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Abstract—Electroencephalography (EEG) and functional mag-
netic resonance imaging (fMRI) are two complementary modal-
ities capturing a mixture of various underlying neural sources.
The fusion of these modalities promises the best of both worlds,
i.e. a better resolution in time and space, respectively. Assuming
that EEG and fMRI observations are generated by the same
mixing system in both modalities, their fusion can be achieved
by joint blind source separation (BSS). We solve the joint BSS
problem using different variants of joint independent compo-
nent analysis (jointICA) and coupled matrix-tensor factorization
(CMTF). We demonstrate that EEG-fMRI fusion provides a de-
tailed spatio-temporal characterization of an EEG-fMRI dataset
recorded in epilepsy patients, leading to new insights in epileptic
network behaviour.

I. INTRODUCTION

EEG and fMRI are two complementary modalities to record
and study brain function. They are complementary not only in
the sense that they record different aspects of brain activity -
electrical activity and blood oxygen level, respectively - but
also because of their reciprocal temporal and spatial reso-
lution. Therefore, integrating EEG-fMRI information offers
a better characterization of brain function and has proven
useful in various applications including cognitive functioning,
schizophrenia or epilepsy. Integration may be performed using
different approaches, among which data fusion offers true
interaction between the modalities, by assigning symmetrical
roles and simultaneously processing them [1]. We fuse EEG
and fMRI data based on the following assumptions. We
consider various brain sources which are active during the
recordings. Both modalities capture a linear mixture of the true
underlying source activities. The mixing system is determined
purely based on the relative strength of each source, therefore,
it is the same for both modalities. In this case, the underlying
sources can be retrieved using joint BSS of the EEG and fMRI
data. Our goal is to investigate different approaches to solve
the joint BSS problem.

One way to tackle this problem is to impose independence
between the sources using jointICA [2], [3]. A drawback of
this method is that it can only take into account a single EEG

channel, losing information about the spatial diversity of mul-
tichannel EEG. An extension of jointICA has been proposed
recently [4], that allows to take into account multichannel
EEG information by spatial or temporal concatenation. Still,
this approach can not exploit the inherent multidimensional
structure of EEG, as concatenation destroys the spatial or
temporal interdependence of the multichannel signals. Alterna-
tively, the joint BSS problem can be formulated as a coupled
matrix-tensor factorization (CMTF). This approach has two
very important advantages. First, the tensor representation of
EEG allows to fully exploit the higher order structure of EEG.
Second, within CMTF, the tensor is factorized using canonical
polyadic decomposition, which leads to very simple and mild
uniqueness conditions.

The paper is structured as follows. First, we explain our
signal model and the assumptions. Afterwards, we give the
mathematical formulation of the joint BSS problem and its
solutions using jointICA and CMTF approaches. Finally, we
apply these techniques to fuse EEG-fMRI data recorded from
epilepsy patients to achieve a detailed spatio-temporal charac-
terization of interictal network activity.

II. METHODS

A. Signal model

We consider simultaneously recorded EEG and fMRI mea-
surements in a group of patients under the same experimental
conditions. We assume that the same neural processes are
recruited during the experiment in all patients, and that these
neural processes are reflected in both modalities. We further
assume that each modality is preprocessed to eliminate the
effect of artifacts, and analysed using well-established methods
in the specific application domain in order to obtain relevant
and reliable information about the neural processes of interest.
In particular, we work with average EEG waveforms and fMRI
activation maps. By activation map we mean a vector of voxel
intensities, where the intensity in a given voxel reflects whether
BOLD signal fluctuations are consistent with the occurrence
of interictal spikes. As a result, the observed EEG signals and
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fMRI activations are generated as a mixture of the underlying
neural processes of interest. The mixing system reflects the
level of neural involvement, i.e. how strongly each neural
process is present in each patient. Formally, let si indicate
the ith neural source. The activity of this particular source
is observed as a certain waveform on the multichannel EEG,
denoted by SEEG

i , and an activation map in the fMRI, denoted
by sfMRI

i . The EEG-fMRI observations can be organized in
the rows of the source tensor SEEG ∈ RI×J×K and source
matrix SfMRI ∈ RI×L , where I is the number of neural
sources, J is the number of EEG channels, K is the number
of time samples and L is the number of fMRI voxels. Then,
the EEG signals XEEG ∈ RM×J×K and fMRI activations
XfMRI ∈ RM×L observed in all M participants can be
written as

XEEG = SEEG ×1 A

XfMRI = SfMRI ×1 A = ASfMRI (1)

where ×1 denotes the mode−1 tensor-matrix product. Anal-
ogously to the matrix product, A makes linear combinations
of the columns of SEEG. The matrix A ∈ RM×I describes
the mixing system. In particular, the entry am,i reflects how
strongly the ith neural source is involved in participant m.

Our goal is to solve the joint blind source separation
problem in eq. (1), i.e. to retrieve the unknown mixing matrix
A and the underlying sources SEEG and SfMRI only based on
the observations XEEG and XfMRI . In the following sections
we present different multimodal fusion techniques which we
will apply to this end.

B. JointICA

JointICA [2] solves eq. (1) by taking into account a single
EEG channel, where the pattern of interest is most prominent.
The observed data of the two modalities are concatenated
to form a joint observation matrix. Then, the problem is
formulated as follows:

[XEEG
(j) XfMRI ] = A[SEEG

(j) SfMRI ] (2)

Here, XEEG
(j) denotes the multisubject EEG pattern on the

selected channel j. Accordingly, the source matrix SEEG
(j) re-

veals the source waveforms on channel j. JointICA solves the
BSS problem by assuming that the joint sources [sEEG

(j),i s
fMRI
i ]

are statistically independent from each other. The relative
strength of the sources across patients are reflected in the
columns of the mixing matrix A, which is shared between
the two modalities. Therefore, our original assumption that
the strengths of the neural sources are reflected the same way
in both modalities, are automatically kept.

C. Multichannel jointICA

Multichannel extensions of jointICA were proposed by
Swinnen et al [4]. In t-jointICA the information from multiple
channels are concatenated in time to form a long observation
matrix. The joint BSS problem is now formulated as follows:

Fig. 1: Visual representation of the coupled matrix tensor
factorization of the fMRI and EEG dataset, with shared
signatures in the patient dimension.

[XEEG
(1) . . . XEEG

(j) . . . XEEG
(J) XfMRI ] =

= A[SEEG
(1) . . . SEEG

(j) . . . SEEG
(J) SfMRI ] (3)

D. CMTF

The coupled matrix-tensor factorization (CMTF) solves the
joint BSS problem in eq. (1) directly, without the need of
selecting or reorganizing the slices of the tensor. As such,
it allows to exploit the three-way structure of the tensor. A
visual representation of this factorization is shown in Figure
1. CMTF is formulated as the minimization of the objective
function in eq. (4):

f(A,P,Q, SfMRI) =

= ||XfMRI −ASfMRI ||2 + ||XEEG −
∑
R

ar ◦ pr ◦ qr||2

(4)

where ar, pr and qr denote the rth column of the matrices A,
P and Q. Note that XEEG =

∑
R ar ◦pr ◦qr is the canonical

polyadic decomposition (CPD) of the tensor XEEG. CPD is
unique under mild conditions, and the uniqueness of SfMRI

is also guaranteed in case A has full column rank [5]. As such,
the unique sources can be retrieved without assuming indepen-
dence or any other constraints on the sources. We implemented
the minimization problem in eq. (4) using Tensorlab [6], [7].

E. Restricted CMTF

Although CPD and therefore CMTF is unique under mild
conditions, prior knowledge may be incorporated into the
decomposition in the form of constraints on the factors in order
to facilitate robustness against noise and physical interpretation
[11]. Recall our main assumption, that the EEG and fMRI
observations are a mixture of underlying neural sources and
that the mixing system is determined by the patient-by-patient
variability of the strength of these processes. Based on certain
EEG features we can estimate the patient-by-patient variability
and fix the patient dimension signatures accordingly, leading
to a restricted CMTF approach. More details on the motivation
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Fig. 2: Spatiotemporal characterization of the interictal epileptic network measured by EEG-fMRI. The multipatient average
IED and activation map is shown in (a). Two components were extracted by restricted CMTF, their channel, temporal and
voxel signatures are shown in (b) and (c).

behind this approach and the estimation of the patient-by-
patient variability will be discussed in the results section after
presenting the EEG and fMRI observations.

F. Experimental data

Simultaneous EEG and fMRI data of 5 right temporal and
5 left temporal lobe epilepsy patients were used in this study.
Scalp EEG was recorded with an MR compatible EEG cap
placed according to the international 10/20 system. The EEG
was bandpass filtered between 0.1 and 30 Hz, gradient artifacts
and ballistocardiographic artifacts were removed using the
Bergen plug-in for EEGLAB and Brain Vision Analyzer
software, respectively. Interictal epileptic discharges (IEDs)
were marked by an experienced neurologist. The IEDs were
epoched around the largest negative peak of the spike with
a window of [-330 and 660] ms. The epochs were tempo-
rally averaged to obtain a representative multichannel IED
waveform per patient. Finally, the average multichannel IED
of left temporal lobe epilepsy patients were mirrored so that
a consistent right-lateralized EEG topography was obtained.
EEG data was organized in a tensor XEEG ∈ RM×J×K ,
where M = 10 is the number or patients, J = 21 is the
number of channels and K = 250 is the number of samples.

fMRI data were acquired using a 3T MR scanner and anal-
ysed in SPM8. Images were realigned, slice-time corrected,
normalised to MNI space (voxel size 2 × 2 × 2mm3) and
spatially smoothed with an isotropic Gaussian kernel of 6 mm
full width at half maximum. Subsequently, EEG-correlated

fMRI analysis was performed within the general linear model
(GLM) framework. The timing of the IEDs convolved with
the canonical hemodynamic response function was used as a
regressor of interest. The six rigid-body motion correction pa-
rameters, the fMRI signal averaged over the lateral ventricles,
and the signal averaged over a region within the white matter
were included as confounding covariates.

The resulting activations maps (T-maps) of left temporal
lobe epilepsy patients were mirrored in order to obtain con-
sistent right-lateralized activation maps. Then, the activation
maps were averaged over the patients and thresholded at
|T | > 3 to obtain a region-of-interest (ROI) mask including
clusters which show consistent increase or decrease in BOLD
signal during IEDs across patients. The individual unthresh-
olded activation maps were masked using the ROI mask. The
resulting images were vectorized and were organized in a
matrix XfMRI ∈ RM×L, where M = 10 is the number of
patients and L = 11923 is the number of voxels after masking.

III. RESULTS

The multipatient average IED and the GLM-based T-map
is shown in Figure 2 (a). The IED is a triphasic wave,
starting with a sharp negative peak followed by a positive
deflection and finally a slow negative wave. The T-map reveals
activations in the right temporal lobe, in accordance with the
patients’ diagnostics, however, activations are present in the
contralateral temporal lobe and the occipital lobe as well.
Moreover, deactivations are observed in areas associated with
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Fig. 3: Voxel intensity distributions in each ROI in each source. The spike and slow wave sources are shown in blue and green,
respectively. rTL: right temporal lobe. lTL: left temporal lobe. OL: occipital lobe. DMN: default mode network ECN: executive
control network. Asterisks above and below the distributions indicate that a source contains voxels which are significantly
activated or deactivated, respectively (at a threshold of |z| > 2).

the default mode network (DMN) and beyond. The goal of
the joint BSS is to link the diverse temporal EEG features and
spatial fMRI features together, hence achieve a better spatio-
temporal characterization.

The number of components to extract was chosen as R=2
based on the CPD rank of the EEG part using the core
consistency diagnostic. Based on this finding and on medical
literature, we hypothesize that the spike and the negative slow
wave correspond to 2 different neural processes, i.e. onset and
propagation or inhibition. As such, we expect that the true
sources are mixed on each patient’s EEG and fMRI findings
according to the strength of these EEG features. Therefore, we
may restrict the solution space by fixing the patient dimension
factor matrix A according to the patient-by-patient amplitudes
at the peak of the spike and the slow wave. This restriction
can be easily implemented in Tensorlab. In what follows,
we compare this restricted CMTF approach with unrestricted
CMTF, jointICA and t-jointICA. For easy comparison, all
signatures were normalized to zero mean and unit standard
deviation, i.e. z-scores.

The components extracted with restricted CMTF are visual-
ized in Figure 2 (b) and (c). The first component captures the
initial spike part of the EEG, as assessed based on both the
temporal signature p1 and the channel distribution q1. The
corresponding voxel signature shows activation in the right
temporal lobe and deactivations in the DMN 1. The second
component captures the slow wave activity: a very pronounced
slow wave pattern is observed next to a diminished spike
on p2. The channel signature q2 also closely resembles the
slow wave channel distribution of the average IED. The voxel
signature of the second component shows, besides weaker
activation in the right temporal lobe, activations in the left
temporal lobe and the occipital lobe; and a deactivation pattern
resembling the executive control network (ECN).1

To compare the results obtained by each of the four ap-
proaches, in Figure 3 we visualize the fMRI voxel signatures
as voxel intensity distributions within each source and each
ROI separately. The EEG time and channel distributions are

1based on an atlas containing 90 function ROIs [8] http://findlab.stanford.
edu/functional ROIs.html

very similar to the ones visualized in Figure 2 (b) and (c),
therefore, they are not shown again. The distributions in blue
correspond to the spike source, while the green distribution
correspond to the slow wave source. Each distribution is
normalized, so that the bin with the highest count has unit
width. Therefore, the shapes of the distributions are compa-
rable. A distribution which is wide at values far from zero
indicates a source with significant activations or deactivations.
Ideally, the green and blue distributions in a ROI are dissimilar,
indicating that activations and deactivations in a ROI are
related exclusively either to the spike or to the slow wave. The
results are very similar across the methods, leading to the same
main observations as explained above. However, jointICA and
restricted CMTF distinguish more between the spike and slow
wave sources by matching activation in the left temporal lobe
and occipital lobe clearly to the latter. Moreover, methods
which incorporate multichannel information reveal a clearer
deactivation in the DMN related to the spike (distributions
shifted towards negative values) and ECN related to the slow
wave source. Overall, fixed CMTF achieves the most skewed
voxel distributions, therefore, the resulting sources have the
most significant activations and deactivations.

Finally, we tested the reproducibility of the source signa-
tures. In other words, we tested how dependent the signatures
are on the specific patient data which were included in the
analysis. To this end, we rerun the joint BSS algorithms
including all possible subsets of 6, 7, 8 or 9 patients. The
reproducibility of the sources was quantified by the average
pairwise correlation of the fMRI voxel signatures as well
as the EEG temporal signatures. The results of this analysis
is shown in Figure 4. In general, both the EEG and the
fMRI signatures are reasonably reproducible, although EEG
signatures are slightly more robust. CMTF provides the most
robust fMRI signatures of all approaches, while jointICA and
CMTF performs similarly regarding the EEG signatures. As
expected, reproducibility decreases with decreasing number of
patient data included. From this aspect, the fMRI signatures
obtained with restricted CMTF seem to be the most sensitive.
Nevertheless, visual inspection confirmed that the main ob-
servations regarding the spatiotemporal characteristics of the
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Fig. 4: Reproducibility of the signatures in the different
decompositions.

sources still hold.

IV. DISCUSSION

We presented a signal model to fuse group EEG-fMRI data
based on the joint factorization of two modalities, where the
modalities share a common dimension, i.e. the same variability
across patients. This approach relies on some strong assump-
tions. First, we assumed that all underlying neural sources are
reflected on both EEG and fMRI. However, considering that
EEG and fMRI measurements work on very different prin-
ciples and at very different resolutions, one modality can be
more sensitive to certain physiological and non-physiological
signals than the other and may capture different phenomena.
Second, we assumed that both modalities share the same
patient-by-patient variability. Nevertheless, it is plausible that
the strength of a neural source will not be projected by the
same linear function to the EEG and to the fMRI. Therefore,
future work will explore more flexible models such as the
advanced matrix-tensor decomposition (ACMTF) [9], which
allows the presence of both shared and non-shared factors
and relaxed ACMTF [10], which allows a similarity rather
than equivalence of shared factors. Nevertheless, we believe
that careful preprocessing and proper analysis, which are well
established in epilepsy imaging, ensured that the input EEG
and fMRI data follow closely the assumptions in our CMTF
model.

The robustness of the sources against including different
subsets of patient data was tested and the reproducibility of
the signatures was confirmed. In the future we will try to
better understand why jointICA provides stable EEG signa-
tures whereas CMTF clearly extracts more stable fMRI voxel
signatures.

We obtained a detailed spatiotemporal characterization of
the interictal networks by fusing EEG and fMRI data using
joint blind source separation. We extracted two components,
corresponding to two distinct neural sources. The signatures
of the components show how each neural source is reflected
on each modality. To our knowledge, we showed for the first
time an association between the different features of the IED
(spike and slow wave) and the different regions within the

fMRI activation map found by EEG-correlated fMRI analysis.
More specifically, we showed that ipsilateral temporal lobe
activation and DMN deactivations are linked to the initial spike
phase of the IED, while contralateral temporal and occipital
lobe activations as well as ECN deactivations are linked to the
later slow wave phase of the IED. Although the interpretation
of these findings are out of the scope of this paper, we believe
that our approach can lead to new and important insights in
epileptic network behaviour.
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