About the Fundamental Subspaces of the Macaulay Matrix **EA** 6th Conference on Applied Algebraic Geometry (AG23) H TT AN Christof Vermeersch and Bart De Moor **HE** christof.vermeersch@esat.kuleuven.be

SEE

H

July 10, 2023

Introduction

A presentation about linear algebra in algebraic geometry

- map \rightarrow matrix
- ideal \rightarrow row space
- - Gröbner basis \rightarrow set of rows
	-
- normal set/standard monomials \rightarrow linearly (in)dependent rows/columns
	-
	- Buchberger's algorithm \rightarrow singular value decomposition
		- roots \rightarrow eigenvalues

Polynomials and Macaulay Matrix

We consider **polynomials** $p_i(x) \in \mathcal{P}^n = \mathbb{C} [x_1, \ldots, x_n], \forall i = 1, \ldots, s$,

$$
p_i(\boldsymbol{x}) = \sum_{\{\boldsymbol{\alpha}\}} c_{\boldsymbol{\alpha}} \boldsymbol{x}^{\boldsymbol{\alpha}}.
$$

The **ideal** $\mathcal{I} \subset \mathcal{P}^n$ generated by these polynomials is defined by

$$
\mathcal{I}=\left\langle p_{1}\left(\boldsymbol{x}\right),\ldots,p_{s}\left(\boldsymbol{x}\right)\right\rangle =\left\{ \sum_{i=1}^{s}h_{i}\left(\boldsymbol{x}\right)p_{i}\left(\boldsymbol{x}\right):h_{i}\left(\boldsymbol{x}\right)\in\mathbb{C}\left[x_{1},\ldots,x_{n}\right]\right\} .
$$

Of course, an other important object is the variety of that ideal, i.e.,

$$
\mathcal{V}(\mathcal{I}) = \left\{ \boldsymbol{a} \in \mathbb{C}^n : p_i(\boldsymbol{a}) = 0, \forall i = 1, \ldots, s \right\}.
$$

Polynomials and Macaulay matrix

$$
\begin{cases} p_1(x) = -3x_2 + 6x_1x_2 + (-1)x_2^2 + 1x_1^2x_2 + (-3)x_1x_2^2 + 1x_2^3 = 0 \\ p_2(x) = 1 + 2x_1 + (-2)x_2 + 1x_1^2 + (-2)x_1x_2 + 1x_2^2 = 0 \\ p_3(x) = (-4)x_2 + 1x_2^2 = 0 \end{cases}
$$

Fundamental subspaces of a matrix

Fundamental subspaces of a matrix

Fundamental subspaces of a matrix

singular value decomposition as our "work horse"!

Two important theorems

Gilbert Strang poses with his "Introduction to Linear Algebra".

The photo of Gilbert Strang was taken by Miller (2023).

Rank-nullity theorem

$$
c = \dim(\mathcal{C}(\boldsymbol{A})) = \dim(\mathcal{R}(\boldsymbol{A})) = r
$$

Fundamental theorem of linear algebra

$$
rank(\mathbf{A}) + nullity(\mathbf{A}) = r + n = q
$$

1 | [Introduction](#page-1-0)

- 2 | [Row Space](#page-9-0)
- 3 | [Left Null Space](#page-19-0)
- 4 | [Right Null Space](#page-22-0)
- 5 | [Column space](#page-34-0)

6 | [Conclusion](#page-40-0)

1 | [Introduction](#page-1-0)

2 | [Row Space](#page-9-0)

- 3 | [Left Null Space](#page-19-0)
- 4 | [Right Null Space](#page-22-0)
- 5 | [Column space](#page-34-0)
- 6 | [Conclusion](#page-40-0)

Row space of the Macaulay matrix

What can we find in the row space?

7

Ideal?

So, it is now very tempting to say that

$$
\mathcal{R}\left(\bm{M}_{d}\right) \stackrel{?}{=} \left\langle p_{1}\left(\bm{x}\right), \ldots, p_{s}\left(\bm{x}\right) \right\rangle \cap \mathcal{P}_{d}^{n} \triangleq \left\langle p_{1}\left(\bm{x}\right), \ldots, p_{s}\left(\bm{x}\right) \right\rangle _{d}.
$$

Ideal?

So, it is now very tempting to say that

$$
\mathcal{R}\left(\bm{M}_{d}\right) \stackrel{?}{=} \left\langle p_{1}\left(\bm{x}\right), \ldots, p_{s}\left(\bm{x}\right) \right\rangle \cap \mathcal{P}_{d}^{n} \triangleq \left\langle p_{1}\left(\bm{x}\right), \ldots, p_{s}\left(\bm{x}\right) \right\rangle _{d}.
$$

However, this is not true!

Counter example

$$
\begin{cases} p_1(\mathbf{x}) = x_1^2 + 2x_1 + 1 = 0 \\ p_2(\mathbf{x}) = x_1^2 + x_1 + 1 = 0 \end{cases} \qquad \mathbf{M}_2 = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}
$$

 $1 \in \langle p_1(\bm{x}), p_2(\bm{x}) \rangle$, because

$$
(-1-x_1) p_1(\bm{x}) + (2+x_1) p_2(\bm{x}) = 1,
$$

but $1 \notin \mathcal{R}(M_2)$. In fact, the polynomial combination implies that $1 \in \mathcal{R}(M_3)$.

Ideal?

So, it is now very tempting to say that

$$
\mathcal{R}\left(\bm{M}_{d}\right) \stackrel{?}{=} \left\langle p_{1}\left(\bm{x}\right), \ldots, p_{s}\left(\bm{x}\right) \right\rangle \cap \mathcal{P}_{d}^{n} \triangleq \left\langle p_{1}\left(\bm{x}\right), \ldots, p_{s}\left(\bm{x}\right) \right\rangle _{d}.
$$

However, this is not true!

Counter example

$$
\begin{cases} p_1(\boldsymbol{x}) = x_1^2 + 2x_1 + 1 = 0 \\ p_2(\boldsymbol{x}) = x_1^2 + x_1 + 1 = 0 \end{cases} \qquad \boldsymbol{M}_3 = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}
$$

 $1 \in \langle p_1(\bm{x}), p_2(\bm{x}) \rangle$, because

$$
(-1-x_1) p_1(\bm{x}) + (2+x_1) p_2(\bm{x}) = 1,
$$

but $1 \notin \mathcal{R}(M_2)$. In fact, the polynomial combination implies that $1 \in \mathcal{R}(M_3)$.

0 1 1 1

Interpretation of the row space of the Macaulay matrix

We consider the homogeneous ideal instead:

$$
\left\langle p_1^h\left(\tilde{\boldsymbol{x}}\right),\ldots,p_s^h\left(\tilde{\boldsymbol{x}}\right)\right\rangle=\left\{\sum_{i=0}^s h_i\left(\tilde{\boldsymbol{x}}\right)p_i^h\left(\tilde{\boldsymbol{x}}\right):h_i\left(\tilde{\boldsymbol{x}}\right)\in\mathcal{P}_{d-d_i}^n\right\}.
$$

The homogeneity guarantees that all homogeneous polynomials of degree d are contained in the $\mathcal{R} (M_d)$, which corresponds to

$$
\mathcal{R}\left(\bm{M}_{d}\right)=\left\langle p_{1}^{h}\left(\bm{x}\right),\ldots,p_{s}^{h}\left(\bm{x}\right)\right\rangle _{d}.
$$

An important consequence is that

$$
\dim\left(\left\langle p_1^h\left(\tilde{\boldsymbol{x}}\right),\ldots,p_s^h\left(\tilde{\boldsymbol{x}}\right)\right\rangle_d\right)=r_d.
$$

But, what makes $r_d \leq p_d$?

Interpretation of the row space of the Macaulay matrix

We consider the homogeneous ideal instead:

$$
\left\langle p_1^h\left(\tilde{\boldsymbol{x}}\right),\ldots,p_s^h\left(\tilde{\boldsymbol{x}}\right)\right\rangle=\left\{\sum_{i=0}^s h_i\left(\tilde{\boldsymbol{x}}\right)p_i^h\left(\tilde{\boldsymbol{x}}\right):h_i\left(\tilde{\boldsymbol{x}}\right)\in\mathcal{P}_{d-d_i}^n\right\}.
$$

The homogeneity guarantees that all homogeneous polynomials of degree d are contained in the $\mathcal{R} (M_d)$, which corresponds to

$$
\mathcal{R}\left(\bm{M}_{d}\right)=\left\langle p_{1}^{h}\left(\bm{x}\right),\ldots,p_{s}^{h}\left(\bm{x}\right)\right\rangle _{d}.
$$

An important consequence is that

$$
\dim\left(\left\langle p_1^h\left(\tilde{\boldsymbol{x}}\right),\ldots,p_s^h\left(\tilde{\boldsymbol{x}}\right)\right\rangle_d\right)=r_d.
$$

But, what makes $r_d \leq p_d$? Linearly dependent rows or syzygies!

[\(Batselier et al., 2014b\)](#page-44-1)

Linearly dependent rows and syzygies

A linearly dependent row can be written as a linear combination of the previous rows:

$$
\begin{array}{ccccccccc}\n & & 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 & x_1^3 & x_1^2x_2 & x_1x_2^2 & x_2^3 \\
p_1(x) & 0 & 0 & -3 & 0 & 6 & -1 & 0 & 1 & -3 & 1 \\
p_2(x) & 1 & 2 & -2 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
x_{1p_2(x)} & 0 & 1 & 0 & 2 & -2 & 0 & 1 & -2 & 1 & 0 \\
x_{2p_2(x)} & 0 & 0 & 1 & 0 & 2 & -2 & 0 & 1 & -2 & 1 \\
p_3(x) & 0 & 0 & -4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
x_{1p_3(x)} & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 1 & 0 \\
x_{2p_3(x)} & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 1\n\end{array}
$$
\n
$$
\text{r6} = \text{r5} + \text{r4} - \text{r1}
$$

In terms of the polynomials, this means that there are syzygies!

• basis syzygy:
$$
\sum_{i=1}^{s} h_i(x) p_i(x) = 0
$$

• derived syzygy:
$$
\boldsymbol{x}^{\boldsymbol{\beta}}\sum_{i=1}^{s}h_{i}\left(\boldsymbol{x}\right)p_{i}\left(\boldsymbol{x}\right)=0
$$

Linearly dependent rows and syzygies

A linearly dependent row can be written as a linear combination of the previous rows:

$$
\begin{array}{ccccccccc}\n & & 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 & x_1^3 & x_1^2x_2 & x_1x_2^2 & x_2^3 \\
p_1(x) & 0 & 0 & -3 & 0 & 6 & -1 & 0 & 1 & -3 & 1 \\
p_2(x) & 1 & 2 & -2 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
x_{1p_2(x)} & 0 & 1 & 0 & 2 & -2 & 0 & 1 & -2 & 1 & 0 \\
x_{2p_2(x)} & 0 & 0 & 1 & 0 & 2 & -2 & 0 & 1 & -2 & 1 \\
p_3(x) & 0 & 0 & -4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
x_{1p_3(x)} & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 1 & 0 \\
x_{2p_3(x)} & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 1\n\end{array}
$$
\n
$$
\text{r6} = \text{r5} + \text{r4} - \text{r1}
$$

In terms of the polynomials, this means that there are syzygies!

- basis syzygy: $\sum_{i=1}^{s} h_i(x) p_i(x) = 0$ $(1-x_1) p_3(x) + x_2 p_2(x) p_1(x) = 0$
- \bullet derived syzygy: $\boldsymbol{x}^{\boldsymbol{\beta}}\sum_{i=1}^{s}h_{i}\left(\boldsymbol{x}\right)p_{i}\left(\boldsymbol{x}\right)=0$

Linearly dependent rows and syzygies

A linearly dependent row can be written as a linear combination of the previous rows:

$$
\begin{array}{ccccccccc}\n & & 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 & x_1^3 & x_1^2x_2 & x_1x_2^2 & x_2^3 \\
p_1(x) & 0 & 0 & -3 & 0 & 6 & -1 & 0 & 1 & -3 & 1 \\
p_2(x) & 1 & 2 & -2 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
x_{1p_2(x)} & 0 & 1 & 0 & 2 & -2 & 0 & 1 & -2 & 1 & 0 \\
x_{2p_2(x)} & 0 & 0 & 1 & 0 & 2 & -2 & 0 & 1 & -2 & 1 \\
p_3(x) & 0 & 0 & -4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
x_{1p_3(x)} & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 1 & 0 \\
x_{2p_3(x)} & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 1\n\end{array}
$$
\n
$$
\text{r6} = \text{r5} + \text{r4} - \text{r1}
$$

In terms of the polynomials, this means that there are syzygies!

- basis syzygy: $\sum_{i=1}^{s} h_i(x) p_i(x) = 0$ $(1-x_1) p_3(x) + x_2 p_2(x) p_1(x) = 0$
- derived syzygy: $\boldsymbol{x}^{\boldsymbol{\beta}} \sum_{i=1}^s h_i(\boldsymbol{x}) p_i(\boldsymbol{x}) = 0$ $x_1^2 ((1-x_1) p_3(\boldsymbol{x}) + x_2 p_2(\boldsymbol{x}) p_1(\boldsymbol{x})) = 0$

1 | [Introduction](#page-1-0)

2 | [Row Space](#page-9-0)

3 | [Left Null Space](#page-19-0)

- 4 | [Right Null Space](#page-22-0)
- 5 | [Column space](#page-34-0)

6 | [Conclusion](#page-40-0)

Dimension of the left null space

The left null space contains the "coefficients" of the syzygies:

$$
\mathcal{L}\left(M_{d}\right)=\left\{\boldsymbol{h}\in\mathbb{C}^{1\times p}: \boldsymbol{h}M_{d}=\boldsymbol{0}\right\}.
$$

$$
\Downarrow
$$

$$
\sum_{i=1}^{s}h_{i}\left(\boldsymbol{x}\right)p_{i}\left(\boldsymbol{x}\right)=0.
$$

The dimension l_d of the left null space counts the total number of syzygies in $\mathcal{R} (M_d)$:

$$
\binom{d-d_l+n}{n}
$$

11

is added to l_d for every degree d_l basis syzygy.

[\(Batselier et al., 2014b\)](#page-44-1)

Degree of regularity

An important consequence is the degree of regularity:

Definition

The minimal degree d^* for which the dimension l_d can be computed via the obtained syzygies at that degree is called the degree of regularity.

Once l_d is known, then the rank r_d and nullity n_d of the Macaulay matrix are also fully determined!

- We need higher degrees to check whether we found d^*
- There are upper bounds, but sometimes d^* is much lower [\(Lazard, 1983\)](#page-45-1)
- Recursive algorithms are essential [\(Batselier et al., 2014a,](#page-44-2)[b\)](#page-44-1)

1 | [Introduction](#page-1-0)

- 2 | [Row Space](#page-9-0)
- 3 | [Left Null Space](#page-19-0)

4 | [Right Null Space](#page-22-0)

5 | [Column space](#page-34-0)

6 | [Conclusion](#page-40-0)

Multiplication maps

Consider an ideal $\mathcal{I}=\langle p_1\left(\bm{x}\right),\ldots,p_s\left(\bm{x}\right)\rangle\subset\mathcal{P}^n$ and zero-dimensional variety $\mathcal{V}\left(\mathcal{I}\right)$

The $\mathsf{quotient}\; \mathsf{ring}\; \mathcal{R} \triangleq \mathcal{P}^n/\braket{p_1(\bm{x}),\ldots,p_s(\bm{x})}$ is a finite-dimensional vector space. We can define the **multiplication maps**:

⇓

$$
\boldsymbol{M}_{g}:\mathcal{R}\rightarrow\mathcal{R}:p\left(\boldsymbol{x}\right)+\mathcal{I}\mapsto g\left(\boldsymbol{x}\right)p\left(\boldsymbol{x}\right)+\mathcal{I}
$$

with properties

- $\bullet\,$ Eigenvalues of M_g are $\left. g\left(\boldsymbol{x}\right) \right| _{\left(j\right) }$
- The multiplication maps commute, i.e., $M_{q_1}M_{q_2} = M_{q_2}M_{q_1}$

How do we construct these maps?

Stetter's eigenvalue problem

Stetter's approach

- 1. Compute a Gröbner basis G for I
- 2. Derive a monomial basis for R from G
- 3. Solve the eigenvalue problems that expresses the monomial multiplication within the R (simultaneous)
- 4. Read the affine solutions from the eigenvalues/eigenvectors

Our approach

- 1. Compute a numerical basis matrix Z_d for the null space of \boldsymbol{M}_d , with $d\ge d^*.$
- 2. Determine the linearly independent rows of Z_d
- 3. Solve the eigenvalue problems that expresses the monomial multiplication within the R (simultaneous)
- Read the affine solutions from the eigenvalues/eigenvectors

Dual vector space

Basis matrix of the right null space can be written in terms of the solutions $(d\ge d^*)$

- solutions can be described by the dual vector space of the quotient space $\mathcal R$
- from the rank-nullity theorem

$$
n_d = q_d - r_d
$$

= dim $\mathcal{P}_d^n / \left\langle p_1^h(\tilde{\boldsymbol{x}}), \dots, p_s^h(\tilde{\boldsymbol{x}}) \right\rangle_d$

• requires dual vector space $C_d^{n'}$ $\stackrel{\scriptscriptstyle n}{d}^{\prime}$ of \mathcal{C}_d^n and differential functionals

$$
\left. \partial_{\boldsymbol{i}}(\cdot) \right|_{(j)} \triangleq \left. \frac{1}{i_1! \dots i_n!} \frac{\partial^{\left| \boldsymbol{i} \right|}(\cdot)}{\partial x_1^{i_1} \dots \partial x_n^{i_n}} \right|_{(j)}
$$

confluent multivariate Vandermonde basis matrix

\n
$$
\mathbf{V}_d = \begin{bmatrix}\n\frac{x_0^2|_{(1)}}{x_0x_1|_{(1)}} & \frac{x_0|_{(1)}}{x_0x_1|_{(2)}} \\
\frac{x_0x_1|_{(1)}}{x_0x_2|_{(1)}} & \frac{x_0x_1|_{(2)}}{x_0x_2|_{(2)}} \\
\frac{x_1^2|_{(1)}}{x_1^2|_{(1)}} & \frac{x_1|_{(1)}}{x_2|_{(1)}} & \frac{x_1^2|_{(2)}}{x_2^2|_{(2)}} \\
\frac{x_1x_2|_{(1)}}{x_2^2|_{(1)}} & 0 & \frac{x_2^2|_{(2)}}{x_2^2|_{(2)}} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\frac{\partial_{00}(\mathbf{v})|_{(1)}}{\partial_{10}(\mathbf{v})|_{(1)}} & \frac{\partial_{00}(\mathbf{v})|_{(2)}}{\partial_{00}(\mathbf{v})|_{(2)}}\n\end{bmatrix}
$$

one projective solution

one projective solution

16

Note that we consider differential functionals in $\bm{\mathcal{C}}_{2}^{2^{\prime}}$ in this exposition

multiple simple projective solutions

multiple projective solutions with multiplicity larger than one

multiple affine solutions with multiplicity larger than one

16

select the linearly independent rows of V_d

Removing solutions at infinity

Two difficulties

$$
\boldsymbol{S_1V_dD_{x_1}} = \boldsymbol{S_{x_1}V_d}
$$

• Solutions/confluent Vandermonde basis vectors are not known in advanced:

numerical basis matrix Z_d of the null space

$$
\Downarrow \boldsymbol{V_d} = \boldsymbol{Z_d}\boldsymbol{T} \\ \left(\boldsymbol{S_1}\boldsymbol{Z_d}\right)\boldsymbol{T}\boldsymbol{D_{x_1}} = \left(\boldsymbol{S_{x_1}}\boldsymbol{Z_d}\right)\boldsymbol{T} \\ \boldsymbol{T}\boldsymbol{D_{x_1}}\boldsymbol{T}^{-1} = \left(\boldsymbol{S_1}\boldsymbol{Z_d}\right)^{-1}\left(\boldsymbol{S_{x_1}}\boldsymbol{Z_d}\right)
$$

• Not possible to numerically stable compute Jordan normal form:

numerically stable Schur decomposition

$$
\Downarrow\\\boldsymbol{Q}\boldsymbol{U}_{x_1}\boldsymbol{Q}^{-1}=(\boldsymbol{S}_1\boldsymbol{Z}_d)^{-1}\,(\boldsymbol{S}_{x_1}\boldsymbol{Z}_d)
$$

Multidimensional realization theory

• It is possible to shift with any polynomial in the eigenvalues – for example, x_2

$$
\bm{Q}\bm{U}_{x_2}\bm{Q}^{-1}=\left(\bm{S}_{1}\bm{Z}_{d}\right)^{-1}\left(\bm{S}_{x_2}\bm{Z}_{d}\right)
$$

- This leads to the same Q
	- Solved via simultaneous triangularization
	- Different shift polynomials can be useful
	- Entire degree block rows instead of single rows can be considered

Realization theory for any shift polynomial $g(\boldsymbol{x})$:

$$
\boldsymbol{Q}\boldsymbol{U}_g\boldsymbol{Q}^{-1}=\left(\boldsymbol{S}_1\boldsymbol{Z}_d\right)^{\dagger}\left(\boldsymbol{S}_g\boldsymbol{Z}_d\right),
$$

where S_1 and S_a select rows from Z_d

1 | [Introduction](#page-1-0)

- 2 | [Row Space](#page-9-0)
- 3 | [Left Null Space](#page-19-0)
- 4 | [Right Null Space](#page-22-0)

5 | [Column space](#page-34-0)

6 | [Conclusion](#page-40-0)

Complementarity between right null space and column space

[\(Dreesen, 2013\)](#page-45-0)

Reordered Macaulay matrix

$$
\underbrace{ \begin{bmatrix} M_1 & M_2 & M_3 & M_4 \end{bmatrix} }_{\text{N}} \begin{bmatrix} A & 0 \\ B & 0 \\ C & 0 \\ W_{21} & W_{22} \end{bmatrix} = 0
$$

 $A:$ affine standard monomials B : other affine shifted monomials C : other affine monomials and gap $W_{2\times}$: remaining rows of the basis matrix The multiplication property $\boldsymbol{A}\boldsymbol{D}_g = \boldsymbol{S}_g \begin{bmatrix} \boldsymbol{A} \ \boldsymbol{B} \end{bmatrix}$ B 1 yields again an eigenvalue problem $\boldsymbol{A}\boldsymbol{D}_g\boldsymbol{A}^{-1}=\boldsymbol{S}_g\left[\begin{array}{c}\boldsymbol{I}\ \boldsymbol{B}\ \boldsymbol{A}\end{array}\right]$ $\boldsymbol{B} \boldsymbol{A}^{-1}$ 1

$$
\boxed{2}
$$

The backward QR decomposition eliminates the dependency on the right null space

$$
\begin{bmatrix} R_{14} & R_{13} & R_{12} & R_{11} \\ R_{24} & R_{23} & R_{22} & 0 \\ R_{34} & R_{33} & 0 & 0 \\ R_{44} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} A & 0 \\ B & 0 \\ C & 0 \\ W_{21} & W_{22} \end{bmatrix} = 0
$$

The backward QR decomposition eliminates the dependency on the right null space

$$
\begin{bmatrix} R_{14} & R_{13} & R_{12} & R_{11} \\ R_{24} & R_{23} & R_{22} & 0 \\ R_{34} & R_{33} & 0 & 0 \\ R_{44} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} A & 0 \\ B & 0 \\ C & 0 \\ W_{21} & W_{22} \end{bmatrix} = 0
$$

$$
BA^{-1} = -R_{33}^{-1}R_{34}
$$

Equivalent multidimensional realization theory

Realization theory for any shift polynomial $g(\boldsymbol{x})$:

$$
\bm{A}\bm{D}_g\bm{A}^{-1} = \bm{S}_g \begin{bmatrix} \bm{I} \\ -\bm{R}_{33}^{-1}\bm{R}_{34} \end{bmatrix},
$$

where \boldsymbol{S}_{g} selects rows from \boldsymbol{I} and $-\boldsymbol{R}_{33}^{-1}\boldsymbol{R}_{34}$

- a standard eigenvalue problem, with \vec{A} the matrix of eigenvectors
- backward QR decomposition removes influence of solutions at infinity implicitly
- same adaptation to multiple Schur decompositions is possible

1 | [Introduction](#page-1-0)

- 2 | [Row Space](#page-9-0)
- 3 | [Left Null Space](#page-19-0)
- 4 | [Right Null Space](#page-22-0)
- 5 | [Column space](#page-34-0)
- 6 | [Conclusion](#page-40-0)

Conclusions and future work

Each of the fundamental subspaces of the Macaulay matrix has a purpose:

- Many properties/questions from algebraic geometry hide in one of the fundamental subspaces of the Macaulay matrix
- A full treatment of the column space is not yet available
- Some algorithmic issues make the column space currently less useful to solve polynomial systems

Some current research efforts are:

- Investigating the properties of the column space
- Translating the interpretations to the block Macaulay matrix

A final note on the computational complexity

Comparison of the computation time to construct a numerical basis matrix of the right null space of a Macaulay matrix via the standard $(-)$, recursive $(-)$, and sparse $(-)$ approach.

Christof Vermeersch†‡ Bart De Moor†

Any questions? A A

小利帝留帝

Ballymore

fwo

† KU Leuven, Dept. of Electrical Engineering (ESAT), Center for Dynamical Systems, Signal Processing, and Data Analytics (STA-DIUS), Kasteelpark Arenberg 10, 3001 Leuven, Belgium ([christof.vermeersch@esat.](christof.vermeersch@esat.kuleuven.be) [kuleuven.be](christof.vermeersch@esat.kuleuven.be), [bart.demoor@esat.kuleuven.](bart.demoor@esat.kuleuven.be) [be](bart.demoor@esat.kuleuven.be))

‡ Research was supported by FWO Strategic Basic Research fellowship under grant SB/1SA1319N

References

- Kim Batselier. A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials. PhD thesis, KU Leuven, Leuven, Belgium, 2013.
- Kim Batselier, Philippe Dreesen, and Bart De Moor. A fast recursive orthogonalization scheme for the Macaulay matrix. Journal of Computational and Applied Mathematics, 267:20–32, 2014a.
- Kim Batselier, Philippe Dreesen, and Bart De Moor. On the null spaces of the Macaulay matrix. Linear Algebra and its Applications, 460:259–289, 2014b.
- Robert M. Corless, Gianni M. Patrizia, and Barry M. Trager. A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In Proc. of the 1997 International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 133–140, Maui, HI, USA, 1997.

References

- Philippe Dreesen. Back to the Roots: Polynomial System Solving Using Linear Algebra. PhD thesis, KU Leuven, Leuven, Belgium, 2013.
- Philippe Dreesen, Kim Batselier, and Bart De Moor. Multidimensional realisation theory and polynomial system solving. International Journal of Control, 91(12): 2692–2704, 2018.
- Bin-Lun Ho and Rudolf E. Kalman. Effective construction of linear state-variable models from input/output functions. Reglungstechnik, 14(12):545–548, 1966.
- Daniel Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In Proc. of the 1983 European Conference on Computer Algebra (EUROCAL), pages 146–156, London, UK, 1983.

Hans J. Stetter. Numerical Polynomial Algebra. SIAM, Philadelphia, PA, USA, 2004.

References

- Christof Vermeersch and Bart De Moor. A column space based approach to solve systems of multivariate polynomial equations. IFAC-PapersOnLine, 54(9):137–144, 2021. Part of special issue: 24th International Symposium on Mathematical Theory of Networks and Systems (MTNS).
- Christof Vermeersch and Bart De Moor. Recursive algorithms to update a numerical basis matrix of the null space of the block row, (banded) block Toeplitz, and block Macaulay matrix. SIAM Journal on Scientific Computing (SISC), 45(2):A596–A620, 2023.
- Jan C. Willems. From time series to linear systems — part i. finite dimensional linear time invariant systems. Automatica, 22(5):561–580, 1986.

discrete-time overdetermined autonomous multidimensional systems

state space representation

$$
x [k_1 + 1, k_2, \ldots, k_n] = A_1 x [k],
$$

$$
\vdots
$$

$$
x [k_1, \ldots, k_{n-1}, k_n + 1] = A_n x [k],
$$

$$
y [k] = c^{\mathrm{T}} x [k],
$$

where $\boldsymbol{x} \in \mathbb{R}^m$ is the state vector, $\boldsymbol{A}_i \in \mathbb{R}^{m \times m}$ define the autonomous state transitions, and $\boldsymbol{c}\in\mathbb{R}^m$ defines how the one-dimensional output y is composed from the state vector

trajectories representation

$$
\boldsymbol{r}\left(\boldsymbol{z}\right)w\left[k_{1},\ldots,k_{n}\right]=\boldsymbol{0},
$$

where $\bm{r} \in \mathbb{R}^{n \times 1}$ and $\bm{z} = (z_1, \dots, z_n)$ denotes the multidimensional shift operator, for which holds that

$$
z_i:(z_iw)[\mathbf{k}]=w[k_1,\ldots,k_i+1,\ldots,k_n].
$$

Via this shift operator, a difference equation can be associated with a multivariate polynomial in $x = z$.

[\(Dreesen et al., 2018;](#page-45-3) [Willems, 1986\)](#page-46-2)

Consider the following set of difference equations

$$
\begin{cases}\n\text{trajectory 1: } w[k_1, k_2 + 1] + 2w[k_1 + 1, k_2 + 1] + 3w[k_1, k_2 + 2] = 0, \\
\text{trajectory 2: } 4w[k_1, k_2] + 5w[k_1 + 1, k_2] + 6w[k_1, k_2 + 1] = 0.\n\end{cases}
$$

By shifting these equations up to order/degree two, we find

$$
\begin{bmatrix} 0 & 0 & 1 & 0 & 2 & 3 \ 4 & 5 & 6 & 0 & 0 & 0 \ 0 & 4 & 0 & 5 & 6 & 0 \ 0 & 0 & 4 & 0 & 5 & 6 \ \end{bmatrix} \begin{bmatrix} w[k_1, k_2] \\ w[k_1 + 1, k_2] \\ w[k_1, k_2 + 1] \\ w[k_1 + 2, k_2] \\ w[k_1 + 1, k_2 + 1] \\ w[k_1, k_2 + 2] \end{bmatrix} = \mathbf{0}.
$$

Consider the following system of multivariate polynomial equations

$$
\begin{cases} p_1(z) = z_2 + 2z_1z_2 + 3z_2^2 = 0, \\ p_2(z) = 4 + 5z_1 + 6z_2 = 0. \end{cases}
$$

By shifting these equations up to order/degree two, we find

$$
\begin{bmatrix} 0 & 0 & 1 & 0 & 2 & 3 \ 4 & 5 & 6 & 0 & 0 & 0 \ 0 & 4 & 0 & 5 & 6 & 0 \ 0 & 0 & 4 & 0 & 5 & 6 \ \end{bmatrix} \begin{bmatrix} 1 \ z_1 \ z_2 \ z_1^2 \ z_1^2 \ z_2^2 \ z_2^2 \ z_2^2 \end{bmatrix} = \mathbf{0}.
$$

A special basis matrix of the null space of the Macaulay matrix is the column echelon basis matrix

$$
\boldsymbol{H}_{d}=\boldsymbol{Z}_{d}\boldsymbol{T}_{Z}=\boldsymbol{V}_{d}\boldsymbol{T}_{V}.
$$

The multiplication property in H leads to eigenvalue problems

$$
\boldsymbol{S_0} \boldsymbol{H}_d \boldsymbol{A}_i = \boldsymbol{S}_i \boldsymbol{H}_d,
$$

or

$$
\boldsymbol{A}_{i}=\left(\boldsymbol{S}_{0}\boldsymbol{H}_{d}\right)^{\dagger}\left(\boldsymbol{S}_{i}\boldsymbol{H}_{d}\right).
$$

This gives us the system matrices A_i via Ho–Kalman's shift trick; a multidimensional realization problem!

[\(Ho and Kalman, 1966;](#page-45-4) [Dreesen et al., 2018\)](#page-45-3)

multidimensional extended observability matrix

