of all subjects
is estimated and shown on Fig. 5. The solid black line depicts
the mean artifact SNR across subjects, and the dotted lines
depict the standard deviation across subjects.

D. Performance for different artifact types

Fig. 6(a) shows an example of simultaneous muscle and eye
blink artifact removal with the MWF (τ = 5, only positive
eigenvalues) after marking all eye blink and muscle artifacts.
Fig. 6(b) shows the same EEG segment, but processed after
marking only the segments containing muscle artifacts. As a
result, the eye blink artifacts remain unaffected by the MWF,
whereas the muscle artifacts are removed. Fig. 7 shows an
example of a movement artifact affecting only a few channels
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Fig. 7. Removal of a movement artifact. Original and MWF-filtered data are
shown for 5 neighboring channels on the central right side of the head. The
artifact is most strongly present in electrode C6 and lasts multiple seconds.

and lasting several seconds. The EEG processed with the
MWF (τ = 5, only positive eigenvalues), after marking only
this specific instance of artifact, is shown on top of the original
data.

E. Comparison with other artifact removal techniques

Fig. 8(a) and 8(b) show the results of applying the different
artifact removal algorithms to resp. the eye blink data and
the eye blink + muscle artifact data. The mean and standard
deviation of the performance measures across subjects are
shown, as well as the computation time required for arti-
fact removal (not including time taken by manual artifact
marking or component selection). MWF corresponds to the
basic MWF as described in Section II-B. MWF-GEVD is the
improved version using both temporal information (τ = 5) and
GEVD-based low-rank approximation, retaining only positive
eigenvalues. For infomax ICA, the number of ICA training
steps was limited to 256, which was generally enough to
converge and reduced computation time. For FastICA, the
maximum allowed number of iterations per component was
limited to 250 for the same reasons. For CCA, the canonical
components were computed between y[t] and y[t − 1] (i.e.
shifted over one time lag of 5 ms). When processing the
eye blink artifact EEG data, only segments containing eye
blinks (and other ocular artifacts) where marked for the MWF,
and only independent or canonical components containing
the same artifacts were selected for removal. For the data
containing both muscle artifacts and eye blink artifacts, all
artifact segments containing either eye blinks (and other ocular
artifacts) and muscle activity were selected.

Group median differences between all methods and the
MWF-based methods are compared using a two-tailed
Wilcoxon signed rank test. The p-values are corrected for
multiple comparisons using the Bonferroni-Holm method per
dataset and performance measure. Significant differences with
a p-value exceeding the significance level α = 0.05 are indi-
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(b) Combined muscle and eye blink artifact removal.

Fig. 8. Performance comparison of different artifact removal methods on
EEG datasets containing only eye blink artifacts or both eye blink and muscle
artifacts. Mean and standard deviation of performance measures are indicated
by bar height and errorbar, respectively. Good performance is indicated by
high SER and ARR. Significant differences with the MWF-based methods
are indicated single (p < 0.05) or double (p < 0.01) asterisks, with all p-
values corrected for multiple comparisons using the Bonferroni-Holm method.
In addition to SER and ARR, the computation times per subject are shown.

cated by a single asterisk, and p-values exceeding α = 0.01
are indicated by double asterisks.

V. DISCUSSION

A. Selection of EEG artifacts

The MWF is integrated with a user-friendly GUI that allows
manual marking of undesired artifacts in the EEG. The user
can scroll through the EEG data and mark any temporal
segment that is identified as “not clean”, and have it removed
by the MWF. This is advantageous, since often EEG artifacts
are encountered that are clearly not of neural origin, but whose
origin is not known. Another advantage of this method is that it
facilitates marking of artifacts in the raw EEG. Other methods
like ICA or CCA require identification of artifact components

in the transformed component space, which needs additional
topographic plotting in order to assess the spatial distribution
of a component. More importantly, using component-based
methods, the user fully depends on the algorithm to blindly
isolate the artifacts from the clean EEG in a single component,
which is not always the case, e.g. artifacts can be mixed with
clean EEG in a single component.

The method is suited for removal of any kind of artifact
that exhibits a temporal on-off pattern, which is demonstrated
for common EEG artifacts such as eye blinks, muscle artifacts
and movement artifacts. They can be removed independently
by only marking artifacts of a single kind, despite the presence
of other artifacts (see Fig. 6(b)), or simultaneously, as demon-
strated for eye blink and muscle artifacts (see Fig. 6(a)). Even
a single glitch or movement artifact can be marked as artifact
and removed5 (see Fig. 7).

In the particular case where the artifact only appears in a
small number of channels (as in Fig. 7), the MWF will mainly
rely on information from neighboring channels to reconstruct
the clean EEG, i.e. similar results could be obtained by training
an MWF only on channels adjacent to the affected channels.
However, making this channel selection is unnecessary, as the
MWF automatically infers which channels are the relevant
ones to remove the artifacts. The GUI therefore only allows
the user to select time segments, but not channels.

B. Choice of parameters for GEVD-MWF

The number of time lags and the rank approximation of the
GEVD-MWF are the most important parameters to consider.
By increasing the number of time lags, more degrees of
freedom are available in the MWF design. This does not
change the artifact suppression performance (Fig. 2(b)), but
it does reduce the distortion of the clean EEG, indicated by
an increasing SER (Fig. 2(a)). The effect of including temporal
information is largest for the first few delays included, and the
gain decreases when more time lags are included. The gain of
more temporal information must also be weighed against the
increase in computational cost.

By replacing the artifact covariance matrix estimate R̂dd

with a lower rank approximation, the effect of covariance
estimation errors can be reduced (i.e. R̂dd not being positive
semi-definite or having an increased rank). Fig. 3 shows the
effect of the chosen rank on both performance measures.
Rejecting the lowest 5-10% of GEVLs significantly increases
both SER and ARR (see the right part of Fig. 3(a) and 3(b)).
Including these modes makes the artifact estimate more noisy,
resulting in poorer artifact estimation (ARR) and more EEG
distortion (SER). After this initial increase in performance,
there is a range of percentages (50-90%) for which the
performance is relatively stable. The algorithm performance in
case only positive eigenvalues are retained also falls within this
range, seemingly at the maximal ARR. If more eigenvalues are

5It is noted that, if an artifact with a single occurrence is annotated together
with a large number of other artifacts, the contribution of the former to
the covariance matrix R̂yy will be minor and the resulting MWF may not
effectively remove it. In this case, it could be beneficial to design two separate
MWFs, i.e., one for the glitch and one for the more frequently appearing
artifacts.
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rejected, the trade-off effect between SER and ARR becomes
apparent. Modes containing artifact components are rejected,
which causes worse artifact estimation, but also less noise on
the artifact estimate, resulting in lower clean EEG distortion.
As mentioned in Section III-D, this trade-off results in an
infinite SER and zero ARR when all eigenvalues are replaced
by zeros, making the artifact-estimating GEVD-MWF the
(trivial) all-zero filter.

The results are similar for EEG data containing only eye
blinks, as shown in Fig. 3(b). However, there are two large
differences compared to data containing muscle artifacts as
well. First, the range of relatively stable performance is a lot
larger (20-80%). Second, the trade-off between ARR and SER
starts at a much lower percentage of retained eigenvalues.
These differences can be explained from the fact that eye
blink artifacts are low-dimensional and can be captured well in
only a few modes. Muscle artifacts do not exhibit such a low-
rank structure, and to estimate them, enough modes (and thus
eigenvalues) are needed. The distribution of the eigenvalues in
Fig. 4 indeed shows that the eigenvalue distribution for data
with eye blinks is a lot narrower compared to muscle artifacts,
which makes it possible to estimate eye blink artifacts with a
GEVD-MWF of lower rank than is needed for muscle artifacts.

It is noted that the strategy to only retain the positive eigen-
values seems to lead to maximal ARR and an almost-optimal
SER. This is good news, as this is an automatic strategy which
does not require the manual selection of an eigenvalue cut-off,
while still reaching a near-optimal performance.

In conclusion, the rank and the number of time lags that
result in the best performance can be chosen using the same
strategy for all subjects and artifact types. The rank can be
set automatically by the algorithm by only retaining positive
eigenvalues. The time lag can be set by the user, considering
the trade-off between SER and computation time. The perfor-
mance gain of the first few time lags is greatest, after which
the gains become smaller and smaller for increasing number
of lags. The computation time increases cubically with the
number of lags because of the GEVD operation.

C. Effect of artifact SNR

In Fig. 5, the effect of artifact SNR on performance is shown
for hybrid EEG data. The constant SER across SNRs indicates
that the amount of EEG distortion in clean EEG segments
does not depend on the artifact SNR, i.e. the EEG distortion
caused by the MWF is low and does not depend on artifact
amplitude. The ARR, which measures artifact suppression
quality, increases for increasing SNR, which is expected from
(21) as the numerator grows with the artifact amplitude. The
difference between ARRhybrid and ARRreal is constant for high
SNRs (i.e. above 0 dB). This indicates that approximating d
by y in 21 in order to compute the ARR for real data is valid
for high-amplitude artifacts, as mentioned in Section III-D.
For low SNRs (below 0 dB), the approximation is not valid:
ARRhybrid will keep decreasing as its numerator will tend
towards zero (see 21), but the numerator of ARRreal will still
contain the clean EEG power in y, causing ARRreal to flatten
out for decreasing SNRs.

The eye blink artifacts measured in the real data have a mean
SNR around 12 dB. This means ARRreal is a valid measure to
evaluate the performance of artifact removal for the real EEG
data.

D. Comparison with other artifact removal techniques

The results for eye blink only data in Fig. 8(a) show the
highest SER and ARR for the GEVD-based MWF. However,
the basic MWF without the improvements described in Sec-
tions II-C and II-D achieves an SER worse than Infomax
ICA and CCA, and an ARR of comparable magnitude. These
findings are consistent with the observations in [21], where
ICA and CCA were compared to the basic MWF for eye blink
artifact removal in real and hybrid EEG data. This indicates
that the MWF improvements investigated in this paper (i.e.
including temporal information and incorporating the GEVD)
strongly boost the performance of the MWF as an artifact
removal algorithm, outperforming other current state-of-the-
art algorithms.

Looking at complexity, the ICA methods have long com-
putation times, while CCA and MWF are fast methods. The
computation time of the basic MWF is comparable to CCA,
but increases for more included time delays. Note that the
performance of the GEVD-based MWF can be boosted even
further at the cost of longer computation times (see Fig. 2 and
Section V-B). For larger numbers of input EEG channels, for
example in 128- or 256-channel EEG systems, the comparison
of computation times for the different methods is still valid.
Because computing a GEVD is an O(M3) procedure [23] and
CCA is efficiently computed based on a GEVD, the GEVD-
MWF and CCA have similar complexities. ICA-based methods
start with an initial pre-whitening step, which also has an
O(M3) complexity, even before the iterations of the algorithm
start.

Fig. 8(b) shows similar results for the case where both eye
blinks and muscle artifacts are removed by the algorithms.
Again the GEVD-based MWF outperforms the basic MWF
and the component-based methods. In most cases for ICA and
CCA, the muscle artifact components were very ill-separated
from the clean EEG components, often being present in almost
half of the components. The rejection of multiple ill-separated
components inevitably leads to larger EEG distortion, which
explains the low SERs for ICA and CCA. On the other hand,
the eye blink artifacts were often still easily identifiable as a
single component. The poor performance of CCA is surprising,
as it is a popular method for muscle artifact removal. It should
be noted that the muscle artifacts in this study were deliber-
ately induced by clenching the jaw in the EEG, causing high
artifact amplitudes with possibly many myogenic generators,
making it difficult to separate in only a few components. This
is in contrast with the “spontaneous” muscle artifacts to which
CCA was applied in [9], which have lower amplitudes and are
present in fewer channels.

It is also noteworthy that component-based methods reduce
the rank of the EEG data, as mixing matrix elements cor-
responding to the artifact components are set to zero before
back-projecting the components to the EEG sensor space. The
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MWF subtracts a reduced-rank artifact estimate from the EEG,
which generally does not reduce the rank of the processed
EEG.

VI. CONCLUSIONS

In this paper, we have successfully implemented and val-
idated the MWF as a method for semi-automatic artifact
removal from EEG. The method is integrated with a graphical
user interface, which allows the user to mark unwanted arti-
facts directly in the EEG signals. We demonstrated the algo-
rithm performance using both hybrid and real EEG recordings
from 10 subjects. We found that for best performance, the
rank of the artifact covariance matrix approximation can be
chosen automatically by the algorithm so that only positive
generalized eigenvalues contribute to the artifact estimation.
The second most important parameter, the number of time lags
included in the filter, can be chosen by the user and involves
a trade-off between performance and computation time.

The method was compared with several algorithms which
are popular for EEG artifact removal, such as ICA and CCA.
We found that the MWF outperformed the other methods
regarding artifact removal performance. Using a low number
of time lags in the MWF, the computation time is very short
and similar to CCA. Both the MWF and CCA are at least an
order of magnitude faster than ICA.

The MATLAB toolbox implementing the MWF and the GUI
is made available online (see footnote in Section I) in the
hopes that it will provide a useful and user-friendly tool for
other researchers dealing with artifacts in EEG studies. Future
work includes the development of temporal artifact detection
methods based on signal statistics which enable the MWF to
be used as a fully automatic artifact removal algorithm.

VII. ACKNOWLEDGEMENTS

The authors declare no conflict of interest. This work was
carried out at the ExpORL research group of KU Leuven, and
at ESAT Laboratory of KU Leuven, in the frame of KU Leuven
Special Research Fund BOF/STG-14-005, C14/16/057, CoE
PFV/10/002 (OPTEC) and OT/14/119, and Research Projects
FWO G0D7516N, G0A4918N, and 1512316N. Additionally,
this project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 637424, ERC starting grant to Tom Francart). The first
author is supported by a PhD grant for Strategic Basic research
by the Research Foundation Flanders (FWO) under project
number 1S46117N. The scientific responsibility is assumed
by its authors.

REFERENCES

[1] M. Teplan, “Fundamentals of EEG measurement,” Measurement science
review, vol. 2, no. 2, pp. 1–11, 2002.

[2] T. C. Ferree, P. Luu, G. S. Russell, and D. M. Tucker, “Scalp electrode
impedance, infection risk, and EEG data quality,” Clinical Neurophysi-
ology, vol. 112, no. 3, pp. 536–544, 2001.

[3] J. C. Huhta and J. G. Webster, “60-Hz interference in electrocardiogra-
phy,” IEEE Transactions on Biomedical Engineering, no. 2, pp. 91–101,
1973.

[4] A. Metting van Rijn, A. Peper, and C. Grimbergen, “High-quality
recording of bioelectric events,” Medical and Biological Engineering
and Computing, vol. 28, no. 5, pp. 389–397, 1990.

[5] R. J. Barry, A. R. Clarke, S. J. Johnstone, C. A. Magee, and J. A.
Rushby, “EEG differences between eyes-closed and eyes-open resting
conditions,” Clinical Neurophysiology, vol. 118, no. 12, pp. 2765–2773,
2007.
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