
1

A data-driven spike sorting feature map for
resolving spike overlap in the feature space

J. Wouters, F. Kloosterman, A. Bertrand

Abstract—Objective: Spike sorting is the process of extracting
neuronal action potentials, or spikes, from an extracellular brain
recording, and assigning each spike to its putative source neuron.
Spike sorting is usually treated as a clustering problem. However,
this clustering process is known to be affected by overlapping
spikes. Existing methods for resolving spike overlap typically
require an expensive post-processing of the clustering results. In
this paper, we propose the design of a domain-specific feature
map, which enables the resolution of spike overlap directly in
the feature space.

Approach: The proposed domain-specific feature map is based
on a neural network architecture that is trained to simultaneously
perform spike sorting and spike overlap resolution. Overlapping
spikes clusters can be identified in the feature space through
a linear relation with the single-neuron clusters for which the
neurons contribute to the overlapping spikes. To aid the feature
map training, a data augmentation procedure is presented that
is based on biophysical simulations.

Main results: We demonstrate the potential of our method
on independent and realistic test data. We show that our novel
approach for resolving spike overlap generalizes to unseen and
realistic test data. Furthermore, the sorting performance of our
method is shown to be similar to the state-of-the-art, but our
method does not assume the availability of spike templates for
resolving spike overlap.

Significance: Resolving spike overlap directly in the feature
space, results in an overall simplified spike sorting pipeline
compared to the state-of-the-art. For the state-of-the-art, the
overlapping spike snippets exhibit a large spread in the feature
space and do not appear as concentrated clusters. This can
lead to biased spike template estimates which affect the sorting
performance of the state-of-the-art. In our proposed approach,

A conference precursor of this paper has been published in [1]. This
work was carried out at the ESAT Laboratory of KU Leuven. This project
has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 802895) and the Research Foundation Flanders (FWO)
project FWO G0D7516N. This research received funding from the Flemish
Government (AI Research Program). A. Bertrand and J. Wouters are affiliated
to KU Leuven, Department of Electrical Engineering (ESAT), STADIUS
Center for Dynamical Systems, Signal Processing and Data Analytics and
Leuven.AI - KU Leuven institute for AI, B-3000, Leuven, Belgium. F.
Kloosterman is affiliated to Neuro-Electronics Research Flanders (NERF),
Leuven, Belgium, KU Leuven, Brain & Cognition Research Unit, Belgium
and VIB, Leuven, Belgium. The scientific responsibility is assumed by its
authors.

overlapping spikes form concentrated clusters and spike overlap
resolution does not depend on the availability of spike templates.

I. INTRODUCTION

Neurons communicate with each other through electro-
chemical signalling mechanisms. Such neuronal signalling is
believed to underlie cognition. In order to better understand the
brain and how it gives rise to cognition, neuroscientists per-
form experiments that are designed to measure neural activity
and relate this activity to behavioural data. When performing
electrophysiological experiments, the electrical component in
neural signalling is studied. Neuronal action potentials, or
“spikes”, are a frequently studied component of the electrical
brain signals because they reflect the output signals of neurons.

When performing extracellular electrophysiological record-
ings, electrodes are lowered into the brain near the neuron
population that is under study. Modern neural probes contain
a dense grid of hundreds of recording electrodes [2] [3] and
are becoming increasingly popular for performing large-scale
neural recordings. Neural probes can record a mixture of
spikes from hundreds of neurons simultaneously. The spiking
activity at each electrode channel is referred to as multi-
unit activity as each electrode typically capture spikes from
multiple neurons. However, when an experimenter is interested
in the neural activity of individual neurons, i.e., single-unit
activity, a neural source separation problem has to be solved.
The transformation of the activity of multiple neurons into the
individual activity of the different recorded neurons is known
as spike sorting [4]. While multi-unit activity is often sufficient
for coarse brain-computer interfacing tasks, having access
to the neural activity of individual neurons is essential to
neuroscientists that try to understand how individual neurons
contribute to brain function [5] [6] [7].

A common approach for solving the spike sorting problem
is through the use of an unsupervised learning framework [8].
The framework is characterized by four consecutive process-
ing steps: 1) spike detection, 2) spike alignment, 3) feature
extraction, and, 4) clustering. The spike detection results in

2

the extraction of spike snippets from the neural recording.
These spike snippets are then mutually aligned according to
some alignment criterion to support the feature extraction.
Next, feature values are computed for every spike snippet,
which ideally results in the discriminability of spikes from
different neurons, while promoting the grouping of spikes
from the same neuron. Finally, the single-neuron clusters are
identified through an automated clustering analysis. Several
implementations and variations on this common framework
have been proposed [9]–[15].

When two or more neurons fire near-simultaneously in time,
a compound spike waveform, also referred to as an overlapping
spike snippet, is generated. If the vanilla clustering framework
from the previous paragraph is used for spike sorting, the
overlapping spike snippets are likely going to be misinter-
preted, leading to wrongly clustered spikes and an overall
bias in the cluster identification itself. It has been shown
that overlapping spikes are affecting spike sorting accuracy in
practice [16]. Therefore, strategies have been designed to cope
with overlapping spikes. To the best of our knowledge these
strategies all depend on the use of spike templates [17]. The
strategies consist of either applying matched filters that are de-
rived from the spike templates following the biased clustering
analysis [18]–[23], or rely on an iterative clustering/template
fitting procedure to resolve spike overlap [16] [24] [25]. Spike
template estimates will also be biased by overlapping spikes
when they are based on biased clustering results. In case
of the iterative template estimation, the template estimation
bias can be overcome, but only at a considerable increase in
computational cost.

Recently, modern supervised machine learning concepts
such as (deep) neural networks have become increasingly
popular for use in spike sorting [26]–[30]. These supervised
learning building blocks are typically intended for replacing
classical spike detection and feature extraction methods, result-
ing in domain-specific detectors and feature maps. However,
these recent feature maps, as well as preceding classical
techniques, do not take into account spike overlap and overlap
resolution mechanisms. In this work we propose the use of a
neural network spike sorting feature map that is capable of
resolving spike overlap directly in the feature space. In this
way, the clustering bias due to spike overlap is overcome.
Through the use of this specialized feature map, there is
no need for matched filter post-processors, nor for iterative
fitting techniques to resolve spike overlap, such that a minimal
processing pipeline is delivered that is capable of resolving
spike overlap.

In Section II we formalize the classical spike sorting pro-
cess and show how overlapping spikes hamper the sorting
performance. Then, the domain-specific feature map that is
designed for resolving spike overlap is presented in Section
III. In Section IV we explore the design space of the proposed
feature map and quantify the feature map spike sorting per-
formance on realistic ground truth data. Finally, we conclude
the presented work in Section V.

II. SPIKE SORTING AND OVERLAPPING SPIKES

Consider x[k] ∈ RN to be the high-pass filtered extracellu-
lar recording at time sample k as measured simultaneously on
N recording electrodes. A single neuronal spike contributes to
several consecutive time samples of the extracellular recording
when using typical sampling frequencies (25-30 kHz). To fa-
cilitate the study of the neuronal spikes, we define the stacked
vector x̄[k] =

[
x[k − L+ 1]T . . . x[k − 1]T x[k]T

]T ∈
RNL to represent a spatio-temporal window on the extracel-
lular recording of N channels by L samples. The bar notation
�̄ is also used in combination with other symbols to indicate
a similar delay-line extension on the data that is represented
by that symbol.

A spike sorting algorithm takes such an extracellular record-
ing x[k] at its input to output the sample times at which
the individual neurons embedded in the recording generate
spikes. The output thus consists of a set collection

{
Ŝn ∀n

}
,

where an individual set Ŝn contains the spike time estimates
(i.e., the spike train) of the sortable neuron n. The different
spike waveforms as generated by a specific neuron are very
similar throughout time, which is why clustering techniques
are commonly used in spike sorting. A typical clustering
approach for transforming the input recording into the spike
sorting output consists of the following sequential processing
steps [8]:

1) detection: Extract a set of unsorted spike times U from
the extracellular recording. Although several detection
approaches are in use, usually they involve an amplitude
thresholding operation that can be optionally preceded
by a preemphasis filtering.

2) alignment: Given the set of unsorted spike times U ,
every spike time is adjusted such that the corresponding
spike waveforms are mutually aligned in their L samples
wide temporal window according to some alignment
criterion. A popular alignment criterion is to place the
local spike minimum in the middle of the temporal
window. This processing step results in a set of aligned,
yet unsorted spike time U‖.

3

3) feature extraction: Given the aligned spike times, a set
of features F is derived from the spike waveform as
follows:

F =
{
f (x̄[u]) ∀u ∈ U‖

}
,

with f : RNL → RM the feature map to the M -
dimensional feature space. A popular choice of feature
map for spike sorting is based on a principal component
analysis (PCA), which results in a linear feature map
[8].

4) cluster analysis: Finally, a cluster analysis is performed
on F , where the spike feature projections, which are also
referred to as spike embeddings, of the same neuron
are supposed to cluster together, and clusters from
different neurons are separable in that feature space.
Based on the clustering in F , the original space U‖ can
be partitioned into

{
Ŝn ∀n ∈ N̂ , Sunsorted

}
, where N̂ is

the set of sortable neurons which typically results from a
manual curation of the clustering results and Sunsorted is a
‘garbage’ set which contains all multi-neuron and noise
clusters that could not be assigned to a single neuron.

Ideally, Sunsorted is empty. However, in practice, Sunsorted

usually contains a significant fraction of the detected spike
times. A well-known problem that hampers the spike sorting
process is the occurrence of spike overlap. To illustrate this
problem consider the following model for the extracellular
recording:

x[k] =
∑
n∈N

∑
t∈Sn

αn,tsn[k − t] + n[k], (1)

where sn is the finite-support prototypical spike waveform of
neuron n, also referred to as the spike template of neuron
n. The spike template sn is assumed to have Wn non-zero
elements centered around k = 0. Furthermore, αn,t is a
template scaling factor to model amplitude variations and n

is defined to be an additive noise component that accounts
for both the neural and electrical noise. We say spike overlap
occurs between a neuron i and j if ∃ (ti, tj) ∈ Si × Sj :

|ti − tj | <
⌊
Wi+Wj

2

⌋
, i.e., their respective spike templates

overlap and are superimposed in x.

Consider now a recording sample in which the spiking
activity of two neurons i and j is present. For the sake of
intelligibility, let us first consider a model of spike overlap
where |ti−tj | = 0 for the spike times at which overlap occurs,
i.e., all overlapping spikes consist of the sum of perfectly
aligned single-neuron templates. For this scenario, a linear

0
0

f1 [arb. unit]

f 2
[a

rb
. u

ni
t]

f(s̄i)

f(s̄j)

f(s̄i + s̄j)

Fig. 1. Three clusters are distinguishable in the feature space. Both the red
and blue clusters consist of single-neuron spike projections. The yellow cluster
consists of projected overlapping spikes that are composed of aligned single-
neuron spikes of both the red and blue cluster. For the case of perfectly aligned
overlapping spikes and a linear feature map, spike overlap can be resolved
by establishing relationships between clusters through the vector addition of
cluster centroids that potentially map on overlapping spikes clusters.

feature map f (e.g. the commonly used PCA feature map)
has the following interesting linearity property:

f(s̄i + s̄j) = f(s̄i) + f(s̄j), (2)

where s̄i and s̄j ∈ RNL are the mutually aligned spatio-
temporal spike templates of neuron i and j, respectively. This
property enables the resolution of these overlapping spikes in
the feature space: if the sum of two cluster centroids maps onto
the centroid of a third cluster, this third cluster is believed to
contain the overlapping spikes that are composed of the sum of
the aligned templates associated with the two former clusters.
The overlap resolution property is illustrated in Fig. 1.

Unfortunately, the assumption of perfect spike alignment is
of little practical use. Although neurons might exist for which
the alignment assumption holds, e.g., when such neurons
are coupled through gap junctions, general spike overlap is
believed to occur by chance because two or more neurons
happen to fire near-simultaneously in time. When such random
overlap happens for two neurons i and j, ti − tj results from
a uniform random distribution. To concisely represent such
randomly aligned spike overlap we introduce the following
notation:

s̄i[k − ti] + s̄j [k − tj] = s̄i ⊕ s̄j , (3)

where ⊕ denotes the random-shift-and-sum operator. The ran-
dom time shift between spikes introduces a non-linearity that
leads to the smearing of the overlapping spikes cluster when
using a linear feature map, i.e., f(s̄i ⊕ s̄j) 6= f(s̄i) + f(s̄j).
Such cluster smearing is shown in Fig. 2. This smearing

4

0
0

f1 [arb. unit]

f 2
[a

rb
. u

ni
t]

Fig. 2. The red and blue clusters consists of single-neuron spike projections.
The projections of overlapping spikes with random alignment are shown in
yellow and are smeared out in feature space, which prevents the overlapping
spikes cluster from being recovered. Note that the colors in this figure are
assigned based on ground-truth information and not based on an actual
clustering analysis.

prevents a reliable recovery of the clusters when compared
to Fig. 1. Without well-defined clusters, the resolution of
overlapping spikes in the feature space becomes infeasible.
Therefore, in the remainder of this work, we will investigate
the use of a non-linear feature map g that is intended to behave
as if it were a linear function applied to a linear combination:

g(s̄i ⊕ s̄j) = g(s̄i) + g(s̄j), (4)

such that the feature embedding has similar properties as
the embedding presented in Fig. 1, but now also in case of
overlapping spikes with random alignment.

III. OVERLAP RESOLVING FEATURE MAP DESIGN

The design of the feature map is approached as a supervised
machine learning problem. Because spike sorting is inherently
unsupervised, the feature map is envisioned to be applied in a
train once, apply “anywhere” fashion. However, the meaning
of anywhere is limited to the usage of a fixed probe geometry
and spatio-temporal window, as will become apparent from
the details in this section.

Given its supervised nature, the design of the feature map
can be broken down into the following components:

• neural network architecture selection,
• overlap resolving cost function design,
• training data generation and augmentation process, and,
• training procedure.

In the following sections we will go into more detail on each
of these design components.

A. Neural network architecture selection

In this work we focus on the use of a multi-layer perceptron
(MLP) neural network architecture for the non-linear feature
map g : RNL → RM . Although other function families
exist, the MLP with a single hidden layer is known to
be a universal function approximator [31], meaning that it
can fit any continuous function up to an error that can be
made arbitrarily small by increasing the dimensionality of the
hidden layer. By incorporating additional hidden layers in the
network, the total number of artificial neurons that are needed
to achieve a certain error bound, can be drastically reduced
[32].

The deep neural network architecture that is used in this
work is shown in Fig. 3. The neural network takes an NL-
dimensional vector as input. The network contains three fully-
connected hidden layers with 2NL, NL and 1

5NL hidden
artificial neurons, respectively. Because of the fixed network
input dimensionality, we assume that the sampling frequency
of the neural recordings is constant throughout both the
training and actual spike sorting phases. The hidden neurons
use rectified linear unit (ReLU) activation functions [33]. The
output consists of M artificial neurons with linear activation,
where M is the desired dimension of the feature space. For
training regularization purposes we have included a dropout
layer [34] before every neuron layer. To complement the
dropout layer, the weights incident to each artificial neuron
are constrained to not exceed a specified maximum norm as
also proposed in [34]. The output of the hidden layers is
subjected to an optional batch normalization [35]. The middle
hidden layer is marked optional as well. Here, by optional
we mean that whether or not the optional feature is used, is
considered a hyperparameter. The hyperparameter exploration
will be discussed in Section IV.

B. Cost function

The model selection, as presented in the previous section,
only results in an architectural skeleton. In order to apply the
neural network g to recording data, the appropriate function
coefficients have to be chosen, leading to a concrete realization
of g.

In a typical supervised learning task, the coefficients of the
network are chosen to enable classification or regression. To
obtain such behaviour, the class labels or dependent variables
values yk are required during training for all k ∈ T , with
T the set of training samples. A realization of ĝ is then

5

NL 2NL NL/5 M
Input

Multi-layer perceptron

Output

NL

optional layer
dropout regularization

rectifier activation

batch normalization (optional)

linear activation

L

N

Fig. 3. Schematic representation of the fully connected MLP neural network architecture as used in this work. The network accepts an NL-dimensional vector
at its input (red). This input vector is transformed to an M -dimensional output vector (blue) via a chained projection onto three consecutive hidden layers,
prior to a projection onto the output neurons. The dimensionality of the hidden layers ordered from input to output is 2NL, NL and 1

5
NL, respectively.

Both the hidden layers and the output layer contain a dropout layer (yellow) for training regularization purposes. The hidden neurons make use of a non-linear
rectifier activation function (gray). The use of batch normalization (green) is explored in this work. The second hidden layer is marked as optional because
we will explore networks both with and without this layer.

obtained by tuning the coefficients until the (local) minimum
of a certain cost function is obtained:

ĝ = arg min
g

∑
k∈T

L (g (x̄k) ,yk) , (5)

where L is a training sample loss function, e.g., a least squares
criterion.

Irrespective of the choice of loss, the classical approach
to supervised learning with explicit training labels yk is
not suitable for use in spike sorting because of its inherent
unsupervised nature. Therefore, we propose the use of a cost
function where the training labels are used implicitly, i.e., the
network is not forced to produce a specific output, rather it
is instructed to learn an output representation which behaves
according to that cost function. The cost function that is
proposed in this work consists of four distinct terms that each
have a specific intended purpose. In what follows, the different
terms will be introduced one-by-one.

The loss function that is associated with the first term of
the cost acts on three spatio-temporal spike waveforms and is

given by

L1 (x̄i, x̄j , x̄i⊕j) = ‖g(x̄i) + g(x̄j)− g(x̄i⊕j)‖22 . (6)

with a slight abuse of notation, let x̄i = s̄i+n̄ and x̄j = s̄j+n̄

be a training sample spike of neuron i and j, respectively, each
with their own random noise component. x̄i⊕j = s̄i⊕ s̄j+n̄ is
a training sample representing two overlapping spikes involv-
ing neuron i and j. Minimizing L1 over g has the potential to
results in a feature map g that behaves linearly for non-aligned
overlapping spikes as described by (4).

Minimizing only L1, will result in the trivial solution
g(x̄) = 0 ∀x̄. To obtain a non-trivial feature map g, which
is suitable for clustering, L1 is combined with a second loss
term L2:

L2 (x̄i, x̄j) = exp
(
−‖g(x̄i)− g(x̄j)‖22

)
. (7)

When minimizing L2 over g, it will favour realizations of g
that result in a large distance in the feature space between a
pair of spikes from different neurons. As such, this term is
intended to maximize the between-cluster distance.

6

To promote the clustering of spikes from the same neuron,
L3 is defined as

L3(x̄i, x̄
′
i) = ‖g(x̄i)− g(x̄′i)‖

2
2 , (8)

where x̄i and x̄′i are distinct spike samples from the same
neuron. As such this term serves to minimize the within-cluster
distance for the given neuron.

The compound cost function used in this work is composed
from the above three loss functions as follows:

∑
T
L1 (x̄i, x̄j , x̄i⊕j) + κ1L2 (x̄i, x̄j) +

κ2

(
L3(x̄i, x̄

σ
i) + L3(x̄j , x̄

σ
j)
)

+

κ3

(
L3(x̄i, x̄

δ
i) + L3(x̄j , x̄

δ
j)
)
,

(9)

where the sum operator
∑

acts on the training set T . A
single entry of the training set is a collection of training
example spikes

{
x̄i, x̄j , x̄i⊕j , x̄σi , x̄σj , x̄δi , x̄δj

}
from a pair

of training neurons (i, j) with i 6= j. Note that for a given
pair of neurons, multiple distinct entries can be present in
the training set. In this work the neuron identities, e.g., i and
j, serve as implicit labels, i.e., the cost function describes
how the feature map should behave for spikes of different
neurons, but it does not push the output to a predefined value.
x̄σ represents an amplitude scaled version of x̄. As such, the
terms that involve x̄σ (i.e. the terms weighted with κ2) serve to
penalize spike amplitude scaling variance in the desired feature
space. x̄δ represent a spike snippet that is superimposed with a
spike waveform of a different neuron that reaches its maximum
energy on another channel. As discussed in the following
section, neurons that reach their maximum spike energy on
a different channel are to be treated in separate clustering
problems (cf. divide-and-conquer clustering). Therefore, the
superimposed spike waveform is to be treated as physiological
noise and feature robustness against such noise is desirable.
More details on the specifics for x̄σ and x̄δ are given in
the next section. κ1, κ2 and κ3 are hyper parameters that
allow for an explicit trade-off between (a) the linear behavior
within the feature space1 , (b) the between-cluster distance
and (c) the within-cluster distance. Note that L1 does not
have an explicit hyper parameter because its importance can
be controlled relative to the other terms through κ1, κ2 and
κ3.

1Linearity within the feature space does not imply a linear behavior between
the input space and the feature space. Indeed, an amplitude scaling of a
spike will not result in an equal scaling of its feature vector, which is even
discouraged due to the κ3 term minimizing the within-cluster distance.

Biophysical simulation of spike templates

Spatio-temporal template alignment

Training / test split of the templates

Principal component analysis

PDF estimation for PCA projections

Sampling PDF and PCA backprojection

Fig. 4. Flowchart that contains the different steps that are involved for the
generation of training data.

C. Training data

Now that we have defined the structure of g, as well as a
criterion to optimally choose the coefficients of g, we need to
construct the actual training set T to perform the training. Fig.
4 depicts the different steps that are involved in the training
data generation process. These steps will be discussed in detail
in the remainder of this section.

In this work we make use of a data augmentation approach
for the generation of the training data. First, 634 spike tem-
plates s̄n ∈ RN2L from 634 distinct biophysically detailed
neuron models [36] are simulated using MEArec [37]. Note
that for these templates a temporal window of 2L is used
rather than L. This is done to make sure that the minimum
of an overlapping spikes segment with |si − sj | 6= 0 can be
temporally aligned within an L-window prior to computing
the feature map projection. In this work, the probe geometry
is equivalent to a single column of a neuropixel probe [2].
A single-column probe design is chosen here to aid the
training data generation process in terms of its spatio-temporal
aligment procedure (see below)2. The simulated sampling
frequency is chosen to be 32 kHz. The temporal window length

2Although the proposed feature map design is deemed to be probe-
dependent, the feature map design approach is not limited to the probe
geometry used in this work, i.e., the generation of training data can be re-done
when a different probe geometry is used.

7

2 ms

Te
m

pl
at

e
am

pl
itu

de
[a

rb
.u

ni
t]

Fig. 5. Sixteen example simulated spatio-temporal spike templates are shown.
The waveform as impinging on a specific channel is given a unique color for
improved readability. The plotting distance between the channels is constant.

is chosen to be L = 32, which corresponds to 1 ms. The
minimum of every s̄n is positioned at the same sample index
through a spatio-temporal alignment procedure. The spatial
alignment results in all templates reaching their maximum on
the same channel. This might sound limiting, but we envision
the feature map to be used in a divide-and-conquer type
of spike sorting [38]. In a divide-and-conquer scheme, the
clustering analysis is performed for every electrode separately.
During this clustering, only spatio-temporal snippets are con-
sidered that reach their minimum on the same “dominant”
electrode. In such a case N is often taken to be the number of
electrodes that make up a local neighbourhood surrounding
the dominant electrode. In this work N = 10 is used. A
trained feature map can be re-used for all local neighbourhoods
that have a similar spatial configuration. Such a divide-and-
conquer approach has the advantage that it scales linearly with
an increasing number of electrodes and is an easy subject
for parallelism. One third of the simulated spike templates
is randomly selected and excluded from the further steps in

the augmentation process. This set of excluded templates are
reserved for testing in Section IV-B. We will refer to this set
as Stest The other two thirds, i.e., a total of 423 templates, are
further processed to create the augmented training data. We
will refer to this set of templates as Straining. Example simulated
templates are shown in Fig. 5. Note that these templates will
not act as training samples themselves, but instead will form
the basis for a synthetic model to generate training data.
A principal component analysis is performed on the set of
training templates. This requires the computation of the sample
covariance matrix over the training templates:

Rss =
1

|Straining|
∑

s̄n∈Straining

(s̄n − 〈Straining〉) (s̄n − 〈Straining〉)T ,

(10)
where |Straining| indicates the cardinality of Straining and
〈Straining〉 is the mean training template. The principal com-
ponents are then computed through the eigendecomposition
of Rss = UΣUT , where the columns of U contain the
normalized eigenvectors and Σ is a diagonal matrix with the
eigenvalues on the main diagonal. Without loss of generality,
we assume that the elements of Σ are sorted in ascending
order. We then select the first 30 columns of U to construct
a principal components subspace U1:30 ∈ RN2L×30 that
accounts for approximately 99% of the training templates
energy.

Consider vn = U1:30T (s̄n − 〈Straining〉) to be the principal
component projections of a mean-corrected training template.
Let vkn be the projection of s̄n onto the kth principal com-
ponent. For each k = 1 : 30, we estimate the probability
density function (PDF) Pk(vk) across all samples vkn for
n = 1, . . . , |Straining|. We use a non-parametric kernel-density
PDF estimation method with a Gaussian kernel [39] and a
bandwidth factor of 0.1. The bandwidth factor was chosen
based on visual inspection. Fig. 6 shows a visual representation
of the estimated PDFs for the first four principal compo-
nents, which are shown on top of the normalized projection
histograms. A similar quality of fit was seen for the other
principal components as well. Note that we model the PDF
for each k separately instead of a joint PDF, to avoid the curse
of dimensionality, which is supported by the uncorrelatedness
of the entries in v due to the PCA procedure. Sampling each
of the thirty distributions consecutively leads to an observed
random mean-corrected training template in the principal
component subspace. By projecting this observation back to
the original space and re-adding the mean template, a new
training template can be generated:

ˆ̄s = U1:30v + 〈Straining〉, (11)

8

where the kth entry of v is sampled from Pk. Such example
augmented spike templates are shown in Fig. 7. This figure
also contains a non-spatially aligned example. Such non-
aligned examples are removed from the set of augmented
training templates. In this work a set of 25000 random
augmented test templates is generated.

Given two distinct augmented training templates ˆ̄si and ˆ̄sj ,
a training set entry can be generated from following equations:

x̄i = rL
(
ˆ̄si
)

+ n̄ (12)

x̄j = rL
(
ˆ̄sj
)

+ n̄ (13)

x̄i⊕j = rL
(
ˆ̄si ⊕ ˆ̄si

)
+ n̄ (14)

x̄σi = rL
(
αiˆ̄si

)
+ n̄ (15)

x̄σj = rL
(
αjˆ̄sj

)
+ n̄ (16)

x̄δi = rL
(
ˆ̄si ⊕ ˆ̄sδk

)
+ n̄ (17)

x̄δj = rL
(
ˆ̄sj ⊕ ˆ̄sδk

)
+ n̄, (18)

with rL the temporal realignment-and-truncate operator that
results in a temporally aligned spike waveform with a temporal
window size of L samples. The alignment procedure used
in this work consists of placing the minimum value of the
(compound) spike waveform at the center of the temporal
window. In this work the random relative shift between two
spike waveforms is sampled from a uniform distribution that is
bounded between -10 and 10. With a slight abuse of notation,
let all n̄ be random Gaussian spatio-temporal white noise with
an average SNR of 30 dB (see Section IV-B). αi is a random
scaling factor associated with the neuron i that is sampled from
a uniform distribution that is bounded between 0.8 and 1.2.
ˆ̄sδk is a spike waveform that reaches its maximum energy on
a different channel than ˆ̄si and ˆ̄sj . As such, ˆ̄sδk is included to
model overlap from neurons that reach their minimum spike
trough on a different channel. Note that such non-spatially
aligned overlapping spikes have to be treated as a source of
noise in a divide-and-conquer clustering setting. By randomly
sampling (with replacement) ˆ̄si and ˆ̄sj with i 6= j from the
25000 augmented templates, a total of 1000000 training set
entries {(12)-(18)} are generated to form the training set T .

D. Training procedure

Given the model structure, cost function and training data,
we can optimize the model to minimize the cost over the
training data. To this end, we make use of Adam [40], which
is a stochastic gradient descent algorithm that makes use of
parameter-specific adaptive learning. Adam is operated with its
default parameter settings as implemented in TensorFlow [41].

We perform the training in random batches of 1000 training
set entries per iteration.

To prevent overfitting during training we apply dropout
regularization, as already mentioned in Section III-A. The
dropout fraction, i.e., the fraction of random connections that
are removed from the network during every training step, is
treated as a hyperparameter and will be discussed in the next
section. To further improve the training immunity with respect
to overfitting, we make use of early stopping [42] to terminate
the training iteration. If the cost evaluated on a validation set
does not decrease for 5 consecutive optimization passes over
the entire training set, the training is terminated. The validation
set V consists of a random 30% sample of the training data
set T . The final model that is retained is the model with the
lowest validation cost.

IV. EXPERIMENTS

A. Hyper parameter exploration

The model as presented in Section III-A depends on four
continuous hyper parameters: κ1, κ2, κ3, and the dropout
fraction. For each of the four continuous hyper parameters
we explore three predefined values: κ1 ∈ {1, 10, 100},
κ2 ∈ {0.1, 1, 10}, κ3 ∈ {0.1, 1, 10} and drop out
fraction ∈ {0.2, 0.4, 0.6}. Note that the values of the different
κ are relative to each other and to the first term of (9).
Only three values are considered for every parameter to limit
the dimensionality of the exploration space. Furthermore, we
consider the usage of two optional features as additional binary
hyper parameter: the use of batch normalization and the use
of a third hidden layer. Training a feature map for all possible
combinations of the described hyper parameter settings results
in a total of 324 models.

Because the cost function is directly modulated by the
choice of κ, the cost function value can not be used to
assess the spike sorting performance of the different models.
Furthermore, note that the training is example-based, i.e., the
training is performed over the training set entries that each
consist of only seven spike waveform examples at a time.
In this section we use a higher number of spike waveforms
for each pair of neurons (i, j) to enable a proper clustering
analysis. For every pair of neurons, a set U(i,j) of 300 spike
snippet are generated:

• 100 samples of x̄αi ,
• 100 samples of x̄αj , and,
• 100 samples of x̄αi⊕j that is defined as an overlapping

spikes snippet where each of the individual spike tem-

9

0.010

0.000

0.000 0.000

0.000

0.007

0.0200.012

0 100 200 300-100 0 100 200-100-200

0 100 150-100 -50 50 0 100-100 -50 50

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[-

]

Projection amplitude [arb. unit]

Principal component one Principal component two

Principal component three Principal component four

Fig. 6. Normalized projection histograms are shown in blue for the first four principal components of the set of “training templates” Straining. The projection
histograms are constructed by projecting all entries of Straining onto the respecitve principal component. For every histogram, the respective continuous
probability density estimate is shown in red.

plates are randomly scaled prior to the application of the
⊕-operator.

For each spike snippet there is a 5% chance that a random non-
spatially aligned spike is superimposed. The neuronal spike
templates from which the snippets are derived are templates
from the validation set V that is used for the early stopping
regularization3. Given these 300 spikes, a K-means clustering
is performed with K = 3.

To quantify the clustering performance, we compute two
additional metrics: the adjusted Rand index [43] and the center
prediction error (CPE).The adjusted Rand index is a widely
used metric to assess the clustering performance. The center
prediction error e(i,j) between neurons i and j is defined here
to be a measure of the targeted ‘linear behavior’ of the feature
map as shown in (4):

e(i,j) =
‖ci⊕j − (ci + cj)‖√

1
|U(i,j)|

∑
x̄k∈U(i,j) ‖g (x̄k)− cx̄k

‖2
, (19)

3The fact that these templates have been used for training purposes is not
an issue for the model selection, because the model is not directly optimized
for the model selection metrics that are used here.

where the different c indicate the cluster centers. cx̄k
denotes

the cluster center from the cluster to which a certain spike
waveform x̄k from U(i,j) is assigned. The denominator of e(i.j)

is a measure of the overall within-cluster spread that is related
to the root mean square error.

Given the clustering results for a pair of neurons (i, j),
both the Rand index and CPE can be computed for that pair.
This procedure is repeated for a total of 100 validation pairs,
resulting in an average rand index and CPE for every feature
map. The average metrics for every feature map resulting from
this hyper parameter exploration experiment are shown in Fig.
8.

As a first feature map selection criterion, we choose to
minimize the center prediction error because we highly value
the resolution of overlapping spikes in this work. Fortunately,
from our experimental data (see Fig. 8) there seems to be a
strong negative correlation between the center prediction error
and Rand index, such that feature map selection based on
the center prediction error also leads to excellent clustering
behaviour.

From Fig. 8 we can also obtain an insight into the effects

10

2 ms

Te
m

pl
at

e
am

pl
itu

de
[a

rb
.u

ni
t]

Fig. 7. Sixteen example augmented spike templates generated from (11).
The waveform as impinging on a specific channel is given a unique color
for improved readability. The plotting distance between the channels is
constant. For illustrative purposes, an augmented spike template that reaches
its maximum energy on a different channel than intended (and which is
excluded from the further analysis) is shown in grey.

of the different parameters on the spike sorting performance.
For κ1 we see that its actual value does not have a major
impact on the spike sorting performance, both in terms of
Rand index and center prediction error. For κ2 we see that
this parameter affects the CPE. This dependency is likely
due to the normalization with respect to the within-cluster
spread in the computation of the CPE. The effect of κ3 is
most pronounced for the clustering performance, i.e., focusing
too much on robustness against non-spatially aligned overlap
will deteriorate the clustering performance. For the use of
batch normalization, the optional layer and the value of the
dropout fraction, we could not see any clear effect on the
spike sorting performance. The minimum CPE model that we
finally selected for further analysis and comparison has an
average CPE of 0.300 and average Rand index of 0.971 for
the validation data. The hyper parameters associated with this

model are: κ1 = 1, κ2 = 0.1, κ3 = 0.1, batch normalization
is not used, the optional layer is used (resulting in a so-called
deep neural network [32]) and a dropout fraction of 0.2 is used
during training. It is noted that the model with maximum Rand
index only reached a slightly higher Rand index of 0.975 but
had a more than double center prediction error of 0.660.

B. Sorting overlapping spikes benchmark

Given the final feature map from the previous section,
we can benchmark our method against the state-of-the-art
for overlap resolution. The method that we have presented
here is unique, in that it is the only method according to
our knowledge that has the capability of resolving spike
overlap directly in the feature space without the need for
first extracting single-unit templates from the recording. Given
that there is no feature space benchmark available that we
could compare against, we resort to a state-of-the-art matched
filtering technique for resolving spike overlap. The matched
filter post-processors that we compare against are signal-to-
peak-interference ratio (SPIR) optimal linear filters [23]. The
desired SPIR was set to 20 dB and a subspace regularization
[44] was applied, which accounts for 90% of the signal power.
Finally, a fixed detection threshold of 25% of the template
response output power (which is known by design) was used
on the SPIR-optimal filter output to perform the final spike
detection/classification. In this section, we also report the spike
sorting accuracy for a clustering-based approach (also using
K-means with K=3 for every pair of test neurons) which uses
PCA features. The features are computed by projecting the
data on three principal components. By comparing our method
against a PCA clustering-based approach, we can assess the
loss in accuracy when not accounting for overlapping spikes.

It is important to realize that the presented feature map
approach and SPIR-optimal benchmark are very different, and
this difference should be taken into consideration when com-
paring the sorting accuracy of the different methods. Use of the
presented feature map approach is ultimately an unsupervised
clustering approach, whereas the use of template matching
post-processors is a binary PU-learning classification problem.
This means that the feature map approach is uninformed about
the spike waveforms of the neurons under study during the
feature map training, whereas the template matching approach
depends on the availability of the spike waveform for the
matched filter design. Therefore, we do not expect the feature
space approach to perform better than template matching
approaches due to the fundamentally different prior knowledge
assumptions. At best, our presented feature map approach

11

κ2

κ3

κ1

Batch normalization

Optional layer Dropout fraction
0.65 0.95

0.65 0.95 0.65 0.95

0.65 0.95

0.65 0.95

1

2

3

1

2

3

1

2

3

C
en

te
r

pr
ed

ic
tio

n
er

ro
r

[-
]

Rand index [-]

1

2

3

1

2

3

0.65 0.95

1

2

3
1
10
100

0.1
1
10

Yes
No

0.1
1
10

0.2
0.4
0.6

Yes
No

Fig. 8. The six plots in this figure show the average rand index (x-axis) and center prediction error (y-axis) over the the validation pairs for all feature maps
in the exploration experiment. The lowest right-most point corresponds to the best performance. Each plot contains the same values, but has a unique color
coding that is informed by one of the hyper parameters as indicated in the respective legends.

would result in a similar performance, but using a simplified
processing pipeline. Furthermore, in this section, we will make
use of other accuracy metrics, as compared to the previous
section, that are applicable to both approaches and that are
also more commonly used for spike sorting validation, i.e.,
precision and recall. Precision is equal to the fraction of true
positive detections over the total number of detection, whereas
recall is the fraction of true positive detections over the total
number of ground truth positives.

The test data that is used in this section consists again of 100
pairs of neurons, but here we make use of the biophysically
simulated test templates in Stest. Note that these templates
were obtained from neuronal models that are kept out of

the data augmentation process for the generation of random
training and validation templates. Furthermore, rather than
using spatio-temporal white noise as during the training and
hyper parameter exploration, here, we embed test spikes in
real neural recordings [45] which are acquired from a record-
ing device with the same probe geometry as was used for
the simulations. The injection of the biophysically simulated
spikes into this recording allows to quantify the spike sorting
performance since the ground-truth spikes/clusters are known.
For every pair we generate 300 spike snippets as in the
previous section, but we don’t add artificial non-spatially
aligned spikes, because the recording already contains such

12

g1 [arb. unit]
0 1 2

0.5

0.0

-0.5

-1

numerator of center prediction error

0 1 2

0.5

0.0

-0.5

-1

0

-1

-2

0-1-2

g 2
[a

rb
.u

ni
t]

g 3
[a

rb
.u

ni
t]

g3 [arb. unit]

cluster center

linear addition

Fig. 9. Three orthogonal projections of the three dimensional feature space are shown. The spike projections are color coded based on the ground truth labels:
red for spikes of neuron one, blue for spikes of neuron two and yellow for overlapping spikes of neuron one and two. The green dot represents the cluster
center of the overlapping spikes cluster. The vector addition of the cluster centers of the red and blue clusters, which is indicated by a black cross, is shown
to map closely to the cluster center of the overlapping spikes cluster.

interfering spikes.

In Fig. 9, the spike embeddings for a pair of test neurons
injected in a real recording are shown. From this figure, it is
clear that the different clusters are largely separable. Note that
the color coding is based on ground-truth labels and not on
the actual clustering results. Through the vector addition of the
cluster centers from the single-neuron clusters, an estimate of
the center of the overlapping spikes cluster can be obtained.
The estimated center is indicated in Fig. 9 by a black cross
and it is shown to be close to the actual cluster center of
the overlapping spikes cluster. The cluster centers that are
used here are obtained directly from the clustering analysis
(i.e., they are not based on the ground truth labels). From this
example, it is clear that the feature map generalizes in terms
of spike sorting and overlap resolving capabilities for this test
pair.

Fig. 10 summarizes the spike sorting performance for
the proposed feature map approach, SPIR-optimal filtering
approach and PCA-based approach for all test pairs. The
feature map approach has a median precision of 99% and
a median recall of 98.5%, whereas for the SPIR-optimal
filter this is 100% for both. For the PCA-based clustering

approach a median precision of 93.3% and a median recall
of only 50% is noted. From this comparison it is clear that
both the proposed approach and SPIR-optimal filter achieve
a very good spike sorting performance, although the SPIR-
optimal filter approach slightly outperforms the proposed
feature map approach. However, our proposed feature map
approach is superior to the PCA-based approach in the context
of overlapping spikes. As already mentioned, the SPIR-optimal
filter approach requires the spike templates to be known. In
this work we assume that all spike templates are known,
which is very unlikely to be the case in practice. Furthermore,
because the feature map approach is unsupervised, it can not
benefit from this assumption. Although the proposed feature
map performs worse than the SPIR-optimal filter benchmark,
its performance is still at an acceptable level. Note that we
are only able to express the clustering performance of 94%
and 90% of the test pairs in terms of precision and recall
for the feature map approach and the PCA-based approach,
respectively. This can be understood from the fact that the
K-means clustering used here, sometimes groups together the
single-neuron clusters into a single cluster such that this cluster
can only be arbitrarily assigned to one of the two neurons.

13

1.0

0.8

0.6

0.4 Pr
ec

is
io

n
[-

]

R
ec

al
l

[-
]

approach (94%)
MLP feature map SPIR-optimal

Pr
ec

is
io

n
[-

]

R
ec

al
l

[-
]

filtering
Principal component

Pr
ec

is
io

n
[-

]

R
ec

al
l

[-
]

approach (90%)

Fig. 10. The precision and recall boxplots are shown for both the proposed
MLP feature map approach (red), the SPIR-optimal filter approach (blue) and
a principal component feature map approach (yellow). The median values for
the different metrics are depicted in orange. Outliers are shown as grey dots.
For the MLP and principal component feature map approaches, we could only
express the sorting performance in terms of precision and recall for 94% and
90% of the test pairs, respectively (see text).

This is a common problem in spike sorting, which implies
that no single-unit activity can be extracted for these neurons.
This issue can be potentially resolved by using more advanced
clustering techniques [46], which is beyond the scope of this
paper. As the SPIR-optimal filtering is here computed from
the ground-truth templates (instead of the cluster centroids),
it does not suffer from this issue. However, in reality these
templates should also be extracted from a prior unsupervised
clustering [23].

The overall high spike sorting accuracy for both the pro-
posed approach and SPIR-optimal filtering approach is driven
by the high SNR spike trains that we have used for both
training and testing. The signal power that is used here to
compute the SNR is the peak power of the spike waveforms.
The SNR of the test templates that are used in this section
are situated between 25 and 38 dB, with an average of 30
dB. This SNR range is similar to the SNR range used during
training. For such high SNR neurons our proposed feature
space approach can thus be used to reliably sort and resolve
overlapping spikes. Peak SNRs of 20 to 30 dB do occur in
practice and these spike trains are usually easy to detect and
can be reliably sorted, as was shown in the previous analysis.

In Fig. 11 we investigate whether the resulting feature map
generalizes to other SNR scenarios. The SNR measures that
are reported in the graph are the mean SNRs that correspond
to a specific noise level. The 30 dB case corresponds to the
case that was presented in Fig. 10. When further increasing

recall [-]
precision [-]

10 dB (17%) 20 dB (88%)

30 dB (94%)

40 dB (96%)

1.0

0.9

0.8

0.7

0.6

0.5

Fig. 11. The precision (red) and recall (blue) are shown for four different mean
SNRs: 10 dB, 20 dB, 30 dB and 40 dB. The median metrics for each scenario
are indicated in orange. The depicted measure of spread corresponds to the
non-outlier boxplot interval, i.e., Q1−1.5IQR and Q3+1.5IQR, where IQR
is the inter-quartile range. For each mean SNR the proportion of test pairs for
which the sorting accuracy can be expressed in terms of precision and recall
is shown between brackets.

the SNR to an average of 40 dB the spike sorting performance
further increases with a median precision and precision of both
100%. We were able to express the sorting accuracy in terms of
precision and recall for 96% of the test pairs. When decreasing
the SNR to an average of 20 dB, the median precision and
recall decrease to 85.1% and 84.2% respectively. For the 20
dB case we were able to express the spike sorting performance
in terms of precision and recall for 88% of the test pairs.
Finally, for the 10 dB case the median precision and recall
further decrease to both 66.2%. For this final case, we were
only able to express the sorting performance for 17% of the
test pairs (which also explains the low spread compared to
the 20 dB case). We can conclude from this experiment that
the resulting feature map does not generalize for the lower
SNR scenarios that were unseen during training. A potential
retraining with lower SNR spike waveforms could improve the
sorting performance for these scenarios.

V. DISCUSSION AND CONCLUSION

We have presented a feature map that is capable of resolving
spike overlap in the feature space. Overlapping spikes clusters
are identifiable by means of a simple vector addition of pairs
of cluster centers. If the sum of the cluster centers from a pair
of clusters is sufficiently close to the center of a third cluster,
this third cluster is believed to contain spike snippets that are a
superposition of spikes from the pair of neurons corresponding
to the pair of clusters. This approach is particularly interesting,

14

because the feature map has to be trained only once. After this
initial training, the feature map is intended to be used without
any retraining on other recordings that have a similar recording
setting. We have validated this usage scenario by showing that
the proposed feature map and its overlap resolution capabilities
generalize to data that was unseen during training.

In Section III we have broken down the design of the
feature map into its different ingredients: model selection,
cost function, training data and training procedure. Although
we have shown that our feature map is capable of sorting
overlapping spikes to a large extent, our method performed
slightly worse compared to the state-of-the-art. Although we
don’t expect a feature map approach to outperform a state-
of-the-art (SPIR-optimal) matched filtering approach due to
the fundamental difference in learning paradigm and available
prior knowledge, a further and deeper exploration of the design
space could further close the gap between the two paradigms.
Unfortunately, the design space is infinitely large, which forces
researchers to narrow down the free parameters.

However, in case of future research in this field, the
proposed multi-layer perceptron architecture could be further
improved or other neural network families could be con-
sidered, e.g., convolutional neural networks. The proposed
cost function can also be further tweaked, e.g., to account
for overlapping spikes snippets from the activity of three or
more neurons. However, support for multiple overlap (as well
as other additional cost terms) is likely to trade off with
other feature map characteristics, such as cluster separability,
which could hamper the sorting performance. Therefore, it is
important to assess the need for additional cost term modelling
based on how these terms affect the sorting performance, i.e.,
both with and without the additional term involved. Other
cost function related improvement could be integrated to
account for neuronal bursting and probe drift [47]. A design
component in this works that remains largely unexplored are
the use of different optimization algorithms and regularization
approaches, that might also lead to alternative feature map
approaches with improved sorting capabilities.

We believe that the general success of domain-specific
learning-based spike detection and feature map building blocks
for spike sorting will depend on the availability of data
augmentation approaches that generalize to real recordings.
In this work we have proposed a simple approach based
on simulated templates, that was capable of generalizing to
realistic recordings that contained simulated test templates
embedded in real recording noise. Note that the realistic
recording noise was not available during training. Apparently,

the feature map did not work well for low-SNR regimes. In
future research, the training could be repeated, taking into
account realistic noise conditions and a wider range of signal-
to-noise ratio conditions. Such a training might even lead to a
feature map with noise-reduction capabilities. Finally, we don’t
think learning-based building blocks will generalize between
distinct recording devices, e.g., different probe geometries,
and this is a limiting practical factor when compared to
non-domain-specific approaches that are widely used today.
We recognize that the proposed data augmentation method
heavily depends on the availability of realistic simulation data,
which could hamper its adoption when a wide variety of
recording devices are of interest to a specific user. Therefore,
we encourage future research on data augmentation procedures
that take real recordings at their input. Nonetheless, the use of
domain-specific building block has the potential to overcome
long standing spike sorting challenges. For example, in our
work, the template estimation bias due to overlapping spikes
is circumvented through an integrated feature space approach.

REFERENCES

[1] J. Wouters, F. Kloosterman, and A. Bertrand, “A neural network-based
spike sorting feature map that resolves spike overlap in the feature
space,” in Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1175–1179, 2020.

[2] J. J. Jun, N. A. Steinmetz, J. H. Siegle, D. J. Denman, M. Bauza,
B. Barbarits, A. K. Lee, C. A. Anastassiou, A. Andrei, Ç. Aydın, et al.,
“Fully integrated silicon probes for high-density recording of neural
activity,” Nature, vol. 551, no. 7679, pp. 232–236, 2017.

[3] J. E. Chung, H. R. Joo, J. L. Fan, D. F. Liu, A. H. Barnett,
S. Chen, C. Geaghan-Breiner, M. P. Karlsson, M. Karlsson, K. Y. Lee,
et al., “High-density, long-lasting, and multi-region electrophysiological
recordings using polymer electrode arrays,” Neuron, vol. 101, no. 1,
pp. 21–31, 2019.

[4] M. S. Lewicki, “A review of methods for spike sorting: the detection
and classification of neural action potentials,” Network: Computation in
Neural Systems, vol. 9, no. 4, pp. R53–R78, 1998.

[5] E. I. Moser, E. Kropff, and M.-B. Moser, “Place cells, grid cells, and
the brain’s spatial representation system,” Annu. Rev. Neurosci., vol. 31,
pp. 69–89, 2008.

[6] A. Khatoun, B. Asamoah, and M. Mc Laughlin, “Simultaneously excita-
tory and inhibitory effects of transcranial alternating current stimulation
revealed using selective pulse-train stimulation in the rat motor cortex,”
Journal of Neuroscience, vol. 37, no. 39, pp. 9389–9402, 2017.

[7] Ç. Aydın, J. Couto, M. Giugliano, K. Farrow, and V. Bonin, “Locomotion
modulates specific functional cell types in the mouse visual thalamus,”
Nature communications, vol. 9, no. 1, pp. 1–12, 2018.

[8] S. Gibson, J. W. Judy, and D. Marković, “Spike sorting: The first step in
decoding the brain,” IEEE Signal processing magazine, vol. 29, no. 1,
pp. 124–143, 2011.

[9] S. Shoham, M. R. Fellows, and R. A. Normann, “Robust, automatic
spike sorting using mixtures of multivariate t-distributions,” Journal of
neuroscience methods, vol. 127, no. 2, pp. 111–122, 2003.

[10] T. I. Aksenova, O. K. Chibirova, O. A. Dryga, I. V. Tetko, A.-L. Benabid,
and A. E. Villa, “An unsupervised automatic method for sorting neuronal

15

spike waveforms in awake and freely moving animals,” Methods, vol. 30,
no. 2, pp. 178–187, 2003.

[11] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike
detection and sorting with wavelets and superparamagnetic clustering,”
Neural computation, vol. 16, no. 8, pp. 1661–1687, 2004.

[12] C. Rossant, S. N. Kadir, D. F. Goodman, J. Schulman, M. L. Hunter,
A. B. Saleem, A. Grosmark, M. Belluscio, G. H. Denfield, A. S.
Ecker, et al., “Spike sorting for large, dense electrode arrays,” Nature
neuroscience, vol. 19, no. 4, pp. 634–641, 2016.

[13] M. Pachitariu, N. A. Steinmetz, S. N. Kadir, M. Carandini, and K. D.
Harris, “Fast and accurate spike sorting of high-channel count probes
with kilosort,” Advances in neural information processing systems,
vol. 29, pp. 4448–4456, 2016.

[14] J. E. Chung, J. F. Magland, A. H. Barnett, V. M. Tolosa, A. C. Tooker,
K. Y. Lee, K. G. Shah, S. H. Felix, L. M. Frank, and L. F. Greengard,
“A fully automated approach to spike sorting,” Neuron, vol. 95, no. 6,
pp. 1381–1394, 2017.

[15] P. Yger, G. L. Spampinato, E. Esposito, B. Lefebvre, S. Deny,
C. Gardella, M. Stimberg, F. Jetter, G. Zeck, S. Picaud, et al., “A spike
sorting toolbox for up to thousands of electrodes validated with ground
truth recordings in vitro and in vivo,” Elife, vol. 7, p. e34518, 2018.

[16] J. W. Pillow, J. Shlens, E. Chichilnisky, and E. P. Simoncelli, “A model-
based spike sorting algorithm for removing correlation artifacts in multi-
neuron recordings,” PloS one, vol. 8, no. 5, p. e62123, 2013.

[17] M. Abeles and M. H. Goldstein, “Multispike train analysis,” Proceedings
of the IEEE, vol. 65, no. 5, pp. 762–773, 1977.

[18] D. A. Adamos, N. A. Laskaris, E. K. Kosmidis, and G. Theophilidis,
“Nass: an empirical approach to spike sorting with overlap resolution
based on a hybrid noise-assisted methodology,” Journal of neuroscience
methods, vol. 190, no. 1, pp. 129–142, 2010.

[19] O. Marre, D. Amodei, N. Deshmukh, K. Sadeghi, F. Soo, T. E. Holy,
and M. J. Berry, “Mapping a complete neural population in the retina,”
Journal of Neuroscience, vol. 32, no. 43, pp. 14859–14873, 2012.

[20] F. Franke, R. Q. Quiroga, A. Hierlemann, and K. Obermayer, “Bayes op-
timal template matching for spike sorting–combining fisher discriminant
analysis with optimal filtering,” Journal of computational neuroscience,
vol. 38, no. 3, pp. 439–459, 2015.

[21] Y. Mokri, R. F. Salazar, B. Goodell, J. Baker, C. M. Gray, and S.-C.
Yen, “Sorting overlapping spike waveforms from electrode and tetrode
recordings,” Frontiers in neuroinformatics, vol. 11, p. 53, 2017.

[22] J. Wouters, F. Kloosterman, and A. Bertrand, “Towards online spike
sorting for high-density neural probes using discriminative template
matching with suppression of interfering spikes,” Journal of neural
engineering, vol. 15, no. 5, p. 056005, 2018.

[23] J. Wouters, P. Patrinos, F. Kloosterman, and A. Bertrand, “Multi-pattern
recognition through maximization of signal-to-peak-interference ratio
with application to neural spike sorting,” IEEE Transactions on Signal
Processing, 2020.

[24] J. S. Prentice, J. Homann, K. D. Simmons, G. Tkačik, V. Balasubrama-
nian, and P. C. Nelson, “Fast, scalable, bayesian spike identification for
multi-electrode arrays,” PloS one, vol. 6, no. 7, p. e19884, 2011.

[25] C. Ekanadham, D. Tranchina, and E. P. Simoncelli, “A unified frame-
work and method for automatic neural spike identification,” Journal of
neuroscience methods, vol. 222, pp. 47–55, 2014.

[26] J. H. Lee, D. E. Carlson, H. Shokri Razaghi, W. Yao, G. A. Goetz,
E. Hagen, E. Batty, E. Chichilnisky, G. T. Einevoll, and L. Paninski,
“YASS: Yet another spike sorter,” Advances in neural information
processing systems, vol. 30, pp. 4002–4012, 2017.

[27] C. Hurwitz, K. Xu, A. Srivastava, A. Buccino, and M. Hennig, “Scalable
spike source localization in extracellular recordings using amortized
variational inference,” in Advances in Neural Information Processing
Systems, pp. 4724–4736, 2019.

[28] M. Saif-ur Rehman, O. Ali, S. Dyck, R. Lienkämper, M. Metzler,
Y. Parpaley, J. Wellmer, C. Liu, B. Lee, S. Kellis, et al., “Spikedeep-
classifier: A deep-learning based fully automatic offline spike sorting
algorithm,” Journal of Neural Engineering, 2020.

[29] Z. Li, Y. Wang, N. Zhang, and X. Li, “An accurate and robust method for
spike sorting based on convolutional neural networks,” Brain Sciences,
vol. 10, no. 11, p. 835, 2020.

[30] J. Eom, I. Y. Park, S. Kim, H. Jang, S. Park, Y. Huh, and D. Hwang,
“Deep-learned spike representations and sorting via an ensemble of auto-
encoders,” Neural Networks, 2020.

[31] S. Haykin, Neural networks: a comprehensive foundation. Prentice-Hall,
Inc., 2007.

[32] S. Theodoridis, Machine learning: a Bayesian and optimization perspec-
tive. Academic press, 2015.

[33] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pp. 315–323, 2011.

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[36] S. Ramaswamy, J.-D. Courcol, M. Abdellah, S. R. Adaszewski, N. An-
tille, S. Arsever, G. Atenekeng, A. Bilgili, Y. Brukau, A. Chalimourda,
et al., “The neocortical microcircuit collaboration portal: a resource for
rat somatosensory cortex,” Frontiers in neural circuits, vol. 9, p. 44,
2015.

[37] A. P. Buccino and G. T. Einevoll, “Mearec: a fast and customizable
testbench simulator for ground-truth extracellular spiking activity,” Neu-
roinformatics, pp. 1–20, 2020.

[38] N. V. Swindale and M. A. Spacek, “Spike sorting for polytrodes: a divide
and conquer approach,” Frontiers in systems neuroscience, vol. 8, p. 6,
2014.

[39] D. W. Scott, Multivariate density estimation: theory, practice, and
visualization. John Wiley & Sons, 2015.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[41] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system
for large-scale machine learning,” in 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16), pp. 265–
283, 2016.

[42] L. Prechelt, “Early stopping-but when?,” in Neural Networks: Tricks of
the trade, pp. 55–69, Springer, 1998.

[43] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical association, vol. 66, no. 336,
pp. 846–850, 1971.

[44] J. Wouters, F. Kloosterman, and A. Bertrand, “A data-driven regulariza-
tion approach for template matching in spike sorting with high-density
neural probes,” in 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4376–
4379, IEEE, 2019.

[45] N. Steinmetz, M. Carandini, and K. D. Harris, “”Single Phase3” and
”Dual Phase3” Neuropixels Datasets,” 3 2019.

[46] A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, 2014.

[47] H. G. Rey, C. Pedreira, and R. Q. Quiroga, “Past, present and future of
spike sorting techniques,” Brain research bulletin, vol. 119, pp. 106–117,
2015.

