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Multi-pattern recognition through maximization of
signal-to-peak-interference ratio with application to

neural spike sorting
J. Wouters, P. Patrinos, F. Kloosterman, A. Bertrand

Abstract—In this paper, we propose three novel linear filter
design methods for use in a multi-pattern recognition task with
overlapping patterns and strong peak interferers. The recognition
is based on a linear filter-and-threshold approach, which is
particularly interesting when the task has to be performed in
a computationally constrained environment. The first method
optimizes the signal-to-peak-interference ratio (SPIR) of the filter
output, where the focus is on minimization of the post-filtering
peak interference instead of the pre-filtering peak interference
as in existing methods. The second and third method are convex
approximations of the first method and are shown to be closely
related to support vector machines, which establishes a natural
link between SPIR-optimal filtering and the maximum margin
matched filter. The proposed methods only require a template of
the target patterns as prior knowledge and do not require the
training data to be labelled. An extensive case study is presented
in the context of neural spike sorting, in which the proposed
approaches are shown to significantly outperform existing filter-
and-threshold approaches for spike sorting.

I. INTRODUCTION

A long-standing method used in pattern recognition is
the matched filter [2]. The essence of the matched filter
is that it maximizes the signal-to-noise ratio (SNR) at its
output, possibly after a pre-whitening of the data. Qualitatively
speaking, this means that a high instantaneous filter output
power is desired when the pattern of interest, also referred
to as the template, is present at the input of the filter, and
a low output power is desired when only noise is present
at the filter input. Such a filter enables the detection and
localization of several occurrences of the pattern of interest
in the input sequence, e.g., by comparing the filter output
to a threshold. The matched filter-and-threshold approach is
the optimal detector in the case of additive Gaussian noise
[3]. Because of (and despite) its simplicity, the matched
filter is still common practice in many application fields that
require detection methods, e.g., telecommunications [4] [5],
astrophysics [6] [7], and biomedical science [8] [9]. Because of
its minimal computational footprint, the linear matched filter-
and-threshold approach for pattern recognition is especially
relevant for real-time pattern recognition in computationally
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constrained environments, e.g., for real-time brain activity
pattern recognition in neural implants [10] [11].

In this work we focus on the recognition of multiple
patterns in a signal, i.e., the detection and localization of
patterns originating from multiple sources, while suppressing
interfering sources and discriminating between the occurrence
of patterns from different sources. A well-known example of
such a multi-pattern recognition task is the neural spike sorting
problem [12]–[15]. Spike sorting is the process of detecting
neuronal action potentials or ’spikes’ in an extracellular brain
recording and assigning each detected spike to the neuron
that presumably generated that spike. A naive approach for
solving this problem consists of designing a matched filter for
every distinct pattern source, i.e., for every detectable neuron.
However, such a naive approach is known to produce filters
that are incapable of properly discriminating between distinct
pattern sources [16]. The lack of discriminating capability can
be explained by the fact that the non-target pattern sources are
usually only sparsely active in time in many applications. As
such, those interfering sources are typically weakly weighted
in the estimated noise statistics. To cope with this problem,
signal-to-interference-plus-noise ratio (SINR) optimal filters
have been proposed [16]–[18]. For such filters a trade-off
can be made between the suppression of the noise floor
and (known) interfering sources. This trade-off potentially
gives rise to filters that have better discrimination properties.
However, choosing the trade-off is non-trivial in practice and
therefore there are no guarantees in terms of discrimination
properties. The pattern recognition performance then strongly
depends on a manual tuning by an expert during the actual
filter design process.

Recently, signal-to-peak-interference ratio (SPIR) optimal
filters were proposed to improve the discriminating capability
of the matched filter [19]. The idea behind the SPIR-optimal
filter is to only focus on suppressing inputs that cause interfer-
ing peaks in the filter output. As such, no degrees of freedom
are allocated on trying to attenuate inputs that are not con-
tributing to spurious output peaks. When training such filters
from a classical matched filtering point of view, interference
segments have to be identified prior to the filter design based
on heuristics [19], which suffer from errors. Furthermore, even
if these errors would not exist, all the degrees of freedom in
such filter designs are spent on maximally suppressing the
interference peaks that are observed prior to the filter design,
while the resulting filtering operation itself could possibly
introduce new spurious peaks at its output. Therefore, we argue
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that these methods actually only use a proxy for the SPIR
based on statistics collected at the filter input, and hence do
not truly optimize the SPIR at the filter output. A naive attempt
to fix this could be to re-compute the heuristic in an iterative
fashion based on knowledge of the output of the filter design
in the previous step. However, there would be no convergence
guarantees towards a SPIR-optimal filter.

In this work we propose three optimal filter design methods
that optimize the SPIR of the filter output directly without
labelling interfering segments at the pre-filtering stage. There-
fore, these filters are anticipated to be more suitable for multi-
pattern recognition when using a filter-and-threshold approach.
The first method minimizes a power loss function, which is
a generalization of the classical matched filter. The second
method is a convex approximation of the former to avoid
problems with local minima. The third method is an alternative
convex approximation which exploits additional information
that is available from the convex constraint. Besides guaran-
tees on global optimality, the convex reformulation provides
interesting parallels with support vector machines (SVM).
These parallels provide additional insights into the filter design
mechanics and its resulting robustness, leading to a maximum
margin matched filter interpretation.

The outline of the paper is as follows. We formalize the
problem statement of multi-pattern recognition in Section II
and review matched filtering approaches that have been applied
to this problem in Section III. In Section IV we introduce the
novel non-convex SPIR-optimal filter design method and in
Section V we present two convex reformulations thereof. In
Section VI we review an alternative regularization approach
for the proposed filter design methods, after which we bench-
mark the proposed methods in an extensive case study of
neural spike sorting in Section VII. Finally, in Section VIII
we further discuss the main results and draw conclusions.

II. PROBLEM STATEMENT

Consider the N -dimensional signal x[k] ∈ RN at sample
time k which could contain the samples collected at N sensors
at time k (spatial pattern) or a delay line of N samples
of a single sensor (temporal pattern), or a combination of
both (spatio-temporal pattern). Without loss of generality we
assume that E {x} = 0, i.e, the signal is zero-mean along its
different dimensions. The signal x[k] is modelled as

x[k] =

M∑
i=1

pi[k] + n[k], (1)

where the M different pi are so-called (sparse) pattern sources
which have an ‘on-off’ characteristic and where n is the
noise term absorbing all sources that are not pattern sources.
A pattern source pi[k] is characterized by the deterministic
pattern πππi ∈ RN and is defined in the following way:

pi[k] =
∑
a∈Ai

δ[k − a] ∗ΠΠΠi[k], (2)

with δ[k] being the Kronecker delta, i.e., δ[k] = 1 if k = 0 and
δ[k] = 0 for all k 6= 0 and ∗ the convolution operator. Ai is the

set of sparse pattern occurrence times for the pattern source
i. ΠΠΠi[k] is a finite support signal defined such that ΠΠΠi[0] = πππi
where πππi is the known deterministic pattern of interest. The
content of ΠΠΠi[k] for k 6= 0 depends on the context. For purely
spatial patterns, ΠΠΠi[k] = 0 for k 6= 0, in which case (2) reduces
to

pi[k] =
∑
a∈Ai

δ[k − a] πππi. (3)

For cases where x[k] consists of a sample delay line, ΠΠΠi[k]
will contain time-shifted versions of πππi at k 6= 0. For example,
consider a saw-tooth pattern πππi = [1 2 3 4 5]

T ∈ R5,
where the different dimensions in the pattern represent five
consecutive time samples from a single sensor. Because of
the presence of the temporal delay structure in the pattern,
(2) depends for its correctness on ΠΠΠi, which can be seen as a
Hankel-like expansion of πππi:[

ΠΠΠi [−4] · · · ΠΠΠi [−1] ΠΠΠi [0] ΠΠΠi [1] · · · ΠΠΠi [4]
]

=


0 0 0 0 1 2 3 4 5
0 0 0 1 2 3 4 5 0
0 0 1 2 3 4 5 0 0
0 1 2 3 4 5 0 0 0
1 2 3 4 5 0 0 0 0

 .
(4)

In this example, ΠΠΠi[k] = 0 for k < −4 or k > 4.
When solving the multi-pattern recognition task, one wants

to retrieve Ai for the pattern source of interest i, which we will
refer to in this context as the target pattern source, given x[k]
and the target pattern πππi or an estimate thereof. In this work a
linear filter-and-threshold approach is taken for estimating Ai
from the signal:

Âi =
{
k |

(
fTi x[k]

)2
> Ti

}
, (5)

where fi ∈ RN denotes the linear filter, and Ti is a user-
defined detection threshold. For every target pattern source i,
a separate linear filter has to be designed and applied to the
data in a parallel fashion where the other pattern sources are
then treated as interferers, which should not cause the filter
output to exceed the threshold Ti. In the remainder of this
work we will focus on the design of such linear filters fi that
enable filter-and-threshold-based pattern recognition as given
by (5).

III. FILTER DESIGN REVIEW

In this section we review several filter design methods that
have been used in the context of filter-and-threshold-based
pattern recognition. The different filter design approaches are
all presented from an optimization point of view. This uniform
presentation has the advantage that the different methods can
be easily compared among each other.

A. Matched filtering

A classical filter design method that is used for filter-and-
threshold-based pattern recognition is the matched filter, which
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is also referred to as the SNR-optimal filter. The matched filter
fMF
i is given by the following optimization problem:

fMF
i ∼ argmax

f

(fTπππi)
2

1
|T |
∑
k∈T (fTn[k])2

, (6)

where the numerator contains the filter output power when
the target pattern πππi is present at the input and the denomi-
nator contains the average filter output power in response to
the noise term n[k], effectively optimizing the output SNR.
The training data is represented by T which is the set of
sample times that are available during training of the filters.
Note that the denominator of (6) is defined in terms of
the noise covariance estimate, i.e., 1

|T |
∑
k∈T (fTn[k])2 =

1
|T |
∑
k∈T fTn[k]n[k]T f = fT R̂nnf . We assume that suf-

ficient training data is available such that the covariance
estimate is close to the true covariance. Also note that fMF

i

is only defined up to an arbitrary scaling, which is why we
use ’∼’ instead of ’=’ in (6).

We can also consider all pattern sources, except for target
pattern occurrences, to be noise sources. When defining all
non-target pattern sources and shifted versions of the target
pattern as noise, we can adjust (6) to be

fMF
i ∼ argmax

f

(fTπππi)
2

1
|T \Ai|

∑
k∈T \Ai

(fTx[k])2
. (7)

Note that this filter design requires complete knowledge about
the target pattern source activity Ai in the training data,
rendering it of lesser practical significance. However, it was
shown in [19] that the presence of the pattern of interest in
the denominator does not affect the filter solution, as such (7)
can be rewritten as

fMF
i ∼ argmax

f

(fTπππi)
2

1
|T |
∑
k∈T (fTx[k])2

, (8)

which simplifies the filter design process greatly, by not
having to compensate for the target pattern source and training
the filter on the original acquired data immediately without
knowledge of the activation times of the target pattern in the
training data. It is well known that a closed-form solution to
(8) is [20]:

fMF
i = R̂−1xxπππi, (9)

where R̂xx = 1
|T |
∑
k∈T x[k]x[k]T is the estimate of the

signal covariance matrix. This solution is equivalent to a pre-
whitening of the data followed by a matched filtering with
the pre-whitened target pattern. In the special case where x is
white over its different dimensions, i.e., R̂xx = I with I the
identity matrix, the matched filter boils down to its simplest
solution fMF

i = πππi.
In many practical applications R̂xx is ill-conditioned, or

even rank deficient. Therefore, a diagonal loading can be
applied to the covariance matrix estimate prior to inversion
[21]:

fMF
i =

(
R̂xx + CI

)−1
πππi, (10)

where C is a hyper-parameter that controls the condition
number of the resulting sum matrix.

We will now transform (8) in an equivalent problem that
will serve as the basis for the later algorithms introduced in
this paper. Note that the maximum of (8) can be found by
fixing the numerator to a constant value K and minimizing the
denominator (note that this also resolves the non-uniqueness
problem related to optimizing the ratio (8)). When also includ-
ing the diagonal loading introduced in (10), we arrive to the
following equivalent constrained optimization problem

fMF
i = argmin

f

1

|T |
∑
k∈T

(fTx[k])2 + C‖f‖22

subject to (fTπππi)
2 = K

, (11)

where K ∈ R>0 is an arbitrary strictly positive number, that
controls the pattern of interest’s output response power. Note
that the diagonal loading in (10) is equivalent to a Tikhonov
regularization in the above reformulation. Hence, the diagonal
loading in (10) pushes the solution to the minimal norm
solution for C → ∞. This minimal norm solution is the
target pattern πππi itself, as can be straightforwardly seen from
(10). Although such matched filters have been used in the
context of filter-and-threshold-based pattern recognition, they
were shown to be insufficiently discriminative [16] for the
target pattern, because they typically focus on minimizing the
baseline noise, but fail to attenuate sparse peaks, e.g., caused
by the other pattern sources or peak-interference sources,
hence leading to false positive threshold crossings.

B. Matched filtering with source weighting

In an attempt to improve the filter-and-threshold-based
pattern recognition performance, variants of the matched filter
have been proposed [16]–[18], where the different additive
sources in (1) are weighted individually. By using separate
weights for the different sources, the aim is to improve
the discriminating capabilities of the filter. Such a weighted
matched filter fWMF

i results from the following optimization
problem (cf. (11)):

fWMF
i = argmin

f

1

|T |
∑
k∈T

(
wn · (fTn[k])2

+

M∑
j=1

wpj
· (fTpj [k])2

)
+ C‖f‖22

subject to (fTπππi)
2 = K,

(12)

where wn is a single scalar weight associated with the average
filter output power in response to the noise source n. wpj

are the single scalar weights associated with the average filter
output power in response to their respective pattern sources
pj . Note that this method assumes complete knowledge about
all the pattern instances that are present in the training data
and requires an estimate of the covariance matrix of the noise
n, which can be estimated during segments where none of the
pattern sources are active. Furthermore, no concrete methods
are proposed for choosing the values of the different weights,
as such these weights should be seen as hyper-parameters
that should be optimized based on a cross-validation scheme,
leading to an (M +2)-dimensional grid-search, which quickly
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becomes infeasible for increasing M . While (12) is an interest-
ing generalization of (11), all the aforementioned issues make
it hard to use it in practice.

C. SPIR-based filtering

The concept of SPIR-optimal filter design was proposed in
[19] in an attempt to improve the discriminating capabilities
of the filters fi with respect to their target patterns πππi. The
main idea is to only allocate degrees of freedom in the filter
design to signal segments that cause spurious peaks in the
output during inactivity of the target pattern. SPIR-optimal
filter design is also intended as a practical method, i.e., it does
not require complete prior knowledge about different pattern
sources in the mixture (as in Subsection III-B) and works with
a minimal set of hyper-parameters.

The qualitative differences between the SNR-optimal and
SPIR-optimal filter are highlighted in Fig. 1. The top graph
shows the SNR-optimal filter output power, where two major
peaks can be distinguished, of which only one peak reflects the
occurrence of the target pattern. The bottom graph shows the
SPIR-optimal filter output power. Here, only one dominant
peak is present, while the previous spurious peak has been
attenuated at the cost of an increase in overall noise power.
The SPIR-optimal filter output shown in the bottom graph
is suitable for filter-and-threshold-based pattern recognition,
whereas the top graph does not allow for a robust filter-and-
threshold-based discrimination between target and non-target
pattern occurrences.

The SPIR-based filter design proposed in [19] results from
solving the following optimization problem1:

fSB
i = argmin

f

1

|T |
∑
k∈T

wk · (fTx[k])2 + C‖f‖22

subject to (fTπππi)
2 = K,

, (13)

which is a generalization of (11) by the introduction of the
binary sample weights wk ∈ {0, 1}, which effectively select a
subset of training samples when designing the filter.

In [19], the following heuristic for the estimation of wk was
proposed (slightly simplified here for illustrative purposes):

1) Design a classical matched filter according to (11).
2) Apply the matched filter to the data and identify seg-

ments for which the output power exceeds γK with
γ ∈ [0, 1].

3) For every sample time k for which the output power
threshold is exceeded, set wk = 1. Otherwise, wk = 0.

4) Compute the SPIR-based filter (13).
The method was shown capable of outperforming the matched
filter in a simple threshold-based pattern recognition task.
However, this heuristic procedure (as well as any other al-
ternative heuristic) may make wrong decisions in selecting
the peak interference segments. Furthermore, we will argue in
the next section that – even without such errors – the filter
design (13) is not truly SPIR-optimal when the weights wk
are a-priori fixed.

1Note that the optimization problem (13) can be written as a maximization
of a ratio, similar to (8)-(11), which explains the term SPIR.
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Fig. 1. Qualitative comparison between an SNR- and SPIR-optimal filter
output. The SPIR-optimal filter has an increased SPIR compared to the
SNR-optimal one, at the acceptable cost of a decrease in SNR, enabling
a more robust filter-and-threshold-based pattern recognition for the SPIR-
optimal filter output.

IV. NON-CONVEX SPIR-OPTIMAL FILTERING

A. Definition of SPIR-optimal filtering

The filter design in (13) does not optimize the SPIR of the
filter output directly, i.e., there is no mechanism that prevents
samples x[k] with wk = 0 from generating a peak response in
the filter output. Vice versa, not every interfering peak at the
input of a matched filter will automatically generate a large
peak at the filter output (e.g. in the case of interferers that have
a template that is near-orthogonal to the target template), such
that a weight wk = 1 might be unnecessary for many of the
peak interferers that are visible at the filter input. In principle,
the optimal binary weights in (13) should be determined based
on the interference peaks in the output of the filter f itself,
which creates a chicken-and-egg situation (f depends on the
weights wk, but the weights depend on f ). A straightforward
– yet naive – fix would be to compute (13) multiple times,
where the weights wk are every time determined by the peak
interference in the output of the previous filter. However,
this would require a human expert to terminate this iteration,
since there are no guarantees on convergence towards a
workable solution of this ad-hoc process. Furthermore, none
of the resulting filters would be truly SPIR-optimal as the
selection of interfering segments would always be based on a
different filter than the one eventually used. To cope with these
fundamental limitations we propose a truly SPIR-optimal filter
design method, which inherently and automatically chooses
the weights wk based on the peak interference in the filter
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output signal. This makes the weights dependent on f itself,
thereby creating an interaction between the filter coefficients
in f and the weights wk that define the filter. By including this
chicken-and-egg situation in the optimization problem itself,
we remove the need for an ad-hoc iterative design, while
convergence towards a SPIR-optimal filter can be guaranteed.

To acquire a SPIR-optimal filter fSO
i , we replace the prior

weights wk in (13) by a weighting function g that depends
directly on the filter output power:

fSO
i = argmin

f

1

|T |
∑
k∈T

g
(
(fTx[k])2

)
(fTx[k])2 + C‖f‖22

subject to (fTπππi)
2 = K

,

(14)
where the weighting function g : R→ R is given by

g(s) =
1

1 + e−(s−γK)
, (15)

where γ ∈ [0, 1]. This weighting function is a shifted sigmoid
and is a differentiable approximation of the step function. This
function approximately implements a binary weighting, which
is in line with the use of binary weights in (13). As a result,
samples with a power smaller than γK at the output of the
filter f are not treated as peak interference and are ignored in
the filter design of f . Note that K in (15) is the same as in
the constraint of (14), i.e., γK determines the fraction of the
output power in response to the target pattern. We will explain
later on (Subsection IV-C) how γ can be chosen to steer the
filter design towards a predefined desired SPIR.

By making use of a weighting function g rather than prior
weights wk, the resulting filter is truly SPIR optimal. The price
that one has to pay is that as opposed to (11), (12) and (13),
the filter design method in (14) has no closed-form solution.
Therefore, one has to use a local optimization solver, to obtain
a non-convex SPIR-optimal filter. Depending on the solver that
is used, convergence to a solution can be guaranteed. However,
because (14) is non-convex, the resulting filter might only
coincide with a local minimum of the objective function. In
Section V, we will propose a convex approximation of (14)
to avoid such local minima, and which allows to use efficient
solvers for convex optimization.

Note that only limited prior knowledge is needed for
designing a SPIR-optimal filter. Only the target pattern πππi
is required (as opposed to the method described in Section
III-B). Furthermore, the filter design is controlled by two
hyper-parameters: the interpretable interference fraction γ and
the regularization hyper-parameter C. In Section VI we will
introduce an alternative regularization scheme, that leads to a
regularization hyper-parameter that can be more easily tuned
and interpreted. Note that K is not truly a hyper-parameter,
but an arbitrary constant that has little influence on the SPIR
itself, as long as K is chosen large enough, as explained in
the next subsection.

B. Choice of K

We did not include an extra hyper-parameter in (15) to
control the slope of the shifted sigmoid. This can be implicitly

controlled through the parameter K, which is an arbitrary
constant (see also (11)) defining the filter output power in
response to the target pattern. By choosing a large K, the rise
time of the sigmoid can be made arbitrarily short, i.e., relative2

to the length of the interval [0,K] that determines the scale
of the output signal. If K is large enough, the sigmoid will
sufficiently ‘behave’ as a step function (in practice K = 1000
works well, K = 10 is too small as the unshifted sigmoid
raises from 0 to 1 in the interval [−5, 5], as is shown in Fig.
2).

1
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Fig. 2. The shifted sigmoid weighting function only ‘behaves’ as a step
function for values of K that are sufficiently large. For K = 10 (green) and
γ = 0.1, the shifted sigmoid does not reach zero for any s ∈ [0, γK]. For
K = 1000 (orange) and γ = 0.1 the shifted sigmoid is a good approximation
to a step function.

C. Bounds on γ

As was mentioned before, γ is bounded by nature, i.e.,
γ ∈ [0, 1]. Here, we will further narrow down this interval.
In all aforementioned filter design optimization problems,
we explicitly control the filter output power for the target
pattern to be K. Therefore, we are able to define an explicit
interference threshold γK in (15). By combining both the
target power and interference threshold, we can define the
desired SPIR (in dB):

desired SPIR = 10 log
K

γK
= −10 log γ. (16)

We refer to the above metric as desired SPIR, because there
is no guarantee that all interferers are pushed below the
interference threshold during the optimization process due to
the finite degrees of freedom in the filter design. From Fig. 1, it
is clear that the SPIR will by definition always be smaller than
the SNR. Since the matched filter (11) is SNR-optimal, we thus
require that the desired SPIR ≤ SNRMF, where SNRMF is the

2Note that the rise time is fixed in absolute sense, but should be viewed
relative to the interval [0,K].
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SNR at the output of the matched filter. From this inequality
a lower bound on γ can be derived:

γ ≥ 1

10
SNRMF

10

, (17)

where SNRMF is in dB.
Although no theoretical narrowing down of the upper bound

is provided, it goes without saying that a γ close to one is
considered bad practice, because this might lead to very low
SPIR as can be seen from (16). This low SPIR will likely
deteriorate the filter-and-threshold-based pattern recognition
performance. Therefore, without further proof, we suggest as
a pragmatic upper bound γ = 0.5.

V. CONVEX SPIR-OPTIMAL FILTERING

In this section we propose a convex reformulation of (14).
A convex reformulation has the advantage that convergence
can be guaranteed to the global optimum of the objective
function rather than to a local optimum and that efficient
convex optimization solvers can be used.

A. Definition of the convex SPIR-optimal filter
We define the convex SPIR-optimal filter fCSO’

i as the
solution to the following optimization problem:

fCSO’
i = argmin

f

1

|T |
∑
k∈T

r
((

fTx[k]
)2 − γK)+ C‖f‖22

subject to fTπππi =
√
K

,

(18)
where r(p) = max {0, p} is the rectified linear unit (ReLU).
The ReLU can be interpreted as a binary weighting of p,
i.e., r(p) = 0 · p if p ≤ 0, otherwise r(p) = 1 · p. With
p ←

(
fTx

)2 − γK, a zero weight is applied to all training
data points x for which

(
fTx

)2 ≤ γK. The ReLU r(p) is a
convex function and its convexity is preserved under compo-
sition with another convex function, such as

(
fTx

)2 − γK.
The nonnegative weighted sum over convex functions is also
convex [22], thereby proving that the cost function in (18) is
convex, given that C ≥ 0. The set of points satisfying the
power constraint in (14) do not form a convex set and can as
such never lead to a convex optimization problem. Therefore,
a linear constraint is used instead in (18), such that the feasible
set of solutions is convex. The optimization problem in (18)
is thus a convex optimization problem, because it has both a
convex objective function and convex feasible set. Note that
this convex reformulation is not a true power optimization any
more, because the cost function sums over the binary weighted
difference

(
fTx

)2 − γK, rather than
(
fTx

)2
as in (14).

Because of the usage of a linear constraint in (18), rather
than a quadratic constraint, the sign of the filter output
response to the target pattern πππi is known a-priori. We can
exploit this knowledge by applying an interference threshold
to the filter output directly instead of the filter output power,
i.e.,

min
f

1

|T |
∑
k∈T

r
(
fTx[k]−

√
γK
)

+ C‖f‖22

subject to fTπππi =
√
K

, (19)

thereby not ‘wasting’ degrees of freedom during the filter
design on peak interferers or pattern sources that create a
negative response at the filter output. In an attempt to focus
more on the attenuation of larger interfering peaks compared to
smaller interfering peaks, we reintroduce the squaring operator
outside of the ReLU, leading to an alternative convex SPIR-
optimal filter fCSO”

i problem formulation:

fCSO”
i = argmin

f

1

|T |
∑
k∈T

(
r
(
fTx[k]−

√
γK
))2

+ C‖f‖22

subject to fTπππi =
√
K

,

(20)
Again, it can be easily shown that the alternative cost function
in (20) is convex. The squared ReLU (r(p))2 is a convex func-
tion. It is known that convexity is preserved under composition
with an affine transformation [22], i.e,

(
r
(
fTx−

√
γK
))2

is
convex if (r(p))2 is convex. Again, the nonnegative weighted
sum over convex functions is also convex, thereby proving that
the cost function in (20) is convex, given that C ≥ 0. Note that
by introducing auxiliary variables, (20) can be expressed as a
quadratic program which can be solved reliably by standard
interior point methods (this is derived in Section V-B, i.e, in
equation (23)). The convex reformulation in (20) is also not a
true filter output power optimization, because the interference
threshold

√
γK is subtracted from the filter output prior to

squaring. It is also not a true power optimization because
the filters under design do not attempt to attenuate negative
peak interferers at all (as opposed to (18)). This means that
more degrees of freedom can be exploited to suppress the
peak interferers that really count, i.e., the ones generating
positive peaks at the filter output. A logical consequence of not
considering negative peak interferers during the filter design
is that the filter-and-threshold-based pattern recognition using
(20) has to be performed on the filter output amplitude directly:

Âi =
{
k | fTi x[k] > T ′i

}
, (21)

rather than on the filter output power as originally described
in (5). Note that for applications where the target pattern is
often superimposed onto strong negative peak interferers, the
use of (20) may result in a large amount of missed detections
(false negatives), i.e., resulting in a reduction in recall.

B. SVM interpretation

Besides guarantees on convergence to the global optimum,
the convex SPIR reformulation in (20) provides an interesting
SVM interpretation for SPIR-optimal filtering, leading to a
maximum-margin interpretation of the SPIR criterion. Recon-
sider the convex reformulation (20) of the SPIR-optimal filter
design problem, where the objective function is multiplied
with |T |:

argmin
f

∑
k

(
r
(
fTxk − γ

√
K
))2

+ C ′‖f‖22

subject to fTπππi =
√
K

, (22)

with C ′ = C|T | and where the sample time k is moved to
the subscript to be consistent with notation in the field of
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SVMs. By introducing the slack variables ek an equivalent
optimization problem can be formulated:

min
f ,e

∑
k

e2k + C ′‖f‖22

subject to fTπππi =
√
K

fTxk − γ
√
K ≤ ek ∀k

ek ≥ 0 ∀k

, (23)

where we now optimize over both f ∈ RN and e ∈ R|T |, i.e.,
the collection of all ek ∀k ∈ T . Next, we define the so-called
threshold t and margin ρ in terms of

√
K and γ:

√
K = t+ ρ

γ
√
K = t− ρ .

(24)

Reparametrizing the optimization problem in terms of t and ρ
then results in:

min
f ,e

∑
k

e2k + C ′‖f‖22 (25a)

subject to fTπππi − t = ρ (25b)

yk
(
fTxk − t

)
≥ ρ− ek ∀k (25c)

ek ≥ 0 ∀k, (25d)

with yk = −1 ∀k, which in a context of SVMs introduces an
implicit “ground truth” label which is in our formulation the
same for each sample.

This problem is equivalent to L2-SVM [23] except for
the fact that all labels are negative and that an extra linear
constraint (25b) is added. The extra equality constraint leads
to the loss of one degree of freedom when compared to
regular L2-SVM, i.e., here we do not optimize over the
threshold t (both t and ρ are fixed by fixing K and γ). This
difference is essential for the SPIR-optimal filter to work. To
better appreciate this statement, remember that regular SVM
is a supervised learning method. However, the filter design
problem addressed in this paper can be viewed as an extreme
case of positive-unlabeled (PU) learning [24], i.e., we have
only one labelled training sample, namely the target pattern
πππi which represents the ’positive’ class (y = 1). All other
training samples are unknown, because they contain a mixture
of noisy target and non-target pattern occurrences, and pure
noise samples. In our SPIR formulation, all of those samples
apparently are assigned a negative ground truth label yk, which
we know is only partially true.

So one may wonder how this method can work, given
the class imbalance and erroneous training labels. This is
due to the additional equality constraint compared to regular
SVM. The a-priori fixed target pattern πππi response is key
in fighting class imbalance. Understanding the robustness
against erroneous (or absence of) training labels, requires some
geometrical elaboration on that same equality constraint. As
shown graphically in Fig. 3 for the case where f ∈ R2, the
equality constraint (25b) forces the pattern of interest πππi to
be on the border of the margin ρ. To satisfy the equality
constraint the separating hyperplane that is orthogonal to fi
has to be tangent to a half hypersphere with radius ρ

‖fi‖ and
center point πππi. The optimization problem thus consists of

rotating the hyperplane on the hypersphere, trying to minimize
the number of support vectors, i.e., training samples violating
the predetermined margin ρ

‖fi‖ , thereby driving as many ek’s
close or equal to zero as possible. The support vectors are
represented in Fig. 3 as orange dots. Consider now the support
vectors surrounding the target pattern in Fig. 3 to represent oc-
currences of the target pattern in the training data. If the noise
is spherically symmetric, rotating the filter hyperplane along
the hypersphere, will not lead to a decrease in cost related to
the target pattern occurrence support vectors. Therefore, the
optimization algorithm will have to focus on the other support
vectors to effectively decrease the cost, hence explaining the
robustness against erroneous training labels.

dim 1 [arb. unit]

di
m

2
[a

rb
.u

ni
t]

πππi
ρ

‖fi‖

fi

fTi x− t = 0

√ K
‖fi‖

ρ

‖fi‖

ρ

‖fi‖

Fig. 3. A geometric interpretation of the convex SPIR-optimal optimization
problem in two dimensions (f ∈ R2). The shaded area represents the margin
area. The green dot represents the pattern of interest πππi. The other dots
represent the training points xk , where the orange dots represent the support
vectors. The equality constraint (25b) is satisfied if the separating line (in
black) is tangent to the half ρ-circle (in blue).

Through this link between SPIR-optimal filtering and SVM,
we can state that SPIR-optimal filtering can be viewed as the
maximum margin counterpart of matched filtering. To the best
of our knowledge, SPIR-filtering is the first true maximum
margin approach to matched filtering. Similar approaches exist
[25], but they have been formulated in a supervised setting,
rather than the more practically relevant PU-learning setting
that is more closely related to matched filtering. Another
interesting result of the link between SVM and SPIR-optimal
filtering, is the possibility to design a kernel variant of the
SPIR-optimal filter design method similar to [26]. This kernel
method has the potential of separating target pattern occur-
rences from the other samples in a non-linear way. Because
the evaluation of kernel-SPIR-optimal filter requires for every
data point the evaluation of the so-called kernel function over
all its support vectors, it is not a low complexity filter and as



8

such, it is outside of the scope of this work.

VI. SUBSPACE PROJECTION REGULARIZATION

In this section, we review the concept of subspace projection
regularization [27] which allows to avoid a tedious tuning of
the Tikhonov regularization parameter C in, e.g, (11), (14),
(18) and (20). Generally speaking, the regularization of a
learning problem serves to shrink the solution space compared
to the unregularized solution space RN . The main idea here
is to project the data into a lower-dimensional subspace
that is orthogonal to certain undesired directions. Excluding
these undesired directions altogether is a stronger way of
regularizing than, e.g., Tikhonov regularization, where certain
solutions are discouraged, but never explicitly excluded.

Assume the existence of a meaningful regularization sub-
space that is spanned by orthogonal basis vectors represented
by the columns of the matrix U ∈ RN×P where typically
P � N . A subspace projection regularized optimal filter f is
obtained through the following steps:

1) Construct the training data x′[k] = UTx[k] by pro-
jecting the original training data onto the regularization
subspace.

2) Design an optimal filter f ′ ∈ RP by training on x′, while
setting C = 0.

3) The optimal filter f = Uf ′ is retrieved through the
backprojection into the original data space.

Consider for example the matched filter design problem (11),
which can be reformulated as a subspace projection regular-
ized matched filter design problem through the application of
the above steps, as follows:

fMF
i = U argmin

f ′

1

|T |
∑
k∈T

(f ′
T
UTx[k])2

subject to (f ′
T
UTπππi)

2 = K

. (26)

Besides the advantage of having explicit control over the so-
lution subspace, another advantage of the subspace projection
regularization, is that the optimization problem is formulated
in a P -dimensional space, which leads to a reduction in
computational effort given that P � N .

In [27], the following subspace design is proposed for the
regularization of matched filters in the context of spike sorting.
The first dimension in the subspace is explicitly set to the
target pattern:

uπππi
= πππi/ ‖πππi‖2 . (27)

Having the target pattern explicitly in the subspace is impor-
tant to assure that the resulting filter can respond to target
pattern occurrences. U is then expanded with P − 1 principal
components of the recording data after removing the direction
uπππi from the data to guarantee that U describes an orthogonal
basis. The dimensionality of the subspace is controlled by
capturing a pre-determined fraction of the total signal power
in the recording. Note that the use of this subspace performs
an implicit denoising of the data prior to the filter design. We
refer to [27] for more details.

Another advantage of this specific subspace projection reg-
ularization is that the structure of the subspace transforms

the convex SPIR-optimal filter design problem into an un-
constrained problem. If the filter is designed in this specific
subspace, the constraint is reduced to an equation in a single
unknown, and can be easily satisfied as follows:

f ′
T
UTπππi = f ′1‖πππi‖2 =

√
K ⇐⇒ f ′1 =

√
K

‖πππi‖2
, (28)

where f ′1 represents the first element of the filter vector f ′

and is completely determined by the equality constraint. As
such we have one degree of freedom less in the optimization
problem. Consider f ′ =

[
f ′1 gT

]T
with g ∈ RP−1. The

convex SPIR-optimal filter design problem, e.g., (20), can then
be written as

fCSO”
i = f ′1uπππi + U−πππig

CSO”
i , (29)

with

gCSO”
i = argmin

g

∑
k

(
r
(
gTUT

−πππi
xk + f ′1u

T
πππi
xk −

√
γK
))2

,

(30)

Where U−πππi ∈ RN×(P−1) is the regularization subspace
minus the target pattern direction. Note that the filter design
problem in (30) is a convex unconstrained smooth optimization
problem.

VII. CASE STUDY: MAX-SPIR FILTERS FOR NEURAL SPIKE
SORTING

In this section we will compare the novel SPIR-optimal filter
design methods proposed in Section IV and V and compare
them to the matched filter in a filter-and-threshold-based multi-
pattern recognition task, namely neural spike sorting [14].
Spike sorting is the process of detecting action potentials or
’spikes’ generated by neurons in an extracellular multi-channel
brain recording and assigning each spike to its putative source
neuron. Closely related to the neural spike sorting problem is
the surface electromyography (sEMG) decomposition problem
[28]–[30]. In the field of sEMG decomposition, the goal is to
assign recorded motor-unit action potentials to their putative
motor units. In a typical spike sorting pipeline [31], the
algorithm can be divided in two stages: first a clustering
algorithm is applied to all detected spike waveforms, where
the cluster centroids serve as templates. In the second stage
those templates are used to design matched filters to detect
spikes from single neurons while resolving spike overlap.

Spike overlap occurs when two or more neurons with spa-
tially overlapping spike waveforms fire near-simultaneously
in time. Overlapping spike waveforms can not be resolved
in the clustering stage, because overlapping spike waveforms
typically do not form coherent clusters, nor do feature space
projections of overlapping spike waveforms show a clear
relationship with the single-unit spike waveforms they are
composed of [32]. However, spike overlap is known to behave
as a linear superposition at the level of the extracellular record-
ing [33]. Therefore, given a set of single-unit spike templates
from the clustering stage, a matched filtering approach can
be taken for resolving spike overlap. However, as mentioned
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earlier, the SNR-optimal matched filter as used in many state-
of-the-art spike sorting algorithms and software packages is
insufficiently discriminative [16] for resolving spike overlap
in a filter-and-threshold-based fashion. Therefore, heuristic
iterative schemes are in use, leading to an increased complex-
ity and new failure mechanisms for such heuristic matched
filtering stages. The availability of proper discriminative tem-
plate matching filters would eliminate the need for a heuristic
iteration when resolving spike overlap, because discriminative
filter-and-threshold based spike sorting has spike resolving
capabilities by definition. Such discriminative filters can thus
decrease the complexity of existing spike sorting algorithms.
It is expected that the proposed SPIR-optimal filters are better
at discriminating between spikes from their target neuron and
spikes from other neurons than the SNR-optimal matched
filters that are currently in use in spike sorting pipelines.
Furthermore, filter-and-threshold-based sorting was proposed
in [19] as a candidate for on-probe spike sorting, because of
its low computational complexity.

In this analysis we will only focus on the filter-and-
threshold-based spike sorting stage, i.e., we assume that we
have already identified a spike template of interest πππi for which
we will design a filter-and-threshold-based pattern recognition
filter. We use an extracellular ground truth data set, i.e.,
a neural recording for which the spike times of a fraction
of the neurons are known. Because of this knowledge, the
spike templates of the ground truth neurons can be trivially
retrieved, by averaging over all the spikes of a specific
neuron (in practice such ground truth is not available, in
which case πππi should be computed as a cluster centroid
during the initial spike clustering phase). The ground truth
recording is generated by the SHYBRID open-source tool [34]
in combination with SpikeInterface [35] providing access to a
Neuropixel probe [36] dataset with 374 recording channels that
is publicly available [37]. Note that the public dataset contains
an extracellular recording that has been already preprocessed.
The preprocessing consists of a common average referencing
and high-pass filtering with a cut-off frequency of 300 Hz.
These preprocessing steps are a standard practice in spike
sorting.

The subset of channels that are relevant to neuron i are
collected in the Si-channel signal ri[k] ∈ RSi with Si the
number of relevant electrodes for sorting the neuron i. Note
that the spike pattern is spatially sparse, such that we can
ignore most of the 374 recording channels. Here we define the
spatial region of interest by considering all electrodes within a
100 μm radius of the electrode with the largest absolute peak
in the template πππi. Because the spike template is a spatio-
temporal pattern, rather than a spatial pattern, we define a
spatio-temporal delay line x[k] = [r[k]T r[k − 1]T . . . r[k −
L+ 1]T ]T such that N = SiL with L = 30 corresponding to
a 1 ms temporal window, given that the sampling frequency
fs = 30 kHz. For every neuron we consider one minute of
recordings.

The ground truth recording that is used in this work contains
the full ground truth spike information of 50 neurons. For each
of these 50 neurons, we design four filters (the matched filter
fMF
i (11), the non-convex SPIR-optimal filter fSO

i (14) and the

convex SPIR-optimal filters fCSO’
i (18) and fCSO”

i (20)), and
compare their filter-and-threshold-based spike sorting perfor-
mance.

We use the regularization subspace design from [27], with
a subspace that contains the template πππi and that captures
90% of the total signal power (further on we will analyse
the influence of this factor). The initial value for γ is chosen
such that the initial desired SPIR of the filters corresponds
to 10 dB. In order to ensure a sufficient amount of effective
training samples, γ is dynamically changed during the filter
design procedure. If less than 5000 interference threshold
crossings are attained at the output of a filter, the filter design is
iteratively repeated with a decreased γ. This practice is meant
to ensure a well-conditioned training for cases in which there
is little or no interference. Note that by decreasing γ, the SPIR-
optimal filter converges towards the matched filter in case of
little or no interference. The number of threshold crossings
of 5000 corresponds to an average minimum of 25 effective
training samples per degree of freedom in the filter design.

We quantify the filter-and-threshold-based spike sorting
performance in terms of both precision and recall, which are
defined in the following way:

precision =
true positives

true positives + false positives
, (31)

and
recall =

true positives
true positives + false negatives

. (32)

For every neuron i and for each filter individually, we select
the threshold Ti that leads to the maximal F1-score [38], where
F1 is defined as follows:

F1 =
2 · precision · recall
precision + recall

. (33)

In other words we are comparing the best possible perfor-
mances that can be obtained for every filter in terms of F1.
Prior to comparing the different filter design methods, we split
the neurons in two different groups based on the precision of
the matched filter solution. Neurons with a precision > 0.9 are
assumed to not be affected by peak interferers (29 neurons),
whereas those with a precision ≤ 0.9 are expected to be
more affected (21 neurons). We thus expect SPIR filters to
show a larger benefit in the second (‘interfering’) group, while
achieving similar performance as a matched filter in the first
(‘non-interfering’ group).

The threshold-based spike sorting performances for the non-
interfering and interfering group are summarized in Table I and
II, respectively. We do not consider the heuristic SPIR-based
filter design results in this comparison, because it performs
poorly on the complex spike sorting data considered here with
an overall average recall of 53% and a precision of only 40%
(without ad-hoc iteration). The SPIR-based filtering fails due
to the fundamental limitations discussed in Section III-C. We
performed Wilcoxon signed-rank tests with α = 0.05 to test
for statistically significant performance differences between
the different methods. A Bonferroni correction is applied to
correct both for the six pairwise comparisons (between the
different filter types) and two metrics (recall and precision),
resulting in a significance level of p < α

6·2 = 0.00417.



10

fMF
i as in (11) fSO

i as in (14) fCSO’
i as in (18) fCSO”

i as in (20)
precision recall precision recall precision recall precision recall

0.909 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.910 0.862 0.928 0.882 0.876 0.932 0.899 0.821
0.912 0.974 0.951 0.991 0.966 0.983 0.935 0.983
0.937 0.982 0.949 0.990 0.968 0.982 0.975 0.886
0.950 0.987 0.975 0.983 0.966 0.990 0.885 0.907
0.954 0.994 0.954 0.995 0.958 0.994 0.911 0.944
0.955 0.967 0.948 0.985 0.953 0.982 0.920 0.928
0.958 1.000 0.958 1.000 0.958 1.000 1.000 1.000
0.967 0.974 0.982 0.984 0.989 0.981 0.929 0.916
0.976 0.804 1.000 0.941 1.000 0.980 1.000 1.000
0.977 1.000 0.989 1.000 0.989 1.000 0.977 1.000
0.979 0.954 0.979 0.981 0.992 0.989 0.981 0.971
0.982 1.000 0.982 1.000 0.982 1.000 0.972 0.995
0.988 0.994 0.994 1.000 0.994 1.000 0.994 1.000
0.995 0.991 0.987 1.000 0.987 1.000 1.000 0.986
0.998 0.996 0.993 0.996 0.991 0.996 0.969 0.971
0.998 1.000 1.000 1.000 1.000 1.000 0.988 0.992
0.999 0.987 1.000 0.987 1.000 0.986 0.959 0.912
0.999 0.989 1.000 0.991 0.999 0.992 0.992 0.985
0.999 0.996 1.000 0.996 1.000 0.995 0.925 0.851
1.000 0.989 1.000 0.989 1.000 0.989 1.000 0.989
1.000 0.997 1.000 0.994 1.000 0.988 1.000 0.982
1.000 0.998 1.000 0.998 1.000 0.995 0.990 0.954
1.000 1.000 1.000 1.000 0.996 1.000 0.968 0.996
1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.977 ± 0.03 0.981 ± 0.043 0.985 ± 0.021 0.989 ± 0.024 0.985 ± 0.026 0.992 ± 0.013 0.971 ± 0.035 0.964 ± 0.049

TABLE I
FILTER-AND-THRESHOLD-BASED SPIKE SORTING PERFORMANCE IN TERMS OF PRECISION AND RECALL FOR THE GROUND-TRUTH NEURONS IN THE

NON-INTERFERING GROUP. EVERY ROW CORRESPONDS TO A NEURON, WHEREAS THE GROUPED PAIRS OF COLUMNS CORRESPOND TO THE DIFFERENT
FILTER DESIGN METHODS PRESENTED IN THIS PAPER.

fMF
i as in (11) fSO

i as in (14) fCSO’
i as in (18) fCSO”

i as in (20)
precision recall precision recall precision recall precision recall

0.022 1.000 0.023 1.000 0.050 1.000 1.000 1.000
0.180 0.821 0.321 0.607 0.852 0.821 1.000 1.000
0.258 0.948 0.376 0.914 0.949 0.966 1.000 1.000
0.399 0.821 0.455 0.911 0.557 0.842 0.832 0.781
0.406 0.457 0.451 0.455 0.430 0.553 0.699 0.501
0.488 0.494 0.532 0.527 0.615 0.527 0.770 0.531
0.522 1.000 0.522 1.000 0.522 1.000 0.522 1.000
0.529 0.558 0.671 0.777 0.767 0.770 0.751 0.867
0.556 0.536 0.889 0.857 0.958 0.821 0.893 0.893
0.564 0.663 0.762 0.560 0.926 0.602 0.812 0.651
0.593 0.981 0.731 0.823 0.801 0.919 0.912 0.848
0.595 0.995 0.596 0.992 0.812 0.785 0.856 0.847
0.667 0.923 0.732 0.888 0.827 0.853 0.832 0.785
0.677 0.608 0.696 0.663 0.735 0.660 0.802 0.733
0.684 0.720 0.797 0.733 0.814 0.933 0.934 0.947
0.711 0.873 0.988 1.000 1.000 1.000 0.975 1.000
0.778 1.000 0.778 1.000 0.778 1.000 1.000 1.000
0.788 0.766 0.893 0.771 0.823 0.843 0.854 0.848
0.819 0.984 0.829 0.969 0.828 0.966 0.763 0.831
0.833 0.992 0.833 0.992 0.833 0.992 0.977 0.992
0.848 0.921 0.935 0.946 0.966 0.943 0.873 0.728

0.567 ± 0.220 0.812 ± 0.190 0.658 ± 0.238 0.828 ± 0.176 0.754 ± 0.220 0.847 ± 0.152 0.860 ± 0.121 0.847 ± 0.153
TABLE II

FILTER-AND-THRESHOLD-BASED SPIKE SORTING PERFORMANCE IN TERMS OF PRECISION AND RECALL FOR THE GROUND-TRUTH NEURONS IN THE
INTERFERING GROUP. EVERY ROW CORRESPONDS TO A NEURON, WHEREAS THE GROUPED PAIRS OF COLUMNS CORRESPOND TO THE DIFFERENT FILTER

DESIGN METHODS PRESENTED IN THIS PAPER. THE PERFORMANCE METRIC VALUES SHOWN IN RED CORRESPOND TO VALUES LOWER THAN 65%,
WHEREAS THE VALUES SHOWN IN GREEN CORRESPOND TO VALUES HIGHER THAN 80%.
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For the non-interfering neurons, we do not expect a benefit
from using SPIR-optimal filters as the non-interfering neurons
are selected as neurons on which the matched filter performs
well. A statistical analysis shows that the SPIR-optimal filters
can also provide satisfying results for such neurons. Indeed,
comparing the matched filter fMF

i recall (0.981 ± 0.043 (av-
erage ± standard deviation)) with non-convex SPIR-optimal
filter fSO

i recall (0.989 ± 0.024) results in p = 0.00763, with
convex SPIR-optimal filter fCSO’

i recall (0.992 ± 0.013) results
in p = 0.0219, and with convex SPIR-optimal filter fCSO”

i

recall (0.964 ± 0.049) results in p = 0.0129, such that we
can state that no statistically significant differences are found
in terms of recall for the above comparisons. When comparing
the recall between the different proposed SPIR-optimal filter
design methods, i.e, fSO

i and fCSO’
i with p = 0.875, fSO

i

and fCSO”
i with p = 0.000681, and, fCSO’

i and fCSO”
i with

p = 0.000538, a significant difference in recall is identified
between the usage of fSO

i and fCSO”
i on the one hand, and

fCSO’
i and fCSO”

i on the other hand, twice in disadvantage of
fCSO”
i . In terms of precision no significant differences are found

between the pairwise combinations of filter design methods.
For reasons of clarity, we will not elaborate on the quantitative
details of the precision analysis for the non-interfering group.
The interested reader can find the performance metrics and
their averages in Table I. For the non-interfering examples
we can thus conclude that there is no significant difference
between the methods, except for a significant difference be-
tween the recall when comparing between the SPIR-optimal
filter design methods. We argue that because there is no
harmful interference in these examples, fCSO”

i can not benefit
from neglecting negative sources during the filter design, such
that it can only suffer from potential destructive interference
leading to the observed significant decrease in recall. Note that
the practical implication of this significance is limited. The
average difference in recall when comparing those methods
is only around 2.5%. Based on the results presented in this
paragraph, we can conclude that the use of SPIR-optimal filters
is a viable alternative to the classical matched filter for the
group of non-interfering neurons.

We now turn our attention to the interfering neurons, where
by design we expect to see an improvement between the
precision of the matched filter and of the SPIR-optimal filters.
Comparing the matched filter fMF

i precision (0.567 ± 0.220),
with non-convex SPIR-optimal filter fSO

i precision (0.658 ±
0.238) results in p = 0.000196, with convex SPIR-optimal
filter fCSO’

i precision (0.754 ± 0.220) results in p = 0.000196,
and with convex SPIR-optimal filter fCSO”

i precision (0.860
± 0.121) results in p = 0.000120, such that we see that the
anticipated effect is statistically backed up. When comparing
between the SPIR-optimal filter design methods, fSO

i and fCSO’
i

with p = 0.00185, fSO
i and fCSO”

i with p = 0.000892, and,
fCSO’
i and fCSO”

i with p = 0.0187, the convex SPIR filters are
shown to outperform the non-convex SPIR solution. When per-
forming the pairwise comparisons for the recall, no significant
effects are noted (again we omit the quantitative details, and
refer to Table II). Hence, the SPIR-optimal filters can obtain a
significantly higher precision, while preserving the recall. The
average improvement in precision between the different filter

design methods in the order that they were presented in this
work, is around 10%, as can be seen from Table II. When
comparing the use of matched filtering in threshold-based
spike sorting with the use of convex SPIR-optimal filtering
fCSO”
i , an improvement of almost 30% (in absolute sense) in

average precision is noted. Besides the statistically significant
results, the convex SPIR-optimal filters fCSO”

i “transform” the
threshold-based spike trains for 8 interfering neurons into
single-unit spike trains, according to our arbitrary bound of
precision > 0.9. This is an increase of 16% in detected single-
unit spike trains for the entire data.

In Fig. 4 and 5 we turn our attention to two example neurons
from Table II. Fig. 4 corresponds to the red highlighted
neuron in Table II. Given a precision of 0.406, 0.451, 0.430,
and, 0.699 for fMF, fSO, fCSO’, and, fCSO”, respectively, the
precision does not improve much for the SPIR-optimal filter
when compared to fMF, except for a minor improvement in
precision for fCSO”. All of these precisions are obtained at a
similar recall. The top part of Fig. 4 shows the different filter
outputs for three different extracellular recording snippets that
are shown at the bottom of this figure. The leftmost recording
snippet corresponds to a spike waveform occurrence of the
target neuron. This target neuron spike occurrence snippet
contains a spike template overlay. A closer look at the different
filter outputs reveals that the outputs of fMF, fSO, and, fCSO’

largely coincide for this neuron. To better understand this
behaviour, consider the target neuron spike snippet and its
template overlay. From this snippet and its template overlay,
one can see that the peak-signal-to-noise ratio (PSNR) of the
target neuron spike template is rather poor. More precisely the
PSNR equals 2 dB when measured across all spike instances of
this neuron. Given the linear nature of the filters, target neurons
with low PSNR are expected to suffer from many interfering
segments in their filter output. Based on this observation, the
noise covariance structure of fMF is likely to be very similar to
the implicit interference covariance structure that lead to fSO

and fCSO’ due to the many interfering segments that appear
during filter design, hence, leading to very similar filters. The
second example filter output in Fig. 4 illustrates why fCSO”

has a better precision, i.e., the filter is capable of ignoring
negative interferers. However, the rightmost example shows
that also fCSO” is ultimately bounded by the PSNR, which is
shown by the peak that results from random noise fluctuations.

On the other hand, Fig. 5 which corresponds to the green
highlighted neuron in Table II, shows a continuously improv-
ing precision of 0.180, 0.321, 0.852, and, 1.000 for fMF,
fSO, fCSO’, and, fCSO”, respectively. This figure contains two
examples that correspond to spike occurrences of the target
neuron, which are indicated by the spike template overlay.
It is apparent that the PSNR of the target neuron spike
template is more favourable when compared to the previous
figure. The PSNR equals 12 dB when measured across all
spike instances of this neuron. Therefore, during filter design,
the implicit interference covariance structure is likely to be
more distinct from the noise covariance, leading to more
discriminative filters as is indicated by the increasing filter
precision. The rightmost example in Fig. 5 illustrates the
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Fig. 4. Top: The different filter outputs for three example recording snippets
associated with the red highlighted target neuron from Table II are shown.
For this specific target neuron the output from fMF, fSO and fCSO′

largely
coincide. Note that the output from fCSO” is not squared, because the filter-
and-threshold-based pattern recognition has to be performed on the filter
output amplitude directly (see (21)). Bottom: The filter input multi-channel
recording snippets are shown that correspond to the filter outputs from the
top half of this figure. A recording snippet that contains a true spike of the
target neuron is overlaid with the spatio-temporal spike template of the target
neuron (dashed red).

continuously improving interference suppression capabilities
of the different filters in response to a spike from a non-target
neuron.

Next we will study the effect of the choice of regularization
subspace power fraction on the spike sorting performance.
The power fraction is the fraction of the total signal power
that is accounted for in the regularization subspace, and as
such, it serves as the regularization hyper parameter in this
work. In the previous analysis we chose a power fraction of
0.9 (i.e., 90%) because the resulting subspace is believed to
provide a good trade-off between preserving and emphasizing
the important signal characteristics, while providing a major
reduction in dimensionality and computational complexity of
the filter design. We can indeed verify from Fig. 6 that the
average spike sorting performance (both in terms of recall and
precision) in the non-interfering group for a power fraction of
0.9 is near perfect, and approximately coincides with the spike
sorting performance when using 0.95 or 0.97 as a regulariza-
tion power fraction. When considering the interfering group
one can see that for the recall a similar conclusion can be
drawn, i.e., the difference in average recall between 0.9, 0.95
and 0.97 is only marginal. However, for the precision we see
that by making use of a power fraction of 0.95 compared to
0.9 a couple of percent points could have been won. Also in
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Fig. 5. Top: The different filter outputs for three example recording snippets
associated with the green highlighted target neuron from Table II are shown.
Bottom: The filter input multi-channel recording snippets are shown that
correspond to the filter outputs from the top half of this figure. A recording
snippet that contains a true spike of the target neuron is overlaid with the
spatio-temporal spike template of the target neuron (dashed red).

terms of precision, we see that for a power fraction of 0.97 the
regularizing effect starts breaking down again. This is to be
expected because a higher power fraction can be interpreted
as a lesser regularization, due to the fact that the solution
subspace is less constrained. From Fig. 6 it also becomes
clear that the usage of a power fraction of 0.7 or 0.8 leads to
reduced spike sorting performance in all cases. Purely based
on spike sorting performance, 0.95 would be the better choice
for use as a regularization power fraction. However, by also
taking into account the relative dimensionality, i.e., the fraction
between the dimensionality of the regularization subspace and
the original problem subspace, we argue that the use of 0.9
is a reasonable practical choice. From Fig. 7 one can see
that a reduction of almost 70% is obtained in terms of the
dimensionality of the filter design subspace. By using a power
fraction of 0.95 a reduction of only 45% is obtained. This
difference in relative dimensionality will have a big practical
impact in terms of memory usage and computation time.

When comparing between the different proposed filter de-
sign methods, the application of the different filters has the
exact same computational complexity because they all share
the same multiply-accumulate structure. However, differences
in computational complexity are expected when comparing the
different filter design methods during training. Fig. 8 reports
on the proposed filter design training computation times for the
target neurons from this case study (both interfering and non-
interfering). The data points that are shown in this figure are
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Fig. 6. The effect on the spike sorting performance of the choice of regularization subspace power fraction is studied. The average precision and recall for
all analysed filter design methods are shown for both the non-interfering (top) and interfering (bottom) group.
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Fig. 7. The relative dimensionality of the filter design subspace is shown in
function of the regularization subspace power fraction.

normalized with respect to the computation times of the non-
convex SPIR-optimal filter design of the corresponding target
neurons. For every target neuron, a fixed random initialization

point is used for the design of the three different proposed
filters. Furthermore, a general-purpose optimization solver is
used that is based on sequential quadratic programming [39]
using default parameter settings [40] for the design of the
different filters. The advantage of using a single optimization
framework is that function and gradient evaluation (i.e., the
main computational burden during the optimization) happens
in a uniform way between the different proposed design
methods, such that the computation times can be compared in a
meaningful way. Note that the use of specialized frameworks,
e.g., targeted at convex optimization, as well as non-default
parameter settings, might further improve the convergence
speed. However, these practical considerations are outside the
scope of this work.

From Fig. 8, it can be seen that the median relative
computation time for fCSO’ is equal to 0.98, with outliers
ranging from 0.26 to 3.33. From these data we conclude that
the computational work required for the design of fSO and
fCSO’ is similar. However, fCSO’ is guaranteed to converge
to a global optimum, whereas this is not the case for fSO.
This difference in convergence behaviour was also seen in
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Fig. 8. Boxplots are shown for the filter design computation times of the
convex filters fCSO’ and fCSO”. The computation times have been normalized
with respect to the computation times of the non-convex filters fSO of the
corresponding target neurons.

the spike sorting performance analysis that was conducted
earlier. The median relative computation time for fCSO” is
equal to 0.62, with outliers ranging from 0.14 to 1.60. Given
that the 95th percentile is equal to 0.89, we conclude that
fCSO” requires less computational work when compared to
fSO. Again, fCSO” is guaranteed to converge to a global
optimum, and is now also shown to be superior in terms of
the filter design computation time. A possible explanation for
the superior convergence behaviour can be found in the fact
that negative interferers exist in the design of fCSO”. As such,
less abrupt changes in peak interference structure are expected
during the optimization, which could potentially explain the
observed improved convergence behaviour.

VIII. CONCLUSION AND DISCUSSION

We have presented three novel filter design methods for
use in filter-and-threshold-based multi-pattern recognition. The
first SPIR-optimal filter design method was proposed to cope
with the limitations of heuristic SPIR-optimal filter design
methods. Two convex approximations of the first method were
then proposed, which come with explicit guarantees on global
optimality. The second convex reformulation was shown to
be closely related to the theory of SVMs, and can be viewed
as an extreme case of PU learning. Through this relationship
with SVMs we concluded that this convex SPIR-optimal filter
can be viewed as a maximum margin reformulation of the
matched filter. Besides this conclusion, the relationship with
SVMs provided a geometrical insight into the mechanics of the
proposed filter design methods. Also, the proposed methods
require no prior knowledge (except for the template of the
target pattern), which make them particularly interesting for
practical use, in which complete knowledge about the signal
statistics is rarely available.

We have benchmarked the proposed filter design methods
against the use of classical matched filters in the context
of filter-and-threshold-based spike sorting. We were able to
show that the proposed methods all outperform the matched
filtering approach. The difference in precision between non-
convex SPIR and convex SPIR-optimal filtering might be
attributed to the discovery of a local rather than global optimal
solution in the non-convex case. Another important difference
is that convex SPIR-optimal filters fCSO”

i can also make use
of the sign in the filter output, i.e., interferers that lead to a
negative output response are harmless, whereas for a power
optimization, these interferers might become dominant again.
Whether or not the sign of the filter output is exploited
could explain the difference in average precision between
fCSO’
i and fCSO”

i . The results from these experiments indicate
that the convex SPIR-optimal filters are promising candidates
for replacing the matched filter in filter-and-threshold-based
pattern recognition tasks. When comparing non-convex SPIR
optimization to the optimization of fCSO”

i , the optimization of
of fCSO”

i showed considerably faster convergence. During this
case study we have also investigated the use of a subspace
projection regularization approach, which has the ability to
transform the convex SPIR-optimal filter design problem into
an unconstrained optimization problem. Furthermore, because
of the use of this regularization approach, both proposed filter
design methods had a minimal set of interpretable hyper-
parameters. Interpretable hyper-parameters are interesting in
general, because they can be chosen in an informed manner,
rather than a brute-force grid search type of experiment.

Despite the fact that the proposed filters were shown to
outperform the classical matched filters, both SPIR-optimal
and classical matched filters fail under certain conditions. First,
they both require the availability of the target pattern prior to
the filter design. In the case of spike sorting, it is not always
possible to obtain a pattern or template estimate. This can
happen because a certain neuron is inactive in the training
data or because the neuron is consistently active together with
another neuron, such that only overlapping spike waveforms
for the intended target neuron are available from clustering.
Furthermore, neither the SPIR-optimal filter, nor the classical
matched filter can suppress noise segments that contain scaled
version of the target pattern. This is due to the linear nature
of the filters under study. Furthermore, when the underlying
signal statistics are non-stationary, the filter solutions will be
rendered useless as the statistics evolve throughout time. A
common source of non-stationarity in spike sorting is probe
drift, which means that the recording probe moves relative
to the neurons it records from. Future research should focus
on the development of adaptive SPIR-optimal filters that
accommodate for the changing signal statistics. Finally, as
indicated in the case study, the filter-and-threshold pattern
recognition performance is ultimately bound by the (P)SNR
of the target patterns embedded in the signal as illustrated in
the example in Fig. 4.

Although the proposed methods were shown to significantly
improve the filter-and-threshold-based pattern recognition per-
formance for spike sorting, the results showed that there is still
room for improvement for many of the so-called interfering
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neurons. From an SVM point of view, we might conclude
that for many of the interfering neurons, the target spike
pattern and non-target spike patterns are not linearly separable.
As already mentioned, the convex SPIR-optimal filter design
method can be straightforwardly converted into a non-linear
kernel method. Such a kernel SPIR-optimal filter has the
potential to separate non-linearly separable data at the cost
of an increase in computational complexity.
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