

Medical Information Technologies Department

The power of TENSOR Decompositions in Smart Patient Monitoring

Prof. Sabine Van Huffel

TDA 2016 Symposium Leuven, Belgium January 18-22, 2016

Contents Overview

Introduction

- Smart Patient Monitoring
- EEG and epileptic seizure monitoring
- Blind Source Separation
- Tensor Decompositions
- •Examples in EEG monitoring
- Conclusions and new directions

EEG and epileptic seizure monitoring

0:5

0:51

21 electrode positions @UZ Gasthuisberg

Muscle artefacts affect EEG during seizures (>90%)

Solution? REMOVE using Blind Source Separation De Clercq et al, IEEE TBME 2006, Vergult et al, Epilepsia 2007

Blind source separation

EEG analysis difficult because of artefacts \rightarrow REMOVE

Matrix based Blind Source Separation (BSS)

Non-unique → *Constraints are needed!*

- sources orthogonal (PCA),
- sources statistically independent (ICA)
- sources uncorrelated and of different autocorrelation (CCA)

Contents Overview

- Introduction
- Tensor Decompositions
 - Canonical Polyadic Decomposition (CPD)
 - Block Term Decompositions
 - Tensor-based data fusion
- •Examples in EEG monitoring
- Conclusions and new directions

Canonical Polyadic Decomposition (CPD)

Without constraints, matrix decompositions are not unique

$$X = A \cdot B = (A \cdot M) \cdot (M^{-1} \cdot B) = \hat{A} \cdot \hat{B}$$

Tensor decompositions can be unique under mild conditions! For example, the vectors a_r , b_r and c_r in the CPD

Contributors (nonexhaustive list):

L. De Lathauwer, P. Comon, T. Kolda, B. Bader, L-H Lim, C. Van Loan, E. Acar, A. Cichocki, O. Alter, R. Bro, M. Morup, N. Sidiropoulos, I. Domanov, M. Sorensen, L. Sorber, M. Ishteva, L. Albera, M. Haardt, and collaborators

De Lathauwer et al., SIMAX, 2008; Sorber et al., SIOPT, 2013

STRUCTURED DATA FUSION

Sorber L, Van Barel M, De Lathauwer L, IEEE J. of Selected Topics in Signal Proc., 2015

WWW.TENSORLAB.NET

userguide.pd

🔺 🕨 🕜 🖆 🕂 🎯 www.tensorlab.net — Tensorlab

Tensorlab

About

A MATLAB toolbox for tensor computations

Tensorlab is a MATLAB toolbox that offers algorithms for

- structured data fusion: define your own (coupled) matrix and tensor factorizations with structured factors and support for dense, sparse and incomplete data sets,
- tensor decompositions: canonical polyadic decomposition (CPD), multilinear singular value decomposition (MLSVD), block term decompositions (BTD) and low multilinear rank approximation (LMLRA),
- <u>complex optimization</u>: quasi-Newton and nonlinear-least squares optimization with complex variables including numerical complex differentiation,
- global minimization of bivariate polynomials and rational functions: both real and complex exact line search (LS) and real exact plane search (PS) for tensor optimization,
- and much more: cumulants, tensor visualization, estimating a tensor's rank or multilinear rank, ...

Download the <u>Tensorlab user guide</u> (preview on the right) to get started with Tensorlab. Alternatively, see Tensorlab's Contents.m for an overview of the toolbox's functionality. For questions, bug reports or other inquiries, please contact <u>tensorlab@esat.kuleuven.be</u>.

Download 2014-05-07

To download Tensorlab, please fill out the form below. Your email address will not be used for marketing purposes, sold or shared with third parties.

	First name
	Last name
	Institution/company
Angliad mathematics	Field of expertise

	Tensorlab	
	User Guide (2014-05-07)	
	Laurent Sorber* ^{‡§} Marc Van Barel* Lieven De Lathauwer ^{†‡§}	
~		
C	ontents	
1	Getting started	1
ļ		÷
2	2.1 Representation	5
	2.2 Tensor operations	6
3	Canonical polyadic decomposition	10
	3.1 Problem and tensor generation	10
	3.2 Computing the CPD	11
	S.S. Croosing the humber of rank-one terms A	12
4	4.1 Problem and tensor generation	13
	4.2 Computing a LMLRA	14
	4.3 Choosing the size of the core tensor \ldots	16
5	Block term decomposition	17
	5.1 Problem and tensor generation	17
	5.2 Computing a BTD	10
6	Structured data fusion 6.1 Domain specific language for SDE	19 20
	6.2 Implementing a new factor structure	28
7	Complex optimization	29
	7.1 Complex derivatives	30
	7.2 Nonlinear least squares	36
	7.3 Unconstrained nonlinear optimization	40
8	Global minimization of bivariate functions	42
	8.2 Isolated solutions of a system of two bivariate polynomials	45
_		
Be	"NALAG, Department of Computer Science, KU Leuven, Celestijneniaan 200A, BE-3001 Leu Igium (Laurent.Sorber@cs.kuleuven.be, Marc.VanBarel@cs.kuleuven.be).	ven,
Be	Group Science, Engineering and Technology, KU Leuven Kulak, E. Sabbelaan 53, BE-8500 Kori gium (Lieven.DeLathauwer@kuleuven-kulak.be).	crijk,
	'STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg	10,

C Reader

0

Contents Overview

- Introduction
- Tensor Decompositions
- •Examples in EEG monitoring
 - 1. Seizure onset localization
 - 2. Neonatal brain monitoring
 - 3. Event-Related Potential Analysis
 - 4. Combined EEG-fMRI Analysis
- Conclusions and New Directions

Seizure onset localization: CPD

=> Analysis in 3 dimensions instead of just 2

Interpretation of a trilinear component

CPD: Example extracting 1 component

CPD for seizure onset localization

erc

European Research Council Established by the European Commission

Why trilinear structure to extract seizures?

- CPD models as much variance as possible in the tensor that fits in a trilinear structure.
- \Rightarrow Sensitive for activity that is present during the entire epoch (2-10 sec), stable in localization and frequency
- ⇒ Oscillations in EEG meet requirements, e.g. seizures
- ⇒ Muscle artifacts don't fit into trilinear structure since they are distributed over frequencies by wavelet transformation

Added value in clinical practice?

Validation study with UZ Leuven \rightarrow seizure EEG of 37 patients

- Visual EEG analysis : 21 well localized
- Using CPD : 34 well localized

→ more reliable!

(De Vos et al., NeuroImage 2007) (E. Acar et al, Bioinformatics 2007)

Limits of CPD

Limits of a trilinear model

•Signal is not always perfectly recovered (e.g. freq.change)

KU LEUVEN

•But it is still well localized!

Block Term Decomposition

BTD-(L,L,1):

BTD of wavelet expanded EEG tensors

BTD of Hankel expanded EEG tensors

Alternatives: space-time-wave vector TDs (Becker et al, NeuroImage, Phd)

Clinical examples

(a) Raw EEG

KU LEUVEN

2000

2500

NeoGuard : decision support

Brain injury estimate

- Detection of neonatal epileptic seizures
- Seizure onset localization
- Inter-burst intervals

Clinician's expertise

 Neurophysiological knowledge included in algorithms

Brain Monitoring

- Recovery after damage
- Maturation in preterms

Outcome prediction

- Good
- Poor

How Assessing Brain Recovery? → monitor abnormality of Background EEG

Ideal examples, taken from [Korotchikova et al., 2011]

V. Matic et al., J. Neural Engineering, Oct. 2014

m₁

time [s]

26 January, 2016

Higher Order Discriminant Analysis

- -> compute simultaneous LMLRA
- -> factors M, S, B common and orthogonal
- -> maximizing the Fisher ratio between core tensors

KU LEUVEN

Phan A and Cichocki A, Nonlinear Theory Appl., IEICE, 2010 Phan A, 2011, Matlab Software Toolbox (www.bsp.brain.riken.jp/~phan/nfea/nfea.html)

Higher Order Discriminant Analysis

Higher Order Discriminant Analysis

<i>Automated</i> \ Expert EEG reader	MILD	MODERATE	SEVERE
MILD	73 (91%)	6	1
MODERATE	7	44 (76%)	7
SEVERE	0	8	126 (94%)
Achieved accuracy	91%	76%	(94%)

(V. Matic et al, J. Neural Eng. 11, 2014)

Event-Related Potential Analysis

ERPs have very low SNR and suffer from artifacts caused by non-brain and brain sources

Variety of CPD (and BTD) Applications, e.g.:

- -Brain topography (Field and Graupe, Brain Topogr. 1991)
- -Brain-computer interfacing (A. Cichocki et al, IEEE computer society Mag. 2008 and IEEE SP Mag. 2015) (R. Zink et al, JNE 2016)
- Detection of rhythmic activity, e.g. (α, θ) , during cognitive task (*Miwakeichi et al., NeuroImage 2004*) (*Martinez-Montes, NeuroImage 2004*) (*Vanderperren et al., MBEC 2008*)
- -Inter-trial phase coherence analysis in event-related EEG (Mørup et al., NeuroImage 2005)(M. Weiss et al., ICASSP 2009)
- Event-related EEG during simultaneous fMRI acquisition

Single-trial ERP analysis: CPD on channels x time x trials

Validation: classification of trial type

Left vs. right stimuli

- <u>Raw data</u>: based on difference in P1 amplitude (left – right hemispheres)
- <u>CPD</u>: based on 1 trial mode of decomposition
- In both cases: 1/2 trials for training, 1/2 for testing

Single trial reading: outside L-R results

Ν

Single trial ERP reading with CPD

- CPD allows the extraction of task-related ERP information on a **single trial** basis
- Data Preprocessing important (artefacts, constraints, parameters)
- Performance is better than raw data characteristics
- Both for left-right and 4 quadrant distinction
- Also possible for EEG-fMRI data acquisition: *more difficult but still better than raw data classification*
- Promising for BCI
 - K. Vanderperren, B. Mijović, N. Novitskiy, B. Vanrumste, P. Stiers, B.R.H. Van den Bergh, L. Lagae, S. Sunaert, J. Wagemans, S. Van Huffel and M. De Vos. Single trial ERP reading based on Parallel Factor Analysis. Psychophysiology, 2013

Combined EEG-fMRI analysis

fMRI

localizes active brain regions

KU LEUVEN

Combining EEG and fMRI:

4

- **EEG** good **temporal resolution** (~ ms)
- fMRI good spatial resolution (~ mm)

Combined EEG-fMRI analysis

Symmetric EEG-fMRI approaches: Joint ICA

Calhoun et al., (2006), NeuroImage

JointICA Output

Alternatives: Parallel ICA, EEG informed fMRI, fMRI informed EEG, ...

Joint Independent Component Analysis (JointICA)

(Mijovic et al, NeuroImage, Vol. 60, 2012, pp. 1171-1185)

Extensions: add more conditions (Mijovic et al, NeuroImage, Vol. 88, 2014, pp. 10-21) add extra electrodes (W. Swinnen et al, Proc. EUSIPCO 2014, Lisbon)

ERP analysis: EEG-fMRI integration

Integration by coupled tensor-tensor CPD/BTD

- A. Find appropriate data tensorization (A)
- B. Investigate relevant constraints in coupled CPD/BTD (B)
- C. Apply to Cognitive Functioning and presurgical Seizure Localization

Contents Overview

Introduction

- Tensor Decompositions
- •Examples in EEG monitoring
- Conclusions and new directions

Conclusions and new directions

- Successful applications, e.g. epileptic seizure onset localization, neonatal brain monitoring, single-trial ERP, EEG-fMRI
- Mostly restricted to CPD via alternating least squares, more robust NLS algorithms exist, comparable memory/cost
- Other TD applications: bioinformatics (O. Alter, E. Acar), BCI (Cichocki, Mørup, Martinez-Montes, Zink), chemo/ psycho-metrics (Bro)
- Use of tensorial kernels in classification promising (Signoretto)
 New directions? See talks/posters at TDA 2016
 Adaptive tensor decompositions, rank & structure estimation
 - Applications increasing in BCI, (single-trial) ERP, ECG, MRSI
 - → exploit full potential of Tensor toolbox for Data Fusion

Acknowledgment : Minds

University Hospitals Leuven Gasthuisberg ZNA Middelheim, Queen Paola Children's hospital EMC Rotterdam

KU Leuven, Dept. Electrical Engineering-ESAT, division STADIUS & MICAS Ghent University, Dept. Telecommunication and Information Processing, TELIN-IPI Eindhoven University of Technology

ERC advanced grant 339804 BIOTENSORS in collaboration with L. De Lathauwer and group

Thank you!

KU LEUVEN

esa