Two Double Recursive Block Macaulay Matrix Algorithms to Solve Multiparameter Eigenvalue Problems 61st Conference on Decision and Control

<u>Christof Vermeersch</u> and Bart De Moor

christof.vermeersch@esat.kuleuven.be

December 8, 2022

Solving the least-squares realization problem

Solving the least-squares realization problem

Identifying the parameters of an ARMA model

Common problem!

These two system identification problems have one thing in common: they are **multiparameter eigenvalue problems**

But there are also other problems that fit into this framework (solving partial differential equations, vibration analysis, prediction error methods, etc.)

(Plestenjak et al., 2015; Batselier et al., 2012; Tisseur and Meerbergen, 2001)

Multiparameter eigenvalue problem

The multiparameter eigenvalue problem $\mathcal{M}(\lambda_1, \ldots, \lambda_n) \mathbf{z} = \mathbf{0}$ consists in finding all *n*-tuples $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$ and corresponding vectors $\mathbf{z} \in \mathbb{C}^{l \times 1} \setminus \{\mathbf{0}\}$, so that

$$oldsymbol{\mathcal{M}}\left(\lambda_{1},\ldots,\lambda_{n}
ight)oldsymbol{z}=\left(\sum_{\left\{oldsymbol{\omega}
ight\}}oldsymbol{A}_{oldsymbol{\omega}}oldsymbol{\lambda}^{oldsymbol{\omega}}
ight)oldsymbol{z}=oldsymbol{0},$$

with $\|z\|_2 = 1$.

- $\boldsymbol{\omega} = (\omega_1, \dots, \omega_n)$ indexes the monomials $\boldsymbol{\lambda}^{\boldsymbol{\omega}}$ and coefficient matrices $\boldsymbol{A}_{\boldsymbol{\omega}}$
- rectangular coefficient matrices $A_{\omega} = A_{(\omega_1,...,\omega_n)} \in \mathbb{R}^{k \times l}$ with $k \ge l + n 1$
- example: $(A_{000} + A_{200}\lambda_1^2 + A_{013}\lambda_2\lambda_3^3) z = 0$

(Vermeersch and De Moor, 2019, 2022)

1 | Introduction

- 2 | Block Macaulay Matrix
- 3 | Two Recursive Techniques
 - a | Recursive block Macaulay orthogonalization
 - **b** | Recursive block row orthogonalization
- 4 | Numerical Examples
- $5 \mid$ Conclusion and Future Work

1 | Introduction

2 | Block Macaulay Matrix

3 | Two Recursive Techniques

- a | Recursive block Macaulay orthogonalization
- **Recursive block row orthogonalization**
- 4 | Numerical Examples
- 5 | Conclusion and Future Work

Block Macaulay matrix

 $\mathcal{M}(\lambda,\mu) \boldsymbol{z} = (\boldsymbol{A}_{00} + \boldsymbol{A}_{10}\lambda + \boldsymbol{A}_{01}\mu) \boldsymbol{z} = \boldsymbol{0}$ = 0use block forward multi-shift recursions \rightarrow (block FmSRs) to generate the block Macaulay matrix \boldsymbol{M} from $\mathcal{M}(\lambda) \boldsymbol{z}$

Multidimensional realization problem

Assume only simple and affine solutions

• Solutions generate vectors in the null space of block Macaulay matrix M

MV = 0

- Nullity corresponds to the number of solutions m_a
- Null space has a **block multi-shift-invariant** structure

Multidimensional realization theory

$$\boldsymbol{S}_{1}\boldsymbol{V}\underbrace{\begin{bmatrix}\lambda|_{(1)} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda|_{(m_{a})}\end{bmatrix}}_{\boldsymbol{D}_{\lambda}} = \boldsymbol{S}_{\lambda}\boldsymbol{V}$$

Numerical basis matrix for the null space

 $\boldsymbol{S}_1 \boldsymbol{V} \boldsymbol{D}_\lambda = \boldsymbol{S}_\lambda \boldsymbol{V}$

- Solutions are not known in advance
- Consider a numerical basis for the null space Z

• This results in a GEP in the shift λ ,

 $_$ non-singular matrix T

$$(\boldsymbol{S}_1\boldsymbol{Z})\boldsymbol{T}\boldsymbol{D}_\lambda = (\boldsymbol{S}_\lambda\boldsymbol{Z})\boldsymbol{T},$$

V = ZT

with the matrix of eigenvectors T and the diagonal matrix of eigenvalues D_{λ}

Multiplicity and solutions at infinity

- **Multiple solutions** lead to a confluent block multivariate Vandermonde basis matrix and the Jordan normal form, but we can avoid this via multiple Schur decompositions
- The (infinitely many) solutions at infinity can be deflated from the numerical basis matrix via a column compression

Multiplicity and solutions at infinity

- **Multiple solutions** lead to a confluent block multivariate Vandermonde basis matrix and the Jordan normal form, but we can avoid this via multiple Schur decompositions
- The (infinitely many) solutions at infinity can be deflated from the numerical basis matrix via a column compression → requires several rank checks

degree blocks	rank
0	1
0-1	2
0-2	3
0-3	3
0-4	5
0-5	7

Double recursive algorithms

Non-recursive null space based algorithm

- 1: while gap zone is not yet large enough ${\bf do}$
- 2: Construct the block Macaulay matrix and compute a numerical basis matrix of its null space.
- 3: Check the nullity or rank structure of the basis matrix to determine if a large enough gap zone exists.
- 4: end while
- 5: Perform column compression and solve the generalized eigenvalue problem

We need **double recursive algorithms** to tackle these problems more efficiently:

- 1. A recursive (or sparse) technique to construct a basis matrix of the null space of the block Macaulay matrix
- 2. A recursive technique to determine the rank structure of that basis matrix

Computational bottleneck

Computation time (---) per degree for a second-order least-squares realization problem: constructing block Macaulay matrix (---), computing a basis matrix of the null space (.....), and checking the rank structure (---) of that basis matrix.

1 | Introduction

2 | Block Macaulay Matrix

3 | Two Recursive Techniques

- a | Recursive block Macaulay orthogonalization
- Recursive block row orthogonalization
- 4 | Numerical Examples
- 5 | Conclusion and Future Work

1 | Introduction

2 | Block Macaulay Matrix

$\mathbf 3 \ | \ \mathrm{Two} \ \mathrm{Recursive} \ \mathrm{Techniques}$

- a | Recursive block Macaulay orthogonalization
- Recursive block row orthogonalization
- 4 | Numerical Examples
- 5 | Conclusion and Future Work

Recursive block Macaulay orthogonalization

Algorithm

$$egin{aligned} oldsymbol{W}_d &= egin{bmatrix} oldsymbol{X}_d oldsymbol{Z}_{d-1} & oldsymbol{Y}_d \end{bmatrix} \ oldsymbol{V}_d &= ext{NULL} \left(oldsymbol{W}_d
ight) \ oldsymbol{Z}_d &= egin{bmatrix} oldsymbol{Z}_{d-1} oldsymbol{V}_d^1 \ oldsymbol{V}_d^2 \end{bmatrix} \end{aligned}$$

 $\mathcal{O}\left(d^{3n-2}\right)$ instead of $\mathcal{O}\left(d^{3n}\right)$

(Vermeersch and De Moor, 2023)

1 | Introduction

2 | Block Macaulay Matrix

$3 \mid$ Two Recursive Techniques

- a | Recursive block Macaulay orthogonalization
- **b** | Recursive block row orthogonalization
- 4 | Numerical Examples
- 5 | Conclusion and Future Work

Recursive block row orthogonalization

Algorithm

 $egin{aligned} m{W}_i &= m{B}_i m{U}_{i-1} \ m{V}_i &= ext{NULL} \left(m{W}_i
ight) \ m{U}_i &= m{U}_{i-1}m{V}_i \end{aligned}$

 $\mathcal{O}\left(1\right)$ instead of $\mathcal{O}\left(d\right)$

1 | Introduction

- 2 | Block Macaulay Matrix
- 3 | Two Recursive Techniques
 - a | Recursive block Macaulay orthogonalization
 - **b** | Recursive block row orthogonalization

4 | Numerical Examples

5 | Conclusion and Future Work

First example: Least-squares realization problem

First example: Least-squares realization problem

Different combinations of techniques to solve a second-order realization problem: via STANDARD-STANDARD (---), STANDARD-RECURSIVE (---), RECURSIVE-STANDARD (---), RECURSIVE-RECURSIVE (---) approach.

First example: Least-squares realization problem

The block Macaulay matrix of degree d = 26 for the second-order realization problem is a 4550×4914 matrix. The SPARSE-RECURSIVE approach avoids the construction of this large and sparse matrix (only 0.24% non-zero elements).

Second example: ARMA model

 $oldsymbol{y} \in \mathbb{R}^8$ $\min \|\boldsymbol{e}\|_2^2$ subject to $T_{\alpha}y = T_{\gamma}e$ $(\boldsymbol{A}_{00} + \boldsymbol{A}_{10} \alpha + \boldsymbol{A}_{01} \gamma + \boldsymbol{A}_{02} \gamma^2) \boldsymbol{z} = \boldsymbol{0}$ block Macaulay matrix and shift-invariance parameters α and γ

(Vermeersch and De Moor, 2019, 2022)

Contour plot of the cost function with one minimum (\bigstar) and two saddle points (\bigstar)

Second example: ARMA model

Different combinations of recursive techniques to solve a first-order ARMA(1,1) model identification problem with N = 8 data points

Combination	Computation time	Maximum residual error
STANDARD-STANDARD	$31223.95\mathrm{s}$	5.16×10^{-14}
STANDARD-RECURSIVE	$27951.57\mathrm{s}$	5.16×10^{-14}
RECURSIVE-STANDARD	$323.00\mathrm{s}$	1.24×10^{-12}
RECURSIVE-RECURSIVE	$69.41\mathrm{s}$	1.24×10^{-12}
$\mathbf{SPARSE}\operatorname{-RECURSIVE}^*$	$41.74\mathrm{s}$	1.48×10^{-13}

* Notice that SPARSE-RECURSIVE implementation avoids the construction of a 20769×21780 block Macaulay matrix.

1 | Introduction

- 2 | Block Macaulay Matrix
- 3 | Two Recursive Techniques
 - a | Recursive block Macaulay orthogonalization
 - **b** | Recursive block row orthogonalization
- 4 | Numerical Examples
- $\mathbf{5}\ |\ \mathrm{Conclusion}\ \mathrm{and}\ \mathrm{Future}\ \mathrm{Work}$

Conclusion and future work

- The **double recursive algorithms**^{*} leads to impressive results in computation time
 - Example 1: factor 80 improvement
 - Example 2: factor 725 improvement
- A sparse adaptation avoids the construction of the large and sparse block Macaulay matrix
 - Example 1: $178.87\,\mathrm{MB} \rightarrow 9.36\,\mathrm{kB}$
 - Example 2: $3.62 \,\mathrm{GB} \rightarrow 24.28 \,\mathrm{kB}$
- Can we do something similar with the QR-decomposition and the column space based approach?

^{*} All algorithms are implemented in MATLAB and available at www.macaulaylab.net.

 $\frac{\text{Christof Vermeersch}^{\dagger \ddagger}}{\text{Bart De Moor}^{\dagger}}$

"Any questions?" I 1

fwo

[†] KU Leuven, Dept. of Electrical Engineering (ESAT), Center for Dynamical Systems, Signal Processing, and Data Analytics (STADIUS), Kasteelpark Arenberg 10, 3001 Leuven, Belgium (christof.vermeersch@esat.kuleuven.be, bart.demoor@esat.kuleuven.be)

[‡] Supported by FWO Strategic Basic Research fellowship under grant SB/1SA1319N

References

- Kim Batselier, Philippe Dreesen, and Bart De Moor. Prediction error method identification is an eigenvalue problem. In *Proc. of the 16th IFAC Symposium on System Identification*, pages 221–226, Brussels, Belgium, 2012.
- Bart De Moor. Least squares realization of LTI models is an eigenvalue problem. In *Proc. of the 18th European Control Conference (ECC)*, pages 2270–2275, Naples, Italy, 2019.
- Bart De Moor. Least squares optimal realisation of autonomous LTI systems is an eigenvalue problem. *Communications in Information and Systems*, 20(2):163–207, 2020.
- Bor Plestenjak, Călin I. Gheorghiu, and Michiel E. Hochstenbach. Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems. *Journal of Computational Physics*, 298:585–601, 2015.
- Françoise Tisseur and Karl Meerbergen. The quadratic eigenvalue problem. *SIAM Review*, 43(2): 235–286, 2001.
- Christof Vermeersch and Bart De Moor. Globally optimal least-squares ARMA model identification is an eigenvalue problem. *IEEE Control Systems Letters*, 3(4):1062–1067, 2019.
- Christof Vermeersch and Bart De Moor. Two complementary block Macaulay matrix algorithms to solve multiparameter eigenvalue problems. *Linear Algebra and its Applications*, 654:177–209, 2022.
- Christof Vermeersch and Bart De Moor. Two double recursive block Macaulay matrix algorithms to solve multiparameter eigenvalue problems. *IEEE Control Systems Letters*, 7:319–324, 2023.

Other shift functions

• It is possible to shift with any polynomial in the eigenvalues – for example with $g(\lambda, \mu) = 3\lambda + 2\mu^3$

$$(\boldsymbol{S}_{1}\boldsymbol{Z})\boldsymbol{T}\underbrace{\begin{bmatrix}\boldsymbol{g}\left(\boldsymbol{\lambda},\boldsymbol{\mu}\right)|_{(1)} & \cdots & \boldsymbol{0}\\ \vdots & \ddots & \vdots\\ \boldsymbol{0} & \cdots & \boldsymbol{g}\left(\boldsymbol{\lambda},\boldsymbol{\mu}\right)|_{(m_{a})}\end{bmatrix}}_{\boldsymbol{D}_{g}} = (\boldsymbol{S}_{g}\boldsymbol{Z})\boldsymbol{T}$$

• This can be useful in applications with a polynomial cost function

Positive-dimensional solution sets at infinity

Some multiparameter eigenvalue problems have a positive-dimensional solution set at infinity, so the nullity of the block Macaulay matrix does not stabilize. This behavior makes the problem even harder!