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Introduction
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A presentation about linear algebra in algebraic geometry

map → matrix
ideal → row space

normal set/standard monomials → linearly (in)dependent rows/columns
Gröbner basis → set of rows

Buchberger’s algorithm → singular value decomposition
roots → eigenvalues

Batselier (2013); Dreesen (2013)



Polynomials and Macaulay Matrix
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We consider polynomials pi (x) ∈ Pn = C [x1, . . . , xn], ∀i = 1, . . . , s,

pi (x) =
∑
{α}

cαx
α.

The ideal I ⊂ Pn generated by these polynomials is defined by

I = ⟨p1 (x) , . . . , ps (x)⟩ =

{
s∑

i=1

hi (x) pi (x) : hi (x) ∈ C [x1, . . . , xn]

}
.

Of course, an other important object is the variety of that ideal, i.e.,

V (I) = {a ∈ Cn : pi (a) = 0,∀i = 1, . . . , s} .



Polynomials and Macaulay matrix
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p1 (x) = −3x2 + 6x1x2 + (−1)x22 + 1x21x2 + (−3)x1x

2
2 + 1x32 = 0

p2 (x) = 1 + 2x1 + (−2)x2 + 1x21 + (−2)x1x2 + 1x22 = 0

p3 (x) = (−4)x2 + 1x22 = 0

⇓



1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2

p1(x) 0 0 −3 0 6 −1 0 1 −3 1
p2(x) 1 2 −2 1 −2 1 0 0 0 0

x1p2(x) 0 1 0 2 −2 0 1 −2 1 0
x2p2(x) 0 0 1 0 2 −2 0 1 −2 1

p3(x) 0 0 −4 0 0 1 0 0 0 0
x1p3(x) 0 0 0 0 −4 0 0 0 1 0
x2p3(x) 0 0 0 0 0 −4 0 0 0 1





1
x1
x2
x21

x1x2
x22
x31

x21x2
x1x

2
2

x32


= 0

Macaulay matrix M3



Fundamental subspaces of a matrix
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Cq

0

R (A)

N (A)

Cp

0

C (A)

L (A)

⊥ ⊥

A ∈ Cp×q



Fundamental subspaces of a matrix
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Cq

0

R (A)

N (A)

Cp

0

C (A)

L (A)

⊥ ⊥

Axr = b
xr

b

xn Axn = 0

Ax = b

x

A ∈ Cp×q



Fundamental subspaces of a matrix
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Cq
v1

v
r

v
q

vr+
1
0

R (A)

N (A)

Cp
u 1u

r

u
p

u r+
1
0

C (A)

L (A)

⊥ ⊥

dim = r

dim = n

dim = c

dim = l

A = UΣV H

singular value decomposition as our “work horse”!



Two important theorems
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Gilbert Strang poses with his
“Introduction to Linear Algebra”.

Rank-nullity theorem

c = dim (C (A)) = dim (R (A)) = r

Fundamental theorem of linear algebra

rank (A) + nullity (A) = r + n = q

The photo of Gilbert Strang was taken by Miller (2023).
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Row space of the Macaulay matrix
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What can we find in the row space?



1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2

p1(x) 0 0 −3 0 6 −1 0 1 −3 1
p2(x) 1 2 −2 1 −2 1 0 0 0 0

x1p2(x) 0 1 0 2 −2 0 1 −2 1 0
x2p2(x) 0 0 1 0 2 −2 0 1 −2 1

p3(x) 0 0 −4 0 0 1 0 0 0 0
x1p3(x) 0 0 0 0 −4 0 0 0 1 0
x2p3(x) 0 0 0 0 0 −4 0 0 0 1


⇓{

s∑
i=0

hi (x) pi (x) : hi (x) ∈ Pn
d−di

}



Ideal?
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So, it is now very tempting to say that

R (Md)
?
= ⟨p1 (x) , . . . , ps (x)⟩ ∩ Pn

d ≜ ⟨p1 (x) , . . . , ps (x)⟩d .

However, this is not true!

Counter example {
p1 (x) = x21 + 2x1 + 1 = 0

p2 (x) = x21 + x1 + 1 = 0

1 ∈ ⟨p1 (x) , p2 (x)⟩, because

(−1− x1) p1 (x) + (2 + x1) p2 (x) = 1,

but 1 /∈ R (M2). In fact, the polynomial combination implies that 1 ∈ R (M3).
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So, it is now very tempting to say that

R (Md)
?
= ⟨p1 (x) , . . . , ps (x)⟩ ∩ Pn

d ≜ ⟨p1 (x) , . . . , ps (x)⟩d .

However, this is not true!

Counter example {
p1 (x) = x21 + 2x1 + 1 = 0

p2 (x) = x21 + x1 + 1 = 0

1 ∈ ⟨p1 (x) , p2 (x)⟩, because

(−1− x1) p1 (x) + (2 + x1) p2 (x) = 1,

but 1 /∈ R (M2). In fact, the polynomial combination implies that 1 ∈ R (M3).

M2 =

[
1 2 1
1 1 1

]



Ideal?
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So, it is now very tempting to say that

R (Md)
?
= ⟨p1 (x) , . . . , ps (x)⟩ ∩ Pn

d ≜ ⟨p1 (x) , . . . , ps (x)⟩d .

However, this is not true!

Counter example {
p1 (x) = x21 + 2x1 + 1 = 0

p2 (x) = x21 + x1 + 1 = 0

1 ∈ ⟨p1 (x) , p2 (x)⟩, because

(−1− x1) p1 (x) + (2 + x1) p2 (x) = 1,

but 1 /∈ R (M2). In fact, the polynomial combination implies that 1 ∈ R (M3).

M3 =


1 2 1 0
0 1 2 1
1 1 1 0
0 1 1 1





Interpretation of the row space of the Macaulay matrix
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We consider the homogeneous ideal instead:

〈
ph1 (x̃) , . . . , p

h
s (x̃)

〉
=

{
s∑

i=0

hi (x̃) p
h
i (x̃) : hi (x̃) ∈ Pn

d−di

}
.

The homogeneity guarantees that all homogeneous polynomials of degree d are
contained in the R (Md), which corresponds to

R (Md) =
〈
ph1 (x) , . . . , p

h
s (x)

〉
d
.

An important consequence is that

dim
(〈

ph1 (x̃) , . . . , p
h
s (x̃)

〉
d

)
= rd.

But, what makes rd ≤ pd?

Linearly dependent rows or syzygies!

(Batselier et al., 2014b)
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Linearly dependent rows and syzygies
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A linearly dependent row can be written as a linear combination of the previous rows:



1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2

p1(x) 0 0 −3 0 6 −1 0 1 −3 1
p2(x) 1 2 −2 1 −2 1 0 0 0 0

x1p2(x) 0 1 0 2 −2 0 1 −2 1 0
x2p2(x) 0 0 1 0 2 −2 0 1 −2 1

p3(x) 0 0 −4 0 0 1 0 0 0 0
x1p3(x) 0 0 0 0 −4 0 0 0 1 0
x2p3(x) 0 0 0 0 0 −4 0 0 0 1


In terms of the polynomials, this means that there are syzygies!

• basis syzygy:
∑s

i=1 hi (x) pi (x) = 0

• derived syzygy: xβ
∑s

i=1 hi (x) pi (x) = 0

r6 = r5 + r4 - r1



Linearly dependent rows and syzygies
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A linearly dependent row can be written as a linear combination of the previous rows:



1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2

p1(x) 0 0 −3 0 6 −1 0 1 −3 1
p2(x) 1 2 −2 1 −2 1 0 0 0 0

x1p2(x) 0 1 0 2 −2 0 1 −2 1 0
x2p2(x) 0 0 1 0 2 −2 0 1 −2 1

p3(x) 0 0 −4 0 0 1 0 0 0 0
x1p3(x) 0 0 0 0 −4 0 0 0 1 0
x2p3(x) 0 0 0 0 0 −4 0 0 0 1


In terms of the polynomials, this means that there are syzygies!

• basis syzygy:
∑s

i=1 hi (x) pi (x) = 0

• derived syzygy: xβ
∑s

i=1 hi (x) pi (x) = 0

r6 = r5 + r4 - r1

(1− x1) p3 (x) + x2p2 (x)− p1 (x) = 0



Linearly dependent rows and syzygies
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A linearly dependent row can be written as a linear combination of the previous rows:



1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2

p1(x) 0 0 −3 0 6 −1 0 1 −3 1
p2(x) 1 2 −2 1 −2 1 0 0 0 0

x1p2(x) 0 1 0 2 −2 0 1 −2 1 0
x2p2(x) 0 0 1 0 2 −2 0 1 −2 1

p3(x) 0 0 −4 0 0 1 0 0 0 0
x1p3(x) 0 0 0 0 −4 0 0 0 1 0
x2p3(x) 0 0 0 0 0 −4 0 0 0 1


In terms of the polynomials, this means that there are syzygies!

• basis syzygy:
∑s

i=1 hi (x) pi (x) = 0

• derived syzygy: xβ
∑s

i=1 hi (x) pi (x) = 0

r6 = r5 + r4 - r1

(1− x1) p3 (x) + x2p2 (x)− p1 (x) = 0

x21 ((1− x1) p3 (x) + x2p2 (x)− p1 (x)) = 0
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Dimension of the left null space
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The left null space contains the “coefficients” of the syzygies:

L (Md) =
{
h ∈ C1×p : hMd = 0

}
.

⇓
s∑

i=1

hi (x) pi (x) = 0.

The dimension ld of the left null space counts the total number of syzygies in R (Md):(
d− dl + n

n

)
is added to ld for every degree dl basis syzygy.

(Batselier et al., 2014b)



Degree of regularity
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An important consequence is the degree of regularity:

Definition

The minimal degree d∗ for which the dimension ld can be computed via the
obtained syzygies at that degree is called the degree of regularity.

Once ld is known, then the rank rd and nullity nd of the Macaulay matrix are also fully
determined!

• We need higher degrees to check whether we found d∗

• There are upper bounds, but sometimes d∗ is much lower (Lazard, 1983)

• Recursive algorithms are essential (Batselier et al., 2014a,b)

(Batselier et al., 2014b)
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Multiplication maps
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Consider an ideal I = ⟨p1 (x) , . . . , ps (x)⟩ ⊂ Pn and zero-dimensional variety V (I)

⇓

The quotient ring R ≜ Pn/ ⟨p1 (x) , . . . , ps (x)⟩ is a finite-dimensional vector space.
We can define the multiplication maps:

Mg : R → R : p (x) + I 7→ g (x) p (x) + I

with properties

• Eigenvalues of Mg are g (x)|(j)
• The multiplication maps commute, i.e., Mg1Mg2 = Mg2Mg1

How do we construct these maps?



Stetter’s eigenvalue problem
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Stetter’s approach

1. Compute a Gröbner basis G for I
2. Derive a monomial basis for R from G

3. Solve the eigenvalue problems that
expresses the monomial multiplication
within the R (simultaneous)

4. Read the affine solutions from the
eigenvalues/eigenvectors

Our approach

1. Compute a numerical basis matrix Zd

for the null space of Md, with d ≥ d∗.

2. Determine the linearly independent
rows of Zd

3. Solve the eigenvalue problems that
expresses the monomial multiplication
within the R (simultaneous)

4. Read the affine solutions from the
eigenvalues/eigenvectors

A lot of details hiding in these steps, e.g., dealing with multiplicities and solutions at infinity
(Stetter, 2004; Batselier et al., 2014b; Vermeersch and De Moor, 2021)



Dual vector space
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Basis matrix of the right null space can be written in terms of the solutions (d ≥ d∗)

• solutions can be described by the dual
vector space of the quotient space R

• from the rank-nullity theorem

nd = qd − rd

= dimPn
d /

〈
ph1 (x̃) , . . . , p

h
s (x̃)

〉
d

• requires dual vector space Cn′
d of Cn

d

and differential functionals

∂i(·)|(j) ≜
1

i1! . . . in!

∂|i|(·)
∂xi11 . . . ∂xinn

∣∣∣∣∣
(j)

confluent multivariate Vandermonde
basis matrix

Vd =



x20
∣∣
(1)

0 x20
∣∣
(2)

x0x1|(1) x0|(1) x0x1|(2)
x0x2|(1) 0 x0x2|(2)
x21

∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22

∣∣
(1)

0 x22
∣∣
(2)


∂00(v)|(1) ∂10(v)|(1) ∂00(v)|(2)

(Batselier et al., 2014b)



Monomial multiplication property
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one projective solution

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


︸ ︷︷ ︸

Sx1,x0



x20
∣∣
(1)

x0x1|(1)
x0x2|(1)
x21

∣∣
(1)

x1x2|(1)
x22

∣∣
(1)


︸ ︷︷ ︸

∂00(v)|(1)

x1|(1) =

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


︸ ︷︷ ︸

Sx0,x1



x20
∣∣
(1)

x0x1|(1)
x0x2|(1)
x21

∣∣
(1)

x1x2|(1)
x22

∣∣
(1)


︸ ︷︷ ︸

∂00(v)|(1)

x0|(1)

Note that we consider differential functionals in C2′
2 in this exposition
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one projective solution

Sx1,x0



x20
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x22

∣∣
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︸ ︷︷ ︸

∂00(v)|(1)

x1|(1) = Sx0,x1



x20
∣∣
(1)

x0x1|(1)
x0x2|(1)
x21

∣∣
(1)

x1x2|(1)
x22

∣∣
(1)


︸ ︷︷ ︸
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Monomial multiplication property
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multiple simple projective solutions

Sx1,x0



x20
∣∣
(1)

x20
∣∣
(2)

x0x1|(1) x0x1|(2)
x0x2|(1) x0x2|(2)
x21

∣∣
(1)

x21
∣∣
(2)

x1x2|(1) x1x2|(2)
x22

∣∣
(1)

x22
∣∣
(2)


︸ ︷︷ ︸

Vd

Dx1 = Sx0,x1



x20
∣∣
(1)

x20
∣∣
(2)

x0x1|(1) x0x1|(2)
x0x2|(1) x0x2|(2)
x21

∣∣
(1)

x21
∣∣
(2)

x1x2|(1) x1x2|(2)
x22

∣∣
(1)

x22
∣∣
(2)


︸ ︷︷ ︸

Vd

Dx0

[
x1|(1) 0

0 x1|(2)

]
Note that we consider differential functionals in C2′

2 in this exposition



Monomial multiplication property
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multiple projective solutions with multiplicity larger than one

Sx1,x0



x20
∣∣
(1)

0 x20
∣∣
(2)

x0x1|(1) x0|(1) x0x1|(2)
x0x2|(1) 0 x0x2|(2)
x21

∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22

∣∣
(1)

0 x22
∣∣
(2)


︸ ︷︷ ︸

Vd

Dx1 = Sx0,x1



x20
∣∣
(1)

0 x20
∣∣
(2)

x0x1|(1) x0|(1) x0x1|(2)
x0x2|(1) 0 x0x2|(2)
x21

∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22

∣∣
(1)

0 x22
∣∣
(2)


︸ ︷︷ ︸

Vd

Dx0

x1|(1) × ×
0 x1|(1) ×
0 0 x1|(2)


Note that we consider differential functionals in C2′

2 in this exposition



Monomial multiplication property
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select the linearly independent rows of Vd

multiple affine solutions with multiplicity larger than one

S1



1 0 1

x1|(1) 1 x1|(2)
x2|(1) 0 x2|(2)
x21

∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22

∣∣
(1)

0 x22
∣∣
(2)


︸ ︷︷ ︸

Vd

Dx1 = Sx1



1 0 1

x1|(1) 1 x1|(2)
x2|(1) 0 x2|(2)
x21

∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22

∣∣
(1)

0 x22
∣∣
(2)


︸ ︷︷ ︸

Vd

I

Note that we consider differential functionals in C2′
2 in this exposition



Removing solutions at infinity
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d = 3

Vd

d∗ = 4 d = 5

gap

d = 6

gap

compressed basis matrix



Two difficulties
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S1VdDx1 = Sx1Vd

• Solutions/confluent Vandermonde basis vectors are not known in advanced:

numerical basis matrix Zd of the null space

⇓ Vd = ZdT

(S1Zd)TDx1 = (Sx1Zd)T

TDx1T
−1 = (S1Zd)

−1 (Sx1Zd)

• Not possible to numerically stable compute Jordan normal form:

numerically stable Schur decomposition

⇓
QUx1Q

−1 = (S1Zd)
−1 (Sx1Zd)

(Vermeersch and De Moor, 2021; Corless et al., 1997)



Multidimensional realization theory
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• It is possible to shift with any polynomial in the eigenvalues – for example, x2

QUx2Q
−1 = (S1Zd)

−1 (Sx2Zd)

• This leads to the same Q

• Solved via simultaneous triangularization

• Different shift polynomials can be useful

• Entire degree block rows instead of single rows can be considered

Realization theory for any shift polynomial g (x):

QUgQ
−1 = (S1Zd)

† (SgZd) ,

where S1 and Sg select rows from Zd
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Complementarity between right null space and column space
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gap

gap

= 0

Md

Zd

(Dreesen, 2013)



Reordered Macaulay matrix
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[
M1 M2 M3 M4

]︸ ︷︷ ︸
N


A 0
B 0
C 0

W21 W22

 = 0

A : affine standard monomials

B : other affine shifted monomials

C : other affine monomials and gap

W2× : remaining rows of the basis matrix

The multiplication property

ADg = Sg

[
A
B

]
yields again an eigenvalue

problem

ADgA
−1 = Sg

[
I

BA−1

]

(Vermeersch and De Moor, 2021)



Backward QR decomposition
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The backward QR decomposition eliminates the dependency on the right null space


R14 R13 R12 R11

R24 R23 R22 0
R34 R33 0 0
R44 0 0 0




A 0
B 0
C 0

W21 W22

 = 0

BA−1 = −R−1
33 R34



Backward QR decomposition
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The backward QR decomposition eliminates the dependency on the right null space


R14 R13 R12 R11

R24 R23 R22 0
R34 R33 0 0
R44 0 0 0




A 0
B 0
C 0

W21 W22

 = 0

BA−1 = −R−1
33 R34



Equivalent multidimensional realization theory
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Realization theory for any shift polynomial g (x):

ADgA
−1 = Sg

[
I

−R−1
33 R34

]
,

where Sg selects rows from I and −R−1
33 R34

• a standard eigenvalue problem, with A the matrix of eigenvectors

• backward QR decomposition removes influence of solutions at infinity implicitly

• same adaptation to multiple Schur decompositions is possible
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Conclusions and future work
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Each of the fundamental subspaces of the Macaulay matrix has a purpose:

• Many properties/questions from algebraic geometry hide in one of the
fundamental subspaces of the Macaulay matrix

• A full treatment of the column space is not yet available

• Some algorithmic issues make the column space currently less useful to solve
polynomial systems

Some current research efforts are:

• Investigating the properties of the column space

• Translating the interpretations to the block Macaulay matrix



A final note on the computational complexity
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10 20 30 40

10−2

100

102

104

degree d

co
m
p
u
ta
ti
on

ti
m
e
[s
]

d∗

Comparison of the computation time to construct a numerical basis matrix of the right null
space of a Macaulay matrix via the standard ( ), recursive ( ), and sparse ( ) approach.

(Batselier et al., 2014a; Vermeersch and De Moor, 2023)
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A system theoretic intermezzo!

discrete-time overdetermined autonomous multidimensional systems

state space representation

x [k1 + 1, k2, . . . , kn] = A1x [k] ,

...

x [k1, . . . , kn−1, kn + 1] = Anx [k] ,

y [k] = cTx [k] ,

where x ∈ Rm is the state vector,
Ai ∈ Rm×m define the autonomous state
transitions, and c ∈ Rm defines how the
one-dimensional output y is composed

from the state vector

trajectories representation

r (z)w [k1, . . . , kn] = 0,

where r ∈ Rn×1 and z = (z1, . . . , zn)
denotes the multidimensional shift
operator, for which holds that

zi : (ziw) [k] = w [k1, . . . , ki + 1, . . . , kn] .

Via this shift operator, a difference
equation can be associated with a
multivariate polynomial in x = z.

(Dreesen et al., 2018; Willems, 1986)



A system theoretic intermezzo!

Consider the following set of difference equations{
trajectory 1: w [k1, k2 + 1] + 2w [k1 + 1, k2 + 1] + 3w [k1, k2 + 2] = 0,

trajectory 2: 4w [k1, k2] + 5w [k1 + 1, k2] + 6w [k1, k2 + 1] = 0.

By shifting these equations up to order/degree two, we find


0 0 1 0 2 3
4 5 6 0 0 0
0 4 0 5 6 0
0 0 4 0 5 6




w [k1, k2]

w [k1 + 1, k2]
w [k1, k2 + 1]

w [k1 + 2, k2]
w [k1 + 1, k2 + 1]
w [k1, k2 + 2]

 = 0.



A system theoretic intermezzo!

Consider the following set of difference equations{
trajectory 1: w [k1, k2 + 1] + 2w [k1 + 1, k2 + 1] + 3w [k1, k2 + 2] = 0,

trajectory 2: 4w [k1, k2] + 5w [k1 + 1, k2] + 6w [k1, k2 + 1] = 0.

By shifting these equations up to order/degree two, we find


0 0 1 0 2 3
4 5 6 0 0 0
0 4 0 5 6 0
0 0 4 0 5 6




w [k1, k2]

w [k1 + 1, k2]
w [k1, k2 + 1]

w [k1 + 2, k2]
w [k1 + 1, k2 + 1]
w [k1, k2 + 2]

 = 0.

system of multivariate polynomial equations{
p1 (z) = z2 + 2z1z2 + 3z22 = 0,

p2 (z) = 4 + 5z1 + 6z2 = 0.



1

z1
z2
z21
z1z2
z22

 = 0.



A system theoretic intermezzo!

A special basis matrix of the null space of the
Macaulay matrix is the column echelon basis matrix

Hd = ZdTZ = VdTV .

The multiplication property in H leads to
eigenvalue problems

S0HdAi = SiHd,

or
Ai = (S0Hd)

† (SiHd) .

This gives us the system matrices Ai via
Ho–Kalman’s shift trick; a multidimensional
realization problem!

multidimensional extended
observability matrix

Γ =



cT

cTA1

cTA2

cTA2
1

cTA1A2

cTA2
2

...

cTAd
1

...
cTAd

2


(Ho and Kalman, 1966; Dreesen et al., 2018)
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