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Zhenxiang Cao, Nick Seeuws, Maarten De Vos, and Alexander Bertrand

Abstract—Change Point Detection (CPD) refers to the task
of identifying abrupt changes in the characteristics or statis-
tics of time series data. Recent advancements have led to
a shift away from traditional model-based CPD approaches,
which rely on predefined statistical distributions, toward neural
network-based and distribution-free methods using autoencoders.
However, many state-of-the-art methods in this category often
neglect to explicitly leverage spatial information across multiple
channels, making them less effective at detecting changes in
cross-channel statistics. In this paper, we introduce an unsuper-
vised, distribution-free CPD method that explicitly incorporates
both temporal and spatial (cross-channel) information in multi-
channel time series data based on the so-called Time-Invariant
Representation (TIRE) autoencoder. Our evaluation, conducted
on both simulated and real-life datasets, illustrates the significant
advantages of our proposed multi-channel TIRE (MC-TIRE)
method, which consistently delivers more accurate CPD results.

Index Terms—Autoencoder, change point detection, multi-
channel time series, unsupervised learning

I. INTRODUCTION

CHANGE Point Detection (CPD) is a fundamental task in
time series analysis, serving as a crucial preprocessing

step in various application domains, including biomedical
informatics [1], [2], speech signal processing [3], [4], financial
analysis [5], [6], human activity recognition [7], [8], and
climatology [9], [10]. Its primary objective is to identify
abrupt changes in the underlying statistics of time series data,
effectively marking the points at which the time series loses
its stationarity.

Closely related to CPD is the concept of time series seg-
mentation (TSS), which is a ‘top-down’ oriented method that
aims to divide sequential data into smaller segments based
on a finite number of states of the underlying system. For
example, the AutoPlait model [11] splits input recordings by
assigning the subsequences to a fixed number of regimes.
TSS is often associated with classification tasks and can be
addressed in supervised settings. In contrast, CPD methods
take a more ‘bottom-op’ approach, where the aim is to detect
sudden statistical changes in observed variables, even when
the segments between consecutive change points lack a clear
physical interpretation. CPD is inherently an unsupervised
problem.
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In this study, we focus on designing a general CPD al-
gorithm suitable for multi-channel sequential data. We aim
to detect various types of change points in the statistics of
multi-channel time series. This includes not only the common
temporal changes in individual channels, such as changes in
mean, variance, and distributions, but also spatial changes
in the cross-channel correlation structure. It is important to
note that our aim is not to detect changes in the shapes of
subsequences when these changes do not significantly impact
the statistics of data, as such cases fall outside the scope of the
CPD problem [12]. Assigning meaning or interpretation to the
segments between detected change points is a task typically
addressed in other applications like TSS.

Traditional CPD methods like Cumulative Sum (CUSUM)
[13] and Generalized Likelihood Ratio (GLR) [14], [15] com-
pare distribution models in adjacent intervals around change
point candidates. A drawback of these methods is their reliance
on pre-designed parameter models, limiting their performance
on real-world datasets. To address this issue, some studies [16],
[17] attempted to estimate density ratios instead of original
distributions. However, the accuracy of these approaches re-
lies heavily on selecting suitable hyperparameters, posing a
challenge for users.

In the era of big data, data-driven learning methods,
particularly neural network-based frameworks, have made
substantial progress compared to traditional statistical CPD
techniques. For example, Munir et al. [18] and Perslev et
al. [19] employed convolutional neural networks (CNNs) to
identify change points and anomalies in time series data.
Additionally, due to the sequential nature of time series data,
dynamic deep learning models like Long Short-Term Memory
(LSTM) [20], [21] and Gated Recurrent Units (GRU) [22] have
been extensively explored for CPD applications [23], [24].
Among these neural network-based approaches, autoencoder-
based approaches have gained popularity. For instance, the
Autoencoder-based Breakpoints Detection (ABD) model [25]
employs an autoencoder structure to map sequential data
into latent space features. It identifies change points when
a significant dissimilarity is detected among these latent
features. De Ryck et al. [26] introduced the Time-Invariant
Loss to train autoencoders with a time-invariant representation
(TIRE) model, leading to significant improvements in CPD
performance on various simulated and real-world benchmark
datasets. However, the TIRE model does not explicitly account
for the multi-channel (spatial) structure in time series data.

In this paper, we enhance TIRE for multi-channel time
series by addressing two types of change points: those af-
fecting the multi-channel correlation structure and those im-
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pacting only one or a few specific channels. We propose an
unsupervised end-to-end learning framework with two parallel
branches to model these change points separately.

Our work’s contributions can be summarized as follows: •
We introduce an effective unsupervised multi-channel CPD
method, explicitly considering the spatial or multi-channel
structure in time series representation, in contrast to the
original TIRE model.
• We conduct a comprehensive evaluation and ablation

study on various simulated and real-world datasets, show-
casing the superior performance of our multi-channel model
compared to state-of-the-art methods.
• We offer an open-source implementation of our proposed

multi-channel TIRE model.
The paper’s structure is as follows: Section II briefly reviews

the original TIRE method. Section III addresses the multi-
channel CPD problem and introduces our multi-channel TIRE
(MC-TIRE) model. Section IV presents the experiments on
simulated and real-life datasets, with results in Section V.
In Section VI, we conduct an ablation study to gain deeper
insights into our method’s workings and draw conclusions in
Section VII.

II. REVIEW OF TIRE-BASED CPD

The TIRE model, as described in [26], comprises a simple
autoencoder (AE) with a single fully-connected layer in both
the encoder and decoder. It takes a window of N time samples
as input. By using a limited number of features (neurons in
the hidden layer), the AE is designed to capture general data
trends. To adapt these extracted representations for the CPD
problem, the authors of [26] introduced the concepts of time-
invariant (TI) and time-variant (TV) features.

The idea is that TI features (s), extracted from consecutive
windows, should be close to each other in feature space when
no change point is present. Time-variant features (u), on
the other hand, contain additional time or window-specific
information necessary for decoding the current window. In
essence, a window with N time samples is reconstructed using
a combination of features from s (which remain consistent
across multiple windows) and u (which can vary for each
window). For example, to encode a linear trend in the time
domain, s can encode the slope of the trend (consistent across
windows), while u can encode the intercept at the window
edge (time or window-dependent). Subsequently, only the
dissimilarity between the TI features is considered in a post-
processing stage to pinpoint change points.

To ensure that a feature in s possesses the TI property, TIRE
employs a dedicated loss function alongside the reconstruction
loss: the TI loss (LTI ). Its objective is to minimize the dis-
tance between TI features learned from consecutive windows,
defined as:

LTI =
∑
t

||s[t]− s[t− 1]||2. (1)

III. MULTI-CHANNEL CPD

In this section, we delve into the multi-channel CPD
problem, introduced in subsection III-A. Subsections III-B

cover the pre-processing and input structure of our proposed
model. Subsection III-C provides insights into the specifics
of our proposed multi-channel TIRE (MC-TIRE) model and
its training process. In subsections III-D and III-E, we elu-
cidate how the trained MC-TIRE model can be employed
for CPD through a dedicated post-processing procedure. The
implementation of the MC-TIRE model is accessible at
https://github.com/caozhenxiang/MC-TIRE.

A. Definitions of Multi-channel Change Points

In multi-channel time series CPD, we focus on two types
of change points:

Coherence changes: Transitions in inter-channel correlation
or coherence, often affecting multiple channels simultaneously
due to external factors like signal source shifts.

Residual changes: Changes that impact only one or a few
specific channels, often due to alterations in individual sensor
characteristics.

To capture these two changes, we approximate a stationary
C-channel time series segment Xseg ∈ RC×K with a length
of K time samples using the model:

Xseg = ATS+B, (2)

where the matrix S ∈ RR×K models R latent uncorrelated
random source signals, which are mixed into the observations
via a mixing matrix A ∈ RR×C , and where B ∈ RC×K

contains the per-channel signal components that can not be
captured by the first term. The underlying idea is that the term
ATS in (2) aims to capture the across-channel information as
much as possible, while the residual information is represented
by the B term. As a result, if the entries of ATS (or B)
show a significant discrepancy in two consecutive segments, a
candidate coherence (or residual) change should be reported.

Remark: We introduce two change point types to clar-
ify the MC-TIRE concept, without the intention of explicit
classification. We use “residual change” instead of “non-
coherent change” to emphasize a flexible boundary, aligning
with the model in (2). It is essential to note that B in (2)
may not be entirely incoherent, influenced by factors like
underestimated R or non-linear channel relationships. This
terminology matches the structure of the MC-TIRE model
(see subsection III-C), with one branch capturing inter-channel
coherence and another modeling residual signal components.

B. Pre-processing

Given a time series recording X ∈ RC×T , we first normal-
ize each channel xc ∈ RT into the range [-1,1], split it into
overlapping windows of size N ;

xc[t] = [xc[t], xc[t+ 1], . . . , xc[t+N − 1]]T ∈ RN , (3)

and then concatenate them into a 2-dimensional matrix Y[t]
with a different column for each time step t:

Y[t] = [x1[t],x2[t], . . . ,xC [t]]T ∈ RC×N . (4)

Note that consecutive windows only shift with a single time
sample.
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Fig. 1. The architecture of the multi-channel TIRE (MC-TIRE) model.

Similar to [26], we also apply the discrete Fourier transform
(DFT) F with a pre-defined length of M to the data windows
to obtain the spectral information. Accordingly, we get the
data windows in the frequency domain:

Z[t] = [|F(x1[t])|, |F(x2[t])|, . . . , |F(xC [t])|]T ∈ RC×M ,
(5)

where | · | represents that we only take the magnitudes
from the DFT outputs and discard the phase information. As
proposed in [26], we give the freedom to the user to either
use time domain (TD) information (Y[t]), frequency domain
(FD) information (Z[t]) or both, depending on which domain
is more relevant to detect change points. In the case where
both TD and FD features are used as input, two separate MC-
TIRE models are trained for each of them. The choice of data
representation heavily depends on the application context. In
case no such information is available, the default is to include
both domains as a “safe” choice [26].

C. Multi-channel TIRE Model (MC-TIRE)

Beginning with the data model in (2), we introduce a novel
unsupervised CPD framework, depicted in Fig. 1, that is end-
to-end trainable. Given that our model also incorporates the
concept of the TI loss, this work can be considered an exten-
sion of the TIRE model to multi-channel time series, denoted
as a multi-channel TIRE model (MC-TIRE). Throughout the
remainder of this section, we will use the TD variable Y[t]
to describe the model. However, it is essential to note that
everything presented is equally applicable to the FD input Z[t].

As depicted in Fig. 1, the MC-TIRE model comprises two
parallel branches. The coherence branch focuses on capturing
inter-channel coherence characteristics as comprehensively as

possible, while the residual branch is dedicated to approx-
imating the residual information that cannot be perfectly
modeled by the coherence branch. The input window Y[t]
is reconstructed as Ŷ[t] = Ŷcoh[t] + Ŷres[t], where Ŷcoh[t]
and Ŷres[t] represent the outputs of the coherence and residual
branches, respectively.

1) Coherence branch: Within the coherence branch of the
MC-TIRE model, two threads serve distinct functions. The
first thread employs a CNN-based extractor to model the
matrix A in (2) for the current time window Y[t]. The second
thread features a CNN-based autoencoder, extracting a feature
vector (fS) that encodes the information needed to reconstruct
the source matrix S in (2). This feature vector consists of both
a TI part (fTI

S ) and a TV part (fTV
S ).

The design philosophy behind this approach is based on
the assumption that source signals exhibit stable statistics that
can be captured using a limited number of parameters. These
parameters should remain relatively constant across different
windows, unless there is a change in the statistics of one of
the source signals, indicating a coherence change point. The
matrix sizes of A and S are defined by the hyperparameter
R, which corresponds to the rank of the model (2), allowing
for model complexity tuning.

To merge the feature vectors from both threads, we vectorize
the modeled matrix A into a feature vector fA. We consider
fA as a TI representation of the coherence structure across
different channels, assuming it remains approximately constant
over time between change points. The TI feature vector in the
coherence branch is defined by concatenating fA and fTI

S :

fTI
coh = [fTA, (fTI

S )T ]T . (6)

Following the data model in (2), a matrix multiplication
operation is applied between the matrices A and S in the
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coherence branch to obtain a matrix that holds the inter-
channel correlation information, denoted as Ŷcoh[t] ∈ RC×N .
Both threads in the coherence branch are constructed using
CNN layers. This choice is made because CNN layers enable
the input window to maintain a multi-channel format during
processing and explicitly consider the correlation or coherence
structure across channels.

2) Residual branch: The residual branch involves C in-
dividual instances of the single-channel TIRE structure from
[26]. Each TIRE model takes the C-channel windows Y[t]
as input and reconstructs the residual component in one
specific channel. It employs fully-connected layers, following
the approach from [26]. By jointly training the coherence
and residual branches end-to-end, the residual branch learns
to model the component that the coherence branch cannot
capture.

The residual component in each row in the c-th channel
of Y[t] is reconstructed using the c-th TIRE model from
a feature vector f cres. This feature vector is divided into a
TI part, denoted as fTI,c

res , and a window-dependent part,
designated as fTV,c

res . The decoder for the c-th channel re-
constructs the residual components within that channel as a
vector ŷc

res[t] ∈ RN based on f cres. Combining the outputs
of all TIRE models along the channel dimension generates a
matrix Ŷres[t] ∈ RC×N representing all residual activities.
Additionally, the residual TI feature vector is defined as the
concatenation of all per-channel TI feature vectors:

fTI
res = [(fTI,1

res )T , (fTI,2
res )T , . . . , (fTI,C

res )T ]T . (7)

Training both branches in Fig. 1 jointly in an end-to-
end fashion is crucial. This ensures that the residual branch
is aware of what information it should encode and what
information it can discard because the coherence branch
captures it. This interaction and complementarity between the
two branches are further enhanced during training through a
dedicated loss function (see (11)).

3) Losses: To guide the fitting process of our proposed MC-
TIRE model, we incorporate multiple loss functions to ensure
that the model extracts pertinent information for CPD.
• reconstruction loss (Lrec): Similar to [25] and [26],

we define the end-to-end reconstruction loss to minimize the
distance between the reconstructed time window Ŷt and the
original input window Yt:

Lrec =
∑
t

||Ŷ[t]−Y[t]||22. (8)

• TI loss (LTI ): The core concept behind the TI loss is that
if neighboring windows contain observations with a similar
underlying distribution, their projections should be very close
in the TI feature space. Therefore, TI features should exhibit
similarity across neighboring windows [26]. In our context,
we incorporate two instances of the TI loss for the coherence
and residual branches1:

LTI
coh =

∑
t

||fTI
coh[t]− fTI

coh[t− 1]||2 (9)

1The number of change points is assumed to be much smaller than the
number of windows, which makes this loss a reasonable choice for the
majority of terms in the summations in (9)-(10).

and
LTI
res =

∑
t

||fTI
res[t]− fTI

res[t− 1]||2. (10)

• decorrelation loss (Ldec): The decorrelation loss is
designed to reduce the correlation between the various rows
of Ŷres in the residual branch. This encourages the coherence
branch to capture as much of the across-channel correlated
information as possible. Consequently, this loss helps dif-
ferentiate between the coherence and residual branches. The
decorrelation loss is defined as:

Ldec =
∑
t

||C[t]− I||2, (11)

where I represents the identity matrix, and C[t] is a C × C
sample correlation matrix across channels for the entire batch.
Each entry in the i-th row and j-th column in C[t] corresponds
to the Pearson correlation coefficient between the i-th and j-th
rows of Ŷres[t].

All these loss functions are combined into a single loss:

Ltotal = Lrec + λ1LTI
coh + λ2LTI

res + λ3Ldec, (12)

where the scalars λ1, λ2, and λ3 represent hyperparameters
used to balance the losses. To minimize the need for hyperpa-
rameter tuning and illustrate the robustness of the MC-TIRE
framework, we will employ the same default values for our
experiments across all 8 benchmark datasets (as discussed in
Section IV). Additionally, we will show the model’s resilience
to changes in loss weights in our sensitivity analysis (see
Section VI-D).

D. Per-branch Detection of Candidate Change Points

So far, we have introduced the MC-TIRE framework and
outlined its training process in an unsupervised manner, mean-
ing the training procedure does not have prior knowledge
of change points in the dataset. The next step is to apply
the trained MC-TIRE model to the time series data and
identify potential change points by comparing the dissimilarity
between consecutive overlapping time windows in the TI
feature space. This approach aligns with other autoencoder-
based unsupervised CPD methods [25], [26]. Given the parallel
structure in the MC-TIRE model, we will first explain how
to identify candidate change points based on the coherence
and residual TI features, a process heavily influenced by the
post-processing methods in [26]. The strategy for combining
the candidate change points from both branches to obtain the
final alarms will be discussed in the following subsection.

In each branch of the MC-TIRE model, when both TD and
FD features are accessible, they are merged into a unified
feature vector, following the approach in [26]:

fTI,both
(·) [t] = [α · (fTI,TD

(·) [t])T , β · (fTI,FD
(·) [t])T ]T . (13)

The parameters α ≥ 0 and β ≥ 0 control the influence
of features in the TD and FD. These values can be set as
hyperparameters, either through domain-specific insights or
through data-driven methods (refer to equation (13)). For
simplicity, we will drop the “both” superscript from the TI
features and related terms in the following discussions.
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The assumption behind TI features is that they primarily
encapsulate short-term signal statistics. However, due to im-
perfections and noise, the dissimilarity measure can exhibit
numerous local maxima. To address this, we apply a zero-
delay weighted moving average filter as in [26]. This filter
helps eliminate the impact of minor fluctuations in the TI
features:

f̃TI
(·) [t] =

N−1∑
k=−N+1

v[N − k] · fTI
(·) [t+ k], (14)

where v represents a triangular-shaped weighting window
defined as v[k] = v[2N − k] ≜ k/N2 for 1 ≤ k ≤ N . Here,
N is a predetermined window size, as introduced in subsection
III-B. The suffix (·) can be either coh (for the coherence
branch) or res (for the residual branch). The dissimilarity
measure D(·) is defined by calculating the distances between
the smoothed TI features:

D(·)[t] = ||̃fTI
(·) [t]− f̃TI

(·) [t+N ]||2. (15)

When domain-specific knowledge is unavailable, the default
values of α and β in (16) are set to treat information from both
domains equally, based on the dissimilarity measure:

α = Q(DFD, 95%) and β = Q(DTD, 95%), (16)

where Q(·, x%) denotes the x% percentile with the goal of
removing outliers. DTD and DFD represent the dissimilarity
measures associated with fTI,TD

(·) [t] and fTI,FD
(·) [t], respec-

tively.
We subsequently utilize the weighting window v to further

filter D(·) and reduce the number of false-positive samples:

D̃(·)[t] =

N+1∑
k=−N+1

v[N − k] · D(·)[t+ k] (17)

Finally, the peaks in the smoothed dissimilarity mea-
sure D̃(·) are detected as candidate change points P(·) =
{p1(·), p

2
(·), . . . , p

n
(·)}. For ease of expression, we will use pi(·)

to represent both the i-th detected candidate change point and
its corresponding temporal location in this paper.

E. Combining Candidate Change Points across Branches

We have generated two sets of candidate change points
(Pcoh and Pres) by processing the TI features separately in
both branches, namely fTI

coh and fTI
res. However, as we will

show in subsection VI-C, taking union of these two sets results
in a high number of false alarms. To address this issue, we
introduce additional post-processing to merge the candidate
change points from both sets. We consider two scenarios and
switch between them in a data-driven manner:

• Scenario 1: Most or all change points in the entire time
series belong to a single type (either coherence or residual
changes).

• Scenario 2: No dominant type of change points exists in
the full input signal, meaning an equal distribution between
coherence and residual change points.

To switch between these two scenarios, we compare the
relative contributions of the two branches in the MC-TIRE

model. In Scenario 1, where one branch clearly dominates,
we discard change points detected by the less dominant branch
to reduce false alarms. In Scenario 2, where both branches
contribute significantly, we propose a pipeline to benefit from
both. The implementation is as follows:

To quantify the relative contributions of both branches, we
calculate the variance in the energy of the reconstructed time
series (Ŷcoh and Ŷres). This variance serves as a proxy for the
amount of change in the signals modeled by each branch. The
underlying concept is that a substantial energy variance implies
that the branch is predominantly modeling change-relevant
information. Moreover, a higher energy variance is expected
when the branch models higher-energy signal components,
which is a desired effect. We anticipate that change point
candidates caused by high-energy signal components are more
relevant, while changes in the statistics of low-energy signal
components, which are barely noticeable in the total signal,
should be disregarded since they do not significantly alter the
total signal’s statistics and might be indistinguishable from
noise, leading to a surge in false alarms.

We begin by calculating energy values within each recon-
structed window at each time sample t for the c-th channel
using the following formula:

Ec
(·)[t] = ||ŷc

(·)[t]||
2
2, (18)

where ŷc
(·)[t] denotes the c-th row of Ŷ(·)[t], and the suffix (·)

can be selected between coh or res depending on the branch.
Then, the sample variance of these energies across time t for
the entire recording is calculated with the formula:

EV c
(·) =

∑T
t=1 ||Ec

(·)[t]−
1

T

∑T
t=1 E

c
(·)[t]||

2
2

T − 1
. (19)

Subsequently, we compute the channel-wise percentage of
EV c

res in the sum EV c
coh+EV c

res to determine how to manage
the detected candidates in both branches. These percentages
for each channel are stored in a ratio vector r:

r = [
EV 1

res

EV 1
coh + EV 1

res

,
EV 2

res

EV 2
coh + EV 2

res

, . . . ,
EV C

res

EV C
coh + EV C

res

]T .

(20)
Note that r will only contain values between 0 and 1.

In Scenario 1, two possible situations arise:
i) If the majority of change points in the entire recording

belong to the coherence type, it is expected that EVcoh >>
EVres. Consequently, all elements in r will be smaller than a
threshold γ1. As a result, we can safely discard all candidate
change points detected by the residual branch, considering
only the candidates from the coherence branch as the output
alarms.

ii) Conversely, if the residual change points dominate the
entire signal, we select the elements in r that exceed another
threshold γ2. These elements correspond to the channels where
the residual change points are present. Simultaneously, other
elements in r should remain at a nominal value smaller
than γ3, i.e., there should be no values between γ3 and γ2,
otherwise we conclude to be in Scenario 2 (see below). We
only retain the candidate change points from the residual
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Fig. 2. The combination pipeline for balanced number of the coherence and residual changes in Scenario 2.

branch in the channels for which r > γ2 as the detected
alarms.

Through experiments conducted on 8 distinct benchmark
datasets, we have empirically determined that γ1 = 0.25, γ2 =
0.65, and γ3 = 0.25 serve as effective default values that yield
strong performance across all 8 benchmark datasets described
in Section IV.

In Scenario 2, where the elements in the r vector do
not meet the conditions discussed in the previous scenario,
we propose a merging pipeline to harness the advantages of
both branches. This pipeline, illustrated in Fig. 2, takes as
input two sets of candidate change points, Pcoh and Pres,
and generates three distinct sets of detected alarms: those
exclusively detected by only one of the branches (Alcoh and
Alres), as well as those detected by both branches (Alboth).

After obtaining the two sets of candidate change points,
Pcoh and Pres, from both branches, we seek their intersection.
Given that candidate change points may not be precisely
aligned with the ground truth change points and require a
tolerance distance τ (see subsection IV-A1), we merge a
candidate change point (pcoh) in the set Pcoh with another
candidate change point (pres) from the set Pres if they are
located within τ time samples of each other. In this case,
we remove pcoh and pres from their respective sets and add
the merged change point (denoted as pboth) to the set Pboth,
indicating that both branches have detected this candidate. The
temporal location of pboth is estimated as a weighted mean of
the time indices of pcoh and pres, with weights computed using
the smoothed dissimilarities of the TI features, D̃coh and D̃res

at the corresponding time indices. To ensure that these values
are comparable, they are normalized with D̃avg

coh and D̃avg
res ,

which denote the average value over the 10% largest elements
in D̃coh[Pcoh] and D̃res[Pres]. This normalization is based
on a range of values to avoid using a single (possibly outlier)
point for the normalization. A value of 10% was empirically
found to be a reasonable range for this normalization. The
process for constructing Pboth is detailed in Algorithm 1.
The algorithm’s output comprises three sets: Pboth, P′

coh, and
P′

res, with the latter two corresponding to the original sets
Pcoh and Pres, from which the common change points (now
included in Pboth) have been removed.

All candidate change points in Pboth are jointly detected
by both branches, ensuring their reliability. For the remaining
candidate change points in sets P′

coh and P′
res, we further

refine the selection by preserving only significant candidates
and filtering out potential false positives. Specifically, we
compare each element in D̃(·)[P

′
(·)] with D̃avg

(·) in the respective

Algorithm 1: Find intersections between candidate
change points in both branches

Input:
Pcoh and Pres: Sets of peaks found in coherence
branch and residual branch;
D̃avg

coh and D̃avg
res : Average value over 10% largest

elements in D̃coh[Pcoh] and D̃res[Pres];
τ : Pre-defined tolerance.

Output:
P′

coh: Set of candidate change points that are exclusive
to the coherence branch;
P′

res: Set of candidate change points that are exclusive
to the residual branch;
Pboth: Set of candidate change points that are
detectable in both branches.

1 for pcoh in Pcoh do
2 Select pres in Pres for which the temporal

distance d(pcoh, pres) is minimal.
3 if d(pcoh, pres) < τ then
4 ⋆ Compute weights a = D̃coh[pcoh]/D̃avg

coh and
b = D̃res[pres]/D̃avg

res ;
5 ⋆ Add change point

pboth = ⌊(a · pcoh + b · pres)/(a+ b)⌋ to
Pboth, where ⌊·⌋ denotes the floor function;

6 ⋆ Remove pcoh and pres from Pcoh and Pres,
respectively.

7 end
8 end
9 Copy all remaining elements in Pcoh and Pres to

P′
coh and P′

res, respectively.
10 return Pboth, P′

coh and P′
res

branch, retaining candidates p′(·) that satisfy the condition:
D̃(·)[p

′
(·)] > 0.25 · D̃avg

(·) . The remaining candidates are stored
in set P′′

(·).
Because we define the temporal location of all elements

in Pboth using the weighted mean metric as discussed in
Algorithm 1, some potential change points in Pboth might
still be too close to the remaining elements in P′′

coh and
P′′

res. Therefore, we again check for overlap between P′′
(·)

and Pboth using the tolerance τ . This time, we do not employ
the weighted mean for merging these candidate change points.
Instead, we directly remove the matched candidates from P′′

(·)
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since the candidates in Pboth possess a higher confidence level.
The final outcome is three separate sets of detected alarms:

Alcoh (containing all remaining candidate change points from
P′′

coh), Alres (containing all remaining candidate change
points from P′′

res), and Alboth (containing all candidate
change points in Pboth). Finally, we form the union (Al) from
these three alarm sets to produce our ultimate detection result.

IV. EXPERIMENTS

In this section, we describe experiments to evaluate the
MC-TIRE model. We provide evaluation metrics, baseline
models for comparison, benchmark datasets, and details in
the proposed model. All hyperparameters in MC-TIRE model
were empirically chosen, often drawing from [26], with a
general aim of using consistent default values across all
datasets, unless otherwise specified.

A. Evaluation Metrics and Baseline methods

1) Evaluation metrics: Following [25] and [26], we clarify
the criteria for determining if a detection alarm a corresponds
to a ground truth change point b. To deem a detection alarm a
as correct, it must meet all three of the following conditions:
i) b is the closest ground truth change point to a; ii) Given a
pre-defined tolerance τ , the distance between a and b fulfill
the relationship: |a − b| ≤ τ ; iii) Any ground truth change
point b can only be linked to a single detected alarm a.

Based on the above definition, we employ the f1-score,
which is a popular CPD evaluation metric [27], [28], [29],
[30], to evaluate the performance of our proposed MC-TIRE
model and other baseline algorithms.

2) Baseline methods: The performance of our proposed
MC-TIRE model is compared against six baseline CPD al-
gorithms, including GLR [14], [15], relative unconstrained
least-squares importance fitting (RuLSIF) [17], Fast low-cost
online semantic segmentation (Floss) [12] 2, ABD [25], kernel
learning CPD (KL-CPD) [31], and the original TIRE algorithm
[26].

We use the same baseline GLR algorithm as in [26],
employing an AR(2) model on consecutive window pairs
and their union, defining dissimilarity with a generalized log-
likelihood ratio. RuLSIF utilizes kernel-specific parameters
for change point detection based on density ratios between
adjacent windows. In our comparison, we adhere to the
parameters suggested in its original paper [17], as fine-tuning
did not significantly enhance our benchmark results. The Floss
algorithm employs a Matrix Profile [32] to detect changes
in temporal shape patterns. As suggested in the original
paper [12], we compute the corrected arc crossings (CAC)
individually on each channel and segment the recording based
on the averaged results across all channels. Regarding the
KLCPD, ABD, and TIRE models, like our MC-TIRE model,
they measure dissimilarity between features learned by neural
networks (RNN for KLCPD and autoencoder for ABD and

2The floss is actually a TSS algorithm that focuses on signal shape patterns,
and so it is not truly a CPD algorithm per se. Nevertheless, it can still perform
decently on CPD problems where the change points denote changes in the
signal patterns as it is the case for some of our benchmark datasets

TIRE). We use default parameter settings from [31] for KL-
CPD. For the TIRE model, which can be seen as a special
case of our MC-TIRE, ignoring the correlation information
from our coherence branch, we maintain the same architecture
as in the residual branch of the MC-TIRE framework. This
provides a fair comparison regarding the added benefit of
the coherence branch. As for ABD, we utilize the same
settings as in TIRE to avoid the influence of the specific
choice of neural network architecture. All neural network-
based methods, including KLCPD, ABD, TIRE, and MC-
TIRE, are trained for 200 epochs. Moreover, we incorporate
the same post-processing discussed in subsection III-D to
the GLR, KLCPD, ABD, TIRE, and MC-TIRE algorithms
to ensure that the results are not solely influenced by the
introduction of our post-processing step. For RuLSIF, we adopt
the post-processing outlined in the original paper [17], as this
algorithm has a tailored post-processing step.

B. Benchmark Datasets

We conduct evaluations of the MC-TIRE model and all
baseline methods across five simulated and three real-life
datasets. The simulated changes encompass variations in the
across-channel correlation structure, as well as changes in
mean and variance. Additionally, we consider scenarios where
changes in mean and variance are introduced by the B or S
matrices, leading to impacts in a specific channel or across all
channels simultaneously. Being a multi-channel extension of
the TIRE model, the MC-TIRE model is theoretically capable
of handling various other types of changes in individual
channels, as detailed in [26].

1) Simulated datasets: All simulated datasets are created
using the multi-channel data model in (2). We introduce five
different types of change points, resulting in five distinct
simulated datasets (as outlined below). Each dataset includes
eight different realizations, with the number of channels C
varying from 2 to 9. We set R to be equal to C, which means
the matrix A in (2) is a square matrix3. All realizations consist
of “T=5000” time samples. Along the temporal axis, we insert
change points at tn after every 100 time samples, i.e., K = 100
in (2).

Following [17], [26], we generate each row in S using a
1-dimensional auto-regressive model:

s(t) = a1s(t− 1) + a2s(t− 2) + ϵt, (21)

with the initial condition s(1) = s(2) = 0. The error term is
Gaussian noise ϵt ∼ N (µt, σ

2
t ). As a result, S is guaranteed

to be a full-rank matrix. Besides, we set a1 = 0.6, a2 = −0.5,
µt = 0, and σt = 1.5 unless specified otherwise. We generate
the matrix A as a C × C matrix of full rank, in which the
entries are drawn from a Gaussian distribution N (0, 1).

The simulated datasets can be categorized based on the type
of changes:

3We intentionally introduce a significant difference between the value of
R in the coherence branch of the MC-TIRE model and the value of R in the
generated data. This is done to illustrate the robustness of MC-TIRE against an
underestimation of this parameter. In general, we have found that the default
value of R = 1 is sufficient to capture coherence changes, even when the
actual rank of the matrix A is higher.
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TABLE I
OVERVIEW OF BENCHMARK DATASETS

Nr. of series Length Nr. of channels Nr. of change points Type of change points

change-A 8 5000 2 ∼ 9 49 coherence change points caused by resetting A at time tn
change-S (JM) 8 5000 2 ∼ 9 49 coherence change points caused by varying mean values in all channels of S at time tn
change-S (SV) 8 5000 2 ∼ 9 49 coherence change points caused by varying variance in all channels of S at time tn
change-B (JM) 8 5000 2 ∼ 9 49 residual change points caused by varying mean values in one channel of B at time tn
change-B (SV) 8 5000 2 ∼ 9 49 residual change points caused by varying variance in one channel of B at time tn

Honeybee Dance 6 827±202 3 20±4 honeybee waggle changes
HASC-2011 1 39397 3 39 human activity changes

UCI-test 1 2947 50 119 human activity changes

(i) Datasets with coherence changes:
We create three different datasets with changes in the across-

channel coherence structure. These changes can be induced
by altering the entries in the matrix A or by modifying
the temporal statistics in the matrix S (which then affect all
channels through the matrix A). In addition, each element in
B is sampled from a uniform distribution:

Bij ∼ U( 1

10
min(ATS),

1

10
max(ATS)), (22)

where min(·) and max(·) denote the minimal and maximal
element in the matrix, respectively. We design these simulated
datasets with coherence changes to demonstrate the advantage
of explicitly taking the across-channel correlation into consid-
eration in the MC-TIRE model.

• Change-A: In this dataset, we resample the matrix A from
the Gaussian distribution N (0, 1) at each tn.

• Change-S (Jumping Mean): In this dataset, we add a bias
(mean) to s(t) in (21). This bias value changes at each change
point tn. At time tn, we simultaneously adjust the mean values
of all rows in S. The mean value of the c-th row in S is
changed to

µc
t =

0, 1 ≤ t ≤ t1

µc
tn−1

+
n

ηc
, tn−1 ≤ t ≤ tn,

(23)

with ηc ∼ U(−10, 10), which results in an increasing piece-
wise constant mean over time.

• Change-S (Scaling Variance): In this dataset, the differ-
ences between adjacent segments in the c-th channel of S are
achieved by altering the standard deviation σc

t :

σc
t =

1, tn−1 ≤ t ≤ tn and n is odd

ln(e+
n

ξc
), tn−1 ≤ t ≤ tn and n is even,

(24)

where ξc ∼ U(2, 10). Similar to the previous dataset, we adjust
the standard deviations of all rows of S simultaneously.

(ii) Datasets with residual changes:
We create two additional datasets in which each change

point at tn affects only one of the channels in the matrix B of
(2). These datasets are designed to prove that the MC-TIRE
model can also identify change points that only affect one
specific channel.

• Change-B (Jumping Mean): In this dataset, we generate
each channel (row) from B with the auto-regressive model in
(21). The mean value in the c-th channel (µc) jumps between
0 and 2 alternatively at time tcn = 100 ·c+100 · i ·C, where C

is the number of channels in the current dataset and i varies
from 0 to ⌊T/(100 · C)⌋ − 1:

µc
t =

{
0, tcn−1 ≤ t ≤ tcn and n is odd
2, tcn−1 ≤ t ≤ tcn and n is even.

(25)

It is noted that, while we introduce change points in each
channel, they appear at different positions in time.
• Change-B (Scaling Variance): The last type of change

points are introduced by changing the standard deviation σc
t

in the c-th channel of B at time tcn as:

σc
t =

{
0, tcn−1 ≤ t ≤ tcn and n is odd

ln(e+
n

8
), tcn−1 ≤ t ≤ tcn and n is even.

(26)

2) Real-life datasets: We also evaluated our MC-TIRE
framework on three real-life datasets:

Honeybee Dance [33]: The honeybee dance dataset is
a widely used dataset for evaluating CPD approaches, as
referenced in [28], [31], [34], [35], [36]. It comprises six
sequences with varying lengths, ranging from 602 to 1124 time
samples, tracking the movements of a bee during a “dance”
used for communication among bees. In each sequence, three
features are recorded, represented by “C=3” channels. These
features represent the coordinates in a 2D plane and angle
differences. The ground truth change points correspond to
different stages of the waggle dance.

HASC-2011 [37]: Another commonly used evaluation
dataset in the CPD context is the human activity recognition
data 4 [7], [16], [17], [31], [34], [38]. For our second real-
life dataset, we select a subset of the HASC Challenge 2011
dataset, featuring three-axis accelerometer data. The goal in
change point detection is to localize transitions among six
behaviors, which typically result in noticeable changes in
the statistics of observed variables: staying, walking, jogging,
skipping, walking downstairs, and climbing stairs. Similar to
[17], [26], [39], we choose data from person 671. However,
we use the original three-dimensional (multi-channel) data as
input, avoiding the conversion to a 1D time series based on
the L2-norm.

UCI-test [40]: The UCI dataset, like HASC-2011, is a
human activity recognition dataset that could be employed for
evaluating CPD algorithms, as referenced in [25]. This dataset

4The human activity recognition problem is indeed tackled by TSS algo-
rithms. However, the transitions between different human movements often
lead to changes in the observed signal statistics. For this reason, datasets of
this nature are often used for evaluating CPD approaches.
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captures data from an embedded accelerometer and gyroscope
in a smartphone worn on the waist. It collects three-axial linear
acceleration and 3-axial velocity. The corresponding labels
represent six activities performed by participants: walking,
walking upstairs, walking downstairs, sitting, standing, and
laying. Various statistical and other characteristics of the raw
sensor signals are computed, resulting in a 561-feature vector
with time and frequency domain variables. In our experiments,
we use only the first 50 features of the test dataset for our
evaluation. We opted for this reduction due to high feature
redundancy and limited computation resources. According to
our observation, these 50 features effectively capture human
activity transitions without compromising baseline model per-
formance.

We provide a summary of the details for all benchmark
datasets used in our evaluation in Table I. Additionally, we
visualize three snippets along with the dissimilarity measures
collected from the coherence branch (green) and residual
branch (orange) in Fig. 3. These snippets represent simulated
coherence changes, simulated residual changes, and real-life
changes, respectively. Further visualization examples can be
found in the supplementary materials.

C. Experiment Details
As discussed in Section III, we utilize convolutional neu-

ral networks in the coherence branch and fully-connected
autoencoders to build TIRE models for reconstructing each
channel of the input time window in the residual branch. In
the coherence branch, the user can specify the rank of the
underlying data model, which corresponds to the number of
rows in the matrices A and S in (2). In our experiments,
we set R = 1 for all datasets to enforce a low-rank model
that captures most of the correlation structure with minimal
trainable parameters.

Following [26], we limit the dimension of TV features in
the autoencoders to prevent over-encoding. The length of the
feature vectors fTI

S and fTV
S is set to 3 and 1, respectively. In

the residual branch, we maintain the sizes of fTI,c
res and fTV,c

res

for the c-th channel to 2 and 1, respectively.
We employ the Adam optimizer with a learning rate of

0.001 to compute the gradient of our loss function Ltotal

over each mini-batch of size 64. To mitigate the impact
of randomness stemming from initialization and mini-batch
shuffling, we conduct 10 runs for each dataset using all
learning-based algorithms. In defining the loss function, the
trade-off hyperparameters are set as λ1 = λ2 = 0.01, and
λ3 = 0.1 for all datasets.

Regarding the window size N , it remains consistent across
all baseline algorithms but is tailored to each dataset to ensure
it is smaller than the expected temporal interval between
change points, yet sufficient to capture segment characteristics.
We select N values to maximize the median f1-score across
all algorithms in the comparison. The resulting N values are
N = 40 for all simulated datasets and N = 16, N = 280,
N = 8 for the Honeybee Dance, the HASC-2011, and the
UCI-test, respectively. To minimize adjustable hyperparame-
ters, we set the tolerance τ to be equal to the window size N
defined in each dataset.

(a) change-A

(b) change-B(JM)

(c) Honeybee Dance

Fig. 3. Snippets from a subset of evaluation datasets. Vertical red lines
indicate the temporal and spatial positions of ground truth change points.
Given that per-channel labels are unavailable for the real-life datasets, we
mark the location of ground truth labels in all channels.

In line with [26], we introduce three different settings for
the domain-relevant hyperparameters α and β: MC-TIRE TD
(α = 1 and β = 0), MC-TIRE FD (α = 0 and β = 1), and
MC-TIRE both (α and β are set following (16)), correspond-
ing to modeling the data in the TD, FD, or both domains,
respectively.

V. RESULTS

Our objective is to propose a generic algorithm that demon-
strates strong performance across various benchmark datasets
with different types of change points. TABLE II summarizes
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TABLE II
THE F1-SCORES AND STANDARD DEVIATIONS ACROSS REALIZATIONS AND REPETITIONS OF MC-TIRE FRAMEWORK AND BASELINE METHODS ON

SIMULATED AND REAL-LIFE DATASETS. WE HIGHLIGHT THE BEST-PERFORMING APPROACH (INDICATED BY THE HIGHEST MEAN VALUE IN F1-SCORE)
FOR EACH DATASET IN BOLD.

Simulated Datasets Real-life Datasets
change-A change-S(JM) change-S(SV) change-B (JM) change-B (SV) Honeybee Dance HASC-2011 UCI-test

GLR [14], [15] 0.677±0.083 0.690±0.145 0.715±0.203 0.672±0.118 0.676±0.141 0.72±0.07 0.473 0.660
RuLSIF [17] 0.796±0.030 0.825±0.086 0.836±0.026 0.745±0.076 0.757±0.085 0.70±0.19 0.520 0.689

Floss [12] 0.662±0.052 0.696±0.041 0.674±0.046 0.665±0.066 0.644±0.087 0.55±0.12 0.545 0.505
ABD [25] 0.693±0.034 0.844±0.036 0.717±0.052 0.880±0.077 0.704±0.066 0.62±0.13 0.466±0.031 0.842±0.046

KLCPD [31] 0.646±0.031 0.522±0.078 0.724±0.062 0.654±0.072 0.702±0.032 0.63±0.15 0.376±0.082 0.691±0.036

TIRE TD [26] 0.709±0.052 0.859±0.062 0.726±0.075 0.889±0.072 0.718±0.044 0.67±0.11 0.474±0.029 0.872±0.018
TIRE FD [26] 0.710±0.050 0.842±0.052 0.835±0.070 0.790±0.079 0.805±0.052 0.74±0.11 0.486±0.028 0.624±0.240

TIRE both [26] 0.702±0.044 0.856±0.058 0.830±0.079 0.877±0.071 0.817±0.046 0.69±0.13 0.480±0.027 0.736±0.207

MC-TIRE TD 0.955±0.023 0.916±0.037 0.858±0.057 0.900±0.044 0.843±0.057 0.65±0.12 0.491±0.037 0.913±0.012
MC-TIRE FD 0.935±0.039 0.889±0.044 0.952±0.034 0.742±0.059 0.948±0.031 0.81±0.15 0.569±0.014 0.859±0.020
MC-TIRE both 0.956±0.034 0.911±0.037 0.925±0.037 0.898±0.043 0.941±0.046 0.75±0.13 0.551±0.054 0.903±0.006

the evaluation results of the MC-TIRE and other baseline
methods.

The evaluation results reveal some interesting trends. Firstly,
the MC-TIRE model demonstrates a significant improvement
on the simulated datasets containing only coherence change
points (change-A, change-S (JM), and change-S (SV)) com-
pared to all the baselines in our comparison. This trend
is also evident when comparing MC-TIRE to the original
TIRE model, highlighting the effectiveness of the MC-TIRE
framework in capturing changes in the coherence across dif-
ferent channels. The effectiveness of the MC-TIRE model in
addressing changes in coherence across channels is further
supported by observations in the first subplot of Fig. 3. The
coherence branch in MC-TIRE (green) shows clear local
maxima in the neighborhood of the change points, as opposed
to the individual TIRE models in the residual branch (orange).
This indeed aligns with the design objectives of our model.

Furthermore, MC-TIRE also outperforms TIRE on the
datasets change-B (JM) and change-B (SV). This could be
attributed to the use of independent per-channel TIRE models
for each channel in the residual branch, providing more
insights into each channel compared to the original TIRE
model, which takes concatenated windows across all channels
as input.

Consistently, MC-TIRE yields superior detection results
on the real-life datasets compared to the baseline methods.
By combining the results from both simulated and real-life
datasets, we can see that the combination of information in
the TD and FD via (13) typically provides adequate detection
performance. Although these results are sometimes not as
strong as those obtained with domain-specific information
(i.e., where the end-user selects either TD or FD as the
input representation), the combination strategy employed in
TIRE and MC-TIRE still offers a viable approach to merging
information from both domains when no expert knowledge is
available to determine whether the TD or FD better emphasizes
the change points.

In addition, the baseline models face challenges in handling
multi-channel time series, and none of them consistently pro-
duce satisfactory detection results on all benchmark datasets.
This issue becomes particularly noticeable in the UCI-test

datasets, which contain a larger number of channels compared
to other datasets. Compared to the GLR model, the RuLSIF
model tends to deliver better detection performance on the
majority of datasets, as it removes the limitation imposed by
the assumed parameter models. The ABD model can be seen
as a special case of the TIRE structure with a zero weight
for the TI loss. By comparing the performance of ABD and
the TIRE model, we can observe the benefits of introducing
TI regularization in the feature space and the incorporation of
frequency domain information. As a TSS algorithm, the Floss
model excels at segmenting sequential recordings based on
shape and demonstrates impressive performance on the HASC-
2011 dataset, as intended. However, on other benchmark
datasets where changes are mostly expressed in the statistics
and lack clear regimes in shape, the Floss model typically
loses its effectiveness. This conclusion aligns with the authors’
arguments in [12] and with results in the single-channel CPD
context as presented in [29].

VI. ABLATION STUDY

In this section, we conduct a series of experiments to
uncover the specific features of MC-TIRE that contribute to its
superior change point detection (CPD) performance compared
to the original TIRE model introduced in [26].

A. Leveraging Multi-channel Information

In this subsection, we compare the effectiveness of the
MC-TIRE model with the original TIRE model, which lacks
explicit multi-channel coherence modeling. To ensure a fair
comparison, we also introduce another variant called TIRE-
V. TIRE-V adjusts the number of latent TI features to match
the number of channels in the input time series, aligning the
dimensions of feature vectors for both MC-TIRE and TIRE-V.

We assess the detection performance with respect to the
number of channels in the processed time series. Our simulated
datasets consist of eight realizations, each with a varying
number of channels from 2 to 9. Running MC-TIRE, TIRE,
and TIRE-V on these realizations allows us to examine the
influence of the number of channels.
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(a) MC-TIRE vs. TIRE

(b) MC-TIRE vs. TIRE-V

Fig. 4. Comparison of the influence of channel numbers on the detection
performance achieved by MC-TIRE and its competitors. The box plots show
f1-scores achieved by MC-TIRE and its competitors across datasets and dif-
ferent runs. The lines below them visualize the differences between the mean
values of f1-scores (positive values correspond to MC-TIRE outperforming
its competitor)

Fig.4 displays the f1-scores, with the box plots illustrating
the spread of f1-scores across five simulated datasets and 10
runs for each dataset. Additionally, we present the differences
in mean f1-scores achieved by the different models. For
more detailed visualizations specific to individual simulated
datasets, please refer to the supplementary materials.

Fig.4 reveals an increasing trend in the improvement in-
troduced by MC-TIRE over the original TIRE model as the
number of channels increases. Furthermore, the MC-TIRE
consistently outperforms the TIRE model on all simulated
multi-channel time series. Despite the adjustment of the
number of latent features in the TIRE-V model to match
the input channels, it still lags behind the MC-TIRE model,
which is inherently tailored for multi-channel time series. This
underscores that the MC-TIRE model excels in leveraging
multi-channel information, aligning with our design objectives.

B. Coherence versus Residual Change Points

To validate the distinct roles of the two parallel branches
in MC-TIRE, designed for modeling coherence and residual
features, we conduct a separate analysis of the detection results
from each branch across all our simulated datasets.

Fig.5 demonstrates that the coherence branch consistently
outperforms the residual branch in datasets with coherence
change points, such as change-A, change-S (JM), and change-
S (SV). Conversely, this relationship is reversed in the change-

Fig. 5. Comparison between the coherence and residual branches on simulated
datasets.

B (JM) and change-B (SV) datasets, which contain change
points exclusive to single channels at each tn. This observation
affirms that each branch indeed targets different types of
change points. However, it is important to note that the
detection results in both branches are not mutually exclusive;
coherence changes can sometimes be detectable in the residual
branch and vice versa. This phenomenon suggests that both
branches are to some extent influenced by change points of a
different type than they were originally designed for. This is
somewhat expected, given the choice of R = 1 in MC-TIRE,
which is an underestimation of the true rank of the matrix A
used to generate the data. Consequently, the coherence branch
can only capture a portion of the coherent activity in the signal.
Furthermore, changes occurring in one specific channel usually
also affect the across-channels to some degree. While this is
not problematic, it underscores the need for the mechanism
to combine the decisions of both branches when they make
conflicting decisions, as summarized in subsection III-E.

C. Influence of the Candidates Combination Pipeline

In Fig.2, we presented a pipeline designed to combine
candidate change points detected by different branches within
the MC-TIRE model. To assess the necessity of this pipeline,
we conducted experiments with two alternative combination
strategies and compared their performance. Specifically, we
compared the proposed pipeline with the following strategies:
• “and” rule: the detection alarms are found by taking the

intersection of candidate change point sets Pcoh and Pcoh.
• “or” rule: the detection alarms are found by taking the

union of candidate change point sets Pcoh and Pcoh.
We evaluate these strategies with two recordings, one is

from the change-B(JM) dataset and the other one is from the
Honeybee Dance dataset. We collect results over 10 runs. The
mean values and standard deviations of precision, recall, and
f1-score are given in TABLE III.

As illustrated in Table III, the “and” rule strategy typ-
ically yields the highest precision among the three strate-
gies. This suggests that maintaining consistency between both
branches contributes to reducing the false-positive rate. How-
ever, this strategy comes at the expense of an increased false-
negative rate. Conversely, the “or” rule strategy enhances recall

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3347356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 02,2024 at 09:11:00 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

Fig. 6. Influence of the loss weights to the detection performance of MC-TIRE. The default values are marked with the vertical dotted lines.

TABLE III
COMPARISON OF CANDIDATE CHANGE POINTS MERGING STRATEGIES.

precision recall f1-score

recording from
change-B (JM)

“and” rule 0.957±0.014 0.714±0.014 0.817±0.008
“or” rule 0.529±0.016 0.977±0.011 0.687±0.015

proposed pipeline 0.872±0.033 0.955±0.017 0.912±0.021

recording from
Honeybee Dance

“and” rule 0.66±0.05 0.59±0.06 0.62±0.04
“or” rule 0.38±0.03 0.86±0.06 0.53±0.04

proposed pipeline 0.60±0.02 0.83±0.04 0.70±0.03

Fig. 7. Influence of the window size to the detection performance of MC-
TIRE.

while sacrificing precision. Our proposed combination pipeline
strikes a balance between precision and recall, combining the
best of both worlds. This approach results in a superior f1-
score, showcasing its ability to achieve a harmonious trade-off
between precision and recall.

D. Sensitivity Analysis

In this subsection, our objective is to assess the dependence
of the proposed method’s performance on the hyperparame-
ters outlined in Subsection IV-C. Specifically, we investigate
the influence of several key hyperparameters, including the
window size (N ), the weights assigned to each loss term, as
well as the number of TI features in both the source matrix
(fTI
S ) and the residual branch (fTI

res).
The first type of hyperparameters we are concerned with is

the loss weights in equation (12). To assess the impact of these

Fig. 8. Influence of the length of fTI
S and fTI

res to the detection performance
of MC-TIRE. The default values are marked with the vertical dotted lines.

loss terms, we conducted a series of extensive experiments. In
these experiments, we systematically varied the value of each
loss weight while keeping the other two weights constant.
Since the variations in f1-scores resulting from changes in
weight values are relatively small compared to the differences
among datasets, we re-scale the f1-scores. Specifically, we
set the f1-scores achieved with the default weight values for
each dataset as the baseline and report the relative f1-scores
achieved with other weight settings. This relative f1-score is
defined as the increased ratio between the f1-score obtained
with the new weight setting and the f1-score achieved with
the default weight value. A negative value suggests that the
new weight setting leads to a reduction in the f1-score. To
avoid clutter in the presentation of results across datasets,
we display the averaged relative f1-scores without standard
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deviations across all realizations and runs for the benchmark
datasets in Fig.6. Fig.6 illustrates that the performance of the
MC-TIRE model improves across all benchmark datasets when
non-zero values are assigned to the loss weights. This validates
the significance of incorporating each loss term as defined
in equation (12). Additionally, we observe that the MC-TIRE
model is relatively insensitive to variations in the values of
these loss weights. Even when the loss weights are adjusted to
be 10 times or one-tenth of their default values, the differences
in relative f1-scores remain consistently below 5% across all
benchmark datasets.

We continue with assessing the impact of the chosen win-
dow size (N ). In the MC-TIRE model, N defines the length of
each input window to the model, as well as the length of the
moving average filter in post-processing, as inspired by [26].
To gauge the sensitivity of MC-TIRE to this hyperparameter,
we present in Fig.7 the averaged relative f1-scores across all
realizations and runs for the benchmark datasets. We scale the
default N using coefficients 0.25, 0.5, 1, 2, and 4. Since the
default value of N varies among datasets, we depict the x-
axis in Fig.7 as the relative window size, denoting the scale
coefficient. As observed, both larger and smaller values of
N lead to a decrease in the detection performance of the
MC-TIRE model. This phenomenon can be attributed to two
factors. Firstly, an excessively small N might not adequately
capture the statistics of the segments, while an overly large N
could result in windows containing multiple adjacent change
points. Secondly, a very short moving average filter may
not effectively eliminate false alarms, while a very long
one could render nearby peaks in the dissimilarity measure
indistinguishable. Similar phenomena are also observable in
the original TIRE model [26].

Furthermore, we examined the impact of varying the length
of fTI

S and fTI
res. Similar to Fig.6, we present the averaged

relative f1-scores for different settings in Fig.8. It is evident
that having a small number of TI features in both fTI

S and
fTI
res can lead to a decrease in performance. This is primarily

because a limited number of TI features increases the like-
lihood of encoding change-relevant information into the TV
features. However, the performance of the MC-TIRE model
remains stable across the majority of datasets as we increase
the length of fTI

S and fTI
res.

VII. CONCLUSION

We introduced the Multi-Channel Time-Invariant Represen-
tation (MC-TIRE) model for change point detection in multi-
channel time series. In contrast to other methods, MC-TIRE
explicitly models and leverages the coherent structure across
channels to enhance change point detection in multi-channel
time series. The proposed model comprises two branches:
a coherence branch that captures the majority of the co-
herent signal activity and a residual branch, which handles
the remaining activity. Additionally, we presented a heuristic
approach for merging potentially conflicting alarms from both
branches without significantly increasing the false alarm rate.
Across extensive evaluations on both simulated and real-life
benchmark datasets, the MC-TIRE model consistently out-
performs state-of-the-art CPD methods, including the original

TIRE model. This demonstrates the effectiveness of MC-TIRE
in achieving superior CPD performance in the setting of multi-
channel time series.
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