### **KU LEUVEN**



Medical Information Technologies Department



# The power of low rank MATRIX and TENSOR Approximations in Smart Diagnostics

HCM workshop: Low-rank Optimization and Applications Bonn, Germany June 8-12, 2015

Prof. Sabine Van Huffel



# **Contents Overview**



### Introduction

- Smart Patient Monitoring
- Blind Source Separation
- Tensor Decompositions
- •Examples in Neonatal Brain Monitoring
- •Examples in MR-based Brain Tumor Diagnosis
- Conclusions and new directions





### **Blind source separation**



Signal analysis difficult because of artefacts  $\rightarrow$  REMOVE

Matrix based Blind Source Separation (BSS)

*Non-unique* → *Constraints are needed!* 

- sources orthogonal (PCA),
- sources statistically independent (ICA)
- sources uncorrelated and of different autocorrelation (CCA)



# **From Matrix to Tensor rank**



European Research Court Established by the European Commis

For tensors, these are two different concepts!

# **Tensor Decompositions**



The canonical polyadic decomposition (CPD) decomposes a tensor into a minimal number of rank-one tensors R



The tensor's rank is defined as R

A low multilinear rank approximation (LMLRA) decomposes a tensor into a core tensor S and matrices U, V and W



The tensor's multilinear rank is defined as the triplet (rank(U), rank(V), rank(W))

# **Uniqueness means Interpretable**



Without constraints, matrix decompositions are not unique

$$X = A \cdot B = (A \cdot M) \cdot (M^{-1} \cdot B) = \hat{A} \cdot \hat{B}$$

Tensor decompositions can be unique under mild conditions! For example, the vectors  $a_r$ ,  $b_r$  and  $c_r$  in the CPD



#### **Contributors (nonexhaustive list):**

L. De Lathauwer, P. Comon, T. Kolda, B. Bader, L-H Lim, C. Van Loan, E. Acar, A. Cichocki, O. Alter, R. Bro, M. Morup, N. Sidiropoulos, I. Domanov, M. Sorensen, L. Sorber, M. Ishteva, L. Albera, M. Haardt, .... and collaborators

# **Contents Overview**



Introduction

- •Examples in Neonatal Brain Monitoring
  - Seizure detection
  - Seizure onset localization
  - Background EEG grading

### •Examples in MR-based Brain Tumor Diagnosis

Conclusions and new directions



## Neonatal Brain Monitoring: Seizure detection







Deburchgraeve, PhD thesis, 2011; P.J. Cherian 2011; W. Deburchgraeve et al, Clin. Neurophys. 2008 & 2009 Alternatives using classification: See pubs of Temko, G. Boylan, etc.

## Artefact removal: ECG, respiration, pulsation

#### BSS based algorithm removes these 3 artifacts before seizure detection starts

ECG artefact removal: Respiration & Pulsation removal: Number of sources: IC source recognition: ECG spike artefact

with RobustICA (spiky) with SOBI (oscillatory, autocorrelated) estimated with PCA and variance threshold correlation with reference after transformation Cleaned EEG

**KU LEUVEN** 



M. De Vos et al., Clinical Neurophys., Dec. 2011 VALIDATION study artefact-removal: •13 patients: asphyxia (9 with artefacts, 4 artefact-free), 8h EEG per patient Fp/h

87.1 (20-100)

100 (20-100)

Seizure detection Rate (%)

No-AR: 0.38(0-5)With-AR: 0.00 (0-0.875)

## Seizure onset localization: CPD



=> Analysis in 3 dimensions instead of just 2

### Interpretation of a trilinear component

CPD: Example extracting 1 component



### separation seizure from background activity



⇒ Extract spatial distribution of the seizure without distortion of the artifact

### **CPD: spatial source components**



VALIDATION Study: W. Deburchgraeve et al., Clinical Neurophys., 2009

good qualitative correspondence between visual analysis by expert and algorithm. Together with seizure detector useful for bedside brain monitoring

### **Automated seizure monitoring**



## **NeoGuard : decision support**

#### Brain injury estimate

- Detection of neonatal epileptic seizures
- Seizure onset localization
- Inter-burst intervals

#### Clinician's expertise

 Neurophysiological knowledge included in algorithms

#### Brain Monitoring

- Recovery after damage
- Maturation in preterms

#### Outcome prediction

- Good
- Poor



### How Assessing Brain Recovery? → monitor abnormality of Background EEG



Ideal examples, taken from [Korotchikova et al., 2011]



m₁

time [s]

Fp2-F8 F8-T4 T4-T6 T6-02 Fp1-F7 F7-T3 T3-T5 T5-O1 T4-C4

C4-Cz

Cz-C3

V. Matic et al., J. Neural Engineering, Oct. 2014

KU ▋ℲU ΞN Higher Order Discriminant Analysis

- -> compute simultaneous LMLRA
- -> factors M, S, B common and orthogonal
- -> maximizing the Fisher ratio between core tensors



**KU LEUVEN** 

Phan A and Cichocki A, Nonlinear Theory Appl., IEICE, 2010 Phan A, 2011, Matlab Software Toolbox (www.bsp.brain.riken.jp/~phan/nfea/nfea.html)

## Higher Order Discriminant Analysis



## **Higher Order Discriminant Analysis**



| Automated \ Expert EEG<br>reader | MILD     | MODERATE | SEVERE    |  |
|----------------------------------|----------|----------|-----------|--|
| MILD                             | 73 (91%) | 6        | 1         |  |
| MODERATE                         | 7        | 44 (76%) | 7         |  |
| SEVERE                           | 0        | 8        | 126 (94%) |  |
| Achieved accuracy                | 91%      | 76%      | (94%)     |  |

(V. Matic et al, J. Neural Eng. 11, 2014)

# **Contents Overview**

![](_page_21_Picture_1.jpeg)

- Introduction
- •Examples in Neonatal brain monitoring
- •Examples in MR-based Brain tumor diagnosis
  - •NMF
  - Hierarchical(h) NMF
  - •Multimodal hNMF
  - Non-negative Tensor Factorization
- Conclusions and new directions

![](_page_21_Picture_10.jpeg)

### Metabolite quantification for MR Spectroscopy (MRS)

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

Metabolite cond

### Metabolite quantification for MRS Imaging (MRSI)

![](_page_23_Picture_1.jpeg)

### Multi-voxel MRS

| - and the second | بەربار <u>ى</u> قاتاتۇلىمەر | and the second second | Alter With Million | ~~~diblis <del>e h</del> eronest | Mathia Marine | and the second | millitan | ulatte 144 varous |
|------------------|-----------------------------|-----------------------|--------------------|----------------------------------|---------------|----------------|----------|-------------------|
| _                |                             |                       |                    | h                                |               |                |          |                   |
|                  |                             | ululum                |                    |                                  | Ala           |                | -lul     | mlulm             |
| _                |                             | .Jula.                | -                  |                                  | -             |                |          |                   |
|                  | -                           |                       |                    |                                  | -             | -lu            |          |                   |
|                  |                             | سللله                 |                    |                                  | سلىل          | سلمط           |          | militar           |
|                  |                             | .ul                   |                    |                                  |               | uhl            |          | ull               |
|                  |                             |                       |                    |                                  |               |                |          | million           |
| Jul              |                             |                       |                    |                                  | ulli          | ul             |          | william           |
| lolan            |                             | man                   | . In the second    |                                  |               | _              |          | mbler             |

#### **MRS quantification**

### using spatial information

![](_page_23_Figure_6.jpeg)

#### **Metabolite maps**

Metabolite concentrations = biomarkers of disease

### **Unsupervised Brain Tumor Diagnosis using NMF**

![](_page_24_Figure_1.jpeg)

# Multi-Parametric (MP) NMF

![](_page_25_Figure_1.jpeg)

### Research study:

- 14 high-grade glioma (HGG) patients with complete MP-MRI dataset (3 grade III, 11 grade IV, UZ Leuven) and 10 low-grade gliomas
   Research questions:
- Do we get valid tissue differentiation with NMF on MP-MRI?
- What is added value of individual MRI modalities?
- How to improve NMF → hierarchical NMF ? Tensor Factorisation?

## Non-negative matrix factorization (NMF)

![](_page_26_Figure_1.jpeg)

- Non-negativity constraint:  $Y_{i,j}$ ,  $W_{i,j}$ ,  $H_{i,j} \ge 0$ ,  $\forall i,j$
- Unsupervised:  $\rightarrow$  applicable patient-by-patient,
  - $\rightarrow$  tissue classes not a priori known
- MP-NMF: 1. integrate ALL features of each modality into one vector
  2. use NMF

![](_page_26_Picture_6.jpeg)

## Case study: single stage NMF

5 tissue types within region of interest: active tumor, necrosis, edema, white matter, CSF

#### Tissue sources (W)

#### **Tissue abundances (H)**

![](_page_27_Figure_4.jpeg)

![](_page_27_Picture_5.jpeg)

**KU LEUVEN** 

#### Is this good/bad result?

## Validation

Based on manual segmentation by radiologist (only pathological tissue types)

1) Dice-scores (based on H)

$$Dice = 2x \frac{area(A \cap B)}{area(A) \cup area(B)}$$

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

KU

### 2) Correlation coefficients (based on W)

$$Corr = \frac{\vec{a}.\vec{b}}{\|\vec{a}\|.\|\vec{b}\|}$$

 $\vec{a}$ :tissue source vector

 $\vec{b}$  :average feature vector over corresponding tissue region

## **Hierarchical NMF (hNMF)**

Improved results on MRSI data only (Li et al., NMR in BioMed. 2013)

![](_page_29_Figure_2.jpeg)

## Hierarchical NMF: Select best Mask

![](_page_30_Figure_1.jpeg)

Sauwen N, Sima D, Van Cauter S, Veraart J, Leemans A, Maes F, Himmelreich U, Van Huffel S. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multiparametric MRI. NMR in BioMedicine, 2015, paper in review

31

# Case study: single stage NMF vs hNMF Single stage NMF hNMF

![](_page_31_Picture_1.jpeg)

Dice<sub>tumor</sub> = 71% Dice<sub>tumor+necrosis</sub> = 83% Dice<sub>complete tumor</sub> = 75% Corr<sub>tumor</sub> = 0.60 Corr<sub>necrosis</sub> = 0.97 Corr<sub>edema</sub> = 0.93

![](_page_31_Picture_3.jpeg)

Dice<sub>tumor</sub> = 81%Dice<sub>tumor+necrosis</sub> = 92%Dice<sub>complete tumor</sub> = 83%Corr<sub>tumor</sub> = 0.78Corr<sub>necrosis</sub> = 0.98Corr<sub>edema</sub> = 0.97

## Full study results: Dice-scores

| HGG     | Dice-score active tumor [%] |         |        |         |        | Dice-score tumor core [%]<br>(active tumor + necrosis) |             |         |        |         | Dice-score complete tumor [%]<br>(active tumor + necrosis + edema) |           |             |         |        |         |        |           |
|---------|-----------------------------|---------|--------|---------|--------|--------------------------------------------------------|-------------|---------|--------|---------|--------------------------------------------------------------------|-----------|-------------|---------|--------|---------|--------|-----------|
|         | Full MP-MRI                 | no-cMRI | IW-PWI | no-MRSI | no-DKI | cMRI only                                              | Full MP-MRI | no-cMRI | IW-PWI | no-MRSI | no-DKI                                                             | cMRI only | Full MP-MRI | no-cMRI | IW4-on | no-MRSI | no-DKI | cMRI only |
| Average | 78                          | 65      | 76     | 71      | 76     | 69                                                     | 85          | 77      | 81     | 79      | 79                                                                 | 71        | 83          | 75      | 79     | 76      | 77     | 68        |
| Std dev | 10                          | 14      | 19     | 16      | 12     | 18                                                     | 11          | 14      | 18     | 17      | 14                                                                 | 17        | 14          | 15      | 17     | 18      | 14     | 18        |
| p-value | -                           | 0.001*  | 0.54   | 0.03*   | 0.18   | 0.004*                                                 | -           | 0.003*  | 0.28   | 0.01*   | 0.002*                                                             | 0.001*    | -           | 0.002*  | 0.03*  | 0.001*  | 0.003* | 0.001*    |

\* Statistical significance of lower Dice-scores compared to full MP-MRI based on one-tailed Wilcoxon signed rank test, p<0.05

Combining 4 MRI modalities improves brain tissue differentiation Similar conclusions when comparing correlation coefficients

# Spatial Tensor Representation (MRSI only)

 Frontal slices (XY<sup>T</sup>) representing the spatial distribution of a tissue type does not have low rank structure.

Difficult to find the rank L<sub>R</sub> for a particular tissue type distribution.

![](_page_33_Figure_3.jpeg)

## XX<sup>T</sup> based Tensor Representation (MRSI only)

![](_page_34_Figure_1.jpeg)

- Spectra reduced in length and denoised without losing vital information,
- Peaks get higher weights,
- Peaks coupled because of XX<sup>T</sup> in the frontal slices

**KU LEUVEN** 

HN Bharath et al, Proc. IEEE-EMB Symposium, Milan, Italy, Aug 2015, to appear

## Non-negative CPD for Tumor Differentiation

![](_page_35_Picture_1.jpeg)

**KU LE** 

![](_page_35_Figure_2.jpeg)

- Using H\*, recover tissue-specific spectra W from Y via LS
- Using W, recover tissue-type spatial distributions H from Y via NN-LS

Laurent Sorber, Marc Van Barel and Lieven De Lathauwer. Tensorlab v2.0, Available online, January 2014. URL: http://www.tensorlab.net/

### **Result: Patient-2**

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_5.jpeg)

![](_page_36_Picture_6.jpeg)

![](_page_36_Picture_7.jpeg)

![](_page_36_Picture_8.jpeg)

![](_page_36_Picture_9.jpeg)

![](_page_36_Picture_10.jpeg)

![](_page_36_Picture_11.jpeg)

![](_page_36_Picture_12.jpeg)

![](_page_36_Picture_13.jpeg)

![](_page_36_Picture_14.jpeg)

![](_page_36_Picture_15.jpeg)

![](_page_36_Picture_16.jpeg)

![](_page_36_Picture_17.jpeg)

![](_page_36_Picture_18.jpeg)

![](_page_36_Picture_19.jpeg)

![](_page_36_Picture_20.jpeg)

![](_page_36_Picture_21.jpeg)

![](_page_36_Picture_22.jpeg)

![](_page_36_Picture_23.jpeg)

![](_page_36_Picture_24.jpeg)

![](_page_36_Picture_25.jpeg)

![](_page_36_Picture_26.jpeg)

![](_page_36_Picture_27.jpeg)

![](_page_36_Picture_28.jpeg)

![](_page_36_Picture_29.jpeg)

![](_page_36_Picture_30.jpeg)

![](_page_36_Picture_31.jpeg)

![](_page_36_Picture_32.jpeg)

![](_page_36_Picture_33.jpeg)

![](_page_36_Picture_34.jpeg)

**KU LEUVEN** 

![](_page_36_Picture_36.jpeg)

hNMF

### Source Correlation: Algorithm vs Expert labeling (MRSI only)

| W          |   | NCPD                  |      | Single s      | stage NMF | h             | NMF     | Grade |
|------------|---|-----------------------|------|---------------|-----------|---------------|---------|-------|
| PATIENT-2  | Т | 0                     | .99  |               | Х         |               | Х       | High  |
| PATIENT-2  | Ν | 0.9                   | 9975 | 0.            | 9971      | 0.9972        |         | High  |
| Median/MAD | Т | <b>0.98</b> /0.0112   |      | 0.67          | /0.0514   | 0.87          | /0.0093 | High  |
| Median/MAD | Ν | <b>0.9969</b> /0.0013 |      | 0.9945/0.0028 |           | 0.9967/0.0005 |         |       |

### Abundance map Correlation: Algorithm vs Expert labeling

| н          |   | NCPD                |          | Single s | stage NMF | h      | NMF      | Grade |
|------------|---|---------------------|----------|----------|-----------|--------|----------|-------|
| PATIENT-2  | Т | C                   | ).80     |          | Х         |        | Х        | High  |
| PATIENT-2  | Ν | 0.                  | 9552     | 0.       | 8949      | 0.8967 |          | High  |
| Median/MAD | Т | <b>0.79</b> /0.0380 |          | 0.69     | /0.0849   | 0.69   | /0.0731  | High  |
| Median/MAD | Ν | <b>0.87</b> 4       | 2/0.0276 | 0.787    | 6/0.0662  | 0.800  | 9/0.0716 |       |

# **Contents Overview**

![](_page_38_Picture_1.jpeg)

- Introduction
- •Examples in Neonatal brain monitoring
- •Examples in MR-based Brain tumor diagnosis
- Conclusions and new directions

![](_page_38_Picture_6.jpeg)

## **Conclusions and new directions**

- Many BSS problems in Smart Diagnostics are low rank
  Solve via matrix or tensor factorization plus constraints
- Successful examples shown, e.g., in neonatal brain monitoring, brain tissue typing
- Extensions to biomedical data fusion emerge, e.g. EEG-fMRI
  → solve via coupled matrix /tensor decompositions
- Other BSS applications: bioinformatics (O. Alter, E. Acar), BCI (Cichocki, Mørup, Martinez-Montes), mobile EEG, multichannel ECG

### **New directions?**

- Adaptive tensor decompositions, rank & structure estimation
- Applications increasing in BCI, (single-trial) ERP, ECG, MRSI
- $\rightarrow$  exploit full potential of Tensor toolbox

## Acknowledgment : Minds

University Hospitals Leuven Gasthuisberg ZNA Middelheim, Queen Paola Children's hospital EMC Rotterdam KU Leuven, Dept. Electrical Engineering-ESAT, division STADIUS & MICAS

Ghent University, Dept. Telecommunication and Information Processing, TELIN-IPI Eindhoven University of Technology

ERC advanced grant 339804 BIOTENSORS in collaboration with L. De Lathauwer and group

![](_page_40_Picture_4.jpeg)

Thank you!

![](_page_40_Picture_6.jpeg)

![](_page_40_Picture_7.jpeg)

esa

![](_page_41_Picture_0.jpeg)

http://www.esat.kuleuven.be/stadius/TDA2016/

### Workshop on Tensor Decompositions and Applications January 18 - 22, 2016, Leuven, Belgium

Local Organisers: Sabine Van Huffel and Lieven De Lathauwer

#### **Confirmed Speakers**

Orly Alter Pierre Comon Eva Ceulemans Harm Derksen Nicolas Gillis Daniel Kressner Lek-Heng Lim Ivan Markovsky Morten Mørup Nikos Sidiropoulos Bart Vandereycken Frank Verstraete

![](_page_41_Picture_8.jpeg)

![](_page_41_Picture_9.jpeg)

![](_page_41_Picture_10.jpeg)