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Abstract System identification translates time series data of dynamical systems into mathematical models. In least squares linear time-invariant (LTI) realisation problems, the observed data is modified in a least squares sense
so that it satisfies linear dynamic relations, resulting in a ‘structured’ total least squares problem, for which several heuristic methods have been proposed in the literature [1, 3, 4]. Lately, it has been shown that the least
squares optimal realisation problem for autonomous LTI systems is essentially equivalent to a (large) eigenvalue problem [2]. This new methodology, which exploits the shift-invariant structures present in the data and models,
is deterministic in the sense that it guarantees to find the globally optimal solution, thereby eliminating the heuristics that are accustomed in the state of the art. In this poster, we describe the extension of these results to
single-input single-output (SISO) LTI models, and show that also in this case the least squares optimal realisation problem can be solved using standard (numerical) linear algebra tools. We use Willems’ behavioral modeling
framework to circumvent the increase in theoretical complexity, leading to novel insights.

Problem formulation
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+ +

yu

ũ ỹ

Observed data

The exact inputs û = [û0, . . . , ûN−1]
T ∈ RN and exact outputs

ŷ = [ŷ0, . . . , ŷN−1]
T ∈ RN of a SISO LTI model of order n

satisfy a linear relation, such that:

n∑
i=0

aiŷk−i +

n∑
i=0

biûk−i = 0, k = n, . . . , N − 1, (1)

with ai, bi ∈ R (i = 0, . . . , n) the coefficients that make up the
transfer function H(z) of the model:

H(z) =
−b(z)

a(z)
=

−(b0z
n + b1z

n−1 + · · · + bn−1z + bn)

a0zn + a1zn−1 + · · · + an−1z + an
. (2)

Given observed input-output signals u = [u0, . . . , uN−1]
T,y = [y0, . . . , yN−1]

T ∈ RN , we want to find û,
ŷ and a = [a0, a1, . . . , an] and b = [b0, . . . , bn], the coefficients of a(z) and b(z) respectively, such that:

J =

N−1∑
k=0

[(yk − ŷk)
2 + (uk − ûk)

2] (3)

is minimal, subject to (1) and a0 = 1 to avoid the trivial solution. The difference between the observed and
the exact inputs is called the input misfit ũ = u− û (the misfit on the outputs ỹ is defined similarly).

Direct-form Lagrangian

With l = [l0, . . . , lN−n−1] ∈ RN−n and λ ∈ R lagrange multipliers, the Lagrangian of the optimization
problem described in the previous block is given as:

L(ŷ, û,a, b, l, λ) =
N−1∑
k=0

[(yk − ŷk)
2 + (uk − ûk)

2] +

N−1∑
k=n

lk−n

 n∑
i=0

aiŷk−i +

n∑
i=0

biûk−i

 + λ(a0 − 1).

Consider the partial derivatives of the Lagrangian to the exact outputs ŷk:

∂L(. . . )
∂ŷk

=


(−1)(yk − ŷk) +

∑k
i=0 an−ilk−i (0 ≤ k ≤ n)

(−1)(yk − ŷk) +
∑n

i=0 an−ilk−i (n ≤ k ≤ N − n− 1)

(−1)(yk − ŷk) +
∑k

i=n−(N−1−k) an−ilk−i (N − n− 1 ≤ k ≤ N − 1)

.

Equating each line to zero shows that the misfits are obtained from a convolution operation:

y − ŷ = ỹ = Tarl, (4)

with Tar ∈ RN×(N−n) defined as (empty cells represent zero submatrices):

Tar =



an
an−1 an
...

. . .
. . .

a0 . . . an−1 an
. . .

. . .
. . .

. . .

a0 a1 . . . an
. . .

. . .
...

a0 a1
a0


We use the subscript ar because the columns of Tar are forward shifts of the vector ar = [an, . . . , a1, 1]

T.
Equivalently, with Tbr defined similarly as Tar, the partial derivatives to ûk lead to:

ũ = Tbrl. (5)

Equating the partial derivatives of L with respect to the lagrange multipliers l to zero results in the constraints
of the optimization problem (1), i.e., the linear relation between ŷ and û:[

∂L(. . . )
∂li

]
i=0,...,N−n−1

= 0 ⇐⇒ TT
arŷ + TT

br
û = 0 ⇐⇒ TT

arŷ = −TT
br
û. (6)

In the z-domain this corresponds to the transfer function of the exact data model from (2).

Minimization of the least squares misfit objective (I)

Optimal misfit Define ŵ = [ŵT
0 , . . . , ŵ

T
N−1]

T ∈ R2N with ŵk = [ŷk, ûk]
T as the behavior [5] of the linear

model (w and w̃ are defined similarly) and write out the N − n recursions from (1) to get:
an bn an−1 bn−1 . . . . . . 1 b0

an bn . . . . . . a1 b1 1 b0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

an bn . . . . . . a1 b1 1 b0




ŵ0
ŵ1
...

ŵN−1

 = 0,

from which it is clear that the optimal ŵ must be perpendicular to the row space of this ‘double shifted’
banded Toeplitz matrix, the transpose of which we will denote with Tar,br ∈ R(N−n)×(2N):

ŵ ⊥ range
(
Tar,br

)
.

Assuming that the model parameters ai, bi are known, the minimal norm w̃ can be found from the orthogonal
projection of w onto the column space of Tar,br, giving:

w̃ = (TT
ar,br

)†TT
ar,br

w = Tar,br(T
T
ar,br

Tar,br)
−1TT

ar,br
w.

Minimization of the least squares misfit objective (II)

Optimal model Similarly as in [2], the objective function (3) can be rewritten as:

J = ||w̃||22 = wTTar,br(T
T
ar,br

Tar,br)
−1TT

ar,br
w

With Dar,br = TT
ar,br

Tar,br, the first order optimality conditions of the realization can be written as:
∂J

∂ai
= 2wTTT

ar,br
D−1

ar,br
T
ai
ar,br

w −wTTT
ar,br

D−1
ar,br

D
ai
ar,br

D−1
ar,br

Tar,brw, i = 1, . . . , n,

∂J

∂bi
= 2wTTT

ar,br
D−1

ar,br
T
bi
ar,br

w −wTTT
ar,br

D−1
ar,br

D
bi
ar,br

D−1
ar,br

Tar,brw, i = 0, . . . , n,

where the superscript xi denotes the partial derivative wrt. xi. This can be shown to be equivalent to a
multiparameter eigenvalue problem, the eigentuples of which characterize all the stationary points of the
realization problem [2].

Isometric behavioral modeling

Consider a state-space representation for the n-th order SISO system (A,B′,C,D′) mapping inputs ûk to
outputs ŷk, with A ∈ Rn×n,B′ ∈ Rn×1,C ∈ R1×n and D′ ∈ R. A behavioral embedding of the SISO
model can be taken as:

x̂k+1 = Ax̂k +Bv̂k

ŵk =

[
0m
C′

]
︸ ︷︷ ︸
C

x̂k +

[
Im
D′

]
︸ ︷︷ ︸
D

v̂k, k = 0, . . . , N − 1. (7)

This model maps auxiliary inputs v̂ ∈ RN , representing the degree of freedom at each point in time, to the
exact behavior ŵ = [ŵT

0 , . . . , ŵ
T
N−1]

T ∈ R2N (set v̂k = ûk to get ŵk = [ûk, ŷk]
T). If the roots of a(z)

lie strictly within the unit circle, we can, without loss of generality, assume that this behavioral state-space
model is isometric [4]. Using the Lagrange multipliers λk ∈ Rn,µk ∈ R2, k = 0, . . . , N − 1, write the
Lagrangian of the realization problem as:

L(ŵ, x̂k,λk,µk, v̂k) =
1
2

∑N−1
k=0 ||wk − ŵk||2 +

∑N−1
k=0 λT

k (x̂k+1 −Ax̂k −Bv̂k) +
∑N−1

k=0 µT
k (ŵk −Cx̂k −Dv̂k)

Equating all partial derivatives to zero allows one to derive that the optimal misfit w̃ is generated by the
misfit model : [

λk
w̃k

]
=

[
A B̃

C D̃

] [
λk−1
ṽk

]
, k = 0, . . . , N − 1, (8)

where the matrices B̃ and D̃ come from a unitary completion of the exact model, such that:[
A B B̃

C D D̃

]T [
A B B̃

C D D̃

]
= I =

[
A B B̃

C D D̃

] [
A B B̃

C D D̃

]T
.

Optimality properties

Orthogonality Multiply (6) from the left with lT and use (4) and (5) to show that in the stationary points
of the optimization problem, the exact data and the misfits are orthogonal wrt. each other:

lT(TT
arŷ + TT

br
û) = 0

⇐⇒ ỹTŷ + ũTû = 0 (9)

Structured misfit If we assume that the input is bounded and that the zeros of a(z) lie within the unit
circle, then use (2), the fact that generically Û(z−1) ̸= 0 and exploit the orthogonality (9) to derive that:

⟨Ỹ (z),
−b(z)

a(z)
Û(z)⟩ + ⟨Ũ(z), Û(z)⟩ = 0

⇐⇒
∮
|z|=1

(
Ỹ (z)

−b(z−1)

a(z−1)
+ Ũ(z)

)
Û(z−1)dz = 0

⇐⇒ Ỹ (z) =
a(z−1)

b(z−1)
Ũ(z) =

ar(z)

br(z)
Ũ(z),

where ar(z) and br(z) are the ‘coefficient reversed’ polynomials of a(z) and b(z). The same relation between
ỹ and ũ is found when one constructs the transfer matrices of the state-space models in (7) and (8):

Ĥ(z) =

[
c
a(z)

d(z)
−c

b(z)

d(z)

]T
, H̃(z) =

[
c
br(z)

d(z)
c
ar(z)

d(z)

]T
,

where c is an arbitrary constant and d(z) so that d(z)dr(z) = c2(ar(z)a(z) + br(z)b(z)).
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