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Abstract

Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal
decomposition into a sum of rank-1 tensors. We find new mild determinis-
tic conditions for the uniqueness of individual rank-1 tensors in CPD and
present an algorithm to recover them. We call the algorithm “algebraic”
because it relies only on standard linear algebra. It does not involve more
advanced procedures than the computation of the null space of a matrix and
eigen/singular value decomposition. Simulations indicate that the new con-
ditions for uniqueness and the working assumptions for the algorithm hold
for a randomly generated I × J ×K tensor of rank R ≥ K ≥ J ≥ I ≥ 2 if R
is bounded as R ≤ (I +J +K− 2)/2 + (K−

√
(I − J)2 + 4K)/2 at least for

the dimensions that we have tested. This improves upon the famous Kruskal
bound for uniqueness R ≤ (I + J +K − 2)/2 as soon as I ≥ 3.

In the particular case R = K, the new bound above is equivalent to the
bound R ≤ (I − 1)(J − 1) which is known to be necessary and sufficient for
the generic uniqueness of the CPD. An existing algebraic algorithm (based on
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simultaneous diagonalization of a set of matrices) computes the CPD under
the more restrictive constraint R(R − 1) ≤ I(I − 1)J(J − 1)/2 (implying
that R < (J − 1

2
)(I − 1

2
)/
√

2 + 1). On the other hand, optimization-based
algorithms fail to compute the CPD in a reasonable amount of time even in
the low-dimensional case I = 3, J = 7, K = R = 12. By comparison, in our
approach the computation takes less than 1 sec. We demonstrate that, at
least for R ≤ 24, our algorithm can recover the rank-1 tensors in the CPD
up to R ≤ (I − 1)(J − 1).

Keywords: canonical polyadic decomposition, CANDECOMP/PARAFAC
decomposition, CP decomposition, tensor, uniqueness of CPD, uni-mode
uniqueness, eigenvalue decomposition, singular value decomposition
2000 MSC: 15A69, 15A23

1. Introduction

Let F denote the field of real or complex numbers and T ∈ FI×J×K denote
a third-order tensor with entries tijk. By definition, T is rank-1 if it equals
the outer product of three nonzero vectors a ∈ FI , b ∈ FJ , and c ∈ FK :
T = a ⊗ b ⊗ c, which means that tijk = aibjck for all values of indices.

A Polyadic Decomposition of T expresses T as a sum of rank-1 terms:

T =
R∑
r=1

ar ⊗ br ⊗ cr,

(
or tijk =

R∑
r=1

airbjrckr

)
(1)

where

ar = [a1r . . . aIr]
T ∈ FI , br = [b1r . . . bJr]

T ∈ FJ , cr = [c1r . . . cKr]
T ∈ FK .

If the number R of rank-1 terms in (1) is minimal, then (1) is called the
Canonical Polyadic Decomposition (CPD) of T and R is called the rank of
T (denoted by rT ). It is clear that in (1) the rank-1 terms can be arbitrarily
permuted and that vectors within the same rank-1 term can be arbitrarily
scaled provided the overall rank-1 term remains the same. The CPD of a
tensor is unique when it is only subject to these trivial indeterminacies.

We write (1) as T = [A,B,C]R, where the matrices A :=
[
a1 . . . aR

]
∈

FI×R, B :=
[
b1 . . . bR

]
∈ FJ×R and C :=

[
c1 . . . cR

]
∈ FK×R are called

the first, second and third factor matrix of T , respectively. It may happen
that the CPD of a tensor T is not unique but that nevertheless, for any two
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CPDs T = [A,B,C]R and T = [Ā, B̄, C̄]R, the factor matrices in a certain
mode, say the matrices C and C̄, coincide up to column permutation and
scaling. We say that the third factor matrix of T is unique. For instance, it
is well known that if two or more columns of the third factor matrix of T
have collinear vectors, then the CPD is not unique. Nevertheless, the third
factor matrix can still be unique [7, Example 4.11].

The literature shows some variation in terminology. The CPD was intro-
duced by F.L. Hitchcock in [16] and was later referred to as Canonical Decom-
position (CANDECOMP) [2], Parallel Factor Model (PARAFAC) [12, 15],
and Topographic Components Model [21]. Uniqueness of one factor matrix is
called uni-mode uniqueness in [11, 24]. Uniqueness of the CPD is often called
essential uniqueness in engineering papers and specific identifiability in alge-
braic geometry papers. It is its uniqueness properties that make CPD a basic
tool for signal separation and data analysis, with many concrete applications
in telecommunication, array processing, machine learning, etc. [4, 5, 18, 22].

The contribution of this paper is twofold. First, we find very mild condi-
tions for uniqueness of CPD and, second, we provide an algebraic algorithm
for its computation, i.e. an algorithm that recovers the CPD from T by
means of conventional linear algebra (basically by taking the orthogonal com-
plement of a subspace and computing generalized eigenvalue decomposition
(GEVD)).

Algebraic algorithms are important from a computational point view in
the following sense. In practice, the factor matrices of T are most often
obtained as the solution of the optimization problem

min ‖T̂ − [A,B,C]R‖, s.t. A ∈ FI×R, B ∈ FJ×R, C ∈ FK×R,

where ‖ · ‖ denotes a suitable norm [23]. The limitations of this approach are
not very well-known. Algebraic algorithms may provide a good initial guess.
In Example 10 we illustrate that even in a small-scale problem such as the
CPD of a rank-12 tensor of dimensions 3×7×12, the optimization approach
may require many initializations and iterations, although the solution can be
computed algebraically without a problem.

Basic notation and conventions. Throughout the paper Ck
n denotes the

binomial coefficient,

Ck
n =

{
n!

k!(n−k)!
, if k ≤ n,

0, if k > n;

rA, range(A), and ker(A) denote the rank, the range, and the null space of
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a matrix A, respectively; kA (the k-rank of A [14, p. 162]) is the largest
number such that every subset of kA columns of the matrix A is linearly
independent; “�” and “⊗” denote the Khatri-Rao and Kronecker product,
respectively:

A�B = [a1 ⊗ b1 . . . aR ⊗ bR],

a⊗ b = [a1b1 . . . a1bj . . . aIb1 . . . aIbJ ]T .

It is well known that PD (1) can be rewritten in a matrix form as

R1,0(T ) :=

T1
...

TI

 =

BDiag(a1)CT

...
BDiag(aI)CT

 = (A�B)CT ∈ FIJ×K , (2)

where Ti := (tijk)
J,K
j,k=1 denotes the ith horizontal slice of T = (tijk)

I,J,K
i,j,k=1,

ai := [ai1 . . . aiR ] denotes the ith row of A ∈ FI×R, and Diag(ai) denotes
a square diagonal matrix with the elements of the vector ai on the main
diagonal.

To simplify the presentation and w.l.o.g. we will assume throughout that
the third dimension K coincides with rC, yielding rC = K ≤ R. This can
always be achieved in a “dimensionality reduction” step (see, for instance,
[9, Subsection 1.4]).

2. Previous results, new contribution, and organization of the pa-
per

To explain our contribution, we first briefly recall previous results on
uniqueness conditions and algebraic algorithms. (We refer the readers to [7–
9] and references therein for recent results and a detailed overview of early
results.)

2.1. At least two factor matrices have full column rank

We say that a matrix has full column rank if its columns are linearly
independent, implying that it cannot have more columns than rows. The
following result is well-known and goes back to Kronecker and Weierstrass.

Theorem 1. [13, 20] Let T = [A,B,C]R and suppose that the matrices B
and C have full column rank and that any two columns of A are linearly
independent:

rB = rC = R, kA ≥ 2. (3)
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Then rT = R, the CPD of T is unique and can be found algebraically.

Theorem 1 is the heart of the algebraic algorithms presented in [9] and
also in this paper. To give an idea of how the CPD in Theorem 1 is computed,
let us consider the particular case of 2 × R × R tensors. Then, by (3), B
and C are R × R nonsingular matrices. For simplicity we also assume that
the second row of A does not contain zero entries. By (2), PD (1) can be
rewritten as

T1 = BDiag(a1)CT and T2 = BDiag(a2)CT , (4)

which easily implies that

T1T
−1
2 = BDB−1, TT

1 T−T2 = CDC−1,

where D = Diag(a1)Diag(a2)
−1

. By the assumption kA ≥ 2, the diagonal
entries of D are distinct. Hence, the matrices B and C can be uniquely
identified up to permutation and column scaling from the eigenvalue decom-
position of T1T

−1
2 and TT

1 T−T2 , respectively. One can then easily recover A
from (4). Note that, in general, the matrices B and C in Theorem 1 can be
obtained from the GEVD of the matrix pencil (T1,T2).

2.2. At least one factor matrix has full column rank

In this subsection we assume that only the third factor matrix of T has
full column rank. It was shown in [17] that PD (1) is unique if and only if

rADiag(λ)BT ≥ 1 for all λ = (λ1, . . . , λR) with at least two nonzero entries.
(5)

Condition (5) is not easy to check for a specific tensor. The following con-
dition is more restrictive but easy to check [6, 9]. We denote by Cm(A) ∈
RCm

I ×C
m
R the mth compound matrix of A ∈ FI×R, i.e. the matrix containing

the determinants of all m×m submatrices of A arranged with the submatrix
index sets in lexicographic order.

Theorem 2. [6, 9] Let T = [A,B,C]R and suppose that

the matrices C2(A)� C2(B) and C have full column rank. (6)

Then rT = R and the CPD of T is unique.
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It was shown in [6, 9] that the assumptions in Theorem 2 also imply an
algebraic algorithm. The algorithm is based on the following relation between
T and its factor matrices:

R̃2,0(T ) = (C2(A)� C2(B))S2,0(C)T , (7)

in which R̃2,0(T ) denotes an C2
IC

2
J ×R2 matrix whose

((j1(2j2 − j1 − 1)− 2)I(I − 1)/4 + i1(2i2 − i1 − 1)/2, (r2 − 1)R + r1) -th

(1 ≤ i1 < i2 ≤ I, 1 ≤ j1 < j2 ≤ J, 1 ≤ r1, r2 ≤ R)

entry is equal to ti1j1r1ti2j2r2 + ti1j1r2ti2j2r1 − ti1j2r1ti2j1r2 − ti1j2r2ti2j1r1 and
S2,0(C) denotes an R2×C2

R matrix that has columns 1
2
(cr1 ⊗ cr2 + cr2 ⊗ cr1),

1 ≤ r1 < r2 ≤ R. Computationally, the identity (7) is used as follows.

First, the subspace ker(R̃2,0(T )) is used to construct an auxiliary R×R×R
tensor W that has CPD W = [C−T ,C−T ,M]R in which both C−T and M
have full column rank. The CPD of W is computed as in Theorem 1, which
gives the matrix C−T . The third factor matrix of T , C, is obtained from
C−T and the first two factor matrices A and B can be easily found from
R1,0(T )C−T = A�B (see (2)) using the fact that the columns of A�B are
vectorized rank-1 matrices.

2.3. None of the factor matrices is required to have full column rank

The following result is known as Kruskal’s theorem. It is the most well-
known result on uniqueness of the CPD.

Theorem 3. [19] Let T = [A,B,C]R and suppose that

2R + 2 ≤ kA + kB + kC. (8)

Then rT = R and the CPD of T is unique.

In [7, 8] we presented several generalizations of uniqueness Theorems 2
and 3. In [9] we showed that the CPD can be computed algebraically under
a much weaker assumption than (8).

Theorem 4. [9, Theorem 1.7] Let T = [A,B,C]R and suppose that

Cm(A)� Cm(B) has full column rank for m = R− kC + 2. (9)

Then rT = R, the CPD of T is unique and can be computed algebraically.
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The algorithm in [9] is based on the following extension of (7):

R̃m,0(T ) = (Cm(A)� Cm(B))Sm,0(C)T , (10)

where the Cm
I C

m
J ×Km matrix R̃m,0(T ) is constructed from the given tensor

T and the Cm
R × Km matrix Sm,0(C) depends in a certain way on C. We

refer the reader to [9] for details on the algorithm. Here we just mention
that assumption (9) guarantees that the matrix C can be recovered from the

subspace ker(R̃m,0(T )).

2.4. Generic uniqueness results from algebraic geometry

So far we have discussed deterministic conditions, which are expressed
in terms of particular A,B,C. On the other hand, generic conditions are
expressed in terms of dimensions and rank and hold “with probability one”.
Formally, we say that the CPD of a generic I × J ×K tensor of rank R is
unique if

µ{(A,B,C) : the CPD of the tensor T = [A,B,C]R is not unique} = 0,

where µ denotes the Lebesgue measure on F(I+J+K)R.
It is known from algebraic geometry that if 2 ≤ I ≤ J ≤ K ≤ R, then

each of the following conditions implies that the CPD of a generic I ×J ×K
tensor of rank R is unique:

R ≤
I + J + 2K − 2−

√
(I − J)2 + 4K

2
(see [10, Proposition 1.6]), (11)

R ≤ IJK

I + J +K − 2
−K, 3 ≤ I, F = C (see [1, Corollary 6.2]), (12)

R ≤ 2α+β−2 ≤ IJ

4
(see [3, Theorem 1.1]), (13)

where α and β are maximal integers such that 2α ≤ I and 2β ≤ J . Bounds
(11)–(13) complement each other. If R = K, then bound (11) is equivalent
to

R ≤ (I − 1)(J − 1). (14)

If F = C, then (14) is not only sufficient but also necessary, i.e., the de-
composition is generically not unique for R > (I − 1)(J − 1) [3, Proposition
2.2].
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2.5. Generic versions of deterministic uniqueness conditions

Theorems 2–4, taken from [6, 9], give deterministic conditions under
which the CPD is unique and can be computed algebraically. Generic coun-
terparts of condition (6) and Kruskal’s bound (8), for the case where
max(I, J,K) ≤ R, are given by

C2
R ≤ C2

IC
2
J and R ≤ K (see [6]) and (15)

2R + 2 ≤ I + J +K (trivial), (16)

respectively. We are not aware of a generic counterpart of condition (9),
but, obviously, (9) may hold only if the number of columns of the matrix
Cm(A)� Cm(B) does not exceed the number of rows, i.e., if

Cm
R ≤ Cm

I C
m
J , where m = R−K + 2. (17)

It can be verified that the algebraic geometry based bound (11) significantly
improves bounds (15)–(17) if min(I, J) ≥ 3. For instance, if R = K, then
bound (11) is equivalent to (14), as has been mentioned earlier, while (15)
and (16) reduce to R ≤ (J− 1

2
)(I− 1

2
)/
√

2+1 and R ≤ I+J−1, respectively.

2.6. Our contribution and organization of the paper

In this paper we further extend results from [6–9], narrowing the gap
with what is known from algebraic geometry. Namely, we present new de-
terministic conditions that guarantee that the CPD is unique and can be
computed algebraically. Although we do not formally prove that generically
the condition coincides with (11), in our simulations we have been able to
find the factor matrices by algebraic means up to the latter bound (Examples
9 and 16). Moreover, the algebraic scheme is shown to outperform numerical
optimization (Example 10).

Key to our derivation is the following generalization of (2), (7), and (10):

Rm,l(T ) := Φm,l(A,B)Sm+l(C)T , m ≥ 1, l ≥ 0, (18)

in which the matrices Rm,l(T ), Φm,l(A,B), and Sm+l(C) are constructed
from the tensor T , the matrices A and B, and the matrix C, respectively.
The precise definitions of these matrices are deferred to Section 3, as they
require additional technical notations. In order to maintain the easy flow of
the text presentation, the proof of (18) is given in Appendix A. The following
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scheme illustrates the links and shows that, to obtain our new results, we use
(18) for m ≥ 2 and l ≥ 1:

(2) (18) (10) (7)

Theorem 1 new results Theorem 4 Theorem 3 Theorem 2

m=1,l=0

m≥2,l≥1

m≥2,l=0 m=2,l=0

(To clarify the link between (18) and (10), we need to mention that the ma-

trices R̃m,0(T ) and Cm(A)�Cm(B) in (10) are obtained by removing the zero
and redundant rows of the matrices Rm,0(T ) and Φm,0(A,B), respectively).

Our main results on uniqueness and algebraic algorithms for CPD are
formulated, explained, and illustrated in Sections 4 (Theorem 8) and 5 (The-
orems 11–15). Namely, in Sections 4 and 5 we generalize results mentioned
in Subsections 2.2 and 2.3, respectively. In particular, Theorem 8 in Section
4 is the special case of Theorem 15 in Section 5, where the third factor ma-
trix has full column rank, i.e. rC = K = R. For reasons of readability, in
our presentation we proceed from the easy Section 4 (rC = R) to the more
difficult Section 5 (rC ≤ R). The proofs related to Sections 4 and 5 are given
in Section 6 and Appendix B. In Section 6 we go from complicated to easy,
i.e., in Subsections 6.1–6.5 we first prove the results related to Section 5 and
then we derive Theorem 8 from Theorem 15 in Subsection 6.6. The paper is
concluded in Section 7.

Our presentation is in terms of real-valued tensors and real-valued factor
matrices for notational convenience. Complex variants are easily obtained
by taking into account complex conjugations.

3. Construction of the matrices Rm,l(T ), Φm,l(A,B), and Sm+l(C)

Let us first introduce some additional notation. Throughout the paper
P{l1,...,lk} denotes the set of all permutations of the set {l1, . . . , lk}. We fol-
low the convention that if some of the values l1, . . . , lk coincide, then the
cardinality of P{l1,...,lk} is counted taken into account multiplicities, so that
always card P{l1,...,lk} = k!. For instance, P{1,1,1} consists of six identical en-
tries (1, 1, 1). One can easily check that any integer from {1, . . . , Im+lJm+l}
can be uniquely represented as (̃i − 1)Jm+l + j̃ and that any integer from
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{1, . . . , Km+l} can be uniquely represented as k̃, where

ĩ := 1 +
m+l∑
p=1

(ip − 1)Im+l−p, i1, . . . , im+l ∈ {1, . . . , I}, (19)

j̃ := 1 +
m+l∑
p=1

(jp − 1)Jm+l−p, j1, . . . , jm+l ∈ {1, . . . , J}, (20)

k̃ := 1 +
m+l∑
p=1

(kp − 1)Km+l−p, k1, . . . , km+l ∈ {1, . . . , K}. (21)

These expressions are useful for switching between tensor, matrix and vector
representations. We can now define Rm,l(T ) as follows.

Definition 5. Let T ∈ RI×J×K. The Im+lJm+l-by-Km+l matrix whose ((̃i−
1)Jm+l + j̃, k̃)th entry is

1

m!(m+ l)!

∑
(s1,...,sm+l)∈
P{k1,...,km+l}

det

 ti1j1s1 . . . ti1jmsm
...

...
...

timj1s1 . . . timjmsm

 l∏
p=1

tim+pjm+psm+p (22)

is denoted by Rm,l(T ).

The matrices Φm,l(A,B) and Sm+l(C) will have M(m, l, R) columns,
where

M(m, l, R) := Cm
RC

m−1
m+l−1 + Cm+1

R Cm
m+l−1 + · · ·+ Cm+l

R Cm+l−1
m+l−1 .

The columns of these matrices are indexed by (m + l)-tuples (r1, . . . , rm+l)
such that

1 ≤ r1 ≤ r2 ≤ · · · ≤ rm+l ≤ R and

the set {r1, . . . , rm+l} contains at least m distinct elements.
(23)

It is easy to show that there indeed exist M(m, l, R) (m + l)-tuples which
satisfy condition (23). We follow the convention that the (m+l)-tuples in (23)
are ordered lexicographically: the (m + l)-tuple (r′1, . . . , r

′
m+l) is preceding

the (m + l)-tuple (r′′1 , . . . , r
′′
m+l) if and only if either r′1 < r′′1 or there exists

k ∈ {1, . . . ,m+ l − 1} such that r′1 = r′′1 , . . . r
′
k = r′′k and r′k+1 < r′′k+1.

We can now define Φm,l(A,B) and Sm+l(C) as follows.

10



Definition 6. Let A ∈ RI×R, B ∈ RJ×R. The Im+lJm+l-by-M(m, l, R)
matrix whose ((̃i− 1)Jm+l + j̃, (r1, . . . , rm+l))th entry is

1

(m!)2

∑
(s1,...,sm+l)∈
P{r1,...,rm+l}

det

ai1s1 . . . ai1sm
...

...
...

aims1 . . . aimsm

 · det

bj1s1 . . . bj1sm
...

...
...

bjms1 . . . bjmsm

 ·
aim+1sm+1 · · · aim+lsm+l

· bjm+1sm+1 · · · bjm+lsm+l

is denoted by Φm,l(A,B).

Definition 7. Let C ∈ RK×R. The Km+l-by-M(m, l, R) matrix whose
(r1, . . . , rm+l)th column is

1

(m+ l)!

∑
(s1,...,sm+l)∈ P{r1,...,rm+l}

cs1 ⊗ · · · ⊗ csm+l
(24)

is denoted by Sm+l(C).

4. At least one factor matrix of T has full column rank

In this section we generalize results from Subsection 2.2, i.e. we assume
that the matrix C has full column rank and without loss of generality rC =
K = R. The more general case rC = K ≤ R is handled in Theorem 15 in
Section 5. The goal of this section is to explain why and how the algebraic
algorithm works in the relatively easy but important case rC = K = R, so
that in turn Section 5 will be more accessible.

It can be shown that for l = 0, condition (25) in Theorem 8 below reduces
to condition (6). Thus, Theorem 2 is the special case of Theorem 8 corre-
sponding to l = 0. The simulations in Example 9 below indicate that it is
always possible to find some l ≥ 0 so that (25) also covers (5). Although there
is no general proof, this suggests that (5) can always be verified by checking
(25) for some l ≥ 0. This would imply that Algorithm 1 can compute the
CPD of a generic tensor up to the necessary condition R ≤ (I − 1)(J − 1).
Example 9 confirms this up to R ≤ 24.

Let Sm+l(RKm+l
) ⊂ RKm+l

denote the subspace spanned by all vectors
of the form x ⊗ · · · ⊗ x, where x ∈ RK is repeated m + l times. In other
words, Sm+l(RKm+l

) contains vectorized versions of all K×· · ·×K symmetric
tensors of order m+ l, yielding dimSm+l(RKm+l

) = Cm+l
K+m+l−1. We have the

following result.
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Theorem 8. Let T = (tijk)
I,J,K
i,j,k=1 = [A,B,C]R, rC = K = R, l ≥ 0, and let

the matrix R2,l(T ) be defined as in Definition 5. Assume that

dim
(

ker(R2,l(T ))
⋂

S2+l(RK2+l

)
)

= R. (25)

Then

(1) rT = R and the CPD of T is unique; and

(2) the CPD of T can be found algebraically.

Condition (25) in Theorem 8 means that the intersection of ker(R2,l(T ))

and S2+l(RK2+l
) has the minimal possible dimension. Indeed, by (18), Def-

inition 7, and the assumption rC = K = R, we have that the intersection
contains at least R linearly independent vectors:

ker(R2,l(T ))
⋂

S2+l(RK2+l

) = ker(Φ2,l(A,B)S2+l(C)T )
⋂

S2+l(RK2+l

) ⊇

ker(S2+l(C)T )
⋂

S2+l(RK2+l

) 3 x⊗ · · · ⊗ x, x is a column of C−T .

The procedure that constitutes the proof of Theorem 8(2) is summa-
rized as Algorithm 1. Let us comment on the different steps. From Defi-
nition 5 it follows that the rows of the matrix R2,l(T ) are vectorized ver-
sions of K × · · · × K symmetric tensors of order 2 + l. Consistently, in
step 2, we find the vectors w1, . . . ,wR that form a basis of the orthogonal
complement to range(R2,l(T )T ) in the space S2+l(RR2+l

). In other words,

span{w1, . . . ,wR} = ker(R2,l(T ))
⋂
S2+l(RK2+l

). If this subspace has min-
imal dimension, then its structure provides a key to the estimation of C.
Indeed, we have already explained that the minimal subspace is given by

ker(R2,l(T ))
⋂

S2+l(RR2+l

) = range

C−T � · · · �C−T︸ ︷︷ ︸
2+l

 . (26)

In steps 4–5 we recover C−T from W using (26) as follows. By (26), there
exists a unique nonsingular R×R matrix M such that

W =
(
C−T � · · · �C−T

)
MT . (27)

In step 4, we construct the tensor W whose vectorized frontal slices are
the vectors w1, . . . ,wR. Reshaping both sides of (27) we obtain the CPD
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W = [C−T ,C−T � · · · �C−T ,M]R. In step 5, we find the CPD by means of
a GEVD using the fact that all factor matrices of W have full column rank,
i.e., we have reduced the problem to a situation that is covered by the basic
Theorem 1. Finally, in step 6 we recover A and B from R1,0(T )C−T = A�B
using the fact that the columns of A�B are vectorized rank-1 matrices.

Algorithm 1 (Computation of CPD, K = R (see Theorem 8(ii)))

Input: T ∈ RI×J×R and l ≥ 0 with the property that there exist A ∈ RI×R,
B ∈ RJ×R, and C ∈ RR×R such that R ≥ 2, T = [A,B,C]R, rC = R,
and (25) holds.

Output: Matrices A ∈ RI×R, B ∈ RJ×R and C ∈ RR×R such that T =
[A,B,C]R

1: Construct the I2+lJ2+l ×R2+l matrix R2,l(T ) by Definition 5.

2: Find w1, . . . ,wR that form a basis of ker(R2,l(T ))
⋂
S2+l(RR2+l

)
3: W← [w1 . . . wR]
4: Reshape the R2+l ×R matrix W into an R×R1+l ×R tensor W
5: Compute the CPD
W = [C−T ,C−T � · · · �C−T ,M]R (M is a by-product) (GEVD)

6: Find the columns of A and B from the equation A�B = R1,0(T )C−T

The following example demonstrates that the CPD can effectively be
computed by Algorithm 1 for R ≤ min((I − 1)(J − 1), 24).

Example 9. We consider I × J × (I − 1)(J − 1) tensors generated as a sum
of R = (I − 1)(J − 1) random rank-1 tensors. More precisely, the tensors
are generated by a PD [A,B,C]R in which the entries of A, B, and C are
independently drawn from the standard normal distribution N(0, 1). We try
different values l = 0, 1, . . . , until condition (25) is met (assuming that this
will be the case for some l ≥ 0). We test all cases I×J × (I−1)(J −1) such
that I ≥ 3, J ≥ 3, and (I − 1)(J − 1) ≤ 24. The results are shown in Table
1. In all cases (25) indeed holds for some l ≤ 2; the actual value of l does
not depend on the random trial, i.e., it is constant for tensors of the same
dimensions and rank. By comparison, the algebraic algorithm from [6, 9] is
limited to the cases where l = 0, which is not always sufficient to reach the
bound R ≤ (I − 1)(J − 1). In our implementation, we retrieved the vectors
w1, . . . ,wR from the R-dimensional null space of a C2+l

R+l+1×C
2+l
R+l+1 positive

semi-definite matrix Q. The storage of Q is the main bottleneck in our
implementation. To give some insight in the complexity of the algorithm we
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included the computational time (averaged over 100 random tensors) and the
size of Q in the table. We implemented Algorithm 1 in MATLAB 2014a (the
implementation was not optimized), and we did experiments on a computer
with Intel Core 2 Quad CPUQ9650 3.00 GHz×4 and 8GB memory running
Ubuntu 12.04.5 LTS.

Table 1: Values of parameter l in Theorem 8 and computational cost of Algorithm 1 for
I ×J × (I − 1)(J − 1) tensors of rank R = (I − 1)(J − 1) ≤ 24 (see Example 9 for details).
Note that the CPD is not generically unique if R > (I − 1)(J − 1) (see Subsection 2.4).
In all cases a value of l is found such that Algorithm 1 can be used. The rows with l ≥ 1
are new results.

dimensions of T l C2+l
R+l+1 computational time (sec)

3× 3× 4 0 10 0.02
3× 4× 6 0 21 0.035
3× 5× 8 0 36 0.051
3× 6× 10 0 55 0.074
3× 7× 12 1 364 0.403
3× 8× 14 1 560 0.796
3× 9× 16 1 816 1.498
3× 10× 18 1 1140 2.617
3× 11× 20 1 1540 5.032
3× 12× 22 1 2024 7.089
3× 13× 24 1 2600 11.084
4× 4× 9 0 45 0.06
4× 5× 12 1 364 0.401
4× 6× 15 1 680 1.096
4× 7× 18 2 5985 30.941
4× 8× 21 2 10626 93.03
4× 9× 24 2 17550 360.279
5× 5× 16 1 816 1.473
5× 6× 20 2 8855 64.116
5× 7× 24 2 17550 351.968

The next example illustrates that Algorithm 1 may outperform optimiza-
tion algorithms.
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Example 10. Let T = [A,B,C]12 ∈ R3×7×12, with

A = hankel((1, 2, 3), (3, 5, 7, 0, 6, 6, 7, 9, 0, 8, 2, 1)T ),

B = [I7 hankel((1, 2, 3, 4, 5, 6, 7), (7, 0, 1, 2, 3)T )], C = I12,

where hankel(c, rT ) denotes a Hankel matrix whose first column is c and
whose last row is rT . It turns out that (25) holds for l = 1. It takes less
than 1 second to compute the CPD of T by Algorithm 1. On the other
hand, it proves to be very difficult to find the CPD by means of numeri-
cal optimization. Among other optimization-based algorithms we tested the
Gauss-Newton dogleg trust region method [23]. The algorithm was restarted
500 times from various random initial positions. In only 4 cases the residual
‖T −[Aest,Best,Cest]12‖/‖T ‖ after 10000 iterations was of the order of 0.0001
and in all cases the estimated factor matrices were far from the true matrices.
Other optimization-based algorithms did not yield better results.

5. None of the factor matrices is required to have full column rank

In this subsection we consider the PD T = (tijk)
I,J,K
i,j,k=1 = [A,B,C]R and

extend results of the previous subsection to the case rC = K ≤ R.

5.1. Results on uniqueness of one factor matrix and overall CPD

We have two results on uniqueness of the third factor matrix.

Theorem 11. Let T = (tijk)
I,J,K
i,j,k=1 = [A,B,C]R, rC = K ≤ R, m =

R − K + 2, and l1, . . . , lm be nonnegative integers. Let also the matrices
Φ1,l1(A,B), . . . ,Φm,lm(A,B) and S1+l1(C), . . . , Sm+lm(C) be defined as in
Definition 6 and Definition 7, respectively. Let U1, . . . ,Um be matrices such
that their columns form bases for range(S1+l1(C)T ), . . . , range(Sm+lm(C)T ),
respectively. Assume that

(i) kC ≥ 1; and

(ii) A�B has full column rank; and

(iii) Φ1,l1(A,B)U1, . . . , Φm,lm(A,B)Um have full column rank.

Then rT = R and the third factor matrix of T is unique.

According to the following theorem the set of matrices in (iii) in Theorem
11 can be reduced to a single matrix if R ≤ min(kA, kB) +K − 1.
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Theorem 12. Let T = (tijk)
I,J,K
i,j,k=1 = [A,B,C]R, rC = K ≤ R, m = R −

K + 2, and l ≥ 0. Let also the matrices Φm,l(A,B) and Sm+l(C) be defined
as in Definition 6 and Definition 7, respectively. Let Um be a matrix such
that its columns form a basis for range(Sm+l(C)T ). Assume that

(i) kC ≥ 1; and

(ii) A�B has full column rank; and

(iii) min(kA, kB) ≥ m− 1; and

(iv) the matrix Φm,l(A,B)Um has full column rank.

Then rT = R and the third factor matrix of T is unique.

The assumptions in Theorems 11 and 12 complement each other as fol-
lows: in Theorem 11 we do not require that the condition min(kA, kB) ≥ m−1
holds while in Theorem 12 we do not require that the matrices Φk,lk(A,B)Uk,
1 ≤ k ≤ m− 1 have full column rank.

It was shown in [8, Proposition 1.20] that if T has two PDs T =[A,B,C]R
and T = [Ā, B̄,C]R that share the factor matrix C and if the condition

max(min(kA, kB − 1), min(kA − 1, kB)) + kC ≥ R + 1 (28)

holds, then both PDs consist of the same rank-one terms. Thus, combining
Theorems 11–12 with [8, Proposition 1.20] we directly obtain the following
result on uniqueness of the overall CPD.

Theorem 13. Let the assumptions in Theorem 11 or Theorem 12 hold and
let condition (28) be satisfied. Then rT = R and the CPD of tensor T is
unique.

5.2. Algebraic algorithm for CPD

We have the following result on algebraic computation.

Theorem 14. Let T = (tijk)
I,J,K
i,j,k=1 = [A,B,C]R, rC = K ≤ R, m = R −

K + 2, and l ≥ 0. Let also the matrices Φm,l(A,B) and Sm+l(C) be defined
as in Definition 6 and Definition 7, respectively. Let Um be a matrix such
that its columns form a basis for range(Sm+l(C)T ). Assume that

(i) kC = K; and

16



(ii) A�B has full column rank; and

(iii) the matrix Φm,l(A,B)Um has full column rank.

Then rT = R, the CPD of T is unique and can be found algebraically.

The assumptions in Theorem 14 are more restrictive than the assumptions
in Theorem 13 as will be clear from Section 6. Hence, the statement on
rank and uniqueness in Theorem 14 follows from Theorem 13. To prove
the statement on algebraic computation we will explain in Section 6 that
Theorem 14 can be reformulated as follows (see Section 4 for the definition
of Sm+l(RKm+l

)).

Theorem 15. Let T = (tijk)
I,J,K
i,j,k=1 = [A,B,C]R, rC = K ≤ R, m = R −

K + 2, and l ≥ 0. Let also the matrix Rm,l(T ) be defined as in Definition 5.
Assume that

(i) kC = K; and

(ii) A�B has full column rank; and

(iii) dim
(

ker(Rm,l(T ))
⋂
Sm+l(RKm+l

)
)

= CK−1
R .

Then rT = R, the CPD of T is unique and can be found algebraically.

Note that if kC = K, then by (18) and Lemma 22 (i) below,

dim
(

ker(Rm,l(T ))
⋂

Sm+l(RKm+l

)
)

=

dim
(

ker(Φm,l(A,B)Sm+l(C)T )
⋂

Sm+l(RKm+l

)
)
≥

dim
(

ker(Sm+l(C)T )
⋂

Sm+l(RKm+l

)
)

= CK−1
R .

(29)

Thus, assumption (iii) of Theorem 15 means that we require the subspace
to have the minimal possible dimension. That is, we suppose that the factor
matrices A, B, and C are such that the multiplication by Φm,l(A,B) in

(18) does not increase the overlap between ker(Sm+l(C)T ) and Sm+l(RKm+l
).

In other words, we suppose that the multiplication by Φm,l(A,B) does not
cause additional vectorized K × · · · × K symmetric tensors of order m + l
to be part of the null space of Rm,l(T ). This is key to the derivation. By
the assumption, as we will explain further in this section, the only vectorized
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symmetric tensors in the null space of Rm,l(T ) admit a direct connection
with the factor matrix C, from which C may be retrieved. On the other
hand, the null space of Rm,l(T ) can obviously be computed from the given
tensor T .

The algebraic procedure based on Theorem 15 consists of three phases
and is summarized in Algorithm 2. In the first phase we find the K ×CK−1

R

matrix F such that

every column of F is orthogonal to exactly K − 1 columns of C and (30)

any vector that is orthogonal to exactly K − 1 columns of C

is proportional to a column of F.
(31)

Since kC = K any K − 1 columns of C define a unique column of F (up to

Algorithm 2 (Computation of CPD, K ≤ R (see Theorem 15))

Input: T ∈ RI×J×K and l ≥ 0 with the property that there exist A ∈ RI×R,
B ∈ RJ×R, and C ∈ RK×R such that T = [A,B,C]R and assumptions
(i)–(iii) in Theorem 15 hold.

Output: Matrices A ∈ RI×R, B ∈ RJ×R and C ∈ RR×R such that T =
[A,B,C]R

Phase 1: Find the matrix F ∈ RK×CK−1
R such that F coincides with B(C)

up to (unknown) column permutation and scaling

1: Construct the Im+lJm+l ×Km+l matrix Rm,l(T ) by Definition 5.

2: Find w1, . . . ,wCK−1
R

that form a basis of ker(Rm,l(T ))
⋂
Sm+l(RKm+l

)

3: W← [w1 . . . wCK−1
R

]

4: Reshape the Km+l×CK−1
R matrix W into an K×Km+l−1×CK−1

R tensor
W

5: Compute the CPD
W = [F,F�· · ·�F,M]CK−1

R
(M is a by-product) (GEVD)

Phase 2 and Phase 3 (can be taken verbatim from [9, Algorithms
1,2])

scaling). Thus, (30)–(31) define the matrix F up to column permutation and
scaling. A special representation of F (called B(C)) was studied in [9]. It
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was shown in [9] that the matrix F can be considered as an unconventional
variant of the inverse of C:

every column of C is orthogonal to exactly CK−2
R−1 columns of F, (32)

any vector that is orthogonal to exactly CK−2
R−1 columns of F

is proportional to a column of C.
(33)

(Note that, since kC = K, multiplication by the Moore–Penrose pseudo-
inverse C† yields CC† = IK . In contrast, for F we consider the product FC.)
It can be shown (see Lemma 23) that under the assumptions in Theorems
14–15:

kF ≥ 2, the matrix F(m+l−1) has full column rank and (34)

ker(Rm,l(T ))
⋂

Sm+l(RKm+l

) = range
(
F(m+l)

)
, (35)

where
F(m+l−1) := F� · · · � F︸ ︷︷ ︸

m+l−1

, F(m+l) := F� · · · � F︸ ︷︷ ︸
m+l

. (36)

If K = R (as in Subsection 4), then m = R − K + 2 = 2, (35) coincides
with (26) (F coincides with C−T up to column permutation and scaling),
and the first phase of Algorithm 2 coincides with steps 1–5 of Algorithm
1. For K < R (implying m > 2) we work as follows. From Definition 5
it follows that the rows of the matrix Rm,l(T ) are vectorized versions of
K × · · · × K symmetric tensors of order m + l. Thus, in step 2, we find
the vectors w1, . . . ,wCK−1

R
that form a basis of the orthogonal complement

to range(Rm,l(T )T ) in the space Sm+l(RKm+l
) (the existence of such a basis

follows from assumption (iii) of Theorem 15). By (35), there exists a unique
nonsingular CK−1

R × CK−1
R matrix M such that

W = F(m+l)MT . (37)

In step 4, we construct the tensor W whose vectorized frontal slices are the
vectors w1, . . . ,wCK−1

R
. Reshaping both sides of (37) we obtain the CPD

W = [F,F(m+l−1),M]R in which the matrices F(m+l−1) and M have full
column rank and kF ≥ 2. By Theorem 1, the CPD of W can be computed
by means of GEVD.

In the second and third phase we use F to find A, B, C. There are two
ways to do this. The first way is to find C from F by (32)–(33) and then to
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recover A and B from T and C. The second way is to find A and B from T
and F and then to recover C. The second and third phase were thoroughly
discussed in [9] and can be taken verbatim from [9, Algorithms 1 and 2].

Example 16. Table 2 contains some examples of CPDs which can be com-
puted by Algorithm 2 and cannot be computed by algorithms from [9]. The
tensors were generated by a PD [A,B,C]R in which the entries of A, B, and
C are independently drawn from the standard normal distribution N(0, 1).
We try different values l = 0, 1, . . . , until condition (iii) in Theorem 15 is
met (assuming that this will be the case for some l ≥ 0). In our implemen-
tation, we retrieved the vectors w1, . . . ,wCK−1

R
from the CK−1

R -dimensional

null space of a Cm+l
R+l+1×C

m+l
R+l+1 positive semi-definite matrix Q. The storage

of Q is the main bottleneck in our implementation. To give some insight in
the complexity of the algorithm we included the computational time (averaged
over 100 random tensors) and the size of Q in the table.

Uniqueness of the CPDs follows from Theorem 15. By comparison, the
results of [8] guarantee uniqueness only for rows 1–4 (see [8, Table 3.1]).

Table 2: Upper bounds on R under which the CPD of a generic I × J ×K tensor can be
computed by Algorithm 2 (see Example 16 details).

dimensions of T R m l Cm+l
R+l+1 computational time (sec)

4× 5× 6 7 3 1 126 0.182
5× 7× 7 9 4 1 462 1.598
6× 9× 8 11 5 1 1716 28.616
7× 7× 7 10 5 1 924 8.192
4× 6× 8 9 3 1 330 0.63
4× 7× 10 11 3 1 715 2.352
5× 6× 6 8 4 2 462 1.256
5× 7× 8 10 4 2 1716 14.552

6. Proofs related to Sections 4 and 5

In this section we 1) prove Theorems 11 and 12; 2) show that the assump-
tions in Theorem 14 are more restrictive than the assumptions in Theorem
13, which implies the statement on uniqueness in Theorem 14; 3) prove that
assumption (iii) in Theorem 14 is equivalent to assumption (iii) in Theorem
15; 4) prove statements (34)–(35); 5) prove Theorem 8.
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6.1. Proofs of Theorems 11 and 12

In the sequel, ω(λ1, . . . , λR) denotes the number of nonzero entries of
[λ1 . . . λR]T . The following condition (Wm) was introduced in [7, 8] in
terms of m-th compound matrices. In this paper we will use the following
(equivalent) definition of (Wm) .

Definition 17. We say that condition (Wm) holds for the triplet of matrices
(A,B,C) ∈ RI×R × RJ×R × RK×R if ω(λ1, . . . , λR) ≤ m− 1 whenever

rADiag(λ1,...,λR)BT ≤ m− 1 and [λ1 . . . λR]T ∈ range(CT ). (38)

Since the rank of the product ADiag(λ1, . . . , λR)BT does not exceed the
rank of the factors and rDiag(λ1,...,λR) = ω(λ1, . . . , λR), we always have the
implication

ω(λ1, . . . , λR) ≤ m− 1 ⇒ rADiag(λ1,...,λR)BT ≤ m− 1. (39)

By Definition 17, condition (Wm) holds for the triplet (A,B,C) if and only if
the opposite implication in (39) holds for all [λ1 . . . λR] ∈ range(CT ) ⊂ RR.

The following results on rank and uniqueness of one factor matrix have
been obtained in [7].

Proposition 18. (see [7, Proposition 4.9]) Let T = (tijk)
I,J,K
i,j,k=1 = [A,B,C]R,

rC = K ≤ R. Assume that

(i) kC ≥ 1;

(ii) A�B has full column rank;

(iii) conditions (Wm), . . . , (W1) hold for the triplet of matrices (A,B,C).

Then rT = R and the third factor matrix of T is unique.

Proposition 19. (see [7, Corollary 4.10]) Let T = (tijk)
I,J,K
i,j,k=1 = [A,B,C]R,

rC = K ≤ R. Assume that

(i) kC ≥ 1;

(ii) A�B has full column rank;

(iii) min(kA, kB) ≥ m− 1;
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(iv) condition (Wm) holds for the triplet of matrices (A,B,C).

Then rT = R and the third factor matrix of T is unique.

One can easily notice the similarity between the assumptions in Theorems
11–12 and the assumptions in Propositions 18–19. The proofs of Theorems
11–12 follow from Propositions 18–19 and the following lemma.

Lemma 20. Let A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R, rC = K ≤ R,
k ≤ m = R −K + 2, and let l be a nonnegative integer. Let also the matrix
Φk,l(A,B) be defined as in Definition 6, the matrix Sk+l(C) be defined as
in Definition 7, and U be a matrix such that its columns form a basis for
range(Sk+l(C)T ). Assume that

the matrix Φk,l(A,B)U has full column rank. (40)

Then condition (Wk) holds for the triplet of matrices (A,B,C).

Proof. Let (38) hold for m = k. We need to show that ω(λ1, . . . , λR) ≤ k−1.
Since [λ1 . . . λR]T ∈ range(CT ) and rC = K, there exists a unique vector
x ∈ RK such that [λ1 . . . λR] = xTC. Hence, we need to show that x is
orthogonal to at least R− k + 1 columns of C.

By (38), there exist Ã ∈ RI×R and B̃ ∈ RJ×R such that

ADiag(λ1, . . . , λR)BT = ÃB̃T (41)

and max(rÃ, rB̃) ≤ k − 1. Since abTλ = a ⊗ b ⊗ λ, we can consider (41) as
an equality of two PDs of an I × J × 1 tensor

R∑
r=1

ar ⊗ br ⊗ λr =
R∑
r=1

ãr ⊗ b̃r ⊗ 1.

Hence, by (18),

Φk,l(A,B)Sk+l(x
TC)T = Φk,l(A,B)Sk+l([λ1 . . . λR])T =

Φk,l(Ã, B̃)Sk+l([1 . . . 1])T .
(42)

Since max(rÃ, rB̃) ≤ k−1, it follows from Definition 6 that Φk,l(Ã, B̃) is the
zero matrix (cf. explanation at the end of Section Appendix A). Besides, it
easily follows from Definition 7 that

Sk+l(C)T (x⊗ · · · ⊗ x︸ ︷︷ ︸
k+l

) = Sk+l(x
TC)T .
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Thus, (42) takes the form

Φk,l(A,B)Sk+l(C)T (x⊗ · · · ⊗ x) = Φk,l(A,B)Sk+l(x
TC)T = 0.

Hence, by (40), the vector x⊗ · · · ⊗ x is orthogonal to the range of Sk+l(C).
In particular,

(x⊗ · · · ⊗ x)T
∑

(s1,...,sk+l)∈
P{r1,...,rk,...,rk}

cs1 ⊗ · · · ⊗ csm+l
=

(xTcr1) · · · (xTcrk−1
)(xTcrk)l+1 = 0

for all (k + l)-tuples (r1, . . . , rk, . . . , rk) such that 1 ≤ r1 < · · · < rk ≤ R,
yielding that x is orthogonal to at least R− k + 1 columns of C.

6.2. Proof of statement on rank and uniqueness in Theorem 14
In Lemma 21 below we prove that min(kA, kB) ≥ m. It is clear that con-

dition min(kA, kB) ≥ m and assumption (i) in Theorem 14 imply assumption
(iii) in Theorem 12 and condition (28). Hence, by Theorem 13, rT = R and
the CPD of tensor T is unique.

Lemma 21. Let assumptions (i) and (iii) in Theorem 14 hold. Then
min(kA, kB) ≥ m.

Proof. Assume to the contrary that kA < m or kB < m. W.l.o.g. we
assume that the first m columns of A are linearly dependent. We will get
a contradiction with assumption (iii) by constructing a nonzero vector f ∈
range(Sm+l(C)T ) such that Φm,l(A,B)f = 0. Since kC = K, there exists
x ∈ RK such that

xTc1 6= 0, . . . ,xTcm 6= 0, xTcm+1 = · · · = xTcR = 0. (43)

We set f = Sm+l(C)T (x⊗ · · · ⊗ x︸ ︷︷ ︸
m+l

) and we index the entries of f by (m+ l)-

tuples as in (23). One can easily show that f has entries (xTcr1) . . . (x
Tcrm+l

).
Hence, by (43),

(xTcr1) . . . (x
Tcrm+l

) = 0, if {r1, . . . , rm+l} \ {1, . . . ,m} 6= ∅,
(xTcr1) . . . (x

Tcrm+l
) 6= 0, if {r1, . . . , rm+l} \ {1, . . . ,m} = ∅.

On the other hand, by Definition 6 and the assumption of linear dependence
of the vectors a1, . . . , am, the columns of Φm,l(A,B) indexed by the (m +
l)-tuples (23) such that {r1, . . . , rm+l} \ {1, . . . ,m} = ∅ are zero. Hence,
Φm,l(A,B)f = 0.
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6.3. Properties of the matrix Sm+l(C)T

The following auxiliary Lemma will be used in Subsections 6.4 and 6.5.
Since the proof is rather long and technical, it is included in Appendix B.

Lemma 22. Let C ∈ RK×R, kC = K, m = R −K + 2, l ≥ 0, let F satisfy
(30)–(31), and let F(m+l) be defined by (36). Then

(i) dim
(

ker(Sm+l(C)T )
⋂
Sm+l(RKm+l

)
)

= CK−1
R ;

(ii) ker(Sm+l(C)T )
⋂
Sm+l(RKm+l

) = range
(
F(m+l)

)
;

(iii) range(Sm+l(C)T ) = Sm+l(C)T (Sm+l(RKm+l
));

(iv) dim (range(Sm+l(C)T )) = Cm+l
K+m+l−1 − C

K−1
R .

6.4. Proof of equivalence of Theorems 14 and 15
We prove that assumption (iii) in Theorem 14 is equivalent to assumption

(iii) in Theorem 15. By (29), it is sufficient to prove that

dim
(

ker(Rm,l(T ))
⋂

Sm+l(RKm+l

)
)
≥ CK−1

R + 1⇔

the matrix Φm,l(A,B)Um does not have full column rank.
(44)

To prove (44) we will use the following result for X := Φm,l(A,B), Y :=

Sm+l(C)T , and E := Sm+l(RKm+l
): if E is a subspace and X and Y are

matrices such that XY is defined, then

dim (ker(XY) ∩ E) ≥ dim (ker(Y) ∩ E) + 1 ⇔
there exists a nonzero vector f ∈ E \ ker(Y) such that XYf = 0.

(45)

We have

dim
(

ker(Rm,l(T ))
⋂

Sm+l(RKm+l

)
)
≥ CK−1

R + 1
(18)⇐⇒ dim

(
ker(Φm,l(A,B)Sm+l(C)T )

⋂
Sm+l(RKm+l

)
)
≥ CK−1

R + 1 =

dim
(

ker(Sm+l(C)T )
⋂

Sm+l(RKm+l

)
)

+ 1

 (45)⇐⇒

{
there exists a nonzero vector f ∈ Sm+l(RKm+l

) \ ker(Sm+l(C)T )

such that Φm,l(A,B)Sm+l(C)T f = 0

}
⇐⇒

the matrix Φm,l(A,B)Um does not have full column rank,

where the equality in the second statement holds by Lemma 22 (i) and the
last equivalence follows from range(Um) = range(Sm+l(C)T ).
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6.5. Proof of the statement on algebraic computation in Theorem 14

The overall procedure that constitutes the proof of the statement on alge-
braic computation is summarized in Algorithm 2 and explained in Subsection
5.2. In this subsection we prove statements (34)–(35).

Lemma 23. Let assumptions (i) and (iii) in Theorem 15 hold and let F
satisfy (30)–(31). Then (34)–(35) hold.

Proof. The implication kC = K ⇒ (34) was proved in [9, Proposition 1.10].
In Subsection 6.4 we proved that assumption (iii) in Theorem 14 holds. By
(18), Theorem 14 (iii), and Lemma 22 we have

ker(Rm,l(T ))
⋂

Sm+l(RKm+l

) =

ker(Φm,l(A,B)Sm+l(C)T )
⋂

Sm+l(RKm+l

) =

ker(Sm+l(C)T )
⋂

Sm+l(RKm+l

) = range
(
F(m+l)

)
,

which completes the proof of (35).

6.6. Proof of Theorem 8

We check the assumptions in Theorem 15 for m = 2. Assumption
(i) holds since rC = K = R implies kC = K and assumption (iii) coin-
cides with (25). To prove assumption (ii) we assume to the contrary that
(A � B)[λ1 . . . λR]T = 0. Then rADiag(λ1,...,λR)BT ) = 0. In Subsection 6.4
we explained that assumption (iii) in Theorem 14 also holds. Hence, by
Lemma 20, condition (W2) holds for the triplet (A,B,C). Hence, at most
one of the values λ1, . . . , λR is not zero. If such a λr exists, then ar = 0 or
br = 0 yielding that min(kA, kB) = 0. On the other hand, by Lemma 21,
min(kA, kB) ≥ 2, which is a contradiction. Hence, λ1 = · · · = λR = 0.

7. Discussion

A number of conditions (called (Km), (Cm), (Um), and (Wm)) for unique-
ness of CPD of a specific tensor have been proposed in [7, 8]. It was shown
that each subsequent condition in (Km), . . . , (Wm) is more general than the
preceding one, but harder to use. Verification of conditions (Km) and (Cm)
reduces to the computation of matrix rank. In contrast, conditions (Um) and
(Wm) are not easy to check for a specific tensor but hold automatically for
generic tensors of certain dimensions and rank [10].
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In this paper we have proposed new sufficient conditions for uniqueness
that can be verified by the computation of matrix rank, are more relaxed than
(Km) and (Cm), but that cannot be more relaxed than (Wm). Nevertheless,
examples illustrate that in many cases the new conditions may be considered
as an “easy to check analogue” of (U2) (⇔ (W2)) and (Wm).

We have also proposed an algorithm to compute the factor matrices.
The algorithm relies only on standard linear algebra, and has as input the
tensor T , the tensor rank R, and a nonnegative integer parameter l. The
algorithm basically reduces the problem to the construction of a Cm+l

K+m+l−1×
Cm+l
K+m+l−1 matrix Q, the computation of its CK−1

R -dimensional null space,

and the GEVD of a CK−1
R × CK−1

R matrix pencil, where m = R − K + 2.
For l = 0, Algorithms 1 and 2 coincide with algorithms from [6] and [9],
respectively. Our derivation is different from the derivations in [6] and [9]
but has the same structure: from the CPD T = [A,B,C]R we derive a set of
equations that depend only on C; we find C from the new system by means
of GEVD, and then recover A and B from T and C.

It is interesting to note that the new algorithm (with l = 1) computes
the CPD of a generic 3× 7× 12 tensor of rank 12 in less than 1 second while
optimization-based algorithms (we checked a Gauss-Newton dogleg trust re-
gion method) fail to find the solution in a reasonable amount of time.

We have demonstrated that our algorithm (with l ≤ 2) can find the CPD
of a generic I×J×K tensor of rank R if R ≤ K ≤ (I−1)(J−1) and R ≤ 24.
We conjecture that the algorithm (possibly with l ≥ 3) can also find the CPD
for R ≥ 25. (It is known that the CPD of a generic tensor is not unique if
R > (I − 1)(J − 1)). In that case the Cm+l

K+m+l−1 × Cm+l
K+m+l−1 matrix Q

becomes large and the computation, as it is proposed in the paper, becomes
infeasible. Since the null space of Q is just R-dimensional the approach may
possibly be scaled by using iterative methods to compute the null space.

Appendix A. Derivation of identity (18)

Let T = (tijk)
I,J,K
i,j,k=1 = [A,B,C]R. In this section we establish a link

between the matrix Rm,l(T ) defined in subsection 2 and the factor matrices
A, B, and C. We show that the matrix Rm,l(T ) is obtained from T by
taking the following steps: 1) taking the (m + l)th Kronecker power of T ;
2) making two partial skew-symmetrizations and one partial symmetrization
of the result; 3) reshaping the result into an Im+lJm+l ×Km+l matrix. The
main identity is obtained by applying steps 1)–3) to the both sides of (1).
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Appendix A.1. Step 1: Kronecker product power of T
The Kronecker product square of T , T (2) := T ⊗T , is an I×J×K block-

tensor whose (i, j, k)th block is the I × J × K tensor tijkT . Equivalently,
T (2) is an I2 × J2 × K2 tensor whose (̃i, j̃, k̃) := (i1 − 1)I + i2, (j1 − 1)J +
j2, (k1 − 1)K + k2)th entry is

t
(2)

ĩj̃k̃
= ti1j1k1ti2j2k2 .

Similarly, the (l +m)-th Kronecker product power of T ,

T (m+l) := T ⊗ · · · ⊗ T︸ ︷︷ ︸
m+l

,

is an Im+l × Jm+l ×Km+l tensor whose (̃i, j̃, k̃)th entry is

t
(m+l)

ĩj̃k̃
= ti1j1k1ti2j2k2 · · · tim+ljm+lkm+l

, (A.1)

where ĩ ,j̃, and k̃ are defined in (19), (20), and (21), respectively. One can

easily check that if T =
R∑
r=1

ar ⊗ br ⊗ cr, then

T (m+l) =
R∑

r1,...,rm+l=1

(ar1⊗· · ·⊗arm+l
) ⊗ (br1⊗· · ·⊗brm+l

) ⊗ (cr1⊗· · ·⊗crm+l
).

Appendix A.2. Step 2: two partial skew-symmetrizations and one partial
symmetrization of a reshaped version of T (m+l)

Recall that a higher-order tensor is said to be symmetric (resp. skew-
symmetric) with respect to a given group of indices or partially symmetric
(resp. skew-symmetric) if its coordinates do not alter by an arbitrary per-
mutation of these indices (resp. if the sign changes with every interchange
of two arbitrary indices in the group).

Let us recall the operations of (complete) symmetrization and skew-
symmetrization. With a general kth-order L × · · · × L tensor N one can
associate its symmetric part Sk(N ) and skew-symmetric part Λk(N ) as fol-
lows. By construction, Sk(N ) is a tensor whose entry with indices l1, . . . , lk
is equal to

1

k!

∑
(p1,...,pk)∈P{l1,...,lk}

np1...pk . (A.2)
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That is, to get Sk(N ) we should take the average of k! tensors obtained from
N by all possible permutations of the indices. Similarly, Λk(N ) is a tensor
whose entry with indices l1, . . . , lk is equal to

1
k!

∑
(p1,...,pk)∈P{l1,...,lk}

sgn(p1, . . . , pk)np1...pk , if l1, . . . , lk are distinct,

0, otherwise,
(A.3)

where

sgn(p1, . . . , pk) denotes the signature of the permutation (p1, . . . , pk).

The definition of Λk(N ) differs from that of Sk(N ) in that the signatures
of the permutations are taken into account and that the entries of Λk(N )
with repeated indices are necessarily zeros. One can easily check that if
N = d1 ⊗ . . . ⊗ dk (that is, N is the kth order rank-1 tensor), then

Sk(d1 ⊗ . . . ⊗ dk) =
1

k!

∑
(p1,...,pk)∈P{1,...,k}

dp1 ⊗ . . . ⊗ dpk , (A.4)

Λk(d1 ⊗ . . . ⊗ dk) =
1

k!

∑
(p1,...,pk)∈P{1,...,k}

σ(p1, . . . , pk)dp1 ⊗ . . . ⊗ dpk . (A.5)

Partial (skew-)symmetrization is a (skew-)symmetrization with respect to
a given group of indices. Instead of presenting the formal definitions we
illustrate both notions for an M ×L×L tensor N = (nml1l2)

M,L,L
m,l1,l2=1. Partial

symmetrization with respect to the group of indices {2, 3} maps the tensor N
to a tensor that we denote by (IM ⊗S2)N , whose entry with indices (m, l1, l2)
is equal to ∑

(p1,p2)∈P{l1,l2}

nml1l2 = nml1l2 + nml2l1 .

Similarly, by (IM ⊗ Λ2)N we denote the tensor whose entry with indices
(m, l1, l2) is equal to

∑
(p1,p2)∈P{l1,l2}

sgn(p1, p2)nml1l2 = nml1l2 − nml2l1 , if l1 6= l2,

0, if l1 = l2.

If N = d1 ⊗ d2 ⊗ d3 ∈ RM×L×L, then

(IM ⊗ S2)(d1 ⊗ d2 ⊗ d3) = d1 ⊗ S2(d2 ⊗ d3) = d1 ⊗ d2 ⊗ d3 + d1 ⊗ d3 ⊗ d2,
(A.6)
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(IM ⊗ Λ2)(d1 ⊗ d2 ⊗ d3) = d1 ⊗ Λ2(d2 ⊗ d3) = d1 ⊗ d2 ⊗ d3 − d1 ⊗ d3 ⊗ d2.
(A.7)

Thus, operations (IM ⊗ S2) and (IM ⊗ Λ2) symmetrize and skew-symmetrize
the horizontal slices of N .

Let us reshape the tensor T (m+l) into an I×· · ·×I×J×· · ·×J×K×· · ·×K
(each letter is repeated m+ l times) tensor T̂ (m+l) as:

T̂ (m+l) =
R∑

r1,...,rm+l=1

(ar1⊗. . .⊗arm+l
)⊗(br1⊗. . .⊗brm+l

)⊗(cr1⊗. . .⊗crm+l
). (A.8)

Then the entries of T̂ (m+l) are given by

t̂
(m+l)
i1...im+lj1...jm+lk1...km+l

= ti1j1k1ti2j2k2 · · · tim+ljm+lkm+l
. (A.9)

From (A.1) and (A.9) it follows that T̂ (m+l) is just a higher-order represen-
tation of T (m+l).

A new tensor T̂ (m+l)
ΛΛS is obtained from T̂ (m+l) by applying two partial

skew-symmetrizations and one partial symmetrization as follows:

T̂ (m+l)
ΛΛS :=

[
(Λm ⊗ II ⊗ . . . ⊗ II) ⊗ (Λm ⊗ IJ ⊗ . . . ⊗ IJ) ⊗ Sm+l

]
T̂ (m+l). (A.10)

To obtain T̂ (m+l)
ΛΛS we first skew-symmetrize T̂ (m+l) with respect to the group

of indices {1, . . . ,m} (the first m “I” dimensions), then we skew-symmetrize
the result with respect to the group of indices {m+l+1, . . . , 2m+l} (the first
m “J” dimensions), and, finally, we symmetrize the result with respect to the
group of indices {2m+2l+1, . . . , 3m+3l} (all “K” dimensions). From (A.2),
(A.3), and (A.9), it follows that the (i1, . . . , im+l, j1, . . . , jm+l, k1, . . . , km+l)th

entry of the tensor T̂ (m+l)
ΛΛS is equal to zero if some index is repeated in

i1, . . . , im or j1, . . . , jm and is equal to

1

(m+ l)!

∑
(s1,...,sm+l)∈
P{k1,...,km+l}

[
1

m!

∑
(q1,...,qm)∈
P{j1,...,jm}

sgn(q1, . . . , qm)×

(
1

m!

∑
(p1,...,pm)∈
P{i1,...,im}

sgn(p1, . . . , pm)
m∏
u=1

tpuqusu

l∏
v=1

tim+vjm+vsm+v

)]
=
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1

(m+ l)!

∑
(s1,...,sm+l)∈
P{k1,...,km+l}

[
1

m!

∑
(q1,...,qm)∈
P{j1,...,jm}

sgn(q1, . . . , qm)×

1

m!
det

 ti1q1s1 . . . ti1qmsm
...

...
...

timq1s1 . . . timqmsm

 l∏
v=1

tim+vjm+vsm+v

]
=

1

m!(m+ l)!

∑
(s1,...,sm+l)∈
P{k1,...,km+l}

det

 ti1j1s1 . . . ti1jmsm
...

...
...

timj1s1 . . . timjmsm

 l∏
v=1

tim+vjm+vsm+v ,

otherwise (we used twice the Leibniz formula for the determinant). Thus,

by (22), the tensor T̂ (m+l)
ΛΛS and the matrix Rm,l(T ) have the same entries (in

step 3 it will be shown that Rm,l(T ) is a matrix unfolding of T̂ (m+l)
ΛΛS ).

Let us apply partial skew-symmetrizations and partial symmetrization to
the right-hand side of (A.8): from (A.8), (A.10), (see also (A.6)–(A.7) for
the properties of the outer product) it follows that

T̂ (m+l)
ΛΛS =

R∑
r1,...,rm+l=1

[
Λm(ar1 ⊗ . . . ⊗ arm) ⊗ arm+1

⊗ . . . ⊗ arm+l
⊗

Λm(br1 ⊗ . . . ⊗ brm) ⊗ brm+1
⊗ . . . ⊗ brm+l

]
⊗Sm+l(cr1 ⊗ . . . ⊗ crm+l

) =

R∑
r1,...,rm+l=1

FA,B
r1,...,rm+l

⊗Sm+l(cr1 ⊗ . . . ⊗ crm+l
),

(A.11)

where the expressions Λm(ar1 ⊗ . . . ⊗ arm) and Λm(br1 ⊗ . . . ⊗ brm) are defined
in (A.5), the expression Sm+l(cr1 ⊗ . . . ⊗ crm+l

) is defined in (A.4), and, by
definition,

FA,B
r1,...,rm+l

:=Λm(ar1 ⊗ . . . ⊗ arm) ⊗ arm+1
⊗ . . . ⊗ arm+l

⊗

Λm(br1 ⊗ . . . ⊗ brm) ⊗ brm+1
⊗ . . . ⊗ brm+l

(recall that the vectors ar and br are columns of the matrices A and B,
respectively).

Note that by construction, Sm+l(cr1⊗. . .⊗crm+l
) is a completely symmetric

tensor ( that is, the expression Sm+l(cr1 ⊗ . . . ⊗ crm+l
) does not change after
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any permutation of the vectors cr1 , . . . , crm+l
). Taking this fact into account

we can group the summands in (A.11) as follows

T̂ (m+l)
ΛΛS =

∑
1≤r1≤···≤rm+l≤R

( ∑
(p1,...,pm+l)∈
P{r1,...,rm+l}

FA,B
p1,...,pm+l

)
⊗ Sm+l(cr1 ⊗ . . . ⊗ crm+l

).

(A.12)

Appendix A.3. Step 3: Reshaping (unfolding) of T̂ (m+l)
ΛΛS into the matrix Rm,l(T )

We define the matricization operation

Matr : RI×···×I×J×···×J×K×···×K → RIm+lJm+l×Km+l

as follows: the (i1, . . . , im+l, j1, . . . , jm+l, k1, . . . , km+l)th entry of a tensor is
mapped to the ((̃i− 1)Jm+l + j̃, k̃)th entry of a matrix, where ĩ, j̃, and k̃ are
defined in (19), (20), and (21), respectively. One can easily verify that

Matr
(
ai1 ⊗ . . . ⊗ aim+l

⊗ bj1 ⊗ . . . ⊗ bjm+l
⊗ ck1 ⊗ . . . ⊗ ckm+l

)
=[

ai1 ⊗ · · · ⊗ aim+l
⊗ bj1 ⊗ · · · ⊗ bjm+l

]
(ck1 ⊗ · · · ⊗ ckm+l

)T
(A.13)

and that Rm,l(T ) = Matr(T̂ (m+l)
ΛΛS ).

What is left to show is that the matricization of the right-hand side of
(A.12) coincides with the matrix Φm,l(A,B)Sm+l(C)T . In the sequel, when
no confusion is possible, we will use Sk and Λk to denote “symmetrization”
and “skew-symmetrization” of vector representations of a certain tensor: if
d1, . . . ,dk ∈ RL, then the vectors Sk(d1⊗· · ·⊗dk) and Λk(d1⊗· · ·⊗dk) are
computed in the same way as in (A.4)–(A.5) but with “⊗” replaced by “⊗”:

Sk(d1 ⊗ · · · ⊗ dk) =
1

k!

∑
(p1,...,pk)∈P{1,...,k}

dp1 ⊗ · · · ⊗ dpk ,

Λk(d1 ⊗ · · · ⊗ dk) =
1

k!

∑
(p1,...,pk)∈P{1,...,k}

σ(p1, . . . , pk)dp1 ⊗ · · · ⊗ dpk . (A.14)

Hence, by (A.11), (A.12), and (A.13)

Rm,l(T ) = Matr(T̂ (m+l)
ΛΛS ) =∑

1≤r1≤···≤rm+l≤R

( ∑
(s1,...,sm+l)∈
P{r1,...,rm+l}

fA,Bs1,...,sm+l

)
Sm+l(cr1 ⊗ · · · ⊗ crm+l

)T = (A.15)
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∑
1≤r1≤···≤rm+l≤R

φ(A,B)r1,...,rm+l
Sm+l(cr1 ⊗ · · · ⊗ crm+l

)T ,

where

fA,Bs1,...,sm+l
:=Λm(as1 ⊗ · · · ⊗ asm)⊗ asm+1 ⊗ · · · ⊗ asm+l

⊗
Λm(bs1 ⊗ · · · ⊗ bsm)⊗ bsm+1 ⊗ · · · ⊗ bsm+l

,

φ(A,B)r1,...,rm+l
:=

∑
(s1,...,sm+l)∈
P{r1,...,rm+l}

fA,Bs1,...,sm+l
.

We show that φ(A,B)r1,...,rm+l
is the zero vector if the set {r1, . . . , rm+l}

has fewer than m distinct elements and that φ(A,B)r1,...,rm+l
is a column of

Φm,l(A,B) otherwise. From (A.14) and the Leibniz formula for the determi-
nant it follows that the entries of the vector Λk(d1⊗· · ·⊗dk) are all possible
k × k minors of the matrix D := [d1 . . . dk] divided by k!. In particular,
if some of the vectors di coincide, then Λk(d1 ⊗ · · · ⊗ dk) is the zero vector.
Hence, the vector fA,Bs1,...,sm+l

has entries

1

(m!)2
det

ai1s1 . . . ai1sm
...

...
...

aims1 . . . aimsm

 · det

bj1s1 . . . bj1sm
...

...
...

bjms1 . . . bjmsm

 ·
aim+1sm+1 · · · aim+lsm+l

· bjm+1sm+1 · · · bjm+lsm+l
,

where i1, . . . , im+l ∈ {1, . . . , I} and j1, . . . , jm+l ∈ {1, . . . , J}. In particular, if
the set {r1, . . . , rm+l} has fewer than m distinct elements, then fA,Bs1,...,sm+l

are
zero vectors for all (s1, . . . , sm+l) ∈ P{r1,...,rm+l}, yielding that φ(A,B)r1,...,rm+l

is the zero vector. Hence, by Definition 6, the matrix Φm,l(A,B) has columns
φ(A,B)r1,...,rm+l

, where (r1, . . . , rm+l) satisfies (23). Thus, (A.15) coincides
with (18).

Appendix B. Proof of Lemma 22

The proof of Lemma 22 is based on the following simple generalization of
the rank-nullity theorem and relies on two bounds that will be obtained in
in Appendix B.1 and Appendix B.2, respectively.

Lemma 24. Let X be a matrix and E be a subspace such that range(XT ) ⊆
E. Then

32



(i) dim(ker(X) ∩ E) + dim(X(E)) = dimE;

(ii) range(X) = X(E),

where the subspace X(E) denotes the image of E under X.

Proof. Let P be a matrix whose columns form a basis for the subspace E.
Then dim(ker(X)∩E) = dim(ker(XP)), X(E) = range(XP), and the matrix
XP has dimE columns. Hence, by the rank-nullity theorem,

dim(ker(X) ∩ E) + dim(X(E)) = dim(ker(XP)) + dim(XP) = dimE.

Since, range(XT ) ⊆ range(P), it follows that range(X) = range(XP) =
X(E).

Proof of Lemma 22. We set X = Sm+l(C)T and E = Sm+l(RKm+l
). Then

statement (iii) follows from Lemma 24 (ii). By Lemma 24 (i),

dim
(

ker(Sm+l(C)T )
⋂

Sm+l(RKm+l

)
)

+ rSm+l(C)T = Cm+l
K+m+l−1. (B.1)

In Appendix B.1 and Appendix B.2 we prove that the summands in (B.1)
are bounded as

dim
(

ker(Sm+l(C)T )
⋂

Sm+l(RKm+l

)
)
≥ CK−1

R , and

rSm+l(C)T ≥ Cm+l
R+l+1 − C

m−1
R ,

respectively. Since CK−1
R +(Cm+l

R+l+1−C
m−1
R ) = Cm−1

R +(Cm+l
K+m+l−1−C

m−1
R ) =

Cm+l
K+m+l−1, statements (i) and (iv) follow from (B.1). Statement (ii) follows

from statement (i) and Lemma 25 below.

Appendix B.1. A lower bound on dim
(

ker(Sm+l(C)T )
⋂
Sm+l(RKm+l

)
)

In this subsection we prove the following result.

Lemma 25. Let C ∈ RK×R, kC = K, m = R −K + 2, l ≥ 0, let F satisfy
(30)–(31), and let F(m+l) be defined by (36). Then

(i) The matrix F(m+l) has full column rank, that is rF(m+l) = CK−1
R ;

(ii) ker(Sm+l(C)T )
⋂
Sm+l(RKm+l

) ⊃ range
(
F(m+l)

)
.
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In particular, dim
(

ker(Sm+l(C)T )
⋂
Sm+l(RKm+l

)
)
≥ CK−1

R .

Proof. Statement (i) was proved in [9, Proposition 1.10].
Let f be a column of the matrix F. Then f (m+l) is a column of F(m+l).

It is clear that f (m+l) ∈ Sm+l(RKm+l
). To prove (ii) we need to show that

Sm+l(C)T f (m+l) = 0. By Definition 7, the (r1, . . . , rm+l)th entry of the vector
Sm+l(C)T f (m+l) is(

1

(m+ l)!

∑
(s1,...,sm+l)∈
P{r1,...,rm+l}

cs1 ⊗ · · · ⊗ csm+l

)T

f (m+l) =

1

(m+ l)!

∑
(s1,...,sm+l)∈
P{r1,...,rm+l}

(cTs1f) · · · (cTsm+l
f) = (cTr1f) · · · (cTrm+l

f).

Since the vector f is orthogonal to exactly K− 1 columns of C, the fact that
at least m indices of r1, . . . , rm+l are distinct, and m+ l ≥ R−K + 2 + l >
R− (K − 1) it follows that (cTr1f) · · · (cTrm+l

f) = 0, which completes the proof
of (ii).

Appendix B.2. A lower bound on the rank of the matrix Sm+l(C)

We need some additional notation. Let m ≥ 2, l ≥ 0, p ≥ 0 and m ≤
m+ l − p ≤ R. With an (m+ l − p)-tuple

(i1, . . . , im+l−p) such that 1 ≤ i1 < · · · < im+l−p ≤ R

we associate the set

Ei1,...,im+l−p
:= {(i1, . . . , im+l−p, iq1 , . . . , iqp) : 1 ≤ q1 ≤ · · · ≤ qp ≤ 2 + l − p}.

In other words, the set Ei1,...,im+l−p
consists of the (m + l)-tuples that are

obtained by merging the (m+l−p)-tuple (i1, . . . , im+l−p) with p-combinations
with repetitions of the set {i1, . . . , i2+l−p}. It is clear that for a fixed p there

exist Cm+l−p
R sets Ei1,...,im+l−p

and each set Ei1,...,im+l−p
contains Cp

2+l−p+p−1 =
Cp
l+1 (m+ l)-tuples. Let E be the union of all sets Ei1,...,im+l−p

. Then the set
E contains exactly

C0
l+1C

m+l
R + C1

l+1C
m+l−1
R + · · ·+ C l

l+1C
m
R = Cm+l

R+l+1 − C
m−1
R

34



(m+ l)-tuples (we follow the convention that Cm+l−p
R := 0 if m+ l− p > R).

Since, by construction, each (m + l)-tuple of Ei1,...,im+l−p
contains exactly

m+l−p ≥ m distinct elements, it follows that each (m+l)-tuple of E contains
at least m distinct elements. Let SEm+l(C) denote the Km× (Cm+l

R+l+1−C
m−1
R )

matrix with columns (24), where (r1, . . . , rm+l) ∈ E. Then SEm+l(C) is a
submatrix of Sm+l(C). We have the following lemma.

Lemma 26. Let C ∈ RK×R, kC = K, and m = R−K+ 2. Then the matrix
SEm+l(C) has full column rank. In particular, rSm+l(C) ≥ Cm+l

R+l+1 − C
m−1
R .

Proof. Suppose that there exists f ∈ RCm+l
R+l+1−C

m−1
R such that SEm+l(C)f = 0.

We show that f = 0. We assume that the entries of f are indexed by (m+ l)-
tuples (r1, . . . , rm+l) ∈ E, that is, in SEm+l(C)f = 0 the column of SEm+l(C)
associated with the (m+ l)-tuple (i1, . . . , im+l−p, iq1 , . . . , iqp) is multiplied by
fi1,...,im+l−p,iq1 ,...,iqp

.
To show that all entries fi1,...,im+l−p,iq1 ,...,iqp

are zero we proceed by induc-
tion on p = l, l − 1, . . . ,max(0,m + l − R): in the pth step we assume that
the identities

fi1,...,im+l−p̃,iq1 ,...,iqp̃
= 0, where

1 ≤ i1 < · · · < im+l−p̃ ≤ R, 1 ≤ q1 ≤ · · · ≤ qp̃ ≤ 2 + l − p̃
hold for p̃ = l, l − 1, . . . , p− 1 and prove that the identities hold for p̃ = p.

(i) Induction hypothesis: p = l. We show that

fi1,...,im,iq1 ,...,iql = 0 for 1 ≤ i1 < · · · < im ≤ R, 1 ≤ q1 ≤ · · · ≤ ql ≤ 2.

We give the proof for the case i1 = 1, . . . , im = m, the other cases follow
similarly. Thus, we show that f1,...,m,q1,...,ql = 0 for 1 ≤ q1 ≤ · · · ≤ ql ≤ 2.

Since kC = K, the square matrix C̃ := [c1 c2 cm+1 . . . cR] is nonsingular.

Let u1 and u2 denote the first and the second column of C̃−T , respectively.
Then [

uT1
uT2

]
C̃ =

[
1 0 0 . . . 0
0 1 0 . . . 0

]
. (B.2)

Let x = t1u1+t2u2. Then the vector x(m+l) := x⊗· · ·⊗x is orthogonal to the
columns of the matrix SEm+l(C) indexed by the (m+l)-tuples (r1, . . . , rm+l) ∈
E \E1,...,m. Indeed, if {r1, . . . , rm+l}\{1, . . . ,m} 6= ∅, then by (24) and (B.2),

x(m+l)T

(m+ l)!

∑
(s1,...,sm+l)∈
P{r1,...,rm+l}

cs1 ⊗ · · · ⊗ csm+l
= (xTcr1) · · · (xTcrm+l

) = 0. (B.3)
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Hence

0 = x(m+l)TSEm+l(C)f =
∑

(r1,...,rm+l)∈E1,...,m

(xTcr1) · · · (xTcrm+l
)fr1,...,rm+l

=

∑
1≤q1≤···≤ql≤2

(xTc1) · · · (xTcm)(xTcq1) · · · (xTcql)f1,...,m,q1,...,ql =

(xTc1) · · · (xTcm)
∑

1≤q1≤···≤ql≤2

(xTcq1) · · · (xTcql)f1,...,m,q1,...,ql .

(B.4)

Since kC = K, at most one of the vectors u1 and u2 can be orthogonal to
any of the vectors c3, . . . , cm. Hence,

(xTc1) · · · (xTcm) = t1t2(t1u
T
1 c3 + t2u

T
2 c3) · · · (t1uT1 cm + t2u

T
2 cm) 6= 0

for generic t1, t2 ∈ R. Hence, by (B.4),∑
1≤q1≤···≤ql≤2

(xTcq1) · · · (xTcql)f1,...,m,q1,...,ql = 0 (B.5)

for generic t1, t2 ∈ R. By construction of x, the l + 1 products
(xTcq1) · · · (xTcql), 1 ≤ q1 ≤ · · · ≤ ql ≤ 2, coincide with the monomials
tl1t

0
2, t

l−1
1 t12, . . . , t

0
1t
l
2. Thus, identity (B.5) expresses the fact that a polynomial

in t1 and t2 with coefficients f1,...,m,q1,...,ql vanishes for generic t1, t2 ∈ R. It
is well known that this is possible only if the polynomial is identically zero,
yielding that f1,...,m,q1,...,ql = 0 for 1 ≤ q1 ≤ · · · ≤ ql ≤ 2.

(ii) Inductive step. We show that

fi1,...,im+l−p,iq1 ,...,iqp
= 0 for

1 ≤ i1 < · · · < im+l−p ≤ R, 1 ≤ q1 ≤ · · · ≤ qp ≤ 2 + l − p

or, equivalently, that fi1,...,im+l−p,iq1 ,...,iqp
= 0 for

(i1, . . . , im+l−p, iq1 , . . . , iqp) ∈
⋃

1≤i1<···<im+l−p≤R

Ei1,...,im+l−p
.

We give the proof for the case i1 = 1, . . . , im+l−p = m + l − p, the other
cases follow similarly. Thus, we show that f1,...,m+l−p,q1,...,qp = 0 for 1 ≤ q1 ≤
· · · ≤ qp ≤ 2 + l − p. The derivation is very similar to that of the induction
hypothesis.
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Since kC = K, the K ×K matrix C̃ := [c1 . . . c2+l−p cm+l−p+1 . . . cR] is

nonsingular. Let u1, . . . ,u2+l−p denote the first 2 + l − p columns of C̃−T .
Then  uT1

...
uT2+l−p

 C̃ =


1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 1 0 . . . 0

 . (B.6)

Let x = t1u1 + · · ·+ t2+l−pu2+l−p. Let

Ep̃<p :=
⋃
p̃<p

⋃
1≤i1<···<im+l−p̃≤R

Ei1,...,im+l−p̃

and let the sets Ep̃>p and Ep̃=p be defined similarly. Then E = Ep̃<p∪Ep̃>p∪
Ep̃=p. Then, by (24), (B.3), and (B.6), the vector x(m+l) := x ⊗ · · · ⊗ x is
orthogonal to the columns of the matrix SEm+l(C) indexed by the (m + l)-
tuples

(r1, . . . , rm+l) ∈ Ep̃<p ∪ (Ep̃=p \ E1,...,m+l−p) .

Hence, similarly to (B.4) we obtain

0 = x(m+l)TSEm+l(C)f =
∑

(r1,...,rm+l)∈E

(xTcr1) · · · (xTcrm+l
)fr1,...,rm+l

=

∑
(r1,...,rm+l)∈Ep̃>p∪E1,...,m+l−p

(xTcr1) · · · (xTcrm+l
)fr1,...,rm+l

.

Since, by the induction assumption, fr1,...,rm+l
= 0 for (r1, . . . , rm+l) ∈ Ep̃>p,

we have

0 =
∑

(r1,...,rm+l)∈E1,...,m+l−p

(xTcr1) · · · (xTcrm+l
)fr1,...,rm+l

=

∑
1≤q1≤···≤qp≤2+l−p

(xTc1) · · · (xTcm+l−p)(x
Tcq1) · · · (xTcqp)f1,...,m+l−p,q1,...,qp =

(xTc1) · · · (xTcm+l−p)
∑

1≤q1≤···≤qp≤2+l−p

(xTcq1) · · · (xTcqp)f1,...,m+l−p,q1,...,qp .

(B.7)

Since kC = K, at most 1+l−p of the vectors u1, . . . ,u2+l−p can be orthogonal
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to any of the vectors c3+l−p, . . . , cm+l−p. Hence,

(xTc1) · · · (xTcm+l−p) =

t1 · · · t2+l−p(t1u
T
1 c3+l−p + · · ·+ t2+l−pu

T
2+l−pc3+l−p) · · ·

(t1u
T
1 cm+l−p + · · ·+ t2+l−pu

T
2+l−pcm+l−p) 6= 0

(B.8)

for generic t1, . . . , t2+l−p ∈ R. Hence, by (B.7),∑
1≤q1≤···≤qp≤2+l−p

(xTcq1) · · · (xTcqp)f1,...,m+l−p,q1,...,qp = 0 (B.9)

for generic t1, . . . , t2+l−p ∈ R. By construction of x, the Cp
l+1 products

(xTcq1) · · · (xTcqp), 1 ≤ q1 ≤ · · · ≤ qp ≤ 2 + l − p, coincide with the mono-
mials {tα1

1 · · · t
α2+l−p

2+l−p }α1+···+α2+l−p=p. Thus, identity (B.9) expresses the fact
that a polynomial in t1, . . . , t2+l−p with coefficients f1,...,m+l−p,q1,...,qp vanishes
for generic t1, . . . , t2+l−p ∈ R. It is well known that this is possible only
if the polynomial is identically zero, yielding that f1,...,m+l−p,q1,...,qp = 0 for
1 ≤ q1 ≤ · · · ≤ qp ≤ 2 + l − p.
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