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Abstract—The performance of most array signal processing
tasks relies on the presence of correlation between sensor signals.
In a wireless sensor network, where sensor nodes are spread out
over a relatively large area, it is useful to identify nodes observing
similar sensor signals and hence common phenomenons, for
example to partition the network according to the observed latent
signals and corresponding correlation structure. This can be
achieved via the so-called MAXVAR formulation of generalized
canonical correlation analysis, which finds a low-dimensional sub-
space that highlights correlated signal components between mul-
tiple nodes’ observed signal subspaces. The classical procedure
for computing the solutions of MAXVAR consists in performing
a generalized eigenvalue decomposition after collecting all the
sensors’ signals at a fusion center. However, this typically incurs
high communication and computational costs. In this paper, we
describe a low communication and computational cost distributed
algorithm that computes the solutions of MAXVAR without
aggregating the nodes’ observations at a central location. We
show how a subset of those solutions can be used locally by
each node to estimate the global correlation structure across all
nodes in the network, thereby allowing any node to evaluate the
presence of correlated signals at any other node, even if no direct
link is shared. We prove the convergence of the algorithm and
validate our method for estimating the correlation structure via
simulations.

Index Terms—Wireless sensor networks, distributed array
processing, generalized canonical correlation analysis, MAXVAR,
network pruning.

I. INTRODUCTION

AWireless Sensor Network (WSN) consists of a collection
of nodes that are equipped with one or more sensors,

wireless communication capabilities, and a processing unit.
The sensor observations collected in a WSN can either be
forwarded to a “fusion center” (FC) where all the data is
collected and centrally processed, or the data processing task
can be collaboratively performed in a decentralized fashion by
the sensing nodes themselves [2]. Centralized computation has
the advantage of allowing the use of off-the-shelf algorithms
and techniques, but comes at the cost of greater bandwidth
requirements, since all nodes have to send their raw data to
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the FC, as well as a large computational cost at the FC, which
scales poorly with respect to the number of sensor nodes [3].
The aforementioned increase in bandwidth is even more severe
in the case of networks relying on multi-hop routing towards
the FC, where some nodes act as data relays for other nodes
[4]. Furthermore, the FC constitutes a single point of failure
which compromises the robustness of the network [4], [5]. In
comparison, distributed processing only requires each node to
solve a local low-complexity task to collaboratively complete
a global task of higher complexity.

Array signal processing tasks such as signal estimation,
filtering, or subspace estimation, generally boil down to the ex-
traction of specific signal components, often split across many
sensor signals. Due to the presence of sensing noise and the
spatial distribution of the underlying signal sources, different
nodes typically observe different but correlated signals, some
sharing common components and others not. It is therefore of
great importance to identify which node pairs share a common
latent signal subspace and which do not, as this knowledge can
be used to prune the network or cluster the nodes according
to the similarity between their signal subspaces, resulting in
further bandwidth and computational complexity reduction at
each node [6], [7].

In this paper, we leverage the fact that the so-called principal
angles derived from the solutions of the canonical correlation
analysis (CCA) problem can be used to quantify the similarity
between two nodes’ sensor signal subspaces [8], [9]. Indeed,
CCA can be used to estimate the signal components that
are maximally correlated between two different nodes. It is
closely related to principal component analysis (PCA) [10]
and the Karhunen–Loève transform (KLT) [11], which extract
the highest power components, yet not necessarily observed by
both nodes. As CCA is only applicable to identify the most
correlated signal components within the signal subspaces of
two nodes, applying it to a network of more than two nodes
would result in a combinatorial complexity scaling. In this
paper, we show that one of its multi-set generalizations, the so-
called “Maximum Variance” (MAXVAR) generalization [12]–
[14], can be used to approximate the solutions of the pairwise
CCA problems and therefore the complete correlation structure
of the network with a complexity that scales linearly with the
network’s size. MAXVAR has indeed been shown to provide
a description of the intersection between multiple subspaces
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[15], which fits with the general purpose of finding “shared”
signals subspaces across multiple nodes of a WSN.

There exist multiple multi-set generalizations of CCA, each
characterized by a specific objective function and set of
constraints [14]. The MAXVAR formulation historically refers
to the objective function introduced by Horst [12]. Carroll
[13] later introduced a new set of constraints for this objec-
tive which turns the formulation into an easily interpretable
subspace decomposition and on which we focus in this paper.

As using MAXVAR in a centralized fashion would hinder
our progress towards bandwidth and complexity reduction,
we present a distributed and adaptive algorithm for tracking
the solutions of MAXVAR, relying on the exchange of com-
pressed signals between the nodes. We describe variants of
this distributed MAXVAR (D-MAXVAR) algorithm for fully
connected, star-topology and tree-topology networks, and use
the later as a basis for extending the algorithm to arbitrary
topologies. We then explain how its solution can be used to
evaluate the pair-wise correlation between any pair of nodes
in the network, even if they are not connected via a direct link.

Previous works have investigated similar distributed sub-
space decompositions, targeting the union of the nodes’ sub-
spaces by extracting the components of greatest power [16],
[17], maximal SNR [18], [19] or maximizing correlation
between two sets of signals [20], [21]. In this work, we focus
on finding the components that most adequately describe the
inter-node correlation coefficient, also known as Pearson’s
correlation coefficient. Distributed algorithms already exist for
the so-called SUMCORR generalization of CCA [22] but, to
our knowledge, no distributed algorithm has been developed
for MAXVAR, which, contrarily to SUMCORR, admits an
analytical solution. In addition, the focus of [22] was on
computational efficiency, rather than on bandwidth scaling, as
is the case of the present work. Finally, as an alternative to
distributed methods, several works investigate the applicability
of CCA-like techniques to scenarios involving two sensor
arrays and where only a limited number of samples is available
at each node [23]–[25].

In our previous work [1], we presented a condensed descrip-
tion of the algorithm for star- and tree-topology networks. In
this paper, we provide a proof of convergence and explain how
the algorithm’s outputs can be used to estimate the network’s
correlation structure. We also provide numerical simulations to
demonstrate the algorithm’s effectiveness and its convergence
properties.

The paper is organized as follows. In Section II, we cover
the preliminaries and algebraic concepts related to MAXVAR
and explain how it can be used in the context of WSNs. In
Section III, we describe a distributed MAXVAR algorithm
for fully connected networks and discuss its convergence
properties. The algorithm is extended to general topologies in
Section IV. Section V discusses how a specific subset of the
solutions of MAXVAR can be used by each node to estimate
the inter-node correlation structure, and in particular evaluate
the degree to which each node’s signals correlate with any
other node, even several hops away. In Section VI, we assess
the algorithm’s performance through various simulations. We
conclude by a brief discussion in Section VII.

II. PRELIMINARIES

A. WSN Setting and Notation

We consider a WSN consisting of K nodes in which
each node k ∈ K = {1, . . . ,K} collects discrete obser-
vations of a real-valued Mk-channel sensor signal xk =
[xk,1, . . . , xk,Mk

]T . We model xk ∈ RMk as a stochastic
process and denote xk[t] its value at time t. We assume that
xk is zero-mean, ergodic and short-time stationary, allowing
us to estimate the slowly varying covariance matrices from
sample averages over finite segments of data:

E
{
xk[t]x

T
l [t]
}
= Rxkxl

≈ 1

T
Xk[t]X

T
l [t] (1)

where E {·} denotes the expectation operator and Xk[t] de-
notes the Mk×T observation matrix containing T consecutive
observations of xk centered around t in its columns. Finally,
we define the network-wide observation vector as the M -
channel vector x obtained by stacking the xk’s and where
M =

∑
k Mk.

B. Canonical Correlation Analysis (CCA)

We wish to characterize the intensity of correlations be-
tween the signals of any two nodes. The so-called canonical
correlation coefficients provide such a characterization, which
can be found by means of canonical correlation analysis [26].
Considering two multi-channel signals xk and xl associated
with two nodes k, l ∈ K, CCA computes spatial filters wk and
wl that maximize the correlation coefficient ρkl between their
output signals zk = wT

k xk and zl = wT
l xl. The output signals

zl and zk are referred to as the first canonical directions,
and ρkl is referred to as the first canonical correlation co-
efficient. Additional canonical directions and coefficients can
be found by computing additional pairs of spatial filters that
maximize the correlation between their outputs while having
their outputs remain uncorrelated (orthogonal) to the previous
canonical directions. Formally, the i-th canonical correlation
coefficient ρkli and canonical directions zk,i, zl,i are defined
as

ρkli = E {zk,izl,i} = max
wk,i,wl,i

E
{
wT

k,ixkx
T
l wl,i

}
(2a)

s.t. zk,i = wT
k,ixk, zl,i = wT

l,ixl (2b)

E
{
z2k,i
}
= E

{
z2l,i
}
= 1 (2c)

E {zk,i[zk,1, . . . , zk,i−1]} = 0 (2d)
E {zl,i[zl,1, . . . , zl,i−1]} = 0 (2e)

The three last constraints require the canonical directions to
have unit-variance and be orthogonal with respect to each other
within each node. Note that ρkli = 1 implies that the pairs
(zk,i, zl,i) span the exact intersection between the sensor signal
subspaces of nodes k and l.

If we now express the set of canonical directions of node k
with respect to node l as

zkl = [zk,1, . . . , zk,Mkl
]T = W T

klxk (3)

with Mkl = min(Mk,Ml) and Wkl ∈ RMk×Mkl , it can
be shown [27] that the canonical directions and coefficients
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between two nodes k and l are the solutions of the following
generalized eigenvalue problem: 0 Rxkxl

Rxlxk
0

Wkl

Wlk

 =

Rxk
0

0 Rxl

Wkl

Wlk

Λkl

(4a)[
W T

kl W T
lk

]Rxk
0

0 Rxl

Wkl

Wlk

 = I (4b)

where Rxk
is a shorthand notation for Rxkxk

and Λkl is
a diagonal matrix whose diagonal entries are non-negative
and correspond to the canonical correlation coefficients. As
a result, the optimal solution of (2) is given by the gener-
alized eigenvectors corresponding to the largest generalized
eigenvalues. By expressing the canonical directions via the
parametrization introduced by (3), CCA can indeed be seen
as the problem of finding two sets of spatial filters whose
corresponding outputs have maximal total correlation.

C. Total Squared Correlation

From the definition of canonical correlation coefficients, we
can define the total squared correlation (TSC)

Θkl ≜
Mkl∑
i=1

(ρkli )2 = Tr
(
Λ2

kl

)
, (5)

where Tr (·) denotes the trace operator. (5) can be interpreted
as a generalization of correlation between random variables
to correlation between sets of random variables. Indeed, if we
denote Xk = Spanxk, i.e. the signal subspace spanned by the
channels of xk, we have:

Θkl = 0 ⇔ Xk ⊥ Xl (6)
Θkl = Mkl ⇔ Xk ⊆ Xl (7)

assuming dim(Xk) ≤ dim(Xl). Note that in the one-
dimensional case (Mk = Ml = 1), the TSC reduces to the
usual squared correlation coefficient. Contrarily to correlation,
the TSC is not concerned with the direction of the relationship
(i.e. positively or negatively correlated), only the absolute
magnitude of the relationship is captured. The TSC is positive
and symmetric but does not satisfy the triangle inequality and
is therefore not a distance [28]. Still, in the case where the
channels of xk and xl are linearly independent (which is in
practice always true in noisy settings), it can easily be turned
into one by defining

dkl =
√
max{Mk,Ml} −Θkl (8)

which satisfies the triangle equality [29] and corresponds to
the so-called Chordal distance in the particular case where
Mk = Ml [30]. Considering these above properties, the TSC
is an adequate metric for characterizing the degree to which
the signals of two nodes correlate, which is one of the goals
of this paper. In a WSN context, the TSC could for example
be used as the key ingredient to an adaptive network where
links between low-TSC node pairs are pruned, while more
bandwidth is allocated to links between high-TSC node pairs.

Similarly, the TSC could be used to define a weighted graph
describing the correlation structure of the network, and on
which spectral clustering techniques could be applied [31].

D. MAXVAR: Extension to more than two Subspaces

Problem (2) can be generalized to more than two nodes
or subspaces in various fashions. As it admits a closed form
solution1, we consider here the so-called Maximum-Variance
(MAXVAR) generalization of the CCA problem, as described
by Carroll [13] and defined as follows for K signal subspaces:

min
{Wk}

min
s

K∑
k=1

E
{
∥s− zk∥2

}
(9a)

s.t. zk = W T
k xk (9b)

E
{
ssT

}
= IQ (9c)

where Q is the number of desired components. From the
parametrization introduced by constraint (9b), the problem be-
comes equivalent to finding a Q-outputs filter Wk ∈ CMk×Q

per node such that the filtered observations zk, which we
refer to as the per-node MAXVAR directions, are as close
as possible to some common network-wide Q-dimensional
signal s, and hence as close as possible to each other. From
(9), it is clear that the per-node MAXVAR directions are the
orthogonal projections of s onto the nodes’ signal subspaces
Span(xk). Hence, Span(s) is the Q-dimensional subspace
whose signals have minimal average projection error onto the
nodes’ individual signal subspaces.

In [32], it is shown that the solution of (9) satisfies

s =
1

K

∑
k

zk = W Tx (10)

where W ≜ [W T
1 · · · W T

K ]T is the matrix obtained by
stacking the Wk’s. Substituting (10) in (9a), the objective can
be reformulated as

min
{Wk}

K∑
k,l=1

E
{∥∥W T

l xl −W T
k xk

∥∥2} . (11)

The problem therefore consists in finding the set of node-
specific filters whose outputs are as close to each other as
possible in a minimum squared error sense. Furthermore, it is
also shown in [32] that the Wk’s are solutions to the following
eigenvalue problem:

RDW = RxxWΛ (12a)

W TRxxW = IQ (12b)

where RD ≜ Blkdiag(Rx1
, . . . ,RxK

) is the block diagonal
matrix containing the node-specific covariance matrices and
Λ is a diagonal matrix. Solving problem (9) is therefore
equivalent to computing the generalized eigenvalue decompo-
sition (GEVD) of the matrix pencil (RD,Rxx), keeping only
the generalized eigenvectors (GEVC) corresponding to the Q
smallest generalized eigenvalues (GEVL).

1Which is not the case for SUMCORR, discussed in Section I.
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E. Problem Statement

For each pair of nodes, we wish to assess how “close”
their observed signal subspaces are to each other. This can
be achieved by computing the TSC as described by (5).
However, this approach has two major drawbacks. Firstly, it
requires the computation of Rxkxl

which is only possible if
the full observations xk and xl are co-located at a single
node (or an FC), therefore incurring high communication cost.
Secondly, a CCA solution needs to be computed for each
of the K(K − 1)/2 pairs of nodes, further increasing the
communication and computational cost of the procedure. As
an efficient alternative, we propose to jointly approximate the
TSCs between all node pairs using a distributed procedure
based on MAXVAR. Indeed, we will show in Section V-A that
solving a slightly modified version of the MAXVAR problem
produces a joint approximation of the TSC of each node pair.
As it is useful in its own right and of more general interest,
we will first describe a distributed procedure for computing
the solutions of the classical MAXVAR problem (12). In
order to obtain such a solution, all nodes would typically
need to share their observations to an FC where the full
covariance matrix could be estimated. This requires a large
communication bandwidth between the nodes and the FC, in
particular if all nodes are not directly connected to the FC,
which increases the stress on the communication links of the
nodes that are close to the fusion center. In addition, such a
centralized processing does not leverage the fact that the signal
subspace in which inter-node correlation is present typically
manifests a low dimension, and that its signals can therefore
be efficiently described by only a few components.

In Section III, we present a distributed algorithm for solving
(12) in a distributed fashion and relying on the transmission
of low-dimensional compressed views of the data between
neighboring nodes, thus lifting the need to transfer the raw
Mk-channel sensor observations of all nodes to an FC through
a possibly multi-hop network. Instead, the signal observa-
tions are directly fused with other observations within the
network, and such that each node eventually have access to
an estimate of the solutions, thereby avoiding the need for a
fusion center altogether. In Section V, we describe how the
distributed MAXVAR procedure can be modified to produce
an approximation of (5).

III. DISTRIBUTED MAXVAR IN FULLY-CONNECTED
NETWORKS

In this section, we derive a distributed iterative algorithm
for computing the Q first per-node MAXVAR directions
associated with each node, and which is such that each node
k eventually has access to the network-wide estimate of s
and its own per-node MAXVAR direction zk as defined in
(9b). Relying on our interest in a subset of the components
only (which is motivated in Section V) and the particular
problem structure, we show that neighboring nodes only need
to share Q-dimensional compressed views of their observed
signal subspaces at each iteration, which eventually converge
to their first Q per-node MAXVAR directions zk. In order
to facilitate the reader’s understanding and intuition in the

algorithm development, we first derive the algorithm for the
simpler case of fully-connected networks and later extend it
to more general topologies.

A. Algorithm Derivation

In a fully-connected network, any node can communicate
with any other node via a single hop. By denoting the set
of neighbors of node k as Nk, we have for such networks
Nk = K ∖ {k}.

Considering the GEVD formulation (12), the problem of
finding the Q first per-node MAXVAR directions is equivalent
to finding the Q GEVCs of the matrix pencil (RD,Rxx)
associated with its smallest GEVLs and corresponding to the
columns of W . The algorithm iteratively updates the Mk×Q
matrices W i

k (where the superscript i denotes the iteration
index), which act as the local estimates of Wk and, as will be
shown, as a node-specific compressor of the nodes’ signals. It
can be shown [33] that the GEVCs (corresponding to columns
of W ) associated with the Q smallest GEVLs from the GEVD
in (12) and hence the MAXVAR solutions of (9) coincide with
the solution of the following trace minimization problem2

min
W∈RM×Q

Tr
(
W TRDW

)
(13a)

s.t. W TRxxW = IQ (13b)

where Tr (·) denotes the trace operator. The core idea of
the algorithm is to have the nodes solve a local version of
(13) in turns, and expressed in terms of the node’s own raw
observations and the other nodes’ compressed observations
zi
k = W iH

k xk (W iH
k denotes the compression matrix associ-

ated with the signals of node k at iteration i of the algorithm).
The notation zi

k,W
iH
k for the compressed observations and

compression matrices is chosen deliberately, as they also
correspond to node k’s local estimate of its part of the solution
of (9). We indeed expect that eventually

lim
i→∞

W i
k = Wk and lim

i→∞
zi
k = zk. (14)

The algorithm in fully connected networks is as follows.
At the beginning of each iteration, an updating node q is
selected. Every other node transmits a batch of its compressed
observations zi

k ∀k ∈ Nq to the updating node, such that it
can locally solve the following problem:

min
W

Tr
(
W

T
Ri

Dq
W
)

(15a)

s.t. W
T
Ri

xqxq
W = IQ (15b)

where Ri
xqxq

is the covariance matrix of

xi
q ≜

[
xT
q zi

1
T · · · zi

q−1
T

zi
q+1

T · · · zi
K

T
]T

(16)

and

Ri
Dq

≜ Blkdiag(Rxq
,Ri

z1
, . . . ,

Ri
zq−1

,Ri
zq+1

, . . . ,Ri
zK

) (17)

2Although MAXVAR is also often expressed as a trace maximization
problem, we write it as a minimization problem to stay consistent with
Carroll’s formulation (9).
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is a block diagonal matrix with Ri
zk

= E
{
zi
kz

i
k
T
}

. Note that
the solution of (15) can again be found from a GEVD, this
time applied to the pencil (Ri

Dq
,Ri

xq
). An update rule for

the network-wide W i+1 emerges naturally by noticing that
solving the local problem (15) is equivalent to solving the
original centralized problem (13) with additional constraints:

min
W

Tr
(
W TRDW

)
(18a)

s.t. W TRxxW = IQ (18b)

C(Wk) ⊆ C(W i
k) ∀k ̸= q (18c)

where the operator C(·) denotes the column space of its
argument. Indeed, notice that the range constraints in (18c)
can be equivalently formulated by introducing the following
parametrization of W in (13):

W = [(Wq)
T (W i

1G1)
T · · · (W i

q−1Gq−1)
T

(W i
q+1Gq+1)

T · · · (W i
KGK)

T
]T (19)

where the multiplication with Gk ∈ RQ×Q allows to se-
lect a new Wk within the column space of W i

k. With this
parametrization, (18a) becomes

Tr
(
W TRDW

)
= Tr

(
W T

q Rxq
Wq

)
+
∑
k ̸=q

Tr

GT
k W iT

k Rxk
W i

k︸ ︷︷ ︸
=Ri

zk

Gk

 .

(20)

Finally introducing W as

W =
[
Wq

T G1
T · · · Gq−1

T Gq+1
T · · · GK

T
]T

(21)

and substituting in (20), we indeed obtain the objective of the
local problem (15a). A similar derivation can be done for the
constraints (18c). The parametrization therefore indeed defines
the update rule for the local estimate of Wk at each node:

W i+1
k =

{
Wq ifk = q

W i
kGk ifk ̸= q

(22)

where Wq and Gk are extracted from the solution of (15)
based on the partitioning (21). Note that the range constraints
make (18) different from a traditional nonlinear Gauss-Seidel
approach where all Wk would be fixed to W i

k for k ̸= q, in
which case (18) could not be solved as a GEVD anymore.

Concretely, the procedure at each iteration can be divided
into three steps (the detailed procedure is formally described
in Algorithm 1):

1) Aggregation: Each node k ∈ Nq sends a new batch of T
observations of the locally compressed signals zi

k to the
updating node q.

2) Local solution: The updating node q solves problem
(15), expressed exclusively in terms of locally available
data. From the solution, it extracts the update of its
own local estimate of the solution Wq as well as the
update matrices Gk corresponding to each other node,
as defined by the partitioning (21). Due to the sign

ambiguities of the GEVCs3, the solution of (15) is not
unique and independent from the sign changes of its
columns. Therefore, in order to ensure convergence, we
select the solution resulting in the smallest difference∥∥W i+1 −W i

∥∥
F

. In practice, this amounts to checking
whether ∥∥wi+1 −wi

∥∥
F
<
∥∥wi+1 +wi

∥∥
F

for each of the columns wi+1 and wi of W and
[W iT

q IQ · · · IQ]T , respectively, and choosing the signs
of the columns accordingly.

3) Update: Node q sends the update matrices {Gk}k ̸=q

to each node, which update their local estimates W i
k

according to (22). Note that the transmission cost of
these Q × Q update matrices is negligible compared to
the transmission costs in the aggregation step (assuming
T ≫ Q2). The role of the updating node is finally passed
on to node (q mod K) + 1.

If required, the common components s can be estimated at
any iteration by performing an in-network summation:

si =
1

K

∑
k

zi
k (23)

It is noted that the updating node q has access to all the data
required to compute (23), such that no additional bandwidth
is required to compute s at node q.

Remark III.1. The batch of T (compressed) samples that is
transmitted by each node during the aggregation step would
typically consist of different samples than the ones used in the
previous iteration, in order to avoid retransmitting the same
data multiple times which would substantially increase the
bandwidth. Therefore, the time index t corresponding to the
first sample of a batch is typically updated as t+ iT ′ at each
iteration (with T ′ possibly smaller than T ). This implies that
the iterations are spread out over time, and that the algorithm
behaves as an adaptive filter tracking the signal statistics over
time. In order for the algorithm to converge, we therefore have
to assume that the signal statistics change sufficiently slowly
compared to the convergence dynamics of the algorithm. To
make the convergence analysis mathematically tractable, all
convergence proofs in the remaining of this paper implicitly
assume that the signal statistics remain stationary during
convergence of the algorithm.

B. Convergence and Optimality

In this subsection, we provide some insight in the conver-
gence and optimality properties of the D-MAXVAR algorithm,
and establish formal convergence proofs.

A first important observation is that the solution of (18) at
iteration i is by definition in the constraint set of the problem at
iteration i+1 (corresponding to selecting Gk = IQ). As a re-
sult, the objective function (18a) decreases monotonically and

3Multiple solutions could also appear due to a potential (and extremely
unlikely) collapse of the eigenspace resulting from GEVLs with multiplicity
larger than 1, but the update should in this case be skipped as it violates
Assumption III.1 (described in the next subsection).
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Algorithm 1: D-MAXVAR algorithm in a fully connected
network.

begin
i← 0
q ← 1
Randomly initialize W 0

loop
for k ∈ K ∖ {q} do

At node k
Send a new batch of T samples
zi
k[t] = W iT

k xk[t] to node q

At node q
Compute Ri

xq
and Ri

Dq
based on the received

samples and according to (16) and (17)
Compute the Q GEVCs corresponding to the Q

smallest GEVLs of the matrix pencil
(Ri

Dq
,Ri

xq
), scaled to satisfy constraint (15b)

and minimizing
∥∥W i+1 −W i

∥∥
F

Put the Q resulting GEVCs in the columns of
W q

W i+1
q ←

[
IMq0

]
W q

for k ∈ K ∖ {q} do
Select Gk as the block of W q (see (21))

corresponding to node k and send to node
k

At node k
W i+1

k ←W i
kGk

i← i+ 1
q ← (q mod K) + 1

must therefore converge, as the objective function is bounded
in the constraint set. However, the convergence of the sequence
of optimization variables (W i)i∈N is less straightforward.
Indeed, monotonic convergence of the objective function does
not imply convergence of its arguments, nor that the global
minimum is eventually attained. Nonetheless, by making an
assumption which is always satisfied in practice, we can show
several interesting properties about the convergence behavior
and limit points of the algorithm.

Assumption III.1. The accumulation points of the sequence
of local pencils

(
(Ri

Dq
,Ri

xq
)
)
i∈N

are non singular and have

distinct Q-th and (Q+ 1)-th smallest GEVLs.

Due to the presence of uncorrelated sensor noise, the non-
singularity assumption is always verified. The assumption
about distinct eigenvalues is merely technical, as we can show
that such points corresponding to degenerate local problems
would be unstable in practice, unless they correspond to the
global solution of (13) (see Theorem III.3 below), and the
algorithm would therefore eventually diverge from such points.

In what follows, a fixed point W ∗ is defined as a point
which is invariant under the updates of Algorithm 1, i.e.,
(W i)i∈N = (W ∗)i∈N if W 0 = W ∗. The following theorem
gives an important characterization of the algorithm’s fixed
points:

Theorem III.1. The columns of matrices which are fixed
points of Algorithm 1 are stationary points of problem (13)
and therefore GEVCs of the pencil (RD,Rxx).

Proof. See Appendix A.

Assumption III.1 guarantees that the local problems have
well-defined solutions at accumulation points of the algorithm,
allowing us to state our main convergence result:

Theorem III.2 (Convergence). If Assumption III.1 holds,
(W i)i∈N converges to a fixed point, and hence stationary
point, of problem (13).

Proof. See Appendix B.

Finally, we show that the global minimizers of (13) are
the only stable fixed points. In other words, all convergence
trajectories to limit cycles or stationary points where (13) is
not minimized are unstable in the sense that the algorithm
can be kicked out of such trajectories by infinitesimally small
perturbations. This is formalized in the following theorem:

Theorem III.3 (Unstable Accumulation Points). Let W ∗ be
an accumulation point of Algorithm 1. Then W ∗ is an unstable
accumulation point if and only if it is not a global minimizer
of problem (13).

Proof. See Appendix C.

Therefore, in the presence of numerical noise, we expect the
algorithm to converge to a global minimizer of problem (13),
as demonstrated by the simulations performed in Section VI.

IV. DISTRIBUTED MAXVAR IN GENERAL NETWORK
TOPOLOGIES

Before describing the D-MAXVAR algorithm for more
general topologies, we first explain how it can be established
in a star topology, thereby introducing some important insights
towards further extensions.

A. Star-Topology Networks

In a star-topology network, we can distinguish two kinds of
nodes: the central node kc, which shares a link with all other
nodes in the network, and the leaf nodes k ∈ L = K ∖ {kc},
which are exclusively connected to the central node. Therefore,

Nkc
= L (24)

Nk = {kc} ∀k ∈ L. (25)

A naive strategy to apply the algorithm presented above for
fully connected networks to a star-topology network would be
to let the central node act as a relay between the leaf nodes. We
discard this solution for two reasons: Firstly, the bandwidth re-
quired at the central node would grow linearly with the number
of nodes in the case of a broadcast communication protocol
or quadratically in the case of one-to-one communication. The
maximum network size would therefore largely depend on
the bandwidth available at the central node. Secondly, further
bandwidth savings can be achieved by allowing the central
node to compress and fuse the signals it receives from the
leaf nodes.
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Fig. 1: D-MAXVAR data flow in a star-topology network with K = 5

We will apply a separate treatment to the iterations where
the updating node is the central node and those where it is a
leaf node, of which we give a brief overview hereafter:

a) The updating node is the central node (q = kc): As
all nodes share a link with the updating node, the network
proceeds as in the fully-connected case. All nodes send their
compressed observations zi

k to the central node which then
solves (15). The leaf nodes update their local estimates of the
solution as in the fully-connected case.

b) The updating node is a leaf node (q ̸= kc): As only
the central node shares a link with the updating node, it
collects the compressed observations of the other leaf nodes.
It fuses (i.e. adds) them together with its own observations
and sends them to the updating node. The updating node
now acts as if the data received from the central node were
the compressed observations of a single node and proceeds
to compute its local solution estimate and the single update
matrix Gkc

for the central node accordingly. The central node
then relays the update matrix Gkc

to the other leaf nodes,
which then all update their local estimate with this single
update matrix. The data flow for star-topology networks is
illustrated in Figure 1. Note that the computation of the local
solution at node q also requires aggregating and fusing the
second order signal statistics through the network similarly to
the signal observations, as will be explained below.

Formally, for a star-topology network, when the updating
node is a leaf node q ∈ L, node q receives the following from
the central node:

zi
kcq = zi

kc
+

∑
k∈Nkc∖q

zi
k (26)

Ri
Σkcq = Ri

zkc
+

∑
k∈Nkc∖q

Ri
zk

(27)

It then constructs

xi
q ≜

[
xT
q zi

kcq
T
]T

(28)

Ri
Dq

≜ Blkdiag(Rxq
,Ri

Σkcq) (29)

as it did in the fully-connected case according to (16)-(17), and
solves problem (15). With those new definitions, we can show
that solving the local problem (15) is equivalent to solving

min
W

Tr
(
W TRDW

)
(30a)

s.t. W TRxxW = IQ (30b)

C(W−q) ⊆ C(W i
−q) if q ∈ L (30c)

C(Wk) ⊆ C(W i
k) ∀k ∈ L if q /∈ L (30d)

where W−q is the matrix obtained by removing the rows of
W corresponding to Wq . Note that when the updating node
is the central node (i.e. q /∈ L), problem (30) reduces to the
fully connected case problem (18). When q ∈ L, constraint
(30c) results in the equivalent parametrization

W =
[
Wq

T (W i
−qGkc)

T
]T

(31)

where Gkc ∈ RQ×Q.

Remark IV.1. Note that the number of degrees of freedom
is lower for iterations where the updating node q is a leaf
node (constraint (30c) is active) than for iterations where the
updating node q is the center node (constraint (30d) is active).
We therefore generally expect a lower decrease of the objective
function (on average) for iterations in which a leaf node is the
updating node.

B. Tree-Topology Networks

A tree-topology network has an acyclic graph, which im-
plies that there is a unique path between any two nodes. The
nodes with a single neighbor are also referred to as leaf nodes
and constitute the end points of the branches in the tree. As
we did for star-topology networks, we denote the set of leaf
nodes L. Note that the tree concept should not be viewed as
an actual topology constraint, but instead as a framework to
organize the data streams within the network, i.e., to define
in which order nodes have to transmit their data through the
network, which will be essential when extending our algorithm
to general topologies.

The procedure in tree-topology networks is conceptually
similar to the star-topology case, where the updating node
behaves as if it were the center node of a star-topology
network, as described in Section IV-A. Consider the two
isolated subtrees obtained by disconnecting the updating node
q from one of its neighbors k ∈ Nq . We denote Bkq the set
of nodes in the subtree containing k (see Figure 2). At each
iteration, each of the neighboring nodes k ∈ Nq of node q
recursively collects and sums the compressed observations and
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Fig. 2: In this example tree, the subtree Bk1q is highlighted in orange,
Bk2q in blue and Bk3q in green. Leaf nodes are colored red.

Algorithm 2: Recursive procedure for aggregating obser-
vations in the branch Bkp to obtain zkp

procedure aggregate(k, p)
for l ∈ Nk ∖ {p} do

aggregate(l, k)

At node k
if k /∈ L then

Compute zkp[t] = zk[t] +
∑

l∈Nk∖p zlk[t] from
a new batch of T samples zi

k[t] = W iT
k xk[t]

RΣkp = Rzk +
∑

l∈Nk∖p RΣlk

Send (zkp,RΣkp) to node p
else

Send zkp = zk to node p

related covariance matrices of its respective subtree Bkq and
sends them to node q. The updating node q therefore receives

zi
kq ≜

∑
l∈Bkq

zi
l = zi

k +
∑

l∈Nk∖q

zi
lk ∀ k ∈ Nq (32)

Ri
Σkq

≜
∑
l∈Bkq

Ri
zl

= Ri
zk

+
∑

l∈Nk∖q

Ri
Σlk

∀ k ∈ Nq (33)

Note that these definitions are recursive and that those values
can be efficiently computed by performing an in-network
summation in a recursive fashion. This recursive aggregation
procedure is described by Algorithm 2 and illustrated in Figure
3. Note that even in nodes where Q > Mk (e.g. in case of
single-channel sensor nodes) this aggregation process realizes
an overall bandwidth reduction due to the in-network fusion of
data (as opposed to straightforwardly relaying the raw data).
Similarly to the other topologies, we define

W q ≜
[
W T

q | GT
k1

| · · · | GT
knq

]T
(34)

xi
q ≜

[
xT
q | ziT

k1q | · · · | ziT
knq q

]T
(35)

Ri
Dq

≜ Blkdiag(Rxq
,Ri

Σk1
q, . . . ,R

i
Σknq q

) (36)

with nq = |Nq| and {k1, . . . , knq
} = Nq . This allows us

to solve the local problem (15) which is again equivalent to
the global problem (13) equipped with additional range con-
straints, this time for each subtree B(·). A complete description
of the procedure is given by Algorithm 3.

Finally, note that similarly to (23), the common components
in s can be estimated as

si =
1

K

∑
k

zi
k. (37)

Updating node q

+
k2

Leaf node l

+
k1

z
i
k1
q

R
i
Σk 1

q

z
i
k3
k1

R
i
Σk 3

k 1

+
k3

z i
l

Fig. 3: In-network summing and aggregation at the updating node.
Covariance matrices and compressed observations are recursively
propagated from the leafs towards the updating node.

Algorithm 3: D-MAXVAR algorithm in a tree-topology
network.

begin
i← 0
Initialize updating node as q ← 1
Randomly initialize the W 0

k ’s
loop

for k ∈ Nq do
aggregate(k, q) (see Algorithm 2)

At node q
Compute the Q GEVCs corresponding to the Q

smallest GEVLs of the matrix pencil
(Ri

Dq
,Ri

xq
), scaled to satisfy constraint (15b)

and minimizing
∥∥W i+1 −W i

∥∥
F

Put the Q resulting GEVCs in the columns of
W q

W i+1
q ←

[
IMq0

]
W q

for k ∈ Nq do
Select Gi+1

k as the block of W q (see (34))
corresponding to node k and disseminate
within subtree Bkq

for l ∈ Bkq do
At node l

W i+1
l ←W i

l Gk

i← i+ 1
q ← (q mod K) + 1

C. Arbitrary Networks

It is in tree-topology networks that our algorithm offers
the greatest benefits in terms of both complexity and com-
munication costs. Even though tree-topology networks are
quite specific, the D-MAXVAR algorithm can be generalized
to networks with arbitrary topologies by overlaying it with
a topology management layer responsible for designing and
maintaining a tree-topology at each iteration (assuming the
initial graph is connected). Ideally, such a tree should preserve
all the neighbors of the updating node q. Indeed, cutting
off neighbors would reduce the number of update matrices
G in (34), which would reduce the degrees of freedom in
the minimization of (15), using the definitions in (34)-(36).
Algorithm 4 describes a simple distributed procedure for
constructing a tree rooted at node q and preserving the links to
its neighbors. It has a per-node message complexity at node k
of O(Nk) and an overall time complexity of O(D) where D is
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Algorithm 4: Distributed algorithm for computing a span-
ning tree preserving the neighbors of node q.

procedure buildtree(q)
for l ∈ K do

Initialize set of children of node l: Ll ← {}
Initialize number of acknowledgment messages

received: rl ← 0

At node l ∈ Nq

Set parent to node q: pl ← q

At node l ̸= q
while pl is not set do

Wait for message (ADOPT,m)
Set parent to node m: pl ← m
Send (OK, l) to pl as an acknowledgment

Send (ADOPT, l) to Nl ∖ {pl}
while rl < |Nl| do

Wait for message (a,m)
if a = ADOPT then

Send (NOK, ·) to node m to indicate that it
already has a parent

else
if a = OK then

Add m to set of children of l:
Ll ← Ll + {m}

rl ← rl + 1

the diameter of the network (i.e. longest shortest-path between
two-nodes). The procedure is as follows. Each neighbor of
node q sends a message to each of its neighbors offering to
become its parent in the tree. A node accepts to become a child
if it does not yet have a parent. Once it has a parent, it does
the same with its own neighbors (its parent excluded). One
can see that at each step of the algorithm, the nodes which
have a parent are part of a tree. The algorithm stops when
each node has a parent, producing a tree spanning the entire
network graph.

In practice, the data exchange required to construct such a
tree is expected to be negligible compared to the exchange of
raw sensor data in Algorithm 3, in which a whole batch of
T multi-channel signal samples is transmitted by each node.
Furthermore, we expect the network topology to be relatively
static and change only after many iterations of the algorithm,
as the objective function of the algorithm would otherwise
not be relevant anymore. In that scenario, it is reasonable to
only periodically compute a new spanning tree using either
Algorithm 4 or a more elaborate distributed spanning tree
algorithm such as those described in [34].

A similar convergence statement as for fully-connected
networks can be made for tree networks and their extension to
arbitrary networks, and the associated proof can be relatively
straightforwardly adapted to these cases, although the notation
and definitions become substantially more convoluted.

D. Complexity and Communication Cost

Table I summarizes the communication cost and complexity
of our algorithm. The major benefit of the arbitrary-topology
variant is that it scales well, i.e. the per-node communication
cost and transmission cost is independent of the network size

(as opposed to a naive multi-hop relay procedure, which would
grow with the depth of the tree). This is because the sensor
observations of the different nodes are fused along the way
when the data travels through the network, as described in the
aggregation step of Algorithm 2.

Fully-connected Arbitrary Topology

Transmission cost per node ∝ Q ∝ Q

Complexity at updating node q ∝ (Mq +Q(K − 1))3 ∝ (Mq +Q|Nq |)3

TABLE I: Communication cost and complexity of the D-MAXVAR
algorithm

The above figures assume the transmission cost of the update
matrices G and of the messages involved in the distributed
spanning-tree procedure to be negligible compared to a batch
of T samples.

V. CORRELATION STRUCTURE ESTIMATION

In this section, we describe how the D-MAXVAR algorithm
can be modified to efficiently approximate the TSC of all node
pairs, even for a pair of nodes that do not directly exchange
signals with each other. We first describe how the TSC relates
to a low-rank approximation of a particular block-whitened
correlation matrix (defined below). We then show how this
low-rank approximation can be computed by computing a
different subset of the per-node MAXVAR directions, instead
of the ones corresponding to the Q smallest GEVLs. Finally,
we describe how to select an appropriate value for Q.

A. MAXVAR as a low-rank approximation
The covariance matrix between node k and l of the (per-

node) whitened signals is

Pxkxl
≜ R

− 1
2

xk Rxkxl
R

− 1
2

xl (38)

and the TSC between nodes k and l can be shown to be equal
to

Θkl = ∥Pxkxl
∥2F , (39)

where ∥·∥F denotes the Frobenius norm (See Appendix D
for a proof). We first show how W , i.e. the MAXVAR
solution of (9), relates to the eigenvalue decomposition of
Pxx = R

− 1
2

D RxxR
− 1

2

D , the network-wide covariance matrix
of the (per-node) whitened signals. Note that Pxx is a block
matrix such that

[Pxx]kl = Pxkxl
(40)

where [·]kl denotes the Mk×Ml block corresponding to node
k and l, and where in particular the diagonal blocks [Pxx]kk =
IMk

. We stated earlier that the spatial filters W were solutions
of the GEVD (12). If we assume that Λ = W TRDW (see
(12)) only contains non-zero GEVLs (which is always the case
in the presence of noise), we can define

U ≜ R
1
2

DWΛ− 1
2 , (41)

allowing us to write (12) as

U = PxxUΛ (42)

UTPxxU = Λ−1 (43)
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which can be reorganized as

PxxU = UΛ−1 (44a)

UTU = IQ. (44b)

The columns of U are therefore orthogonal eigenvectors of
Pxx and Λ−1 contains the corresponding eigenvalues. As a
result, the Q-dimensional filters computed by MAXVAR are
isomorphic to the eigenvectors corresponding to the Q largest
eigenvalues of Pxx (i.e. the smallest diagonal elements of Λ)
via (41).

B. Naive TSC Approximation using D-MAXVAR

Considering the definition (39) of the TSC, it seems reason-
able to approximate the TSC by replacing Pxkxl

by [P̂xx]kl in
(39). Indeed, if we denote the Q-rank approximation of Pxx

as P̂xx, we have

P̂xx = argmin
A

∑
k,l∈K

∥Pxkxl
− [A]kl∥2F (45)

s.t. Rank(A) = Q. (46)

P̂xx can therefore be interpreted as a joint low-rank approx-
imation of the matrices Pxkxl

. This approach, however, has
two issues. Consider the split of (45) between diagonal and
off-diagonal blocks:

min
A

∑
k,l∈K,k ̸=l

∥Pxkxl
− [A]kl∥2F

+
∑
k∈K

∥IMk
− [A]kk∥2F (47)

First, if the off-diagonal blocks of Pxx have a very small
norm, the joint low-rank approximation will be focused on
reconstructing the diagonal blocks, which do not contain
any information about the inter-node correlation structure.
Second, Pxx might have full rank, even though the inter-
node correlation structure can be described by a small number
of components (e.g. in the case of a completely uncorrelated
network, Pxx = I). This makes the choice of an appropriate
value for Q quite challenging as it is seemingly unrelated to
the rank of Pxx. Ideally, our approximation method should be
such that increasing the value of Q, and therefore allocating
more bandwidth, always results in a better approximation of
the TSC. In addition, when the inter-node correlation structure
can be described by only a few components, the TSC should
be perfectly recovered by selecting Q ≪ M .

C. TSC Approximation using a Modified D-MAXVAR

In subsection V-A, we have shown that MAXVAR was
equivalent to computing the low-rank approximation of Pxx

and in the previous subsection, we have described how us-
ing this low-rank approximation to approximate the TSC
would result in an approximation lacking multiple desirable
properties. Via a slight modification of the original problem,
we can obtain a low-rank approximation of Pxx − I , from
which we can derive a TSC approximation which satisfies
the desired properties for Q. For this purpose, we propose
to approximate the TSC by using P̂xkxl

≜ [P̂D
xx]kl in (39),

where P̂D
xx denotes the low-rank approximation of Pxx − I

instead of Pxx. This would resolve the problems mentioned
in the previous subsection, as it removes the influence of
the (irrelevant) diagonal entries in (47). In the following, we
describe how the D-MAXVAR algorithm can be modified to
efficiently compute this new TSC approximation.

We first note that the eigenvectors of Pxx − I and Pxx

are the same, and that the corresponding eigenvalues can
be obtained by substracting 1 from the eigenvalues of Pxx.
Indeed, the full eigenvalue decomposition of Pxx can be
expressed as

Pxx = UMΛ−1
M UM

T , (48)

where UM is an orthogonal matrix that contains the full set
of M eigenvectors in its columns, and Λ−1

M is the diagonal
matrix of corresponding eigenvalues. The previously defined
matrices U and Λ−1 are therefore Q-columns submatrices of
UM amd Λ−1

M , respectively. Substracting I from both sides
yields

Pxx − I = UM (Λ−1
M − I)UT

M . (49)

One can therefore obtain a Q-rank approximation of Pxx −
I by computing the Q eigenvectors of Pxx corresponding
to the Q largest diagonal elements of Λ−1

M − I in absolute
magnitude4. We can link UM to the full set of GEVCs WM

of (RD,Rxx) by noting that (41) is valid for any subset of
eigenvectors. Therefore

WM = R
− 1

2

D UMΛ
1
2

M , (50)

and (49) in combination with the orthogonality of UM yields

(Rxx −RD)WM = RDWMΓM (51a)

W T
MRxxWM = I (51b)

with ΓM ≜ Λ−1
M − I . WM thus contains GEVCs of the

pencil (Rxx − RD,RD) in its columns, and ΓM contains
the corresponding GEVLs. The problem of finding a Q-rank
approximation of Pxx − I is therefore equivalent to finding
the Q GEVCs of (Rxx − RD,RD) associated with its Q-
largest (in absolute magnitude) GEVLs. These can be found
based on a slightly modified version of the D-MAXVAR
algorithm, described hereafter.

Modified D-MAXVAR Algorithm: Let WQ denote
the Q-columns submatrix of WM associated with the Q-rank
approximation of Pxx − I . In order to compute WQ in
a distributed fashion, Algorithm 3 must be modified such
that, at each iteration i, W

i
contains the Q GEVCs of

(Ri
xq

− Ri
Dq

,Ri
Dq

) associated with the largest GEVLs
(in absolute magnitude) instead of the Q smallest GEVLs
of (Ri

Dq
,Ri

xq
). This change has no impact on Theorems

III.1 and III.2, which remain valid as WQ is just another
stationary point of the original problem (13). A similar
result to Theorem III.3 can be obtained by showing that
selecting the components as described above is equivalent to

4As Pxx−I is no longer positive semidefinite, the components correspond-
ing to negative eigenvalues also contribute to the low-rank approximation error
proportionally to the squared magnitude of their associated eigenvalue.
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solving a related optimization problem for which Theorem
III.3 applies, that is find the Q largest GEVCs of the pencil
(Rxx −RD,RD).

Remark V.1. We note that the original MAXVAR compo-
nents in W generally differ from the components in WQ.
Additional bandwidth would therefore need to be allocated if
both the TSC approximation and the solutions to the classical
MAXVAR problem would be required. If the goal is only to
find an approximate TSC matrix (as in the example of Section
VI), D-MAXVAR can be replaced with its modified version,
in which case no additional bandwidth is required.

An expression for the approximation of the TSC using
P̂xkxl

≜ [P̂D
xx]kl in (39) can be obtained as follows. Let ΓQ

be the diagonal submatrix of ΓM corresponding to the GEVCs
in WQ obtained by the modified D-MAXVAR algorithm. We
define the approximate TSC as

Θ̂kl ≜
∥∥∥[P̂D

xx]kl

∥∥∥2
F
=
∥∥UQ,kΓQU

T
Q,l

∥∥2
F

(52)

where UQ,k = R
1
2
xkWQ,kΛ

− 1
2 (from (50)). From the defini-

tion of the Frobenius norm, we have∥∥UQ,kΓQU
T
Q,l

∥∥2
F
= Tr

(
UQ,kΓQU

T
Q,lUQ,lΓQU

T
Q,k

)
(53)

and from the cyclic property of the trace∥∥UQ,kΓQU
T
Q,l

∥∥2
F
= Tr

(
UT

Q,kUQ,kΓQU
T
Q,lUQ,lΓQ

)
. (54)

From (50) and the fact that Λ
1
2

M = (ΓM + I)−
1
2 (from the

definition of ΓM ), we find that

UT
Q,kUQ,k = (ΓQ + IQ)

1
2W T

Q,kRxk
WQ,k(ΓQ + IQ)

1
2

(55)

= (ΓQ + IQ)
1
2RQ

zk
(ΓQ + IQ)

1
2 (56)

where RQ
zk

≜ W T
Q,kRxk

WQ,k is the covariance matrix of
the compressed signal zk associated with WQ,k, such that we
finally obtain

Θ̂kl = Tr
(
RQ

zk
(Γ2

Q + ΓQ)R
Q
zl
(Γ2

Q + ΓQ)
)
. (57)

Note that RQ
zk

can be locally computed at node k and
shared with negligible communication cost compared to the
compressed signal observations themselves. Indeed, instead of
sharing MkT samples (T being the window length considered)
samples, the nodes only need to share Q×Q matrices, which
is cheap even for nodes several hops away. Finally, we have
from (51) that ΓQ can be computed as

ΓQ = Λ−1
Q − IQ =

W T
QRDWQ =

(∑
k

RQ
zk

)−1

− IQ, (58)

which can be efficiently estimated at each node using (33)
without any additional communication.

D. Selecting Q

The following theorem provides a useful bound on the TSC
total approximation error:

Theorem V.1. Let γ denote the Q-largest element of Γ in
absolute magnitude. Then the total TSC approximation error∑

k,l∈K,k ̸=l

(√
Θ̂Q

kl −
√
Θkl

)2

≤ (M −Q)γ2. (59)

Proof. See Appendix E.

Any node can compute the above bound to assess the quality of
the TSC approximation, as γ also corresponds to the smallest
diagonal element of ΓQ, locally computable via (58).

Note that if Rank(Pxx − I) is known a priori, selecting
Q = Rank(Pxx − I) would result in a perfect recovery of
Pxx−I , and hence of the TSC (by definition (39)). However,
the rank is in practice not known in advance, and the node
must therefore estimate it by increasing Q until γ = 0, as
then Rank(Pxx − I) = Q− 1.

Remark V.2. One can also take a statistical approach and
test whether the absolute magnitudes of the eigenvalues are
significantly larger than 0, i.e., whether they truly capture
correlated components or whether their energy is explained
by the estimation noise. The latter can be tested, e.g., via a
maximum likelihood ratio test as in [23]–[25], [35], [36].

VI. SIMULATION RESULTS

In this section, we validate the TSC approximation de-
scribed in Section V and demonstrate the convergence proper-
ties of the D-MAXVAR algorithm in tree-topology networks.

A. Simulation Settings

In the context of WSNs, it is appropriate to model the ob-
served signals as noisy observations of a mixture of uniformly
spatially distributed latent sources, i.e.

xk = Aks+ αnk (60)

where nk is Mk-dimensional spatially white sensing noise at
node k and uncorrelated with the noise at other nodes, s is a d-
dimensional spatially white latent signal and Ak is the mixing
matrix associated with node k. Finally, α is a network-wide
parameter allowing us to modulate the signal-to-noise ratio
(SNR). Let Ak = [a1

k, . . . ,a
d
k], where aj

k denote the steering
vector at node k associated with source sj . We model it as

aj
k =

gj
k

max{0.1, ∥mk − lj∥2}
(61)

where gj
k is an Mk-dimensional vector of random variables

drawn uniformly from [0.95, 1.05], modeling the slight dis-
crepancies in the channel gains, and mk and lj are the random
coordinates of node k and source j, uniformly drawn from a
10 by 10 square. With this model the sources can be seen as
point sources radiating energy uniformly in all directions. The
associated covariance matrix can be computed as

R = AAH + α2I (62)
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Fig. 4: Monte-Carlo simulations of the TSC approximation error for
varying Q and SNR values. The color scale corresponds to the log
of the mean value obtained for E after 1000 Monte-Carlo runs. The
log-error values are clipped to -12.
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Fig. 5: Example TSC matrices obtained with K = 10, Mk = 8,
Q = 3, 3 latent sources and SNR = 1. Each pixel represents the
(approximate) TSC of a pair of node. Diagonal values are not shown.

where A is the matrix obtained by stacking the Ak’s. The
total power of the latent sources picked up by the nodes is
Ps = ∥A∥2F and the total noise power is α2M . We set α2 =
Ps(M SNR)−1 to obtain the desired SNR.

For each simulated scenario, we performed 1000 Monte-
Carlo runs where the covariance matrices were directly com-
puted via (62). Additionally, we set Mk = 8 and d = 3.

B. TSC Approximation

Using the above model and settings with K = 10, we
obtained the results depicted by Figure 4 with the average
absolute error E defined as

E ≜
1

K(K − 1)

∑
k,l ̸=k

|Θ̂kl −Θkl| (63)

As expected, the quality of the approximation increases with
increasing Q and always eventually reaches 0 for a sufficiently
high value of Q. As the SNR grows, so does the value of Q
required to obtain a perfect approximation of the TSC. Indeed,
a larger SNR causes the eigenvalues of Rxx, and hence Pxx,
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Iteration
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Depth=2, K=4 Depth=3, K=13 Depth=4, K=40

Fig. 6: Monte-Carlo simulations of the convergence of the D-
MAXVAR algorithm in tree-topology networks. Solid curves depict
the mean values. Shaded areas depict the 5-95% percentile regions.
The top plot was generated with K = 13. The bottom plots were
generated with K = 4, 13, 40.

to grow closer to 0. As a consequence, the corresponding
eigenvalues of Pxx − I become closer to −1, resulting in
more power in the off-diagonal blocks which needs to be
accounted for. In practice, using our method in such a setting
where the signal subspace is perfectly observed by every node
does not make much sense as a simple distributed PCA (based
for example on [37]) would yield an excellent approximation
of Rxx with only Q = d components. On the other hand,
such a PCA-based method would perform very poorly in
low-SNR regimes, as it would first compute the components
of highest power, which would in that case correspond to
noise and would therefore not yield any information about
the correlation structure. Our method is therefore best suited
for scenarios where the node-specific subspaces and common
subspaces have similar power levels and are hard to separate.
Figure 5 showcases such a scenario. We see that the correlation
structure is well captured by the approximate TSC using only
3 components when node-specific noise and latent signals have
similar power levels.

C. Convergence

Figure 6 shows the convergence of the D-MAXVAR algo-
rithm to the global solution. The metric used is

ei = 1− f∗

f(W i)
(64)

where f(W ) = WHRDW is the objective function of (13)
and f∗ is its value at a global minimizer. In the top plot, we
see that convergence is indeed faster with a larger number of
components Q. In the bottom plot, we see the impact of the
tree depth: the deeper the tree, the higher the compression
(due to the recursive summing resulting from Algorithm 2).
We expect convergence speed to increase in more densely
connected networks, that is networks with more links, as this
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increases the number of neighbors of each node and hence
the number of G matrices possibly used at each iteration (that
is assuming that an instance of Algorithm 4 is run at each
iteration). In tree-topology networks, the total number of links
is K − 1, while it is K2 in fully connected networks, the
convergence speed is therefore expected to drop much more
rapidly with increasing network size K in the case of tree-
topology networks as the compensation in terms of added
neighbors per node is much less significant than for fully
connected networks.

Finally, we see that, in practice, convergence to a global
minima is always achieved due to the instability of other fixed
points (see Theorem III.3).

VII. CONCLUSION AND DISCUSSION

In this paper, we have presented an algorithm which
computes the solution of the so-called MAXVAR problem
in a distributed setting. Our algorithm displays significant
savings in computational and communication requirements
compared to a centralized procedure where signal observations
are collected at a single location. In particular, in arbitrary-
topology networks, the communication cost is independent
of the network size and only depends on the degree of each
node and the chosen compression factor Q. We have proven
the convergence properties of the algorithm, and shown via
simulations that the condition for global convergence holds in
practice.

We have also shown how the networks’ correlation structure
can be efficiently estimated from the algorithm’s outputs and
for negligible additional cost, via an approximation of the
total squared cosine. Even though the proposed approximation
can be arbitrarily precise, it is not adapted to very high-
SNR regimes, as the number of required components can
quickly grow to become larger than the number of channels
at a given node. Nevertheless, we have demonstrated that
the approximation is quite accurate for lower SNR regimes,
even with low Q, and allows significant computational savings
compared to the exact computation of all pair-wise TSCs.
Finally, we note that, in most cases, there will be no interest
in perfectly estimating the TSC. Indeed, for most applications,
the TSC will be thresholded in order to determine whether the
link between two nodes should be kept alive, or simply used
as a distance input to some clustering algorithm.

APPENDIX

A. Proof of Theorem III.1

Proof. Let us assume that W ∗ is a fixed point of Algorithm 1.
Then W ∗ is a solution of problem (18) when W i = W ∗ for
any q ∈ K. The Lagrangian of this problem can be expressed
as

Lq(W ,Λq,Γk) = Tr
(
W TRDW

)
− Tr

(
Λq(W TRxxW − IQ)

)
−
∑
k ̸=q

Tr
(
ΓkW

T
k Nk

)
(65)

where Λq and Γk ∀k ̸= q are matrices of proper dimensions
containing the Lagrange multipliers and Nk is an Mk×(Mk−
Q) whose columns span the left null space of W ∗

k . As W ∗

is a solution of (18), it must satisfy

∂

∂W
Lq = 0 = 2RDW ∗ − 2RxxW

∗Λq −N qΓq (66)

where Γq is the matrix obtained by vertically stacking all the
rows of Γk and N q is the block diagonal matrix whose blocks
are Nk, and where the entries of the blocks corresponding to
q are set to zero for both matrices. Left-multiplying by W ∗T

and using constraint (18b), we obtain

W ∗TRDW ∗ = Λq − 1

2
W ∗TN q︸ ︷︷ ︸

0

Γq ∀q. (67)

Since the left-hand side is independent of q, we can conclude
that Λq = Λ is the same for every choice of q. From this and
(66), we have

∂

∂Wq
Lq = 0 = 2RxqW

∗
q −2RxqxW

∗Λ−NqΓq︸ ︷︷ ︸
0

∀q (68)

Combining those equations for q ∈ K yields RDW ∗ =
RxxW

∗Λ. As W ∗ is computed via the GEVD of the local
pencil (Ri

Dq
,Ri

xq
) corresponding to W i = W ∗, it must be

such that the local W in (15) diagonalizes Ri
Dq

at every
updating node q. As a consequence, and considering that the
update matrices Gk are identity matrices due to the fact that
W ∗ is a fixed point,

W
T
Ri

Dq
W = W ∗TRDW ∗ = Λ (69)

is a diagonal matrix and the columns of W ∗ are therefore
GEVCs of the pencil (RD,Rxx).

B. Proof of Theorem III.2

In order to prove Theorem III.2, we first prove two inter-
mediate results. In the following, let f : RM×Q → R denote
the objective function (13a) and let the constraint set (13b) be

D = {W ∈ RM×Q | W TRxxW = IQ}. (70)

Furthermore, let the constraint set of the local problems (18)
be

Dq(V ) = {W ∈ D | C(Wk) ⊆ C(Vk) ∀k ̸= q} (71)

where V = W i in (18). For convenience, we define the
following equivalent procedure to an update of Algorithm 1:

W i+1 ∈ argmin
W∈Mi

∥∥W −W i
∥∥
F

(72a)

Mi = argmin
W∈Dqi

(W i)

f(W ) (72b)

where qi = i mod K. We denote Fq the mapping producing a
new iterate W i+1 from W i at the updating node q at iteration
i.

Lemma B.1. Let mq : RM×Q → R be such that {mq(W )} =
f(Fq(W )), i.e. mapping W i to f(W i+1) in procedure (72).
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Then mq is a continuous function for any q at points where
the blocks Wk ̸=q have full column rank.

Proof. The constraint set of the local problem (15) can be
expressed as

Dq(W ) = {P q
WV | V ∈ RM×Q} ∩ D (73)

where P q
W denotes the orthogonal projection matrix on the

linear subspace (71). mq(W ) therefore corresponds to the
sum of the Q smallest GEVLs of (P q

WRDP qT
W , P q

WRxxP
qT
W )

(which is found by substituting the optimization variable in
(15) by P q

WV ). As the GEVLs of a pencil vary continuously
with the entries of its constituent matrices [38], and as P q

W

varies continuously with W at points where its blocks Wk ̸=q

have linearly independent columns [39] (which is true under
the assumption that the local problems are non-singular), mq

is a continuous function at points where the blocks Wk ̸=q have
full column rank.

Let (W i)i∈N be any sequence of iterates satisfying the
mapping defined by Algorithm 1 and therefore procedure (72).
We now show that if (W i)i∈N has an accumulation point, then
it is a fixed point of Algorithm 1 and therefore a stationary
point of problem (13).

Lemma B.2. The accumulation points of (W i)i∈N are fixed
points of Algorithm 1.

Proof. Let W ∗ be an accumulation point of (W i)i∈N. From
the continuity of mq (see Lemma B.1), and under the assump-
tion of non-singular local pencils, we have:

lim
W→W ∗

mk(W ) = mk(W
∗) ∀k ∈ K. (74)

As (f(W i))i∈N is bounded and decreases monotonically, it
converges to some f∗ and therefore, from the continuity of f ,
f(W ∗) = f∗. By definition of mq we have

mqi(W
i) = f(W i+1) (75)

with qi = i mod K. Therefore,

lim
i→∞

mqi(W
i) = f∗. (76)

As W ∗ is an accumulation point of (W i)i∈N, there is some
index set Nk ⊆ N such that (W i)i∈Nk

converges to W ∗ and
(qi)i∈Nk

= (k)i for some node k. From (76) and the continuity
of mq we have

mk(W
∗) = f∗ = f(W ∗) (77)

As, by definition (71), W ∗ is in Dk(W
∗), and by the

definition of mq , the minimum value of f in Dk(W
∗) is

mk(W
∗) = f∗, W ∗ must be in M (as defined in (72b)).

In virtue of (72a), it must be that Fk(W
∗) = W ∗ and W ∗

is therefore a fixed point of Fk.
We will now establish that W ∗ is also a fixed point of

node k + 1. As, by hypothesis, the Q-th and (Q + 1)-th
smallest GEVLs of the local pencils (Ri

Dk
,Ri

xk
) are distinct

at the accumulations points of (W i)i∈N, a small perturbation
of the pencil around an accumulation point results in a small

perturbation of the generalized eigenspace [9], [38]5. As a
consequence, the convergence of the subsequence (W i)i∈Nk

to W ∗ implies the convergence of (Mi)i∈Nk
to some M∗,

which from (72) corresponds to the sequence of sets of
generalized eigenvectors of the local pencils (Ri

xq
,Ri

Dq
),

where the convergence of (Mi)i∈Nk
must be understood in

terms of the Haussdorf distance between sets 6.
As mk(W

∗) = f∗ and f(W ∗) = f∗, it must be that
W ∗ ∈ M∗. Therefore, there exists some convergent sequence
{V i+1}i∈Nk

with V i+1 ∈ Mi converging to W ∗ (As the
convergence of (Mi)i∈Nk

to M∗ implies that for any point
W in M∗ we can find a set Mi ∈ (Mi)i∈Nk

containing a
point arbitrarily close to W ). As both sequences converge to
the same point,

lim
i→∞,i∈Nk

∥∥W i − V i+1
∥∥
F
= 0, (78)

and as V i+1 ∈ Mi, we have from (72a) that∥∥V i+1 −W i
∥∥
F
≥

min
W∈Mi

∥∥W −W i
∥∥
F
=
∥∥W i+1 −W i

∥∥
F
. (79)

(78) in combination with the squeeze theorem therefore im-
plies that

lim
i→∞,i∈Nk

∥∥W i+1 −W i
∥∥
F
= 0. (80)

The convergence of (W i)i∈Nk
to W ∗ therefore implies

the convergence of (W i+1)i∈Nk
to the same point. As

(W i+1)i∈Nk
=(W i)i∈Nk+1 with (qi)i∈Nk+1 = (k+ 1)i, the

argument showing that W ∗ is a fixed point of node k can be
applied to node k + 1, and inductively to node k + l for any
l. W ∗ is therefore a fixed point of Algorithm 1.

We can now finally prove Theorem III.2. As D is compact,
(W i)i∈N must, by definition of an accumulation point, con-
verge to the (possibly infinite) set of its accumulation points.
As a consequence, if (W i)i∈N is not a convergent sequence,
it will eventually oscillate between points arbitrarily close to
accumulation points. As from Lemma B.2, the accumulation
points of (W i)i∈N are fixed points of the algorithm, and hence
from Theorem III.1, stationary points of the problem, the
sequence has a finite number of accumulation points, separated
by a finite and fixed distance. As a consequence, it cannot be
that

∥∥W i+1 −W i
∥∥
F

converges to 0 and there must be some
index set N such that

lim
i→∞,i∈N

∥∥W i+1 −W i
∥∥
F
> 0. (81)

Therefore there must also be some other index set Nk ⊆ N
such that (qi)i∈Nk

= (k)i. (81) thus contradicts (80) and
(W i)i∈N must therefore be a convergent sequence.

5The result is established for non-generalized eigenspaces, but it can be
straightforwardly extended to generalized eigenspaces by performing a change
of variables similar to (41) in order to turn the GEVD into an equivalent
eigenvalue decomposition.

6The Haussdorf distance dH(V,W) between two sets V and W is de-
fined as max{supX∈V infY ∈W ∥X − Y ∥ , supY ∈V infX∈W ∥X − Y ∥}.
dH(V,W) = ε implies that for any point in V we can find a point in W at
a distance at most ε and vice-versa.
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C. Proof of Theorem III.3

Since W ∗ is not a global minimizer and since (13) has
no local minima7, every neighborhood V ⊆ D around W ∗

contains a continuum of points U ∈ V for which f(U) <
f(W ∗). Now take any point U in U . Since (f(W i))i∈N is
monotonically decreasing, setting W 0 = U will result in a
sequence (W i)i∈N that remains at a finite distance from W ∗.
Therefore, W ∗ cannot be a stable accumulation point.

D. Proof of Equation (39)

Let Ukl ≜ R
1
2
xkWkl. (4) becomes 0 Pxkxl

Pxlxk
0

Ukl

Ulk

 =

Ukl

Ulk

Λkl (82)

As described in [27], the full eigenvalue decomposition of this
matrix consists in the eigenvectors and diagonal matrixUkl Ukl

Ulk −Ulk

 and

Λkl 0

0 −Λkl

 (83)

As the eigenvectors matrix is unitary, we have

2 ∥Λkl∥2F = 2Tr
(
Λ2

kl

)
=

∥Pxkxl
∥2F + ∥Pxlxk

∥2F = 2 ∥Pxkxl
∥2F (84)

which in conjunction with (5) gives ∥Pxkxl
∥2F = Θkl.

E. Proof of Theorem V.1

From the Cauchy-Schwartz inequality, we have∥∥∥P̂xkxl
− Pxkxl

∥∥∥2
F
≥ (85)∥∥∥P̂xkxl

∥∥∥2
F
+ ∥Pxkxl

∥2F − 2
∥∥∥P̂xkxl

∥∥∥
F
∥Pxkxl

∥F (86)

≥Θkl + Θ̂Q
kl − 2

√
Θ̂Q

kl

√
Θkl (87)

≥
(√

Θ̂Q
kl −

√
Θkl

)2

(88)

As γ2 corresponds to the Q-largest squared eigenvalue of

Pxx − I , the low-rank approximation error
∥∥∥P̂xx − Pxx

∥∥∥2
F

is bounded by (M −Q)γ2 and therefore so is

∑
k,l∈K,k ̸=l

(√
Θ̂Q

kl −
√

Θkl

)2

.

7Matrices spanning the generalized eigenspaces of (RD,Rxx) corre-
sponding to the Q largest or smallest GEVLs, are global maximizers and
minimizers of (13). Matrices spanning the generalized eigengspaces corre-
sponding to any other combination of GEVLs are saddle points.
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