DATA FUSION TENSOR FACTORIZATIONS BY COMPLEX OPTIMIZATION

Laurent Sorber

Supervisors: prof. Lieven De Lathauwer prof. Marc Van Barel

İWĪ KU LEUVEN

SELEDRING CARS ANALYSEIGB/S

Gongle BLU-RAYS SIMULTANOUS

self-driving car

A BOFING 787 GENERATES 500GB/FLIGHT

1000 TREES MADE INTO 1M BOOKS' WORTH OF DATA PER FLIGHT

THE LARGE HADRON GOLLAR PRODUCES SOPB/YEAR BEISTHE ESTIMATED STORAGE CARACITY OF LIE MUMAN BRAIN

THIS DOES NOT EVEN INCLUDE THE MUCH LARGER DEEP WEB

BIG DATA

- 1. Volume
- 2. Velocity
- 3. Variety

HOW IS DATA STORED?

GRAPHS

Web graph, Social graph, Electrical circuit,

RELATIONAL DATA

user-rates-movie, student-performs-task,

	Dries	Bart	Vicky	Clara
Pretty Woman	3.5	1.5	?	4.5
Titanic	?	2.25	3	4
Star Wars	4.25	?	2	3
The Terminator	4.5	4.5	1.5	?

HOW CAN WE MINE THIS NEW NATURAL RESOURCE?

USE OCCAM'S RAZOR!

"Shave the model until you cut into its explanatory power."

PREDICTING MOVIE RATINGS

	Dries	Bart	Vicky	Clara
Pretty Woman	3.5	1.5	?	4.5
Titanic	?	2.25	3	4
Star Wars	4.25	?	2	3
The Terminator	4.5	4.5	1.5	?

	Action content (a)		Action preference (<i>b</i>)
Pretty Woman	0	Dries	1
Titanic	0.5	Bart	1
Star Wars	1.5	Vicky	-0.5
The Terminator	2	Clara	0

 $r_{m,u} = \mu + a_m \cdot b_u$

 $4.5 = 2.5 + 2 \cdot 1$ Dries likes The Terminator

 $1.5 = 2.5 + 2 \cdot (-0.5)$ Vicky does not like The Terminator

WHAT DOES THE MODEL LOOK LIKE? $r_{m,u} = \mu + a_m \cdot b_u$

IS THE MODEL ANY GOOD?

$$f(a,b) := \sum_{m,u} [r_{m,u} - (\mu + a_m \cdot b_u)]^2$$

 $[3.5 - 2.5]^2 + [4.25 - 4]^2 + [4.5 - 4.5]^2 + [1.5 - 2.5]^2 + ...$

MINIMIZE *f* TO FIND THE BEST SOLUTION

However, even the best solution for a and b can not predict all the ratings accurately because the model is too simple!

	Action content (a)	Romance content (c)		Action preference (<i>b</i>)	Romance preference (<i>d</i>)
Pretty Woman	0	2	Dries	1	0.5
Titanic	0.5	1.5	Bart	1	-0.5
Star Wars	1.5	0.5	Vicky	-0.5	0.5
The Terminator	2	0	Clara	0	1
$r_{m,u} = \mu + a_m \cdot b_u + c_m \cdot d_u$ $2.25 = 2.5 + 0.5 \cdot 1 + 1.5 \cdot (-0.5)$ Bart does not like Titanic very much					
$4 = 2.5 + 0.5 \cdot 0 + 1.5 \cdot 1$					

Clara likes Titanic

WHAT DOES THE NEW MODEL LOOK LIKE? $r_{m,u} = \mu + a_m \cdot b_u + c_m \cdot d_u$

MATRIX FACTORIZATION

Or equivalently,

THEN WHAT ARE TENSOR FACTORIZATIONS?

TENSOR FACTORIZATION

Canonical polyadic decomposition (CPD)

TENSOR FACTORIZATION

Low multilinear rank approximation (LMLRA)

SO WHAT IS DATA FUSION?

TENSOR FACTORIZATION

Fusion by jointly factorizing a set of matrices that are homogeneous in size

DATA FUSION

Fusion by jointly factorizing a set of tensors that are heterogeneous in size

For each data set (stored as a tensor):

- 1. Pick a type of tensor decomposition CPD, LMLRA, BTD, TT, ...
- 2. Impose structure on their factors Nonnegative, orthogonal, inverse, ...
- 3. Choose which factors are shared 1st and 2nd tensor share factor matrix *A*, ...

STRUCTURED DATA FUSION

minimize $\sum_{d} \omega_{d} \left\| M^{(d)}(X(z)) - T^{(d)} \right\|^{2}$

WWW.TENSORLAB.NET

Tensorlab

000

< ► 🙆 🖻 + 🚱 www.tensorlab.net

Tensorlab

A MATLAB toolbox for tensor computations

About

Tensorlab is a MATLAB toolbox that offers algorithms for

- structured data fusion: define your own (coupled) matrix and tensor factorizations with structured factors and support for dense, sparse and incomplete data sets,
- tensor decompositions: canonical polyadic decomposition (CPD), multilinear singular value decomposition (MLSVD), block term decompositions (BTD) and low multilinear rank approximation (LMLRA),
- <u>complex optimization</u>: quasi-Newton and nonlinear-least squares optimization with complex variables including numerical complex differentiation,
- global minimization of bivariate polynomials and rational functions: both real and complex exact line search (LS) and real exact plane search (PS) for tensor optimization,
- and much more: cumulants, tensor visualization, estimating a tensor's rank or multilinear rank, ...

Download the <u>Tensorlab user guide</u> (preview on the right) to get started with Tensorlab. Alternatively, see Tensorlab's Contents.m for an overview of the toolbox's functionality. For questions, bug reports or other inquiries, please contact <u>tensorlab@esat.kuleuven.be</u>.

Download 2014-05-07

To download Tensorlab, please fill out the form below. Your email address will not be used for marketing purposes, sold or shared with third parties.

userquide.pdf 3 Tensorlab User Guide (2014-05-07) Laurent Sorber*¹¹ Marc Van Barel* Lieven De Lathauwer¹¹⁵ Contents 1 Getting started 1 2 Data sets: dense, incomplete and sparse tensors 2.1 Representation 2.2 Tensor operations 3 Canonical polyadic decomposition 10 3.1 Problem and tensor generation 10 3.2 Computing the CPD 11 4 Low multilinear rank approximation 13 4.1 Problem and tensor generation 14 5 Block term decomposition 17 5.1 Problem and tensor generation 17 6 Structured data fusion 19 6.1 Domain specific language for SDF 20 7 Complex optimization 20 7.1 Complex derivatives 30 7.2 Nonlinear least squares 8 Global minimization of bivariate functions 42 8.1 Stationary points of polynomials and rational functions 43 *NALAG, Department of Computer Scence, KU Leuven, Celestijneritaan. 2004. BE-3001 Leuven, Begium (Laurent-Sorber@ks.kleuven.be, Marx VanBarel®ci.ki.eaven.be). Ticroup Scence, Engineering and Technology, KU Leuven Kuisk. E. Sabetaan 53. BE-8500 Kortrijk. Begium (Leven. Dit.alt.hauwerReuten.kuisk.be). 157ADUIS, Department of Elevantional Eginemismon (ESAT), KU Leuven, Kastredpark Arenberg 10. BE-3001 Leuven, Begium (Leven.Dal.hifbawerBealt.sabivert.he). Minder Funzer, Haults Department, Kastelpark Anteneg 10, BE-3001 Leuven, Begium.

Automatic

1 of 49

0

C Reader

First name

The Quantum Computing Company™

HITACHI Inspire the Next

EIGENVALUE DECOMPOSITION

is a CPD with structured factors

$$\lambda_n = \cos\left(\frac{\pi(2n-1)}{2N}\right)$$
 for $n = 1, ..., N$

MATLAB

[V,L] = eig(A);

TENSORLAB

model.variables.v = randn(N,N); % N-by-N matrix
model.variables.l = randn(1,N); % 1-by-N vector

model.factors.V = 'v'; model.factors.Vinv = {'v',@struct_invtransp}; % One of 32 s' model.factors.L = 'l';

model.factorizations.evd.data = A; model.factorizations.evd.cpd = {'V', 'Vinv', 'L'};

sol = sdf_nls(model); % sol.factors, sol.variables

ALGORITHMS

minimize $\sum_{d} \omega_{d} \left\| M^{(d)}(X(z)) - T^{(d)} \right\|^{2}$

- User's choice of underlying solver Quasi-Newton, nonlinear least squares, ...
- Solver exploits the structure in the factors Nonnegative, orthogonal, inverse, ...
- Solver exploits the structure of the decomposition CPD, LMLRA, BTD, TT, ...
- Based on complex optimization Solve complex-valued problems with the same code

LINE AND PLANE SEARCH

 $\begin{array}{c} \underset{z}{\text{minimize}} \quad f(z) \end{array}$

Line search subproblem minimize $f(z_k + x \cdot p)$

Plane search subproblem minimize $f(z_k + x \cdot p + y \cdot q)$

The global minimizer of f(x,y) is a solution of a bivariate polynomial system, e.g.,

$$\begin{cases} 2x^2 - xy + y^4 - 8 = 0\\ 5y^3 + 7xy^2 + 3 = 0 \end{cases}$$

Developed an algorithm that computes all solutions simultaneously by solving an eigenvalue decomposition

 $A \cdot x = \lambda \cdot B \cdot x$

Microsoft Research tracked 164 users' GPS coordinates for 2.5 years Let's apply data fusion to predict if users took part in activies!

TENSORLAB

model.factorizations.UserLocAct.data = UserLocAct; model.factorizations.UserLocAct.cpd = {'U', 'L', 'A'};

```
model.factorizations.UserUser.data = UserUser;
model.factorizations.UserUser.cpd = {'U', 'U', 'alpha'};
```

```
model.factorizations.LocFea.data = LocFea;
model.factorizations.LocFea.cpd = {'L','F'};
```

```
model.factorizations.ActAct.data = ActAct;
model.factorizations.ActAct.cpd = { 'A', 'A', 'beta' };
```

```
model.factorizations.UserLoc.data = UserLoc;
model.factorizations.UserLoc.cpd = {'U', 'L', 'gamma'};
```

80% OF USER-LOCATION-ACTIVITY MISSING

50 USERS MISSING

COST OF SEQUENCING A HUMAN GENOME

THE END?

 Big data is upon us!
 Structured data fusion is a paradigm shift in our capabilities to extract knowledge from this exciting new resource

THANK YOU!

REFERENCES

- Sorber, L., Van Barel, M., De Lathauwer, L. Structured data fusion.
 ESAT-STADIUS IR 13-177, KU Leuven. Submitted.
- Sorber, L., Van Barel, M., De Lathauwer, L. Numerical solution of bivariate and polyanalytic polynomial systems. *SIAM Journal on Numerical Analysis*. Accepted.
- Sorber, L., Domanov, I., Van Barel, M., De Lathauwer, L. Exact line and plane search for tensor optimization. ESAT-STADIUS IR 13-02, KU Leuven. Submitted.
- Sorber, L., Van Barel, M., De Lathauwer, L. Optimization-based algorithms for tensor decompositions. *SIAM Journal on Optimization 23*, 2 (2013), 695–720.
- Sorber, L., Van Barel, M., De Lathauwer, L. Unconstrained optimization of real functions in complex variables. *SIAM Journal on Optimization 22*, 3 (2012), 879–898.