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Abstract H2-model reduction is an established discipline in the systems and control community, and today’s state-of-the-art methods achieve great performance on large-scale problems. However, the methods are generally
suboptimal, i.e., only local optimality can be guaranteed. By contrast, the approach that we present identifies all the stationary points of the model reduction problem, allowing one to select the globally optimal reduced model.
It is well-known that the first-order necessary conditions for optimality of the H2 model reduction problem impose interpolatory conditions on the optimal lower-order approximant. We use these conditions to rephrase the model
reduction problem to a root-finding problem of a system of multivariate polynomial equations, the real-valued common roots of which characterize all the stationary points of the model reduction problem. The methodology
derives ultimately from (rational) approximation theory and outperforms existing techniques for globally optimal H2-norm model reduction in terms of computational costs. We repeat several numerical examples of H2 optimal
model reduction used in the literature to illustrate the methodology.

Problem formulation

Given a ‘higher-order’ LTI system H(z) ∈ H2, with H2 the class of stable and causal LTI models with
real-valued impulse response:

H(z) =
b(z)

a(z)
=

bn−1z
n−1 + · · · + b1z + b0

zn + an−1zn−1 + · · · + a1z + a0
,

model reduction techniques search for model Ĥ(z) ∈ H2 of orderm < n, while minimizing the approximation
error in some measure. We consider the H2-norm:

min
Ĥ(z)

J = ||H(z)− Ĥ(z)||2H2
=

1

2π

∫ π

−π
|H(ejω)− Ĥ(ejω)|2dω =

∞∑
k=0

(hk − ĥk)
2,

with {hk}k=0,...,∞, {ĥk}0,...,∞ the impulse response of H(z) and Ĥ(z) respectively.

Walsh’s theorem

Walsh’s theorem has first been derived in the field of rational approximation theory [8]. Later, the same result
has been encountered in the context of systems and control [1, 4] (continuous-time), [2, 5] (discrete-time).

Theorem 1 (Walsh’s theorem) The stationary points Ĥ(z) of the model reduction problem satisfy:

H(z)− Ĥ(z) =
b(z)

a(z)
− b̂(z)

â(z)
=

[
âr(z)

â(z)

]2
G(z),

with G(z) ∈ H2 the z-transform of some real-valued, stable and causal signal and âr(z) defined as:

âr(z) = â0z
m + â1z

m−1 + · · · + âm−1z + 1,

the polynomial which has the reciprocals of the roots of â(z) as its roots.

Proof outline: Use a partial fractions representation for Ĥ(z):

Ĥ(z) =
c1

z − π1
+

c2
z − π2

+ · · · + cm
z − πm

,

and show that the first-order necessary conditions for optimality formulate 2m orthogonality constraints:
∂J

∂ci
= − 1

2π

〈
H(z)− Ĥ(z),

1

z − πi

〉
= 0 for i = 1, ...,m,

∂J

∂πi
= − 1

2π

〈
H(z)− Ĥ(z),

ci
(z − πi)2

〉
= 0 for i = 1, ...,m.

Show, based on Cauchy’s integral formula, that these orthogonality constraints are satisfied if Ĥ(z), assumed
to have real coefficients, satisfies the following interpolatory conditions [8]:

Ĥ(1/πi) = H(1/πi) for i = 1, ...,m,

∂Ĥ(1/πi)

∂ξ
=

∂H(1/πi)

∂ξ
for i = 1, ...,m.

I.e., Ĥ(z) interpolates H(z) in 2m interpolation points, the reciprocals of the poles of Ĥ(z).

Methodology

Multiplying out the denominators in Walsh’s equality gives:

b(z)â(z)− a(z)b̂(z) = [âr(z)]
2G′(z).

withG′(z) = [G(z)a(z)]/â(z). This shows thatG′(z) is an (n+m−1)’th order polynomial. Bring everything
to the left-hand side to get:

l(z) = b(z)â(z)− a(z)b̂(z)− [âr(z)]
2
(
gn−m−1z

n−m−1 + · · · + g1z + g0

)
= 0,

where we parametrized G′(z) in the parameters {gi}i=0,...,n−m−1.

Algorithm

• Construct l(z), with coefficients parametrized in the n + m parameters ({âi, b̂i}i=0,...,m−1 and
{gi}i=0,...,n−m−1).

• Equate each coefficient of l(z) to zero to obtain a system of n+m multivariate polynomial equations in
n +m variables. The system contains one linear, one quadratic and n +m− 2 cubic equations.

• Identify the real-valued common roots for which the resulting model Ĥ(z) is stable and evaluate J for
each solution. Select the globally optimal minimizer of the model reduction problem.

Continuous-time equivalent

A similar derivation can be applied in the continuous-time case. The interpolation points are the reflections
over the imaginary axis of the poles of Ĥ(s).

Theorem 2 (Walsh’s theorem, continuous-time) With H(s) the transfer function of a stable and
causal LTI model, the stationary points Ĥ(s) of the model reduction problem satisfy:

H(s)− Ĥ(s) =
b(s)

a(s)
− b̂(s)

â(s)
=

[
â(−s)

â(s)

]2
G(s),

with G(s) the Laplace-transform of some real-valued, stable and causal signal.

Numerical examples

Example (n = 7, m = 3): We consider the higher order model used in [3]:

H(s) =
2s6 + 11.5s5 + 57.75s4 + 178.625s3 + 345.5s2 + 323.625s + 94.5

s7 + 10s6 + 46s5 + 130s4 + 239s3 + 280s2 + 194s + 60
.

Searching for the optimal third order reduced model gives two stationary points correspond-
ing to stable models, for which the impulse responses are visualized in the figure below.

Reduced model J/||H(s)||H2

Ĥ∗(s) = 2.155s2+3.343s+33.8
s3+7.457s2+10.51s+17.57

0.1171

Hl(s) =
0.7669s2+3.562s+0.4614

s3+1.217s2+2.083s+0.3007
0.2338
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Toy example (n = 3, m = 1): Consider the higher-order model:

H(s) =
s2 + 9s− 10

s3 + 12s2 + 49s + 78
,

for which we search the optimal first order approximation. Using the described methodology gives:

l(s) = (1− g1 − b̂0)s
3 + (â0 − 12b̂0 − g0 + 2â0g1 + 9)s2

+ (9â0 − 49b̂0 + 2â0g0 − â20g1 − 10)s + (−g0â
2
0 − 10â0 − 78b̂0)

from which we compose the following system of 4 equations in 4 unknowns:
0 = 1− g1 − b̂0,

0 = â0 − 12b̂0 − g0 + 2â0g1 + 9,

0 = 9â0 − 49b̂0 + 2â0g0 − â20g1 − 10,

0 = −g0â
2
0 − 10â0 − 78b̂0.

The system of equations can be written as a multiparameter eigenvalue problem (MEP) [6] by extracting
the variables that appear only linearly (b̂i, gi):


1 −1 −1 0
9 −12 0 −1

−10 −49 0 0
0 −78 0 0

 +


0 0 0 0
1 0 2 0
9 0 0 2

−10 0 0 0

 â0 +


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 â20




1

b̂0
g1
g0

 = 0.

The block-Macaulay method [7] is used to solve the MEP. There are two real-valued solutions that correspond
to stable models. The globally optimal model is given as:

Ĥ∗(s) =
1.2799

s + 9.6796
.

Future work

Work towards higher complexity/large-scale:

• Obtain even lower computational costs by searching for real-valued common-roots only.

• Experiment with other rootfinding methods.

• Benchmark the methodology using large-scale numerical examples in a HPC-environment.
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