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Abstract—A wireless sensor network (WSN) consists of a
collection of sensor nodes, which are equipped with processing
and wireless communication facilities to share data between each
other. In some WSN applications, it would be relevant for each
node to identify which signal components it shares with other
nodes in the network. However, this is hard to realize in a
distributed context, in particular between node pairs that do
not share a direct wireless link. In this paper, we introduce a
distributed algorithm for estimating the signal subspace that (on
average) is closest to the pairwise intersections between any two
of the per-node sensor signal subspaces. In order to facilitate
an efficient data fusion, we assume the WSN has (or can be
pruned to) a tree-topology. As opposed to a centralized algorithm
where all the sensor signals are transmitted to a fusion center
(FC), the per-node bandwidth and processing requirements are
independent of the network-size and only depend on the number
of neighbors per node and a chosen compression parameter.
By construction, our algorithm converges to the solution of the
so-called “maximum variance” (MAXVAR) formulation of the
generalized canonical correlation anlalysis (GCCA) problem in
which observations of every node act as a separate “view” in
the GCCA formulation. Therefore, even though our work is
formalized within a WSN context, it can be used as a generic
distributed MAXVAR algorithm in other application contexts as
well.

Index Terms—Wireless sensor networks, distributed estima-
tion, generalized canonical correlation analysis, MAXVAR.

I. INTRODUCTION

IN the context of Wireless Sensor Networks (WSNs), where
sensor channels are spread accross different nodes com-

municating via wireless links, two paradigms are considered
when applying array processing methods. Centralized fusion
relies on collecting the network-wide observations in an FC
where they are jointly processed, at the cost of large bandwidth
and processing requirements at the FC. Distributed processing
on the other hand, relies on the nodes collaboratively solving
a task without any single node accessing the full network-
wide observations. As the value of many array processing
methods often depends on the presence of correlation between
the channels of interest, the nodes can save bandwidth by
identifying nodes whose channels correlate with their own (i.e.
whose sensors observe common latent phenomena) and solve
the given task by only communicating with those nodes.
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To achieve this goal of identifying nodes observing common
phenomena in a bottom-up fashion, we wish to estimate the
pairwise intersections between the per-node signal subspaces.
As this problem scales quadratically with the network’s size,
we instead look for the single subspace which is closest
to all the pairwise intersections, thus corresponding to the
average pairwise intersection. Using this subspace, the nodes
could for example adaptively group themselves based on the
degrees at which they observe each of the average intersection
subspace components (which ideally correspond to different
latent phenomena). It is known that canonical correlation
analysis (CCA) can in fact be used for finding the intersection
between two subspaces [1], and that its GCCA extensions
achieve the same objective for more than two subspaces [2].

Most previous works on distributed subspace estimation aim
to identify a subspace from the union of the per-node signal
subspaces in order to optimize a certain criterion, such as
maximizing variance [3], [4], maximizing SNR [5], [6], or
maximizing correlation between two signal types [7], [8]. Our
work differs in the sense that we are specifically targetting the
intersections of the per-node sensor signal subspaces, which
would be achieved by a distributed realization of a GCCA-type
algorithm. The two main formulations of GCCA are the so-
called SUMCORR and MAXVAR formulations [9]. A scalable
distributed algorithm to solve the former has been proposed
in [10] but, to our knowledge, there exists no distributed
algorithm for solving the latter.

In this paper, we present a distributed algorithm to compute
the average pairwise intersection of the per-node sensor signal
subspaces in a distributed fashion, which can be shown to be
equivalent to a distributed MAXVAR GCCA. The proposed
algorithm can operate in tree-topology networks with a per-
node communication and processing cost which is independent
of the network’s size.

The paper is organized as follows. The problem statement is
formalized in section II. The distributed algorithm is derived
in section III. Simulations supporting the algorithm’s perfor-
mance are presented in section IV. Finally, general conclusions
are given in section V.

II. PROBLEM STATEMENT

We consider a WSN consisting of K nodes in which
each node k ∈ K = {1, . . . ,K} collects discrete observa-
tions of a complex-valued Mk-channel sensor signal xk =



[xk,1, . . . , xk,Mk
]T . We model xk as a stochastic process and

denote xk[t] as its value at time t. Let Xk denote the Mk×T
observation matrix containing T observations of xk in its
columns and Xk[t] the matrix containing T ′ � T observations
of xk in a window centered around t. We assume that xk is
zero-mean, ergodic and short-time stationary, allowing us to
estimate the slowly varying covariance matrices from sample
averages over short segments of data:

E
{
xk[t]x

H
q [t]

}
= Rxkxq

[t] ≈ 1

T ′
Xk[t]X

H
q [t] (1)

where (·)H denotes the conjugate transpose operator. Finally,
we define the network-wide observation vector as the M -
channel vector x obtained by stacking the xk’s and where
M =

∑
k Mk.

We wish to estimate the Q-dimensional signal subspace
Span (s1, . . . , sQ) that is (on average) closest to the pairwise
intersections1 of the per-node sensor signal subspaces. More
formally, we are looking for an ordered set of Q basis signals
s = [s1, . . . , sQ] and Mk × Q projection matrices Wk such
that

{W1, . . . ,WK} = argmin
{W1,...,WK}

min
s

K∑
k=1

E
{∥∥s−WH

k xk

∥∥2
}

(2)

s.t. E
{
ssH

}
= IQ. (3)

This is known as the MAXVAR generalization of CCA [11].
To understand the relationship with the aforementioned goal

of approximating pairwise intersections of the sensor signal
subspaces across all node pairs, we substitute s in (2) with its
optimal2 value

sopt =
1

K

∑
k

WH
k xk (4)

which results in the equivalent problem [12]

{W1, . . . ,WK} = argmin
{W1,...,WK}

K∑
k,l=1

E
{∥∥WH

k xk −WH
l xl

∥∥2
}

(5)

s.t.
K∑

k,l=1

WH
k Rxkxl

Wl = K2IQ. (6)

Intuitively, this shows that the Q-dimensional signal subspace
defined by s aims to capture signal components that are
shared between a large part of the individual node pairs.
It can therefore be viewed as a proxy for the collection of
pairwise intersections between the signal subspaces of pairs of
sensor nodes. Note that if two nodes are not direcly connected,
evaluating the corresponding pairwise distance in (5) can be
challenging.

Similarly3 to [12], we can show that the solution to (5)-(6),

1The term “intersection” is not to be taken literally here, as the actual
intersection is typically zero due to measurement noise. A formal definition
of the targeted subspace is given in (2)-(3).

2(4) can be obtained by formulating (2)-(3) in terms of samples rather than
random signals and differentiating with respect to the sample matrix of s.

3In the formulation of [12], RDxx and Rxx are switched. This results in
the same solution, yet with a different normalization than (3).

W , can be expressed as a generalized eigenvalue decomposi-
tion (GEVD):

RDxx
W =

1

K2
RxxWΛ (7)

with W = [W T
1 · · · W T

K ]T the block matrix obtained by
stacking the Wk’s and RDxx

= Blkdiag(Rx1x1
, . . . ,RxKxK

)
the block diagonal matrix containing the node-specific cor-
relation matrices and where Λ is the diagonal matrix of
generalized eigenvalues (GEVL).

In order to compute the generalized eigenvectors (GEVC)
in (7), all nodes would need to share their observations to
an FC where the full covariance matrix could be estimated.
This would require a large communication bandwidth between
the nodes and the FC, in particular if all nodes are not
directly connected to the FC, which increases the stress on
the communication links of the nodes that are close to the
fusion center. In addition, such a centralized processing does
not leverage the fact that we are only interested in the Q first
components of the solution.

In this paper, we present a distributed algorithm for solving
(2)-(3) in networks pruned to a tree-topology and relying on
the transmission of Q-dimensional compressed versions of the
data from neighboring nodes, thus lifting the need to transfer
the raw Mk-channel sensor observations of all nodes to an
FC through a possibly multi-hop network. Instead, the signal
observations are directly fused with other observations within
the network, where each node will eventually have access to
the estimate of s, thereby avoiding the need for a fusion center
altogether.

III. DISTRIBUTED MAXVAR ALGORITHM

The derivation of the D-MAXVAR algorithm uses some
ingredients from [5], where a similar GEVD problem as (7)
is addressed. However, the algorithm of [5] is not directly
applicable here due to the particular structure of RDxx

,
which is a collection of submatrices of Rxx (details omitted).
Furthermore, the algorithm of [5] was only defined for fully-
connected WSNs, in which all nodes have a direct link with
all other nodes. Here, we start from a star topology (for the
sake of an easy exposition), and then generalize this to more
general tree topologies.

The D-MAXVAR algorithm iteratively updates the M ×Q
block matrix of projection vectors W i, where i is the iteration
index, with the goal of obtaining limi→∞W i = W as defined
in (7). Based on the partitioning defined above, node k will be
responsible for updating submatrix W i

k. In order to derive the
algorithm for updating W i, we note that (7) can be formulated
as a constrained optimization problem in the variable W [5]:

min
W

Tr
(
WHRDxxW

)
(8)

s.t. WHRxxW = K2IQ (9)

where Tr (·) denotes the trace operator.

A. Star-Topology Networks

A star-topology network is a special case of a tree-topology
network where all nodes are leaf nodes (i.e. nodes with a
single neighbor) except for a center node kc. We denote the



set of leaf nodes as Kl = K r {kc}. In what follows, we
show how (8)-(9) (and therefore (2)-(3)) can be solved in
a star-topology network in which each node only transmits
Q-dimensional signals to its neighbors. As a basis for our
developments, we define the following algorithm for solving
(8)-(9) via an alternating optimization (AO) procedure:

1) Set i← 0, q ← 1 and randomly initialize W 0.
2) Choose W i+1 as a solution of

min
W

Tr
(
WHRDxxW

)
(10)

s.t. WHRxxW = K2IQ (11)

C(W−q) ⊆ C(W i
−q) if q ∈ Kl (12)

C(Wk) ⊆ C(W i
k) ∀k ∈ Kl if q /∈ Kl (13)

where C(W ) denotes the column space of W and W−q
is the block matrix obtained by removing the rows of
W corresponding to Wq .

3) Set i← i+ 1 and q ← (q mod K) + 1.
4) Return to step 2.

The above procedure must result in a monotonic decrease of
the objective function (10), since the solution in the previous
iteration is by definition also in the constraint set of the current
iteration. The introduction of constraint (12) and (13), although
limiting the available degrees of freedom, is the essential
element allowing the algorithm to be extented to solve (8)-
(9) in a distributed fashion, without each node needing access
to the full x, as is shown next. We first note that the constraints
can be equivalently formulated as

∃H ∈ RQ×Q : Wk = W i
kH ∀k ∈ K r {q} if q ∈ Kl (14)

∃Gk ∈ RQ×Q : Wk = W i
kGk ∀k ∈ Kl if q /∈ Kl (15)

In iteration i of the D-MAXVAR algorithm, node k will send
observations of a fused Q-channel signal defined as

xi
k =

{
W iH

k xk if q ∈ Kl

W iH
kc

xkc +
∑

l∈Kl
xi
l if k = kc

(16)

The definition is recursive, resulting in the center node ag-
gregating the compressed observations of the leaf nodes in a
sum4. We can write for q = kc:

WHx = W iH
q xq +

∑
k 6=q

GH
k xi

k = W̃H
q x̃i

q (17)

with

W̃q =
[
W T

q | GT
1 | · · · | GT

q−1 | GT
q+1 | · · · | GT

K

]T
(18)

x̃i
q =

[
xT
q | xiT

1 | · · · | xiT
q−1 | xiT

q+1 | · · · | xiT
K

]T
(19)

Similarly for q ∈ Kl, we have

WHx = W iH
q xq +HH(xi

kc
− xi

q) = W̃H
q x̃i

q (20)

where the substraction of node q’s own compressed observa-
tions is required as they are present in the center node’s xi

kc
.

This results in the following definitions for x̃i
q and W̃ i

q when

4Note that this implies a two-step process to generate the compressed
observations at the center node: the leaf nodes first send their compressed
observations to the center node, after which they are combined with the center
node’s observations.

node q is a leaf node:

W̃q =
[
W T

q |HT
]T

(21)

x̃i
q =

[
xT
q | xiT

kc
− xiT

q

]T
(22)

Note that we have different definitions for x̃i
q and W̃ i

q for
center and leaf nodes.

By acknowledging that (14)-(15) define a parametrization
of W which by construction satisfies the constraints (12)-(13)
and that H or the Gk’s (if q = kc) can be used by node q
to manipulate the Wk’s of nodes k 6= q, the above definitions
allow us to reformulate (10)-(13) as a local problem at node
q of the same form as our original centralized problem (i.e. a
GEVD):

min
W̃q

Tr
(
W̃H

q Ri
D̃q

W̃q

)
(23)

s.t. W̃H
q Ri

x̃qx̃q
W̃q = K2IQ (24)

where Ri
D̃q

is the block diagonal matrix with each diagonal
block corresponding to the partionionings defined in (19) and
(22), that is if q = kc,

Ri
D̃q

= Blkdiag(Rxqxq ,R
i
x1x1

, . . . ,

. . . ,Ri
xq−1xq−1

,Ri
xq+1xq+1

, . . . ,

. . . ,Ri
xKxK

)

(25)

else for q ∈ Kl,

Ri
D̃q

= Blkdiag(Rxqxq
,Ri

Σq
) (26)

where Ri
Σq

contains the sum of pairwise compressed variables
covariance matrices:

Ri
Σq

=
∑
l 6=q

Ri
xlxl

(27)

Note that the constraints (12)-(13) are automatically satisfied
due to the implicit parameterization of W through (14)-(15).

The AO procedure described above can now be efficiently
distributed by defining a three-step procedure applied at each
iteration i with updating node q:

1) Aggregation: The center node collects the compressed
observations defined in (16) from all the leaf nodes
except the updating node q. If node q is a leaf node,
the center node transmits the aggregated compressed
observations defined by (16) and Ri

Σq
defined in (27)

to node q.
2) Local solution: The updating node q forms the matrix

Ri
D̃q

and vector x̃i
q , estimates Ri

x̃qx̃q
and solves the

local problem defined by (23)-(24).
3) Update: The appropriate update matrices G(·) or H

are obtained from the local solution W̃q according to
the partitionings (18) or (21), respectively. The update
matrices are then propagated into the network such that
each node can update its local solution as

W i+1
k =

{
Wq if k = q

W i
kGk or W i

kH if k 6= q
(28)

where the Gk’s are used instead of H if the updating
node q is the center node.
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Fig. 1. In this example tree, the subtree Bk1p is highlighted in orange, Bk2p
in blue and Bk3p in green. Leaf nodes belonging to Kl are colored red.

Note that this procedure can be trivially extented to work
in fully-connected networks by always considering node q
as the center node and all other nodes as leaf nodes. Due
to space constraints and considering that a star-topology is
a special case of the tree-topology described hereafter, we
do not give a detailed description of the algorithm for star-
topology networks and refer the reader to the next section for
the detailed description of a generalization of this algorithm.

B. Tree-Topology Networks

We now consider a set of nodes organised in a tree-topology
network. As a tree-topology network consists of a set of nested
star-topology networks, the above procedure can be relatively
straightforwardly extented to tree-topology networks.

We denote Nk the set of neighboring nodes of node k (i.e.
sharing a link with node k) and denote xi

kp the compressed
Q-channel signal that node k sends to node p such that:

xi
kp = W iH

k xk +
∑

l∈Nkr{p}
xi
lk (29)

According to this new definition, xi
kp contains the sum of the

compressed observations of the nodes in the subtree with node
k at its root and obtained by ignoring the link between node
k and node p. We denote the set of nodes in that subtree Bkp.
An example tree depicting this concept is visible on fig. 1.
Similarly, we generalize (27) as

Ri
Σkp

= Rxi
kx

i
k
+

∑
l∈Nkr{p}

Ri
Σlk

(30)

The recursive procedure to obtain xi
kq and Ri

Σkq
for a window

of T ′ samples is described by Algorithm 1.
We redefine (18), (19) and (26) as

W̃q =
[
W T

q | GT
l1 | · · · | G

T
lnq

]T
(31)

x̃i
q =

[
xT
q | xiT

l1q | · · · | x
iT
lnq q

]T
(32)

RD̃q
= Blkdiag(Rxqxq

,Ri
Σl1

q, . . . ,R
i
Σlnq q

) (33)

with {l1, . . . , lnq
} = Nq . Those definitions allow us to

reformulate the global problem (10)-(13) as the local problem
(23)-(24) in terms of the locally accessible variables x̃i

q , xq

and RD̃q
. The first aggregation step of the procedure defined

at the end of section III-A can be carried out in a tree-topology

Algorithm 1: Recursive procedure for aggregating
observations in a tree-topology network
procedure aggregate(k, p, t)

for l ∈ Nk r {p} do
aggregate(l, k, t)

At node k
Compute
X

i

kp[t] = W iH
k Xk[t] +

∑
l∈Nkr{p}X

i

lk[t]

if k /∈ Kl then
Compute
Ri

Σkp
[t] = Rxi

kx
i
k
[t] +

∑
l∈Nkr{p}R

i
Σlk

[t]

Send (X
i

kp[t],R
i
Σkp

[t]) to node p

else
Send X

i

kp[t] to node p

network using Algorithm 1. The full D-MAXVAR algorithm
involving all three steps is described by Algorithm 2.

Algorithm 2: D-MAXVAR algorithm in a tree-
topology network.
begin

i← 0
t← t0
Initialize updating node as q ← 1
Randomly initialize the the W 0

k ’s
loop

for k ∈ Nq do
aggregate(k, q, t) (see Algorithm 1)

At node q
Estimate Ri

x̃qx̃q
[t] and RD̃q

[t]

W̃q ← Q GEVC corresponding to the
smallest GEVL of the matrix pencil
(RD̃q

[t], 1
K2R

i
x̃qx̃q

[t])

W i+1
q ←

[
IMq

0
]
W̃q

for k ∈ Nq do
Select Gk as the block of W̃q (see

(31)) corresponding to node k and
disseminate within the branch Bkq

for l ∈ Bkq do
At node l

W i+1
l ←W i

l Gk

i← i+ 1
t← t+ T ′

q ← (q mod K) + 1

Finally we note that each node k can obtain the current
network-wide estimate of sopt as

ŝi =
1

K

(
W iH

k xk +
∑
l∈Nk

xi
lk

)
. (34)
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Fig. 2. Plots of the performance metric (36) for 100 MC runs. Top: Q = 1,
varying tree size K. Bottom: K = 40, varying Q. The curves correspond
to median values, the shaded areas between dashed lines depict the 5%-95%
percentiles regions.

C. Convergence
Convergence of Algorithm 2 can only be obtained in expec-

tation as each iteration of Algorithm 2 uses a different block of
samples to estimate the second-order statistics (exploiting the
stationarity assumption). While a formal convergence proof
is omitted due to page limitations, we provide a brief proof
outline. The convergence in the star topology follows from
the fact that it exactly mimics the iterations of the AO
procedure defined in section III-A. Convergence of the latter
can be proven based on the monotonic increase of its objective
function across iterations (a formal proof of a very similar
AO algorithm is given in [6]). Finally, the convergence of the
tree-topology algorithm follows from very similar arguments,
where the main difference is that the constraint set (12)-(13)
(which is here linked to a star topology) is re-defined based
on the tree-topology (details omitted).

D. Complexity and Communication Cost
The exact order of complexity and communication cost ob-

viously depends on the specific topology under consideration
but they can still be expressed per node in terms of the number
of neighbors |Nk|. The complexity of the local GEVDs at node
k is O

(
(Mk +Q|Nk|)3

)
while the average communication

cost over each link is O((Q+ T ′)Q) per iteration (where T ′,
typically � Q, is the window length used in Algorithm 2).

IV. SIMULATIONS

In this section, we validate our algorithm with Monte-Carlo
(MC) simulations. We applied Algorithm 2 to tree-topology
networks with a branching factor of 3 and Mk = 6 ∀k ∈ K.
For each run, a synthetic observation vector xk was generated
for each node k as

xk = AkFky + nk ∀k ∈ K (35)

where y is a 3-dimensional zero-mean unit-variance gaussian
latent signal common to all nodes, Ak an Mk × 3 random
mixing matrix whose entries are drawn from a gaussian

distribution with zero mean and unit variance and Fk is a
3×3 diagonal matrix whose diagonal entries are set to 1 with
probability 0.2 or else are set to 0. This results in each latent
signal yi being sensed by 20% of the nodes on average. nk

is an Mk-dimensional vector of additive gaussian noise with
zero mean and unit variance. As a performance metric, we
used

Ci = 1− J(W i)

J(W ∗)
(36)

where W ∗ is the projection matrix obtained by centrally
solving (8)-(9) and J(W ) is the objective minimized in (5).
The resulting convergence curves are visible on fig. 2.

V. CONCLUSIONS

We have proposed a novel distributed MAXVAR algorithm
(D-MAXVAR) allowing the estimation of the average pair-
wise intersection of per-node sensor signal subspaces. By
exchanging jointly compressed sensor observations, the nodes
have bandwidth and processing requirements depending solely
on their number of neighbors and the fixed compression
parameter Q and indepentent of the total number of nodes in
the network. The algorithm converges to the centralized MAX-
VAR solution, which was also demonstrated by simulations
on synthetic data (a formal convergence proof was omitted
due to page constraints). Future work will focus on how the
knowledge of sopt can be exploited to cluster nodes according
to similarities in their observed signals.
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