Low-Rank Nonconvex Solver for Sum-of-Squares SIAMOPT 2023

Benoît Legat (Joint with Chenyang Yuan and Pablo Parrilo)

KU Leuven – MIT

Thursday 1st June, 2023

Introduction

Semidefinite programming (SDP) is a powerful and expressive convex optimization method

Positive semidefinite variable $X \succeq 0 +$ linear constraints

Solved in polynomial time with interior point methods $(n \sim 10^3)$

←ロト ←何ト ←ヨト ←ヨト

Introduction

Semidefinite programming (SDP) is a powerful and expressive convex optimization method

Positive semidefinite variable $X \succeq 0 +$ linear constraints

Solved in polynomial time with interior point methods $(n \sim 10^3)$

However: Success of deep learning shows that

- **•** Certain non-convex problems can be solved efficiently in practice with first-order methods $(n > 10^8)$
- Algorithms that scale linearly necessary for working with "big data"

←ロト ←何ト ←ヨト ←ヨト

Introduction

Semidefinite programming (SDP) is a powerful and expressive convex optimization method

Positive semidefinite variable $X \succeq 0 +$ linear constraints

Solved in polynomial time with interior point methods $(n \sim 10^3)$

However: Success of deep learning shows that

- **•** Certain non-convex problems can be solved efficiently in practice with first-order methods $(n > 10^8)$
- Algorithms that scale linearly necessary for working with "big data"

Can we apply these ideas to solving SDPs?

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Burer-Monteiro methods for solving SDPs factor PSD variable $X = U U^{T}$. then perform local optimization on non-convex unconstrained problem

$$
\langle A_i, X \rangle = b_i \quad \forall i \qquad \longrightarrow \quad \min_{U} \sum_i (\langle A_i, UU^T \rangle - b_i)^2
$$

Feasible \iff Optimum = 0

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Burer-Monteiro methods for solving SDPs factor PSD variable $X = U U^{T}$. then perform local optimization on non-convex unconstrained problem

$$
\langle A_i, X \rangle = b_i \quad \forall i \qquad \longrightarrow \quad \min_{U} \sum_i (\langle A_i, UU^T \rangle - b_i)^2
$$

Feasible \iff Optimum = 0

May get stuck in local optimum (explicit counterexamples where second-order critical point \neq global minimum)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Burer-Monteiro methods for solving SDPs factor PSD variable $X = U U^{T}$. then perform local optimization on non-convex unconstrained problem

$$
\langle A_i, X \rangle = b_i \quad \forall i \qquad \longrightarrow \quad \min_{U} \sum_i (\langle A_i, UU^T \rangle - b_i)^2
$$

Feasible \iff Optimum = 0

May get stuck in local optimum (explicit counterexamples where second-order critical point \neq global minimum)

OR

(ロトス例) スミトスミン

When is non-convexity be[nig](#page-5-0)[n?](#page-7-0)

Burer-Monteiro methods for solving SDPs factor PSD variable $X = U U^{T}$, then perform local optimization on non-convex unconstrained problem

$$
\langle A_i, X \rangle = b_i \quad \forall i \qquad \longrightarrow \quad \min_{U} \sum_i (\langle A_i, UU^T \rangle - b_i)^2
$$

Feasible \iff Optimum = 0

May get stuck in local optimum (explicit counterexamples where second-order critical point \neq global minimum)

 ${\sf SDP}$ with m linear constraints, factorization $X = U U^\top$, where $U \in \mathbb{R}^{n \times r}.$

[^{\[}BM05\]](#page-0-1) Burer and Monteiro. "Local Minima and Convergence in Low-Rank Semidefinite Programming". 2005.

[^{\[}CM19\]](#page-0-1) Cifuentes and Moitra. "Polynomial Time Guarantees for the Burer-Monteiro Method". 2019.

[^{\[}Bho+18\]](#page-0-1) Bhojanapalli et al. "Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form". 2018.

[^{\[}GJZ17\]](#page-0-1) Ge, Jin, and Zheng. "No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis". 2017.

[^{\[}BBV16\]](#page-0-1) Bandeira, Boumal, and Voroninski. "On the low-rank approach for semidefinite programs [aris](#page-7-0)in[g in](#page-9-0) [sy](#page-7-0)[nc](#page-8-0)[hr](#page-11-0)[on](#page-12-0)[izatio](#page-0-0)[n an](#page-42-0)[d co](#page-0-0)[mmu](#page-42-0)[nity](#page-0-0) [detect](#page-42-0)ion". 2016. イロト イ押 トイヨト イヨ Ω

 ${\sf SDP}$ with m linear constraints, factorization $X = U U^\top$, where $U \in \mathbb{R}^{n \times r}.$

Second-order critical points \implies **Global minima** (non-convexity benign):

- $r \ge n$ [\[BM05\]](#page-0-1) (explicit counterexamples exist for $r = n 1$, $m = n$)
- $r \gtrsim \sqrt{m}$ with smoothed analysis [\[CM19\]](#page-0-1), determinant regularization [\[BM05\]](#page-0-1) or generic constraints [\[Bho+18\]](#page-0-1)
- $r \gtrsim r^*$, where r^* maximum possible rank of SDP solution (matrix sensing [\[GJZ17\]](#page-0-1), rotational synchronization [\[BBV16\]](#page-0-1))

[^{\[}BM05\]](#page-0-1) Burer and Monteiro. "Local Minima and Convergence in Low-Rank Semidefinite Programming". 2005.

[^{\[}CM19\]](#page-0-1) Cifuentes and Moitra. "Polynomial Time Guarantees for the Burer-Monteiro Method". 2019.

[^{\[}Bho+18\]](#page-0-1) Bhojanapalli et al. "Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form". 2018.

[^{\[}GJZ17\]](#page-0-1) Ge, Jin, and Zheng. "No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis". 2017.

[^{\[}BBV16\]](#page-0-1) Bandeira, Boumal, and Voroninski. "On the low-rank approach for semidefinite programs [aris](#page-8-0)in[g in](#page-10-0) [sy](#page-7-0)[nc](#page-8-0)[hr](#page-11-0)[on](#page-12-0)[izatio](#page-0-0)[n an](#page-42-0)[d co](#page-0-0)[mmu](#page-42-0)[nity](#page-0-0) [detect](#page-42-0)ion". 2016. Ω

 ${\sf SDP}$ with m linear constraints, factorization $X = U U^\top$, where $U \in \mathbb{R}^{n \times r}.$

Second-order critical points \implies **Global minima** (non-convexity benign):

- $r \ge n$ [\[BM05\]](#page-0-1) (explicit counterexamples exist for $r = n 1$, $m = n$)
- $r \gtrsim \sqrt{m}$ with smoothed analysis [\[CM19\]](#page-0-1), determinant regularization [\[BM05\]](#page-0-1) or generic constraints [\[Bho+18\]](#page-0-1)
- $r \gtrsim r^*$, where r^* maximum possible rank of SDP solution (matrix sensing [\[GJZ17\]](#page-0-1), rotational synchronization [\[BBV16\]](#page-0-1))

Smaller r in factorization \rightarrow less benign landscape

[^{\[}BM05\]](#page-0-1) Burer and Monteiro. "Local Minima and Convergence in Low-Rank Semidefinite Programming". 2005.

[^{\[}CM19\]](#page-0-1) Cifuentes and Moitra. "Polynomial Time Guarantees for the Burer-Monteiro Method". 2019.

[^{\[}Bho+18\]](#page-0-1) Bhojanapalli et al. "Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form". 2018.

[^{\[}GJZ17\]](#page-0-1) Ge, Jin, and Zheng. "No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis". 2017.

[^{\[}BBV16\]](#page-0-1) Bandeira, Boumal, and Voroninski. "On the low-rank approach for semidefinite programs [aris](#page-9-0)in[g in](#page-11-0) [sy](#page-7-0)[nc](#page-8-0)[hr](#page-11-0)[on](#page-12-0)[izatio](#page-0-0)[n an](#page-42-0)[d co](#page-0-0)[mmu](#page-42-0)[nity](#page-0-0) [detect](#page-42-0)ion". 2016. Ω

 ${\sf SDP}$ with m linear constraints, factorization $X = U U^\top$, where $U \in \mathbb{R}^{n \times r}.$

Second-order critical points \implies **Global minima** (non-convexity benign):

- $r \ge n$ [\[BM05\]](#page-0-1) (explicit counterexamples exist for $r = n 1$, $m = n$)
- $r \gtrsim \sqrt{m}$ with smoothed analysis [\[CM19\]](#page-0-1), determinant regularization [\[BM05\]](#page-0-1) or generic constraints [\[Bho+18\]](#page-0-1)
- $r \gtrsim r^*$, where r^* maximum possible rank of SDP solution (matrix sensing [\[GJZ17\]](#page-0-1), rotational synchronization [\[BBV16\]](#page-0-1))

Smaller r in factorization \rightarrow less benign landscape

Can we get do better if the SDP has special structure?

[^{\[}BM05\]](#page-0-1) Burer and Monteiro. "Local Minima and Convergence in Low-Rank Semidefinite Programming". 2005.

[^{\[}CM19\]](#page-0-1) Cifuentes and Moitra. "Polynomial Time Guarantees for the Burer-Monteiro Method". 2019.

[^{\[}Bho+18\]](#page-0-1) Bhojanapalli et al. "Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form". 2018.

[^{\[}GJZ17\]](#page-0-1) Ge, Jin, and Zheng. "No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis". 2017.

[^{\[}BBV16\]](#page-0-1) Bandeira, Boumal, and Voroninski. "On the low-rank approach for semidefinite programs [aris](#page-10-0)in[g in](#page-12-0) [sy](#page-7-0)[nc](#page-8-0)[hr](#page-11-0)[on](#page-12-0)[izatio](#page-0-0)[n an](#page-42-0)[d co](#page-0-0)[mmu](#page-42-0)[nity](#page-0-0) [detect](#page-42-0)ion". 2016. Ω

Given $p(x)$, can we write it as a sum of squares? $\int_{i=1}^r u_i(x)^2$ Certifies that $p(x) \ge 0$, and can be formulated as a SDP:

$$
p(x) = \vec{b}(x)^{\top} Q \vec{b}(x), \quad Q \succeq 0
$$

[\[Chu+16\]](#page-0-1) Chua et al. "Gram spectrahedra". 2016.

造

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Given $p(x)$, can we write it as a sum of squares? $p(x) = \sum_{i=1}^{r} u_i(x)^2$ Certifies that $p(x) \ge 0$, and can be formulated as a SDP:

$$
p(x) = \vec{b}(x)^{\top} Q \vec{b}(x), \quad Q \succeq 0
$$

 Q satisfying above constraints is called the Gram spectrahedron $[Chu+16]$

[\[Chu+16\]](#page-0-1) Chua et al. "Gram spectrahedra". 2016.

Benoît Legat (KU Leuven – MIT) [Low-Rank Nonconvex Solver for Sum-of-Squares](#page-0-0) Thursday 1^{[st](#page-42-0)} June, 2023 5/16

 Ω

Previous work: rank needed for benign non-convexity ∼ max rank of extreme points of Gram spectrahedron

Can we do better?

[^{\[}Sch22\]](#page-0-1) Scheiderer. "Extreme points of Gram spectrahedra of binary forms". 2022.

Image credit: Tae Roh and Lieven Vandenberghe. (2006) Discrete transforms, semidefinite program[ming](#page-13-0) a[nd s](#page-15-0)[um](#page-13-0)[-o](#page-14-0)[f-s](#page-16-0)[qu](#page-17-0)[ares](#page-0-0) [repre](#page-42-0)[senta](#page-0-0)[tions](#page-42-0) [of n](#page-0-0)[onneg](#page-42-0)ative
polynomials. SIAM J. on Optimization. polynomials. SIAM J. on Optimization. Ω

Previous work: rank needed for benign non-convexity ∼ max rank of extreme points of Gram spectrahedron

Can we do better?

Univariate (trigonometric) polynomials:

$$
p(x) = a_0 + \sum_{k=1}^{2d} a_k \cos(kx) \quad x \in [0, 2\pi]
$$

Applications in signal processing, filter design and control

[^{\[}Sch22\]](#page-0-1) Scheiderer. "Extreme points of Gram spectrahedra of binary forms". 2022.

Image credit: Tae Roh and Lieven Vandenberghe. (2006) Discrete transforms, semidefinite program[ming](#page-14-0) a[nd s](#page-16-0)[um](#page-13-0)[-o](#page-14-0)[f-s](#page-16-0)[qu](#page-17-0)[ares](#page-0-0) [repre](#page-42-0)[senta](#page-0-0)[tions](#page-42-0) [of n](#page-0-0)[onneg](#page-42-0)ative
polynomials. SIAM J. on Optimization. polynomials. SIAM J. on Optimization. Ω

Previous work: rank needed for benign non-convexity ∼ max rank of extreme points of Gram spectrahedron

Can we do better?

Univariate (trigonometric) polynomials:

$$
p(x) = a_0 + \sum_{k=1}^{2d} a_k \cos(kx) \quad x \in [0, 2\pi]
$$

Applications in signal processing, filter design and control

Gram spectrahedra has extreme points of all ranks: $2 \leq r \lesssim \sqrt{2}$ d [\[Sch22\]](#page-0-1)

But always has rank-2 point! (Sum of 2 squares)

[^{\[}Sch22\]](#page-0-1) Scheiderer. "Extreme points of Gram spectrahedra of binary forms". 2022.

Image credit: Tae Roh and Lieven Vandenberghe. (2006) Discrete transforms, semidefinite program[ming](#page-15-0) a[nd s](#page-17-0)[um](#page-13-0)[-o](#page-14-0)[f-s](#page-16-0)[qu](#page-17-0)[ares](#page-0-0) [repre](#page-42-0)[senta](#page-0-0)[tions](#page-42-0) [of n](#page-0-0)[onneg](#page-42-0)ative polynomials. SIAM J. on Optimization. Ω

Find sum of squares decomposition of $p(x)$ by solving (equivalent to B-M):

$$
\min_{\mathbf{u}} f_p(\mathbf{u}) = ||p(x) - \sum_{i=1}^r u_i(x)^2||^2
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

重

 299

Find sum of squares decomposition of $p(x)$ by solving (equivalent to B-M):

$$
\min_{\mathbf{u}} f_p(\mathbf{u}) = ||p(x) - \sum_{i=1}^r u_i(x)^2||^2
$$

For any norm on polynomials, if $f_p(\mathbf{u})=0$, $\sum_i u_i(x)^2$ is a sum of squares decomposition of $p(x)$.

イロト イ押 トイヨ トイヨト

 299

œ

Find sum of squares decomposition of $p(x)$ by solving (equivalent to B-M):

$$
\min_{\mathbf{u}} f_p(\mathbf{u}) = ||p(x) - \sum_{i=1}^r u_i(x)^2||^2
$$

For any norm on polynomials, if $f_p(\mathbf{u})=0$, $\sum_i u_i(x)^2$ is a sum of squares decomposition of $p(x)$.

Theorem

For all nonnegative univariate polynomials $p(x) \in \mathbb{R}[x]_{2d}$ and any $r \geq 2$, if $\mathbf{u} \in \mathbb{R}[\mathsf{x}]_d^r$ satisfies $\nabla f_p(\mathbf{u}) = 0$ and $\nabla^2 f_p(\mathbf{u}) \succeq 0$, then $f_p(\mathbf{u}) = 0$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Find sum of squares decomposition of $p(x)$ by solving (equivalent to B-M):

$$
\min_{\mathbf{u}} f_p(\mathbf{u}) = ||p(x) - \sum_{i=1}^r u_i(x)^2||^2
$$

For any norm on polynomials, if $f_p(\mathbf{u})=0$, $\sum_i u_i(x)^2$ is a sum of squares decomposition of $p(x)$.

Theorem

For all nonnegative univariate polynomials $p(x) \in \mathbb{R}[x]_{2d}$ and any $r \geq 2$, if $\mathbf{u} \in \mathbb{R}[\mathsf{x}]_d^r$ satisfies $\nabla f_p(\mathbf{u}) = 0$ and $\nabla^2 f_p(\mathbf{u}) \succeq 0$, then $f_p(\mathbf{u}) = 0$.

First-order methods find sum of squares decomposition (non-convexity benign)

If we choose a suitable norm, $\nabla f_p(\mathbf{u})$ can be computed in $O(d \log d)$ time using Fast Fourier Transforms (FFTs)

 Ω

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

Define Sylvester map $\mathcal{A}_{\mathbf{u}}: \mathbb{R}[x]_d^r \to \mathbb{R}[x]_{2d}$

$$
\mathcal{A}_{\mathbf{u}}(\mathbf{v}) = \mathcal{A}_{(u_1, u_2)}((v_1, v_2)) = u_1v_1 + u_2v_2
$$

 299

イロト 不優 トイミト イミト 一番

Define Sylvester map $\mathcal{A}_{\mathbf{u}}: \mathbb{R}[x]_d^r \to \mathbb{R}[x]_{2d}$

$$
\mathcal{A}_{\mathbf{u}}(\mathbf{v}) = \mathcal{A}_{(u_1, u_2)}((v_1, v_2)) = u_1v_1 + u_2v_2
$$

Given an inner product $\langle \cdot, \cdot \rangle$ on polynomials with associated norm $\|\cdot\|$:

$$
f_p(\mathbf{u}) = ||u_1^2 + u_2^2 - p||^2
$$

$$
\nabla f_p(\mathbf{u})(\mathbf{v}) \sim \langle A_\mathbf{u}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle
$$

$$
\nabla^2 f_p(\mathbf{u})(\mathbf{v}, \mathbf{v}) \sim \langle A_\mathbf{v}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle + ||A_\mathbf{u}(\mathbf{v})||^2
$$

 299

イロト 不優 トイミト イミト 一番

Define Sylvester map $\mathcal{A}_{\mathbf{u}}: \mathbb{R}[x]_d^r \to \mathbb{R}[x]_{2d}$

$$
A_{\mathbf{u}}(\mathbf{v}) = A_{(u_1,u_2)}((v_1,v_2)) = u_1v_1 + u_2v_2
$$

Given an inner product $\langle \cdot, \cdot \rangle$ on polynomials with associated norm $\|\cdot\|$:

$$
f_p(\mathbf{u}) = ||u_1^2 + u_2^2 - p||^2
$$

$$
\nabla f_p(\mathbf{u})(\mathbf{v}) \sim \langle A_\mathbf{u}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle
$$

$$
\nabla^2 f_p(\mathbf{u})(\mathbf{v}, \mathbf{v}) \sim \langle A_\mathbf{v}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle + ||A_\mathbf{u}(\mathbf{v})||^2
$$

Goal: For all **u** such that $\nabla f_p(\mathbf{u})(\mathbf{v}) = 0$ and $\nabla^2 f_p(\mathbf{u})(\mathbf{v}, \mathbf{v}) \succeq 0$ for all **v**, show that $f_p(\mathbf{u}) = 0$.

K ロ K K @ K K ミ K K ミ K … 글

 QQ

Define Sylvester map $\mathcal{A}_{\mathbf{u}}: \mathbb{R}[x]_d^r \to \mathbb{R}[x]_{2d}$

$$
A_{\mathbf{u}}(\mathbf{v}) = A_{(u_1, u_2)}((v_1, v_2)) = u_1v_1 + u_2v_2
$$

Given an inner product $\langle \cdot, \cdot \rangle$ on polynomials with associated norm $\|\cdot\|$:

$$
f_p(\mathbf{u}) = ||u_1^2 + u_2^2 - p||^2
$$

$$
\nabla f_p(\mathbf{u})(\mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle
$$

$$
\nabla^2 f_p(\mathbf{u})(\mathbf{v}, \mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{v}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle + ||\mathcal{A}_{\mathbf{u}}(\mathbf{v})||^2
$$

Goal: For all **u** such that $\nabla f_p(\mathbf{u})(\mathbf{v}) = 0$ and $\nabla^2 f_p(\mathbf{u})(\mathbf{v}, \mathbf{v}) \succeq 0$ for all **v**, show that $f_p(\mathbf{u}) = 0$.

To do so, for every $p \in \Sigma[x]_{2d}$ and $\mathbf{u} \in \mathbb{R}[x]_d^2$, find $\mathbf{v_i} \in \mathbb{R}[x]_d^2$ so that:

$$
\nabla f_p(\mathbf{u})(\mathbf{v_0}) + \sum_{i=1}^k \nabla^2 f_p(\mathbf{u})(\mathbf{v}_i, \mathbf{v}_i) = -\left\| u_1^2 + u_2^2 - p \right\|^2 = -f_p(\mathbf{u})
$$

Geometric Interpretation

$$
\nabla f_p(\mathbf{u})(\mathbf{v_0}) + \sum_{i=1}^k \nabla^2 f_p(\mathbf{u})(\mathbf{v}_i, \mathbf{v}_i) = -\left\| u_1^2 + u_2^2 - p \right\|^2 = -f_p(\mathbf{u})
$$

Our proof can be interpreted as finding a Positivstellensatz certificate of this condition for every \boldsymbol{u} and \boldsymbol{p}

э

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Geometric Interpretation

$$
\nabla f_p(\mathbf{u})(\mathbf{v_0}) + \sum_{i=1}^k \nabla^2 f_p(\mathbf{u})(\mathbf{v}_i, \mathbf{v}_i) = -\left\| u_1^2 + u_2^2 - p \right\|^2 = -f_p(\mathbf{u})
$$

Our proof can be interpreted as finding a Positivstellensatz certificate of this condition for every \boldsymbol{u} and \boldsymbol{p}

Geometrically, we want to show that the only intersection between sets with zero gradient and PSD hessian is when $f_p(\mathbf{u}) = 0$.

←ロト ←何ト ←ヨト ←ヨト

Geometric Interpretation

$$
\nabla f_p(\mathbf{u})(\mathbf{v_0}) + \sum_{i=1}^k \nabla^2 f_p(\mathbf{u})(\mathbf{v}_i, \mathbf{v}_i) = -\left\| u_1^2 + u_2^2 - p \right\|^2 = -f_p(\mathbf{u})
$$

Our proof can be interpreted as finding a Positivstellensatz certificate of this condition for every \boldsymbol{u} and \boldsymbol{p}

Geometrically, we want to show that the only intersection between sets with zero gradient and PSD hessian is when $f_p(\mathbf{u}) = 0$.

For fixed u, these sets are convex (and can be repres[ent](#page-26-0)[ed](#page-28-0) [b](#page-24-0)[y](#page-25-0)[S](#page-28-0)[DP](#page-0-0)[s\)](#page-42-0)[!](#page-0-0)

 Ω

 \rightarrow \rightarrow \rightarrow

$$
\nabla f_{\rho}(\mathbf{u})(\mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle = 0
$$

$$
\nabla^2 f_{\rho}(\mathbf{u})(\mathbf{v}, \mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{v}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle + ||\mathcal{A}_{\mathbf{u}}(\mathbf{v})||^2 \ge 0
$$

$$
-||u_1^2 + u_2^2 - p||^2 = \nabla f_{\rho}(\mathbf{u})(\mathbf{v}_0) + \sum_{i=1}^k \nabla^2 f_{\rho}(\mathbf{u})(\mathbf{v}_i, \mathbf{v}_i)
$$

$$
\nabla f_{\rho}(\mathbf{u})(\mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle = 0
$$

$$
\nabla^2 f_{\rho}(\mathbf{u})(\mathbf{v}, \mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{v}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle + ||\mathcal{A}_{\mathbf{u}}(\mathbf{v})||^2 \ge 0
$$

$$
-||u_1^2 + u_2^2 - p||^2 = \nabla f_{\rho}(\mathbf{u})(\mathbf{v}_0) + \sum_{i=1}^k \nabla^2 f_{\rho}(\mathbf{u})(\mathbf{v}_i, \mathbf{v}_i)
$$

Suppose u_1, u_2 are coprime (true generically)

イロト 不優 トイミト イミト 一番

 299

$$
\nabla f_{\rho}(\mathbf{u})(\mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle = 0
$$

$$
\nabla^2 f_{\rho}(\mathbf{u})(\mathbf{v}, \mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{v}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle + ||\mathcal{A}_{\mathbf{u}}(\mathbf{v})||^2 \ge 0
$$

$$
-||u_1^2 + u_2^2 - p||^2 = \nabla f_{\rho}(\mathbf{u})(\mathbf{v}_0) + \sum_{i=1}^k \nabla^2 f_{\rho}(\mathbf{u})(\mathbf{v}_i, \mathbf{v}_i)
$$

Suppose u_1, u_2 are coprime (true generically)

Bézout's lemma $(A_u$ is onto) \implies there exist v_0 such that

$$
\mathcal{A}_{\mathbf{u}}(\mathbf{v_0}) = -(\mathbf{u}_1^2 + \mathbf{u}_2^2 - \mathbf{p}) \implies \nabla f_{\mathbf{p}}(\mathbf{u})(\mathbf{v_0}) = -\big\|\mathbf{u}_1^2 + \mathbf{u}_2^2 - \mathbf{p}\big\|^2
$$

メロトメ 伊 トメ ミトメ ミト

- 로

$$
\nabla f_{\rho}(\mathbf{u})(\mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle = 0
$$

$$
\nabla^2 f_{\rho}(\mathbf{u})(\mathbf{v}, \mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{v}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle + ||\mathcal{A}_{\mathbf{u}}(\mathbf{v})||^2 \ge 0
$$

$$
-||u_1^2 + u_2^2 - p||^2 = \nabla f_{\rho}(\mathbf{u})(\mathbf{v}_0) + \sum_{i=1}^k \nabla^2 f_{\rho}(\mathbf{u})(\mathbf{v}_i, \mathbf{v}_i)
$$

Suppose u_1, u_2 are coprime (true generically)

Bézout's lemma $(A_u$ is onto) \implies there exist v_0 such that

$$
\mathcal{A}_{\mathbf{u}}(\mathbf{v_0}) = -(\mathbf{u}_1^2 + \mathbf{u}_2^2 - \mathbf{p}) \implies \nabla f_p(\mathbf{u})(\mathbf{v_0}) = -\big\|\mathbf{u}_1^2 + \mathbf{u}_2^2 - \mathbf{p}\big\|^2
$$

Suppose $u_1 = u_2$. If $p(x) = 2\sum_i s_i(x)^2$, choose $\mathbf{v_i} = (s_i, -s_i)$, $\mathbf{v_0} = (-u_1, -u_2)$:

$$
\nabla f_p(\mathbf{u})(\mathbf{v_0}) = -\left\langle u_1^2 + u_2^2, u_1^2 + u_2^2 - p \right\rangle
$$

$$
\sum_{i=1}^k \nabla^2 f_p(\mathbf{u})(\mathbf{v_i}, \mathbf{v_i}) = \left\langle p, u_1^2 + u_2^2 - p \right\rangle
$$

目

$$
\nabla f_{\rho}(\mathbf{u})(\mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle = 0
$$

$$
\nabla^2 f_{\rho}(\mathbf{u})(\mathbf{v}, \mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{v}}(\mathbf{v}), u_1^2 + u_2^2 - p \rangle + ||\mathcal{A}_{\mathbf{u}}(\mathbf{v})||^2 \ge 0
$$

$$
-||u_1^2 + u_2^2 - p||^2 = \nabla f_{\rho}(\mathbf{u})(\mathbf{v}_0) + \sum_{i=1}^k \nabla^2 f_{\rho}(\mathbf{u})(\mathbf{v}_i, \mathbf{v}_i)
$$

Suppose u_1, u_2 are coprime (true generically)

Bézout's lemma $(\mathcal{A}_{\mathbf{u}})$ is onto) \implies there exist \mathbf{v}_0 such that

$$
\mathcal{A}_{\mathbf{u}}(\mathbf{v_0}) = -(\mathbf{u}_1^2 + \mathbf{u}_2^2 - \mathbf{p}) \implies \nabla f_{\mathbf{p}}(\mathbf{u})(\mathbf{v_0}) = -\big\|\mathbf{u}_1^2 + \mathbf{u}_2^2 - \mathbf{p}\big\|^2
$$

Suppose $u_1 = u_2$. If $p(x) = 2\sum_i s_i(x)^2$, choose $\mathbf{v_i} = (s_i, -s_i)$, $\mathbf{v_0} = (-u_1, -u_2)$:

$$
\nabla f_p(\mathbf{u})(\mathbf{v_0}) = -\left\langle u_1^2 + u_2^2, u_1^2 + u_2^2 - p \right\rangle
$$

$$
\sum_{i=1}^k \nabla^2 f_p(\mathbf{u})(\mathbf{v}_i, \mathbf{v}_i) = \left\langle p, u_1^2 + u_2^2 - p \right\rangle
$$

Main technical result: how to interpolate be[tw](#page-31-0)[ee](#page-33-0)[n](#page-27-0) [t](#page-28-0)[h](#page-32-0)[e](#page-33-0)[se](#page-0-0) [t](#page-42-0)[wo](#page-0-0) [ca](#page-42-0)[se](#page-0-0)[s](#page-42-0)

∴ ≊

 299

イロト イ押 トイヨ トイヨト

Theorem holds for any inner product $\langle p(x), q(x) \rangle$ on polynomials, which should we choose?

[\[CP17\]](#page-0-1) Cifuentes and Parrilo. "Sampling Algebraic Varieties for Sum of Squares Programs". 2017. (コトイラトイミトイ

造

[^{\[}LP04\]](#page-0-1) Lofberg and Parrilo. "From Coefficients to Samples: A New Approach to SOS Optimization". 2004.

Theorem holds for any inner product $\langle p(x), q(x) \rangle$ on polynomials, which should we choose?

Given $p(x)$, $q(x)$ of degree d, choose $d + 1$ points x_k

$$
\langle p(x), q(x) \rangle = \sum_{k=1}^{d+1} p(x_k)q(x_k), \quad ||p(x)||^2 = \sum_{k=1}^{d+1} p(x_k)^2
$$

Valid inner product: when x_k distinct, if $\left\|p(x)\right\|^2=0$ then $p(x)=0$.

[^{\[}LP04\]](#page-0-1) Lofberg and Parrilo. "From Coefficients to Samples: A New Approach to SOS Optimization". 2004.

[^{\[}CP17\]](#page-0-1) Cifuentes and Parrilo. "Sampling Algebraic Varieties for Sum of Squares Programs". 2017. (□ ▶ (同 ▶ (三) < 三)

Theorem holds for any inner product $\langle p(x), q(x) \rangle$ on polynomials, which should we choose?

Given $p(x)$, $q(x)$ of degree d, choose $d + 1$ points x_k

$$
\langle p(x), q(x) \rangle = \sum_{k=1}^{d+1} p(x_k)q(x_k), \quad ||p(x)||^2 = \sum_{k=1}^{d+1} p(x_k)^2
$$

Valid inner product: when x_k distinct, if $\left\|p(x)\right\|^2=0$ then $p(x)=0$.

Sum of squares using a sampled/interpolation basis studied by [\[LP04\]](#page-0-1) and [\[CP17\]](#page-0-1).

[^{\[}LP04\]](#page-0-1) Lofberg and Parrilo. "From Coefficients to Samples: A New Approach to SOS Optimization". 2004.

[^{\[}CP17\]](#page-0-1) Cifuentes and Parrilo. "Sampling Algebraic Varieties for Sum of Squares Programs". 2017.
 CP17 Cifuentes and Parrilo. "Sampling Algebraic Varieties for Sum of Squares Programs". 2017.
 CP17 Cifuentes and Pa

Theorem holds for any inner product $\langle p(x), q(x) \rangle$ on polynomials, which should we choose?

Given $p(x)$, $q(x)$ of degree d, choose $d + 1$ points x_k

$$
\langle p(x), q(x) \rangle = \sum_{k=1}^{d+1} p(x_k)q(x_k), \quad ||p(x)||^2 = \sum_{k=1}^{d+1} p(x_k)^2
$$

Valid inner product: when x_k distinct, if $\left\|p(x)\right\|^2=0$ then $p(x)=0$.

Sum of squares using a sampled/interpolation basis studied by [\[LP04\]](#page-0-1) and [\[CP17\]](#page-0-1).

How should we choose x_k ?

 209

[^{\[}LP04\]](#page-0-1) Lofberg and Parrilo. "From Coefficients to Samples: A New Approach to SOS Optimization". 2004.

[^{\[}CP17\]](#page-0-1) Cifuentes and Parrilo. "Sampling Algebraic Varieties for Sum of Squares Programs". 2017.
 CP17 Cifuentes and Parrilo. "Sampling Algebraic Varieties for Sum of Squares Programs". 2017.
 CP17 Cifuentes and Pa

Numerical Implementation

Compute sum of squares decomposition of degree 4n trigonometric polynomial

$$
p(x) = a_0 + \sum_{k=1}^{2d} a_k \cos(kx) \quad x \in [0, \pi]
$$

Using basis vectors evaluated at $4d + 1$ points

$$
B_k = [1, \cos(x_k), \dots, \cos(dx_k)]
$$

$$
x_k = \frac{k\pi}{d}, \quad k = 1, \dots, 4d + 1
$$

Matrix-vector producted in $\nabla f_{p}(U)$ computed by FFT

$$
\nabla f_p(U) = U^\top B \operatorname{Diag}(\left\|U^\top B_k\right\|^2 - p(x_k))B^\top
$$

Image credit: Christos Papadimitriou, Sanjoy Dasgupta, and Umesh Vazirani. (2006) Algorithms

 QQ

Numerical Results

Compute sum of squares decomposition for random trigonometric polynomial

Convergence rate for L-BFGS with random initialization

 \overline{a}

 \leftarrow \overline{m} \rightarrow

Numerical Results

Compute sum of squares decomposition for random trigonometric polynomial

Convergence rate for L-BFGS with random initialization

Results (stop at 10^{-7} relative error in $\mathbf u$):

 $\mathbf{v} = \mathbf{v}$

General Sum-of-Squares

$$
\min_{u_i} \langle \mu_0, \left(\sum_{i=1}^r u_i(x)^2 \right) \rangle
$$

s.t. $\langle \mu_i, \left(\sum_{i=1}^r u_i(x)^2 \right) \rangle = b_i \quad i = 1, \dots m$

Lagrangian

$$
\nu(y) = \mu_0 - \sum y_i \mu_i
$$

\n
$$
\mathcal{L}(\mathbf{u}, y) = \langle \mu_0, \sum u_i^2 \rangle - \sum y_i (\langle \mu_i, \sum u_i^2 \rangle - b_i)
$$

\n
$$
= \langle \nu(y), \sum u_i^2 \rangle + \langle b, y \rangle.
$$

Dual certificate

If **u** feasible, $\langle \nu(y), \sum y_i^2 \rangle = 0$ and $\langle \nu(y), \nu^2 \rangle \ge 0, \forall \nu$ then $\forall \mathbf{w}$ feasible,

$$
\langle \mu_0, \sum w_i \rangle = \mathcal{L}(\mathbf{w}, y) \ge \langle b, y \rangle = \mathcal{L}(\mathbf{u}, y) = \langle \mu_0, \sum u_i \rangle
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

∍

Feasible set as manifold ?

$$
\mathcal{M} = \left\{ \mathbf{u} \in \mathbb{R}[x]_d \mid \langle \mu_i, \left(\sum_{i=1}^r u_i(x)^2 \right) \rangle = b_i, i = 1, \ldots, m \right\}.
$$

Theorem: If $u_i(x) \in \mathcal{M}$ and manifold-SOCP then $\langle \nu(y), \nu^2 \rangle \ge 0$ $\forall \nu$.

Corollary: There is no spurious local minimum.

Can we use Riemanian manifold optimization algorithms ?

Rank of tangent space depends depends on $gcd(u_1(x),...,u_r(x))$ so M is not Riemannian.

イロト イ押 トイヨ トイヨト

œ

Conclusion

When does it make sense to solve non-convex formulations of convex problems? In our setting we can prove that non-convexity does not hurt us Near-linear time iteration cost with first-order methods in a benign landscape

The South Tel