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Abstract

The goal of change point detection (CPD) is to identify abrupt changes
in the statistics of signals or time series that reflect transitions in the
underlying system’s properties or states. While many statistical and
learning-based approaches have been proposed to address this task,
most state-of-the-art methods still treat this problem in an unsupervised
setting. As a result, there is often a large gap between the algorithm-
detected results and the expected outcomes of the user. To bridge this
gap, we propose an active-learning strategy for the CPD problem that
combines with the one-class support vector machine (OCSVM) model,
resulting in an interactive CPD algorithm (ICPD) that improves itself
by querying the end-user. This approach enables us to focus on detect-
ing the desired change points and ignore false-positives or irrelevant
change points. We demonstrate that the interactive OCSVM model can
be combined with various unsupervised CPD models to function in a
semi-supervised setting, resulting in improved detection accuracy. Our
experimental results on various simulated and real-life datasets demon-
strate a significant improvement in detection performance on both single-
and multi-channel time series, even with a limited number of queries.
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1 Introduction

Time series data are sequences in which the values of one or many specific sta-
tistical variables are arranged according to their occurrence in time. The values
of these variables are determined by the states of some underlying systems
that generate the data. Usually, abrupt changes can be observed in the time
series data, which reflect the transition of the underlying system states. Change
point detection (CPD) refers to the task of localizing the time points where
these abrupt changes occur. The CPD problem has been an actively investi-
gated research topic in wide-ranging application areas, including biomedical
signal processing (Bosc et al., 2003; Malladi et al., 2013; Staudacher et al.,
2005; Yang et al., 2006), video segmentation (Li et al., 2019; Shou et al., 2021),
transportation optimization (Liu et al., 2021; Reddy et al., 2010), climatol-
ogy(Ducré-Robitaille et al., 2003; Itoh and Kurths, 2010; Reeves et al., 2007),
and human activity recognition (Chandola and Vatsavai, 2010; Chib, 1998;
Cho and Fryzlewicz, 2015; Cleland et al., 2014), amongst others.

Based on whether the ground truth information is accessible during the fit-
ting process, most existing CPD approaches aim to detect the change points
(CPs) in either a supervised or unsupervised context. Methods under the
supervised setting treat the CPD task as a multi-class (Reddy et al., 2010) or
binary (Desobry et al., 2005) classification problem. Although these approaches
present satisfying detection performance on their evaluation datasets, two dis-
advantages limit the deployment of such supervised CPD methods in real
use cases: First, acquiring complete fully-labeled datasets is usually time-
consuming or, in some cases, even unaccomplishable. Second, the features
selected for training are usually relevant to specific applications, which makes
these approaches hard to generalize to other datasets.

In contrast, unsupervised CPD approaches (Appel and Brandt, 1983; Bas-
seville et al., 1993; Brandt, 1983; De Ryck et al., 2021; Ebrahimzadeh et al.,
2019; Lee et al., 2018; Liu et al., 2013; Munir et al., 2018; Perslev et al., 2019;
Shi and Chehade, 2021; Zhang et al., 2020) localize the CPs by monitoring
the (dis)similarity between the consecutive time windows. A CP candidate
is reported automatically when the dissimilarity between two adjacent time
windows exceeds a threshold. Compared to supervised CPD methods, these
unsupervised approaches avoid the reliance on fully-labeled datasets and
improve the generalization ability to different types of time series data. How-
ever, because of the absence of ground truth labels, these models tend to
underperform compared to supervised approaches. Furthermore, unsupervised
models cannot access the information about which type of CPs the user is
interested in. As a result, many undesired CP candidates will be reported, and
some not-so-obvious but essential changes will be ignored.
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With the aim to bridge the gap between supervised and unsupervised CPD
methods, this paper proposes a semi-supervised method for CPD based on an
active-learning strategy. However, when treating CPD as a classification prob-
lem, the two classes (change points versus non-change points) are by definition
highly imbalanced. Instead, we investigate the CPD problem from the view-
point of outlier detection because the one-class classification models designed
for outlier detection inherently have their advantages in dealing with imbal-
anced data (Bellinger et al., 2012). In the CPD context, one-class classification
models can capture some common properties shared by time windows that do
not contain any type of changes. Then, all outlier samples with change-relevant
information can be detected automatically. In our implementation, we adopt
the one-class support vector machine (OCSVM) (Schölkopf et al., 1999) as the
core model in our interactive CPD (ICPD) algorithm to locate the CP candi-
dates. Furthermore, we introduce an active-learning strategy into the learning
process of the OCSVM model to leverage the information of users’ queries.

The contributions of our work can be summarized as follows:
• We adopt a one-class classification model, i.e., the OCSVM model, as the

core classifier and investigate the CPD task in an outlier detection framework
to overcome the problem caused by the inherently imbalanced training data
in CPD tasks.

• The proposed ICPD model can take the user into the learning loop and
report only the location of CPs belonging to the types desired by the user.

• The proposed ICPD model can be easily combined with various unsu-
pervised CPD models, enabling them to function in a semi-supervised setting
and achieve significantly improved detection performance on diverse simulated
and real-life datasets.

The remainder of the paper is organized as follows: We introduce related
topics in Section 2. In Section 3, we detail the proposed ICPD algorithm. We
describe the experiments on simulated and real-life datasets in Section 4, and
present the corresponding experiment results in Section 5. In Section 6, we
present an ablation study to gain a deeper insight into the inner workings of
the ICPD algorithm. Then, in Section 7, we discuss potential limitations of
the proposed ICPD algorithm and draw conclusions in Section 8.

2 Related Work

2.1 Change point detection

Over the past several decades, various approaches to change-point detection
(CPD) have been proposed (Aminikhanghahi and Cook, 2017; Truong et al.,
2020). Unsupervised CPD methods in particular have gained traction due to
their generalization ability and applicability in various fields. For example,
the generalized likelihood ratio (GLR) algorithm (Appel and Brandt, 1983;
Brandt, 1983) reports the locations of CPs by comparing distribution models
of two adjacent intervals. The relative unconstrained least-squares importance
fitting (RuLSIF) model (Liu et al., 2013) estimates the relative density ratio
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instead of the real distributions to avoid defining an improper distribution
model. The kernel change-point detection (KLCPD) framework (Chang et al.,
2019) identifies CPs via the kernel two-sample test and introduces an auxiliary
generative model to optimize a lower bound of test power. The autoencoder-
based breakpoints detection (ABD) approach (Lee et al., 2018) trains an
autoencoder to automatically extract features and detects CPs by tracking dis-
similarity between these features. The time-invariant representation (TIRE)
model improves upon the ABD approach by introducing regularization in the
latent space to promote time-invariant features, which are more informative
for CPD tasks.

Recently, a semi-supervised CPD method named ALCPD was proposed
(De Brabandere et al., 2022a). In this method, the CPD problem is treated as a
2-class classification problem for which a supervised (random forest) classifier
is trained based on pseudo-labels from the TIRE CPD algorithm, in com-
bination with an active learning strategy. This strategy allows to iteratively
retrain both the TIRE and the random forest classifier. The former then allows
to find new undetected candidate change points, whereas the latter allows to
reduce the amount of false positives. However, these two models work inde-
pendently, so the benefit of reducing false-positive detections (the objective of
the random forest classifier) is often counteracted by the requirement to find
new candidates (the goal of the detection model). Additionally, the sparsity
of CPs leads to imbalanced training data for the random forest, resulting in
only modest improvements in detection performance. Compared to ALCPD,
our ICPD approach combines an active learning strategy with a single one-
class model (i.e., OCSVM), which accelerates the training process, avoids the
conflict between the goals of two independent models, and solves the problem
caused by imbalanced training data.

Finally, we note that CPD approaches are sometimes categorized as online
versus offline algorithms. Online algorithms, e.g., Bayesian online CPD (Adams
and MacKay, 2007), RuLSIF (Liu et al., 2013), concept drift detection (Oikari-
nen et al., 2021), and real-time network (Gupta et al., 2022), aim to localize
CPs as soon as they appear in real-time settings based only on passed data.
In contrast, offline algorithms, e.g., KLCPD (Chang et al., 2019), ABD (Lee
et al., 2018), TIRE (De Ryck et al., 2021), and ALCPD (De Brabandere et al.,
2022a), detect CPs retrospectively. In this work, we only evaluate our pro-
posed algorithm in an offline setting, although our ICPD approach could in
principle also be deployed in an online setting.

2.2 Outlier detection

Outlier detection (OD) or anomaly detection (AD) algorithms aim to auto-
matically discover patterns that deviate significantly from other observations
(Chandola et al., 2009). The CPD task could therefore in principle be framed
as a special case of OD in which the change points are treated as anomalies or
outliers compared to all other time points where no such changes occur. This
viewpoint of treating CPD as an OD task is a core of our ICPD method.
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Clustering-based OD methods assume that anomalies occur far from nor-
mal samples in the data or feature space. Local outlier factor (Breunig et al.,
2000) detects anomalies by comparing the local density of target data samples
and their neighbors. Isolation forest (Liu et al., 2008) builds a random forest
consisting of isolation trees, in which each leaf node contains only one data
sample. Anomalies are identified by assuming that outliers are easier to iso-
late compared to normal samples. Support vector data description (Tax and
Duin, 2004) and OCSVM (Schölkopf et al., 1999) adopt the ideas from support
vector machines (Cortes and Vapnik, 1995) to produce a decision boundary
between normal samples and anomalies.

Autoencoder-based OD methods assume that anomalies are harder to be
compressed and reconstructed compared to normal observations. Robust deep
autoencoder (Zhou and Paffenroth, 2017) proposes a loss function consisting of
a reconstruction term and a regularization term to encourage the autoencoder
to be robust enough for noisy training data. Variational autoencoder for OD
(An and Cho, 2015) builds a variational autoencoder to reconstruct input
data and identifies anomalies based on the reconstruction probability. To some
degree, autoencoder-based CPD algorithms like ABD (Lee et al., 2018), TIRE
(De Ryck et al., 2021), and real-time network (Gupta et al., 2022) can be
regarded as extensions of ideas for autoencoder-based OD.

Similar to CPD, the OD task also faces problems caused by imbalanced
data because the occurrence frequency of anomalies is low compared to nor-
mal observations. To solve this problem, many OD algorithms are inherently
good at dealing with imbalanced data, such as isolation forest and OCSVM.
Furthermore, the OCSVM model can separate the normal observations from
all kinds of anomalies (CPs in our CPD context) without the need to explic-
itly model and distinguish the different types of anomalies. Therefore, we will
adopt the OCSVM model (Schölkopf et al., 1999) as our core component in
the ICPD algorithm.

3 Proposed ICPD Algorithm

In this section, we present the ICPD algorithm, which is summarized in Algo-
rithm 1, and explain the role of its different sub-components. The ICPD
algorithm starts with an initial set of candidate change points (CCPs) iden-
tified by a generic unsupervised CPD algorithm, which are then used as
pseudo-labels to train an OCSVM. The latter uses features that describe
changes in the statistics of the samples within two consecutive time windows.
Then, the active-learning strategy is applied to refine the list of CPs in order
to improve the detection accuracy.

3.1 Problem definition

The goal of CPD is to identify the time points at which changes occur in the
observed values of a time series or its underlying model states. Therefore, we
can define the problem as follows: given a time series X ∈ RC×N , where C and
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Algorithm 1: The full ICPD algorithm

Input:
X ∈ RC×N : C-channel time series;
n: Window size;
b: Budget for active-learning rounds;
r: The number of queries between re-training steps of the OCSVM model;
Minit: Initialization model.

Output:
T : Detected CCP set.

1 Obtain initial CCP set: Tinit = Minit(X);
2 Extract feature matrix F as defined in (2);
3 Generate F0 by removing samples within the neighbor field (as defined in

(3)) of Tinit from F;
4 Train OCSVM model with F0 and apply it to F to obtain s0 as in (1);
5 Smoothen s0 to obtain s̃0 as in (4);
6 Collect all peaks of s̃0 in T0;
7 Set Q = Ø and P = Ø;
8 while m = 1, . . . , b do
9 Select query qm from Tm−1 (refer to Subsection 3.4.5 for more details);

10 Q = Q
⋃

qm;
11 if qm is a TP then
12 Ask actual location q̄m of qm;
13 Remove samples within neighbor field (as in (3)) of q̄m from Fm−1;
14 P = P

⋃
q̄m;

15 else
16 Add all samples within neighbor field (as in (3)) of qm to Fm−1

(unless they are already in Fm−1);

17 if m mod r = 0 then
18 Retrain the OCSVM model with Fm and apply it to F to obtain sm

as in (1);
19 Smoothen sm to obtain s̃m as in (4);

20 Collect all peaks of s̃m in T̂m;
21 Remove elements within neighbor field (as in (3)) of elements in Q

from T̂m and store the remaining samples in Tm;
22 Add samples in P to Tm (unless they are already in Tm);

23 else
24 Keep Tm = Tm−1 and s̃m = s̃m−1;

25 Denote Tm as T ;
26 return T

N denote the number of channels and the total time steps in X, respectively,
our objective is to identify a set of time points T = {t1, t2, . . . , tk} where
the statistics or trend of the time series changes. For ease of expression, in
this paper, we will use ti to represent both the i-th detected CCP and its
corresponding temporal location.
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3.2 OCSVM model

As a variant of the support vector machine (SVM) (Cortes and Vapnik, 1995),
the OCSVM (Schölkopf et al., 1999) model is widely used in the outlier detec-
tion problem. As opposed to the classical SVM method, the OCSVM only
models a single class, and aims to detect outliers that do not belong to this tar-
get class. The underlying idea behind the OCSVM model is to map the input
features of data samples onto a high-dimensional space, where all non-polluted
normal samples are supposed to locate near the origin point, while the outliers
are expected to be far from them. The goal is to create a decision boundary
that can separate the normal and abnormal samples in this high-dimensional
space. An unseen sample is classified as a typical sample or an outlier based
on which side of the boundary it falls on. In addition, the OCSVM model
outputs a vector c, where each element in c represents the probability that
a sample belongs to the normal class (an observation without change in our
CPD setting) according to the OCSVM model.

In the context of CPD, our goal is to train an OCSVM model that maps
non-change samples close to the origin, while keeping all types of change
samples far away. To ensure that the features can capture change-related infor-
mation, we use the subtraction of signal features extracted from time intervals
before and after each time step as input features for the OCSVM model (see
Subsection 3.4.1). In the absence of CPs, these subtractions should result in
vectors containing mostly small values. By training the OCSVM model using
only the subtracted features of non-change samples, it can learn the distribu-
tion of all non-change samples and map observations containing any type of
change-related information far from non-change samples.

In the active-learning step described in Section 3.4, we will use a certainty
score vector s, which is computed based on the c vector obtained from the
OCSVM model to account for temporal position information and to localize
the CPs. This certainty score vector is defined as:

s = max(c)− c, (1)

which is a measure of the certainty that the corresponding sample does not
belong to the target class.

3.3 Detecting the initial set of CCPs

During the initialization phase, the algorithm lacks access to any ground truth
labels. Therefore, the goal is to extract an initial set of CCPs that can be used
to train the OCSVM model without ground truth-relevant information while
still achieving acceptable detection performance. This will establish a starting
point for subsequent active-learning loops. To extract these initial CCPs, we
can use any unsupervised CPD method. In our experiments, we employ four
state-of-the-art unsupervised CPD algorithms as the initialization modelMinit

in the ICPD algorithm, namely GLR (Appel and Brandt, 1983; Brandt, 1983),
RuLSIF (Liu et al., 2013), KLCPD (Chang et al., 2019), and TIRE (De Ryck
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et al., 2021). As a result, the selected unsupervised CPD algorithm provides
an initial set of CCPs Tinit.

The OCSVM model has a strict requirement for the cleanliness of the
training datasets. The ideal training set should not contain any outlier samples.
Since the OCSVM model constructs a model to describe the commonalities of
normal data samples, an outlier in the training set can mislead the training
of the model. To keep the training set as clean as possible, we remove all
samples near the CCPs Tinit obtained from Minit to avoid contamination.
Only samples that are not located in the neighborhood of elements in Tinit are
used to train the OCSVM model. The definition of this neighborhood will be
further explained in Section 3.4.

3.4 Active-learning

After initialization, an initial set of CCPs Tinit detected by the initialization
model is obtained. In this subsection, we aim to train the OCSVM model with
an active-learning strategy to involve users in the learning loop and improve
detection performance. To accomplish this task, we continuously ask users for
queries to obtain more helpful information and retrain the OCSVM model
after collecting a certain amount r of queries until a predefined query budget
b (b > r) is used.

The details of the active-learning process of the ICPD algorithm can be
explained as follows:

3.4.1 Feature extraction

Instead of using raw sensor data, the OCSVM model requires well-designed
features as inputs. Therefore, an efficient feature extraction system capable of
single- and multi-channel time series is indispensable.

We use an automatic feature generator, TSfuse1, which automatically gen-
erates features from time series based on a pre-defined set of transformer
operations and their combinations (De Brabandere et al., 2022b). To limit the
feature dimensions, we employ TSfuse with only a minimal set of simple statis-
tical transformers to extract the feature matrixG ∈ R(N−n)×l, where l denotes
the number of statistical features extracted by the TSfuse system, and n rep-
resents the pre-defined window size over which the features are computed. To
ensure that the extracted TSfuse features reflect changes in the statistics and
are relevant for CPD, we implement the following operations: for a time point
t, we first extract a feature gbefore

t from the temporal interval [t−n, t] as well

as a feature gafter
t from the temporal interval [t, t + n]. Then, the feature ft

corresponding to time step t is computed as:

ft = gafter
t − gbefore

t . (2)

1https://github.com/arnedb/tsfuse

https://github.com/arnedb/tsfuse
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Then, a new feature matrix F = [fn, fn+1, . . . , fN−n−1]
T ∈ R(N−2n)×l is

obtained.

3.4.2 Training set construction

As discussed above, the OCSVM model expects a training set with as few
outliers as possible to achieve satisfactory detection performance. In this
section, we will discuss the procedure to select appropriate samples from F
and construct training sets for the OCSVM model in each round.

During the first training process of the OCSVM model, an initial set of
CCPs Tinit was collected from the initialization phase. All elements within this
set can be considered as initial “obvious” CPs, although some of them may
be false-positives. From the perspective of the OCSVM model, these elements,
together with samples in their neighbor field, should be treated as outlier
samples. Specifically, we define the neighbor field of a selected element at time
point tq as the samples located in the temporal interval:

[tq − n, tq + n], (3)

where n denotes the pre-defined window size. Note that we select the same
window size as we did for feature computation to minimize the number of
hyperparameters. In order to avoid contamination, we remove all features cor-
responding to the elements in Tinit and their neighborhoods (within n samples
on both sides) from the full feature matrix F. The new, smaller feature matrix
is denoted as F0, which implies that this matrix is used as the training set of
the OCSVM model before collecting the first query.

In the following active-learning round m, we update the training feature
set Fm for the OCSVM model based on the annotations of the queried samples
by the user (the querying strategy will be defined in Subsection 3.4.5). We
assume that each retraining of the OCSVM model involves asking r queries
to the user (r < b). When asking queries, the user is required first to answer
whether the given query qm is a real CP. If the query qm is annotated as a
true-positive sample (TP), then the user needs to point out the exact location
of the corresponding ground truth CP q̄m. In this case, the samples in the
neighbor field (defined in (3)) of the ground truth q̄m are removed from Fm−1

to get the updated training set Fm for the OCSVM model. Otherwise —qm
is a false-positive sample (FP)— we add the samples in the neighbor field of
qm, which are missed in Fm−1, to Fm. We define a set P to keep track of all
queried CPs, which contains all q̄ across different rounds. After collecting all r
queries, the OCSVM model is retrained with the updated feature set again to
take advantage of the obtained information from the user queries. A smaller
value of r implies a more frequent updating of the model, at the cost of an
increased computational burden.
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3.4.3 Candidate change points localization

After training the OCSVM model on the feature set Fm, we apply the well-
trained model to the full feature set F and obtain the score vector sm. This
vector reflects the predictive certainty for each sample. However, we do not
use the classification results directly because the OCSVM model classifies all
feature samples in F without considering the temporal information. This often
results in poor consistency or smoothness within short temporal intervals, and
many false-positive detection alarms are generated. To ensure the temporal
smoothness of the certainty scores, we apply a zero-delay weighted moving
average filter to the score vector sm:

s̃m[i] =

n−1∑
j=−n+1

v[n− j] · sm[i+ j − 1], (4)

where v denotes a triangular-shaped weighting window defined as v[j] =

v[2n − j]
def
= j/n2 for 1 ≤ j ≤ n and s̃m denotes the averaged certainty score

vector. After applying the zero-delay weighted moving average filter, each ele-
ment in s̃ is determined not only by the element at the same time step in sm
but also by its adjacent neighbors. This ensures local consistency along the
temporal axis within s̃. Subsequently, we collect the location of local max-
ima in s̃m corresponding to points of high confidence and denote them as an
intermediate set T̂m.

Notably, the CCPs in T̂m are determined by identifying the peaks in the
certainty score vector s̃m. This indicates that the collection T̂m comprises the
smallest peaks, which are those for which the OCSVM has the least confidence
that they are true CPs and, hence, have the greatest probability of being false-
positives. One may argue that these little peaks represent data for which the
OCSVM is very certain that they are not CPs, and that it would be preferable
to exclude peaks smaller than a particular threshold ω. However, we shall
demonstrate empirically in Subsection 6.3 that establishing such a threshold
does not enhance outcomes, which is why it was omitted from the final method.

3.4.4 Query retainment

So far, we have introduced the main operations involved in the active-learning
rounds to collect CCPs. However, each training process of the OCSVM model
is still somewhat independent of its previous training procedures. For instance,
even if a query qt has been marked as a correctly detected CP (or a false-
positive alarm) in the m-th round, it is still possible for the OCSVM model to
predict a time point t as a non-CP (or a CCP) after the next training process.

To address this issue, we introduce the query retainment procedure after
each training of the OCSVM model in the active-learning process. In this
procedure, we adjust the elements in T̂m based on queried samples in the Q and
P sets. Specifically, we compare the detected samples in T̂m with the queried
samples in Q. If some peaks in T̂m are located in the neighbor field (as defined
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in Equation (3)) elements in Q, we delete these peaks (including the peaks
located at the current element in Q, as the corresponding ground truth samples
are already stored in P ) from T̂m. This operation helps to avoid too many
false-positive alarms by removing CCPs that are too close to already detected
CCPs. Additionally, if some queried samples marked as real CPs (elements in
P ) are not present in T̂m, we manually add these samples to the set of peaks.
Finally, we take the adjusted peak set Tm as our ultimate detection results in
the m-th round.

3.4.5 Query selection

In each round m, we select the sample in the detected CP set Tm−1 with the
smallest smoothed certainty score s̃m−1 as our query qm. To ensure that we
do not query the same sample twice, we maintain a query set Q to keep track
of all previous queries. For each iteration, we choose a query that is not in the
neighborhood of any sample in Q as defined in (3).

4 Experiment

In this section, we describe the experiment details for evaluating our proposed
ICPD algorithm.

4.1 Benchmark Datasets

To evaluate the detection performance of our proposed ICPD algorithm and
other baseline methods, we utilize four simulated datasets and three real-life
datasets.

We use the same simulation set up as proposed in (De Ryck et al., 2021).
The first three simulated data sets are all generated with the following auto-
regressive model in which specific manipulations will be added:

s(t) = a1s(t− 1) + a2s(t− 2) + ϵt, (5)

where the error term follows a Gaussian distribution ϵt ∼ N (µt, σ
2
t ). We fix

s(1) = s(2) = 0, a1 = 0.6, a2 = −0.5, µt = 0, and σt = 1.5, unless explained
otherwise.
Jumping Mean (JM): This simulated dataset is produced by manually
adjusting the mean value µt in the error term to a different one (as described
in (6)) at each CP:

µt =

{
0, 1 ≤ t ≤ t1

µtn−1 + n/16, tn−1 + 1 ≤ t ≤ tn,
(6)

where ti denotes the temporal location of i-th CP.
Scaling Variance (SV): This dataset is generated via resetting the value of
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σt in the error term (as described in (7)) at each CP:

σt =

{
1, tn−1 + 1 ≤ t ≤ tn and n odd

ln(e+ n/4), tn−1 + 1 ≤ t ≤ tn and n even.
(7)

Changing Coefficients (CC): In this dataset, we set a2 = 0, while a1
are sampled alternatively from two uniform distributions, i.e., U([0, 0.5]) and
U([0.8, 0.95]), at each CP.
Gaussian Mixture (GM): Different from the previous three simulated
datasets, the Gaussian mixture dataset is generated by alternatively sampling
from two different Gaussian mixtures, i.e., 0.5N (−1, 0.52)+ 0.5N (1, 0.52) and
0.8N (−1, 1.02) + 0.2N (1, 0.12).

In addition, we also include three real-life datasets that contain segments
corresponding to various states of the underlying system. The boundaries
between consecutive segments are targets of CPD algorithms.
Honeybee Dance: The Honeybee dance dataset is widely used as a bench-
mark for CPD methods (Chang et al., 2019; Cheng et al., 2020; Turner, 2012;
van den Burg and Williams, 2020; Xuan and Murphy, 2007). This dataset is
recorded by tracking the movements of a bee during a “dance” (to communi-
cate messages to each other). In total, six sequences with varying lengths from
602 to 1124 time samples are collected. Each sequence consists of three chan-
nels representing the coordinates in the 2D plane and the angle differences,
respectively. The ground truth CPs are annotated based on the different wag-
gle dance stages.
UCI-HAR test: The UCI-HAR dataset, used for human activity recogni-
tion, serves as an evaluation dataset for CPD algorithms (Lee et al., 2018).
During data recording, participants perform various activities, including walk-
ing, walking upstairs, walking downstairs, sitting, standing, and lying, while
a smartphone captures three-axial linear acceleration and three-axial velocity
using an embedded accelerometer and gyroscope. Each sensor signal is pro-
cessed to compute statistical variables in the time and frequency domains,
resulting in a time series dataset with 561 channels. The ground truth change
points in the UCI-HAR dataset indicate the time instances of transitions
between different human activities. In our experiments, we choose to utilize
only the first 50 features of the test dataset. This decision is motivated by the
high redundancy of features and the difficulty that most baseline models face in
handling high-dimensional data. Despite using a reduced feature set, we have
observed that these 50 features effectively capture the transitions in human
activities without compromising the performance of the baseline models.
BabyECG: The BabyECG dataset records the 1-dimensional heart rate (in
beats per minute) data of a 66-days old infant for one night. Besides, the sleep
state information of the same infant is measured in the form of EEG (brain
wave) and EOG (eye movement) simultaneously and annotated by a trained
expert. The ground truth CPs correspond to the transitions between different
sleep stages, including quiet sleep, between quiet and active sleep, active sleep,
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Table 1: Overview of benchmark datasets

Nr. series Series length Nr. channels Nr. CPs

JM 10 4836 ∼ 4925 1 48
SV 10 4834 ∼ 4918 1 48
CC 10 4847 ∼ 4932 1 48
MG 10 4864 ∼ 4907 1 48

Honeybee Dance 6 602 ∼ 1124 3 15 ∼ 28
UCI-HAR test 1 2947 50 119

BabyECG 1 2048 1 29

and awake.
We detail the information about all benchmark datasets adopted in our
evaluation in Table 1.

4.2 Metric and Baselines

In our experiment, we use the evaluation criterion from (De Ryck et al., 2021)
to determine whether a CCP is a TP. A CCP cp is regarded as a correct detec-
tion corresponding to a ground truth gt if and only if it fulfills the following
conditions: i) The number of time points between cp and gt should be less than
a pre-defined tolerance τ . ii) No other ground truth gt′ is closer to cp than gt.
iii) Each ground truth can only correspond to one CCP.

We used the f1-score metric to evaluate the detection performance of the
ICPD algorithm and other baseline CPD approaches, as it is widely used in
CPD literature (Deldari et al., 2021; van den Burg and Williams, 2020). While
the area under receiver operating characteristic (AUROC) curve is also com-
monly used to evaluate CPD task (De Ryck et al., 2021; Lee et al., 2018), it does
not behave properly in some situations, and is therefore not used in our anal-
ysis. We discuss these limitations and artefacts of the AUROC metric in the
Appendix, where we also provide visualizations to support our observations.

We evaluate the detection performance of the ICPD algorithm by com-
bining it with four commonly used unsupervised CPD approaches for its
initialization phase, namely:
GLR (Appel and Brandt, 1983; Brandt, 1983): The GLR algorithm fits an
auto-regressive (AR) model for each pair of consecutive windows as well as for
their union, and calculates the generalized likelihood ratio as the dissimilarity.
In our implementation, we used an AR model of order 2..
RuLSIF (Liu et al., 2013): The RuLSIF measures the relative density ratio
of two adjacent windows to identify the CCPs.
KLCPD (Chang et al., 2019): The KLCPD method uses a kernel two-sample
test to localize the CCPs, while training an auxiliary generative model to
ensure test power.
TIRE (De Ryck et al., 2021): The TIRE method trains a simple autoencoder
with a single fully-connected layer in both the encoder and decoder, using
the reconstruction loss and time-invariant loss terms as supervision. Then the
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dissimilarity between the latent features of consecutive windows is tracked to
identify CCPs.

To ensure consistency, we followed the hyperparameter settings from the
original papers for each unsupervised CPD model and used the zero-delay
weighted moving average filter as a post-processing step for the dissimilarity
measure. For ease of expression, we denote all ICPD models in our comparison
as ICPDMinit

, where Minit denotes the corresponding initialization model.
Furthermore, we compare the ICPD algorithms to the ALCPD method,

which also operates in the semi-supervised setting.

4.3 Experiment details

The radial basis function (RBF) kernel is used in the OCSVM method. Addi-
tionally, two crucial hyperparameters in the OCSVM model must be carefully
set: the kernel coefficient λ and the error coefficient ν. The value of ν controls
the upper bound on the allowed fraction of training errors during the train-
ing of the OCSVM model. Theoretically, the values of λ and ν depend on the
characteristics of the training dataset. In our implementation, we set λ = 2.5
and ν = 0.001 for all benchmark datasets. In Section 5, we will demonstrate
that these default hyperparameter settings can yield satisfactory detection
performance on all benchmark datasets. We retrain the OCSVM model after
collecting 10 queries, i.e., r = 10 in Algorithm 1.

In our implementation, the window size n is kept the same for all baseline
algorithms but selected separately for each dataset to ensure that it is smaller
than the expected temporal interval between CPs while being long enough
to describe the characteristics in each segment. We selected the values for
n to maximize the median f1-score across all algorithms in the comparison.
The resulting values for n are n = 40 for all simulated datasets and n = 15,
n = 8, n = 15 for the Honeybee Dance, the UCI-HAR test, and the BabyECG
datasets, respectively. To reduce the number of adjustable hyperparameters,
we set the value of the tolerance τ to be equal to the window size n defined in
each dataset.

4.4 Measure of labeling effort

As the performance of the semi-supervised CPD algorithms (ALCPD and
ICPD) depends on the number of queries collected from the user, we define a
ratio:

α =
Nqueries

Ngt
(8)

This ratio attempts to reflect the relative number of collected queries, where
the denominator represents the number of ground truth CPs in the dataset. It
is important to note that a value of α > 100% does not imply that all ground
truth CPs are known, as a large fraction of the queries typically contain false-
positive detections. Given that the number of ground truth CPs is usually small
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(typically < 2% of the total samples), it is not unusual in practice to have a
value of α > 100%. While the inclusion of false-positives in the denominator of
(8) might result in a more intuitive metric for quantifying the relative number
of queries, it would make α dependent on the results of the initialization,
resulting in a stochastic value that is different in each run of the algorithms.

5 Results

We provide a comparison among ICPD algorithms initialized with different
unsupervised CPD approaches and the different baseline models, i.e., the
corresponding unsupervised CPD algorithms and ALCPD algorithm. Fig. 1
provides the f1-scores as a function of α as defined in (8). Additionally, we
present the exact values of the f1-score achieved by all methods when α is
set to three specific values (50%, 100%, and 150%) in Table 2 for a detailed
comparison.

In Fig. 1, we can see that the f1-score achieved by both the ALCPD and
ICPD algorithms increases steadily in all benchmark datasets as the number
of queries increases. This observation aligns with our goal of achieving bet-
ter detection performance by incorporating feedback from end-users into the
training process. Notably, the ICPD algorithms consistently outperform the
ALCPD baseline in all benchmark datasets. The ALCPD method exhibits an
unstable learning curve, particularly in the real-life datasets, and often con-
verges to a relatively low f1-score compared to the ICPD algorithms. These
phenomena arise from the adversarial trade-off between the random forest clas-
sifier and the modified TIRE model in the ALCPD framework. Moreover, the
ALCPD algorithm always starts with an empty set of CCPs when the num-
ber of queries is small since the random forest classifier requires a minimum
number of queries for training.

Fig. 1 also reveals an interesting observation that in some cases, the ICPD
algorithms need a few queries to surpass the corresponding unsupervised mod-
els. This can be explained as follows: From the definition of the tolerance τ in
Subsection 4.2, a CCP is accepted as a TP sample if it is located in the toler-
ated area of a ground truth point. However, the CCPs that locate far from the
ground truth point but still within the tolerated area may not provide sufficient
information to initialize the training of the OCSVM in the ICPD algorithm.
Therefore, we sometimes observe a drop in the initial training phase of the
ICPD algorithm compared to the unsupervised model that was used for ini-
tializing the ICPD algorithm. We find that this problem can be alleviated by
fine-tuning the hyperparameters in our OCSVM model for individual datasets.
However, we decided to avoid such hyperparameter tuning in our experiments
for the sake of fairness and transparency.

Moreover, Fig. 1 also demonstrates that the choice of the initialization
algorithm for ICPD becomes less important when the number of queries is
high. This phenomenon confirms our argument that the ICPD framework can
be combined with different types of unsupervised CPD approaches to provide



Springer Nature 2021 LATEX template

16 A Semi-supervised Interactive Algorithm for Change Point Detection

T
a
b
le

2
:
M
ea
n
va
lu
es

an
d
st
an

d
ar
d
d
ev
ia
ti
on

s
of

f1
-s
co
re
s
ac
h
ie
ve
d
b
y
th
e
IC

P
D

a
n
d
th
e
d
iff
er
en
t
b
a
se
li
n
es
.
F
o
r
ea
ch

d
a
ta
se
t,

w
e
h
ig
h
li
gh

t
th
e
b
es
t-
p
er
fo
rm

in
g
ap

p
ro
ac
h
in

b
ol
d
.
T
h
e
ra
ti
o
α
is
d
efi
n
ed

in
(8
).
N
o
te

th
a
t
th
e
st
a
n
d
a
rd

d
ev
ia
ti
o
n
is
o
n
ly

ca
u
se
d

b
y
th
e
ra
n
d
om

in
it
ia
li
za
ti
on

of
th
e
p
ar
am

et
er
s
in

th
e
u
n
su
p
er
v
is
ed

m
o
d
el
s.
S
in
ce

G
L
R

a
n
d
R
u
L
S
IF

d
o
n
o
t
re
q
u
ir
e
a
(r
a
n
d
o
m
)

in
it
ia
li
za
ti
on

,
th
e
st
an

d
ar
d
d
ev
ia
ti
on

is
al
w
ay
s
eq
u
al

to
0.
0
fo
r
th
es
e
m
et
h
o
d
s.

S
im

u
la
te
d
d
at
as
et
s

R
ea
l-
li
fe

d
at
as
et
s

A
p
p
ro
ac
h

α
J
M

S
V

C
C

M
G

H
o
n
ey
b
ee

D
an

ce
U
C
I-
H
A
R

te
st

B
a
b
y
E
C
G

A
L
C
P
D
(D

e
B
ra
b
an

d
er
e
et

al
.,
20
22
a)

50
%

0.
93
8
±
0.
0
12

0
.8
36

±
0.
0
32

0.
8
93
±
0
.0
0
8

0
.9
8
3
±
0.
00
2

0
.4
96
±
0.
1
22

0
.3
0
5±

0.
1
26

0
.4
9
1
±
0.
0
52

1
00
%

0.
94
6
±
0.
0
02

0
.9
28

±
0.
0
04

0.
9
03
±
0
.0
0
8

0
.9
8
4
±
0.
00
3

0
.5
73
±
0.
0
53

0
.7
0
0±

0.
0
98

0
.5
0
5
±
0.
0
54

1
50
%

0.
94
5
±
0.
0
02

0
.9
32

±
0.
0
06

0.
9
02
±
0
.0
0
7

0
.9
8
0
±
0.
00
2

0
.7
90
±
0.
0
25

0
.7
9
0±

0.
0
19

0
.5
5
6
±
0.
0
60

G
L
R

(A
p
p
el

an
d
B
ra
n
d
t,
19
83
;
B
ra
n
d
t,
19
8
3)

0.
80
8
±
0.
0

0.
8
60
±
0
.0

0.
88
5
±
0
.0

0.
93
4
±
0.
0

0.
7
12
±
0
.0

0
.6
6
0
±
0.
0

0
.5
1
0
±
0.
0

IC
P
D

G
L
R

50
%

0.
97
8
±
0.
0

0.
9
54
±
0
.0

0.
94
1
±
0
.0

0.
98
9
±
0.
0

0.
8
47
±
0
.0

0
.7
6
5
±
0.
0

0
.4
6
6
±
0.
0

1
00
%

0.
99
3
±
0.
0

0.
9
66
±
0
.0

0.
96
7
±
0
.0

1
.0
±
0
.0

0.
9
23
±
0
.0

0
.8
6
7
±
0.
0

0
.5
9
7
±
0.
0

1
50
%

0.
99
4
±
0.
0

0.
9
66
±
0
.0

0
.9
7
8
±
0
.0

1
.0
±
0
.0

0.
9
19
±
0
.0

0
.8
6
7
±
0.
0

0
.6
8
9
±
0.
0

R
u
L
S
IF

(L
iu

et
a
l.
,
20
13
)

0.
86
7
±
0.
0

0.
8
74
±
0
.0

0.
83
2
±
0
.0

0.
91
7
±
0.
0

0.
6
84
±
0
.0

0
.6
8
9
±
0.
0

0
.3
9
5
±
0.
0

IC
P
D

R
u
L
S
IF

50
%

0.
98
4
±
0.
0

0.
9
67
±
0
.0

0.
85
8
±
0
.0

1
.0
±
0
.0

0.
7
85
±
0
.0

0
.7
1
4
±
0.
0

0
.5
3
5
±
0.
0

1
00
%

0.
99
3
±
0.
0

0.
9
76
±
0
.0

0.
93
7
±
0
.0

1
.0
±
0
.0

0.
8
87
±
0
.0

0
.8
4
1
±
0.
0

0
.6
1
5
±
0.
0

1
50
%

0.
99
3
±
0.
0

0.
9
76
±
0
.0

0.
94
9
±
0
.0

1
.0
±
0
.0

0.
9
12
±
0
.0

0
.8
8
3
±
0
.0

0
.7
1
4
±
0
.0

K
L
C
P
D

(C
h
an

g
et

al
.,
20
19
)

0.
79
2
±
0.
0
08

0
.6
92

±
0.
0
22

0.
6
99
±
0
.0
1
6

0
.8
2
4
±
0.
01
3

0
.6
55
±
0.
0
78

0
.6
9
1±

0.
0
36

0
.3
8
9
±
0.
0
62

IC
P
D

K
L
C
P
D

50
%

0.
96
6
±
0.
0
06

0
.8
91

±
0.
0
13

0.
7
69
±
0
.0
1
0

0
.9
9
4
±
0.
00
5

0
.7
65
±
0.
0
65

0
.7
6
6±

0.
0
46

0
.5
6
0
±
0.
0
43

1
00
%

0.
98
2
±
0.
0
02

0
.9
62

±
0.
0
06

0.
9
07
±
0
.0
0
6

0
.9
9
8
±
0.
00
1

0
.8
65
±
0.
0
68

0
.8
4
0±

0.
0
18

0
.6
3
3
±
0.
0
60

1
50
%

0.
98
5
±
0.
0
02

0
.9
75

±
0.
0
04

0.
9
32
±
0
.0
0
5

0
.9
9
9
±
0.
00
1

0
.8
75
±
0.
0
62

0
.8
4
4±

0.
0
13

0
.6
7
7
±
0.
0
33

T
IR

E
(D

e
R
y
ck

et
al
.,
20
21
)

0.
94
6
±
0.
0
07

0
.8
85

±
0.
0
14

0.
9
13
±
0
.0
0
7

0
.9
8
5
±
0.
00
5

0
.6
97
±
0.
0
32

0
.7
7
9±

0.
0
21

0
.5
0
4
±
0.
0
42

IC
P
D

T
IR

E

50
%

0.
98
8
±
0.
0
04

0
.9
48

±
0.
0
08

0.
8
70
±
0
.0
1
2

0
.9
9
7
±
0.
00
1

0
.7
81
±
0.
0
34

0
.8
1
1±

0.
0
14

0
.5
7
8
±
0.
0
18

1
00
%

0.
99
3
±
0.
0
02

0
.9
76

±
0.
0
03

0.
9
36
±
0
.0
1
0

0
.9
9
8
±
0.
00
1

0
.8
98
±
0.
0
17

0
.8
7
0±

0.
0
06

0
.6
4
8
±
0.
0
26

1
50
%

0
.9
9
5
±
0
.0
0
2

0
.9
8
1
±
0
.0
0
2

0.
9
46
±
0
.0
0
8

0
.9
9
9
±
0.
00
1

0
.9
3
3
±
0
.0
0
6

0
.8
8
1±

0.
0
03

0
.6
9
0
±
0.
0
15



Springer Nature 2021 LATEX template

A Semi-supervised Interactive Algorithm for Change Point Detection 17

Fig. 1: Comparison between averaged f1-scores achieved by ALCPD, ICPD
and corresponding initialization models on benchmark datasets across 10 rep-
etitions. The results of ICPD are marked with solid curves while the f1-scores
achieved by corresponding unsupervised initialization models are plotted with
dashed flat lines in the same color.

improved detection accuracy. However, the choice of the initialization algo-
rithm has an impact on how fast the optimal performance is reached in terms
of number of queries.

After examining the results presented in Table 2, we can observe that the
ICPD algorithms outperform their initialization baselines on most benchmark
datasets with the α = 50% setting. Furthermore, by setting α = 250%, the f1-
scores achieved by the ICPD algorithms converge for each dataset and show
significant improvements compared to the baselines.
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Fig. 2: Comparison between the ICPD algorithm and its variant ICPD-A. The
solid lines represent the mean values over ten repetitions, while the transparent
bands denote the standard deviations across these repetitions.

6 Ablation Study

In this section, we conduct a series of experiments to gain insights into the
contribution of specific components in the ICPD algorithm, which lead to its
improved CPD performance. For the sake of conciseness and intelligibility, we
refer to the ICPD approach initialized with the TIRE model as the “ICPD”
algorithm throughout the following experiments. This is because both the
TIRE model and the ICPDTIRE algorithm typically achieve acceptable detec-
tion performance on all benchmark datasets. We keep the initialization model
of the ICPD algorithm fixed at the TIRE model.

6.1 Influence of ground truth marking

As discussed in Subsection 3.4.2, the user provides the ground truth label
for the queried sample as well as the actual time stamp at which the ground
truth change occurs (in case of a true-positive). This subsection discusses the
benefit of providing information about the actual time location of the CPs. We
define another variant of the ICPD algorithm: ICPD-A, in which we cannot get
access to the information about the ground truth locations and only remove
the samples located in the neighbor field of the queried samples in the training
set of the OCSVM model. The metrics achieved by ICPD and ICPD-A are
visualized in Fig. 2.

Theoretically, the quality of the training dataset of the OCSVM model
can be improved by introducing ground truth-related information. As demon-
strated in Fig. 2, the ICPD algorithm performs better than the ICPD-A on
both simulated and real-life datasets. Although the final f1-scores achieved by
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Fig. 3: Comparison between the ICPD algorithm and its variant ICPD-B. The
solid lines represent the mean values over ten repetitions, while the transparent
bands denote the standard deviations across these repetitions.

ICPD and ICPD-A are similar after their convergence, the ICPD converges
faster than its variant ICPD-A, which implies that the ground truth marking
operation contributes to providing the same detection performance on these
datasets with fewer queries. As the introduction of the ground truth informa-
tion never leads to a drop in detection performance on all benchmark datasets,
we keep it in the proposed full algorithm.

6.2 Influence of query strategy

As discussed in Subsection 3.4.5, we always select the sample with the lowest
smoothed certainty score s̃m in the detected CCP set T . In order to prove that
the least certainty query strategy is meaningful, we compare it with the random
selection strategy. For ease of expression, we denote the ICPD algorithm with
the random selection strategy as ICPD-B. The comparison between ICPD and
ICPD-B is visualized in Fig. 3.

Compared to the random selection strategy adopted in the variant ICPD-
B, the least certainty query strategy in our ICPD algorithm provides a better
detection performance. In other words, the ICPD algorithm can achieve the
same detection performance on these datasets with fewer queries and offer a
higher f1-score after convergence of the algorithm. In addition, the fluctuations
in the learning curve of ICPD-B imply that the random selection strategy is
not conducive to the algorithm’s stability.
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Fig. 4: Visualization of the influence of different γ values (as defined in (9)).
The solid lines represent the mean values over ten repetitions, while the trans-
parent bands denote the standard deviations across these repetitions.

6.3 Influence of setting threshold for selecting CCPs

We noted in Subsection 3.4.3 that CCPs are selected based on a peak finding
algorithm across the entries in s̃. Therefore, there will be several spurious peaks
that have a score in s̃ that is close to 0, i.e., for which the current OCSVM
model is quite certain that they are not CPs. One potential improvement is to
set a threshold ω on the certainty score and only select peaks whose certainty
scores exceed ω in order to avoid introducing too many false-positives. To test
this, we use the quantile function to define the value of ω:

ω = quantile(s̃, γ), (9)

where the value of γ is set as 0, 0.25, 0.5, and 0.75. Note that γ = 0 corresponds
to the situation in the original ICPD algorithm.

As demonstrated in Fig. 4, introducing the threshold ω leads to a drop
in the detection performance on both simulated and real-life datasets. With
increasing the value of ω (γ), the f1-score achieved by our algorithm becomes
worse. One possibility for this is the following: Some real CPs are not detected
in the initialization phase of the ICPD algorithm, and their features are
adopted to train the OCSVM model as non-change samples. Therefore, the
next OCSVM model will assign relatively small certainty scores to these sam-
ples. This leads to some kind of a “self-fulfilling prophecy” mechanism such
that eventually these CPs are never detected and also never queried.
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Table 3: F1-score achieved by the ICPD algorithm and its variant ICPD-C
after collecting a certain number of queries (α = 150% as defined in (8)).

Simulated datasets Real-life datasets

Approach JM SV CC GM Honeybee Dance UCI-HAR test BabyECG

ICPD-C 0.977±0.004 0.948±0.004 0.905±0.008 0.997±0.003 0.856±0.030 0.829±0.005 0.599±0.064

ICPD 0.995±0.002 0.981±0.002 0.946±0.008 0.999±0.001 0.933±0.006 0.881±0.003 0.690±0.015

6.4 Influence of re-training OCSVM model

In the ICPD algorithm, the OCSVM model is retrained after collecting r
queries from the user, which is relatively time-consuming and determines the
efficiency of the entire algorithm. In this subsection, we aim to discuss whether
the re-training of the OCSVM model is necessary. To this end, we define
another variant of the ICPD algorithm: ICPD-C, in which the OCSVM model
is only retrained after the full query budget b has been spent. In our imple-
mentation, we run the ICPD-C on all benchmark datasets with constrained
query budgets corresponding to the case α = 150%. Then, we compare the
results to ones acquired from the actual ICPD algorithm after the collecting
same number of queries.

As shown in Table 3, we can observe that the introduction of the re-training
mechanism in the ICPD algorithm can improve the f1-score on all benchmark
datasets. This is because the re-training of the OCSVM model allows to take
the labels from the previous queries into account, in order to discover new CP
candidates and/or select more informative queries. Note that this allows to
identify new queries that were not detected in the first training of the OCSVM
model.

6.5 Comparison against Näıve correction

In theory, semi-supervised ICPD approaches can always outperform unsu-
pervised methods because they can access valuable information provided by
ground truth or end-users. In this subsection, our goal is to determine whether
the ICPD algorithm is able to actually learn from the queries in order to detect
other change points instead of solely relying on queried information to cor-
rect its detected results. To this end, we compare the ICPD approach to a
näıve correction mechanism, in which we ask the same number of queries as
in ICPD, but where we only use these to remove the false positives found by
the initialization algorithm (i.e., TIRE) and align the true positives based on
these queries.

As shown in Figure 5, the ICPD algorithm can outperform the naive
correction mechanism, indicating that it can leverage the queried informa-
tion from the end-user to improve CPD accuracy. This suggests that the
method can learn from the provided information to achieve more accurate
CPD performance.
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Fig. 5: Comparison between the ICPD algorithm and a näıve correction mech-
anism. The solid lines represent the mean values over ten repetitions, while the
transparent bands denote the standard deviations across these repetitions.

7 Discussion

In this section, we discuss some potential limitations and trade-offs when using
the ICPD algorithm.

First, there is a trade-off between the query budget b and the resolu-
tion with which ICPD can detect CPs, i.e., the minimum number of samples
between two consecutive CPs. This is because we set a neighbor field as in (3)
and exclude any CCPs that are detected within this neighbor field in future
iterations. This is necessary in order to avoid that the same CP is queried mul-
tiple times, albeit at slightly different time points, thereby eating up the query
budget b. Figure 6 shows an illustrative example from the BabyECG dataset.
It is observed that ICPD corrects many false positives from the TIRE initial-
ization, yet even after convergence some false negatives persist, even though
they were originally found by the TIRE initialization. These false negatives
always correspond to CPs that are close to another CP, and which are therefore
excluded due to the use of the neighbor field. In our implementation, we allow
the user to adjust the size of the neighbor field to find the optimal balance for
real-world applications.

In our experiments, we always kickstart the ICPD algorithm with the
results of unsupervised CPD approaches to expedite its convergence. In real-
world scenarios, it is possible that the user has already collected some ground
truth CPs, in which case the initialization phase of the ICPD approach can
be simply replaced with the collected ground truth CPs. The performance of
this initialization then depends on the size and quality of the provided ground
truth set. For instance, if the collected ground truth set only contains a few
types of change points existing in the entire time series, one can not expect the
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Fig. 6: The detection results of ICPD methods and its unsupervised baseline
on BabyECG dataset. From top to bottom, we illustrate the ground truth
location of change points, the detected CCPs by the TIRE initialization, the
detected CCPs from ICPD with α = 150%, and the detected CCPs from ICPD
after full convergence.

ICPD method to learn to detect other types of changes. The bottleneck con-
cerning the type of CPs that the ICPD algorithm can detect also exists in our
previous setting, where we employ an unsupervised method to generate the
initial set of CCPs. This method establishes the initial classification boundary
for the OCSVM model. However, if certain types of changes are not detected
by this method, the overall ICPD algorithm is likely to overlook them as well,
unless a smaller neighbor field is permitted at the expense of the query budget.

In our implementation, we assume that the end-user always provides cor-
rect annotations, which is a common assumption in the active learning setting.
However, in real applications the end-user might make mistakes and offer incor-
rect annotations during the training process. Investigating the impact of such
incorrect annotations could be an interesting topic for future research.



Springer Nature 2021 LATEX template

24 A Semi-supervised Interactive Algorithm for Change Point Detection

As mentioned in Section 2, the ICPD algorithm implemented in this study
focuses on detecting change points in the offline setting. Therefore, any location
in the input time series can be queried based on the certainty score assigned
by the OCSVM model, using information from the entire time series (both
before and after the CP). In an online setting, the OCSVM (as well as the
initialization algorithm) can only uses past data for training and inference,
except for a short buffer, which then introduces an algorithmic delay.

8 Conclusion

We have presented a semi-supervised interactive CPD algorithm by introduc-
ing an active-learning strategy based on an OCSVM approach. Compared
to state-of-the-art unsupervised approaches, the ICPD algorithm takes the
queried information from the users into account during re-training the OCSVM
model. As a result, the ICPD algorithm can report more inconspicuous CPs
usually neglected by other approaches and avoid introducing too many false-
positive alarms by exploiting the new information provided by the users. Our
exhaustive experiment results demonstrate the effectiveness of the proposed
ICPD algorithm and the corresponding ablation study has provided insights
into the specific features that lead to a better CPD performance on both
simulated and real-life benchmark datasets.
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Appendix: Limitation of AUROC in Evaluating
CPD Algorithms

We discuss the limitations of using AUROC to evaluate CPD algorithms via
a toy example. Before presenting the example, we will first introduce the
definition of the AUROC metric in the context of CPD.

Fig. 7: Toy example for showing a limitation of the AUROC metric. In the left
column, the two sub-figures simulate two detection results obtained from two
hypothetical CPD algorithms on the same time series. We mark the locations
of ground truth change points with the vertical lines in red. The black curve
denotes the dissimilarity measurement produced by the CPD algorithm (a high
value corresponds to a potential CP). Green points and black points represent
true positive and false positive samples, respectively. Three colored flat dashed
lines represent three values of the detection threshold υ during generating
of the ROC curve. In the right column, the corresponding ROC curves are
plotted. Three colored points on the ROC curves correspond to the υ values
in the left sub-figures in the same colors.

Since imbalanced data is common in CPD tasks, many papers in the CPD
literature (e.g., KLCPD (Chang et al., 2019), RuLSIF (Liu et al., 2013), ABD
(Lee et al., 2018), and TIRE (De Ryck et al., 2021)) define the true positive
rate (TPR) and false positive rate (FPR) as:

TPR =
NTP

NGT
(10)
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and

FPR =
NFP

NTP +NFP
. (11)

The ROC curve is then obtained by varying a detection threshold (υ) from
high to low. Point (FPR, TPR) = (1.0, 1.0) is manually added to the ROC
curve to ensure that a perfect performance corresponds to an AUROC of 1
(De Ryck et al., 2021).

Based on these definitions, we show an illustrative toy example in Fig. 7.
Here, we show two possible detection results, e.g., by two hypothetical CPD
algorithms. In Table 4, we summarize the number of samples in these two
detection results and compute the f1-scores.

Table 4: Summary of detection results in toy example.

NTP NFP NFN f1-score AUROC

Result 1 7 1 2 0.824 0.845

Result 2 8 1 1 0.889 0.685

As shown in Table 4, Result 2 detects one more change point and one less
flase negative thereby producing a better f1-score than Result 1. However,
the AUROC achieved by Result 2 is much worse than that of Result 1. This
is because CPD algorithm 2 assigns a higher dissimilarity value to the false
positive sample located at time step 375, causing the corresponding ROC curve
to start from point (1.0, 0.0), resulting in an awkward shape. In real-world
applications, the dissimilarity produced by a CPD algorithm is determined
locally and is usually very sensitive to outlier data samples and initial model
parameters. This makes the start of the ROC curve very sensitive to stochastic
effects, often leading to awkward shapes as in the second example of Fig. 7.
The same CPD algorithm can even result in very different AUROC values
on the same dataset due to different initial weights. This is why we chose to
evaluate the CPD approaches in this study based on the f1-score.
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