
A NEURAL NETWORK-BASED SPIKE SORTING FEATURE MAP THAT RESOLVES SPIKE
OVERLAP IN THE FEATURE SPACE

Jasper Wouters1 Fabian Kloosterman2,3,4 Alexander Bertrand1

1 KU Leuven, Electrical Engineering Dept. (ESAT),
Stadius Center for Dynamical Systems, Signal Processing, and Data Analytics, Belgium

2 Neuro-Electronics Research Flanders (NERF), Leuven, Belgium
3 KU Leuven, Brain & Cognition Research Unit, Belgium 4 VIB, Leuven, Belgium

ABSTRACT

When inserting an electrode array in the brain, its electrodes
will record so-called ’spikes’ which are generated by the neu-
rons in the neighbourhood of the array. Spike sorting is the
process of detecting and assigning these recorded spikes to
their putative neurons. Many spike sorting pipelines rely on
a clustering algorithm that groups the spikes coming from the
same neuron in a pre-defined feature space. However, classi-
cal spike sorting algorithms fail when spike overlap, i.e., the
near-simultaneous occurrence of two or more spikes from dif-
ferent neurons, is present in the recording. In such cases, the
overlapping spikes segment ends up in a seemingly random
position in the feature space and is not assigned to the cor-
rect cluster. This problem has been addressed before by ex-
tending the sorting algorithm with a template matching post-
processor. In this work, a novel approach is presented to
resolve spike overlap directly in the feature space. To this
end, a neural network feature map is presented, that generates
spike embeddings (feature vectors) that behave as a linear su-
perposition in the feature space in the case of spike overlap.
Its performance is quantified on semi-synthetic data obtained
through a data augmentation procedure applied to real neural
recordings.

Index Terms— spike sorting, spike overlap, neural net-
work, feature extraction

1. INTRODUCTION
When studying the brain, an often used method to explore
brain activity is the acquisition and processing of extracellu-
lar recordings. Extracellular recordings can be obtained from
measurement electrodes that are lowered into the brain. If the
implanted electrodes are in close proximity to some neurons,
i.e., a certain type of brain cells that can communicate with
each other through electrical-chemical signalling, the elec-
trodes can pick up voltage patterns that occur when a neu-
ron is actively signalling other neurons. This voltage pattern
co-occurs with the so-called intracellular action potential and
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is referred to as a spike, due to its spiky waveform. To get
a better understanding of micro-scale brain network dynam-
ics, extracellular recordings are often processed to extract the
spike times of individual neurons from which the spikes were
recorded. This process of detecting and assigning spikes to
their putative neurons is known as spike sorting [1].

Spike sorting is an unsupervised machine learning prob-
lem that is based on the assumption that all spikes from the
same neuron exhibit the same spatio-temporal waveform, and
that every neuron has a unique spatio-temporal spike pattern
when compared to other neurons. The spike sorting problem
is typically solved through the use of a classical clustering
pipeline [2]. This pipeline roughly consists of a preprocess-
ing, spike detection, feature extraction, and clustering phase.
The preprocessing block minimally consists of a high-pass fil-
ter, that filters out the low-frequency energy that is unrelated
to the spiking activity. The spike detection block then selects
only recording segments that have spiking activity. Next, a
feature vector is calculated for every spike segment, such that
finally the clustering algorithm can isolate dense clusters of
spikes that are believed to belong to the same neuron.

Such a clustering approach typically suffers from the
overlapping spikes problem [3]. This problem arises when
a detected spike segment consists of the activity of multiple
neurons. Typically, such segments containing overlapping
spikes will lead to points in the feature space, that are un-
related to the clusters that represent the well isolated spikes
of the neurons that contribute to the overlapping spikes seg-
ment. They appear at seemingly random positions in the
feature space, depending on the amount of overlap and the
relative spike times of both neurons. It is believed that spike
overlap can not be resolved in the feature space [4]. As
such, the classical pipeline has been augmented with a tem-
plate matching post-processing step in many spike sorting
implementations [5] [6] [7] [8] [9]. Alternatively, iterative
model-based algorithms [3] [10] [11] have been developed
to cope with spike overlap. Typically, in such extended
pipelines, first the clustering approach is taken, after which
heuristics are used to identify clusters that contain the activity
of individual neurons. Next, spike templates are estimated
from those single-neuron clusters. Those templates are then
used to design matched or discriminative filters that have
the capability to resolve overlapping spikes. Augmenting
the classical pipeline in such a way, leads to a considerable
increase in complexity.



In this work we present a neural network-based feature
map that, contrary to popular believe, is capable of resolving
spike overlap directly in the feature space, hence, resulting in
a pipeline with overall reduced computational complexity. In
Section 2 the overlapping spikes problem is formalized. Sec-
tion 3 presents the neural network feature map capable of re-
solving overlapping spikes. In Section 4 a data augmentation
procedure that is used for the generation of training and test-
ing data is presented. Section 5 summarizes the experimental
results. Finally, Section 6 concludes this work by discussing
the proposed method.

2. PROBLEM STATEMENT
Consider the high-pass filtered extracellular multi-channel
brain recording x[k] ∈ RN at sample time k with N
the number of recording sites of interest. Typically, only
compact subsets of recording sites are processed simulta-
neously in spike sorting because the neuronal spike is a
spatially compact pattern. For modern probes N � Ntot,
where Ntot is the total number of recording sites of the
recording device. A spatio-temporal recording snippet of
duration L containing an entire neuronal spike waveform
can be represented as an NL-dimensional vector y[k] =[
x [k]

T
x [k − 1]

T
. . . x [k − L+ 1]

T
]T

, which captures
a spike waveform between sample time k − L + 1 and k.
After spike detection, we store the values of y[k] at those
sample indices k that correspond to a spiking event, where k
is selected such that the largest peak of each spiking event is
aligned across the extracted snippets y[k]. This results in a
set of extracted snippets represented as NL-dimensional vec-
tors {y1 . . .yM}, each containing an aligned spatio-temporal
representation of a spike waveform. Since each neuron has
a signature spatio-temporal waveform, the snippets y that
capture spikes from the same neuron i will be close to each
other in the RNL space and their average can be viewed as a
spike template for neuron i. In the remaining of this paper we
will mostly drop the time index k in y[k], except when the
sample time is providing clarity.

During spike sorting, the aligned snippets are mapped to
a lower-dimensional feature space to accommodate the clus-
tering stage. Consider the feature extraction f : RNL → RP ,
with P the dimensionality of the feature space. In many spike
sorting pipelines f is a linear function, e.g., based on prin-
cipal component analysis on all aligned spike snippets. The
implication of such a linear feature map is that f(si + sj) =
f(si) + f(sj) for any si, sj ∈ RNL. Let si and sj denote
the spike waveform of neuron i and neuron j, respectively.
When using a linear feature map, it is expected that overlap-
ping spike snippets of the form y = si + sj would form a
new cluster of which the centroid is equal to the sum of the
centroids of the clusters associated to neuron i and j (cfr. the
red, blue and purple cluster in the right panel of Fig. 1). If
this were to be the case, it would be straightforward to resolve
spike overlap. Unfortunately, this is not the case in practice as
this requires the main peaks of the spikes si and sj to be per-
fectly aligned in time (remember that all snippets are aligned
through their maximum peak value).

In reality, spike overlap can be better modelled as y[k] =
si[k − m] + sj [k − n] with m,n ∈ Z being probabilistic

sample offsets, and where si[k] and sj [k] correspond to the
mutually aligned isolated spike snippets of neuron i and j,
respectively. Next we introduce the operator ⊕ to denote a
sum with probabilistic sample offsets, which abstracts away
the actual values for m and n. The shifted sum can now be
rewritten as

si ⊕ sj = si[k −m] + sj [k − n]. (1)

Because of the introduction of the time shift, f(si ⊕ sj) 6=
f(si) + f(sj) for the linear feature map f , if at least one
of the two sample offset is non-zero, thereby rendering the
proposed approach for the identification of overlapping spikes
clusters in the feature space useless as shown in the left panel
of Fig. 1. In this work we aim to design a non-linear feature
map g for which g(si⊕ sj) ≈ g(si)+ g(sj), i.e., the linearity
property is preserved despite the random sample offsets in the
overlapping spike. Such a feature map g would be capable of
resolving spike overlap, because the relation between clusters
can be derived by simply adding pairs of cluster centroids, as
is shown for the cluster centroids of neuron one and neuron
two in the right panel of Fig. 1, where those cluster centroids
sum up to the cluster containing randomly shifted overlapping
spikes of neuron one and neuron two.

3. METHOD
To obtain the desired feature behaviour, we train a neural net-
work using the following custom cost function:∑
i,j∈T
i6=j

[
‖g(si)+g(sj)−g(si⊕sj)‖22+

κ

‖g(si)−g(sj)‖22

]
, (2)

where the sum is taken over all pairs of spikes (both cor-
responding to different neurons) that are in the training set T .
When minimizing the cost function over g, the first term in
the cost function will decrease when the feature acts as if it is
a linear operator applied to a linear combination, i.e., the be-
haviour that is desired to resolve overlap in the feature space.
The second term is added to try to increase the distance be-
tween spikes from different neurons, and hence their separa-
bility, in the feature space and this will as well prevent the
network from converging to the trivial solution during train-
ing. The hyperparameter κ associated with the second term
can be altered to trade off the desired linearity with the clus-
ter separability.

Notice that the cost function in (2) does not explicitly
control for the intra-class variability, which is an important
characteristic for a feature map intended for clustering. In
this work the intra-class variability is controlled through on
the one hand limiting the degrees of freedom by choosing
an appropriate neural network architecture and on the other
hand by applying regularization during the training phase. In
this work early stopping regularization is used [12], where
thirty percent of the training data is used as a validation set
for this purpose. If the validation cost does not sufficiently
decrease over a certain number of epochs, the training pro-
cess is stopped to prevent the network from overfitting on the
training data.

In Fig. 2 the neural network architecture that is used
in the scope of this work is shown. The architecture con-
sists of a multi-layer perceptron with two hidden layers. The
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Fig. 1. 3 orthogonal viewpoints on a 3-dimensional feature space with 3 neurons. Left: Overlapping spikes in a (linear)
principal component feature map do not form separable clusters and do not have a clear relationship with the single-neuron
clusters. Right: The proposed neural network feature map is capable of resolving overlapping spikes.
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Fig. 2. The proposed neural network feature map is imple-
mented as a multi-layer perceptron with two hidden layers.

network takes an NL-dimensional1 snippet y as input, with
N = 10 and L = 30. The first and second hidden layer con-
sist of 600 and 60 hidden perceptrons, respectively. The net-
work outputs a three dimensional feature vector for every data
chunk at its input. All layers use a rectifier activation function.

1The choice of N and L is related to the spatial resolution of the elec-
trode array and the sampling frequency, respectively. The dimensions of the
proposed network were designed for a neural probe with an electrode pitch
of 20 µm and a sampling frequency of 30 kHz.

4. DATA AUGMENTATION
The training and testing data used in this work are obtained
through a data augmentation procedure similar to [13]. First,
131 single-neuron spike templates are calculated from a pub-
licly available in-vivo Neuropixels [14] brain recording data
set that has been spike sorted [15]. For each of the 131
neurons, a spatio-temporal spike template is calculated by
averaging over the spike snippets of that neuron where a
neuron-specific spatial region of ten neighbouring channels is
selected. Next, the single-neuron templates are randomly split
into two sets, one containing 88 templates used for generating
the training data and 43 used for generating the testing data.
For both the set of training and testing templates separately,
principal components are derived that account for 99 percent
of the template energy. Both sets are then projected onto
their respective principal component subspaces. Along each
principal component an independent skew normal distribu-
tion [16] is fitted. Finally, synthetic training and testing spike
templates are constructed by sampling from the estimated
distributions in each principal component. The templates
obtained through data augmentation have a duration of 82
samples.

5. EXPERIMENTS
From the training distributions obtained in the previous Sec-
tion, 50000 different pairs of neuronal spikes are generated to
form the training set T , i.e, the summation in (2) runs over
50000 training samples. For each pair (i, j), 3 snippets are
created: si, sj and si ⊕ sj . si and sj are created by adding
random white noise to the two synthetic spikes, aligning both
of them according to their largest peak, and cropping them
in the time dimension to the desired window size of L = 30
samples. si ⊕ sj is obtained by randomly time-shifting the
template of neuron i with respect to the template of neuron j,



after which white noise is added and the summed waveforms
are aligned based on the largest peak of the mixed waveform
and cropped to L = 30 samples. The relative shift is sampled
from a discrete uniform distribution where the minimum and
maximum shift are -5 and 5, respectively. All synthetic snip-
pets have a signal-to-noise ratio of 20 dB. The network pre-
sented in Section 3 is trained using the Adam optimization al-
gorithm [17]. The hyperparameter κ = 10 is chosen through
a grid-search, but the performance on the training data is not
very sensitive to the exact choice of κ, even when considering
differences of several orders of magnitude.

After training, the performance on the test set of the neu-
ral network feature is quantified in terms of two metrics: 1.
the adjusted Rand index [18], which is a cluster performance
metric that is equal to one for perfect clustering and zero when
the clustering performs equal to chance, and 2. the center pre-
diction error

ei,j =
‖ci⊕j − (ci + cj)‖2
1
3 (σi⊕j + σi + σj)

, (3)

i.e., the distance in the feature space between the true over-
lapping spikes cluster centroid ci⊕j ∈ RP and the predicted
centroid by taking the sum of the isolated cluster centroids
ci + cj , normalized with respect to the intra-class variabili-
ties σi⊕j , σi and σj , which are the average distances between
points in the feature space and their corresponding centroid.

The test data contains 500 pairs of synthetic test tem-
plates. For every pair of test templates two sets of 100 iso-
lated spikes are derived by adding white noise to the templates
and 100 snippets containing spike overlap with a random off-
set similar to the offset used in the training set are generated.
The synthetic training snippets also have a signal-to-noise ra-
tio of 20 dB. The neural network feature map is then applied
to every group of 300 snippets and a k-means clustering [19]
with k = 3 is applied for all 500 test pairs. The performance
metrics for all test cases are summarized in Fig. 3. Because
483 pairs have an adjusted Rand index equal to one, random
jitter is added to the horizontal axis to make the graph more
readable (hence, explaining test pairs with a depicted Rand
index slightly bigger than one). As one can see in Fig. 3 the
majority of the test pairs is situated in the bottom right corner.
For those test pairs, unseen during training, the neural net-
work feature map generalizes very well. The feature allows
for near perfect clustering for those pairs, even using a very
simple clustering method such as k-means. Secondly, only a
small center prediction error is made, indicating the feature’s
capability to resolve spike overlap in the feature space.

In Fig. 3 we also highlighted three groups of pairs for
which the feature map performs suboptimal. For the pairs in
group 1 the single-neuron clusters are very close to each other
in the feature space, combined with the fact that the clus-
ter containing all overlapping spikes is elongated. Because
of this, the single-neuron clusters are grouped together and
the overlapping spikes cluster is split in two by the clustering
algorithm, hence explaining both the poor Rand index and
center prediction error for those pairs. This issue might be re-
solved by using a more advanced clustering approach, e.g., a
density based clustering algorithm [20]. For the pairs in group
2, one of the single-neuron clusters is close to the overlapping
spikes cluster, as such, spikes belonging to the overlapping
spikes cluster are assigned to that single-neuron cluster by the

clustering algorithm. Because only a minor fraction of pairs
is wrongly assigned, the center prediction error is still within
acceptable bounds. This issue might also be resolved by us-
ing an alternative clustering algorithm. The pairs in group 3
show perfect clustering, but a big center prediction error. For
this small fraction of pairs, the spikes of one of the neurons
are not capable of fully exciting the neural network. This be-
haviour is characterized in the feature space by having one of
the single-neuron clusters with at least one dimension equal
to zero. For the dimensions in the feature space that are not
properly excited, the desired linear behaviour is not obtained.
This issue might be alleviated by extending the training set
with more examples.
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Fig. 3. On the horizontal axis the adjusted Rand index (with
random jitter for readability) is depicted and on the vertical
axis the center prediction error is shown. Every blue dot rep-
resents the feature map performance for a pair of test neurons.

6. CONCLUSION AND DISCUSSION
In this work we have presented a novel approach to resolv-
ing spike overlap in the feature space through the design of
a neural network feature map. We have shown that the de-
sired neural network behaviour for resolving spike overlap
generalizes well on most of the testing data. On a small frac-
tion of the testing pairs, the feature map performed subop-
timal. For those pairs we have studied their failure mecha-
nisms, and proposed solutions if possible. Since the feature
map is trained using a data augmentation procedure that uses
real spikes from a specific type of probe, this feature map is
believed to be probe dependent. Further research is necessary
to assess how well this feature map works on real recordings
using the same probe, and whether it can be used with dif-
ferent recording probes as well. When compared to template
matching based approaches, our method is limited in terms
of resolving the exact spike times of the individual neurons
that fire near-simultaneously. For experiments where this lim-
itation is acceptable, a much simpler spike sorting pipeline,
capable of resolving spike overlap, is given in return. Com-
bining the proposed feature map with an adaptive clustering
algorithm is a promising and potentially powerful approach
to real-time spike sorting.
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