Polynomial Optimization

Benoît Legat July 28th, 2023

ERC "Back to the Roots" with Prof. Bart De Moor, STADIUS, KU Leuven

Polynomial optimization

$$\min_{x \in \mathbb{R}^n} \quad p(x)$$
s.t. $h_i(x) = 0 \qquad \forall i \in \{1, \dots, m_h\}$
 $g_i(x) \le 0 \qquad \forall i \in \{1, \dots, m_g\}$

where p, h_i, g_i are polynomials.

Easy or hard ?

- If *p*, *g*_i are convex and *h*_i are linear, it is convex...
- ... but in general, it is NP-hard
- Special case with p = 0 and $m_g = 0$, system of polynomial equation, already NP-hard...

Two types of Lagrangian multipliers

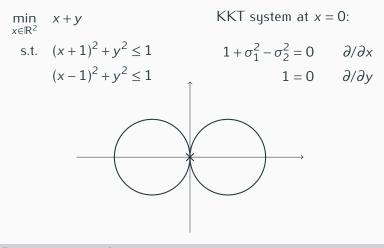
Constant multipliers – **local certificate** – KKT system Find $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}^{m_h}$, $\sigma \in \mathbb{R}^{m_g}$ s.t.

$$p(x) + \sum_{i=1}^{m_h} \lambda_i h_i(x) + \sum_{i=1}^{m_g} \sigma_i^2 g_i(x)$$

Polynomial multipliers – global certificate – Putinar Find $\gamma \in \mathbb{R}$ and polynomials $\lambda_i(x), \sigma_{i,j}(x) \in \mathbb{R}[x]$ s.t.

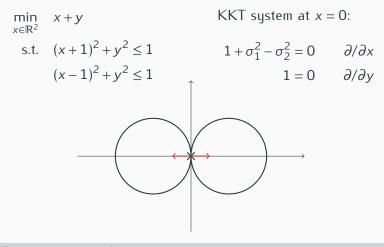
$$\forall x \in \mathbb{R}^n, \quad p(x) + \sum_{i=1}^{m_h} \lambda_i(x) h_i(x) + \sum_{i=1}^{m_g} \left(\sum_j \sigma_{i,j}^2(x) \right) g_i(x) = \gamma$$

Corner cases for KKT system



What went wrong ?

Corner cases for KKT system



What went wrong ?

The rank of the jacobian dropped to 1 at x = 0.

Solving the KKT system

Given a system $S = \{x \mid h_i(x) = 0\}$, for any $\lambda \in \mathbb{R}[x]^m$,

$$\sum_{i=1}^m \lambda_i(x) h_i(x) = 0, \qquad \forall x \in S.$$

This is the linear span of, for all $\alpha \in \mathbb{N}^n$, $i \in \{1, ..., m\}$,

$$x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}h_i$$

Macaulay matrix M_d has those of maxdegree below d as rows Buchberger : Gaussian elimination \rightarrow numerically unstable!

- Compute right null space Z_d with SVD \rightarrow numerically stable!
- Mind the gap : rank of truncation of Z_d equal to rank of Z_d
- Gap condition is sufficient for finding the solution from Z_d .

Obtaining the minimizers for Sum-of-Squares

$$\forall \mathbf{x} \in \mathbb{R}^n, \quad p(\mathbf{x}) + \sum_{i=1}^{m_h} \lambda_i(\mathbf{x}) h_i(\mathbf{x}) + \sum_{i=1}^{m_g} \left(\sum_j \sigma_{i,j}^2(\mathbf{x}) \right) g_i(\mathbf{x}) = \gamma$$

We search over dual Lagrangian multipliers $\lambda_i(x)$, $\sigma_{i,j}(x)$. But then what's the primal x? Isn't it the "dual of the dual"?

- Conic dual is a symmetric PSD matrix of moments M_d .
- Positive semidefiniteness necessary but not sufficient for existence of a *measure* with these *moments*.
- Flatness property : Rank of truncation equal to rank of M_d
- Flatness sufficient condition for existence of an *atomic* measure with these moments.

Can you find the minimizer for the Goldstein-price function ?

MomentMatrix with row/column basis:

 $\begin{array}{l} MonomialBasis([1, x[2], x[1], x[2]^2, x[1]*x[2], x[1]^2, x[2]^3, x[1]*x[2]^2, \\ x[1]^2*x[2], x[1]^3, x[2]^4, x[1]*x[2]^3, x[1]^2*x[2]^2, x[1]^3*x[2], x[1]^4]) \\ \mbox{And entries in a 15x15 SymMatrix{Float64}:} \end{array}$

0.999999	-0.999999	4.381387e-7	 1.004378e-8	,
-0.999999	0.999999	-4.374988e-7	5.650864e-7	
4.381387e-7	-4.374988e-7	2.282174e-9	9.580218e-7	
0.999999	-0.999999	4.381366e-7	0.001309	
-4.374973e-7	4.381360e-7	4.364830e-10	0.001473	
2.280602e-9	4.350399e-10	3.053123e-9	 0.002703	
-0.999999	0.999999	-4.371625e-7	0.099747	
4.381382e-7	-4.371629e-7	1.629694e-9	0.688158	
4.349555e-10	1.628054e-9	3.198895e-9	0.497798	
3.053181e-9	3.199220e-9	1.004332e-8	1.286501	
0.999999	-0.999999	6.523214e-7	 1766.382361	
-4.371617e-7	6.523217e-7	2.263102e-7	-362.739066	
1.628781e-9	2.263096e-7	4.378267e-7	2468.848686	
3.198388e-9	4.378288e-7	5.650866e-7	691.956682	
1.004378e-8	5.650864e-7	9.580218e-7	4051.055429	

JuMP interface has all we need

Rounding moment matrices

No flatness ? Try heuristic rounding (like MIP for fractional)

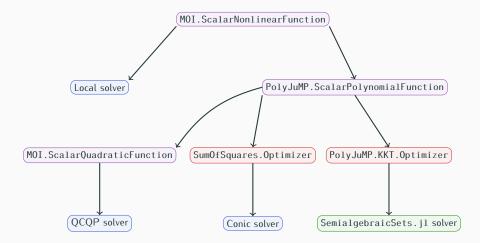
Reporting solution

- ObjectiveBound: Sum-of-Squares certified bound
- ResultStatusCode: FEASIBLE_POINT, INFEASIBLE_POINT
- Sort multiple solutions by status then objective value

Stateful optimizer object better than one-shot function

- P-time solver but exponential size increase with degree
- By default, optimize! solves one degree
- Next optimize! climbs one degree of hierarchy

Polynomial Optimization Interface



Is that an issue ?

MOI.ScalarNonlinearFunction \rightarrow

MOI.ScalarPolynomialFunction may fail, e.g., for exp(x).

Is that an issue ?

MOI.ScalarNonlinearFunction \rightarrow

MOI.ScalarPolynomialFunction may fail, e.g., for exp(x).

We already have that

MOI.Bridges.Constraint.QuadtoSOCBridge fails if quadratic form not PSD.

Is that an issue ?

MOI.ScalarNonlinearFunction \rightarrow

MOI.ScalarPolynomialFunction may fail, e.g., for exp(x).

We already have that

MOI.Bridges.Constraint.QuadtoSOCBridge fails if quadratic form not PSD.

And we want to continue

MOI.ScalarNonlinearFunction to conic with DCP fails if nonlinear expression not DCP.

Is that an issue ?

MOI.ScalarNonlinearFunction \rightarrow

MOI.ScalarPolynomialFunction may fail, e.g., for exp(x).

We already have that

MOI.Bridges.Constraint.QuadtoSOCBridge fails if quadratic form not PSD.

And we want to continue

MOI.ScalarNonlinearFunction to conic with DCP fails if nonlinear expression not DCP.

User chooses the solver, no default solver

These bridges are the only hope, so they are allowed to fail.

	Moment matrix	Macaulay matrix	
Relies on	Conic solver	SVD	
Fixed d	Polynomial	Polynomial	
Growing d	Exponential	Exponential	
M _d	Real radical	Spurious complex solutions	
M _d	Complementary slackness	Spurious FOCPs	
M _d	Low-accuracy system	Numerically robust	

	Moment matrix	Macaulay matrix	
Relies on	Conic solver	SVD	
Fixed d	Polynomial	Polynomial	
Growing d	Exponential	Exponential	
M _d	Real radical	Spurious complex solutions	
M _d	Complementary slackness	Spurious FOCPs	
M _d	Low-accuracy system	Numerically robust	

Seems complementary, could they work together ?

Mixing Macaulay and Sum-of-Squares frameworks

